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INTRODUCTION

It is a well established fact that the great majority of
salts containing ions of the metals of the transition groups
(for instance the iron group or the rare earths) are paramagnet~
ic. Without any doubt the paramagnetic properties are due to
the presence of these ions, which are characterised by an in-
complete electron shell (3d-shell for the iron group and 4f-shell
for the rare earths). These ions possess an angular momentum and
a magnetic moment,

A paramagnetic crystal therefore is characterised by an as-
sembly of atomic magnetic moments, regularly distributed over
the crystal lattice and interacting with‘each other and with
the other constituents of the crystal. This assembly in many,
respects behaves as one single physical entity or, more precise-

ly, as one large quantum mechanical system, which is often
called ‘spin-system‘,

The purpose of this thesis is to study some properties of
the spin-system in a number of paramagnetic salts, especially of
metals of the iron group. Most of the experiments were carried
out at low temperatures and they were pursued into two direc-
tions viz.

1) The study of the position of the lowest energy levels of the
spin-system (experiments on paramagnetic resonance absorption,
Part III).

2) The study of the establishment of thermodynamical equilibri-
um between the spin-system and the crystal lattice, more pre=-
cisely the lattice vibrations (experiments on paramagnetic re-
laxation, Part II).

In Part I we propose to give a general theoretical introduc-
tion. Chapter 1 contains some considerations about the clas-

sical theory of magnetism, the thermodynamics of a magnetic
body and the application of quantum theory and statistical me-
chanics. Chapter 2 contains a review of the theory of the ener-
gy levels of the spin-system. Chapter 3 contains some general
considerations on the behaviour of a paramagnetic substance in
alternating magnetic fields, while in Chapter 4 and 5 a review
is given of the theory of paramagnetic relaxation and paramag-
netic resonance absorption respectively.

Part II contains a detailed discussion of the experimental
methods (Chapter 1), the results (Chapter 2) and the interpret-
ation of the experiments on paramagnetic relaxation. (Chapter 3),

Part III contains a similar treatment of the experiments on
paramagnetic resonance absorption.

* % % %




P AR VI
THEORETICAL CONSIDERATIONS

Chapter 1
GENERAL INTRODUCTION

1.1 Classical Theory.

In this section we propose to give a brief outline of the
classical macroscopic theory of magnetism of non-conducting
crystals to the extent required by our problems.

The macroscopic equations for the magnetic field in a space
containing non-conducting magnetic matter can be written in the
form using electromagnetic cgs units(cf. C1)

(a) curlB=/4n carlX (b) divB =0, (1)
A third vector H can be introduced with the equation
H=B- yni; (2)

equation (2) and (1) give curl H = 0.-

The formulation (1) is chosen, because it relates quantities,
which have a distinct physical meaning. The magnetic induction
B is the mean value of the ‘microscopic’ magnetic fieldtaken
over a small region containing many atoms. The current density
of the ‘Amptre‘ currents can be written in the form curl I,
where I is called the magnetisation and (la) expresses the pro-
portionality between this current density and the curl of B.

It may be added that I is not uniquely defined,as a gradient
may be added to it. Usually I is taken equal to the magnetic mo-
ment per unit volume. Then the component of H in a given direc-
tion is the field along the axis of a very narrow cylindrical
cavity with its axis parallel to that direction. ‘Very narrow’
means, that the diameter of the cavity is small compared with
the dimensions of the body and compared with the distance over
which a change of I is noticeable..The component of B ina given
direction is the field perpendicular to the plane sides of a
thin disk-shaped cavity with the plane sides at right angle to
that direction.

The magnetic properties of a body can be characterised by a
relation between two of the three quantities B, I, H. Usually H
and I are chosen,

Often the magnetisation is a linear function of the compo-
nents of the magnetfé field and we have I = yH, where ¥ is a
tensor of the second rank, called the volume susceptibility. In
this case we moreover have B = UM with p = 1+4my. If the sub-
stance under consideration is isotropic y is isotropic as well,

Let us now consider a sample of an isotropic substance plac-
ed in a homogeneous field H,. Experimentally a relation between
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H, and the total magnetic moment M = JIdv can be found. The
problem is to derive from this the relation between H and I. In
the case of a homogeneous ellipsoid the eq.(1l) have a simple
solution, satisfying the required boundary conditions. (These
boundary conditions are: at the surface of the body the tan-
gential component of H and the normal component of B must be
continuouss, )

We only will describe this solution for details of the proof
we refer to the existing litterature (Bl, F1).

The vector H inside the body can be regarded as the gradient
of a potential ¢(H = —§p), where @ is the sum of a term ¢o -
the potential of H, - and a term @y, which is the potential due
to the presence of the magnetic matter. It can be shown that

o1 = [ (19d) dv, (3)

where r is the distance between the print where H has to be
calculated and the volume element dv. The integral has to be
taken over the volume of the magnetic matter. The physical
meaning of (3) is, that every volume element of the substance
acts as a dipole with dipole moment Idv.

Now in an ellipsoid I is constant, so that we have

. =1, vf-} dv)= (1,9%). (4)
Clearly H only can be homogenuous if ¥ is a quadratic function

of x, y and z, which is only the case for an ellipsoid. If the
equation of the ellipsoid is

xz/az 3 yz/bz + 22/02 o 1’
we have (T1)

¥=o-Y% (Ax2+ By + Cz2) + D (5)
with & &
A = 9nabe [dt/(a®+t)T B = 2nabc [dt/(b%+t)T
o o«
C = nabe [dt/(c*+t)T D = 2mabe [dt/T (6)
T = [(a2+t)(b2+t)(c2+t)]%.
Consequently
+ = TAx+ I By +'1.Cz,
so that
H! = HOX = AI!
Hy -+ Hoy —BIY (7)

H, =H _ —CI.

If H, is parallel to one of the axes of the ellipéoid we have
Ho= il o 0 H =H _-CI,

z oz




so that we can write

H = ﬂo -~ al. (8)

Moreover we have

I =M/V. (9)
@ is called the demagnetisation coefficient, which is equal to
A, B or C according as H is parallel to the x, ¥y or z axis. The
equations can be shown to fulfil the boundary conditions and
therefore contain a complete solution of (1), Moreover they
give the required relation between H end I if H, and M are
given in the special case of an homogeneous isotropic ellipsoid.

For a body of arbitrary shape we always can calculate a
first approximation to the field by assuming a homogeneous mag-
netisation. In general it is impossible to calculate the rigor-
ous solution,

The demagnetisation coefficients of an ellipsoid can be cal-
culated with eq. (6). For a prolate ellipsoid with a=b<c we
have

U = C = inf1-e2)/e?) [(1/2¢) In(1ee)/(1~e)-1],
if I is parallel to the axis of symmetry; and

o, = A =B = 4n[1/2e"~((1-¢” ) Jue®) In(1+e)/(1-e)],
if I is perpendicular to this axis. In both formulae
e™= (1 = a2/02)%.
For any ellipsoid A+B+C = 4n; for a sphere A=B=C = 4rn/3
and for a ‘infinitely long' specimen A =B = 91, C = 0,
In the simple case I = xM, where y is a constant, eq. (8)
becomes
H = H_/(1+ayx), (8a)
so that if y<<1, H==H_ and we simply can take H = H,.

1.11 The local field.

A macroscopic theory of magnetism, as has been outlined in
the preceding section can not be satisfactory fromamore funda-
mental microscopical point of view, even if we confine our-
selves to a purely classical treatment. For an adequate theory
we require the average magnetic field IIloc acting on the ele-
mentary magnets of the solid when an external field M, is applied.

Now H, . cannot simply be taken equal to H, as can be con-
cluded from the definition of H, Therefore the problem arises
how to calculate H .ifHor H, is known. The oldest theory is
due to Lorentz (L1); many years later Onsager (Ol) refined Lo-
rentz's theory.

1) Lorenti'g theory., The average field inside amolecule in a
crystal can be resolved into two parts. First the field exerted
by electrons inside the molecule itself, and secondly, the re-
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mainder, which is due both to the applied field and to the mag-
netic moments of the other molecules in the crystal. The second
part is called the ‘local field’ B, and is taken equal to the
average field in a hypothetical cavity, which is formed by re-
moval of the molecule, while the situation of the other mole-

cules is supposed to be unchanged.

H __isthen equal to the average sum of the contributions of
all the molecules outside the cavity. In order to simplify the
calculation Lorentz devided the molecules into two groups: those
outside a sphere with its centre in the molecule and those in-
side the sphere. The radius of this sphere is chosen much larger
than the dimensions of the molecules but is small compared with
ordinary microscopic dimensions. Nowoutside the sphere the crys-
tal is treated as a continuum and accordingly the field inside
the sphere -"which is equal to the average field excerted by
the molecules of the first group - is given by

W), =H+(4n/3)L
The calculation of the field(H, ), exerted by the molecules
of the second group is much more difficult., Under the assumpt-
ions that the field is caused by dipoles, having equal and pa-
rallel dipole moments, and which are placed on the lattice
points of a simple cubiic lattice, Lorentz showed that (H ), =0,
In this case we have

H =H + (4m/3)1. (10)

loc

Let us now introduge the susceptibility which would be found
for independent ions x° Then we have I = x°H __ or

= XOH, M. (11)
Elimination of B __ from (10) and (11) gives
X = XP/(I - (4ﬂ/3)x9). (12)

On the other hand we have in the case of an ellipsoid with de-
magnetisation coefficient ¢ for the apparent susceptibility IYHB

I/H, = x/(1 + oax)s (13)
Elimination of ¥ from (12) and (13) finally gives
I/H, = x°/[1 = (4/3 = )X, (14)
which can be expanded in the series
I/8, = x°[1 + &° + 82x°% + ...], (15)

where & = 4n/3 - a.

This expression is useful for comparing Lorentz’s result with
the results of the more refined theories of Onsager and of Van
Vleck.

2) Onsager’s theory. Strictly speaking it is not possible
té draw conclusions ffom Lorenti’s theory for the case when the
magnetisation of the medium is due to orientation of the con-
stant magnetic moments. As Onsager remarked it is true that the
average field of the molecules inside the sphere is zero. In
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the calculation of this field we have to average over all pos-
sible directions of all the dipoles,;that means also over all
directions of the particular dipole at the position of which we
want to know the average field. We are however interested in-
to the orienting field exerted on the particular dipole, having
a given orientation, hy the other dipoles. The total field act-
ing on this dipole is equal to the field H__, which would be
there if this dipole were not present, plus an induced field H
caused by the polarisation of the medium by the dipole. Onfy
H N is able to influence the orientation of the dipole; the in-
duced field however changes its direction with the direction of
the dipole, and therefore cannot influence the orientation. H,
gives rise only to an energy and consequently causes an addi-
tional specific heat. It may be remarked that the Lorenti’s
field is the sum of H  and the average value of H .

The calculation of H _ by means of a direct calculation is
rather difficult, Onsager obtained an approximation by replac-
ing the substance by a continuum and by taking into account the
absence of one molecule by a spherical cavity of properly cho-
sen radius. According to ordinary magnetostatics the field in-
side such a cavity is given by

- Ol g= o
0 W5 2mlll O+ 2u+1].'

where | is the permeability of the medium., If H  _ is taken
equal to H_, an entirely similar calculation as in the Lorentz

theory yields

I/H, = x°[1 +8° + 8°x%* = 2 ((4/3)x°)* + +e0le (16)
The only difference with Lorentz’s formula in this approximation
is the term 2((4m/3)x°)2. For iron ammonium alum at one degree
this amounts tot 0.84 X 1072, at 0,2° K it amounts to 0.21. Ak
though Onsager’s treatment cannot be rigorous, the order of
magnitude of the correction to the 'Lorentz formula is correct,
as is shown by the more rigorous theory of Van Vleck (section

2.3).

1.2 Fundamental thermodynamical relatioms.

In this section we shall give a summary of some thermodyna-
mical relations, required especially in the discussion of para-
magnetic relaxation.

The First Law of Thermodynamics of any rigid isotropic mag-
netic body placed in a homogeneous magnetic field, for instance
produced by a coil, can be written in the form

dQ = dU - H,dM, (17)
where dQ is the heat supplied to the body, dU is the change in
internal energy and H,dM is the external work done by the
sources of the field. U is equal to the energy difference bet-
ween the coil containing the magnetic substance and the empty
coil carrying the same current. An alternative formulation can
12




be found by introducing a function
E=U-HM, (18)
where H M is equal to the potential energy of the body in the
magnetic field. Then we have
dQ = dE + MdH,,. (19)
From a thermodynamical point of view (17) and (19) are en-
tirely equivalent, as the only difference is a different defi-
nition of the internal energy (E or U). It depends entirely on
the particular problem under consideration which is the most
useful formulation. Equation (18), however, corresponds better
to the usual formulation of the statistical mechanics than (17)
(compare 1.3), and therefore is preferred here.
Introduction of H, and T as independent variables-in (19)

e - B arv W+ @ ai, (20)
o o

According to the Second Law of Thermodynamics

dQ = TdS. (21)
Combination of (20) and (21) gives

=T - M. (22)
s~ Pn,
Insertion of (22) in (20) yields
a dH,, 23
&Q Cﬂoﬂ+r(%)ﬂo° o
where

Cy = (= (24)
H, égbﬂo

is the heat capacity of the body at constant magnetic field.
Introduction of T and M as independent variables in (23)
gives

= m ’
dQ = Gy a7 + T, 0 M (25)
where 521 o
% ~ G, * Ty Gy (26)

is the heat capacity at constant magnetic moment.

CI1fM = f(Hy/T) we have

Gy~ Cy* (PRI, (27)
where f’ is the derivative of f to its argument; if Curie’s law
is satisfied we have M = CH{/T (where C is a constant) and ac-

cordingly
Cy = Cy+ Gl /T . (27a)
0
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Now (22), (23) and (26) give the adiabatic change of temper-
ature

Cyy —C
(Q.T_) = _i (% 8__8” _.M (i . (28)
a’o S CHO HO Ho a’io M
Introduction of M and H, in (25) gives

- Gy oL it
dQ C"Q&i)udﬂ°+q’o%ﬂo . (29)

so that the adiabatic susceptibility becomes

C G

M oM M

= _' [ — SR e . 0

X = G G TGy % i
o o

Introducing the free energy & = E = TS we easily derive with

the aid of (19) and (21)
dd = - SdT - MdH ,, (31)

Sy = -
%‘!;)Ho €S - - (32)

The equations (24), (26), (27) and (29) are important for
the discussion of paramagnetic relaxation in I, Ch. 4.

It may be emphasized that the formulae in this section are
quite general; they are valid for any non-conducting magnetic
substance. The application is simplest in the case of magnet-
ically ‘dilute’ substances, in which the difference between H
and M is negligible. In other cases the relation between H and
H, (compare 1.1) has to be taken into account explicitly.

so that

1.3 Application of guantum theory and statistics.

The aim of a rigorous theory of magnetism is to calculate
rather than to relate only, as the macroscopic theory of 1.1
and 1.2 does, quantities like magnetisation, entropy etc. as a
function of the magnetic field and the absolute temperature,
starting from our present concepts of matter. This implies the
use of quantum mechanics and statistics, and in principle is
carried out along the following lines.

First we have to find the characteristic values of the Ha-
miltonianH of the system under consideration, or in other words
the energy levels E_ of the system. In the case of a rigid mag-
netic body the Hamiltonian contains the magnetic field as a
parameter. The second step is the calculation of the partition-

function

Sl 1 exp(-E_/kT), (33)

where k is Boltzmann’s constant and the summation has to be ex-
tended over all energy levels. Z is equal to the diagonal sum

of exp(-H/kT).
14




Finally we have (72)

® =~ kT In Z.
With the aid of the fonnu{zl it 1.2 we easily derive
(T In Z)
= kf (ln Z) (34)

g s
=k InZ) = .
CHo T?(T n ) InZ

r O 720
or  or
Noting that M ’--aﬂ/aio (Compare B2, V1), we can write for
the average moment
S ex kT,
Sp[expé- kT) ]

where Sp denotes the diagonal sum of the matrix in square brack-
ets. In the energy representation, in which H is a diagénal ma-
trix, we find for the moment in the direction of the field

o 2n (PE,PH,) exp(-E, /kT)

Z exp(-#/kT). (34a)
this can be written in the form
M= ko8- (T InZ). (34b)
o

It is important to note that the relation

dS = dE + MdH
is identically fulfilled. Consequently the First Law of Thermo-
dynamics becomes

dQ = dE + M, ,
which is identical with (19). This is a consequence of the fact
that the value of the Hamiltonian is not equal to U, but equal
to E.

E may be called the spectroscopical energy (G6), as the
change in energy caused by a transition between two energy
levels corresponds to a change of E. For a proof of this state-
ment and more details we refer to a paper of Broer (B2).

In the formulae (33) and (34) Z is the partition function of
the whole crystal. We shall assume now - as is always done in the
litterature ~ that we can write with a sufficient approximation

Z=12Z, o Z15 (35)
where Z__ contains Hoy and is the part1t1on function of the spin-
system, while Z, is independent of H, and is the partition
function of the system of lattice vibrations. The physical mean-
ing of (35) is, that the relative positions of the energy le-
vels of the spin-system are not influenced by the lattice vi-
brations. Or in other words, the spin-system and the lattice
will be treated as independent if we are interested in the

15




equilibrium properties of the substance. This assumption almost
certainly is correct for low temperatures, but at higher temp-
eratures this may be a too crude approximation (compare the
results on paramagnetic resonance absorption in NiSiF6.6H20 ob-
tained by Penrose and Stevens (Pl).

We henceforth shall assume the validity of (35) and we shall
confine ourselves mainly to a closer consideration of- the spin-
system. The lattice vibrations do not enter at all in our con-
siderations, except in the theory of paramagnetic relaxation and

in the theory of the thermal broadening of resonance absorption
lines.




Chapter II
THE ENERGY LEVELS OF THE SPIN-SYSTEM

2.1 Introduction

As has been remarked already the spin system consists of the
magnetic momenta of the paramagnetic ions in the crystal,
which of course are immediately connected with the energy
levels of the ions. Each magnetic ion is surrounded by other
ions and often by water dipoles, and therefore one can antici-
pate that its states are not the same as the states of the free
ion; this must be a consequence of interactions with the other
constituents of the crystal. These interactions consist of three
t.ypes.

First any ionis subjected to a strong inhomogeneous electric
field - often called crystalline or Stark field - due to the
other constituents of the crystal. This field has a definite
symmetry, which is determined by the crystal structure, and is
liable to split the levels of the free ion if these are dege-
nerated. This will be discussed in detail in section 2.2.

Secondly there is exchange between the electrons of each ion
and the other electrons of the crystal, and this as well is
liable to have influence on the energy levels. In a first
approximation only the exchange interaction between the elec-
trons in incomplete shells of the different paramagnetic ions
is taken into account, which will be discussed in section 2.3.

Thirdly there is a direct interaction between the paramagne-
tic ions, which will as well be discussed in section 2.3.

2.2 Highly ‘dilute’ salts
2.21 The Hamiltonian
To begin with we only shall consider the first interaction
and neglect the other types. As the latter interactions de-
crease with increasing distance between the paramagnetic ions,
this approximation is best in the case of magnetically very
‘dilute’ salts, or in other words,salts in which the distance
between the paramagnetic ions is large. Consequently we will
-write the Hamiltonian of the spin system in the form
H=2ZH, , (36)
where is the Hamiltonian of the ith magnetic ion, and the
summation has to be extended over all magnetic ions., The in-
fluence of the crystalline field can be treated as a perturb-
ation acting on the free ion. We will write H; in the form
H=H_+\ (L,S) +V+BHQL + 28) (37)
where M, is the Hamiltonian of the free ion without spin-orbit
coupling, A(L,8) describes the spin-orbit interaction and V is
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the potential of the crystalline field. The last term describes
the influence of an external magnetic field; P is the Bohr-
magneton and AL and AiS are the operators of the angular momenta
of the orbital motion and the spins of the electrons respectiv-
ely. This formulation is correct - apart from a very small term
proportional to (L,8)2 and terms proportional to B? - for ions
having Russell-Saunders coupling when free, In this case we can
take H = H, and therefore we omitted the subscript o. An alter-
native formulation, where the energy levels - correct to the
second order - are the eigenvalues of an observable involving
only spin variables, has recently been given by Pryce (P4).

If we omit the last term in (37) we have to distinguish
between three cases, depending on the magnitude of V:
(1) Strong fields. In this case the splitting due to the elec-
tric field is larger than the distance between the multiplets
of the free ion., It is conceivable that the crystalline field
is so strong that both the 1l-coupling and the ss-coupling are
removed, but this case is not likely to occur in practice. In
less strong fields it is possible that the ll-coupling is re-
moved, but the ss-coupling still exists, so that the spin quan-
tum number stil] has a signification. A tendency towards this
situation probably occurs in some ions of the iron group (v2).
(2) Intermediate fields. In this case the electric splitting is
larger than the splitting of the multiplets, but is smaller
than the distance between the multiplets of the free ion. Then
the Hamiltonian (37) can be used; Ko is the zero order Hamil-
tonian, V - or at least some terms of V, see section 222 =
is regarded s a first order perturbation and the remaining
terms from (37) are regarded as a perturbation of the second
order. Examples of this case are the bivalent and trivalent ions
of the metals of the iron group, where the multiplet splittings
are of the order 100-1000 em~? and the crystalline field split-
ting often is of the order 10* em~'.
(3) Small fields. The electric splitting is smaller than the
distance between the levels of one multiplet. In this case the
spin-orbit coupling best can be included in the zero order
Hamiltonian, which therefore is taken equal to 3 AL, S);
V again is regarded as a first order perturbation, and BH(L +28)
can be regarded as a second order perturbation. Examples are
the trivalent ions of the rare earths, for which the multi-
plet splitting is of the order 103 - 10* cm"! and the elec-
tric splitting is of the order 10% - 10° cm™ 1,

2.92 The influence of the crystalline potential

a) According to the previous section the energy levels of a
paramagnetic ion in a crystal must be found by perturbation
theory. Unfortunately V is never known exactly, because it is
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very difficult to determine the distribution of charges, the
orientation of water dipoles and the overlapping ef electron
clouds. Often huwever the symmetry of the field is approximate-
ly known from X-ray analysis and this already can give import-
ant information.

‘Cubic or nearly cubic symmetry of the crystalline field
occurs in the paramagnetic alums (chem1cal formu]a M'M (S0,),.
12H,0, where M’ is a tnva]ent 1on llke Cr , Fe i etc., and
M 1s a monovalent ion like K' NH.,Rb ,Cst Tl g 1o -ray analysis
has revealed (L2) that every trivalent ion - often called
‘central ion' - is placed in the centre of an octahedron having
eight water molecules at the corners. This octahedron can be
derived from a regular octahedron by a slight deformation along
a trigonal axis, which makes the symmetry only trigonal. The
elementary cell of the alums contains four such clusters
M:6H,0, placed with their trigonal axes along the body diagon-
als of the elementary cell. The electric field acting on the
central ion is trigonal, but deviates only slightly from a
cubic field, and therefore can be called nearly or predominant-
ly cubic. The more distant ions in the crystal probably give a
small trigonal contribution - with the same trigonal axis - to
the crystalline field. Similar crystalline fields are found in
the fluosilicates of the iron group (with the possible except-
ion of copper); the chemlca] formula is M’SiFg.6H,0, where M”
is the divalent ion like Ni*'etc.M is surrounded by a slightly
deformed octahedron of water molecules (S2) and the elementary
cell contains one paramagnetic ion.

Nearly tetragonal symmetry probably is found in another
group of double sulphates containing\divalent ions of the iron
group (Tutton salts). The chemical formula is M*M(SO, ), .6H,0;
the divalent ion probably is surrounded by .a tetragonal octahe-
dron of water molecules (Hl). The elementary cell contains two
paramagnetic ions.

Summarising we can say that very often in hydrated salts the
symmetry of the crystalline field is cubic in first approxim-
ation. It should be noted that this does not imply that the
perturbation caused by the field is determined in the first
place by the cubic part.

b) According to the group theoretical method of Bethe (B3)
it is possible to obtain a review about the levels of the para-
magnetic ion in a crystal if the symmetry of the crystalline
field is known. This method has been reviewed by Van den Handel
(H2) and Mulliken (Ml1). Mulliken, Jahn (J2) and Opechowski (02)
extended Bethée’s results to a number of groups which Bethe did
not consider,

The application of group theory is based on the remark that
the Schrédinger equation of any system is invariant under cer-
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tain transformations of the variables of the system. Examples
are for instance certain rotations and reflections, which do not
change the given field of force. Such transformations always
constitute a group, often called the symmetry group of the sys-
tem. It is easily seen that the n wave functions of a degener-
ated energy level are linearly transformed amongst each other
under the transformations of the symmetry group. Or in other
words, these wave functions transform according to a n-dimens-
ional representation of the group. If the n-dimensional space,
spanned by the wave functions, does not contain an invariant
sub-space the representation is called irreducible.

An 1irreducible representation of the degree (2F + 1), D, of
the space rotation group (which contains all rotations of a
three dimensional space around a fixed point) is induced by the
(2F + 1) wave functions of an atom having an angular momentum
F. If such an atom is placed in a crystal, its symmetry group
no longer is the space rotation group, but a group of lower
symmetry, which however still is a sub-group of the original
group., Of course the wave functions of the free atom transform
according to a representation of the new group. In general,
however, there are now invariant sub-spaces and the represent-
ation therefore is called reducible. In each of the invariant
sub-spaces an irreducible representation of the new group is
realised. It is essential, that there is no reason why the
waves~functions belonging to different sub-spaces should have
the same energy, except in the case of two complex conjugate
representations which necessarily have the same energy (Wl).
Therefore in general the original level of the free atom will
be split in a crystal in a number of other levels, which can be
classified according to the irreducible representations of the
new group contained by the original representation., The number
of levels is equal to the number of irreducible representations
of the new group found.

Bethe, Mulliken, Jahn and Opechowski calculated the irre-
ducible representations of a considerable number of groups and
with their results the reduction of a representation into the
irreducible representations of a sub-group is easily found. We
shall not give details of such calculations, but only summarise
some results in the Tables I, II and III.

Ta bl & %
F Cubic F Cubic
(1) Wy -~ L/2% (2)
(3) I 3/2 (4)
5/2 (6) ¥
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Table II

Cubic (0) Tetragonal (D,) Trigonal (D)

[ (1)]45(1) I (1) A (1) I (1) A, (1)
[%(1)]A5(1) Fa 1) B (1) I'2(1) As (1)
Ta(2)|E (2)[1y (1)+75 (1) A (1)+B, (1) |T5(2) E(2)

T4(3)|T,(3)|1; (1)+T; (2) A2 (1HE(2) [To(1)+T5(2) A,(1)+£(2)
's(3)|T2(3) [T (14T (2)| B, (1)+E(2) [y (1)+T5(2)] A, (1)+E(2)

I'a(2) [e(2) I's(2)
I'(2) 1=¢2) I's(2)
I's(4) Pe(2)+1“,(2)‘ [ (2)+Ts(2)
Cubic (0) Rhombic (D, )
I';(1) 4,(1) I (1) A, (1)
[,(1) A,(1) 'y (1) A (1)
I's(2) E (2) 21% (1) 24, (1)

I'y(3) T,(3) Lo (D)+Ta (1414 (1) | By (1)+ B,(2) + B, (1)
I'g(3) T,(3) [ (1)+5(1)+7 (1) By (1)+ B,(1) +B4(1)

['e(2) I's(2)
I"7(2) P5(2)
[a(4) 20's(2) J
Table III
F |Free | Cubic (0) |Tetraganal(D,) Trigonal(D;) |Rhombic (D,)
0 [(1) [(D) (1) (1) (1)
1/2|(2) | (2) (2) (2) (2)
11(3)](3) (1)+(2) (1)+(2) 3%(1)
3/2|(4) [(4) 2x(2) 2x(2) 2x(2)
2 [(5) [(2)%(3) | 3x(1)+(2) (1)+2x(2) 5%(1)
5/2|(6) |(2)+(4) 3%(2) 3x(2) 3x(2)
3 1(7) |(1)42x(3) | 3%(1)+2x(2) 3x(1)+2x%(2) 7=(1)
7/2|(8) [2x(2)+(4) | 4<(2) 4%(2) 4%(2)

Table I contains the reduction of the (2F + 1) states of a
free atom for different values of F under the influence of a
cubic field. The notation is chosen according to Bethe. Table
IT contains the reduction of the irreducible representations of
the cubic group under the influence of a tetragonal (D;), tri-
gonal (D;) and rhombic (D,) field. The results for each symmetry
are given in two columns, the first colums is according to
Bethe’s notation, the second according to Mullikens’s notation.
The dimensions of the irreducible representations are given by
the numbers in brackets behind the symbols of the irreducible
representations. Table III finally contains a review of the
splitting of the levels of a free ion in fields of a given sym-
metry; (n) again indicates a n-fold degenerated level.,
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If F is a half-integral number the representations are
double-valued and accordingly the levels remain degenerated
even under the lowest symmetry, which also is a consequence of
a general theorem of Kramers (K1). This Kramers-degeneracy how-
ever can be removed by a homogeneous magnetic field.

The mentioned group theoretical arguments only indicate the
type of levels which can occur, but nothing about their posit-
ion. Only in the case, that each representation of the symmetry
group occurs no more than once, it is possible to give the se-
quence and the ratio of the distances between the levels; then
of course the splitting is determined by one parameter. Two
examples are found in the Tables.

F-3 . In a cubic field (E,—Eg):(Es-£,) = 5 : 4.
F=7/2. In a cubic field now (E¢-£g):(Eg-£;) = 5: 3.

¢) Until now the signification of F has not been specified
in detail. This depends on the magnitude of the spin-orbit
coupling. In the rare earths the spin-orbit coupling is rather
strong, and the influence of the crystalline field is rather
weak. This is a consequence of the fact that the incomplete 4f
electron shell is rather well screened of by the surrounding 5s
and 5p shells, Consequently the spin-orbit coupling is not des-
troyed by the crystalline field and the energy levels in zero
approximation correspond to the eigenvalues of H,+A(L,S),
which can be labeled by the quantums numbers of the total angu-
lar momentum. In this case therefore F has to be taken equal
to J.

In the ions of the iron group the spin-orbit coupling is
usually smaller, but the influence of the crystalline field is
larger, because the incomplete 3d shell now is situated at
the outside of the atom. Consequently the spin-orbit coupling
is removed and L and § are indepently orientated relative to
the crystal. In this case the zero-order levels correspond to
the eigenvalues of f{, which belong to wave functions not in-
cluding spin factors. These eigenvalues can be labeled by the
quantum numbers L of the orbital angular momentum L and we have
to substitude L for F. The corresponding energy levels may be
called the ‘orbital levels‘. The wave functions of the actual
free ion must include appropriate spin-factors and consequently
the degeneracy of the actual energy levels in zero approximate
ion is (2S + 1) times the degeneracy of the corresponding or-
bital level. If the symmetry of the crystalline field is suffi-
ciently low this degeneracy can be reduced both by the electric
field and by the spin-orbit coupling. The decomposition caused
by the spin-orbit coupling is found by reducing the direct pro-
ducts T' Dy (in Bethe's notation). Examples can be found in the
next section.

The magnitude of the splitting must be found by a perturba-
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tion calculus, which only is possible if V is known. The order
of magnitude of the splitting by the (L,S) coupling however
easily can be given. If the level under consideration is degen-
erated (as far as the orbital part is concerned), there is a
first order splitting of the order Aem™*; if the level is sing-
le there isonly a higher order splitting of maximally the order
A%2/A em™, where A is the distance to the nearest orbital level
of the same symmetry type.

d) Before proceeding to a closer examination of the differ-
ent ions of the iron group it may be useful to consider the
crystalline potential in some detail.

According to Bethe (B3), Kramers (K2) and Van Vieck (V1) it
is useful to expand the potential of the cryscelline field U as
a Taylor series about the centre of the pa:amag <tic ion
U=Ujtax +...+ bx2+...+ cxy +...+ da%+., . +ex2y +...+ fx'+... +

gty H . Rxty ¥ .. . (38)
where Uo, a, b, ¢, ... are constants. Without loss of generali-
ty we can take U, = 0; we neglect higher powers of X, Yz

Equation (38) in many cases can be simplified considerably
by taking into account the symmetry of U and moreover the fact
that U must satisfy Laplace’s equation AU = (.

If the symmetry is cubic, with the cubic axis parallel to
the x,y,z axis (38) reduces to

U= A2x2 + RBx?y2+ (322,
which becomes as AU = 0 '
U = C2x* — 3C3x2y2,
This can be written in a more usual form by applying the rzlat-
ion 22x2y2 = r4 _ Jx4, where r is the distance from the origin.
In this way we obtain
U=DZx" - (3/5) D r*. (39)

Another important case is a trigonal field with inversion sym-
metry and with the trigonal axis in the [111] direction. Then
the most general potential satisfying Au =0 can be written

U=AZxy + BZx?yz - 6BZx’y+ DZx* - (3/5)Dr" (40)
Similarly for a tetragonal field with inversion symmetry and
with the tetragonal axis in the direction of the z-axis we have

U =A(x*+y%) - 2422 + DZx* + E(2*+6 x°y2) + 6(E-D)r*.(41)
The terms in r are not essential if one only is interested in
the splitting caused by U and they therefore usually are omit-
ted. Then however U does not satisfy Laplacé’s equation.

The potential energy in the Hamiltonian H; corresponding to
the potential U is

V= —el.

The magnitude of the splittings of a given ion caused by
(38) depends on the constants in the series  expansion, which
however only roughly can be estimated. It therefore is best to
regard them as adjustable parameters which have to be chosen in
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order to give the best fit with experimental evidence, like re-
sults of susceptibility measurements.

As has been remarked already in section a) often the crys-
talline field deviates only slightly from cubic symmetry. This
means that for instance in (40) and (41) the constants A,B and
E are much smaller than D and consequently the splitting of
the cubic levels is not always small compared with A. Than the
field of lower symmetry has to be taken together with the spin-
orbit coupling in the perturbation calculus, which can make
things much more complicated. Experimental data often only in-
dicate that the symmetry slightly deviates from cubic symmetry,
without giving any indication about the nature of the devia-
tion. The perturbation than still can be trigonal, tetragonal
or rhombic for instance. In order to avoid unnecessary complic-
ation of the calculations it is best to choose the field with
the highest symmetry which can be reconciled with crystallo-
grafic and other experimental data.

Finally some remarks must be made about the Jahn-Teller ef-
fect. As we have seen the clusters M’6H,0 have not an exactly
cubic symmetry, but they are slightly distorted. This distort-
ion is the consequence of the influence of the environment of
the cluster, and of the Jahn-Teller effect inside the cluster.
Jahn and Teller (J1) regarded a molecule in a state having a
degenerated energy level as a consequence of a symmetry proper-
ty. By grouptheoretical arguments they were able to show that
such a state cannot be stable (except in the case of a linear
molecule), and consequently a distortion will occur leading to
a stable state with lower symmetry while the original degener-
acy is removed. Van Vleck (V3) pointed out, that this theorem
has to be applied to a magnetic ion and its immediate vicinity
(usually a cluster of the type M’6H,0). The result is such a
deformation or the octahedron that all degeneracy (except the
Kramers -degeneracy, Jahn (J2)) is removed. Usually this de-
formation is so small that it escapes detection by X-ray anal-
ysis.

