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CHAPTER I.

INTRODUCTION.

1.1. Nuclear spin and moments.

The fundamental properties of a nucleus can be listed in the fol
lowing way (Bl):

Mechanical properties

Electrical properties

1. Mass.
2. Size.
3. Binding energy.
4. Spin.
5. Statistics.
6. Charge.
7. Magnetic dipole moment.
8. Electric quadrupole moment.

In this thesis we shall only be concerned with properties 4, 7 and 8
of the list.

In 1924 P au l i  (P 2) suggested that the hyperflne structure in atomic
spectra might be explained by a small magnetic moment of the nucleus.
The interaction of this magnetic dipole with the motion of the electrons
would produce a hyperflne multiplet in a similar way as a multiplet is
produced by interaction of the intrinsic magnetic moment of the electron
with the orbital motion. The introduction of the electronic spin by U h l e n -
b e c k  and G o u d s m i t  in 1925 made it possible to explain many hitherto
mysterious details of the spectra. It appeared appropriate to connect
the magnetic moment of the nuclei also with rotating charges and to
attribute to the nucleus a mechanical spin. The evidence for the nuclear
spin and nuclear magnetic moment is now manifold, and the concept of
the spinning nucleus must be considered to be as a well founded as
that of the spinning electron. The nuclear spin can be determined from
the following phenomena :

1. Alternating intensities in band spectra.
2. Intensities, interval-rule and Zeeman-splitting in hyperflne multiplets.
3. Polarisation of resonance radiation.
4. Magnetic deflection in atomic and molecular beams (Stern,  Rabi).
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5. Total intensity of resonance absorption in nuclear paramagnetism.
6. Specific heats of (ortho- and para-) hydrogen and deuterium.
7. Scattering of identical nuclei.
The magnitude of the magnetic moment can be determined from the

following experiments:
1. Splitting and Zeeman-splitting in hyperfine multiplets.
2. Magnetic deflection in molecular beams.
3. Magnetic resonance in molecular beams.
4. Nuclear paramagnetism.
5. Resonance absorbtion and dispersion in nuclear paramagnetism.
6. Ortho — para — conversion of hydrogen.
In 1935 Sch i i l e r  and S ch mi d t  (S 2) observed deviations from the

interval rule in the hyperfine multiplets of Europium, which could be
explained by assuming another type of interaction between the nucleus
and the surrounding electrons, by means of a nuclear electric quadrupole
moment. The experimental evidence for the existence of these moments
has since grown, and is produced by:

1. Hyperfine spectroscopy.
2. Magnetic deflection of molecular beams (zero-moment method).
3. Fine structure of the magnetic resonance line in molecular beams.
4. Fine structure in microwave spectra.
5. Relaxation phenomena in nuclear paramagnetism,
6. Ortho — para — conversion of deuterium.
So far an influence of moments of higher order, the magnetic octu-

pole or electric sedecipole, has not been discovered. It is, of course,
outside the scope of the thesis to give even a short description of all
these methods. Only the effects of nuclear paramagnetism are our topic,
but we shall find opportunity to give a very brief discussion of the
molecular beam method in section 1.3 and 1.5 of this introductory
chapter, since these experiments are closely related to our subject. For
the other fields we let follow some references, which will introduce the
reader to the literature.

K o p f e r m a n n  (K5) gives a discussion of all effects which were
known up to 1939 with complete references. Especially the hyperfine
spectra are discussed extensively. An account of the properties of ortho
— and para —, light and heavy hydrogen has been given by F a r k a s
(F 1), the influence of the quadrupole moment of the deuteron on the
ortho — para — conversion was treated by C a s i m i r  (Cl).

A field which has only recently become accessible by the develop
ment of radar techniques during the last war is microwave spectroscopy.
The influence of the existence of quadrupóle moments on these spectra
is discussed by several authors (B 14, C 3, D 1, T  1).
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The scattering of identical nuclei, especially the p—p and a—a scatte
ring, has been discussed in numerous papers (B 3, G 1, M 4).