2.23 The ions of the metals of the iron group

Starting from the theoretical background reviewed in the pre-
ceding sections 2.21 and 2.22 several authors contributed to
the theory of the energy levels of the ions of the iron group
in a crystal. In this section we will discuss these ions sepa-
rately; it is not very well possible to discuss all the ions si-
multaneously in detail as the calculations differ too much in

the various cases, Before proceeding to the discussion of the
ions apart however some general remarks may be made.




In Table IV (see section 2.24) we listed the lowest configur-
ation and the lowest level of the lowest multiplet- determined
with Hund’s rules - of the free ions of the iron group (the
other columns of the table are discussed in section 2.24). It
is seen that ions having 10-x 3d electrons have the same lowest
orbital level as the ions having x 3d electrons; such ions may
be called reciprocally related. Van Vleck (V4) has shown that
the patterns of the orbital levels of reciprocally related ions,
when placed in crystalline fields of the same symmetry, are in-
verse for a given sign of the constants in the series expansion
of the crystalline potential. Moreover that the pattern of the
ions of the lower half (cf, Table IV) having equal L (the pairs
Nit*, Co**, and Fett, cu’*) are inverted, ani finally that if
the lowest level of Ni** is known (for iastarce I, in a cubic
field), the lowest level of Cu'' is determined (I's in a cubic
field). Consequently if for ome ion the pattern is known the sew
quence of the levels in the patterns of all the other ions is
determined. We will see below that in the case of Ti**" the se-
quence of the cubic orbital levels can be found with a simple
reasoning and hence the sequence of the cubic orbital levels in
the other cases is easily determined.

Van Vieck pointed out that the patterns in a cubic field ob-
tained in this way qualitatively explain the available data on
the magnetic anisotropy and on the susceptibility of a large
number of salts, if D-compare (39), (40), (41)-was supposed to
be positive in all cases. According to ‘Gorter (G7) D should be
positive if the paramagnetic ion is surrounded by six negative
ions or water molecules at the corners of an octahedron. X-ray
analysis has revealed that this is the case in many hydrated
salts,

We now shall discuss the ions of the iron group separately
where we shall assume - except in the cases Fe'™* and Mn*" -
that only the lowest multiplet of the free ion has to be con-
sidered. In each case we will quote the lowest level of the
lowest multiplet of the free ion and the value of the constant
of the spin-orbit coupling according to Laporte (L3).

1) T 3d™Dypm; A = 154 cn~?

The only hydrated substance investigated is titanium caesium
alum (TiCs(SO4)2.12 H,0) and therefore the energy levels will be
discussed for the case of a nearly cubic field with a small
trigonal component. In a cubic field the D level is split ac-
cording to D, = I'y + I'ys The transformation properties of the
two wave functions belonging to [y are given by the polynomials

t°~y; ¥*~22; those of the three wave functions belonging to Iy
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by xy, yz, zx. Now ::2—.)'2 and zy have the same kind of density
distribution, but these distributions are rotated relative to

each other over an angle n/4 around the z-axis. In the alum the

Ti*** is surrounded by an octahedron of water molecules. These

will turn their negative sides towards the central ion, and will

be in the first case (xz-yz) opposite the place of highest dens-

ity, in the second case (xy) however opposite places of lowest

density. According to Siegert (S1) therefore the I's level must

be supposed to be the lowest.We only will consider the I'y level,.
In a trigonal field the I's level is split according to [y =

= A, + E, of which A, must be assumed to be the lowest (see

above and ref. B4). The distance between these trigonal levels

is A. Inclusion of the spin doubles the degeneracy of the three

levels and, because EDy = I'y + I's, the spin-orbit coupling

splits the E-levelsinto twofold degenerated levels, while the

A-levels remain degenerated (ADy = I's). The resulting levels

are all degenerated, as it should be according to Kramers’s the-

orem. The distance of the higher levels above the lowest ]e;ell

is given by ¥[S+A —(3/2)\] and S, where S= [(A+A/2)* + 2\ 1%

(Bleaney B4).
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Fig. 1

If a magnetic field is applied the degeneracy of all the
levels is removed. We shall confine ourselves to the cases that
the magnetic field is either parallel or perpendicular to the
trigonal axis, and to the splitting of the lowest cubic level.
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In both cases the energy is a linear function of the magnetic
field and the energy is given by E = + % gfH, where g, which
may be called the effective Landé- factor, is different for the
two cases. Bleaney finds
g,,= [3B+72)]/5 -1 B, = [A-3)\2]/s + 1. (42)

Van Vleck (V2) estimated the value of A and found A~ 10%m" !.
This value however is rather much higher than the value (A~ 10%
em™ ') indicated by measurements on paramagnetic relaxation (V5)
and the susceptibility (H2). -
Experiments on resonance absorption indicate A=400 cm-! (Cf.
N %520

Finally we give in fig. 1 a review of the Splittings mention-
ed in the absence of a magnetic field.

2) V73 S, ; A = 150 cn”i(H3).

The most interesting substance for us is vanadium ammonium
alum (VNH,(SO,),.12H,0). In a cubic field the orbital F level
is split according toD, =TI, +I'x+I,, of which I's lies between
I'; and Iy (see p.22), and I'y lies lowest. This can be seen in
the following way (compare Van Vleck (V4)). Because the lowest
cubic level of Tit*" is I's, the lowest cubic level of Cu'' is
I';. Then the lowest level of Ni't is I', and consequently the
lowest cubic level of V'** is I',, This I'y level is split in a
trigonal field according to I'y = E + A,. Of these levels the A,
level lies lowest, which is not entirely trivial and therefore
has been subject of special discussion in the litterature. This
discussion only briefly will be summarised here. In both the
titanium and the vanadium alum the potential of the crystalline
field can be written in the form (40). Siegert (S1) already
pointed out that only if the trigonal part of the potential (40)
satisfies rather critical conditions, which we need not specify
here, in both alums the lowest trigonal level can be single.
Taking into account the direct influence of the SO,-groups in
the crystal and the influence of the distortion of the octa-
hedron of watermolecules - caused by the Jahn-Teller effect in the
M’.6H,0 clusters and the action of distant ions - Van Vieck (V2)
showed, that probably the crystalline field fulfils the require-
ment for making the 'single trigonal level lowest in both alums.

After inclusion of the spins the spin-orbit coupling can
split the E and A; level according to
(sixfold) ED, = 2E + A, + A, (three fold) A,D; = E + A,.

The sixfold level splits in first approximation only into three
twofold levels - asA; andA, still coincides, in second approxima-
tion the complete resolving is found. The threefold level only
splits in second approximation. Then the single level A, lies
lowest ,at a adistance § below the double level E. These levels
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A, and E have the spin quantum numbers 0 and + 1 resp. along
the trigonal axis. If the cubic splitting is much larger than
the trigonal splitting we have § = A\°/A, where A is the mag-
nitude of the trigonal splitting. The final degeneracy must
be completely removed by the Jahn-Teller effect, but this is
not considered further here.
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The influence of a magnetic field on the two lowest levels
has been considered by Siegert (S1). According to his results
the energy in fields respectively parallel and perpendicular
to the trigonal axis is given by

E//=ig// BH E;: 0 2 1/
E,=~5 , = KO+ (644R% HP)7) (43)
where g =2 -3 (MA)® and g =2 -2 (M), (44)

if the cubic splitting of the orbital levels is very much greater
than the trigonal splitting.

According to Van Vleck (¥2) A=< 1300 cm™*, while susceptibi-
lity experiments seem to indicate (H3), that A=800 cm™* and
8525 cm™*; then £ 1,52 and e 1,60.

Finally we give a review of the level pattern in the differ-
ent approximations in zero external field (fig.2),




3) G 3d® *Fy0i N = 87 cm”t. (P A = 55 cnt.)

In a cubic field the orblta] F level splits according to Dy =
=T, + I's + Iy (compare V'**), but now the I; term lies lowest
(Van Vleck (V4)), so that already in a cubic field the lowest
orbital level is single. Inclusion of the spins gives this level
a fourfold degeneracy, which cannot be removed by the spin-brbit
coupling, as I';D;,, = I's. There are, however, clear indications
that in the chromium alums a small splitting of this fourfold
level occurs, which implies that the symmetry of the field is
lower than cubic.Assuming as usual an additional trigonal field
the cubic I'y level is split by the spin-orbit coupling according
tol's = I'y + I's, where Iy and ['s are the double-valued repre-
sentations of the trigonal group.A detailed perturbation theory
shows, that this splitting is a higher order effect of the
magni tude (AQ/A )QA/A b), where A is the trigonal splitting
of the higher cub1c orbltal levels and A cup 15 the cubic orbit-
al splitting; this explains the smallness of the splitting ac-
tually found. For instance in the potassium alum & = 0.12 em™*
at room temperature according to Bleaney (B6).
Simple group theoretical arguments easily snow that the I,
“and ['; level respectively have the spin quantum numbers + 3/2
and * 1/2 along the trigonal axis. The splitting in a magnetic
field has been calculated for arbitrary directions of H by
Broer (BS) and for a special case(H parallel to a cube edge of
the elementary cell of the alum, so that cos2 L =1/3, where £
is the angle between the trigonal axis and the magnetic field)
by Kittel and Luttinger (K3). The latter authors find
€aia = + % (141567 — Bx(1+4x7)8]%

a3z = + % [1+15:2 + Bx (1+422)"*]¥, (45)

where we have labeled the energies with their appropnate strong
field quantum numbers and where € = E/§ and x = gﬂH/G(S)
In high fields (x>>1) we have Eps + 3/2gPH, E-= + %eBH. 1f H is

para]le] to the trigonal axis we have (Broer (BS))
= -5/2 + Yafii B, = 8/2£3/28H  (46)

The cub1c splitting A, can be found from the deviation of
the Curie-constant from the spin-only value (@according toSchlapp
and Penney (S3)) and is of the order 104 em~*(the deviation is
small and the accuracy accordingly vety low). With the mention-
ed values of 6 and A we find for the trigonal splitting A some
hundred cm-?, which seems reasonable. We finally review the
splitting discussed (fig. 3).
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4) Cr*t. 3d* ®Dg; A\ = 57 ecm™* ("),

Just as in the case of Ti the orbital level splits in a cubic
field according to D, = I'y + I's, of which the ‘non-magnetic’
state [y lies lowest (compare Siegert (81)). In an additional
trigonal field the ['s level is not split because I'; = E. Intro-
duction of the spin gives a tenfold degenerated level, which
can be split by the spin-orbit coupling into three twofold
levels and four single levels according to ED, = 24; + 24, + 2,
The remaining degeneracy can be removed by the Jahn-Teller ef-
fect and by a magnetic field.

In an additional rhombic field the Iy level is split as I's =
= 2A,. Introduction of the spins now gives a fivefold level
which can be split by the spin-orbit interaction according to
A,D, = 2A, + By + B, + Bg, so that five single levels result.
As far as we are aware no calculation about the relative posi-
tions of the energy levels has been published.

5) Fe'™* m**). 3d° °S 4,

In these cases the lowest orbital level is single and there-
fore no splitting in the crystalline field can occur. In a
first approximation the spins should be free and there should
be no splitting of the spin levels. There is however abundant
evidence showing that a small splitting of the spin levels




occurs. According to Van Vleck and Penney (V6) this is a conse-
quence of a small deviation from pure Russell-Saunders coupling
in the free ion. It may be noted, that here we have two cases
where the influence of other multiplets than the lowest one
cannot be neglected. In a cubic field the spin levels are split
in a fourfold and a twofold level according to By, 1a Iy &1,
of which usually the twofold level (I';) is supposed to be the
lowest., The splitting in iron ammonium alum is roughly of the
order 0.10 em™* (cf. Part III and (B7)).

The splitting in a magnetic field has been calculated for
arbitrary directions of H by Kronig and Bouwkamp (K4) and for a
special case(ﬂ parallel to one of the cubic axis) by Debye
(D1). Writing x = gBH/6, € = E/§, where 36 is the splitting,we
have, if H is parallel to a cubic axis

€ 2 " 1222
€5 50 = H 7 /2 220 7 x + (3/8)%]" (47)
Eigra Y+ /2 F2[x% + x + (3/4 2]” L

In fig.4 we present € as a function of z, calculated with (47).
In high fields (x>>1) we have

Sova T i x/2

€42~ — 3/2 % 32/2 (47a)
* o

825/2 %+ 5x/2.

If H is parallel to a body diagonal we have

€12~ HF x13/2(x2 F 2x/p + 1]%/2
€ g2 = 123%/2 l b
€osra % + x43/2(x2 + 9x/9 + {)%/2,

which becomes in high fields

831/2 = /3% x/2
S il 1+ 3x/2 (48a)
€yg/2 ~ — 1/3 % 52/2
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Fig. 4

Eigenvalues of 68 state ag & function of the constant
magnetic field in the too direction (cf.(47))

All levels are labeled according to their high-field quantum
numbers. It should be remembered however that the crystalline
field in many alums (for instance of V and Cr) has a lower sym-
metry than cubic and probably is trigonal. It is therefore pro-
bable that in the iron alums (for instance in the ammonium alum)
the crystalline field has a lower symmetry than cubic and pos-
sibly is trigonal as well. An adequate theory of the energy
levels than only can be given by taking this lower symmetry
into account. As far as we are aware such a theory has not yet
been worked out. It is easily seen (compare Table III) that in
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case of lower symmetry than cubic there are in the absence of
an external field three twofold spin levels. This of course ap-
plies as well to Mn*", Divalent manganese does not form alums,
but in the manganese Thtton salts the crystalline field highly
probably has a tetragonal, possiblyeven lower, symmetry and the

theory of Kronig and Bouwkamp therefore can not be adequate
for this case.

6) Fe**. 3d® *D,; \ = -100 cm~*.

In a cubic field the orbital level is split according to D,=
=y + s, of which I’y lies lowest, contrary to the case of
Cr**. In a tetragonal field (Tutton salts) I’y is spit according
to 'y = Iy +I's of which the single level I', probably is lowest.
Introduction of the spin gives a fivefold level, which can be
split by the spin orbit coupling into one doublet and three
singlets according to I'\D, = I';+['g+,#I'ss In a rhombic field
the degeneracy of the cubic orbital levels is completely remov-
ed. A rhombic field also fully resolves the spin-multiplet, so
that from the lowest cubic level five single levels result. No
detailed calculation of the position of the energy levels seems
to have been published. The splitting of the spin multiplet
must be expected to be rather large; one of these splittings
seems to be of the order 0.8 cm™*(B7).

7) Co'™. 3d" *F_ ; \ = 180 cml.

In a cubic E;eld the orbital F level is split according to
Dg =T, +I'y + I'se The p031t10n of the cubic levels howeveris
reversed compared with Cr"™*" and now the I', level lies lowest.
A further splitting occurs in fields of lower symmetry. Schlapp
and Penney (S3) considered the case of a predominantly cubic
field with a small rhombic component, in which the I', level
splits according to Iy = By + B; + B, into three single levels.
After introduction of the spins every level becomes fourfold
degenerated; this degeneracy is partially lifted by the spin-
orbit coupling, which splits each fourfold level into two Kra~
mers doublets. The calculation of the energy levels is very
complicated because probably the influence of the spin-orbit
coupling and the influence of the presumed rhombic field are
about of the same order of magnitude.

In different salts, however, the symmetry of the crystalline
field must be supposed to be predominantly tetragonal instead
of predominantly cubic, for instance in the Tutton salts. In a

tetragonal field the lowest cubic level splits into a doublet
and a singlet, according to Iy = I'; + I's, of which probably the

latter lies lowest. Introduction of the spins makes the degene-
racy of the tetragonal levels four times as high. The spin-orbit
coupling splits these levels in Kramers doublets according to
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A103/2 = s + 1 and ED:U2 = 2[s + 2I';, so that again six doub-
!eCS result. According to Pryce (P2) the tetragonal splitting
is smaller than the splitting due to the spin-orbit coupling,
which is a consequence of the almost complete cancellation of
the effects of the second and fourth order terms in the series
expansion of the potential. He estimates for the splitting be-
tween the two lowest doublets some 300 cm™® . This is much larg-
er than the value previously suggested by Van Vleck (V5), who
estimated 10 ecm™*, Prycé’s estimate seems to be more reliable,

as it is corroborated by recent experiments on the hyperfine
structure of the paramagnetic resonance spectrum of divalent

cobalt (B8). The splitting between the two lowest doublets
apparently ismuch larger for Co** “than for Cr™*Y, This is part-
ly due to the larger spin-orbit coupling and partly to the much
smaller distance between the lowest orbital levels in a crystal
in the case of cobalt.

8) Nitt3d® °F; A = — 335 em™%.

In a cubic field the orbital F level is split as in Cr
(Dg =I', + Iy + I's), so that the I, level is lowest (contrary
to Co' ). In a rhombic field, as has been considered by Schlapp
and Penney(S3), no further splitting occurs, because the I';
level is single; we have I, =A,. Introduction of the spin makes
the lowest level three fold and the spin-orbit coupling resol-
ves this level into three singlets according to A;D; =B; +B,*Bg
On this basis it was possible to describe the magnetic aniso-
tropy in the nickel ammonium Tutton salt, assuming for A the
value mentioned above and assuming one NiTY per unit cell. The
overall splitting of the three singlets was found to be about
3.4 cm™*(B4). At present this nice result seems to be somewhat
incidental, because the symmetry of the crystalline field must
be expected to be tetragonal with cubic and tetragonal terms of
the same order in the potential, and moreover the unit cell
contains two Ni-ions with different magnetic axes. In therefore
seems to be advisable to consider the tetragonal case as well,
which can be done on the basis of the theory of Schlapp and
Penney (S3), as tetragonal symmetry is only a special case of
rhombic symmetry. This has not yet been carried out. It is easi-
ly seen that in a tetragonal field the cubic level gives rise
to a doublet and a singlet because I, = I’y and I';D, =Ty + I's.

In the nickel fluosilicate the crystalline field is predomi-
nantly cubic with a smaller trigonal component (Becquerel and
Opechowski (B10)). For a trigonal field we have I; = A, and af-
ter introduction of the spins the spin-orbit coupling gives a
doublet and a singlet because A,D; = A; + E. The situation is
much the same as for V+++, but now the doublet lies lowest. The

+++
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splitting in a magnetic field, respectively parallel (B.,and Q)
and perpendicular (Penrose and Stevens (P1)) to the trigonal
axis is given by

E, - 6 By =% (6% (6% +agig)]% (49
~ + 3

ku g gnBH El 20
where
By =2(1-M) g = 2(1 - MAB)
: ; 2
and & = (A -B) A y

A and B are parameters which depend in a complicated way on
the crystalline field. The latter authors find A =~ 4,10"* cmand
(A - B)=1.5 .10"® cm, so that pracically 8, &1 The para-
magnetic resonance is entirely consistent with the theory; § is
found to decrease with decreasing temperature. At 20 and 14 %K
6 = 0.12 em™, in reasonable agreement with Benzie and Cooké’s
value of 0.16 em™* (B21). Becquerel and Opechowski (B10) find
however 0,30 cm™*, which seems to be in error. We finally re-
view the splitting discussed (fig, 5),
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9) Cu'i3d° 2D, ,; N = ~852 cen,

In a cubic field the orbital D level is split into a triplet
and a doublet according to D, = 'y + ['s. The unmagnetic doublet
'y lies lowest, as in the case of Mn*** and Cr**, but contrary
to' VW T tetragonal field I’y splits into two singlets
(I'; =Ty +T3) and the triplet into a singlet and a doublet
(D= B * P)s Assuming a tetragonal field of the form (41)
with cubic and tetragonal terms of the same order, Polder (P3)
showed that the sequence of the levels, starting from the lowest
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one, must be I'y,I,,I'y, and I's. Introduction of the spin doubles
all levels, but only thel's level is split (in two doublets). The
splitting in a magnetic field resp. parallel and perpendicular
to the trigonal axis of all the doublets is given by

Ey= 1Y% g,pH Ey =+%gBH, (52)
where for the lowest doublet
' 21 - 4NE:E,)] &y ~ 201 - \/(Eg-Ey )] . (53)

Here we have written E  for the energy corresponding to the
level I, .On this basis fair agreement is found with susceptibil-
ity measurements on the copper potassium sulphate of Miss Hupse
(H4), which give g, = 2.44 and 8y = 2.05, if it is assumed that
E, —Eg = 15400 om™* and Eg - E; = 26600 cm™2,

Recent evidence shows however that Polder’s theory does not
account for all observed facts. In the first place experiments
on resonance absorption in several copper Tutton salts show
that deviations from the tetragonal symmetry occur, especially
in the potassium and ammonium Tutton salts (B12), where the
symmetry seems to be rhombic. In the second place experiments
on the hyperfine structure of the paramagnetic resonance line
of Cu** cannot be satisfactorily explained on the basis of Pol-
der’s theory (Al). According to Broer (B13) this might be ex-

CuBIC

Fig. 6

plained by interaction between the lowest configuration 3d° and
the next lowest one 3d®4s, which have the same parity, The ef-
fect of this interaction only can be found as aresult of rather
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complicated calculations, but it is entirely neglected in Pol-
der’s theory. According to Pryce a quadrupole moment of the
nucleus should be responsible for the discrepancy mentioned.

It may be added that Jordahl (J3) gave the first theory about
the Cu*?, assuming a predominantly cubic field with a small
rhombic term. As Polder’s theory accounts better for the known
experimental facts we shall not discuss Jordahl’s theory. We
finally review the splittings discussed (fig. 6).

+ 4+ 7 8
10) Ga" " ". 4f S1/z.

Although Gd belongs to the .rare earths it is briefly discuss-
ed here because we carried out some experiments on gadolinium
sulphate. The situation is much the same as for Fe'*" and Mnt;
as the lowest orbital level of the free Gd**" is single, and
there is only degeneracy due to the spins. Again as a conse-
quence of small deviations of pure Russell-Saunders coupling in
the free ion the spin-orbit coupling causes a small splitting
of the spin levels in a crystal. In a cubic field - which is
usually assumed to be present in the sulphate - the spin levels
are split into two doublets and one quartet according to D7 -
I'e + Iy, + I'g. Group theoretical arguments show that the quartet
lies between the doublet and that the distances between the
levels fulfil the relation (Eg—£,): (Es—£g) = 5:3. According to
Hebb and Purcell (H5) I'; should be the lowest level in a crys-
tal.

The splitting in an external magnetic field has been calcu-
lated for a magnetic field in the [001] directions by Kittel
and Luttinger (K3) and for arbitrary directions of the magnetic
field by De Boer and Van Lieshout (Bl4). We do not quote the
complicated formulae, but refer for details to these papers.

2.24 Comparison with experiment.

a) As we have seen in the preceding section in a crystal the
levels of the ions of the iron group are all characterised by a
group of close levels (the ‘normal levels') with a separation
of maximally a few cm™*, while all the other levels are at a
distance of 1000 cm™* (except for Co**) or even much more above
the lowest levels. At ordinary temparatures only the normal lev-
els are occupied, which is easily seen because 1% corresponds
to 0.696 cm™*, The higher levels have only influence on the
properties of the paramagnetic substances in as much they in-
fluence the lowest levels. If we neglect the splitting of the
normal levels the level pattern in a magnetic field corresponds
to the levels of a system of free spins. This simple pattern is
slightly modified by the influence of the spin-orbit coupling.

These results of the theory are all obtained in a natural
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way, but a definitive justification only can be given by a
comparison with experimental evidence. Fortunately there is
abundant evidence confirming the correctness of the sketched
theoretical result inits main outline. We must confine ourselves
to a brief summary, as a detailed discussion would fall out-
side the scope of this thesis; we refer to Van Vleck (V5), Pen-
ney and Kynch (P5) and Freed (F2).

The most direct - and ultimately the most complete - evidence
about the normal levels is furnished by experiments on resonance
absorption. We propose to discuss these later and therefore can
omitt them here.

Less detailed information is given by measurements of the
susceptibility and specific heat. In order to make possible a
check of the level pattern mentioned, we have todiscuss the
theoretical expressions for the susceptibility and the specific
heat.

b) We first have to calculate the partition function. In the
case of a highly dilute salt - in which we can neglect the in-
teractions between the paramagnetic ions - we can write at once

Z= thvon' (54)
where Z._ _ is the partition function of one ion and N is the

ion
number of paramagnetic ions. Z; . is easily calculated in the

case of free spins. A system of free spins with a spin quantum
number S has in a magnetic field (2S + 1) energy levels with
the energies

E,=gmBH, (55)
where m = S,8-1,---, =S+1,-S; the Landé-factor g is equal to 2
in the case of free spins. We shall write g in order to make
the applicability of the formulae greater. It is easily shown

that

Z = sinh(S+%) ga/sinh % go, (56)
where @ = BH/kT. According to (34) we have
M = B[(SH4)g coth(St))gt - coth 4 ). (57)
This expression becomes for small values of a
M = NB?g? S(S+1) H/3kT, (58)
so that Curie’s law is satiesfied with the Curie constant
C = NP%>S(S+1)/3k. (58a)

This easily can be compared with experimental values of the
susceptibility. The usual way of doing this is to compare the
theoretical and experimental magnetonnumber p, defined by p =

(\b(kT/NBQ)‘/’. In Table IV we collected some results; the first
column is trivial, the second column contains the configuration,
the third column contains the lowest states of the free ions,
determined with Hund’s rules, the fourth column contair}s the
values of p for the free ions.In this case p=pu=g[J(J+1)]’é - if
the multiplet splitting is much larger than kT - and g is given
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by g = 1+[J(JF1)+S(S+1)-L(L*1)] /2J(J*1). The fifth column con-
tains the values of p calculated with (58), the ‘spin-only‘-
values (pg = 2[S(S+1)]”). Inspection of the table shows that
the experimental values P.,, agree nicely with the spin-only
values, while on the other hand the agreement with the values
for the free ions (except for Mn'" and Fe'*") is very poor. Ev-
idently the magnetism of the ions in a crystal differs consi-
derably from that of the free ions and is to a fair approxima-
tion due to the spins alone. This justifies the level patterns
given in section 2,23 in its general outline.

TABLE IV

Ion ]VConfiguration %Owe?t P P p
P 12 22283238 P eve H S e xp
Ti T AR e W e e B
) 3 | °F, 1.63 | 2.83 | 2.8
N 3d3( 4F, | 0.77 [3.87 | 3.9
Mottt oot 3d4 | 5D, 0 4.90 | 4.9
Fe' ' ™" 3a5| s, . | 5.925.92 | 5.9
Fe'* 3d¢ | *D, 6.70 | 4.90 | 5.5
COH 3d7 4F9/2 6154 3.87 404'5'3
Ni' 348 | F, 5.59 | 2.83 | 3.2
cu't 34%]“p; . '] "3:85 | 2e73"| 1.9

Theé internal energy of asystem of free spins is simply equal
to E - _(HM).

In low fields we have E = —4B°H%S(S+1)/3kT = - G /T(cf.(58a)),
so that (, is given by

€, = CHIT (59)
this corresponds to (27) with Gl 0. This result is indepen-
dent of the value of g and remains correct as long as there is
no splitting in zero field and moreover the interaction between
the paramagnetic ions is neglected.

c) By considering the spins as free, however, we neglect the
influence of the spin-orbit coupling, which appears to be essen-
tial for the explanation of some finer points, like the devia-
tion from the spin only value of the magneton number, anisotro-
py of the susceptibility and the magnitude of the specific heat

of the spin system. y 3 )
The influence of the spin-orbit coupling on the energy levels

has, according to the preceding section, three aspects. In the
first place a small splitting of the spin multiplet occurs,
: L+ .
except in the cases Ti and Cu ", in the second place the
’ splitting in a magnetic field depends on the direction of the
field relative to the axes of the crystalline field, And third-
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ly, in all cases where the energies are a linear function of
the field, the g-values differ from those of free spins,

The influence of the spin-orbit coupling on the specifie
heat and the susceptibility can be discussed according to these
three aspects. Let us consider the susceptibility first.

Clearly if the g-value differs from 2 deviations of the spin-
only value of the magneton number must be found. This is the
case with Ti**" and Cu**. Moreover in ‘these cases the levels
vary linearly with the magnetic field in all directions and the
g-values depend on the direction of the magnetic field, so that
the susceptibility must be anisotropic. This has been observed
for instance in the case of copper salts and the theory satis-
factorily explains the magnetic anisotropy in the copper Tutton
salt. For details we refer to a paper of Polder (P3). In gener-
al a dependence of the level pattern on the direction of the
magnetic field causes a magnetic anisotropy. Often the ele-
mentary cell contains more than one ion; then in general the
direction of the crystalline field relative to the crystal axes
is different for the different ions and consequently the aniso-
tropy of the crystal can be very different from the anisotropy
of an ion apart (see for instance Polder (P3)). Other examples
can be found in a paper of Schlapp and Penney (S3).

The influence of a small splitting & on the susceptibility
only becomes noticeable if the temperature is so low that no-
longer 6 << KT.

This is easily seen in the following way (compare Casimir
(C1)). The splitting of the normal levels in a magnetic field
can be found by solving the secular equation

V{u o E1§u'= 0. ,
In the case of an initial splitting we have to write
Ly = B - amy,
where E° are the energies oi the normal levels in zero field.
The partition function is the diagonal sum of exp (-W/kT) and,
since this sum is invariant under unitary transformations, we
can write in the energy representation

z =3 (exp(4ykT)], -

This however can be expanded in a series

Z =3 [exp (-HM/ET)] A O(A/kT) f (WM/kT), (60)
J

where A is a measure for the total separation of the E7 ’s, and
£(0) = 1; O(x) is a quantity of the order of magnitude x. To a
first approximation the partition function therefore is the
same as in the case when there are no splittings at all. This
result is independent of the value of HM, which may be small or
large compared with the initial separations.
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The magnetic moment can be expanded in ascending powers of

I/T M= (ai/T)(i"'B/T"' oco)

(if saturation is neglected), where C has the same value as if
there were no splittings and Bis of the order A/k, if not zero.
The presence of small splittings does not influence the value
of the Curie-constant but only adds higher powers of 1/T to the
expression of M and the susceptibility ¥ = M/H. Often for pow-
ders B = 0. (Van Vleck and Penney (V6), and Gorter (G8)), and
only at very low temperatures the influence of the splittings
becomes perceptible.

An example is the susceptibility of NiSiF, .6H,0 in the direc-
tion of the hexagonal axis which coincidés with the trigonal
axis of the crystalline fieldi In this case we have

Z = 20% exp(6/kT) + cosh ga)
and
M = N @Bsinh gu/[cosh gn + % exp(b/kT)] .
This formula fits the experimental results of Becquerel (B15)
with a suitable choice of 6(6 = 0,30 ecm™*), which however is
larger than the value obtained from resonance absorption (§ =
0.12 em™*, Penrose ‘and Stevens (P1)). In low fields and at
sufficiently high temperatures we have
= (2N g? B? H/3kT)/(1 - 26/3kT),
so that we have B = —26/3k. Only at temperatures. below about
49K the influence of the splitting becomes noticeable.

According to (60) the specific heat in the absence of a mag-

netic field at temperatures for which A<<kT is given by
C, = O(A?/kT?), (61)
It may be noted that for any system having lowest energy levels
with a spacing much smaller than kT, while all other levels lie
at distances much hlgher than kT, the specific heat is propor-
tional to1/T?. If M satisfies the Curie-law M = CH/T, we there-
for can-write (Cf. (27))
= (vaf')/1%,

where b is a constant of e A?/k,
It it not difficult to calculate the complete expressions for
Cy for different ions taking into account the splitting ment-
1oned in 2.23. We only will summarize some results. For Cr''*
(in a trigonal fxeld) we have
=(Nk) % (6/kT)® + 0 (6/kT)° + ...; (62)

for Fe (1n a fleld of lower symmetry than cub1c) we have

= (Nk)(2/9)(62 + 63 — & 182) /(kT)? + O(6/kT)® .., (63)
where 6, and &, are the distances of the two hlgher Jevels from
the lowest level. In a purely cubic field §, = 8, and the ex-
pression for C, is simplified accordingly. Finally for Gd**" we
find
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= (Nk)(1/kT)? 4 2’, 62 ~ (1/16)( 2 62)] +O(B/kT)° + ..., (64)
where 8; are the dlstances to the lowest level. In the case of
a cubic field this reduces to

C, = (Nk)(33/256)(60/kT)? + O(6o/kT) *+ ..., (65)
where 6o is the overall splitting. These formulae will be used
in II, ch.II for calculating the splittings from data on the

specific heat.

9.95 Influence of the nuclear spin.

In the considerations given so far the possible influence of
a nuclear spin on the energy levels is neglected. The nuclei of
many paramagnetic ions however possess a spin (compare Table V)
and a brief discussion of its influence is necessary.
The interaction between the nucleus and the electron shell of a
paramagnetic ion consists of two parts; a magnetic interaction
between the nuclear magnetic moment and the magnetic field due
to the spin of the electrons and the unquenched residual orbit-
al momenta of the electrons, and an electric interaction bet-

TAB LE ¥
Nuclear spin
Z Element A % Spin | Colum 1: ‘Z' atomic number
22 Ti 48 73.5 of element
23 ' 51 | 100 7/2 Column 2: ‘Element‘ Chemical
24 Cr 52 83.8 symbol
25 Mn 55 | 100 5/2 Column 3: ‘A’ Mass number of
26 Fe 56 91.6 isotope
27 Co 59 | 100 7/2 Columm 4: ‘%' Percent abund-
28 N1 58 67.4 ance of isotope
60 26,7 in naturally
29 Cu 63 70.1 |3/2 occurring ele-
65 29.9 | 3/2 ment.,

ween a nuclear quadrupole moment and the inhomogeneous electric
field produced by the electronic charges of the ion and the
other constituents of the crystal. These interactions cause a
small splitting of the energy levels.

The calculation of this hyperfine splitting is carried out
along similar lines as in the case of free atoms. We have to
add terms to the Hamiltonian (37) takingintoaccount the inter-
actions mentioned. In the case of ions of the iron group in a
crystal L and 8 are decoupled and the Hamiltonian must conta}n
terms allowing for the interaction of the nucleus with the or-
bital and spin magnetic moments separately. If py I denotes the
nuclear magnetic moment the magnetic interaction can be written
in a first approximation
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A et = Bur (1/r)[(1,8) - 3(Ir)(sr)/r2 - (1 )], (66)
An extra term, which is not given here, must be added if the
nucleus has an electric quadrupole moment. The calculation of
the matrix elements, which determine the splitting, is a diffi-
cult problem because a detailed knowledge of the orbital wave
functions of the electrons is required. (If thesymmetry of the
crystalline field is known it is 'however possible to write (66)
- after integration over the space coordinates - in a simpler
form. For cylindrical symmetry we always can write
Hpuct = A 1S, + B(I, S, + I, S,) + QUIZ - L 1(I+1)). (67)
where A, B and Q are constants, and'the term with Q describes
the influence of a quadrupole moment. This expression accounts
for the observed hyperfine structure in different cases (Bleaney
(B16)). The constants A, B and Q can then be determined directly
by micro-wave observations.
The hyperfine splitting gives rise to an additional specific
heat G,, which for sufficiently high temperatures is given by

GT 7R = (he/k)* [(1/(A"+2B° )S(S+1)I(I41) +
+ (1/45)Q° (1 +1)(21-1)(21+3)], (68)

where A, B and ( are in cm”!, In different cases the agreement
between the experimental values of the specific heat and the
values calculated with (68)- using values of A, B and Q obtained
from microwave experiments - is excellent. For details we refer
to Bleaney’s paper.

It can be shown that the hyperfine structure does not mater-
ially alter the term in 1/T in the expansion of the susceptibi-
lity and introduces no term in (1/7%) even for a single crystal,

2.3 Magnetic interaction,
2.31 Introduction.

In the previous considerations of this chapter we entirely
neglected the possible influence of interaction between the pa-
ramagnetic ions. The question now arises in which cases this
treatment can be justified. It will be remembered that the mag-
nitude of the interactions mentioned in section 2.1, decreases
with increasing distance between the magnetic ions. Therefore
only for substances in which this distance in the average 1is
sufficiently large it is allowed to neglect the interaction. In
order to decide about this a measure indicating the strength of
the interaction is required., A useful quantity is a field of
magnitude Hl, if H ? is the average of the square power of the
magnitude of the field acting on a magnetic ion and caused by
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the other magnetic ions (cf. (83b)). In many rather strongly
dilute salts like the alums and the Tutton sa]ts,Hl is at least
of the order of 100 Oersteds. From the considerations of this and
following sections it will become clear, that in this case the
influence of the interaction, for instance on the specific heat
or resonance absorption lines, becomes perceptible.

Often however it is possible to reduce H, by making mixed
crystals, for instance of a paramagnetic alum with a suitable
aluminium alum. As a matter of fact it is easily proved that in
the mean H ~~n, where n is the number of magnetic ions per cm®.
Therefore the preceding considerations are valid for paramagne-
tic alums or Tutton salts in which at least 90 % of the para-
magnetic ions are replaced by diamagnetic ions.

In this section we propose to discuss some general aspects
of the interaction between the magnetic ions. Some special
points will be discussed in the chapters IV and V.

In order to take the interactions into account we have to
supplement the Hamiltonian (36) with terms describing the inter-
action; we therefore shall write

/{=§‘4+1§1 LT (69)
where the second term indicates the interaction. The interaction
can be written as the sum of two contributions, the coupling
between the magnetic momenta of the ions - which is treated as
a pure dipole-dipole coupling - and an exchange coupling bet-
ween the ions, so that we have

Wy =riy my-3omr, )mr, )/g) +V,, (10)

where the first term denotes the magnetic interaction (m  1is
the magnetic moment of the ion and r,  is the radius vector
between the ions i and j with the modufus r,,) and the second
term indicates the exchange interaction. We sta]l suppose that
we can write for V
Yy, = (A,/r3)mm), (71)
where 6411/ri;) is a dimensionless scalar quantity proportional
to the exchange integral between the ions.(This formulation
allows the exchange interaction to be treated simultaneously
with the magnetic interaction). '
If for each of the N ions in a cubic centimetre we take into
account n states, the Hamiltonian is a matrix of rows and
colums which is known in the representation corresponding to
the case when the interaction is neglected. The calculation of
the energy levels in the case of interaction involves the diag-
onalisation of this matrix. There can be little hope to carry
this out. Fortunately, however, for finding the susceptibility
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and the specific heat this problem need not to be solved. We
only require the partition function, which is the diagonal sum
of exp(-4/kT). This diagonal sum does not depend on the system
of wave-functions and therefore can be calculated in the ori-
ginal representation. We can now expand Z in a power series
Z = Sp [1 - K/kT + K2 J2(kT)" +...], (72)
so that
Z = i - (1/kT) Sp[H] + (1/2(kD)?) Sp(HA +... (73)
In this way the problem is reduced to the calculation of the
diagonal sum of powers of the Hamiltonian. This is comparatively
simple for the lowest powers, but becomes very cumbersome for
higher powers; this procedure therefore i only useful for
sufficiently high temperatures where the series (72) converges
rapidly.

2.32 Cases in which no electrical spl.tting occurs
1) Specif ic heat, The specific heat in the case

when there is no applied field can be found by taking H0=V1=0’
so that we can write for the Hamiltonian

H=zw,, .
The remaining terms in /{ only give rise to an additive constant
in the energy and therefore can be omitted here. If only one
multiplet component of the ions is active we can write for the
magnetic moment

m=gPJ (74)
and consequently

Wit ri; [+, )@,3) =3@r,,)@r, )] (75)

Using the commutation rules of the components of the J,'s it
can be shown that

Sp[#]1=0 (76)
and
SplH?] =(1/6) g*B*J° (11)°NQ, (1)
where
QN %5 ret (AL 2.28), (78)

Q can be calculated for cubic arrangements. Assuming that ex-
change interactions is confined to nearest neighbours, Van
Vleck finds
Simple cubic 2
Face centered cubic Q.. = 12 (1.20 + % 42) (79)
Body centered cubic Q,. = 256/27 (1.53 +¥% A?),

where A = Ax; for nearest neighbours.
In this approximation the partition function can be written
z=nN(1+N-1f3-, 192-), (80)

where Z is a quantity of the dimension of a temperature,

12 (1.40 + % A?)
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defined by

¢ = g> B* N J(J +1)/k. (81)
The specific heat is given by

c = mne)2.5 . (82)

M 6 ?’

The specific heat in a magnetic field now can be written if
Curie’s law is satisfied (ef. (27))

c, = CC% H*+ i )/T? (83)
where r ey 5 g

H? = 28" B* J(J+1) 5,y (194A7), (83a)
and C = &/3. H] can be interpreted as the effective wagnetic

field caused by the interactions between the magnetic 1ons.
It may be noted that exchange interaction increases the spe-
cific heat. The internal field H_, introduced in section 2,31,
is equal to the purely magnetic contributions to H:, so that we

have

i ij

Van Vleck has also calculated the terms in the specific heat
proportional to (£/T)® and (&/T)*, which can be found in his
paper, It is of some interest to note that the specific heat is
independent of the shape of the body. This is a consequence of
the fact that Q contains the distance between the ions to a
high negative power, so that the influence of the ions at the
boundary is entirely negligible. Moreover it may be noted that
exchange interaction increases the specific heat.

With formula (82) it is not difficult to calculate the con-
tribution of the dipole-dipole coupling to the specific heat.
This can be done in the cases of Ti*** and Cu*t, which ions do
not have an electric splitting. According to Hebb and Purcell
(H5) the calculated specific heat of titanium caesium alum
agrees satisfactorily with the results of unpublished measure-
ments of Kurti and Simon. In the case of copper, however, the
specific heat calculated in this way is considerably smaller
than the experimental values (cf. G 1). This must be due to the
hyperfine structure, eventually combined with exchange interac-
tion, or possibly to exchange interaction alone. This depends
on the degree of dilution of the substance.

H =2 g"’B"’J(J+1)iv§‘ﬁJ res . (83b)

2) Susceptibility. The susceptibility can be found by
including in the Hamiltonian the terms describing the influence
of H. Now Z can be expanded in a power series in H

Z =.2°0 (172 DHR & dew)s (84)
For reasons of symmetry only even powers of H occur. Van Vleck,
retainung terms until the fourth power in 1/T found for Z¢2)
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7(2) = [c_/(GkT)"’I[H% 5(@B)T" + (:!‘5(@-8))'2 -yI™2]. (85)

where ® and Y are constants. If H is directed along the z-axis
® is given by
3=-N*2[1-3 cos2(z,r11)]/rfj. (86)
i

M ®can be interpreted as the z-component of a magnetic field
excerted on the i-th ion by a lattice carrying in every lattice
point (except i=j) a dipole of the magnitude M/N directed
parallel to the magnetic field. It is assumed that & is indepen-
dent of the position of the ion i, This is correct for an ellip-
soidal sample; & = 0 for a spherical sample, because the mean
value of cosz(ll,r1 ) = 1/3. We will see below that & is equal
to the difference of the Lorentz factor and the demagnetisation
coefficient.

B describes the influence of the exchange interaction; as-
suming that only exchange between nearest neighbours must to be
taken into account and every ion has z nearest neighboursat a
distance r, B is given by

B = Az/Nr®. (87)

'Finally Y is given by
Y = (Q2/9 [1+(3+3B/Q2) /8J(J+1)]. (88)

The magnetic moment is given by I = 2kT Z(?’H and consequently
I/H = x° [1+(3-B)x° + (8B)2x°* - vy T°], (89)

where we have written x° = /3T,

Comparison of (89) with the expressions (15) and (16) of the
classical theory of magnetic interaction of Lorentz and Onsager
respectively shows, that the classical expressions - apart from
a possible ‘exchange field‘, which adds an amount BJ to the
purely magnetic Lorentz field - agree with the rigourous expres-
sion up to the first power of ®. Therefore the Lorentz formula
describes the magnetic interaction correctly in the first
approximation. In the second approximation however the Lorentz
expression is no longer correct, and a term -YT"Q has to be add-
ed to the term Q?)?"'. The correction to the '‘Lorentz formula
given by Onsager (-2(%?x°)’ has to be replaced as well by the
term —Y7"2,which however is of the same order.

2.33 The influence of electrical splittings. The presence of
electrical splittings complicates the situation considerably.
Starting fromazero approximation in which the crystalline field
and an external magnetic field was taken into account Van Vleck
was able to calculate the partition function in the first ap-
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proximation of the interaction. We shall not quote the complic-
ated formulae of his paper, but only mention the most important
results.

1)Specific heat. Inthe first approximation if
there is no external field Z can be written in the form

Z = Z, (4NQC2/T?), (90)

where Z, is the partition function in the absence of the inter-
action. Q is a complicated function, depending on the magnetic
ions, crystal structure, the matrix elements of the magnetic
moment in the crystalline field and A/kT, where A is a measure
of the splitting. Q has been calculated for several ions by
Hebb and Purcell (H5). In the present approximation the specific
heat is given by

. d e
C, = (Nk)ﬁf-% in Z, + (NR)E'T %T(gm, (91)

where the first term denotes the specific heat if the interact-
ion would be absent and the second term denotes the contribution
of the interaction. At sufficiently high temperatures, where (
is proportional to 1/T?, the second term of formula (91) ap-
proaches (82) (2=+Q/12), so that in this case the specific heat
is simply the sum of the electrical specific heat and the mag-
netic specific heat, calculated for ions without electrical
splittings.

As an illustration we shall give the expressions for the speci-
fic heat in this case for some substances neglecting the ex-
change. Writing Cy = b/T° we get for Cr***:in a chromium alum
(compare (62) and (82))

b= (Nk) % (5/k)% +2.40 &, (92)
and for iron in iron ammonium alum (compare (63) and (82)
b = (Nk)-g- ®/k)% + 2.40 22, (93)

where we have taken into account, that the magnetic ions are
situated on a face centered cubic lattice (cf.(79)). Assuming
the same situation for the Gd ions in gadolinium sulphate we
find for this substance
b= (Nk) 2 (6,/k)° + 2.40C%, (94)
These formulae are useful for the calculation of the elec-
trical splitting from specific heat data (see II, ch.II).

9) Susceptibility. Taking into account an ex-
ternal magnetic field Van Vleck calculated the magnetic moment.
Again to a first approximation the influence of the magnetic
interaction can be described with a Lorentz field; if exchange
interaction is present an ‘exchange field' has to be added to
the Lorentz field. This result has been proved by Van Vleck in
a very general way and remains correct also in the case of sa-

48




turation. The next approximation in general is extremely cumber-
some to calculate., If therefore often is simpler to use the On-
sager expression (16) which can be shown to be correct in the
case when electrical splittings are present to the same degree
of approximation as in the case when Stark splittings are ab-
sent. For a proof of this statement we refer to Van Vleck’s pa-
per. :

It should be remembered that the theory reviewed in this
section is only a reasonable approximation as long as the series
expansions converge rapidly, or in other words at sufficiently
high temperatures for substances in which the interaction bet-
ween the magnetic ions is weak. The theory in other cases encoun-
ters great difficulties. The present theory however applies to
the cases in which we are interested.




I1X

Chapter
THE MAGNETISATION IN AN ALTERNATING
MAGNETIC FIELD

General remarks

3.1 Formal description,

A useful starting point for the treatment of the physical
processes in which we are interested in this thesis 1s to con-
sider a paramagnetic substance which is subjected to a magnetic
field of the form:

H=H, +hcoswt. (95)
This is a superposition of a constant field H, and an alternating
field h with frequence /2T h and H_ may have different direc-
tions. It will be assumed henceforth that h << H, and moreover
that h is so small that the induced magnetic moment varies
harmonically as well. In this case we can write for the induced
magnetic moment
M =M+ coswt + W’ sinwt. (96)
In the general case of a magnetically anisotropic substance we
have the relations (if we neglect saturation)

M. = % B
w =y h
m = x"h, (97)

where %, X' and " are tensors of the second rank. ¥’ and ¥"are
the tensors of the two components of the differential suscepti-
bility. It should be noted that x’ and x” in general depend on
the direction of h and H.,the magnitude of H.,the frequency and
the absolute temperature. ¥’ is characteristic for the disper-
sion and X" is characteristic for the absorption in the alter-
nating magnetic field.

It will be useful for the further considerations to split h
into its components parallel and perpendicular toH and we
therefore will write with obvious notation h = h 4+ hl.Then we

"
have

— ’ ’ » ”
M=M_+ (n" + -.L) coswt + (m" + "1) sinwt,
or

M=y o+ (b th )coswt + (G, + ) h) sinwt, (98)

where x; , Xi' Xy, and xI are again tensors in general.

Formula (98) is much simplified if H_ is directed along one
of the principal axes of the magnetic polarisability. Then m
is strictly parallel to h  (the same is valid for m) and B, ),
so that x' and x'| can be treated as constants; in first approx-
imation the same is valid for y; and y¥. In the case of a mag-
netically isotropic substance {or a powder) all y's in (98)




clearly can be treated as constants. We shall confine ourselves
to these cases, and thus shall regard the x's as scalars depend-
ing on HE.T and the frequency.

It is sometimes advantageous to introduce the complex nota-
tions

Xpy = Koy = Xy % )(_'l = ix"l. (99)
Then we can write instead of (95) and (96)
H=H +(h + h ettt (100)
and = !
m=me+ (x, h, + > hl)ou“t, (101)

while the relation with (95) and (96) is given by
h=h +h = Re(h exp(iwt)]. (100a)
mem tw o= Re[y h exp(iwt)]. (101a)

In the remainder of this section we will omit the subscribts
,, and . It should be understood that all formulae are valid
for both y,  and ¥ .

Without a deta%]ed picture of the physical processes it is
not possible to give a formulation of X' and x” as a function
of H,T and v = w/2n. It is however cbvious that at very low
frequencies ¥ is equal to the static susceptibility x, and that
¥’ will be zero. Irrespective of the course of X' and x" as a
function of ¥ it can be shown that ¥’ and x” are mutually rel-
ated by the Kramers-Kronig relations

X (o) =2 § X0 o

2 2
o Vi =Vo

v bo) - -3 2,

"on

(102)

so that, if one of the components of the susceptibility is known
as a function of frequency, the other is determined as well.
Condition for the validity of these fornulae is that x(v) is an
analytic function of v which has no poles in the lower half of
the complex v-plane. They can be derived according to Schouten
(cf. K10) from the plausible assumption that, if M is constant
until a given moment and from then on has a slightly different
value, the magnetic moment will have a constant value until the
same moment.,

The dependence of ¥’ and %’ on the frequency can be very
different. In different important cases y has a well defined
maximum at a certain frequency. Then x’ varies strongly at that
frequency. A simple example is the Debye-function (cf. Chapter
Iv)

% (103)

- ’
l+apy

X=
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which is equivalent to

X = .ﬁ_
1+p?v?
(104)
» v
A B
1+p%v2
Another example is the friction damped magnetic oscillator
x Yo
Xovg A < ivgpv; (105)
which gives
'x' = %o v2O(v20 = v2)
(v2 — v2)2 + vgp™v®
= VapVv
X' Yo E A v .

here Vo is the resonant frequency of the undamped oscillator.
A third example is the collision damped magnetic oscillator
(Fréhlich-Van Vleck-Weiskopff's formula, cf. Chapter V)
p’vg + (1+ipv)

= 07
X = XTo Vs (i) ik
which is equivalent to
, 1 +ve (We)p? | 1 = Vov-vo)P®
X =é . 202 b = : 2 (108)
1 + (vtvo)?p 1+ (vvo)%p

X" = _X.Q. ¥ + i
2 |1 + (v#vo)?p? 1+ (vvo)?%p? |°

It finally may be remarked that, if mn'¥0 in (96) energy is
absorbed; the amount of energy absorbed per second is given by

W =—vgMdH = mvx” h?. (109)

3.2 Physical processes.

The considerations in the preceding section are purely formal
or in other words the physical background of the phenomena dis-
cussed was not analysed. In this section we will consider this
hackground from a general point of view.

To this end we will consider the spin system. This is com-
posed of the atomic magnetic momenta - as they are established
ander the influence of the static interaction with the lattice -
with their mutual interaction (dipole-dipole and if necessary
exchange-interaction). The spin system naturally has a very
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large number of degrees of freedom and its average properties
best can be described by a properly chosen canonical ensemble,
The temperature T characteristic for this ensemble usually is
called the spin temperature. The spin-system is weakly coupled
to the system of lattice vibrations. This coupling, although
weak, will prove to be essential for different phenomena.

We now will assume that the substance is subjected to a mag-
netic field of the form (100). Then the processes leading to an
absorption of energy can be devided into two groups.

3.21 Energy absorption governed by the non-diagonal elements of M.

To begin with we shall neglect the coupling between the spin-
system and the lattice. If the frequency of the alternating
component of the magnetic field is very low, the system will be
after a number of periods in the same state as before. Then the
field varies adiabatically in Ehrenfest’s sence. 1f, however,
the frequency of the alternating field is higher there will be
a finite probability that the system after a number of periods
has made a transition from the original state m to a new state
n. The probability for such a transition is proportional to

n“, where M__ is the non-diagonal element of the magnetic
moment of the spin-system in the direction of the alternating
field.

It is instructive to comsider this absorption somewhat closer
in the case of a system of pure spins without mutual interac-
tion; for simplicity we shall assume that we have spins with
S = 1/2. The Hamiltonian in a magnetic field is

H-gBH 2gq .
where K O, is the operator of the angular momentum of the i-th
spin, and the energy levels are

E =ngBH_,
where n = N'-N~ is the ndifferentc:e between the number of spins
which are parallel or antiparallel to H ; the levels are equi-
distant with a spacing gPBH, and the degeneracy of a ]eve]+n is
given by N.’/N+.'N'.’, where Nis the number of spins and N=N+N".

We next have to consider the possible transitions between
the levels. This is most, conveniently done by taking W parallel
to the z-axis. Then a wavefunction belonging to E_may be given

by
v, =P Y\i(si)

where T\i(sl) is the spin function of the i-th spin, which cor-
responds to an angular momentum in the direction of the z-axis
of % h or % I if s; = +)4 resp. -Y%. Tn the expression N of the
indices s, are +% and N~ are —%. The operator of the magnetic
moment is given by

M= BZO’V




The straight forward calculation of the matrix elements compo-
nentg of M yields the result (M, )p,,» = 0 for all values of n
and n’, except for n’=n and both (M, )y and (M Jnn’ are zero,
except for n’* = n + 1. Two important conclusions can be drawn
from this result. First that only transitions between adjacent
levels are allowed, so that, because the levels are equidistant,
absorption only occurs at one frequency.The allowed transitions
correspond to the ‘turning over‘ of ome spin. Secondly that
only radiation can be absorbed which is polarised in the xy-
plgne, or, in other words,. the alternating field must be per-
pendicular to the constant field. Therefore this kind of absorp-
tion and the corresponding dispersion can be described with ; o
and ' in the formulae of the preceding section, and is nothing
else than the paramagnetic resonance absorption, which we will
discuss in greater detail in Chapter V. In zero constant field
- as long as we neglect the interaction between the spins -
frequency of the absorption is zero. This can be expressed by
saying that in zero field no work is required for turning over
a spin.

Until now we neglected the interaction of the spin-system
with the lattice, which is justified because the discussed ab-
sorption is independent of the interaction with the lattice. On
the other hand it should be remembered, that some interaction
of the spins with their surroundings is required for carrying
away the absorbed energy, which otherwise would be stored up in
the spin-system, causing an increase of the spin-temperatures
Although this interaction in general is weak, it is usually
sufficient for making the rise of the spin-temperature negli-
gible. If the rise of the spin-temperature is not negligible -
which in principle always can be reached by increasing the in-
tensity of the alternating field sufficiently - the difference
in population of the levels between which the transitions take
place decreases and therefore the intensity of the absorption
decreases as well., This effect sometimes can be used for deter-
mining the spin-lattice relaxation time which is a useful mea-
sure for the strength of the spin-lattice interaction (cf. Part
11, Chapter I).

If now the alternating field is parallel to the constant
field, M has only diagonal elements and there will be no absorp-
tion if we neglect the interaction between the spins. If this
spin-spin interaction is present non-diagonal elements of M oc-
cur and consequently absorption is found. This absorption is
called spin-absorption, and is governed by a relaxation constant
which is independent of T. As a consequence of the spin-spin
interaction even in zero external field absorption occurs.
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3.22 Energy absorption governed by the diagonal elements of M.

For the discussion of this effect we consider again the spin-
system in a constant magnetic field. The probability to find
the system in a stationary state is proportional to the Boltz-
mann-factor exp(-£,/kT), where we assume that the temperature of
the spins is equal to the temperatures of the lattice.

If we apply an extra field h every energy level is shifted
by -Mnn[h] , where [h] is the increase in the magnitude of H..
Assuming that the spin-system is completely isolated and that
the change of field is adiabatical in Ehrenfest’s sense, we can
conclude that the occupation of a level with the energy E, -
Mnn[lﬂ is the same as the occupation of the level E_ previously.
This distribution not necessarily is again a Boltzmann distribu-
tion (cf. 4.22), which would allow to describe the new situa-
tion in terms of a different spin-temperature, but is certainly
different from a Boltzmann distribution over the energy levels
E, - Hnn[h] corresponding to the lattice temperature T. Estab-
lishment of this latter distribution only is possible if the
spin-system can make transitions in which a change of energy is
involved. Transitions of the spin-system are possible as a con-
sequence of the interaction of the spin-system with the radia-
tion field and with the lattice vibrations; the interaction
with the lattice vibrations in mainly responsible for these
transitions. During the process of redistribution energy is ex-
changed between the spin-system and the lattice. If the addi-
tional field varies harmonically with a very low frequency the
total heat exchange per period is zero; this is no longer the
case if the frequency is 'so high, that the occupation of the
levels lags behind the alternating field as a consequence of
the too slow exchange of energy. This process is called absorp-
tion by spin-lattice relaxation, and will be considered in more
detail in Chapter IV.

It is important to note that the effect depends on the vari-
ation of the magnitude of the magnetic field for a given direc-
tion of the constant field. Therefore the effect is maximal if
h is parallel to H, and negligible if b is chosen perpendicular
to H,. Consequently X, and ¥}, in formula (98) account for the
spin-lattice relaxation, apart from a usually small contribution
of the spin-spin relaxation. From an experimental point of view
these two effects nearly always can be separated.
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Chapter IV
THE THEORY OF SPIN-LATTICE RELAXATION

4.1 Imtroduction.

The program of a theory of spin-lattice relaxation can be
devided in two parts. In the first place the dependence of ¥’
and " on the frequency of the alternating field for given val-
ues of H, and T should be explained. The relaxation constant
or the relaxation constants in this stage occur as parameters,
which have to be chosen in such a way that the theoretical val-
ues of ¥’ and X" agree with the experimental values. In the
second place the values of the relaxation constant obtained for
different values of H_ and T must be explained.

We propose to discuss in this chapter both parts of the the-
ory of spin-lattice relaxation.

4.2 Thermodynamic theory.

In order to derive expressions for x' and x” as a function
of v it is useful to start from the following picture. A para-
magnetic substance which may be in heat contact with its envi=-
ronnement, for instance a liquified gas, can be regarded as a
complex of weakly coupled systems. The spin-system is coupled
to the - thermodynamic - system of the lattice vibrations; the
latter system on its turn may be coupled with the liquid bath,
which we shall suppose to have an infinitely large heat capaci-
ty. The temperature of the bath may be T,. This picture is
slightly more general than the picture of Casimir and Du Pré
(C6) and than the more detailed picture of Casimir (C7); the
results of both authors are contained in our more general for-
mulae, as will be shown below.

The problem is now to calculate ¥’ and x” if the ions in the
paramagnetic substance are subjected to a magnetic field H of
the form

H=H, +hexp(it), (110)
where we assume that h has the same direction as H, and moreover
that h<<H_. The basic assumptions of the thermodynamic theory
now are

a) The spin-system is in thermodynamic equilibrium all the
time. This condition shall be warranted if the time required
for establishing the equilibrium in the spin-system is short
compared with the time required for the establishment of the
equilibrium between the spin-system and the lattice, and if the
app lied frequency is small enough so that the external condi-
tions do not thange appreciably during the time the spin-system
establishes its equilibrium. This assumption has been introduced
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for the first time by Casimir and Du Pré; a discussion will be
given in section 4,22. (

b) The system of the lattice vibrations is in thermodynamic
equilibrium all the time.

¢) The substance is isotrppic and homogeneous.

The assumptions a) and b) imply that there are all the time
well defined temperatures of the spin-system and the lattice,
and that thermodynamics can be applied. If there is a suffie«
iently small temperature difference between the spin-system
and the lattice the amount of heat exchanged between these sys=-
tems will be proportional to the temperature difference. There-
fore the amount of heat absorbed by the spin-system in a short
time dt is given by

dQ = oy (Tp - Tg)dt, (111)
where Tg and T, are the temperature of the spin-system and the
lattice resp., and where the proportionality factor a; can be
called the heat contact. The dimension of a, is cal sec™ de-
gree *vol ™*, which is different from a heatconductivity. More-
over we have for the spin-system (Cf. (28))

- T — o
) c"%)ﬂdu + c.(gHT)”dH (112)

Similarly the amount of heat absorbed by the lattice from the
heat reservoir is proportional to the temperature difference
between the heat reservoir and the lattice. Taking into account
the heat exchange between the lattice and the spin-system we
have

Ay (Tg = Ty) dt + Og (Tg = Ty)dt = CdTy. (113)
Here ®, is the heat contact between the lattice and the heat
reservoir, and C, is the specific heat of the lattice. We final~-
ly have the relation

- O /8
Tae T (g;’)ﬂw + () a. (114)
We shall now assume a magnetic field of the form (110).
Writing 8 = Tg — T, and § = T, — T, we can put

M=M, +mexp(iut)

@ = @, exp(iwt),
6 = §,, exp(int).
From (111), (112), (113) and (114) we easily derive the relations

~0y @y = iw[C“@H- + G %M h]

A A A

6, + 8L° = %)H n+ (%I:{)M h.
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Elimination of @, and @ yields after some calculation the
following expression for ¥
: Cu o
W1 +-22) Gy + @y (1 4+ =2 )
X = %o il e Ys)
A ST R & 5
WGy, G wly

where we have written y,=(CM/OH)r; ¥, is the isothermal differ-
ential susceptibility which 1s equal to the static suscepti-
bility if saturation can be neglected.

Of course it is possible to separate the right hand side of
(115) in its real and imaginary part, and thus to obtain %’ and
%' The resulting formulae however become very complicated and
it is difficult to work with them. In this thesis however we
only are interested into some limiting cases and we confine
ourselves to a discussion of these aspects.

a) If the heat contact between the lattice and the heat ree
servoir is very good, so that the lattice virtually acts as a
thermostat with the temperature of the heat reservoir, we can
take @, = o, Then we have

X = %o WOyt %1 (116)
wWCyt 1

If we split this expression into its real and imaginary part we
obtain

’ ¥ F
X' /% = (1=F) + Trp?ye (117a)
" w F_BY 117b
X"/%o F1+p2v2 : ;
with F = (CH - CH)/CN (118)
and p=2nC foy. (119)

An alternative form of the formulae (117) is found by introduc=
ing y = lnpv; then we have

X' /%, = (1 - F)+ WF (1 - tghy) (120a)

X"/%y = % F sech y. (120b)
These formulae are illustrated by fig. 7b. These expressions
for x' /x, and X"/, will be called the thermodynamic formulae.
According to these formulae y’ /Xo is represented by a constant
term plus a simple Debye curve, and is one for v = 0 and de-
creases for increasing V reaching a constant value %o ™ (1-F)
for very high frequencies; the curve has a point of inflexion
for pv = 1, which is identical with the value of v for which
X [%g = 1=1(1=F). X"/%, is represented by a bell-shaped curve
having a maximal value %F for pv = 1. Itis easily seen from
(120a) that the slope for y = 0 in a X' /¥, versus Iln v plot is
~F/2 and in a ¥’ /x, versus log v plot is =1.15F. From (120b) it
can be concluded that the width at half the maximum value of
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Fig. 7. The components of the susceptibility,
Thermodynamic formulae (117); F=20.8
Cole’'s formulae (129); Fe0.8, Y4.

the x"/X, versus ln v plotis 2.64 and of the X"/ %o versus log v
plot 1,14. (Here we have written In for the natural and log
for the briggian logarithm.)

It is easily seen that

/% = (1-F) =C /C.,
so that in tis case ¥’ = ' = x_, (Cf. (30)); this result is
obvious, because at high frequencies the heat contact is too
weak and the process will be practically adiabatic. It is easi-
ly concluded from (117) that y' and x”, measured for the same H_
and T satisfy the relation
X =% O + Xa)]® + X" %06 - X0d™  (1210)

so that the x* versus x' plot is a semicircle with centre on
the y’-axis and passing through the points Xo and ¥, , on that
axis (fig. 7a). Moreover we have

tg y = pve (121b)
In the case that M = f(H/T) (C£f. 6la) we have
F=f"H/b+ f H), (122)
which becomes y
F=cf/(b+af) (123)

if the magnetic moment satisfies Curie’s law M = CH/T. This
formula has been derived the first time by Casimir and Du Pre
and may be called the Casimir-Du Pré formula; it is very useful
for determining b/C. It is sometimes useful to introduce a
symbol for the fieldstrength H, making F = %; according to
(123) we have H} = b/C.

It finally may be noted that the formulae (117) often give
a satisfactory description of the dependence of x' and x" on
the frequency at constant H. and T, and then enable a determ-
nation of the relaxation constant for given H_ and T. At low
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temperatures however often deviations of the thermodynamic
formulae are found, and often ¥’ and %" can be described by
two empirical formulae due to Cole and Cole (Cf. section 4.21).

b) A useful generalisation of the Casimir-Du Pré formulae
is obtained by putting @, = 0 in (115). This corresponds to a
situation where the paramagnetic substance has no thermal con-
tact with the liquid bath, Or else to the situation where the

substance is in contact with a heat container which has a fi-
nite heat capacity, but no heat contact with the bath. In this
case C, is the specific heat of the lattice plus the heat
container.

Taking @ = 0 in (115) we have
it oy (1 + G/C,)

X - : ’ (124)
%o G+ oy (1 + G/C)
which can be split into its real and imaginary part
C F
X /%y = (1-F) + (—+—) (125a)
%o C,+C, 1+ pi v’
- C Fpyv
Kl kg =i ™ : ’ (125b)

\
G, +C 1+ pq v2

where F is the same as before and p; is given by
C.  C c
Py = L A L p - (126)
G +C oy C, +C

These formulae only differ from (117), (119) in that the relax-
ation constant is smaller by a factor C /(C, +( ) and that the
part of the magnetisation that is dependent on Vv is smaller by
the same factor.

As one should expect at high frequencies y’/y, = 1-F as be-
fore, but at low frequencies (pv —0) we get

X' %o = 1FG/(CHC,). (127

This formula could be applied toa determination of the specific
heat of the lattice or the specific heat of a substance which
is brought into good heat contact with the paramagnetic sub-
stance. We only need to measure ¥’ /X, at very low frequency
(for instance ballistically) for given value of the constant
field, if we take a paramagnetic substance for which F and C,
are known. Experiments of this kind are in course of prepara-
tion at Leiden by L.C.v.d.Marel, phys. cand..

It may be added that Casimir (C7), who derived (126) for
the first time, pointed out that in adiabatic demagnetisation
experiments, where the paramagnetic substance is thermally in-
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sulated from the liquid bath, the spin-lattice relaxation con-
stant rapidly decreases with decreasing temperature. This is
contrary to the expectations of Heit ler and Teller (H14) who
did not take into account the finite heat capacity of the lat-
tice.

b) We next will assume that the heat contact between the
lattice and the bath is much poorer than the heat contact bet-
ween the spin-system and the lattice, so that we have 0y>>0,.
In this case (115) becomes

it I.N(C.-OCL) + Oy 4
W(C, + C,) + %
This expression also results from the thermodynamic expression
(116) if we replace C, by (C,+C ), C, by (C,+C) and o3 by
®,« The behaviour of X' and X" as a function cf the frequency
is formally the same as in case a) and the formulae (117) apply
i1f we replace F by (CB-C.)/(C"-&CL) and p by p2 -21!(C"+CL)/a;.

These considerations show that a poor heat contact between
the substance and the bath can cause a relaxation effect, which
however should be distinguished from paramagnetic relaxation.
This spurious relaxation effect can be avoided by a good heat
contact of the sample with the bath. This can accomp lished by
taking a sample of small crystals, which are immersed in the
codling liquid. De Haas and Du Pré (H11) proved the existence
of the spurious relaxation effect by examining titanium gaesium
alum. This substance' has a so short lattice relaxation time, that
at liquid helium temperatures no relaxation is observed with
the normal means (Cf. Part II) if the sample is immersed in
the liquid. If the substance is sealed in a glass vessel con-
taining a very small amount of helium gas as well, a relaxation
effect was observed, which must be due to the much poorer heat
contact in the second case. The heat contact in the first case
agparently is so good that the lattice has virtually the same
temperatute as the bath. This probably will not be very dif-
ferent in other cases. Froma theoretical point of view however
the good heat contact between the salt and the bath is very
puzzling (Van Vleck (V12)).

(128)

4.91 Deviations from the thermodynamic formulae.

In several cases however there is no satiffactory agreement
between the experimental results and the formulae (117) or
(120), as the experimental curves of both types are flatter
than the theoretical curves. It is possible to use the differ-
ence between the slope of the observed y’/x, versus log v curve
in the point of inflexion and the value predicted by (117) or
(120), or the difference between the observed and predicted
width at half the maximum value of the x"/x, versus log v cur-
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ve, as a measure for the deviation from the formulae (117) or
(120). In several cases an other description is possible, which
presumably can be interpreted physically and therefore is pre-
ferred here. Often the X" versus %’ plot is still a circular
arc passing through the points x' = ¥, and x' = x_ on the y'-
axis, but now with its centre above the x'-axis (compare fig.
Ta).
According to Cole and Cole (C8) in this case (117a) and (117b)
can be replaced by

b ifuy F - sinh (1 - )y
X /e (1-F) + 5 ! ey T in%yn] (129a)

- cos Aym
2 cosh (1=y)y + sin %ym '

X"/ %o

where %yn = the acute angle between the y’-axis and the radius
of the arc drawn to the point ¥’ = x_ (Cf. fig. 7b). For y = 0
(129a) and (129b) are identical with (120a) and (120b) resp.;
F of course is given by (118). Both %yn and y are a measure of
the deviation from the thermodynamic formulae (117) or (120).

An alternative way of formal description is found by assu-
ming the existence of a continuous distribution of relaxation
constants rather than one relaxation constant as occurs in the
theory of Casimir and Du Pré. As Fuoss and Kirkwood (F5) have
shown it is possible to calculate the required distribution
for any observed x'-frequency relation. In the present case
the distribution function G is given by

G dS:_l_ sinYTt d, 10
() ot cosh (l-y)s = cos yn . o

where s = log (D/O.')- G has a maximum for p = p_; p,, 1s the
mean value of the relaxation constants, which can be calculated
from the experimental results in the same way as P can be cal-
culated (Cf. page 58). Compared with a Gaussian curve the cur-
ve (130) is sharper peaked near the maximum, but tails off
slower.