The nuclear spins and moments are of great interest in the theory
of the constitution of the nuclei. The reader is referred to the detailed
theory of the deuteron, and of H 3 and He8 (G 2, L 3, S i ,  S4). The
numerical values of the moments of these particles are explained in
terms of those of the elementary particles, the neutron and proton.
Some rather crude models have been built for heavier nuclei. Spin and
magnetic moment also play an important role in nuclear reactions, of
which we may mention the spin selection rule in /8-decay, the neutron-
proton scattering and the photo-magnetic desintegration of the deuteron.
However in general the situation is such that the most accurate infor
mation about nuclear spins and moments is obtained from the methods
mentioned in the beginning, which usually are not considered to belong
to the field of nuclear physics. The results are useful to further develop
ment of nuclear theory and understanding of nuclear reactions, rather
than that these latter processes yield the values of spin and moment.
The case of the triton (H s) offers an interesting illustration (A 3, B 5, S I).

1.2. Mathematical introduction o f the nuclear spin.
The spin is a purely quantummechanical concept. The spin angular

momentum has similar properties as the orbital angular momentum.
They behave in the same way under a rotation of the coordinate
system and have the same commutation rules. The rules for quanti
sation and composition of these momenta are set forth in detail in
textbooks on quantummechanics (C 4, K 6). Here we shall briefly
summarize some results. The square of spin angular momentum I  has
the eigenvalues I (I +  l)fi2. While an orbital quantumnumber can only
assume integer values, for the spin quantumnumber I  also half integer
values are allowed. It has been found that the spin of neutrons and
protons is Y3, just as for the electron. The nuclear spin is generally
composed of the spins of these elementary particles and their angular
momenta in the nucleus. Therefore the nuclear spin I  must be an integer
or half integer according to whether the number of these so called
nucleons is even or odd. On somewhat obscure grounds it is believed
that all nuclei possessing an even number of protons and an even num
ber of neutrons have spin zero. Experimentally this is confirmed for
the lighter elements from band spectra. The experimental information
for heavier isotopes only indicates that the magnetic moment, if at all
present, is very small, and thus not in disagreement with a spin zero.

The nuclear spin I  will, under all circumstances considered in this
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thesis, be a constant of the motion, since the energies involved in the
processes described will never be large enough to produce transitions
of the nucleus to an excited state. Only reorientations will occur. The
matrices of the three components of the spin angular momentum ope
rator transformed to the representation, in which the z-component of
the operator is diagonalised, are:

{rn \ Ix -\-i Iy \ m — \ )= z i{ I  +  m){I — m + \ )  (1.1)

(m I Ix  — i ly  | m + l ) = ' / ( / - m ) ( / + m + l )  (1.2)

(m \ Iz | m) =  m (1. 3)

All other elements vanish.
The z-component of the spin operator has 2 I  +  1 eigenvalues

L I — 1................. — I; mj  is called the magnetic spin quantumnumber.
Not only I, but also the total electronic quantumnumber ƒ of the atom
or molecules under consideration in this book will be a constant of the
motion. Processes in which the electronic state might change, will not
occur. Now the angular momenta I  and ƒ combine to a resultant F  in

the same way, as in the case of Russell-Saun-
ders coupling the total electronic spin 5  and total
electronic angular momentum L combine to /.  The
component of F  on any preferred axis, which is
usually taken in the z-direction, can assume the
values F, F — 1 , ...............— F. W ith the angu-

—►

lar momentum vector tl I  is connected the mag-
—►

netic moment vector fx. Since the two vectors be
have in the same way under a rotation of the
coordinate system we must have

Figure 1. 1.

' r

jU =  yfl I (1.4)

Coupling of the electro
nic and nuclear momenta
in the absence of an ex

ternal field.

, magnetic momentwhe r e 7 _ i ^ „ _ _ ^ _ _ _ _  is the magnetogyric

ratio, which can be either positive or negative,
y tl I  is the maximum eigenvalue of the z-compo-
nent of the magnetic moment operator and is often
called the nuclear magnetic moment. I  ti is the
maximum value of the z-component of the spin
momentum vector.
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For one free electron we have in analogy to (1.4)

I* el =  7 el tl S el

,The intrinsic magnetic moment of an electron (maximum z-component) is
one Bohr magneton f i= e t i /2  m e  and yel =  e/mc is twice the classical
ratio, which holds for the orbital motion. One must not confuse y with
the dimensionless Landé-factor g =  magnetic moment expressed in Bohr

impuls momentum expressed in unitsmagnetons ^
. fo r  one tree electron we have experimentally g =  2, which

is also a result from D ira c ’s relativistic theory of the electron. For one
or more bound electrons the total magnetic moment has in general not
the same direction as the total angular momentum ƒ, as the magneto-
gyric ratios for spin and orbital motion are different. But the low
frequency components of the magnetic moment operator, in which we
shall only be interestered, can still be represented by

p- — g § J

If the proton obeyed the D i r a c  equations, as the electron does, the
magnetic moment of the proton would be one nuclear magneton

hue =  e ft/2 Me

Experimentally one finds that this is not true. Nevertheless the nuclear
magneton gives the order of magnitude of the nuclear magnetic moments.