The width of the distribution curve can be described with
the ratio pf . where p is the highest value of p for which
the value of G is halg&the maximum value; p, 1is determined
by the equation

2 - cos Yn = cosh (1-y) In (Pu/P av)e (131)

It seems to be reasonable to assume the existence of a
distribution of relaxation times in the case of an imperfect
crystal, Only a detailed theory, however, could explain the
shape and the dependence on H_ and T - found experimentally -
of this distribution.

Itmay be added that in all cases investigated %' /X, approa-
ches a finite limiting value ¥ for high frequencies, irrespec-
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tive of the details ot the frequency dependence; X/ %o always
approaches zero for high frequencies.

4.22 The assumpt ion of thermodynamical equilibrium of the ;pin-
system.

In this section we will discuss briefly the not altogether
trivial first assumption (compare page 56) of the thermodyna-
mic theory, It will be clear from the considerations given so
far that y  is the differential susceptibility of the spin-
system in a situation in which there is no interaction with
the lattice vibrations; this statement is correct irrespective
of the details of the dispersion and absorption.

According to the thermodynanic theory we have

x(x/XO i X.d/xo % b/(b+ Cch)'

This formulation implies that the spin-system is in thermody -
namical equilibrium. An alternative point of view is to regard
xﬁ as the contribution to the susceptibility y = (aM/ch)T,
obtained upon differentiation of the magnetic moment, given by
(34a) keeping the factors exp(-£,/kT) constant and different-
iating only with respect to H_.. This implies that the occup-
ation of the energy levels of the spin-system is independent.
of avariation of H_ . As we pointed out in section 3.22 this is
the case if the spin-system is isolated from the lattice and
therefore the susceptibility obtained here may be called the
isolated susceptibility y, ..

The question at once arises wether x_, and %; 4 are equal.
This would be the case if the thermodynamical equilibrium-of
the spin-system in a given state would not be affected by a
changed of H_.According to Van Vleck (mentioned by Miss Wright
(W4)) however only under special circumstances x,, can be equal
tO ¥; 4o+ This seems to invalidate Broer’s considerations who
aimed to show that the spin-system always remains virtually in
a state of thermodynamical equilibrium after a small change of
H_ (B16).

Miss Wright and Broer (Cf. (W4)) considered the simple case
of a system of spinss with arbitrary S. In this case x , in
high fields, neglecting saturation and exchange, is given by

Xina/Xo = 0+80 H3/2H2,

where H1 is given by (83b) with J = S. According to the ther-
modynamic theory we have (compare (83))
Xa /Xo 3 lemz'

Obviously it is of great interest to examine the experimen-

tal values of x_ as a function of H_, as this may allow to

conclude wether from an experimental point of view y_ is equal -
to X, OF tO X . o This problem will be considered in Part 1i,
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3.3. Here we can confine ourselves to the remark that at pre-
sent there seems to be no convincing experimental reason for
abandoning the interpretation of %o @ccording to the thermody-
namic theory and consequently the subsequent considerations
are based on the assumption that thermodynamic equilibrium of
the spin-system is maintained at all moments.

4.3 The theory of the relaxatiom comstant.

4,31 The nature of p.

As we have seen in the thermodynamic theory the relaxation
constant occurs as a quantity which has to be chosen in order
to obtain the best fit of the theoretical results with the ex-
perimental data. Therefore within the scope of the thermodyna-
mical theory no evaluation of p is possible. A more detailed
consideration of the interaction between the spin-system and
the lattice is required for this. Assuming that this interac-
tion causes spontaneous transitions between the energy levels
of the spin-system it is not difficult to express @, and hence
p (Cf. (119)) in terms of the probabilities of these transit-
ions (Gl).

If we call A, the probability of a transition from level h
to k, than we have in case of thermal equilibrium

NAL -NA, =0, (132)

kn
where N, and N are the occupat.lons of the levels; Nn and Nx

must obey the Boltzuann d1str1but10n. Hence we have
N h +3 k N (Ek 5 Eh
Nh = Nh exp (2 —X) N =N, exp _QIT)
and

i - E

A x (E A .= A _ exp (—-"—i),
Bk bk o kT kh hi kT

where we have written

Ny =% (N, + V) ’Thk =% (Ay, +AL)-

If the temperature of the Boltzmann distribution changes
fron T to T + A T, the surplus per second of the process going
from h to k is

4 sl E -E
% 1 h K) -
NA, =~ NA, =K, =P (?k(ﬂAT) A, exp ( okT )

B
N = K h

. S T k(T+A77) Ty

AssuminglE, - E|<<kT and AT<<T we get
NA,, ~-NA,.. =N A AT(E -E, )/2kT?.

h& hk

The total energy (neat) transmitted per second to the lattice
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is found by multiplying this surplus with (E, - E ) and summa-
tion over all values h and k. In this way we get

Q O 3 N A (E -E)3 (133)
dt kT2 s K i (B = Fic)
so that 1 = i L .
G = o 2N A, (E, -E) (134)
Since we can write
C Z -k, " 135)
and since Nhkisindependentofthe choice of h and k we finally
obtain - E -
2"& (€, - E) (136)
e 5

In the case of free spins with S = % we get the simple ex-
pression
= 2nt/(A32 + As,),
which was obtained for the first time by Gorter and Kronig
(G10).
In this way we have reduced the evaluation of p to an evalu-
ation of the transition probabilities A

4.32 The calculation of the transition probabilities.

The calculation of p with formula (136) is very complicated,
but can be simplified somewhat by regarding the ions as virtu-
ally independent - the interaction between the ions can be
taken into account in first approaximation by the internal
magnetic field H , so that in (136) one can take for the lev-
els E, and E_ the ]eve]s of a free ion. The calculation of the

Ay however remains very difficult. Before proceeding to the
discussion of the evaluation of the A, we shall make some re-
marks about the nature of the transition probabilities.

The energy required for the tramnsition from E, to E, must
be furnished by the lattice vibrations. This can happen in two
essentially different ways, as has been pointed out by Waller
(W3) already in 1932, In the first place an elastic quantum
for which hv = E, — E_ can be absorbed or emitted. In the case
of absorption the number of quanta of the lattice in the vi-
brational state v diminishes from ny +1 to n,. The probability
for this direct process is given by

AL [%L?‘,’ll't (ny + 1; nyl?] (138)
where p(v) is the density of the states of the lattice with
frequency v;l'(,(nV + 1; ny) is the matrix element of the trans-
ition. The average has to be taken over all directions of pro-
pagation and polarisation of the elastic vibration.

In the second place a lattice quantum hV can be absorbed,

sverage’
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wilie anotner gquantum hy’is emitted, so that h(v—v') = E _ E .
This process is equivalent to Haman scattering where the latt
tice vibration quanta replace the light quanta. The probabili-
ty for this kind of transition (indirect or quasi-Ramen pro-
cess) is given by the expression

ALy e [Ei!%é)—@—l | Hiny + 1, nyos my, nys \*l)l“’]”"we (139)

which is similar to (138).

At first sight one might expeet that the direct processes -
which are a first order effect - are the more frequent ones. On
the other hand however all lattice waves can participate in a
certain transition by the quasi-Raman effect, while the direct
processes require a lattice wave of the right frequency. Ac-
cording to Fierz (F6) and Kronig (K11) the number of quasi-Ra-
man processes is proportional to 72 for T>>8 and to 77 for T<<# ,
where 8 is Debye’s characteristic temperature of the lattice.
The number of direct processes is proportional to T. Therefore
only at very low temperatures (according toan evaluation those
obtainable with liquid helium, see however Part II) the first
order process can preponderate, while at higher temperatures
the quasi-Raman processes will be more frequent.

The actual calculation of the matrix elements in (138) and
(139) requires a detailed picture of the coupling between the
spin-system and the lattice. Several mechanismshave been pro-
posed in the litterature.

In first instance the lattice vibrations cause an alterna-
ting electric field at the position of a paramagnetic ion.
This electric field however is unable to influence pure spins,
since the matrix elements (138) and (139) vanish in this case.
On the other hand the lattice vibrations cause variations in
the magnetic field which the ions exert on each other and
this effect can induce transitions of the spin-system. Waller
(W3) who considered this mechanism for pure spins calculated
that p/2m = 10 sec at liquid air and that 0/2m ~10**/H* sec
at liquid helium temperatures.

Heitler and Teller (H14) considered the case of substances
having an electric splitting. The lattice vibrations cause
variations of this splitting and accordingly transitions of
the spin-system are induced. They only cqnsidered the direct
process and arrived at the following formula for T<<®

=, x 107° Ke® 1 140)
p=0.3 x 107°2n i BT (

Taking H_ = 2000 Oersted, T = 1°K and @ = 100° K we find p=~
100 sec. Fierz (F6) considered the indirect process under the
same assumptions as Heitler and Teller and arrived at the for-

mula
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@f.T x%e *dx

T

According to this formula we have if T)® p~T"2 and if T<<@ pT~".
If T~2@ the integral is of the order one and so we get for T =
90°K p =<10"* sec. This value is considerably smaller than
the value obtained by Heitler and Teller’s formula for the
same temperature (p==1 sec), so that apparently the indirect
processes should be predominant,

If we compare these theoretical calculations with the val -
ues obtained from experiments we see that there is a wide dis-
crepancy between the two. The experimental results for iron
and chromium alum show that p is of the order of 10"%sec. at
liquid helium temperatures and 10°® sec at liquid air temper-
atures. The discrepancy is even more striking in the case of
titanium alum. As there is no electrical splitting Waller’s
theory should be applied and accordingly the relaxation con-
stant should be much larger than for the other alums. No dis-
persion and absorption could be detected at the fréquencies
ordinarily used in the experiments, which means that the relaxa-
tion constant must be much shorter than for the other alums.
All these theories give a much too long relaxation constant
and ‘Gorter (Gl1) therefore concluded that apparently an other
mechanism than those discussed must be active. According to
Kronig (K11) this other mechanism is provided by the remains
of the spin orbit coupling, The lattice vibrations influence
the orbital moment of the paramagnetic ions and the spin orbit
coupling in higher approximation gives non-vanishing matrix
elements of the spin lattice transitions. Kronig illustrated
this effect with a schematic model and arrived at an acceptable
value of the relaxation constants, even in the case of titanium
caesium alum., Van Vleck (V13) independently carried out simi-
lar calculations for the special cases of chromium and tita-
niumalum. As these calculations are more detailed than Kronig’s
calculation we only will review Van Vleck’s calculations,

We have to start from the Hamiltonian of the whole crystal,
which is equal to the Hamiltonian of the spin-system (formula
(37) if we neglect the interaction between the paramagnetic
ions), plus the Hamiltonian of the lattice vibrations and a
term describing the interaction between the orbital moments of
the magnetic ions and the lattice vibrations. This can be
written in the form

Hcry.tal s HOr " F\. -HCM +HOL 2 HSO ®

H, _1is the orbital energy, which arises from the terms Hy + V
in (37). The eigenvalues of H,, are the orbital levels. H is

l: w10 7
5 5.10 T
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the energy of the lattice vibrations, having the eigenvalues
g'pv hv. The term HM describes the energy in the magnetic

field, where M in the tqtal magnetic moment. —H._M can be taken
diagonal as far as the spins are concerned, the orbital magne-

tic moment however causes non-diagonal elements between the

different orbital levels. Hg is the spin orbit coupling. Fin-

ally H 1s the interaction between the orbital moment and the

lattice vibrations. The magnetic interaction between the mag-

netic ions is taken into account in first approximation by

averaging the result, obtained for a certain value of H_, ac-

cording to a weight factor exp[-CHc—Ho)Q/H:], where H is the

applied field and H_ the field acting on one ion.

Van Vleck now regards in (142) Hso' HoL’ and the non-dia-
gonal part of ~HM as perturbations and calculates the required
matrix elements accordingly. The main difficulty is the calcu-
lation of the matrix elements of Hy . For a rigorous calcula-
tion the interaction of the orbital moment with all the normal
vibrations of the lattice would be required, which however is
impracticable. Van Vleck simplifies the calculation by ex-
pressing H, in terms of the normal coordinates of the cluster
X.6H.0 formed by the magnetic ion X and the six water molecules
which surround it. These normal coordinates in turn can be ex-
pressed as linear functions of the normal coordinates associ-
ated with the Jattice waves, which are approximated by Debye
waves. In this way expressions for the matrix elements of Hj
can be found.

The matrix elements for the direct and indirect transitions
now can be found by higher order perturbation calculus.We shall
not go into detail about, these very complicated calculations,
but we shall confine ourselves to a discussion of the results.
It will be assumed throughout that the lattice acts as a ther-
mostat (compare IT, 3.2).

a) Titanium alum. In this-case it is sufficient to consider
only those states which belong to the lowest cubic’ prbital term.
Assuming that 2@H <<A, where A is the trigonal splitting (see p.
26), and that the wave length of the lattice vibrations is much
larger than the cross section of the clusters, Van Vleck finds
after a long calculation for the relaxation constant of the

direct process o (H, + % i) (143)
Pasr = RTB [all] + bH, H| + i I+ diff] '

where a, b, ¢, d and B are constants; B is proportional to A2 /0%,
where A is the constant of the spin orbit coupling. H; describes
the influence of the magnetic interaction between the tita?ium
ions and is given by (83). Taking A = 1000 em™* and appropriate
values for the other constants Van Vleck finds at T = 1.2° 5
for p/2m : 5 x 10%, 1.7 x 10%, and 1.8 x 10~? for H, = 0,10
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and 10* Qersted resp. The experimental results however indicate
that p/2n < 10”2 sec (H11), so that the discrepancy is large. It
should be remarked however that Van Vleck’s choice for A is
rather much higher than the value indicated by experiments on
paramagnetic resonance absorption (A=400 em™*) and this will
reduce the values of p with a factor 40, which however leaves the
theoretical values of p still at least a factor 10* too large.
For the quasi-Raman processes Van Vleck finds

8 g2 L Yy p2
0, .~ 2.5 x 10-13,2n(8,) He + A H | 1 144
ind ('7\'2) E-cﬁﬁz—i e (T<<8), (144)
which can be written in a more useful form since %Hi=b/C (Cf.
(83), (6la)). We then obtain
Pyna = Pol) (b +CH?)/ (b +%CH?) (145)
po(T) 21071 (A°/A?) (1/7°) (145a)

This expression gives with A=1000 cm™*and for values of H >>H;

plnd<10'° sec at liquid air temperatures,which explains the ab-

sence of paramagnetic relaxation effects in the experiments of
Gorter, Teunissen and Dijkstra (G 12). This conclusion is not
invalidated by the better choice A~2400 cm™% It is important to
remark that consequently the effect of second order processes is
not negligible at liquid helium temperatures, because Po 221072
sec at 22 K. The very short relaxation time at liquid helium
temperatures therefore probably can be explained by second or-

der processes.

From formula (144) it is seen that the relaxation constant
is very sensitive to the value of the splitting A; large ani-
sotropy which causes large values of A therefore is favorable
for producing observable relaxation phenomena. This conclusion
is correct for all ions having no electrical splitting, like
the copper ion. In the case of ions having an electrical splitt-
ing the influence of larger anisotropy isdifferent. Here larger
anisotropy causes a larger electrical splitting so that b/C be-
comes larger. This can make the relaxation phenomenon unob-
servable with the ordinary means, because F may be too small
(compare (117)). The value of p can be influenced in a different
way. Often high values of b/C are accompagnied by low values of
p, which should be expected in general, as a large value of b/C
indicates a latge anisotropy, and this causes a strong coupling
between the spins and the lattice. Chromium salts for instance
are an exception, because larger anisotropy only effects the
b/C value; p depends only on the cubic splitting (see below).

b) Chromium alum. In this case the lowest cubic orbital lev-
el is single and consequently one has to take into account ma-
trix elements of H , and Hg, between different cubic levels. As
we have seen the lowest cubical term is split by a trigonal
component of the crystalline field into two doublets. A conse-
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quence of the large distance between the cubic levels is a much
larger theoretical value of the relaxation constant than in the
case of titanium alum,

For the direct processes Van Vleck finds

S Uk 2;’13 + HB” (146)
(where a ~)\2H"7TA:“; Acub is the cubic splitting between the
levels I'; and I's), which gives values of p which agree as to
order of magnitude with the experimental values obtained at
Leyden in the liquid helium region (see part II). Van Vleck ex-
pects for T=1.4% p/2n=0,011, 0,009, 0.0067 and 0.0030 sec in
fields of resp. 0, 500, 1000 and 3000 Oersted. It should be re-
marked at once that according to theory dp/dHc<O while according
to experiment we have dp/df _>0. Moreover from formula (146) we
must conclude that p ~T ! while the same experiments yield a
higher negative power of T. This behaviour is very difficult to
understand on the basis of the first order processes (see next
paragraph), but is explained in a natural way by assuming that
quasi-Raman processes still are important (see below). This
point is discussed in detail in II, 3.

The negative value of dp/dH_ for direct processes easily can
be understood qualitatively. With increasing H, the heat ex-
change between the spin-system and lattice is brought about by
quanta of increasing magnitude, which are more effective for
the heat exchange. Moreover the number of lattice vibrationms,
available for the transitions is proportional to v?, both in
the adopted Debye theory of lattice waves and in the more gener-
al theory of Blackman (B33). Both effects make the energy ex-
change in high fields so much larger than in low fields, that
although C, increases proportional to I (Cf. (6la)), dp/dH <0.
For the indirect processes-Van Vleck finds

b+CHf.
e = po (T) b+ pCHZ (147)

where po is about proportional to T~° QA:ub/k‘). o should be’in-
dependent of the trigonal splitting, but depend on the cubic
splitting; p should be independent of the temperature, having
the value 0.50 for chromium alum; for iron alum it should be
between 0,22 and 0,60. The formula (147) sometimes is called
the Brons-Van Vleck formula. The relation of pandH, therefore
should be independent of T, so that we have p = f(T)g(H).

This is a consequence of the plausible assumptions that the
modes of vibration of the lattice and the cluster do not depend
on the temperature and that the wave length of the lattice wa-
ves is large compared with the dimensions of the cluster. The
latter assumption 1s allowed if the experiments are carried out




below the Debye temperature 8. Often however the experiments

are carried out at about 100° K, which is of the order of &
This might explain the dependence of p on T found for all sub-
stances investigated (except manganese ammonium sulphate (B26)).

According to formula (147) p will be independent of H, if H2
<<b/C and tends to a limiting value p_ for Ha>>b/C. This en be
illustrated by a closer examination of (136).In this expression
the transition probabilities A are weighted in proportion to
the square of the eénergy differences,so that mainly transitions
between levels with a relatively large energy difference are im-
portant., It may be expected that the transition probabilities
are only slightly influenced by a field H_ if the corresponding
shift of the levels is small compared with the original energy
difference. This explains the constant value of p in small
fields. In very strong fields all energy difierences will be
proportional to H_; the A’s will be independent of H,, because
the coupling between these levels depends only on the wave
functions. These are essentially free spin wave functions which
are. independent of H_.. Therefore at high fieldstrength p tends
to another constant value.

The experimental check of (147) for a number of chromium
salts showed that (Broer (B26))

a) in all salts examined p decreases with increasing 7. None
of the salts however satisfies the predicted temperature depen-
dence. For instance in the potassium alum the experimental de-
crease is strongers

b) in many casés (147) is found to be satisfied with reason-
able accuracy for constant T.

c) in none of the cases p'is found to be independent of the
temperatures but the order of. magnltude agrees with the predic-
ted value.

d) the order of magnitude of the predicted values of p is
correct.

Summarising we can say that Van Vleck’s calculations, al-
though they are not satisfactory as to the explanation of sev-
eral details, explain the main properties of the relaxation
constant of chromium reasonably well in the liquid air region
of temperatures or, in other words, in the case that the in-
direct processes preponderate. The main features are consequen-
ces of sufficiently general assumptions for jusfifying a check
for salts of other metals of the iron group.

4.33 Modifications of the theory.

The arguments for the negative sign of dp/dHc in the case of
direct processes (see p.70) seem to be rather convincing. There
is however the difficulty that in nearly all experiments it was
found that dp/d >0. As it i's not definite wether direct or
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Yuasi-naman processes prevail in"the fiquid helium range, it
is desirable to consider alterations in the theory of the direct
processes which might lead to a positive sign of dg/dH_.

Van Vletk advanced three possible explanations, which we
will consider briefly. In the first place it is conceivable that
the density of the lattice vibrations would be independent of v2
for low frequencies. This would make dp/dHc>0 for the direct
process, but for the quasi<Raman process dp/dH <0. Quite apart
from the success of the Debye theory for the theory of the pro-
porties of crystals, which justifies to a large extent the in-
crease of density of the lattice vibrations proportional toV
for low frequencies, the qualitative agreement with experiment
of Van Vleck’s theory of the quasi-Raman processes indicates
that the proposed explanation hardly can be correct.

Another possible explanation advanced by Van Vleck is that
the assumption of thermodynamic equilibrium in the spin-system
is not warranted. This assumption however seems to be contra-
dicted by the very good agreement between the thermodynamical
theory and experiment on the value of b/C. For a detailed dis-
cussion of this point we refer to sections I, 4.22 and II, 3.3.

A third possibility is that at low temperatures the heat
contact is caused by conduction electrons rather than by lat-
tice vibrations. Although this could make dp/dH <0, this possi-
bility is highly improbable from a physical point of view, so
that we will not discuss it further.

Summarising we can say that none of the suggestions made
seems to lead to a positive value of dp/dH, for the direct pro-
cesses. There is another possibility however which we did not
yet discuss.

The theory given so far contains an inconsistency which may

‘be-the cause of the discrepancy between Van Vleck's theory and

the experiments at low temperatures. The most fundamental as-
sumption of the thermodynamical theory, which is justified in
many cases by its success, is, that there is thermodynamic equi-
libriumin the spin-system.This necessarily implies a sufficient-
ly strong interaction between the paremagnetic ions. But in Van
Vleck’s theory this interaction is discarded except for its
average influence on the static magnetic field acting on the
magnetic ions, and the ions are treated as virtually independent
from each other. It will probably be very difficult to estimate
the error introduced by this simplification, but, as the inter-
action seems to be an essential requirement for the validity of
the thermodynamic theory, this interaction may play an impor=-
tant role in the relaxation process.

Temperley (T4) made the first attempt to account for the pos-
sible influence of the nagnetic interaction on the relaxation
constant by considering the possibility of having several atoms
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reversing their spins simultaneously. lransitions oi this type,
which correspond tol Am bl, are possible in a system of spins

having magnetic interaction (compare I, 5.43). The influence of
the low transition probabilities - which are small of a higher
orderecompared with those of the transitions An = * 1 - on the
magnitude of p may be partially or entirely compensated by the
larger energy quantum exchanged, and moreover because more lat-
tice vibrations with higher energy are available. If this effect
prevails at temperatures where the direct processes are predo-
minant, p should first increase with increasing field, until at
stil] higher fields the decrease according to Van Vleck could
start, This might explain the increase of p with increasing H,
found in al]l substances except one (Cf. Part II), if the maxinum
field used was not large enough for causing the ultimate de-
crease predicted by Van Vieck, and if at liquid helium temper-
atures direct processes prevail.

It may be added that according to Van VEieck the probability
of Temperley’s effect in first approximation is too small for
influencing p to the required extent. It is feasible that higher
approximations are important as the process of successive ap-
proximations is likely to converge slowly. This however has not
yet been considered in detail.

* % % *»




Chapter V
THE THEORY OF PARAMAGNETIC RESONANCE ABSORPTION

5.1 Imtroduction.

In this chapter we will give an outline of the theory of
paramagnetic resonance absorption, or in other words, the the-
ory of the spectrum of the possible transitions between the
levels of the spin-system. To begin with we shall consider the
spectrum of a highly dilute substance where we neglect the in-
teraction with the lattice. Next we will discuss the influence
of the interaction with the lattice on the spectrum and finally
we shall consider the influence of magnetic and exchange inter-
action.

5.2 Resonance absorption in dilute substances.
5.91 Absorption of free spins. .

In Chapter III we briefly discussed the allowed transitions
between the levels of a system of free spins in a constant mag-
netic field H, with S = 1/2. The essential features were that
only transitions between adjacent levels in perpendicular con-
stant and alternating field are possible. The allowed transit-
ions correspond. to a transition of one of the spins between its
two energy levels and therefore the essential’ features of the
absorption can be found by considering just one spin.

Clearly these transitions can be induced by applying elec-
tromagnetic radiation of the correct frequency. For experimental
reasons one applies radiation of a given frequency v and chang-
es the value of the constant magnetic field until absorption
occurs; then H, satisfies the resonance condition

gBH .2 . (148)
Taking g = 2 - as is the case for_pure electronic spins - and
the well known wsalues for h and B this relation can be written

HA = 10710, (148a)
where the wave length) is measured in cm and the magnetic field
in Oersted. In a field of 3000 Oersted A= 3.5 cm and v = 8000
Mc/sec; the absorption therefore lies in the micro wave region.

The situation is very similar in the case of free spins with
S$»1/2.1In a magnetic field we have the energy levels gfmil, where
n has the values S, $-1, ... =S. When an alternating field at
right angles to the constant field is applied transitions in m
withAm=+ 1 are allowed and the resonance condition (148) ap-

plies.

5.99 Absorption in the absence of a magnetic field.
a) In Chapter II we mentioned that the energy levels of the




ions of the iron group - both in absence or presence of a con-
stant magnetic field - in general deviate from those of free
spins. Consequently the resonance spectra in most cases are
more complicated.

_ We shall consider first the case that H, = 0. It was found
that in many cases splittings of these levels of the order of 1
cm™? or even smaller occur. Consequently, if there are allow-
ed transitions between the normal levels, absorption lines in
general allowanumber of magnetic dipole transitions. Electric
dipole transitions are forbidden by Laporte’s parity rule;
the parity of the normal levelsis the same since they originate
from the same configuration of the free ion. Electric quadru-
pole transitions can be shown to have negligible intensity com-
pared with the magnetic dipole transitions.

b) The selection rules can be found with a cimple group the-
oretical argument. According to this theory magnetic dipole
transitions ave u]lowed between levels m and n only if [ X xT,
contains the identical representation I'y; I') is the represen-
tation of the magnetic moment operator which' transforms under a
rotation over an angle @ as an axial. vector. Kittel and Luttin-
ger (K3) made a list of the selection rules for a number of
symetries of the crystalline field. We shall not quote the re-
sults but we refer to their paper.

5.23 Absorption in the presence of a magnetic field.

In most cases the resonance spectrum to be expected deviates
appreciably from the simple spectrum of free spims. Several
reasons can be given for this. In the first place the energy
levels of the actual paramagnetic ions deviate from those of
free spins and often depend on the directions of the constant
field (Cf. I, Ch.2). Secondly often the elementary cell contains
a number of magnetic ions of the same kind, for which the direc-
tion of the symmetry axes of the crystalline field relative to
the crystal axes is different. Therefore the spectrum observed
in general is a superposition of the spectra of the different
ions, corresponding to different directions of the magnetic
field relative to the axes of the crystalline field. And third-
ly the selection rules of the transitions often deviate from
.those of free spins as a consequence of the combined action of
the crystalline field and the spin-orbit coupling. Examples can
be found in Kittel and Luttinger’s paper (K3) and in Part III.
In general therefore the resonance absorption spectra are rather
complicated and often the interpretation is difficuit.

It may be remembered that the level picttres given in chap-
ter IT are broadly speaking in agreement with the available
data on the susceptibility and specific heat of many salts.
There exist however inconsistencies as has been pointed out by




Van Vleck (V5), Freed (F2), and Penney and Kynch (P5). The stu-
dy of the resonance spectra can provide us with more direct and
more complete knowledge about the energy levels of magnetic
ions in crystals and has already been fruitful in this respect.
Examples of substances of which the observed spectra could be
analysed, and which showed a fair agreement with the theoretic-
al expectations of chapter Il are: potassium chromium alum (Bl7,
W2) and nickel fluosilicate (P1)., The experiments carried out
so far confirm the theory of Chapter II in its broad outline

(B7), but on the other hand discrepancies have been found (Cf.
Part I11).

5.3 Thermal broadening of magnetic resonance lines.
5.31 Introduction.

Until so far in this chapter we neglected the possible
influence of the interactions between the ions themselves
and the interaction between the ions and the thermal motion
of the lattice, An adequate theory of the line shape and line
width of magnetic resonance lines should take into account
both types of interactions. A general treatment on these lines
has not been given, but only considerations, which are valid,
either for the case that the interaction between the ions and
the thernal motion of the lattice is much smaller than the in-
teraction between the ions - so that the line shape practically
is determined by the mutual interaction of the ions -; or for
the case that the thermal interaction is much larger than the
mutual interaction, so that the line shape practically is de-
termined by the interaction between the ions and the lattice.
The first case will be discussed in section 5.4 and the second

case in this section.

5.32 The formulae of Frohlich-Van Vleck-Wetisskopf.

These formulae have been derived by Fréhlich for the shape of
collision-broadened spectral lines in the special cases of rigid
dipoles oscillating about en equilibrium positicn (F3) and of
harmonic oscillators (F4). Van Vleck and Weisskopf (V8) criti-
sised and revised Lorentz’s theory of collision broadening (Cf.
H6) and arrived at the same fornula for the line shape, although
their treatment differs frem that of Frohlich. All three auth-
ors used a classical derivation; recently Karplus and Schwinger
(K5) gave a quantum mechanical derivation, which we shall fol-
low in its mair outline,

To this end we consider a dilute paramagnetic substance in
which the identical spins with S = 1/2 interact with the ther-
mal motion of the lattice and which is subjected to a magnetic
field of the form (95), while Hih, The problem is to calculate
the optical absorption coefficient a in I = I exp(-ax), where
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I is the intensity in a plane wave and x is the distance over
which the wave has travelled, reckoned from a given point. o is
given by the well known relation
: a =8 m®x"/c (nepers per cm) (149)
where ¢ is the velocity of light.
‘The problem is therefore reduced to the calculation of x” as
a function of the frequency of the alternating field. If we ne-
glect the mutual interaction, this problem can be solved by in-
troducing the density matrix of an ion p.. Then the mean magnetic
moment of an ion, ix’ is given by
m, =Sp [mpl. (150)
If thermodynamical equilibrium would be maintained at all mo-
ments the density matrix would be given by

0o = C exp(=H/kT) C = Splexp(-/*T)], (151)
where the Hamiltonian H can be written in the form
H=Hy +V cos ¢ (152)

the first term is the Hamiltonian of an ion without applied
alternating field, the second term describes the influence of
the alternating field. The change of the density matrix in the
course of time is determined by
l’;po = Hpo — Po l't- (153’
In the actual situation thermodynamical equilibrium is not
maintained all the time, but there is a tendency -~ due to the in-
teraction with the lattice vibrations - to reach equibrium. We
will now suppose that the rate of change of p - the actual den-
sity matrix - is proportional to the instanteneous déviation
from poy or, mathematically expressed, is equal to —A(p—po).
This assumption implies that there is one spin-lattice relaxa-
tion time. Adding this rate of change of p to the rate of change
due to the ‘motion’ of the magnetic moments we get
- p = (=i/h) (HooH) - A(ppo), (154)
which is the equation we shall use for the evaluation of p and
hence of x". It may be added that this equation is the exact
quantum mechanical analogue of Frohlich’s equation (7) (F4). It
is more convenient to introduce the quantity D = p—po, which
obeys o 2
D = (~i/h)({ D - DH) = AD - po- (155)
This becomes in the representation in which the unperturbed
Hamiltonian H, is diagonal

(0/0t+ iwg+ AD,, = ~(po),,~(iMZ(Y, D, =D, ¥y Jeosw t,156)

where
o = gBH,.

We have assumed that the radiation field is weak, which im-
plies that the density matrix differs little from that of the
system without applied alternating magnetic field at the same
temperature (p®). In the representation used we have



p:‘ zs[ezp(-l{,,/kT)]k g exp(—lfh/kT) 8y,
P[ezp(—Ho/kT j Zezp(—El/kT)

We now can neglect the second term at the right hand side of

(156). As the energy of the system in the radiation field will

be small compared will kT, we can write in a sufficient approxi-
mation

=P 64

(pc,),‘l = pp 6&1 + (p: - p;)(V;llﬁ W) cos W t,
and we finally obtain for (156) (157)
(Of0t + iwy + A)Dk1 = w(p: =/A% (V“/Hwo) Sin W Yy.
The steady state solution of this equation is
Dy (tF [w/ (wwotid) KeS — p2) (V. ,/fiu) exp (—ivst) +
hdﬂnﬂdo~1A)](p:—p;)(Vkl/ﬁwo)exp(ﬂnt).

Taking into account that D=pp,, the equations (100a), (10la),
(148) and assuming that the temperature is sufficiently high
for replacing the exponentials by the first terms of their
series expansion, we finally obtain

Sedeof Bv? — vo(vvg) , AV + vg (vHvg)
% X°/2)[ (w=vo) 23 e (vwo)zo’f &ve ] i

" _ 9 vAv vAv ]
X" = (o/2) e e (158b)

Here we have written &v = A/2n and ¥, = 2| m kJ@/SkT.Theseequa-

tions follow from (106) by the substitution p = 1/Av and may be
called the Frohlich-Van Vleck-Weisskopf formulae.

Discussion.

It will be clear from the given derivation of the formulae
(158) that they are valid for any case in which the fundamental
equation (154) is satiesfied, independent of whether we have elec-
tric or magnetic resonance absorption in solids, liquids or ga-
ses. The physical implications of the validity of (154) will be
discussed in some special cases.

Let us consider first the case that v >>Av.Then for frequen-
c¢ies not too far from the resonance frequency vV, the second
term at the right hand side of (158b) can be neglected and the
shape of the absorption line is determined by the structure

factor

Av/{(v=e) 2 + V7],
This is exactly the expression Lorentz (L1, H6) derived for the
line shape of a spectral line in the optical region - for which
Vo>>l\WV - in a gas, in which the collisions between the molecules
cause a broadening. Lorentz assumed that the chance of a time
t elapsing between the collisions is given by an exponential
probability distribution of the form
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(1/t)exp(~t/T),
where T is the mean time between collisions. The ‘line breadth
constant® Av = which is equal to half the width at half intens-
ity - is related to the mean time between collisions according to
Av =1/2 t. 1f however Vo=Av Lorentz’s expression is no longer
valid and the complete expressions (158) have to-be used.

In the limiting case of Vo = 0 formulae (158) become equal
to the corresponding Debye formulae (104). The ‘non-resonant’
Debye absorption and dispersion therefore are resonant absorp-
tion and dispersion with resonance frequency zero. We can con-
clude that the linebreadth constant is related to the relaxa-
tion time T = p/2m according to Av=1/2 nt (In a gas the relaxa-
tion time is equal to the mean time between the collisions.).
It is easily seen that the factor A in (154) is equal to 1/t.

It is instructive to compare the collision damped oscillator,
which we consider in this section, with the friction damped os=-
cillator (Cf. (106)). To this end in fig. 8 have been plotted

N

T
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a) Friction damped oscillator, b) Collision desmped oscillsator,




*' Xo and %”/X, for both types of oscillator as a function of
log w/w, = log v/v,, where v  is the resonance frequency of the
undamped oscillator, for different values of Twy = pvye From
the x”/%, versus log w/w, plots it is obvious that the maximum
of "/, shifts for decreasing values of tw, to higher values
of w/w, for the collision damped oscillator, but to lower values
of w/w, for the friction damped oscillator.

In experiments on resonance absorption where the constant
magnetic field - and consequently the resonance frequency - is
varied the maximum of the absorption shifts to a lower value of
H., sayH_, in the case of a collision damped oscillator, but to
a higher value for a friction damped oscillator. If we define
v_ by the relation hv = gBH;, the maximum absorption no longer
is determined by v =v_ =v_, but for the collision damped os-
cillator by the relation i

(v /v)2 = = [(1/p%?)*1] + 2[(1/p*v?)+1]%,  (159)
which is readily derived from (108), assuming that p = 2t does
not depend on H.. It is easily seen that vn/v = 1 only for
1/p*v?® = 0 (or p = «) but decreases for - necessarily positive -
values of 1/p*v?, finally giving v_/v = 0 for 1/p°v? = 3. Rela-
tion (159) can be used for estimating p if g and v, (or H ) are
known (Cf. Part III).

We finally remark that inspection of the x’/xo versus log
(w/wy) plots of fig. 8 shows the mentioned tendency towards a
Debye curve for decreasing values of Tw, in the case of the
collision damped oscillator. This tendency is absent in the
case of the friction damped oscillator.

5.4 The magnetic and exchange broadening of magnetic resonance
limes.
5.41 Introduction.

As we have seen in section 3,21 a system of independent spins
with S= 1/2 has a set of discrete energy levels which are high-
ly degenerate. The same statement is correct for the levels of
any system of independent magnetic moments in a crystal.

In this section we have to discuss the influence of a mutual
interaction on the magnetic resonance absorption lines. The
best way in principle for studying this effect would be to cal-
culate the energy levels after introduction of the mutual in-
teraction. Then taking into account the occupation of the levels
the absorption as a function of frequency (for given values of
Il. and T) could be calculated in a straight forward way. As a
consequence of the complexity of the problem - it would mean
the solution of a secular problem of the order of about 102% -
this problem however is impracticable.

It is possible however to solve the problem at least parti-
ally along the following lines. First of all we may remark that
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:t: ;:EZ;:it;Z: iﬁ:::iiaﬁﬁe discretg levg]s of thF system with-

y over a continuum. This is a conse-
quence of the large number of levels and makes an approximative
treatmgnt possible. Let us now consider the absorption in a
magnetic field with given frequency v. Then we have to deal
with processes of absorption and stimulated emission. The sur-
plus number of absorption processes is proportional to the dif-
ferences in occupation between the levels participating in the
process and is therefore proportional to hv/kT (if hv<<kT, as is
Fhe case in all cases occuring in practice). The net absorption
1s proportional to (hv)z/kTh~Further,the absorption will be
proportional to the average square of the non-diagonal elements
M, of the magnetic moment corresponding to the frequency W
If v is varied the absorption will vary continuously and will
be essentially determined by the distribution {unction f(v) of
the M . According to Broer (B18) we have for the absorption

1
per second per cm?®

A= (8r3V2/kT) f(v), (160)
where . fzv) =Ei’ IMkll 2 5 (161)

The summation includes all levels within the effective line
breadth Av of the levels. This width is caused by the interac-
tion with the lattice vibrations and is assumed to be much smal-
ler then the linebreadth due to the mutual interaction between
the magnetic ions; on ‘the other hand it should be large enough
so that a large number of discrete states k, | are included in
the sum. The problem therefore is reduced to determining the
distribution function f(v).

5.42 The evaluation of the distribution function.

For reasons we mentioned in the preceding section it is not
feasible to calculate f(v) directly. It is however possible to
calculate the moments of f(v), where the nth moment is defined
by
<yt> = ZV" f(v)dv. (162)
If all the moments are known the funetion f(v) can be construc-
ted in any degree of approximation. The calculations in practice
are only carried out until the fifth moment, but this already
gives valuable information about f(v).Often the average moments
are computed, which are defined by <> = > /<y°>,

In principle two methods can be used for the evaluation of
the <y™’'s. In the first place we have the diagonal sum method,
developed by Waller, Van Vleck and Broer (W3, V9, V10, Bl8).
They find the relations (neglecting terms in hv/kT)

<% =Sp ]
2> = Sp |M?]/Ar? (163)
%> = Sp [i]/16n*,




These.moment§ can be evaluated using the general relation for
the time derivative of a quantum mechanical operator
. _ M = HM - MK, (164)
;: assuming that there 1s no crystalline Spylttlng, but that
gnetic and.exchange coupling between the ions 1is present.
Then the Hamiltonian is given by (69) and (70) with m = Boy
while the first term of (69) is written ZH, = 3‘?Hc2611 Thg;
term describes the Zeeman energy (the energy due to the presence
of the constant magnetic field directed along the z-axis). Un-
fortunately it is hardly feasible to calculate higher moments
than the fourth, so that the information obtained in this way

remains limited.

In the second place we have the perturbation method in which
the interaction is treated as a perturbation. It is not alto-
gether trivial that a perturbation calculus can be applied here,
because the perturbation energy will be of theforderBA#Hx; the
splitting of an energy level must-be of the same order and cer-
tainly will be larger than the original distance between the
levels for a system of many spins. Broer (B18) pointed out how-
ever that the matrix elements of the magnetic moment differ ap-
preciably from zero only when the energy difference hy between
two states k and | satisfy the relation hv = gH;; or hy =2 B(He+
Hx) or hv=f (2H_ % H,). This theoretical justification is sup-
ported by the results of the perturbation theory, which are in
agreement with the experimental facts. -

The perturbation method has been used by Broer (B18) and in
more detail by Pryce and Stevens (P6). Broer considered some
general aspects of the influence of the mutual interaction,
while the latter authors especially considered the influence on
resonance absorption lines. The results will be quoted in the
next section without details about the usually very complicated
calculations. For details about this we refer to the papers

mentioned.

5.43 Review of the t heoretical results.

a) In order to obtain a general impression about the in-
fluence of interaction we shall consider the case of a system
of identical spins or in other words ions having no electrical
splitting. If we neglect the interaction, the distribution
function f(v) in the case H, = 0 is very sharply peaked at Vv =
0, in the case of perpendicular constant and alternating fields

= gBH /h and is zero for all frequen-

sharply peaked around V,
cies in the case of parallel fields. This follows from the con-
th S = 1/2, but the

siderations of section 3.21 for spins wi
same is valid for spins with S$>1/2. As a consequence of the in-

teraction of the spins with the lattice vibrations the peaks in

the f(v) versus V curve have a finite, but, as we shall assume
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here, for our present purpose negligible width. This picture is
changed in many ways if we introduce the mutual interaction. We
shall assume here that the interaction is purely magnetic and
neglect the influence of exchange interaction for the present.
Then according to Broer (B18) - who discussed the first two mo-
ments of f(vy) -

a) if H_ = 0 the peak of f(v) is broadened to a width of the
order BH /h

b) in perpendlcu]ar fields the peak around v =v, is broaden-
ed to the same width, while moreover much fainter peaks around

=0 and v = 2v_ occur; all peaks having a width of the order
ﬁH‘/h.(According to Miss Wright (W4) in still higher approxima-
tion faint peaks at higher multiples of v, must be expected
too.) These transitions correspond to Ap = + 2, + 3, ..., which
are forbidden for free spins. [[n the case of spins with $>% two
kinds of transition with lAml> 1 are possible. First one spin
can make a transition withlA m/>1 and secondly two or more spins
can make a transition simultaneously. In the case of S = % only
the latter type of transition is possible.]

The area under the f(v) curve is independent of H and the
absorption of the lines at v = 0 and v = 2VH decreases in high
fields (H _>>H ) proportional to (H /H, 1

¢) in para]lel fields absorptlon occurs at frequencies v =0,
| Gl and v = 2VH. Now the area under the f(v) curve decreases
in hlgh constant fields proportionally to 1/H?2 and the adsorp-
tion at v = 0 vanishes proportionally to (H,ﬂid‘ the other
lines decrease in proportion to (H, /Hg) % The width of all peaks
is of the order BH, /h.

In this thesis we are chiefly interested in the resonance
absorption line. This special line will be discussed below in
detail, where we shall consider both the effect of magnetic and
exchange interaction on the line shape. Here we only mention
the influence of exchange on the line shape of the other lines.

According to Miss Wright in the case H = 0 the line is nar-
rowed by exchange. In perpendicular fields all lines, except
the resonance line at v = v_, are broadened, while in parallel
fields all lines, including the line at v = v , are broadened.

The lines at v=2Vg, 3V, both in parallel and perpendicular
fields hardly have been studied experimentally, but the low
frequency side of the line at v = 0, which is responsible for
the spin-spin relaxation, has been studied and still is being
studied experimentally, both in the cases of electrical split-
tings and in the case of no electrical splittings. For details
of the experimental results we refer to Gorter’s book (Gl) and
for the theory to the papers of Broer (B18) and Miss Wright (W4).




5.44 The resonance absorption line.

a) Identical spins. The case of identical spins has been
considered in detail by Van Vleck (V10) for high temperatures,
where the formulae (163) are valid. Van Vleck derived expres=
sions for the mean square and mean fourth power of the deviation
of the resonance frequency. The first quantity is related to
<y2>sy according to

dve>, = <(gfll [h)2>,, = VP> g FH/R

The corresponding expression for <Av4> is easily found.

If the crystal has cubic symmetry Van Vleck finds

shvz> = (3/8)g*B*h™2 [atb(\f + A2 + A3] S(S + 1), (165)
where Ay, Az, Ag are the direction cosines of the applied field
relative to the cubic axes. The constants a,b, are independent
of"the \’s, but depend on the type of cubic structure. For a
powder of a substance having a simple cubic lattice Van Vleck
finds (166)

Bv?> = (3/5)g*R*h™* S(S+1) 2 r;f = (3/10)g*B*h™%H;.

i7j

It may be noted that this expression is independent of exchange,
which therefore does not contribute to <Av?> ; exchange how-
ever contributes to <AV4>.V (see below). 2
This expression has been derived with a Hamiltonian from which
the terms which give rise to the absorption lines at V = 0 and
Y = 2V, «.. have been dropped. This is necessary for obtaining
a resuqt which actually applies to the resonant line, because
the subsidiary lines differ so much in frequency from the main
line that, although they are much fainter, their contribution
to <Av2>.v would be of the same order as that of the main line.

Van Vleck also computed the mean fourth power of the fre-
quency and found that exchange contributes to this moment. This
necessarily means that the line tapers off less sharply in the
wings than in the case of pure magnetic interaction, but at
the same time is peaked more sharply near the centre of the
line, so that the value of <A 2>.v remains unaltered. This ex-
change narrowing is not likely to occur in nuclear resonance
lines in crystals, but has been observed in several concentra-
ted paramagnetic substances in which the resonance lines arise
from electronic spins. An interesting example is copper sulpha-
te which has been studied in detail at room temperature by Bag-
guley and Griffiths (B19).

It may be noted that in the case of pure magnetic interaction
the line shape is about Gaussian. A Gaussian distribution hav-
ing the correct value of <AV2>nv is given by

) = (k> Y expl-(vgfic/h)*/2<v?> J; (167)

the corresponding fourth moment is 3(<AV2>‘v)2. In the case‘of
a simple cubic lattice and S = 1/2 the Gaussian distribution
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yields (<Av*>_ )# = 1,32 (<Av2> % while in the case of pure
magnetic interaction we have (<&vﬁ:v)4 = 1.25 (<Av2> )%. The
deviation from a Gaussian distribution is therefore not great
in this case; the actual curve is somewhat blunted compared
with the Gaussian one.

It finally may be added, that Pryce and Stevens (P6) also
considered the fifst moment, which is. a measuré for the mean
displacement of the line. They found that in the present ap-
proximation of high temperature that the centre of the line is
not displaced by the interaction,

b) Two kinds of spins. Van Vleck also considered the case of
two kinds of spins, characterised by different g-values and
possibly by different values of S. It is assumed that the g-va-
lues differ so much that the resonances of the two varieties of
spins do not overlap.One must expect the norma| resonance lines
for the two types of spins and moreover quite a variety of sub-
sidiary lines. Van Vleck calculated the second and fourth mo-
ment of the resonance line of one of the kinds of spins. We
shall not quote the complicated expressions derived by Van
Vleck, but we shall only mention the salient features of the re-
sult.

1) All other things being equal the magnetic coupling bet-
ween dissimilar spins is less effective than between like ones
in broadening the lines. The contribution of dissimilar spins
to the average square width <Av?>_ is - apart from differences
in the values of g and S - only 4/9 times the contribution of
identical spins. This result easily can be interpreted as a
consequence of ‘resonance’ between the spins. For seeing this
let us consider two spins in a constant magnetic field. Classic-
ally they precess about the direction of H, and the field they
exert on each other is a superposition of a steady field and a
rotating field. If the spins are identical the precessional
frequencies are the same and the rotating field of one spin is
able to turn over the other one. This effect reduces the life-
time of the spins in the given states and therefore makes the
magnetic interaction more effective in the case of identical
spins than otherwise. A detailed calculation gives the factor
mentioned. ]

2) Exchange between dissimilar spins contributes to <Av?>,,
and therefore tends to broaden the ltine, contrary to the effect
for identical spins.Pryce and Stevens considered this efféct in
some detail for spins with S = }4. For details we refer to their
papers,

3) Both magnetic and exchange interaction between the spins
of one type influence only the fourth - not the second - moment
of the resonance line of the other type and consequently cause
a narrowing of the line.




4) Exchange interaction between one type of spins contributes
only te the fourth moment of the line of this type, even if the
dipolar broadening is mainly caused by the interaction with the W
spins of the other type.

It may finally be added that the effects 1) and 2) both act
on <Av?>_, and therefore do not necessarily imply that the Gaus-
sian approximation is a bad one. The effects 3) and 4) on the
other hand imply - if they are noticeable - that the deviation
from a Gaussian shape is significant.

5.45 The influence of temperature.

In the considerations given so far on the magnetic and exchange
broadening of resonance lines we confined ourselves to the case
of high temperatures where terms in 1/kT in the expressions for
<y™ can be neglected (Cf. (163)). In the temperature region
where this no longer is allowed in general the <v"> are depen-
dent on the temperature and moreover often on the shape of the
sample. This is a consequence of the fact that the higher terms
in the expansion of <v™ to powers of 1/T involve summations
over terms which depend on rather low powers of the distances
between the magnetic ions (Pryce and Stevens (P6)).

We are especially interested into the possible displacement
of the resonance line with decreasing temperature. This problem’
has been considered in some detail by Dr K.W.H.Stevens in a
private communication to Professor Gorter, for the case of ions
having a spin % and coupled only with magnetic coupling. Then
the interaction between two ions is given by (70) and the mean
displacement of the line to the order 1/kT is found to be equal
to

(3/2)gpH, (C/kT) @,
where & is given by (86). Therefore a displacement in the first
order of 1/kT has to be expected for all shapes- which differ
from a sphere.

In first approximation only exchange interaction between
dissimilar ions can shift the line, the shift due to exchange
interaction between like ions is zero in this approximation. As
far as we are aware no calculations have been published about
the case of strong magnetic and exchange interaction as for
instance is present in ferromagnetic or anti-ferromagnetic sub-
stances. The theory in thig case obviously will encounter many

difficulties.




PART 1I
EXPERIMENTS ON SPIN LATTICE RELAXATION
Chapter I
EXPERIMENTAL METHODS

1,1 Introduction.

An experimental check of the preceding considerations on
spinrlattice relaxation involves the study of x' and x” as a
function of frequency v, temperature T and constant magnetic
field H_, possible followed by a calculation of the relaxation
constant as a function of H_ and T,

It may be noted that in principle a study of the adjustment
of the magnetic moment to anew equilibrium value after a sudden
change of H. should give the same information. For practical
reasons however a method using an alternating magnetic field
has to be preferred and therefore the theory in I, Ch. 4 was
developed for this case.

The technique actually required strongly depends on the fre-
quency range in which considerable dispersion and absorption
occurs and it is possible to classify the experimental tech-
niques accordingly.

a) The methods used at frequencies between 0.1 and 78 Mc/sec
are described in detail by Gorter in his monograph (Gl), where

many references to the existing litterature can be found. We
therefore can refrain from a detailed discussion. X' can be de-

termined by placing the sample in the tank coil of an oscillator
and by measuring the change of frequency of this oscillator,
caused by changes of y’ due to variations of H,and T %' can be
measured by placing the sample in a sufficiently strong alter-
nating field and by determining the rate of heating of the sam-
ple. It must be noted that yx’ and x” are measured separately,
This sometimes has the dis-advantage that the results of both
types of measurement on samples of the same substance do not
entirely agree, especially when they are not treated exactly
the same as regards evacuating and sealing. A method of measur-
ing ' ‘and x” simultaneously would remove this difficulty, but
probably is difficult to develop in this frequency range.

b) At low frequencies (below 500 c/sec) two methods are feas-
ible; as far as we are aware only one has been applied to spin
lattice relaxation.

The first method consists in measuring the saturation of a
resonance absorption line under increasing power input. This.
method for instance has been used by Bloembergen,- Torrey and




Pound (B22) for the measurement of nuclear magnetic relaxation
times and by Bleaney and Penrose (B23) for measuring the thermal
relaxation time in ammonia gas at low pressures.

We will discuss briefly the cage of paramagnetic substances,
where we shall confine ourselves to the case of spins with S =
%. Then the intensity of absorption depends on the difference
in occupation of the two levels of the spins. In a steady con-
dition this difference may be denoted by ng and when a radio-
frequency field is applied by n. If now the probability of a
transition by the radiation field is A then the rate of change
of n due to this influence is given by~-24n. The factor 2 ac-
counts for the fact that for each transition n changes with 2.
On the other hand there is an opposing tendency — due to the
interaction between the spins and the lattice vibrations - which
tends to reduce the difference n — n,. The rate of change of n
due to this effect is supposed to be propertional to (n, - 1),
or equal to (1/1)(n, - n), where T = p/2n is the spin-lattice
relaxation time. The total rate of change of n is given by

d
dn - _24n + (1/7)(n, - ).

In a steady state this is zero and we get
n/ng = 1/(1 + 2A1). (168)
The ratio n/n, is equal to the ratio between the actual absorp-
tion strength and the absorption strength at power level zero.
In the case of spins with S = 4 it can be shown that
A A=%Y>h T oWv),
where h = the amplitude of the radiation field, y is the mag-
netogyric ratio (y = gB/h), T’ is the spin-spin relaxation
time, which is a measure of the reciprocal width of the line;
9(v) accounts for the finite width of the absorption line
in the following way. As a consequence of the finite width of
the line the surplus number n formally can be regarded as being
distributed over a frequency range according to a function @(v)
determined by ”
n(v) =nop(v) [oW) & =1.
It is further assumed that the frequency of the radiation field
h = Jh(v)dv is so well defined that ¢(v) can be taken constant
over the frequency region where h is different from zero. It is
not difficult to satisfy this condition in the micro wave range.
The absorption therefore is proportional to
n/n, = o)/ + y* K1roW)). (169)
In the case of a narrow absorption line @(v) at the resonance
frequency is not very much different from one; then the in-
tensity of absorption rapidly decreases if h becomes so large
that y*h’tr2~1.
In the case of a rather dilute substance like an alum we have
'~ 10~° sec and for electronic spins y = 1,76 X 107 Oersted™




sec™, so that if T = 1072 sec the mean energy den51ty required
for making Y2h2TT’ 1 becomes h® /8n = 1074 ergs/cm [or h~~
0.05 Oersted], so that per sec per em® ¢ X h?/8n = 3 x 10° ergs
has to be applied. If therefore the volume of the crystal is
0.01-cm® the power required is 3 % 10°° Watts. If T = 1 sec the
power required is only 3 X 107® Watts. Power inputs of this or-
der easily can be produced in the microwave range.

The application of (169) for determining T requires the
knowledge of y, h and T’. It is however pessible to determine
the ratio of the product TT’ at two temperatures by comparing
the absorption as a function of the applied power (or h) for
these temperatures. T’ can be calculated from the line width
and, except at very low temperatures, is independent of T. It
therefore is comparatively simple to determine the ratio of the
spin lattice relaxation time for a given value of H, at two
temperatures.

Complications may arise in cases where several spin-lattice
relaxation times come into play (in the case of spins with S =
% there can be only one relaxatich time; cf. G2). We shall not
discuss this point further.

It finally may be noted that this method in principle can be
applied to cases where the relaxation time is too long (1>0,1
sec) for being measured with the bridge method (see below).

An alternative method for investigating spin-lattice relaxa-
tion phenomena at low frequency is the study of ¥’ and x” with
a suitable low frequency alternating current bridge. We will
describe a very useful bridge in the next section (1.2). This
method has the advantage that %’ and x” are determined simulta-
neously., Therefore the interpretation of the measurements no
longer depends on the assumption that the relaxation phenomena
can be interpreted with one relaxation constant. In the next
chapter we will discuss cases where this assumption isnot valid.

1.2 The bridge method.
1.21 Theory.

a) The basic idea underlying the use of an a.c. bridge for
measurements on paramagnetic relaxation can be elucidated in
the following way. Let us consider a mutual inductance with an
alternating current flowing through the primary. In the case of
an ideal mutual inductance the secondary voltage is exactly in
quadrature with the primary current. This however is never the
case in practice and the secondary voltage always has a - usu-
ally small - component in phase with the primary current.

If a paramagnetic substance, which may have a complex sus-
ceptibility due to relaxation, is placed inside the mutual in-
dyctance both the real and imaginary part of the coefficient of
mutual inductance will change. These changes are a measure for
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the magnitude of the real and imaginary part of the susceptibi-
lity, and therefore the measurement of ¥’ and ¥” can be reduced
to a determination of the two components of the coefficient of
mutual inductance.

This can conveniently be carried out with an a.c. bridge. A
bridge suitable for this purpose has to satisfy several require-
ments ; the most important in our cases are

1) ¥’ and %” can be measured simultaneously and with suffi-
cient accuracy,The second requirement implies that the detector
is sufficiently sensitive and moreover that ‘impurity‘ effects
of the bridge elements (see below) are either negligible or can
be taken into account.

2) The balance condition is rapidly attained. This condition
is fulfilled if the bridge can be balanced by two independent
adjustments of the bridge elements.

The bridge we actually used satisfied these requirements and
1s originally developed by Hartshorn (H7); it has previously
been used by De Haas and Du Pré (H10). The circuit is drawn in
fig. 9. M, is the mutual inductance containing the sample and
is placed in the cryostat; M, is a variable mutual indactance
and R is a resistance. The current through the detector D can
be made zero by proper adjustment of M, and R.

In order to find the balance condition we write the relation
between primary current I  and the secondary voltage V, of a
mutual inductance in the form

V, = [cioM + &) + 0lI, (170)
where w is 21 times the frequency and M is the coefficient of

(e

' ey Nt

(o)
o

Fig. 9 fThe a.c. bridge.




mutual inductance for the limiting case of frequent zero; M
therefore is real. The quantities  and 0 in general depend on
the frequency and describe the deviation of the actual mutual
inductance from an -ideal mutual inductance for which & = ¢ = 0;
0 describes the component of V, which is in phase with I . The
phase defect § is given by tg6220/uM (see fig. 10) and usually
is small (& << 0.01).

. If M; does not contain a sample - which

P is denoted by the suffix ©- the ballance

condition becomes
s -twM —ioM +R% =0 (171)

s [—iw (MP+EE) +00] + [—iw (M+£2) +062]1 +R%=0. (172)
Separation into real and imaginary part
gives the independent balaice conditions

M + M +82+22 =0 (173)

Ve +0° + RO o
-z'w(mt,f o] +0% +R° = 0. (174)
Fig. 10 Balance of the bridge can be attained by
two independent adjustments (M, and R) and the convergence

towards balance therefore is rapid.
If now a sample is placed in M, the coefficient of mutual

inductance becomes
Moo= M L+ fy), (175)
where f is a factor depending on the geometry of the- system
and y in general can be complex as a consequence of relaxation.
We will now introduce some important simplifications to be
Justi fied later. In the first place we shall assume that f is
real and secondly that OS <<ld”?. Consequently we can write
My =M? + (1/B)x, (176)
where 1/B = f(Mf +&J), which is real.
Balance of course only can be obtained by renewed adjustment
of M, and R, and we have the new balance condition
-iM, —uM, + R = 0, (177)
or
~wlMy +&5+ (1/B)x"] + [of— (W/B)xd + [iw(My + ) +a,]+=0.78)

Application of (172) and separation into real and imaginary

parts yields

X =Bl - M) + (& - &,)]
X" = (B/w) [R —R°) + (0, — 0)]. (179)
In practice we neglected the terms (c§ - &,) and (0, — og)
(third simplification) and we always used the simple expressions
X =BM - M,) g (180a)
X' = B/w) R -R"). (180b)
It must be remembered that B depends on the frequency. This
however has no effect on the ultimate results as we are only
interested into the ratios X’/Xo and X"/Xo' According to (180a)
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and (180b) ¥’ and x” can be derived from two independent bridge
adjustments which is an important advantage of the Hartshorn
bridge. :

Finally it may be noted that the use of (175) instead of
(176) leads to the expressions

X = BU(MgHe) + (£3L,)] — (B/w) BR°) (07 /ully) ~ (181a)

X" = (B/w) [BR°) + (0,-0)] + B(Mg-¥,) (02/uf), (181b)
where the second terms at the right hand side of both equations
describe the influence of the impurity of M?. These equations
clearly show the importanee of measuring coils with a low impu-
rity. Special care therefore has been taken in order to reduce
the impurity so much that the second terni in (18la) and (181b)
is negligible.

b) It is desirable to extend these considerations with a
discussion of the interpretation of the quantities £ and 0. Ac-
cording to Butterworth (B24) and Hartshorn (H8) (compare also
Haogue (H9)) the factors causing deviations from an ideal mutual
inductance are (1) self and intercapacities of the windings;
(2) eddycurrent losses in the copper of the windings, terminals
(in our case also the magnet coil producing the constant magne-
tic field); (3) leakage and dielectric losses; (4) resistance
inadvertently included in common with both windings when these
are connected at a common point. Each of these factors gives
rise to quantities £ and o which are characterised by their de-
pendence on w. Usually a number of factors is acting simulta-
neously, which causes a more intricate dependence of £ and ¢
on & than if only one factor were acting. It is_often still
possible to find the sources of the imperfection of a given mu-
tual inductance by analysing the dependence of £ and ¢ on w.

According to theory common resistance simply gives £ = 0,
while 0 is finite but independent from w. Eddy currents give

¢ = w* and 0 = w?0*, where .Z* and ¢* are constants depending
on the geometry and the material of the conductors. Capacities
and leakage can be taken into account simultaneously; according
to Butterworth and Hartshorn as regards these effects a mutual
inductance having a common point C is equivalent with the cir-
cuit drawn in fig. 11.

l'ig. 11 Impure mutusl inductence.
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Here the intercapacitance is denoted by C,, and the self capaci-
tances of the primary AC and the secondary BC by C, and C, res-
pectively. The conductances g,,, g and g, describe the leakage
between the primary and secondary, and along the primary and
secondary respectively. It can be shown by a leng calculation
that at low frequencies
==Cy5 Ry Ry —g15 Ry (LoM) + Ry (Lyt#)] — (84Ry + goRo)M +
+w?[(CL, +Cly ) + Cyo (Ly*M) (Lo*M)]
0 ==g32 RyR, —02[(C,R,¥C,R )M + C12{31 (Lo+M) + R, (L1+M)} +

+ g1 (LytH) (Lo*M) + (g1L1+goLy)M]. (182)
In general the dependence on @ is rather complicated because
the g’'s may contain w. If the g's can be neglected (only capa-
cities are present) [ contains a constant term and a term qua-
dratic in @, while o only contains a quidratic term. Leakage
can be described by constant g’s and therefore only can add a
constant term to 0 if there is leakage between the primary and
the secondary. Dielectric losses can be described with g's de-
pending on  (in a limited frequency range g ~~ w¥, 0<<l).
Therefore in this case ¢ contains a constant term and a term
proportional to w®*, while £ contains a term proportional to w®
and a term proportional to @? ™, In general therefore both ¢
and 0 can be expected to be rather intricate functions of w.
From the magnitude of the coefficients of the different powers
of » is sometimes can be concluded which terms in £ and ¢ are
predominant in a given frequency region. This will be done in
the next section for some coils used in our experiments. The
results justify the use of the formulae (180) for frequencies
below about 500 c/sec.

In the treatment given we neglected the influence of the
earth capacitance. This can be justified by the remark that, if
point A in fig. 9 is connected to earth, earth capacitances in
first approximation merely shunt the self and inter capacities,
and therefore are automatically included in the treatment given.

1.22 Apparatus. 
In this section we propose to discuss the different bridge

elements used in our experiments.

a) The variable mutual inductance. For our purpose we reguir-
ed a variable mutual inductance which could be adjusted conti-
nuously from zero to about 5 mH. This figure is determined by
the desired accuracy in measuring y and the sensitivity of the
available detector.

The mutual inductance was made in the laboratory accordingto
the following pattern. The primary simply was a long solenoid
(length 70 cm, diameter 3 cm) of copper wire (diameter 0.06 cm)




:;z:n:::;ljzsasguisltn1:s:!ation, wound on a glass tube. The
> ? > ; ider glass tube and surrounded the
primary in the middle; it was build up from groups of 100, 10
a?d 1 turns of a stranded rope of ten insulated thin copper
wires. By stranding the wires the mutual inductance between
all strands of one group and the primary is almost exactly the
same and the total mutual inductance is proportional to the
number of turns. On the other hand stranding introduces consi-
derable capacitance between the strands. This is liable to give
considerable impurity at higher audio frequencies, but did not
cause troubles in our experiments.

By the use of three decimal dials any number of turns could
be joined in series and their mutual inductance added, thus al-
lowing to change the mutual inductance in steps of one turn. A
subdivision in tenths of one turn was obtained by the following
simple artifice (De Klerk (K6)). One extra turn of the rope of
strands was placed at the middle and a second one near the
end of the primary, in such a way that the flux through this
turn was just nine tenths of the flux through the turn in the
middle. Two decimal dials mounted on one shaft allowed to con-
nect equal numbers of strands of both turns in series with mu-
tual inductances opposed. In order to reduce the intercapacity
between the primary and the secondary an earthed screen was
placed between them.

A simple variometer ranging
from -0.1 to +0.1 turn allowed
a continuous adjustment. It was
made from a circular disk of ebo-
nite which carried the primary
windings P and the secondary S;
S consisted of a single open turn,
tapped in the middel (fig. 12).
The other secondary lead passed
through the centre of the disk
and made contact with the second-
ary turn at the sliding contact C.
In the case of proper construction
the mutual inductance is proport-
ional to the shaded area or to the
angle ¢. This was confirmed with
a high degree of accuracy for the
instrument used. A scale division
allowed readings to 0,001 turn of
the main mutual inductance which
corresponds about to the mean ac-
Fig. 12 The variometer curacy of the detector.




Calibration. The calibration was carried out in two
steps. In the first place .t.he different groups of turns had to
be compared in order to check the ratio of the mutual inductance
of the different groups. This was done by comparing the maximum
mutual inductance of one dial with one unit of the next higher
dial, assuming that the strands of one dial had exactly the
same mutual inductance. The very small deviations from the ex-
pected decimal rations ware taken into account in the calcula-
tions of ¥’ and .

Secondly we studied & and 0 by comparing M; with a Tins ley
standard mutual inductance of 0.2 mf.The results are collected
in Table VI where M and £ are presented in units 4,53 uf, which
is the mutual inductance of one turn of the secondary.

Table VI
A.C. BRIDGE
N =0.2 mH = 42,415 turns (1 turn = 4,53 pH)

Frequency (c/sec)| 175| 225| 275 325 375 425| 475
C (in turns) 0.019]0.0370.039{0.073 | 0.082|0.136 |0.173

&M x 104 4,5| 8.7| 9.2 17 19 32 41
(o) (Ohns) X 104 0-39 0-53 0065 0.91 1021 1065 2-‘13
0/‘1“ X ];04> 1.8 2.0 2-1 2.3 207 3.2 3-8

It is assumed that both £ and 0 of the standard can be neglected.
Of course objections may be raised against this procedure, We
believe however that probably the order of magnitude of C and O
is correct. This is all we require for concluding that the te'rms
(CQ-CZ) and (0,-0%) in (179) can be neglected. In the first
place each of the £’s and 0’s is much smaller than ¥’ and %",
and in the second place & and ¢ will be nearly independent of
the setting of My, Consequently the third simplification (see
page 91) isallowed even if ' and " are smaller than0.1 turn.

We moreover found that (a) £ is proportional to ¢ and (b) o
varies more rapidly than w?. This must be due to dielectric
losses, which are likely to occur because the coils were wound
on glass and the wires had silk insulation. Both substances ab-
sorb moisture and this can give noticeable losses. Improvements
easily could have been arranged but were not necessary for our
meas*irements.

mﬂJ‘\_ﬂJU\IU’U'\IU’U'\mmT'—

R & {
mm

Fig. 13 The phase potentiometer.
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4b) ?he phase potentiometer (tig. 13) replaced the resistance
R in f%g. 9. We required values of R between 10™* and 10~! ohm,
for which the potentiometer was more accurate than aslide wire.
The fixed resistance r, carried the primary current and was
shunt?d by another fixed resistance r, and a variable resistan-
ce r in series, The voltage required in the secondary was taken
from the ends of r, and could be commuted. It is easily seen
that

V. =RI, = ryrofresrysr) I, (183)
wh?re R = rirp |/ (ri4ro+r) is the resistance which an equivalent
slide wire should have. The potentiometer is calibrated by mea-
suring V, while I  was a known direct current. We found R =
0.586/(2.79+r), where R and r are expressed in ohms.

It may be noted that in principle itis possible touse the po-
tentiometer by taking r constant and r, variable. This could be
advantageous if rp<<(ry+r); then the denominator in (183) would
be practically constant and we would have Wor,. Especially when
r, is small the contact resistance of the variable resistance
however enters critically and therefore we preferred the arran-
gement with variable r.

c) The alternating current I, was provided by a Philips beat-
frequency generator or a Peekel RC generator in series with a 5
watt amplifier. The RC generator was superior as to constancy
of frequency and to distortion. It was possible to make I, as
Righ as 0,2 amps with sufficiently low distortion.

The frequency adjustment was made either by comparing the
firequency with mains frequency by means of a cathode ray oscil-
loscope or by comparing higher harmonics with a tuning fork;
the frequencies used were always different from the harmonics
of the mains frequency in order to reduce the possible influ-
ence of pick up from the mains. £

d) The selective detector consisted of a two stage battery-fed
amplifier with resistance coupling and a tunable vibration gal-
vanometer. The first valve was a Philips CF 50, which is charac-
terised by a very low noise lJevel and a high amplification fac-
tor. The second valve was a Philips EF 6 coupled to the galva-
nometer with a suitable transformer. In order to prevent oscile
lations the input had to be screened very carefully and each
valve was given a separate anode battery. Moreover the ampli-
fier was placed at a fair distance (4m) from the bridge.

Two galvanometers were used; for frequencies between 100 and
500 c/sec a moving magnet galvanometer and for lower frequen-
il instrument with bifilar suspension. Although
s not very high the over=
fficient (voltages of

cies a moving co
the sensitivity of the galvanometers wa
all sensitivity of the detector was su
about 10~7 volt were just detectable).