W e list the values of spins and moments of the isotopes, used in the
experiments, described in this thesis, in the following

TABLE

Nucleus | Spin Magnetic
moment

Electric quadrupole
moment

Magnetogyric
ratio

H1 / = V. ft  =  2.7896 Q  =  0 y  —  2.673 X  104
H2 1 0.85647 2.73 X  10 -2 7 0 .4103 X 1 0 4
Li7 7a 3.2535 ? 1.039 X  104pi9 Vs 2.625 0 2.517 X 1 0 4

The impulsmomentum is expressed in units % =  1.054 X  10~27 erg sec.
The magnetic moment fj. — y ti  I  is expressed in units f)nuc — 5.049 X  10-24
erg oersted-1 •
The magnetogyric ratio is expressed in oersted-' sec"1 .
The quadrupole moment Q, defined in chapter 5, is expressed in cm2.
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The spin of about 90 isotopes is known, the magnetic moment of about
50, the quadrupole moment of about 10. For the heavier isotopes
usually only spectroscopic data are available. From these the values of
the moments can be obtained only, when the magnetic field and the
gradient of the electric field at the nucleus are known.

Now just as a Paschen-Back effect can occur in the electronic RusseU-
Saunders coupling, it will be possible to change the quantisation of /, I
and F  by means of an external magnetic field. As a matter of fact it will
be much easier in the latter case to decouple ƒ and I, since the interaction
energy between nucleus and electron system is much smaller than be
tween electron spin and electron orbit. In spectroscopic language one
would say: the hyperfine multiplets are narrower than the multiplets.
The general form of the Hamiltonian for an atom or molecule in a
constant magnetic field H 0 is:

H op =  A  yi % I. ƒ.+ g PJ- H 0 +  yi%I. H 0 (1.5)

A /  represents the magnetic field at the position of the nucleus produced
by the electronic motion. If the second or third
term is large compared ot the first, a Paschen-Back
effect occurs. Instead of the set of quantumnumbers
I, J, F, mf we have then the set I, J, mr  rrij. Since
the magnetic moment of the electrons is roughly
103 times larger than the nuclear moments, the se
cond term is always larger than the third, unless
the atom or ion is in an S-state, for which J — 0.

The ground state of molecules is usually a 1Z  state.
Then there is no contribution from the electron
orbits and spins to the magnetic moment, but
there is a small contribution from the rotation of
the whole molecule. W e can use the same for-
mula (1. 5). where ƒ now stands for the rotational
angular momentum of the molecule. In this case
the second and third term are of the same order
of magnitude.Figure 1.2.

Paschen-Back effect; de
coupling of electronic and
nuclear momenta in a
strong external magnetic

field.

1.3. Atomic beam deviation method.

In 1921 S t e r n  and G e r l a c h  let a beam
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of silver atoms pass through an inhomogeneous magnetic field.
A force K — (/1 . grad) H  acted on them. The beam split in two

parts. This could be explained by quantumtheory. The magnetic mo
ment of the atoms with J = 1/s could only assume two positions with
respect to the direction of the field, either parallel or antiparallel. The
force acting in the cases would have opposite direction. The method is
usually referred to as the atomic beam method, because usually only
strong electronic moments produce a satisfactory deflection. But in 1933
S t e r n  applied his method to hydrogen molecules (E 2, F2). In para-
hydrogen the deflection is entirely caused by the rotational moment of
the molecule, but in ortho-hydrogen an additional effect of the nuclear
moments could be detected. It was then found that the proton moment
is roughly 2. 5 times the nuclear magneton. R a b i  has shown how one
can obtain information about the hyperfine splitting and nuclear spin
in atomic beams in spite of the presence of the large electronic moments.
The values of the magnetic field must be taken so low that the coupling
between ƒ and I  is not destroyed, and the first and second term in
(1.5) are of the same order. For a description of these beautiful ex
periments the reader is referred to K o p f e r m a n n  and the original
literature there mentioned.