The detector allowed the measurement of M, witha sensitivity




of about 0.001 turn for a primary current of 0,1 amp and for
v = 175 c/sec; the sensitivity of the measurement of R was about
107® ohm. The sensitivity of the detector decreased at lower
frequencies; the lowest frequency which could be used was 25
c/sec. At all frequencies the influence of noise was entirely
negligible,

e) The cryostat coils. The mutual inductance M, originally
used by De Haas and Du Pré (H10) simply consisted of two coaxial
cylindrical coils. These coils however had a large impurity and
accordingly the determination of x” was very inaccurate. It was
found that the large impurity mainly was caused by eddy cur-
rents in the conductors, like the magnet coil and the silvering
of the Dewar vessels surrounding the coils. It was therefore
inticipated that coils having a smaller stray magnetic field
would have a smaller impurity and would allo. a more accurate
determination of %" .

Coils having a very small stray magnetic field have been de-
signed and used by Casimir, Bijl and Du Pré (C2), and indeed
had a much smaller impurity than the previous coils. The main
improvement of the new coils was the primary, which now consist-
ed of two coaxial coils giving opposite magnetic fields. The
dimensions were chosen in such a way that the dipole moments
compensated each other. Then each of the ends of the system
acts as a magnetic quadrupole and at large distances the system
acts as a magnetic octupole. Inside the coils however the re-
sulting magnetic field is different from zero as is easily seen
in the following way.

The magnitude of the dipole moment P and the magnetic field
h in the centre of a cylindrical solenoid are resp. given by

P =041 inlr®( cm) h = 0.47inl/(4r® + )% (B),
where 1 is the current in amps, [ is the length, r is the radius
and n is the number of turns per cm. Two coaxial coils of equal
length have equal dipole moments if

ngry = norp? (184)
(with obvious notation), while on the other hand it is easily
seen from the above formulae that the field strengths in the
centre are not equal, except in the trivial case of identical
coils.

The first system of coils constructed according to the prin-
ciple just mentioned is drawn in fig. 14 and consisted of three
coaxial coils, two primaries P, and P,, and a secondary S; all
coils are wound on glass tube. The secondary was wound in three
sections, the upper and lower section each having half the num-
ber of turns of the section in the middle. The three sections
are connected in such a way that they tend to compensate each
other. This never occurs completely, bat in any case the total
mutual inductance is much smaller than the mutual inductance of
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one of the sections apart. In this way the
possible influence of pick up from homog-
eneous stray fields (for instance from the
mains) is very much reduced. Moreover the
number of turns of M, required for compens-
ation of S is much smaller than otherwise,
which may improve the reproducibility of
the bridge balance.

The sample to be investigated was placed
in the spherical glass container C; C was
connected to a long glass tube which was
stuck at D with Dekhotinsky cément to the
inside of the tube, which carried the whole
system. At K the system was attached to
the cap of the cryostat.

This set of coils was satisfactory in
different respects. In the first place
change of sample was reasonably easy, al-
though it required cutting the glass above
D and sealing after the replacement of the
sample. In the second place tg & was very
small (see Table VII).Only in the limiting
case that x’ is larger than 100 yx” the ex-
tra terms at the right hand side of (181)
become noticeable. Therefore in all our
experiments the second simplification in
the derivation of (180) (see page 91) is
Jjustified.

Fig. 14 The cryostat coils (first set).

TABLE VII

Cryostat coils (first set)

T = 4.0 X

M = 39,230 turns *) (1 turn  2.77 uH)

Frequency 16.7

25.0 [ 37.5 64 85| 102 | 128 | 170 | 256

Z(in turns) [(0,026)
&/M.x 10 [(0.66)
o(ohms)x10% | 0,086
o/w Mx10* |7

(0,017)| 0.032| 0,040/ 0.073( 0.095| 0,108/ 0.139| 0,193
(0.43) | 0.81 [1.00 |1.86 [2.42 |2.75 |3.53 |4.90
0.20 |(0.49 |1.24 (2.00 (2,77 |3.89 [5.79 [9.96
12 19 30 34 39 44 50 57

From Table VII 1

s furthermore can be concluded that for fre-

quencies higher than 128 c/sec both £ and 0 vary with the square

. ) These m~asurements
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of the frequency; at lower frequencies however with a lower pow-
er of v, This suggests that part of the impurity must be due to
leakage. It is very unlikely that the cryostat coils -when at a
temperature as low as 4 %K - would show other impurities than
those due to capacitance and eddy currents. Consequently the
leakage must have been outside the cryostat, presumably in the
leads.

In an other respect however these coils were not entirely
satisfactory, because after about 5 runs at liquid helium tem-
peratures the impurity increased at least a factor 10 and it
was impossible to obtain stable bridge settings; then the secon-
ﬁary had to be rewound. This trouble was a consequence of our
imperfect technique of winding, which consisted inwinding - with-
out special precautions - many layers of thin copper wire (dia-
meter 0,05 cm) with silk insulation.

We therefore decided to adopt another technique of winding
which had been proved to be succesful in other experiments (B
25). All coils now were wound on tubes of fused quartz, which
were connected to each other with thin quartz rods so as to
give a system of coaxial tubes, The two other tubes carried the
primary coils which were of the same design as the previous
coils. A third tube inside these tubes carried the secondary
and the sample was placed in.g container of casein plastic
which would be slipped with its top over the lower end of a
fourth tube of quartz placed in the centre of the system. With
this arrangement replacement of the sample' was quite simple.

The secondary coils were wound of enameled copper wire (dia-
meter 0.05 cm) under a microscope of low magnification in order
to make sure that the turns would be as close to each other as
possible. Each layer was varnished with shellack and was allowed
to dry before the next layer was wound. The coils made iq this
way have been intensively used for more than two years without
being rewound; the impurity only very slightly increased during
this time.

The quality of the system can be judged from Table VIII and
is found to be even better than the first set, as the values of
& are smaller now.

Table VIII

Cryostat coils (second set)

T=4,0% M= 404.830 turns (1 turn = 4,53 pH)

Frequency 25 37 62 83 | 133 | 175

Z (in turns)|(0.025) [(0.018)[0.035]0.057[0.137/0.233
Z/M x 10*  |(0.062)[(0.044)|0.087|0.140|0.34 |0.57
o(ohms) X 10*| 0,53 | 0.94 |2.14 [3.61 [8.65 |15
o/uM x 10* | 2 2 3 4 6 7




Both £ and ¢ are proportional to v? and therefore the impurity
must be due entirely to capacitance and eddy currents, which is
just what one must expect. A

We safely can conclude that both systems of coils were very
satisfactory for out purpose. Only in the case of very low sus-
ceptibility (for instance of very dilute salts) coils having more
turns are required.

We still have to justify that f in equation (175) can be
taken real. This can be done by considering the flux through
the secondary coil (see fig. 15). The flux in the empty coil OF

Fig. 15

contains a component OA at right angle with the primary current
and a component OB in phase with the primary current. If now a
paramagnetic sample showing relaxation is placed inside the
coils an extra fluxQF’ passes through the secondary. yThis flux
is the sum of contributions OA’ and OB’, both having the same
phase difference @ with 0OA and OB resp. Assuming that OB is en-
tirely due to eddy current losses in neighbouring conductors
(magnet coil) and that the whole space is filled with paramag-
netic substance, we would have

0A’/OA = OB’/OB,
or in other words OF’ should have a phase difference ¢ with OF.
Consequently f should be real. Of course the substance is only
present inside the secondary and accordingly

0A’/OA > OB’/0OB,
so that the phase difference between OF and OF’ is not exactly
equal to . This deviation certainly is smaller than 6 - even
in the case that OB were only due to eddy currents - and conse-
quently f is complex with an argument smaller than 6. The maxi-
mum error in the argument of ¥, caused by taking f real, is much
smaller than & and therefore can be neglected.

Summarising we can say that the bridge described and the
measuring coils fulfil the requirements for making possible
the-use of the simple formulae (180).

f. The constant magnetic field was produced with an iron
free solenoid constructed by Professor Keesom. The field obtain-
ed was 22.46 Oersted per amp, The water cooling was sufficient
for permitting the use of 400 amps during 5 minutes, which cor-
responds to a magnetic field of about 9000 Oersted. The maximus

current used in our experiments was 200 amps.
* % % %
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Chapter II
EXPERIMENTAL RESULTS

2.1 Introduction,

In this chapter we will present the results of experiments
on paramagnetic relaxation at very low temperatures obtained
with the bridge method, discussed in Chapter I. Before proceed~
ing to the review of the results themselves we briefly discuss
the method of calculation.

It is easily seen that the computation of ¥’ and x” from the
bridge settlngs with the formulae (180) requires the knowledge
of B, MD and R°, We arbitrarily chose 1/B equal to the mutual
inductance between one turn of the secondary of M, and the
primary; %' and x" then are expressed in turn: of M,.

most easily is found by analysing the values of M, found
at different temperatures in zero constant field. The suscepti=-
bility of the substance in which we are interested here always
satisfies a Curie-Weiss law at the temperatures where the ex-
periments are carried out. We than have x = x, = C/(T-8) (where
C and A are constants) and consequently - if we neg]ect the im-
purity of M, =

M= Mo (1 + fC/(T)). (185)
By plotting M, as a function of T-4, w1t.h properly chosen value
of A, a straight line with slope M2 fC = C/B is obtained and

extrapolation to T = = gives Mg- R® is equal to the value.of R
required for obtaining balance of the bridge in absence of a
constant magnetic field and is at very low temperatures inde-
pendent of T.

The first step in the interpretation of the measurements is
a check of the thermodynamic formulae (117). This can be done
by examining a x /x versus log V plot,and a x"/x, versus log v
pJot. Essential in the f1rst plot is the slope of the tangent
in the point for which x' =% (y, = %) = determined by pv = 1
- and in the second plot the width at half the maximium value,
determined by pv = 1 as well. In case of agreement with the
theoretical values of the slope and the width (see p. 58) the
values of p are readily found. An alternative method is to ex-
amine the %" versus x' plot, which - as will be remembered -
should be a circular arc with the centre on the x' axis. This
method however is less reliable than the other one, because it
is usually not possible to draw the circles inan entirely unam-
biguous way. In general therefore the first method has“to be
preferred.

Only in case of agreement with thé more flexible Cole formu-
lae (129) the X" versus ¥’ plot is quite useful far determ=
ining the deviation from the thermodynamic formulae; these dev-




iations readily can be expressed in the width p%/p.v of the
distribution of relaxaiion constants. The average value of the
relaxation constant p__ can be determined in the same way as
above. It may be added that both in the case of the thermodyna-
mic and the Cole formulae the 7('5(0 versus log v and the x"/x,
versus log V curve, only differing by the value of p or"p__ can
be made to coincide by shifting them along the log Vv axis.

The next stepisa check of the Casimir-Du Pré formula (122).
This can be done by plotting 1/(1 -~ F) as a functjon of H . If
saturation is negligible the result is a straight line with
slope C/b. From the value of b/C obtained in this way often the
electrical splitting can be estimated.

Finally the values of p or p__ have to be compared with the
theoretical expectations. Because our experiments are confined
to very low temperatures the results should be compared in any
case with the theories developed for this temperature region.
It will be remembered that according to Van Vleck p should be
proportional to H*2 T*! in the liquid helium range, while Tem-
perley predicted that p should increase with increasing field
before the decrease according to Van Vleck could start.

We will see below that the results suggest that it makes
sense to compare the results obtained at very low temperatures
with Van Vleck’s calculations for higher temperatures as well,
This involves a check of the Brons-Van Vleck formula(147), which
can be done in two ways. First we can write (147) in the form

1/p = ploo + (1-p) [po 1/ (14x%)]. ™ (186)
If therefore the 1/p versus 1/(1 + x?) plot is a straight line
(147) is satisfied, and p and p, easily can be calculated. An
alternative way is to plot (1 + x?)/p = which is proportional
to the heat contact o, between the spin-system and the lattice
- versus x-. In case of agreement with (147) a straight line is
found. (It may be remembered that Van Vleck calculated &,and found
for high temperatures 03 = B+Yﬂc2 (B, y do not depend on H.),
which immediately leads to formula (147)). This method is a
somewhat more direct check of Van Vleck’s calculations and there-
fore is adopted in the next section.

2.2 Results,

2.21 Review.
In this section we represent the results of measurements on

a number of substances. In order to save space most of the re-
sults are collected in tables. Some typical cases however are
illustrated by diagrams as well.

We examined the following substances
Chromium potassium alum (3 samples)
Iron ammonium alum (3 samples)
Manganese ammonium sulphate

') Where x = l<l/l-ln (Cf. page 59)-
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Manganese sulphate
Copper potassium sulphate
Gadolinium sulphate
Dilute chromium potassium alum, (1:13)
Dilute iron ammonium alum, (1:16) and (1:60).
One sample of each substance was investigated unless other-
wise stated; each substance will be discussed separately.

2.22 Chromium potassium alum Cr K(SO, )s. 12H,0.

a) Sample A (C2) consisted of well grown crystals obtained
by recrystallisation of a sample of chromium potassium alum
Brocades puriss.. Dr K.F.Waldkdtter kindly carried out an ana-
lysis and found for the chromium content 10.0 % (theoretical
valie 10.4 %). Aluminium, the most usual impurity, could not be
detected. Probably the water cuitent was slightly too high.

Both x!/x, and x"/x, satisfactorily agreed with the thermo-
dynamic formulae and the values of x_ found by extrapolation
along the x"/x, versus X’ /X, plot agreed satisfactory with the
Casimir-Du Pré formula (123).We found b/C = 0,81 X 10? Oersted?;
assuming, that only magnetic interaction between the ions is
present, this corresponds according to (93) to 6 = 0,181 cm™,

The values of p, obtained from both the dispersion and ab-
sorption are included in Table XI (fifth row) and will be dis-
cussed together with the data of the second sample.

TABLE IX

p (sec) x 10° Cr K(S0,),.12 H,0  Sample A,B
H(#) '
T(oK) | 456 | 694 | 790]1040{ 1140(1390(1570) 1735 2250| 2430| 2950| 3370| 3940
4.04 | - l2.0)]2.48l2.7%] - [3.5°] - |4.0°|5.1°[5.2*5.9°6.7°|7.4°
3.00 | - 5.6: 6.0°l6.6* - |8.6°| - |9.4°|12.6|12.5|13.6[15.3[16.6
2.58 = 9.1 9.8 1100 o 14.1 - 15.8 19.5 20'4 22-4 23-5 2408
2.20 | - | - [14.8) - - | -| -| -|28.8 -[ - [35.9/38.0
2.05205.0| - [17.6| - |21.2| - [27.4] - (34| - | -| -| -
1.95 P = 20.0 ¥ = — - - 36! o - 4‘4.1 48

a) values of sample A.

b) Sample B (K7) was prepared separately by recrystallising

a sample of the same origin as sample A. Again x'/x, and X"/x,
agreed well with the thermodynamic formulae. From the X' /%o
data we calculated F and we fonnd a satisfactory agreement with
the fornula (123); we found b/C = 0,75 x 10° Oersted®.

The values of p are collected in Table IX and fig., 16, to-
gether with those of sample A. There is very good agreement bet-
ween the values of p of both samples and we found that between
1.9 and 4.1° K p is approximately proportional to T*? for all
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values of H.. The dependence of p on H_ slightly deviates from
the Brons-Van Vleck formula (147). This is easily seen from
fig. 17, where we plotted (1 + x?)/10° p as a function of x

Chromium alum (A, B).
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(1-x%/10%

as a function of 12.
Chromium alum

pas a function of H ,
c

The curves obtained only slight-
ly deviate froma straight line.
c) Sample C was available
in the laboratory and probably
was less pure than the samples
A- and B. This time x'/y, and
X"/Xo deviated from the thermo-
dynamic formulae, but agreed
satisfactorily with the Cole
formulae (129). We collected
Py and p“/pav for different
values of IIC and T in Table X;
the values of p__ are about
one fifth of the values of p
of the samples A and B. The
dependence on H_ and T however
are practically the same in
all three cases. The value of
p%/p_v slightly increases with
increasing fieldstrength but

Iron alum 4 T 3,00 °K

X 1'3.00 °® +T 2.51 ° K.




seems to be almost 1ndependent of the temperature. For b/C we
found b/C = 0.75 x 10° Oersted?.

TABLE X
CI‘K(w‘)z'lzl'kO Samp]e C

H(P)
T(%)- | 355 1775

pxlossec 2.68 Te2
2.20 -
1.34 10

Py/P

av -~

1.1

d) Summarising we can remark that

1) the less pure sample shows deviations from the thermodyna-
mic formulae and has a much shorter relaxation constant than
the purer samples, '

2) the dependence of p andp_ on H_ and T is the same in
all cases,

3) the value of b/C does not seem to be influenced by slight
impurities or imperfections in the crystals. The most reliable
value is

b/C = 0.75 x 10° Oersted?®,
which corresponds to a splitting (£ =0,0204° K (Cf.H5),C =1.88)
6 = 0,175 em™ (Cf.(92)),
if only magnetic interaction between the chromium ions is pre-
sent. Broer (B26) found athigher temperatures b/C = 0.65 x 10°
Oersted”, or 6/k = 0,241° K, 6 = 0,169 cm™,

2.23 Iron ammonium alum FeNH, (SO, ), .12H,0.

This substanée has been studled by Du Pré (P7) in the limit-
ing case of high frequencies between 1 and 4° K. Our experi-
ments aimed to examine the absorption and dispersion in greater
detail by extending the ranges of frequency and constant magnet-
ic field. Three different samples have been investigated (K7).

a) Sample A was prepared by recrysta]]isation from iron am-
monium alum Kahlbaum puriss.. In low fields ¥ /Xo and x"/%,
closely agreed with the thermodynamxc formulae, but at higher
fields Cole’s formulae gave a better description. This is il-
lustrated by the values of B /p,, in Table XI. There is an in-
dication that p /p 1ncreases “wi th decreasing temperature.
From the dispersion “data we calculated b/C = 0.25x 10® Oersted®,
using formula (93).
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Fig. 18 1ron alum (A). Pas a function of H_.
TABLE XI
Fe(NH, ), (S0, ), - 12H,0 Sample A
H(g)

| (%) 1120] 1685 | 2250 | 3370 | 4500
px10%| 3.61 - (1.4%)] 2.4° | 4.7° | 7.5°
sec 3,00 3.0"| 5.7%]9.9°|18.° | 26.°
2.51 5.7°111.2 (19.1)(42.°)| -

1.89 38,71 ok - | -

1.61 (36)| - - | -

' 3

o, /o, | 3.61 Jadie) (1.2 1.3,
3.00 1.1°| 1.2} |1.3 1.3 |1.4

2.51 -,| 1.2 - -

1.89 (5 | - - -

The values of p__ are collected in fig. 18 and Table XI and
are much smaller than the values estimated by Du Pré. The devi-
ations from the Brons-Van Vleck formula (147) are marked, as Pae
continually increased with increasing field strength,rather than

approaching a constant limit., This is corroborated by fig. 17.




Between 1.6 and 3.0 %K p_ ~~T %, while at higher temperatures
p,, Seems to vary even more rapidly with temperature.

b) We investigated two other samples (B and C), which were
obtained by recrystallisation from Analar, analytical reagent.
The deviations from the thermodynamic formulae are much larger
than for sample A, but there is satisfactory agreement with the
Cole formulae; this is illustrated by fig. 19.

S
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Fig. 19 Absorption and dispersion., Left: Menganese ammonium sulphate;
T=14.3 °K. Curves according the thermodynamic formulase (117).
Right: Iron alum (B); T=4,08 °K. Curves according to Cole's
formulae (129).
For both substances: B 450 p @1120 @ V337 g
+670 9 ©225 @9

The dependence on H, and T of p“/p" of both samples B and C
markedly differs from the behaviour of sample A, hut agree among
each other. In high fields p*/p" clearly decreases with in-
creasing fi,, but in low fields this seems to be reversed, while
p*/p“ has a maximum for intermediate fields. The field strength
corresponding to this maximum possibly increases with increas-

ing T (see Table XII).




The values of P., 1n Table XII are all about three times as
large as those of sample A, although the values of the samples
B and C do not agree very well among each other. The dependente
on H, is much the same for all samples; Pay Of the samples B
and C is nearly proportional to T°°.

TABLE XII

 Fe M1 (50,),.12H,0
H@) |
iy T(K)| 113 | 225 | 450 | 675 }1120 (1685 (2250 |3370 4500
Sample[p, x10%4.08:[ - | - | 187 2.2°| 5:7°[1L% [15.9 [27 |36
B |sec [2.98 | - - | 8.57[14.° |29 - [(83) |(133) [(180)
0 /Puy |4:08 | - | - | 4.0%| 3.5%] 2.4°| 2.8°| 2.5°| 2.3%| 1.6°
" 298 1> P« } 2037 X2 5 | 1067|147 (189
Sample |0, X10° 2,96 | - | 2.9| 4.6 | 7.5 |15.5 [31.7 |(46) |(71) |(100)
C sec 2.32 | 11 | 13.119.2 |26." |58 (100) | - - =
Pu/Pay [2:96 | - | - |2.0°| 1.9°| 1.7%| 1.8 | 1.67|(1.47)[(1.3%)
2.32 |1.2)| 1.471.6°| 1.6°| 1.5°[e1.27) - | - | -

The value of b/C of the samples
ralue found for sample A.

c) Summarising we can remark that

1) the samples B and C - which may be less pure than sample
A - show much stronger deviations from the thermodynamic formu-
lae than sample A and had much larger values of the relaxation
constant. The behaviour of p”/p" was very different in both
cases.

w

and C agrees very well the

2) the dependence of p_ on H, and T is very much the same
for all samples

3) all samples gave the same value of b/C

" b/C = 0,25 x 10° Qersted®,
which corresponds to a splitting.(£ = 0. 0472° K (Cf. H5), C =
4,33)
5/k = 0,185° K & = 0,126 em™,

assuming that only ma#gnetic interaction between the iron ions
isypresent. Our value of b/C closely agrees with Broer’s value
at 77 and 90° K b/C = 0.27 x 10° Oersted” (B26).

2.24 Manganese salts (B27).

a) Manganese ammonium sulphate Mn(NHs)z (SO4) . 6HO.

The sample, investigated was prepared from MnSO,.4H,0 and
(NHs ) 2SO0, (both Analar analytical reagent) and was examined
both at liquid helium and liquid hydrogen temperatures. The re-
laxation ‘constants were so large that in the frequency range




available absorption and dispersion only at liquid hydrogen
temperatures could be measured in detail. We found excellent
agreement with the thermodynamic formulae between 14 and 20° K
as can be seen from fig. 19. Our value of b/C (b/C = 0.64 x 10°
Oersted?) agreed excellently with Broer’s (B26) value obtained
at higher temperatures.

The values of pagreed with the Brons-Van Vleck formula (147)
with temperature independent p (Table XITI and fig. 20). Broer
found p = 0.50 which is slightly larger than our value p=0.43,

TABLE XIII
M\(N{‘ )20(&)4 )2 -61"20
po X 10%sec| p=x 10%sec

1.06 2.47
5.86 13.6
50.3 117

Between 14°K and 20° K
— P is very nearly propor-
tional to T™°, at lower
temperatures (about 4° K)
p is proportional to a
lower negative power of T
(=2 to -3).

b) Manganese sulphate
MnSO, . 4H,0.

We studied a purissimum
sample of Kahlbaum in the
' liquid hydrogen range. The

/ absorption and dispersion
satisfied the thermodyna-
mic formulae (117) very
well. We calculated b/C=
6.2 x 10® Oersted®, which
agrees with Gorter and
Fige 20 Mengenese smmonium sulphate. i Teunissen’s value obtained

g;:ll{;%z ;;=;o"‘;“§;‘°“ of x". at higher temperatures
(G3).
Contrary to manganese ammonium sulphate the values of p did

not satisfy the Brons-Van Vleck formula (147) (compare fig. 21);

they are collected in Table XIV. In the temperature range used

o is nearly proportional to T°%,

c) Summarising we can say that
1) both manganese salts behave similary as regards ' /¥, and

X""/Xo showing excellent agreement with the thermodynamic formir-

lae.

A . B A
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2) the b/C values in both
cases agree with the values ob-
tained at higher temperatures,
3) both substances have relaxa-
ation constants of about the same
magnitude, varying with T~° at
constant H_ in the liquid hydro-
gen region. The dependence on H
at constant T however is differ-
ent, as only the double salt
agrees with the Brons-Van Vleck
formula with constant value of p.

2.25 Copper potassium sulphate
CuK, (S04 )2 . 6H2 0.

The sample used was prepared
from copper sulphate and potas-
sium sulphate, both Kahlbaum * for
analysis‘, The amount of copper
(14,19 %) was slightly lower than
the theoretical value of 14,39 %,
which probably is due toaslight-
ly too high water content.

We found that x’/x, and x"/x, agreed well with the Cole for-

mulae,
TABLE XIV
MnSO,.4H,0 p x 10° sec
H(@)
670 | 1120 | 1685 | 2250 | 3370 | 4030
20.5 1.37 | 1.52 | 1.82 | 2.13 | 2.64 | 2.78
18.4 2.56 | 2.82 | 3.30 | 3.90 | 4,90 | 5.12
14.4 9.3 |10.5 |12.5 |14.5 |18.2 |19.0
F 0.070 | 0.165 | 0.315 | 0.445 | 0.640 | 0,705
TABLE XV
CuK,(S04),.6H,0 T = 4,015 %K
H pxloasec p”/p" F
113 | (25) - . 0.125
2925 30 1.6 0.340
340 40 1.5: 0.540
450 45 1.4 0.670
60 5s 0.810




From the F-values in Table XV we calculated b/C = 0,10 x 10°
Oersted?, which agrees satisfactorily with Broer and Kemperman’s
value b/C = 0.12 X 10° Oersted®, obtained at higher tempara-
tures (B28). It should be remembered that as a consequence of
the low value of the Curie-constant of the substance the rela-
tive accuracy of the measurements is lower than of the measure-
ments on the substances mentioned.before.

The values of the relaxation constant are so large that only
at the highest temperature (T = 4,015° K) the values of p_
could be estimated by extrapolation with the Cole formulae. The
results are collected in Table XV. It is seen that p,, increases
with increasing field strength but a detailed analysis of this
dependence cannot be madeé. We found clear indications that p,,
increases rapidly with decreasing temperature; p”/p.v decreases
with increasing field strength.

It must be added that older measurements (B29) iridicated
much shorter relaxation constants and moreover that b/C should
depend on T. No such dependence of 'b/C on T has been found in
the present experiments and we believe the old results to be in
error.

TABLE XVI
Gdj (S0, )3 8H,0

= 4,15°K | T =3.00°K

H [px10° sec p,/p, fp¥10°sec o /o, | F

1120 25 | 2.0 | (100) - [0.170

1685| 29 | 2,14 [ (120) | (1.8)]0.442

2250 37 | 1.9* | (150) | (1.6)[0.575

3370 45 | 1.5° | (190) (1.5)[0.720
4030 55 | 1.3 | (230) | (1.6)]0.800

2,26 Gadolinium sulphate Gd, (SO4 )s .8H:0.

This substance has been studied by De Haas and Du Pré (H10)
between 1 and 4° K in magnetic fields up to 2000 Oersted and
with frequencies between 25 and 60 c sec. We examined a sample
of the same batch of crystals in wider ranges of magnetic field
and frequency.

We found that y’/y and x"/x, appreciably deviated from the
thermodynamic formulae, but that the Cole formulae are reason-
ably well satisfied. From the values of F we calculated the
overall splitting §o; "this is slightly more "complicated than in
the other cases because, due to the relatively large value of &g,
the next term in the series expansion (65) has to be taken into
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account, as has been noted by Van Dijk and Auer (D2). According
to these authors we have to take instead of the first term of
(65) for the specific due to the sglittings

C, = (Nk)(33/256)(80/kT)" 1=(2/11)(6o/kT))s  (187)
Instead of the simple Casimir = Du Pré formula (123) a somewhat
more complicated expression has to be used. Taking for the mag-
netic specific heat (82) with Q = 14.4 (we neglect possible
exchange), £ = 0,189% (Cf. H5) and C = 7.82 we found

8/k = 1.36% or & = 0,95 em™,

which agrees with the value &/k = 1.36% derived with (94) and
(123) from experiments on relaxation at 77 and 90% (b/C = 3.9
10° Oersted?, De Vrijer, Volger and Gorter (V1l))and from cal-
oric measurements (b/C = 3.8 x 10° OerstedQ, Van Dijk and Auer
(D2), b,t = 3.9 % 10° Oerst;edz, Giauque and MacDougall (G5)).
1f the second term in (187) is neglected lower values of b/C
are found in the liquid helium range. It is easily seen that
this explains the low value b/C = 3.0 x 10° Oersted® obtained
by De Haas and Du Pré(H10) at 1.34° K, who used the Casimir=-
Du Pré formula (123).

We collected the values of p__ and p%/p.v for different
values of H, at two temperatures in Table XVI; the values of
p,, at 3.00° K only could be obtained by extrapolation and
therefore are rather uncertain. According to the results at
4,15° K p,,./p_v decreases with increasing H; the dependence on
T probably is small.

The relaxation constants p,, do not seem to agree with the
Brons-Van Vleck formula; we estimated that p.v'-T" in the
temperature range used. The previous values of p,, (H10) had
only a provisonal character, and were much smaller (a factor
of at least 10) than the present values. A more systematic
study of the relaxation constants would have been desirable,
but could not be carried out as a consequence of the large

values of p, e+

9.97 Dilute chromium potassium allum (1:131) (B30).

The crystals used were obtained from a solution containing
chromium potassium alum and aluminium potassium alum. Only small
crystals were used in order to obtain a sample which was as
homogeneous as possible. Dr K.F.Waldkttter kindly carried out
an analysis and found for the ratio between the number of chrom-
ium and aluminium ions 1:13. .

Taking into account that the susceptibility of the substance
is so small the agreement of x'/x, and X"/ with the thermody-
namic formulae is very satisfactory. In fields up to about 800
Oersted the Casimir-Du Pré formula is satisfied very well, giv-
.ing b/C = 0.82 x 10® Oersted’. Neglecting the interaction bet«




ween the chromium ions we found for the splitting using formula
(92)

6/k = 0.281% or & = 0,195 em™,
which is somewhat larger than the value found for the undilute
salt.

At higher fieldstrengths marked deviations from (123)occurred,
especially at lower temperatures. In a previous publication
(B30) these deviations were interpreted as an indication that
thermodynamical equilibrium in the spin-system did no longer
exist. A careful re-examination of the data however indicated
that this conclusion probably was premature., This is a conse-
quence of the fact that values of F in increasing magnetic
field become gradually more sensitive to small uncertainties in
the values of M; and C/B (compare (185)). As a matter of fact
these uncértainties can account for the deviations of the
Casimir-Du Pré formula found.

TABLE XViI
(Cr, AL) K (80,),.12H,0 (1:13) p x 10? sec
( 3

TK & 332 | 458 | 548 | 656 | 895 [1110 (1340 |1575 [1795|2290
1.21 S B - - |750] - | - |415| - | 320
2,05 320 | 280 |(290) | 250 (220 180 | 170| - | - | -
2,53 280 | 260 | (260) | 190 | 165| 155 | 155 | 145 | 130| -
3.02 =% i - - | 81 - | = 11071 -1 107
408 1 s L = .- | - 1’471 - | - 1821 - 1538

In Table XVII and
fig. 22 we collected 3
the values of p obtain- l
ed, which are all much
larger than the values
of the undilute sub- \
stance. In contrary to
all other cases studied eI
p decreases with in-
creasing H_ except at
4,04 and 3.02° K. It D
must be added that the
values at the two high- i o
est temperatures - ob- 3 oo o .
tained from complete i ) 5. B
dispersion and absorpt~ By \ME=E £y
ion curves - are more

reliable than the other

/0’

Fig. 22 Dpitute chromium alum (1 13).
P as a function of H .
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values which are only estimated. Although the latter values may
be appreciable in error, we believe it to be unlikely that the
dependence on H_ found is qualitatively incorrect and that the
order of magnitude is wrong. On the other hand it would be
premature to try to draw quantitative conclusions.

For the dependence of p on T we estimated Pme T2

2.28 Dilute iron ammonium alum.

Two samples of different degree of dilution haven been ex-
amined by L.C.v.d.Marel, phys. cand.; both samples were avail-
able in the laboratory.

a) The first sanple was a mixed crystal between ironammonium
and aluminium ammonium alum in which the ratio between the num-
ber of iron and aluminium ions was 1:16.

In this case the relaxation constants were so large that
they only at the highest temperature used (3.93° K) could be
estimated. At lower temperatures determination of p was not
possible, The results are collected in Table XVIII.

TABLE XVIII

Tron ammonium alum(1:16) T = 3.93° K.

H(@) 225 449 | 674 | 900 [ 1125
px10° sec| 36 41 47 | (53) (77)

As usual p increases with increasing fieldstrength. For b/C we
found b/C = 0.26 x 10° Oersted®, which is within the limits of
accuracy the same as for the normal alum. A calculation of the
splitting is difficult, because it hardly can be accounted for
the magnetic interaction in a satisfactory way. Certainly the
magnetic interaction must be weaker in the average and accor-
dingly the splitting must be somewhat greater than in the nor-
mal alum.

b) The second sample was a similar mixed crystal in which
the ratio between the iron and aluminium ions was 1:60. The re~
laxation constants were so large (p>0.,1 sec even at 4° K) that
an estimate of p was impossible and we had to content ourselves
with a determination of b/C. We found b/C = 0.18 x 10° Oersted”;

neglecting the very small interaction between the iron ions we

find for the corresponding splitting
5/k = 0.213%K or 6 = 0.149 cm™*,
which is somewhat larger than for the undilute salt.
Finally we tried to do measurements at liquid hydrogen tem-
peratures, hoping that in that region measurements would be
As a consequence of the high degree of dilution no

sorption could be measured.
* % % ¥

possible.
dispersion and ab




Chapter 1II
DISCUSSION OF THE RESULTS

3.1 Introduction.

In this chapter we propose.to 'discuss the experimental re-
sults described in the preceding chapter. This will be carried
out along the following lines. First we will discuss the ther-
modynamic formulae, then the b/C vadlues and splittings derived
from them. And finally the relaxation constants.

3.2 The thermodynamic formulae.

It will be clear from the preceding chapter that between 1
and 4° K X' /%o and X"/%, as a function of v at constant H, and
T of most samples investigated showed marked deviations from
the behaviour predicted by the thermodynamical theory (Cf,
(117))+ All substances we studied have been exahined at temper-
atures above 77° K as well, and at these temperatures a very sa-
tisfactory agreement with the thermodynamic theory was found
(compare G1). Summarising we can say that - with the possible
exception of the dilute alums, which have not yet been investi-
gated in sufficient detail - the substances we investigated sa-
tisfy the qualitative rule:

‘At liquid helium temperatures (1-4° K) the spin-lattice
dispersion and absorption satisfies the thermodynamic theory
less well than at higher temperatures. The degree of deviation
depends on the substance and moreover can be different for dif-
ferent samples of the same substance.’