1.4. The resonance principle.

Any^system possessing an angular momentum ƒ and a magnetic mo
ment p, which is placed in a magnetic field rotating about the z-axis,
is able to reorient itself in this field. The theory was first given by
G ü t t i n g e r  (G 7) and M a j o r a n a  (M 1) and later with more generality
by R a b i  and S c h w i n g e r  (R 1, S3). A more detailed discussion of
this phenomenon will be given in chapter 2. Here we shall merely
indicate, in a rough manner, the nature of the process involved. For
this purpose we first make use of the classical picture. Let H 0 be the
constant z-component of the field and H x the components rotating in
the xy-plane.

W e assume here H 1 « H 0. Ignoring H x for the moment, the
magneto-mechanic system will classically precess around H 0 with the

H x  =  H 1 cos co t
H  — ƒƒ, sin co t
h[ = H ,

(1.6)

carmor frequency

2 n v0 — o)0 =  y H 0 (1.7)
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The field H 1 will exert a torque

T  =  & X H 1] (1.8)

—^

This torque tends to change the angle between ,u and the z-axis. If,

Figure 1.3.

Simple vector representation of a magne
tic gyroscope in a large fixed magnetic
field H  and a small rotating field Hlt
according to K e l l o g g  and M i 11 m a n
(Rev. Mod. Phys. 18, 325, 1946).

HX +  i Hy

Hz

Consider the magnetic field as a
Hamiltonian

however, H x and the system rotate
in opposite directions, or if they do
not rotate with the same frequency,
the torque will soon get out of phase
and after a short time interval change
its sign, so that the average effect
over many Larmor periods will be
small. If co =  cu0, the polar angle
will gradually increase; a reorien
tation takes place at resonance. In
the first paragraph of chapter 2 the
classical description is continued in
more detail.

In quantummechanical language
(B 9) the effect can be described as
an „optical” transition between two
energy levels. W e suppose that the
first two terms in the Hamiltonian
(1.5) can be omitted. For mole
cules in a 12,' state in a sufficiently
strong magnetic field this is certainly
allowed, and it is rigorously correct
for atoms or ions in a 1S-state.

The Hamiltonian for the problem
is

Hop =  — yU ~Iop. H  (1.9)

The rotating magnetic field can
be represented by

=  H, e+i0>t
=  H 1 e ~ i0>t (1.10)
=  H 0

small perturbation. The unperturbed
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H°op— y H 0l z ( ï . i i )

has 2 1 + 1  eigenvalues, corresponding to the 2 /  +  1 diagonal matrix
elements of Iz in (1.3). The perturbation operator is

H lo p =  - y t i  (Hx Ix ' + H y Iy)

=  - 1/ * r  ft H r Wx  -  ' Iy)e+io>t +  ( 4  +  ily) e ~ imtl (1. 12)

H x0p ^as onIy non-diagonal elements, given by (1. 1) and (1.2). In this
problem one has to supply these two matrices with a Heisenberg time
factor e+'cu°f and e“ - f respectively. The only effect of H \  is to
produce transitions between adjacent levels. One has the selection rule
L^mI — +  1. Applying the usual first order perturbation theory one
obtains for the probability to find the system in the state m' at time t,
while at t  =  0 it was in the state m :

where

1
f t2

K  | Ĥ m) 1 _  e»'Aa>r

A CO

A co — CO --  COq

Substituting (1. 12) and (1.2) into (1. 13) one finds:

(1.13)

«’m+ i 4_m =  H, * ( I - m) { I  +  m +  1) sin2 ~ ^ / ( A  co)2 (1 . H)

This expression is very small, unless A cu ^O . Note that the resonance
condition co _  a>0 must also be satisfied to the sign in the complex
phase factors e - lC0t. If the magnetogyric ratio is positive, must ro
tate counter clockwise, looking in the direction of H0. Using the nu
merical value y t i l =  1.4 X 10~23 E.M.U. for the moment of a proton,
one finds that the resonance in a field of 6800 oersted occurs at 29
Mc/sec, that is, in the radio frequency range. If the radio frequency
signal is spread out over a small frequency range containing the reso
nance frequency, and if we denote the average energy density stored in the

rotating component of the magnetic field by f  q (v) d  v =  we have to
o

integrate over Am in (1. 14) and obtain in the familiar way a time
proportional transition probability:

wm+ \ <-m — 2 n y i { I— m) ( l + m +  1) Q (v0) t (1. 15)