This formulation includes the measurements on the manganese
salts between 14 and 20° K; both substances agreed very well
with the thermodynamic formulae, but the double sulphate shows
a slight deviation at 2.17° K (Cf. Benzie and Cooke (B31) who
investigated a sample of the same origin as ours).

a) As regards an explanation of these deviations from the
thermodynamic formulae we want to remark that apparently at
least one of the basic assumptions underlying this theory is not
satisfied, In the first place the assumption that internal
thermodynamical equilibrium of the spin-system is maintained
all the time may not be correct. It seems to be feasible that a
lack of thermodynamical equilibrium of the spin-system may cause
the dispersion and absorption to deviate from the predictions
of the thermodynamic formmlae (117). On the other hand we have
seen in I, Ch. V, that the dispersion and absorption given by
(117) is characterised by one relaxation constant, irrespective
of thermodynamical equilibrium is maintained or not. It is not
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possible at present to check the above assumption of the ther-
modynam%c theory}nlexamining the dispersion and absorption.More
;sgful is a consideration of x_, which will be given in section

It may be added that if lack of thermodynamic equilibrium
causes the deviations from the formulae (117) our interpreta-
tion of these deviations in terms of a distribution of relaxation
constants may be wrong.

b) In the second place the assumption that the sample is
isotropic may not be satisfied. It will be remembered that our
samples consisted of small crystals packed with random orien-
tation in a glass eontainer, If the relaxation constant depends
on the direction of the magnetic field relative to the crystal
axes a distribution of relaxation constants may be found. It is
conceivable that an anisotropy of relaxation constants is much
more pronounced in the case of direct processes than for quasi-
Raman processes, which might explain the deviations from the
formulae (117) found between 1 and 4° K. At 77 and 90° K, where
the quasi-Raman processes are predominant, no anisotropy of the
relaxation constant could be detected in iron and chromium alum
(T3). Measurement of the relaxation constant of small (see be-
low) single crystals for different directions of the constant
magnetic field could test this suggestion. Substances having
only oné paramagnetic ion in the elementary cell (for instance
the fluosilicates of the divalent metals of the iron group, see
1,2.22) would be very suitable for this purpose. We must leave
open the question to what extent anisotropy of the relaxation
constant could explain the particular distribution of relaxa-
tion constants (130) suggested by the Cole formulae and the de-
pendence of the distribution on H and T.

¢) Thirdly the sample may not be homogeneous, or more pre-
cisely consists of crystals which are not perfectly homogeneous.
The microscopic meaning of the word ‘inhomogeneous‘ is, that
the actual crystal lattice of the substance investigated is not
the ideal lattice but that imperfections are present.

From an experimental point of view the strong influence
of small differences in purity - it may be either in chemical
or physical sense - is obvious. This influence however is of a
rather complicated nature as will become clear from the follo-
wing remarks about the two alums examined.

The first experiments in the liquid helium range indicated
that pure samples had larger relaxation constants than the less
pure ones. For instance after recrystallisation a sample showed
a longer relaxation constant than before. Our present evidence
however showed that the actual situation probably is more com-

plicated.
In the case of iron alum the relaxation constants of the
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samples B and C are much larger than the relaxation constants
of sample A. This might suggest that B and C are purer thafn A.
On the other hand A showed a better agreement with the thermo-
dynamical formulae than B and C and this might rather indicate
that sample A would be the purest. No definite conclusion can
be drawn therefore. In the case of chromium alum sample A and
B have the largest relaxation constants and satisfy the thermody-
namic formulae,(117), rather well. It should be added however
that preliminary experiments with a fourth sample indicated
strong deviations from the thermodynamic formulae but stil]
larger values of the relaxation constant than sample A and B.
Both the magnitude and the dependence of p”/p.v on H, and T
seem to be very sensitive to incidental imperfections. Compare
for instance the discrepancy between the denendence of p”/p.v
on H, and T of the samples A and B or C of iron alum,

We can conclude that presumably very small impurities have a
marked effect on the dispersion and absorption at very low tem-
peratures, but we are not able to make any detailed deductions,
A discussion of the possible influence of the different imper-
fections which are known to occur in crystals therefore seems
to be premature. We will only mention that there are indications
that crystals of the alums we investigated show imperfections,
even if the crystals are well grown and are perfectly clear.
Such crystals of iron alum are practically always strongly dou-
ble refractive although this substance forms cubic crystals.
Moreover according to a private communication of Dr C.Kittel to
the author, the heat conductivity of chromium potassium alum
(Cf. (B25)) suggests that there is a pronounced domain-like
structure in this substance at low temperatures. The diameter
of the domains, which act as scattering centers for the heat
waves in the crystal, is at least 10”° cm. It will be clear
that only if many more experimental data are available one may
hope to gain understanding of the influence of imperfections on
the spin-lattice dispersion and absorption at very low temper-
atures,

d) We finally have to make a remark about the lattice temper-
ature, As has been pointéd out by Van Vleck (V12) from a theore-
tical point of view it is not certain that the lattice acts as
a thermostat with the temperature of the bath, because the lat-
tice temperature in the interior of a crystal may not be the
same as near the surface which is in contact with the cooling
liquid and moreover the heat contact between the crystal and
the bath may be poor. These possiblities seem to be ruled out
by Du Pré’s experiments (P8) with samples of the same substance
but with different - though small - size of crystals; no influ-
ence of the size of the crystals on the dispersion was found,
I't should be remarked however that these experiments only can
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::a::g:::fj :lsl‘;::eal 1{::::!2;:‘:1: t:t.hat. the present ex;:erimenta]
tical conclusions about the 1 8 ? te?t i V}eCk o i
LA OO N e lattice thermpstat « It therefore
while to repeate Du Pré’s experiments.
Sim;;eszf‘tza;:i:r;galwzxca}r;:a?i that inb our opinion at present no
e g thermOdynamicPfomulon ?;T7 e glvep of the deviations
S e i ae )« Possibly future resea?ch
: pon this problem, and perhaps is most promis-
ing along the following lines.

In the firs? place investigation of the possible anisotropy
of the relaxation constant may be fruitful at very low temper-
atures where the first order processes can be expected to be
predominant. Possibly a method has to be devised which allows
the measurement of longer relaxation times than with our set
up, because lower temperatures probably are required for this
(see below).

In the second place a systematic study of many samples with
known impurities may reveal the details of the influence of
these impurities on the relaxation phenomena at very low tem-
peratures. The problem probably will be to know the amount and
kind of impurities present in a given sample. Chemical impuri-
ties probably are easiest to deal with, but possibly physical
methods like X-ray analysis may help to determine certain phy-
sical imperfections in the crystals. In order to reduce the
amount of auxiliary research it will be advisable to use small
samples. This may require an appreciable refinement of the ex-
perimental technique used hitherto.

In the third place a systematic investigation of the possible
influence of the size of the crystals of the sample may ailow
a check of Van Vleck’s conclusions about the lattice ‘thermo-
stat‘,

In general it will be advisable to investigate in the first
place substances in which the splittings in a magnetic’ field
( for instance found by resonance experiments) can be explained
by the theory from I, Ch. I13NiSiFgs.6H,0 may be a useful sub-
stance (compare I, 2.23, 2.24).

3.3 The adiabatic susceptibility.

a) In the preceding chapter we have seen that the different
samples of one substance had the same value of b/C calculated
with the formula (123) or in other words the same value of x_
for given H, and T. Apparently ¥, is not nearly as sensitive to
small impurities as the dispersion and absorption, and the
magnitude of the relaxation constants. This allows the conclu-
sion that apparently the splittings and the static part of the
interaction between the paramagnetic ions - which determine x_ -
are not very sensitive to impurities. Impurities therefore in
the first place influence the processes governing the energy




exchange between the spin-system and the lattice and an indepen-
dent discussion of %, 1s possible.

b) As has been pointed out in I, Ch, IV and the preceding
section the interpretation of : depends on wetheér one assumes
thermodynamical equilibrium or not. It is not a priori clear
which assumption is correct and therefore we will consider in
how far other experimental evidence allows us to draw a con-
clusion about this point. This in principle can be carried out
along the following l}ines.

In the first place it is possible to check the Casimir-Du Pré
formula (123), or the more general formula (122) if a demagne-
tisation factor and saturation have to be taken into account.
According to our own experience these formulae are satisfied
very well in fields up to at least a few times Hj . At higher
fields deviations often occur but these are always within the
limits of accuracy of the measurement. It must be remarked that
the determination of small values of y_ becomes increasingly
sensitive to the uncertainty in MY (compare (185)) and the mea-
surements of x _ in high fields therefore are very inaccurate.

Table XIX
b/C x 10"° Oersted?
Relaxation Cats" Rels
Substance 1/4°K | 77° K

Chromium potassium alum 0.75 0.65 | 0.86 c3
0.69 | Vi3

Iron ammonium alum 0.25 0.27 | 0.24 4
Manganese ammonium sulphate | 0.64 0.64 - -
Manganese sulphate 6.2 6.2 - -
Copper potassium sulphate 0.10 0.12 | 0.12 | K9
Gadolinium sulphate 3.9 3.9 3.8 D2
3.9 G5

The next step is to calculate b/C, assuming the validity of
(123) and to compare the result with b/C values obtained from
caloric measurements. This can be done for the substances we
investigated with the aid of Table XIX were we collected the
values of b/C, obtained from relaxation experiments between 1
and 4° K, and at 77° K - which were mentioned in the preceding
chapter - together with the b/C values obtained from adiabatic
demagnetisation and specific heat measurements; the last column
contains the references of the results of the previous column,

Except for chromium alum the agreement is excellent. The
agreement found rather suggest the validity of the formulae
(122) and (123), and consequently the correctness of the assump-
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Lion tpat thermodynamical equilibrium in the spin-system is
es%abllshed all the time. Chromium potassium alum is not a very
suitable substance for the present purpose because according to
Blegney (B32) not all ehromium ions 'have the same electrical
splitting at low temperatures, which seems to be connected with
a transition point at about 80%K. (The splittings found are how-
ever difficult to reconcile with the data on b/C). This is not
the case with chromium caesiumalumand with chromium methylamine
alum., It seems to be worth while to carry out the measurements
with these alums,

A further possibility for checking the values of b/C is to
compare the splittings.calculated from them with splittings
found from resonance experiments. This procedure is made more
difficult by the fact that b/C contains contributions from the
electrical splittings, the interactions between the paramagnetic
ions and possibly from hyperfine splittings. Only in the cases
that all these extra contributions can be either accurately
calculated or neglected, this procedure may be expected to have
success. Consequently this procedure seems to be promising in
the first place for highly dilute salts, where the interactions
can be neglected. As far as we are aware for no dilute salt
sufficiently data are available for carrying out the comparison.
Not even in the case of the very dilute iron ammonium alum of
which we examined both the relaxation (Cf. preceding chapter)
and the resonance absorption (Cf. III, Ch. II). The reason is
that from the resonance experiments we carried out the electri-
cal splitting cannot be derived, as will be discussed in III,
Ch. II.

In cases where the interactions between the paramagnetic
ions are not negligible one has the difficnlty that at most the
magnetic interaction can be accounted for with a reasonable de-
gree of accuracy on a purely theoretical basis. If both the
electrical and hyperfine splitting are known from experiments
on resonance absorption, direct measurements of the specific
heat may allow to calculate the contribution due to exchange.
Then a calculation of the electrical splitting from the b/C
values-obtained from relaxation measurements - is possible. We do
not know cases where this could be carried out at present.

Surmarising we can say that the available data on b/C values
determined by relaxation and direct measurements agree, and
that consequently the first assumption underlying the thermody-
namic theory seems to be valid. The other possibility for check-
ing the b/C values cannot be carried out at present, but seems

to be possible in future.

3.4 The relaxation constant.

a) In the preceding chapter we have seen that - for the un=
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dilute alums studied - the relaxation constants are strongly
affected by impurities in the sample. A more detailed analysis
shows that in the first place the magnitude is affected, but
that the dependence of p or p__ on H, and T is nearly the same
for different samples of one substance or in other words is not
sensitive to small impurities. One therefore must expect that
it makes sense to compare the experimental data of P,, With the
theoretical expectations even if the deviations from the ther-
modynamic formulae are considerable,

b) According to Van Vleck’s calculations the relation between
p and H, - both for the direct and quasi-Raman processes - is
independent of T. In a temperature region where one of these
processes prevails we can write p = f(T)g(ﬁc), where f and g
only depend on the argument in brackets. This condition will be
satisfied for temperatures well below the Delye temperature.
For temperatures above 77° K the above relation between p and
H_ and T is only approximately fulfilled (compare for instance
Broer (B26)), except for manganese ammonium sulphate where it is
satisfied very well. The same is valid for temperatures in the
liquid helium range, but there the relation p = f(T)g(H,) is
better fulfilled. The deviations from this relation at higher
temperatures possibly can be explained by the fact that in that
case the temperature is no longer very small compared with the
Debye temperature; if this explanation is correct the better
agreement at very low temperatures is easily understood.

c) As we have seen in I, Ch, IV according to Van Vleck’s
calculations p (at constant H_) should be proportional to ) i5a
at temperatures, where direct absorptionand emission processes
prevail; at temperatures where the quasi-Raman processes pre~
vail p should be proportional to T=7 if T<<8, and proportional
to T°? if T5>8, where @ is the Debye temperature. Van Vieck’s
calculations only indicate that for chromium alum p=n7f5 for
temperatures of the order of #.

TABLE XX

Exponent of T of variation of p for H_ = Hy
1-4°K | 14-20°K

Chromium potassium alum -3 -
Iron ammonium alum -5 -
Manganese ammonium sulphate =2.5 -5
Manganese sulphate - -5

In order to check these expectations we collected in Table XX
the exponents of the power of Tdescribing the variation of p as
a function of T at constant H.=Hy, derived from our experiments
for a few substances. Although the powers of T vary rather
much among each other for all temperatures, at higher temper-
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atures p increases with decreasing T, with the one puzzling ex-
ception i;lfado]inium sulphate, of which p decreases for de-
creasing etween 90 and 77° K. Except for thi i
all cases listed here and for all otg:r cases];;j:::zzzzza g;
other authors (Cf, Gl) the increase of p with decreasing tem-
perature qualitatively agrees with the expectations of all the
theories quoted in I, Ch. IV.
In the liquid helium range however p varies much quicker
with T than predicted by Van Vleck for direct processes, which
where expected to be predomin-
T ant at these temperatures. As
o & wnso,4mo w2408 to the higher temperatures we
qi‘;\"a A ‘- i'::;'::“‘,’ﬁ:z‘:::" A : refer to the discussion given
\ At by Broer (B26) who points out
h that Van Vleck’s theory does
\ not give a satisfactory des-
\ cription of the dependence of
Y | p on T. The deviation at very
w0’ \ low temperatures probably can

\fﬁ\\\\ﬂ be explained by the two possi-
%

bilities: (1) contrary Van
Vleck’s expectations quasi-Ra-
0 T A ) man processes stil]l contribute
appreciably to the relaxation
Fig. 23 process at Jiquid helium temper-
p as a function of T at constant atures, (2) the predicted nega-
l'lc for different substances, tive first power of T is in
error. From fig.23 it can be concluded that at very low temper-
atures the variation of p with T becomes less rapid. This pos-
sibly means that with decreasing temperature the direct pro-
cesses become relatively more important. For a check of this idea
still lower temperatures would be required. |,
¢) The idea that even at liquid helium temperatures quasi-
Raman-processes are important is corroborated by the dependence
of p on H_ at constant T. In the liquid hydrogen range the Van
Vleck-Brons formula (147) is satisfied very well for manganese
ammonium sulphate., This rather suggests that in this temperature
range the quasi-Raman processes still are predominant in this
substance, which probably is the case as well for other substan-
ces. The dependence of p on T of this salt at about 4° K is
still so near the dependence between 14 and 20° K, that proba-
bly even here the quasi-Raman processes are important. Moreover
the dependence of p on H_ for chromium potassium alum so nearly
satisfies the Brons-Van Vleck formula (147) that one must cor-
clude that in this case as well quasi-Raman processes are im=
portant in the liquid helium region. Also for the other sub-
stances listed in Table XX (iron ammonium alum and manganese
sulphate) this conclusion is likely to be correct, as is sug-
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gested by the dependence of p on T. In these cases marked devi-
ations from the Brons-Van Vleck formula were found, but in our
opinion this probably does not affect our conclusion about the
quasi-Raman processes, as the interaction,between the paramag-
netic ions may havé a strong influence on the relaxation con-
stants and especially on the dependence on H_ . It must be noted
that if quasi-Raman processes are important at :liquid helium
temperatures a natural explanation is available for explaining
the increase of p with increasing H,, which from Van Vleck’s
point of view would be very puzzling, if only direct processes
would be important.

The dependence of p on H, for direct processes only can be
studies at still lower temperatures than we used. This would
require a modified experimental technique allowing the measure-
ment of very long relaxation constants. Measurement of the sa-
turation of a paramagnetic resonance line with increasing power
input may be a solution of this problem (compare II, 1.1).

d) We finally have to discuss the experiments on the dilute
salts, Unfortunately these measurements are not as complete as
would be desirable. This is mainly a consequence of the large
values of the relaxation comstants,which in most cases were too
long for being determined with a reasonable accuracy. It is
however possible to draw the conclusion that the relaxation
constants increase with increasing dilution. This increase at
first sight may be a consequence of changes in the crystalline
field and moreover of the smaller magnetic interaction. The
first possibility seems to be ruled out by the results on the
dilute chromium alum, As a matter of fact the larger b/C value
of the dilute substance indicates that the symmetry of the crys-
talline field is lower in the dilute than in the normal alum.
We have seen however in.I, 4.32 that p is determined mainly by
the cubic orbital splitting which hardly can be very different
in both alums. We therefore are inclined to believe that the
increase of p with increasing dilution, is mainly a consequence
of the decreasing magnetic interaction.

According to Van Vleck increasing dilution should make p
larger if direct processes prevail, but smaller if quasi-Raman
processes prevail (compare I, 4,32), since dilution diminishes
H;. Therefore the effect of dilution found experimentally rather
would suggest the predominance of the direct processes. This
seems to be corroborated by the dependence of p on H, of the
dilute chromium alum. On the other hand the experiments with
the dilute chromium alum are not very accurate and we believe
it to be premature to attach to much importance to them. Only
measurement of the dependence of p on H, for other dilute sub-
stances would allow us to conclude wether direct processes pre-
vail or not. Therefore such experiments are very much needed.
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As has been remarked already these measurements could not be
carried out with our apparatus.

As a matter of fact we believe that the arguments leading to
the conclusion that the quasi-Raman processes are important at
liquid helium temperatures, are more cénvincing than the argu-
ments suggesting that direct processes prevail. Therefore we
adopt the (provisional) opinion that quasi-Raman processes are
stil]l important in the liquid helium range. If this conclusion
is correct = which can be checked by studying the dependence of
P on H for the dilute substances =~ there remains the problem
that 1ncrea51ng dilution increases the relaxation constant.
This may imply that the description of the influence of the
magnetic interacticn on the relaxation ccnstant with a (static)
internal magnetic field is not correct.

According to the adopted point of view still lower temper=
atures would be required for checking Van Vleck’s and Temperley’s
calculations for the direct processes. It will be inevitable
to develop a new experimental technique allowing the measure-
ment of longer relaxation constants (see p, 97) both for being
able to work at lower temperatures and for measuring the depen-
dence of p on HC for the dilute substances.




PART III
EXPERIMENTS ON PARAMAGNETIC RESONANCE
ABSORPTION

Chapter I
E;PERIMENTAL METHOD

1.1 Introduction.

In section I,5.2 we pointed out that for the direct measure-
ment of the absorption spectra of paramagnetic ions in a crys=-
tal, which is subjected to a magnetic field »f some thousand
Oersted, electromagnetic radiation of a wave length of the order
of some em is required. In this Part we will describe a few ex-
periments on this subject and'especially in this chapter we
will consider the experimental aspects of the problem.

The experimental technique used in this region of the gamut
of electromagnetic waves differs in several respects from the
technique used in the optical region, where usually continuous
radiation is applied to the substance investigated and the ab-
sorption lines are determined with some form of spectroscope;
three reasons can be given for this.

In the first place the wave length is macroscopic rather
than microscopic. This means that gratings, mirrors etc. which
could be used for this wave length region must have rather un-
wieldy sizes. On the other hand wave lengths of this order
allow the use of the much more elegant and convenient wave
guide techniques, which we shall briefly discuss below. As a
matter.of fact most experiments on absorption in the microwave
region have been carried out using wave guide methods; an
exception are for instance the pioneer experiments of Cleeton
and Williams (C5) on the inversion' spectrum of ammonia.

In the second place there are sources of radiation available
(especially the reflex klystron) which give a virtually mono-
chromatic radiation. No instrument of the nature of a spectro-
scope therefore is required to separate the different wave
Jengths.

In the third place the absorption coefficients - defined in
section I,5.32 - are very small as the absorption is proport-
ional to the square of the frequency of the transition (compare
(160)% It is not difficult to estimate « for a paramagnetic
resonance line in an average case.

According to the Kramers-Kronig relations (102), taking vy =
0, we have for the static susceptibility

125



() = (2/m) j)ﬁ% av.

If we assume that there is one ahsorption line at a frequency
V with a halfwidth Av this becomes roughly

X (0)2[x™(V) V] Av
or

X" (V) 2 ¥’ (0)(V/Av). (188)
The susceptibility in a resonance absorption line therefore
will be roughly v/Av = H/AH times the static susceptibility.
This relation is very useful for estimating x” in the calcula-
tion of o (Cf. G9).

The static volume susceptibility of a paramagnetic alum is
of the order 10°° at room temperature; the line width which is
assumed to be due to the magnetic interaction is of the order
500 Oersted. At a wavelength of 3 cm the resonance value of the
constant magnetic field is about 3000 Oersted, so that we have
V/Av =6 and y”=26.10"5, Then it is easily seen that a =<1,5 X
107 nepers em™! or 1.3 x 10~ db em™*. Therefore the absorption
per cmpath is some tenths of a percent and a path length of sever-
al meters would be required for an absorption of 50%; even at
3 %K several em would be required, as the absorption is invers-
ely proportional to the temperature.

It will be obvious that the measurement of these very small
absorption coefficients in the ordinary way will involve many
difficulties asa consequence of the large path length required,
even at low temperatures. A much better method is to use a
resonant cavity as will be discussed below.

A detailed discussion of micro wave techniques lies outside
the scope of this thesis. Moreover several books about this
subject are available. For details we refer to the books of
Huxley (H12), Ramo and Whinnery (R1), Sarbacher and Edson (S5)
and to the ‘Proceedings of the Radiolocation Convention®, March
-May 1946 (P9). We shall confine ourselves to a very brief
discussion of the main points,

1.2 The micro wave apparatus.

1.21 Wave Guides. The most useful means for transporting
micro waves are waveguides. They are characterised by a low
attenuation and moreover the waves are entirely confined to the
interior of the guide, so that no losses by radiation occur.
For these reasons they are extensively used in micro-wave work.
Coaxial lines have much the same properties, but especially at
the smaller wave lengths (3 and 1 cm) the losses in a coaxial
cable are much larger than in a wave guide. A wave guide is a
single hollow conductor in which electromagnetic waves can
travel. In a wave guide of given dimensions propagation of many
waves with different modes of propagation and different wave
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length is possible. Each mode is characterised by its own part-
icular configuration of electric and magnetic field. Charact-
eristic for a given wave guide is that for each mode a critical
wave length - determined entirely by the dimensions of the wave
guide and the special mode - exists, above which no trans-
mission of waves of this mode takes place, or more precisely
the wave is subject to a very rapid exponential decay. There is
always a mode - called principal mode - having a larger critic-
al wave length than all the others and accordingly there is for
a given wave guide a wave length region in which only the prin-
cipal mode can be propagated. This situation is usually prefer-
red for practical reasons. If for instance a discontinuity
causes the excitation of other modes they cannot be propagated
as a consequence of their rapid decay.

The most convenient shape is rectangular with the narrow
dimension smaller than half the wave length and the wide dimen-
sion between one-half and one wavelength. Then only the princi-
pal mode can be propagated, which is characterised by an elec-
tric field parallel to the narrow side, while the magnetic
field forms closed loops in planes parallel to the wide side;
the electric field in this type of wave is transverse, but the
magnetic field has a longitudinal component. Waves of this
types are called TE (Transverse Electric) or H waves. The wave
guide we used for our experiments with-waves of 3 em wave length
was of this type and had the internal dimensions 1 X % in. or
2.54 X 1.27 cm.

Owing to the finite conductivity of the walls the wave
inside the guide is attenuated in a rate which depends on the
dimensions and the material of the wave guide, the mode of pro-
pagation and on the wave length. In the copper wave guide we
used the theoretical value of the attenuation was about 0.1
decibels per metre; the value in practice may have been some-
what higher. Often waveguides are silverplated in order to
reduce the resistive losses in the walls.

Another transmission line we used was a coaxial line which
consisted of two coaxial cylindrical conductors. The principal
mode is characterised by a radial electric field, while the
magnetic lines of force form concentric circles around the axis
of the line; none of the fields has a component in the direc-
tion of propagation. This mode therefore is called a purely
Transverse Electro Magnetic or T.E.M. mode. It is important to
note that the critical wave length of the principal mode in
this case is infinite, and it is easily possible to choose the
dimensions of the line in such a way that only the principal
mode of the desired wave length can be propagated. The require-
ment for this is that the mean circumference of the inner and
outer conductor is smaller than the wave length used. The coax-
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1al lines we used fulfilled this requirement.
) An important advantage of the coaxial line excited in the
principal mode is the much smaller cross section than a wave
guide' - able to propagate waves of the same wave length - would
have, and this is the main reason why we used this type of
transmission line in our low temperature experiments. An disad-
vantage is the much larger attenuation than a wave guide would
give. This is mainly a consequence of the presence of the die-
lectric required for the support of the inner conductor. At
very low temperature however this disadventage is much reduced.

The waves can be launched in a wave guide by means of coupl-
ing probes or coupling loops in the same way as will be dis-
cussed below for cavity resonators.

1.22 Oscillator tubes. The most useful oscillator tube for
our purpose is a reflex klystron, because the generated waves
are virtually monochromatic. The wave output is continuous and
the high frequency power given off is of the order of 100 milli-
watts for the klystrons we used. The tuning range of these
tubes is about 5% and the constancy of the frequency especially
when they are run on batteries can be sufficient for our pur-
pose.

For our experiments at 10 cm wave length we used a British
CV87 tube, which was tunable between about 9.5 and 10.0 cm.
The required anode voltage is only 250 volts and the output was
about 100 milliwatts. The anode voltage was supplied by a sta-
bilised power packa

For our &xperiments at 3 cm wave length we used a British
CV272 tube. The required anode voltage in this case was about
1600 volts and the output was sufficient. This tube was run
entirely on batteries and the frequency stability was ample for
our purpose.

1.93 The detector. We used a silicon - tungsten crystal
rectifier coupled to a sensitive galvanometer as detector. This
type of detector is more sensitive than other types used so far
like thermionic detectors and bolometers.Crystal rectifiers are
available in the form of capsules; a suitable contact has been
found in the manufacture and is stabilized so that it is not
disturbed by normal handling.The rectified current is about a
few microamperes of rectified current per milliwatt of radio
frequency power and is about proportional to the r.f. power
applied, or to the square of the r.f. voltage applied. It %s
preferable to use a low resistance galvanometer as the recti-
fied current is more nearly proportional to the applied r.f.
power when it is working into a low impedance load.

Tt must be remarked that the crystal characteristic usually
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not accurately satisfies the ‘square law ‘ mentioned, and moreover
that the characteristic is not constant in the course of time.
Calibration of a rectifying crystal - which ought to be carried
out at frequent intervals - can only be carried out if some
means of producing a known variation in the r.f. power is
available. We had no such means at our disposal and therefore
Provisionally assumed the validity of the square law. The
values of the constant field corresponding to maximal absarpt-
ion, which we observed, are practically independent of small
deviations of the square law of the rectifying crystal and
therefore are reliable. Accurate determinations of line widths
however only are possible in cases where the characteristic of
the rectifying crystal is known and therefore were not possible
with our apparatus.

1.24 Cavity resonators. A resonance cavity can be regarded
as a length of wave guide closed at each end with a reflecting
wall, in which standing waves can be excited in much the same
way as hollow gas-filled vessels can be excited into accoust-
ical resonance. A given cavity will resonate at a number of
discrete frequencies, each corresponding to a particular mode
of oscillation with its own characteristic electromagnetic
field pattern. In practice a given cavity resonator usually is
excited in the principal mode which is the mode of oscillation
with the longest possible wave length., The field pattern of
this mode is simply a superposition of forwards and backwards
traveling waves of the principal mode of a wave guide, having
the same cross section, and which are reflected at the ends of
the cavity.

Since the resistivity of the walls usually is kept small the
radiation traverses the cavity many times before its final
decay. This implies that a large effeotive multiplication of
path length is obtained and that a resonance cavity must be a
suitable device for measuring small absorptions. An alternatiye
way for understanding the advantage of the resonant cavity for
measuring small absorptions is regarding the cavity as a reson-
ating system with a very small damping. A small extra damping
caused by absorption for instance in a paramagnetic substance
then easily can be detected.

The amount of damping can be judged from the quality or
magnification factor Q of the resonator which is defined by
Q = 2n (energy stored / energy dissipated per cycle). If W is
the energy stored than the energy dissipated per cycle is
(dW/dt)T, where T is the period, and we have - as w = 2n/T =

- W
Q= Tag
W =W, exp(~wt/Q); (189)

so that
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WO is the stored energy at t = (0. If therefore the resonator
is shock excited and left to oscillate freely the stored energy
is reduced to 1/e of its original value after a time Q/w.

The accurate value of Q depends on the material of the cavity
and on the mode of oscillation (compare for instance ref. (SS5),
P« 396). The order of magnitude of Q is given by the simple
expression

Q- Volume of cavity
. & X surface of cavity ’
where § is the skin depth of the wall currents. It may be added
that values of Q as large as 10* are easily achieved.

In our experiments we used cavity resonators of different
type for the 3 and 10 cm wave length work, which we will des-
cribe in some detail.

a) The resonator for 10 cm wave length.

B This resonator essentially consisted
1 of a piece of coaxial cable of length
Y%\, which was short circuited at one

¢ end and open at the other end. The ac-
tual resonator is sketched in fig. 25.

The resonator consisted of two brass

t  parts, an upper part T and a silver
plated bottom B carrying a stub S.

T  Both parts were connected with anut N,
while a greased rubber washer W, and a

P brass washer W, allowed T and B to be
connected vacuum tight. The r.f. power

. was transported downwards along a co-
———W, axial line C consisting of two concen-
tric thin walled german silver tubes

————w of diameters of about 2 and 4 mm, which
\ were insulated from each other by poly-
thene spacers placed at regular distan-

p ces from each other (not shown in the

_ figur). The calculated attenuation was

l__4 ® about 1,5 db/m at room temperature,
5 but was smaller at Jow temperatures.
The lower end of C was connected to a

Fig. 25 length of pyrotenax coaxial cable -

The 10 cm wavelength reso- which consists of copper conductors
IRER with MgO0 as insulator - and which ended

in a coupling probe P. P excited the standing wave which was
largely confined to the lower part of the resonator. A similar
system of coaxials_and probe allowed to feed a small amount of
power to the detector. In this way changes in energy density
easily could be detected. The whole resonator was placed in the
desorption apparatus to be described in the next section. It

e
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lay be added that german silver was taken for the coaxial lines
ir order to reduce the heat influx to the resonator.

The coaxial resonator was excited in the principal mode.
Then the electrical field has a node at the bottom and is maxi-
mal near the end of the stub; the electric lines of forces are
practically radial near the bottom but have a vertical component
near the end of the stub, In order to obtain a sufficiently strong
coupling the probes are placed parallel with the electrical
lines of force. The magnetic field has a node near the end of
the stub and is maximal at the bottom. The sample to be invest-
igated is placed at the bottom. Then the magnetic absorption
measured is maximal and possible electric absorption is reduced
very much.

The resonant wave length is practically determined by the
length and diameter of the stub. The relation between the
resonant wave length and the dimensions of the stub is given
by the formula (cf. (Rl), section 10,09),

Zo tg(2m/N)1 = 1/uC; (190)
where Z, is the characteristic impedance of the coaxial line.
Z, depends only on the radii a and b of the outer and inner
conductor resp, and is given by Z, = 138 1%og b/a ohms,

! is the length of the stub

C, 1s capacity of a circular disk with the same gross section

as the stub.

In this formula C, approximately accounts for the end effects
of the stub. In our case we have Zo = 117 ohms and C, = 0.7 wiF,
The required resonance wave length was taken equal to 9.8 cm.
With the figures given we found I = 2.16 cm. The actual reson-
ance wave length was found to be 9,78 cm.

The quality factor Q was estimated to be at least 1000 but
could not be determined.

It finally may be added that if we neglect the end effects

we have C = 0, so that resonance occurs if [ satisfies the
condition [ = (2n + 1)A\/4. In our case we have n = 1 and there-
fore this type of resonator usually is called a quarter wave
length coaxial resonator. The length of the stub is about %\ as
it should be.
b) The resonator for 3 cm wave length. This resonator simply
consisted of a length of a cylindrical wave guide closed at
both ends and is sketched in fig. 26a. The bottom part B was
soldered with Wood’s metal S at the upper part T. This time the
coupling with the coaxial lines of pyrotenax p was attained with
coupling loops L. The resonator could be evacuated through the
pumping tube P. The whole resonator was made of silver plated
brass.

This resonator was excited in the H  mode, which is the
principal mode of a cylindrical cavity. ﬁte magnetic lines of
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force of this mode form ver-
tical closed loops with the
same axis ab; the magnetic
field 1s maximal at the top
and the bottom of the reson-
ator, and has a node at the
half height. The electric
lines of force of course are
at right angles to the mag-
netic lines of force and are
approximately situated in
planes perpendicular to the
axis of the cavity. The field
pattern in a cross section
may be 1llustrated by fig.
26b. The sample was placed
on the bottom.

The resonant wave lengths
of a cylindrical cavity are
related to the dimensions of
the cavities in a more com-
plicated way than in the case
of the coaxial resonator dis-
cussed above and depend on
the roots of Bessel functions.

From Huxley (H12) we quote
the following formula for

-=s- E the free space resonant wave
length N of the Hl mode of
Fig. 26 a cylindrical cavity of length
The 3 cm wavelength resonator. d and with radius a
1/A2 = (1/3.42a)2 + (1/2d)? (191)

It may be added that 3.42 a is the critical wave length for the
", mode in a cylindrical wave guide with radius a.

The resonator we used was designed for a wave length of 3.15
cm. The length was chosen equal to 3.00 cm; then according to
(191) the radius must be 1,08 cm. The resonance wave length of
the actual resonator was 3.14 cmat low temperature. The (-value
was about 3500 at 90°K. This value is rather low for a Bty
resonator; this probably is a consequence of a small overcoupi-

ing-

1.95 The measurement of absorption. It is not difficult to
derive a relation between the absorption coefficient of a sample
placed inside a cavity resonator and the Q-values of the empty
and the filled resonator respectively. This is most simply done
assuming that the standing wave in the resonator is simply a
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superposition of waves travelling into opposite directions and
reflecting at the ends of the resonator, as is allowed for the
principal mode of oscillation of a cylindrical cavity., We shall
assume that the absorbing substance fills the whole resonator.
If now the resonator is shock-excited at t = 0 the wave

started at that moment with carry an energy W, which decays by
the presence of the sample according to

W=W, exp(~act), (192)
where @ is the absorption coefi1c1ent of the substance (Cf p.76)
and ¢ is the velocity of the wave in free space. On the other
hand we have according to (189)

W=W, exp(-wt/Q,), (193)
assuming that the only losses in the cavity are due to the
substance; this is denoted by the subscript .. Comparison of

(192) and (193) yields

ac = w/Q,. (194)
It now is easily shown that we have the relation
1/Q = 1/Q + 1/Q,, (195)

where ¢, is the quality factor of the empty resonator and Q is
the quality factor of the resonator containing the absorbing
matter.

Combination of (194) and (195) gives

= @n/A) /0 - 1/Q0] . (196)
In the case that the absorbing substance does not fill the
resonator entirely, as is usually the case in experiments on
paramagnetic resonance, this becomes
a=all/Q - 1/Q], (197)
where a is a constant depending on the mode of oscillation, the
shape of the crystal, and the resonant wave length. It is in
general difficult to calculate a accurately, but this is not
necessary if we are only interested in relative values of the
absorption.

It now can be shown that the power reaching the detector is
proportional to Q2 if the resonator is in resonance and is ex-—
cited in one mode (Cf. ref. (H12), & 7.18).(It is essential that
the direct coupling. between the coupling loops or probes is
negligible.) Assuming that the current given by the rectifying
crystal is proportional to the power applied we have the rela-
tion for the empty cavity

6g «» Io Q3
and similarly for the cavity containing the sample
el en?,
where 8y and § are the deflections of the galvanometer res-
pectively in the absence and presence of the sample (8,3 6).
Then it is easily shown that we have the relation
o o [(60/6)% = 11, (198)

which relates the absorption expressed in arbitrary units with
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the galvanometer deflections 6o*and &. Clearly this relation
is only valid if the. rectified current is proportional to the
power reaching the detector. It is instructive to estimate 80/6
for an average case. Taking for the absorption coefficient o =
1.5 x 1072 (see p. 126) we find that for A =3 cm Q21000 for
a entirely filled resonator (compare (194)). In practice only
a small part of the cavity is filled. We therefore shall take
for the ‘effective‘ value of Q_!:llO‘. Assuming that @, is
3000, it is easily shown using the relations (197) and (198)
that 6,/6 = 1.4 or 65/60 = 0.7« This is easily detectable,
unless 8, is very small and therefore justifies our statement
that a cavity resonator is a suitable device for measuring small

absorptions.

1.96 The measurement of wave length. For the measurement of
the wave length we used a very simple wave meter consisting of
a long cylindrical cavity in which from one side a rod could be
intruded, so that the rod and the cavity form a coaxial reson-
ator. It is easily concluded from (190) that resonance occurs
if the length of the rod in the cavity satisfies the relation
L= 1.% n\/2, where l  is the shortest resonant length. This
relation is correct as long as the end capacity of the rod
remains independent of the position of the rod, which implies
that the end of the rod does not reach the end of the cylindri-
The wave length is measured by determ-

cal cavity too closely.
positions of the rod giving

ining the distance between two

resonances.
WAERETER
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Fig. 27

Block diasgram of the apparatus,




1.27 The method of measuremernt. This most easily can be des-
cribed with the aid of the block diagram of the apparatus (see
fig. 27), which does not need a special explanation. .

A crystal of the paramagnetic substance is placed in the
resonator, which is brought into resonance by adjusting the
frequency of the klystron. Then an external magnetic field is
applied and the deflection of the galvanometer is measured as a
function of the magnetic field. In the case that the rectifying
crystal satisfies a square law the absorption as a function of
applied field is found with the relation (198). At each setting
of the magnetic field the oscillator was adjusted to give maxi-
mal galvanometer deflection. This was done in order to avoid
errors due to detuning of the cavity by the anomalous dispers-
ion in the paramagnetic salt and to drift of the oséillator
frequency.

2.3 The low temperature equipment.

The cavity resonators described in the preceding section have
been used at low temperatures and it is desirable to discuss
the low temperature parts of the apparatus in some detail.

2.31 The three centimetre apparatus. The 3 cm apparatus was
placed in an ordinary cryostat. The resonator was suspended on
the pumping line which was soldered to the cap of the cryostat.
The pyrotenax leads were connected to coaxial leads, made of
thin walled brass tube with paraffine wax as insulator. We used
brass in order to reduce the heat influx along the coaxial
lines. At room temperatures the attenuation in these leads was
so large that no measurements could be carried out, but at low
temperatures the performance was satisfactory. The lower part
of the cryostat was placed between the pole pieces of a Weiss
magnet,

2.32 The ten centimetre apparatus. a) The low temperatures
in the experiments with 10 cm wave length were obtained with
a Simon desorption apparatus (see for instance (S6)); the actual
design followed the design of De Haas and Van den Berg (H13) in
different respects. A sketch of the apparatus is given in fig.28,

D was a Dewar vessel with a narrow tail, connected with a
rubber sleeve Sl to the brass cap C; D was supported by a ring
Ri. The desorption space was a wide glass tube T - sealed in a
brass tube on top of C - with a silvered double walled lowest
part E. The space E could be evacuated through a pumping line
p. T was connected with a conical ground joint j to a glass T-
piece Tp and could be evacuated through a wide tube P; Tp was
clamped to a metal stand, not shown in the figure, and carried
on top a brass plate P] which was waxed to the ground flange F.
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Two coaxial lines of german silver
(compare 1.24) were soldered to
Tp and carried the cavity resona-
tor R, On top of R was placed a
cylinder of copper gauze G, which
contained the charcoal Cec. The
temperature of R was measured with
a simple gas thermometer (not
shown in the figure).

The cap C was supported by two
wings W, which were resting on a
U-shaped plate U; U could slide
along to strips of angle iron A
which were connected to the metal
stand. The apparatus easily could
be opened by first sliding U back-
wards and then slipping the cap
with T downwards; the interior of
T remained hanging on the coaxial
lines and 1t was easily to open
the resonator R.

" UsuallyDwas filled with liquid
hydrogen, of which the temperature
could be lowered by pumping off
the hydrogen vapour through tube
B. The magnet was wheeled on after
thé complete apparatus was assem-
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" i bled.
b) The course of an experiment
was as follows. After the sample
Fig. 28 had been brought in R, activated
TR G4s0TRIION “RRPAEAENS charcoal was quickly put in G.

Then T was slipped over and the charcoal was pumped for several
hours. (It was not possible to activate the charcoal while it
was in G because this would have destroyed the sample in the
resonator.) Finally helium gas was admitted to T and E and the
whole cryostat was cooled down. In the meantime helium gas was
allowed to be absorbed by the charcoal until the charcoal was
saturated at the desired starting temperature for the desorp-
tion; this temperature usually was about 11 %K. 3

Then E was carefully evacuated in order to break the heat
contact between the charcoal and the hydrogen bath, and the
helium gas in T was quickly pumped off. Consequently the temp-
erature of the charcoal and the resonator dropped and after some
time the temperature passed through a minimum. The temperature
near the minimum was constant during at least 15 minutes within
the limits of accuracy of the thermometer (=£0.05 degree). The
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minimum temperature reached usually was about 6 %K.

During the period of approximate constancy of the temperature
the resonance experiment was carried out. As soon as the temp-
erature started to rise again some helium gas was admitted to
the charcoal, which gave of course a rise of temperature.
(E was pumped all the time.) Then the helium gas was pumped off
again. The lowest temperature reached this time was somewhat
higher than the first time. This process of letting in some
helium gas and pumping off afterwards could be repeted several
times and allowed us to carry out a number of resonance meas-
urements at increasing temperatures.

The performance of this desorption apparatus was not quite
as good as for "instance of the apparatus of De Haas and Van den
Berg, with which temperatures as low as 4°K ha e been reached.
This is possibly a consequence of the small amount of &harcoal
we could use as the dimensions of the apparatus were largely
determined by the dimensions of the available Dewar vessel.
Moreover the capacity of the pump available for pumping the
helium from the charcoal was not very large and it is suspected
that a more powerful pump would have allowed us to reach lower
temperatures.

* % * %
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Chapter II

EXPERIMENTAL RESULTS AND DISCUSSION

2,1 Introduction.

In this chapter we represent some results of experiments on
resonance absorption. These experiments as a whole are less
complete than the experiments on paramagnetic relaxation and
have a preliminary character. Several reasons can be given for
this.

In the first place some special topics, which are especially
of interest at low temperatures, are chosen. This choice has been
largely influenced by the preliminary results obtained for many
substances by Bagguley et al. (B7).

In the second place the rather primitive micro-wave equipment
at our disponal only permitted reliable determination of split- fl
tings and g-values. For accurate measurements of line shapes
and line widths a more elaborate set-up would be required.

In the third place lack of time prevented us from carrying
out more experiments, This applies especially to the work with
the desorption apparatus, which had to be carried out during a
stay of ten months at Oxford.

Summarising we can say that in our opinion the work on reso-
nance absorption.is rather a start for further study than a
completed research.

In the remainder of this chapter we will discuss some results
obtained for three substances:

a) Titanium caesium alum. This substance only profitably can
be studied at very low temperatures, because at higher temper-
atures thermal broadening makes the absorption line too broad
for being observable. g

b) A dilute iron ammonium alum. This substance was so highly
diluted that only at low temperatures the absorption could be
measured.

c) Anhydrous chromium chloride. This ‘ concentrated‘ substan-
ce is interesting at low temperatures because it has a trans-
ition point at about 17 ©K, which has in some respects resem-
bles the Curie-point of ferromagnetic substances.

We do not attempt: a discussion of the line widths as we be-
lieve this to be premature for reasons mentioned above.

2.2 Titanium caesium alum.
2.21 Introduction.

According to I, Ch. II the two lowest energy levels of the
titanium ion in a crystal which is placed in a magnetic field
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are given by £ = + % gﬁHc, where the value of g depends on the
direction of the magnetic field relative to the crystal axes.
Consequently one resonance absorption line should be expected.
Bagguley et al. (B7) examined titanium caesium alum but could
not find any absorption, even at a temperature as low as 20 %K.
As these authors pointed out this implies that the line is too
broad, and therefore cannot be observed with the available
means. This abnormal width can be explained in a natural way by
an exceedingly short spin lattice relaxation constant. As we have
seen in I, Ch., IV both direct experimental and theoretical ev1-
dence indicate that the spin lattice relaxation constant of Ti

is exceptionally short. At sufficiently low temperatures, how-
ever, T should become long enough for making the line detect-
able, It seemed therefore worth while to investigate the tita-
nium alum at stil]l lower temperatures. This research was car-
ried out with the apparatus described in section III, 2.32; the
sample consisted of small crystals (B20).

2.92 Results and discussion. Only below 8 °K one absorption
line was observed and we found that the intensity of the ab-
sorption increased at lower temperatures. This confirms the
correctness of the explanation given in-the preceding section
for the unobserved absorption at higher temperatures.

TABLE XXI

T %K |6.33 | 6.58 6.72 6.76 7.04 7.35 | 7.46 |7.88

H_ 1540 | 1510 1490 1490 1450 1410 | 1410 | 1360

Zoge 11.35 ] 1.38 | 1.40 | 1.40 | 1.43 | 1.48 | 1.48 [1.53

rx10%°10,96 | 0,73 0,66 0.66 0.58 0.52 | 0.54 | 0.49

sec

In Table XXI we collected the values of the fieldstrength giving
maximum absorption H_ and the corresponding ‘effective’ g-
values, calculated with the relation hy = gBH_, at different
temperatures.

It will be noted at once that Bors depends on the temper-
ature. Now titanium caesium alum is a rather dilute substance
and moreover the titanium ion has a small magnetic moment (one
spin). Although the temperature is low it seems to be very un-
likely that the behaviour of g_,, can be explained by the mag-
netic interaction between the tltanlum ions. In our opinion a
much more natural explanation is given by the assumption that T
is sufficiently short for the line shape to be strongly influ-
enced, if not determined, by T. According to section I, 5.32
the line shape for agiven direction of the magnetic field should
be given by (158b), if the spin lattice relaxation is determin-
ed by one relaxation constant which we will assume. Then more-
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over the maximum absorption should shift to lower values of the
constant field for smaller values of 1, or in other words, for
higher temperatures. This agrees with the experimental result.

A further discussion requires the knowledge of g. The present
experiments however do not allow us to determine the value of g
for a powder - which is the average over the g-values for dif-
ferent directions of the magnetic field -, as lower temperatures
would have been required for this. Unfortunately Van den Handel’s
measurements on the susceptibility of a powder give very dif-
ferent g-values (between 1.2 and 2.0) for different samples, so
that no reliable value of g can be obtained from them (H2). We
shall assume that for our sample g * 1.34; possibly the correct
value would be somewhat lower.

According to Bleaney (B4) this result can be interpreted in
the following way. The fraction of ions whose trigonal axis
make an angle 6 with H_ is }4sinBd6 and they have a g-value deter-
mined by g? = gf‘cosge + gf sin?@; resonance should occur at
H., = hv/gB. Using the relations between H_ and g, g and © one
finds that the intensity distributionas a function, of the field
for constant frequency should be

dI/1 = g*secOdH /2 (g2 - &, Hye

For not too large anisotropy the absorption in the vicinity of
the maximum absorption is mainly determined by sec § and conse-
quently the absorption is sharply peaked at the resonant field
for the ions having the trigonal axis at right angle to the
magnetic field. The finite width of the resonance line will
round off the peak but not obliterate it if the width due to
the magnetic interaction is small compared with the spread in a
powder due to the anisotropic g-values.

We therefore shall assume that our value g = 1.34 corres-
ponds approximately to g ; then inserting this in equation (42)
gives A = 410 cm™* and g = 1.75. At10cm wavelength therefore
the absorption line in a powder would be spread some hundreds
Oersted owing to the anisotropic g-values and at shorter wave
length this would be even more. The line width due to magnetic
interaction should be only about 50 Oersted.

Taking A = 410 cm™* and A = 154 cm>* we find for the distan-
ces of the next two levels above the lowest level resp. 360 and
540 cm™%, )

From the values of H_we estimated the values.of the spin
lattice relaxation time given in Table XXI. Insertion of the
value at 7.9 %K in (145a) gives A=2250 cm™*, which is about
half the value obtained from the g-value. In view of the uncer-
tainty of all our estimates the agreement hardly can be expec=
ted to be better. It may be noted that the dependence of.t on T
is much smaller (¢»T™) than Van Vleck predicts (vﬁT'g)ﬂ

We finally checked the line shape by comparing it with the
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line shape predicted by (158), assuming constant T. A gualita-
tive agreement was found but systematic deviations occur; sev-
eral reasons can be given for this. First the anisotropy of the
g-values must cause deviations, secondly T may depend on the
magnetic field and thirdly the low chemical stability of the
substance may cause imhomogeneities resulting in different g-
values for different regions of the crystal. In conclusion we
want to remark that in our opinion the described experiments
demonstrate some essential features of the thermal broadening
of paramagnetic resonance lines. The experiments are far from
complete however, and experiments on more stable substances
(for instance on Fe'' salts) are highly desirable,

2.3 1Ilron ammonium alum.

2.31 General remarks. In I, Ch. Il we discussed the energy
levels of the Fe'*" in a cubic crystalline field and the split-
ting of these levels in a magnetic field of a given direction.
We shall consider now the resonance spectrum which must be ex-
pected 1f the magnetic field is parallel to one of the cubic
axes (for instance the[100]axis) of the crystalline field. This
corresponds to a magnetic field having the direction of a cubic
crystallografic axis of iron ammonium alum.

For our purpose it is sufficient to consider only the case
of high fields (x>>1; Cf. (47a)). The spins are practically
free and one must anticipate that the selection rule for free
spins Am=+1will be approximately fulfilled, or in other words
that the transitions allowed by this selection rule are much
stronger than all other conceivable transitions,We shall consider
these strong transitions first. In Table XXII we collected the
values of the energy differences Ak corresponding to the selection
rule Am = + 1, calculated with the equations (47a).. Kesonance
absorption lines should occur for values of H_ determined by

hv = gl  + a5 , (199)
where v is the frequency of the applied radiation and the values
of a can be read from Table XXII. It may be noted that the
spacing of these lines is independent of H .

It is easily possible to derive

TABLE XXII AE for transitions corresponding
Transitions Am = + 1 to|A m>]1 using the equations (47) or
n’ AE (47a). We shall not quote the expres-

n
S/2 | 3/2| Bl * gg sions for AE in these cases, but
¥
- 26

3/2 | 172 | gH, mention only that groups of absorp-
1/2 |-1/2 | gBH, tion lines symmetrically grouped
~1/2 |=3/2 5BIQ around half, one third, one fourth
=3/2 [=5/2 gﬁHc and one fifth of the field strength

determined by (199) are expected to
exist, corresponding to Am = % 2, +3, + 4, + 5 respectively.
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Kittel and Luttinger (K3) calculated the relative intensities
of many of these transitions for various values of x and showed
that in high fields the transitions with|Aml= + 1 are very much
?tronger_than all the others, while at lower fields the trans-
{cions with|Aml >1 become relatively more important. . At low
fields (x<<1) they €ven can be stronger ‘than those with|Am| = 1.
Moreover some of the transitions with |Am)>1 are allowed in the
case of parallel constant and alternating field. These subsid-
iary lines are a consequence of the remains of the spin-orbit
coupling.

All the absorption . lipes mentioned will be broadened by the
interaction between the iron ions and moreover the interaction
can cause weak absorption lines at about one half, one third
ete. of the field strength giving resonance with the transitions
with |Aml = 1. In general it therefore will be not possible to
interprete the weak subsidiary lines without ambiguity, but on
the other hand the subsidiary lines due to the magnetic inter-
action will become relatively weaker if the crystal is diluted,
or in other words, a number of the paramagnetic ions is replac-
ed by non-magnetic ones. In this way it should be possible to
separate the contributions of the magnetic interaction and the
spin-orbit interaction to the subsidiary lines. There are exper-
iments under way in the Kamerlingh Onnes Laboratory to do this.

9.32 Results and discussipn. We examined two specimen at 20 K
with the constant field along the [100] axis and the alternating
field at right angle to it, using the second apparatus and a
wavelength A = 3.17 cm. The first specimen was a crystal of the
undilute alum and the second specimen was diluted in ithe ratio
1:80 with aluminium ammonium alum. The absorption 4, expressed
in arbitrary units (Cf. (198)), is plotted as a function of the
constant field in fig. 29. The dotted line represents the ab-
sorption of the undilute alum and the full drawn line the ab-
sorption of the dilute salt; the units of the ordinate are cho-
sen in such a way that the maximum values of the absorption in
the two cases are the same.

In the case of the undilute salt only one broad absorption
line is found instead of the five lines predicted, while the
shape of the line suggest the presence of a large central peak
and two weaker side peaks. This is confirmed by the curve of
the dilute salt which indeed shows the peaks suggested. Appar-
ently the lines in the undilute salt are broadened so much by
the interaction between the iron ions that the lines are fused.
Each line should have a width of the order H, = 435 Oersted
(Cf. (83)).

In the case of the dilute jsalt we found two weak and three

strong absorption lines.
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TABLE XXIII

[H__| 1655 | 1900 | 3130 3470 3700
A ]0.016] 0.018 | 0.37 1.64 0.32

In Table XXIII we collected the field strengths corresponding
to the maxima of absorption together with the values of ASTS
is seen at once that the peaks at 3130 and 3700 Oersted are not
symmetrically arranged relative to the central peak at 3470
Oersted. If we forget about this for the moment we can try to
interprete the strong lines on the basis of the theory given in
the preceding section., Assuming that lines at 3130 and 3700

Oersted are in fact the fused lines corresponding to the pairs

of transitions (-1/2, -3/2), (5/2, 3/2), and (1/2, 3/2), (-5/2,
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-3/2) respectively, it is reasonable to take the fields 3130
ané 3700 equal to the mean field strength corresponding to the
pairs of transitions mentioned, Then we have 3700 - 3130 = 570
Oersted=(9/2)8, so that & =129 ), which corresponds according
to (148a) to & = 0.012 cm™*, The total splitting is in this
case 36 = 0.036 cm™?,

It is not possible to say anything definite about the subsid-
iary peaks at 1655 and 1900 Oersted. Experiments at other de-
grees of dilution will be necessary for this (compare the pre-
ceding section).

It finally may be added that we had no means to check the
characteristic of the rectifying crystal used, so that the re-
lative intensities of the absorption lines may be somewhat in

Errore

9.33 Discussion. In the first place it must be noted that
the asymmetry of the arrangement of the main absorption lines
indicates that the given interpretation cannot be entirely cor-
rect. This is corroborated by a comparison of the splitting
suggested here with the value of the splitting found from re-
laxation experiments. In II, Ch. II we found for the splitting
in the undialute salt 0,126 cm™* and for a dilute salt (1:60)
0.145 cm™1, which values have been calculated assuming a cubic
crystalline field and assuming that the influence of exchange
can be neglected. The contribution of exchange to the specific
heat of the normal alum is very difficult to estimate, but pro-
bably cannot be large as a consequence of the rather large dil-
ution of the normal salt. Therefore we believe that the assump-
tion of a cubic crystalline field is not able to account for
the suggested splittings. As has been discussed in I, Ch. II
the properties of other alums - especially chromium alum - rather
suggest that in iron ammonium alum the symmetry of the crystal-
line field must be lower than cubic, presumably trigonal. Then
in the absence of an external field we should have three twofold
levels. This is consistent with the results of very accurate
measurements of the specific heat of the spin-system by Benzie
and Cooke (B21), which rather suggest that there are three about
equally spaced doublets. In this case however the overall
splitting should be 0.16 cm™!. At present it is not possible to
calculate the splitting of the dilute alum from the resonance
absorption, assuming a trigonal field. Therefore we must
leave open the question, whether a trigonal field can account
for the observed facts. Apart from the theory of the splitting
of the Fe'** in a trigonal crystalline field, more experimental
results - for instance obtained at other wave lengths, temper-
atures and directions of the magnetic field relative to the
crystal axes - probably will be required before this question

can be answered.
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2.4 Anhydrous chromium trichloride.

2.41 General remarks. This substance forms thin laminar crys=
tals which suggests a laminar structure of the crystal lattice.
As far as we are aware the crystal structure is not known. The
magnetic and caloric behaviour shows marked devations from the
behaviour of magnetically dilute substances.

In the first place the susceptibility satisfies a Curie-Weiss
law y = C/(7-8) between about 300 and 100 % with 6 = 32.5 %,

Secondly at a temperature of 17 %K - which is not very dif-
ferent from 32.5 %K - the specific heat has a maximum. Thirdly
below 17° K remanence is observed.

Anumber of other anhydrous salts of metals of the iron group
show similar properties. For details we refer to a paper of
Schultz (S4), where other references can be found.

The properties listed above might suggest that the temper-
ature 7 = 17 °K is a Curie temperature as in the case of ferro-
magnetic substances. As Schultz pointed out there are however
marked differences of which the most important are that the
magnetisations below this ‘Curie-point‘ do not reach a satura-
tion value - though they are in fields of the order 20000 Oer-
sted almost of the order of a ferromagnetic spontaneous magnet-
1sation -.

Possibly an explanation of the properties mentioned is given
by the assumption that CrCl3 is anti-ferromagnetic (Cf. N1).
Anyway the anomalous behaviour of magnetically concentrated
salts in many cases must be caused by the strong interaction
between the magnetic ions. This statement is valid for the an-
hydrous chromium chloride.

For this reason we presumed that CrCl3 might be an interest-
ing substance for investigation.

2.42 Results and discussion. We investigated three different
samples. Sample I was obtained from British Drughouse Ltd. and
was investigated with the 10 cm apparatus. The shape of the
sample deviated not very much from a sphere. Samples II and III
both were obtained from the stock from which Woltjer (WS5) obe
tained his sample for his measurements on the susceptibility.
The shape of sample II deviated not much from a sphere, but we
took great care to give sample III a shape as nearly sphérical
as possible.

In all cases one absorption line was found and we calculated
effective g-values with the relation hy = 8,¢s8H.« The results

for all samples are collected in Table XXIV and fig. 30,
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TABLE XXIV

CrCl,
Sample 1 Sample 11 Sample III
A = 9,60 cm A=3.,17 cm A =3.17 cm
T X Beff T X Betff T X Beft
290 2,00 79 2,00 79 2,00

90 2.00 20.0 2.03 20,0 2,02
20.3 2,18 18.5 2.10 18.5 2.04
11.4 2.80 17.4 2.17 17.1 2.08
7.52 2.80 16.5 2.19 16.5 2.22
6.80 2.80 15.6 2.24 15.6 2.27

6.25 2.80 14.3 2,29 - -
1D 2.80 - - - -

K}

CrCiy
25
Yot 5
: 4
§r3k 10 18 20°K
Fig. 30

CrC13. Begg B8 2 function of T.

OSample I. Nearly spherical, A=9.60 cm.
XSample II, Nearly spherical. A=3,17 cm.
eSample II. Spherical, A®=3,17 cm.

Several comments about these results must be made.

a) The fact that only one line is found may be due to ex-
change forces large enough to overcome the effect of the crys-
talline electric field. As a matter of fact the large majority
of salts of metals of the iron group have a number of non-equi-
valent ions in the elementary cell and each of these ions in a
dilute salt will give its own resonance spectrum in general.
Exchange forces however may be cause all the lines to fuse, as
is for instance the case in copper sulphate. This presumably is
the case in CrCla, where exchange forces must be considerable
ncentration of the chromium ions.
s the small but distinct differ-
-spherical and a spherical

30 seem to have abeut the

as a consequence of the high co

b) The next thing to note 1
ence between the results for a non
sample. Moreover the curves of fig.
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same shape as curves susceptibility versus temperature for a
fieldstrength of the order of 1000 to 3000 Oersted, which are
steepest for a temperature of 17 %K and become horizontal for
temperatures below about 14 °K (Cf. S4). It therefore seems
feasible that the shift of g-value as function of T and H_ can
be described with an effective field of the form H_,, = A+ xI
(so that hv = gBH,,,) where X is a constant indepéhdent of H,
and T, but dependent on the shape of the sample. This constant
X cannot be equal to the constant of the ‘internal® field of
the Weiss theory of ferromagnetism, but must be smaller. Accord-
ing to Weiss H, . *(8/C)I where 0is the Curie temperature and C
is the Curie constant. In our case we have 8~ 17 %K and C=
1,63 so that we find for an external field of 2600 Oersted
H,, 219000 Oersted. Such a high value of H,,, cannot be recon-
ciied with a ‘true’ g-value of 2.00 - as is found at high temp-
eratures - and the fact that at 10 cm and 3 cm wavelength ab-
sorption at low temperatures has been observed. Possibly the
randomly orientated internal field which is assumed to be pre=
sent in anti-ferromagnetic materials can be reconciled with our
results,

As is well known both types of internal field must be attri-
buted to exchange forces, which on the other hand may not give
a satisfactory explanation of the variation of the g-values in
which we are interested here. This is perhaps not surprising
from the point of view of Pryce and Stevens (P6), worked out by
Stevens in a private communication to Professor Gorter (compare
I, Ch. V), who showed that in first approximation displacement
. of the line only can be caused by the magnetic interaction aor
by exchange between dissimilar ions.A definite statement cannot
be made because the approximation of Pryce and Stevens is valid
for temperatures well above the Curie temperature and hardly
can be a good one near the Curie point. Possibly the conclusion
that in the first place the magnetic interaction is respondible
for the shift of the line remains true even near the ‘Curie
point‘.

Summarising we can say that from an experimental point of
view it is certain that the resonance shifts markedly as a
function of temperature in the region of the ‘Curie point‘, The
suggested description however is rather speculative and a de-
finite conclusion only can be drawnif more detailed information
about the susceptibility at different fieldstrengths will be
known. Moreover resonance experiments at other wavelengths and
in the whole temperature region between 4 and 90 %K are desir-
able, possibly including measurement of the line width.

About the line width one remark may be added. The preliminary
experiments of Bagguley et al, (B7) indicate that in the liquid
-hydrogen region the line width increases strongly with decrea-

147




sing temperatures.-At room temperature the line width was found
to be about 50 Oersted. The line width to be expected from the
magnetic interaction would be about 1500 Qersted, so that pro-
bably the line is narrowed considerably by the exchange inter-
action. At 14 %K however the line width found by these authors
was of the order 2000 Oersted. Our own experiments indicate as
well an increase of line width at lower temperatures, but cer-
tainly not as much as indicated by Bagguley at al. As the de-
termination of line widths are rather uncertain more reliable
measurements of the line widths are desirable.
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SAMENVATTING

Fn dit proefschrift worden enige eigenschappen van paramag-
netische stoffen beschouwd, welke onderzocht kunnen worden door
een paramagnetische stof te onderwerpen aan de invloed van een
constant magneetveld waarop een wisselend magneetveld is gesu-
perponeerd. De meeste proeven zijn uitgevoerd bij lage tempera-
tuur en hadden ten doel

a) het bestuderen van de wijze waarop zich thermodynamisch
evenwicht instelt tussen het systeem van de elementaire magne=-
tische momenten in de stof en de roostertrillingen (proeven
over paramagnetische relaxatie),

b) het bestuderen van de laagste energieniveaux van de para=
magnetische ionen in een kristal (proeven over paramagnetische
resonantie absorptie).

In Deel 1 wordt een overzicht gegeven van enkele aspecten
van de theorie van de eigenschappen van paramagnetische stoffen
welke van belang zijn voor het te bespreken onderzoek. Hierbij
1s in het bijzonder aandacht besteed aan de theorie van de ener-
gleniveaux van paramagnetische ionen in een kristal.

In Deel II wordt een overzicht gegeven van de proeven over
paramagnetische relaxatie, Het blijkt dat - in tegenstelling
tot de resultaten bij hogere temperatuur - de paramagnetische
relaxatie in het temperatuurgebied van vloeibaar helium (1-4°K)
in het algemeen niet beschreven kan worden met een enkele relaxa-
tie constante. Verschillende mogelijke verklaringen worden bespro-
ken, maar het blijkt niet mogelijk te zijn op grond van de hui-
dige kennis van zaken een eenvoudige verklaring te geven. Ver-
der onderzoek is hiertoe nodig en een aantal voorstellen in deze
richting wordt gedaan.

Een analyse van de afhankelijkheid van de gemiddelde relaxa-
tie constante van de temperatuur en de waarde van het constan-
te magneetveld levert het resultaat dat waarschijnlijk in ver-
schillende stoffen tussen 1 en 4 %K de energie overdracht tus-
sen de elementaire magnetische momenten en de roostertrillingen
tot stand komt door z.g. quasi-Raman processen, hetgeen in te-
genstelling is tot de theoretische verwachtingen van Van Vleck,
Indien deze conclusie juist is - hetgeen als waarschijnlijk
wordt beschouwd - is de theorie van Van Vleck niet in staat de
invloed van verdere magnetische verdunning op de relaxatie con-
stante te verklaren, Ook hier zijn verder gaande proeven ten
zeerste gewenst,

In Deel III worden enkele proeven over paramagnetische reso-
nantie absorptie besproken. Allereerst wordt een kort overzicht
gegeven van de gebruikte techniek voor het werken met radiogol-
ven met een golflengte van enkele centimeters, waarbij enkele
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onderdelen, welke van bijzonder belang zijn voor het te bespre-
ken onderzoek, witvoeriger worden beschouwd. Tenslotte werd de
besproken techniek gebruikt voor het bestuderen van een drietal
stoffen, welke om verschillende redenen met voordeel bij lage
temperatuur kunnen worden onderzocht.

* % * =%

Tenslotte moge ik het Technisch Personeel van het Kamerlingh
Onnes Laboratorium van harte dank zeggen voor de voortreffelijke
hulp en bereidwilligheid welke ik steeds heb mogen ondervinden.
In het bijzonder gaat mijn dank uit naar de Heren D.de Jong
voor zijn vele hulp bij het voorbereiden der experimenten,en
A.R.B.Gerritse voor het uitvoeren van het vaak zeer moeilijke
glasblazerswerk.

Eveneens aan de leden van het Wetenschappelijk Personeel
J.Ubbink (phys. drs.), H.C.Kramers (phys. cand.), P.Winkel (phys.
cand.), J.A.Poulis (phys. cand.) en L.C.v.d.Marel (phys. cand.)
moge ik mijn hartelijke dank uitspreken voor de hulp bij metin-
gen en berekeningen.
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STELLINGEN

1
Waarschijnlijk leveren quasi-Raman processen ook in het tem--
peratuurgebied van vloeibaar helium een belangrijke bijdrage
tot de paramagnetische relaxatie.
(Hoofdstuk II,3 van dit proefschrift)

2
Het resonantie-absorptiespectrum van ijzerammoniumaluin kan
niet verklaard worden op grond van de onderstelling, dat het
electrische veld, waarin de ijzerionen zich bevinden, een
kubische symmetrie heeft.
(Hoofdstuk ITI,2 van dit proefschrift)

3
In sommige gevallen verdient het gebruik van magnetische ther-
mometers bij metingen van de warmtegeleiding bij lage tempe-
raturen de voorkeur boven het gebruik van weerstands- of gas-
thermometers.

(D.Bijl, Physica, 14 (1949) 684)

4

Het is niet mogelijk de ligging van de energieniveaus van de
configuratie 3d%4s5s van het koperatoom te verklaren op grond
van de vereenvoudigende onderstellingen, dat de invloed van
andere configuraties verwaarloosbaar is en het probleem be-
handeld kan worden als een drie-electronenprobleem.

(D.Bijl, Physica, 11 (1944-1946) 287)

5
Men moet verwachten, dat trillingskringen met een zeer hoge
kwaliteitsfactor vervaardigd kunnen worden van metalen, welke
supergeleidend kunnen worden gemaakt. Een zodanige trillings~
kring zou het meten van uitzettingscoéfficienten bij lage
temperaturen op eenvoudige en nauwkeurige wijze mogelijk maken.

6
Het is van belang de Raman~ en infraroodspectra van vloeibaar
en vast methaan en ammoniak te onderzoeken.







7
De keuze van de stoffen welke men tot dusverre bij voorkeur
heeft gebruikt voor proeven over adiabatische demagnetisatie
is op grond van recente experimentele resultaten voor beden-

kingen vatbaar.

8
Met behulp van de ¢ molecular-orbital ‘methode kan op eenvou=
dige wijze verklaard worden, dat het MnO,~-ion licht van be=
trekkelijk lange golflengte absorbeert.

9

‘Hyperconjugation‘ moet worden beschouwd als het gevolg van
een verdere benadering van de gebruikelijke theorieen van de
chemische binding. Het is nog niet proefondervindelijk bewe-
zen dat ‘hyperconjugation’ merkbaar kan bijdragen tot de che-
mische binding.

(R.S.Mulliken, C.A.Rieke, W.G.Brown, J .Am.Chem.Soc. ,63

(1941) p.41; M.Szwarc, J.Chem.Phys., 16 (1948) 128)

10
Voor het nitvoeren van oude muziek op toetsinstrumenten ver-
dient de middentoonstemming de voorkeur boven de normale
hal ftoonstemminge

11
Het is zeer wel denkbaar dat het gebruik van metaal in de
constructie van het mechanisme van de piano een goedkopere
vervaardiging van dit instrument mogelijk maakt.

12
Een betere kennis van c,/c, van waterstof, bij temperaturen
tussen 100 en 1000 %K en onder drukken tot enige duizenden
atmosferen, is gewenst voor een nauwkeuriger berekening van
de dikte van de dampkring van verschillende planeten.

13
Een studie van de absorptie~ en emissiespectra van vastge-
maakte gassen kan van groot belang zijn voor de identificatie

van, tot dusverre niet geidentificeerde, lijnen en banden van het

absorptiespectrum van de interstellaire ruimte.