2
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If we assume that the chance to be in the initial state m is equal for
all m s, we can average (1. 14) over m and obtain for the probability
that any transition A m =  +  1 is made

«Am = + 1 =  r3 Vs /  (/ +  1) sin3 1 (A mY

and (1. 15) goes over into;

In the evaluation of the expression
+ 1  4 "  -f

1 y  (J — m) (I +  m +  1) the well known relations 2 m2 =
2 7 + 1  m = _ j  m =  - 7

_  ij ƒ ( /  i) (2 I  +  1) and 2 m =  0 have been used. The pro-
m —  —  I

bability for a transition A m  — — 1 is, of course, given by the same
expression (1. 16). (1. 17). The probability per unit time for a transition
of a spin I — V2 from the parallel to the anti-parallel state is according
to (1.15)

W = 2 n y * Q ( v 0) (1-17)

The resonance phenomenon is obviously just an „optical magnetic
dipole transition. The frequency, however, lies in the broadcast rather
than the visible range.

1.5. The molecular beam magnetic resonance method.
G o r t e r  (G 4) was the first to point out how the phenomenon, des

cribed in the previous section, could be used to detect nuclear magne
tism. The first successful experiment, however, was performed by Rabi
(R 2) with his marvellous molecular beam technique.

Molecules evaporated from the furnace O, pass through some dia
phragms to define a beam. The beam is split in the inhomogeneous
field of magnet A, passed through a homogeneous field H0 in magnet
C, and is refocused onto a detector by an inhomogeneous field of
magnet B, which deflects in the opposite direction as A. The refocusing
condition is fulfilled only, if no reorientation of the nuclear spin occurs
in magnet C. If a radio frequency magnetic field is applied, perpendi
cular to H0, and either the radio frequency or H 0 is slowly changed,
the current reaching the detector will pass through a minimum, when
the resonance condition (1.7) is fulfilled. Magnetogyric ratio’s of many
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JUl

Figure 1.4.
Molecular beam magnetic resonance method, according to Rabi ,  Mi  l i man ,

K u s c h  and Z a c h a r i a s ,  Phys. Rev. 55, 526, 1939.
Schematic representation of the paths of molecules in which the ^component
of the magnetic moment of one of the nuclei has increased, decreased or re-

mained unaltered in the region of magnet C.

nuclei have been measured in this way with great accuracy. The method
is usually called the molecular beam method, although it can also be
applied to atoms. A special and independent application to neutrons was
made by Bl oc h  and A l v a r e z  (A 2). For further information and li
terature the reader is referred to the review article by K el lo o  a and
M i 11 m an (K 2).

1.6. Nuclear Paramagnetism.

The permanent moments of the nuclei should be a source of para
magnetism. The theory of electronic paramagnetism (V 1) can be readily
applied to nuclear moments, if one keeps in mind the similarity in the
vector diagrams of L, S and ƒ and f, /  and F. The contribution of
the nuclei to the volume susceptibility is thus given by the well known
L a n g e v i n  formula

Xo =  N \fj,\!i /  3 k T  (1.18)

where N  is the number of nuclei per unit volume, and \n\* denotes
the square of the absolute value of the magnetic moment

l/u ls =  y2h z I ( I + 1) (1.19)

Now it has to be borne in mind that the nuclear moments are about
10s times smaller than the electronic ones. Therefore nuclear suscepti
bilities are roughly a million times smaller than electronic ones. At room
temperature the nuclear paramagnetic volume susceptibility of a solid would
be of the order 10 9 erg / oersted3, thus negligibly small compared to
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the ever present diamagnetic volume susceptibility of the order of
10-6 erg / oersted2.

Only at very low temperatures might an influence of nuclear para
magnetism be detected. In the literature has been reported about one
experiment which gives an indication for this effect. S h u b n i k o f f  (LI)
showed that the diamagnetic susceptibility of solid hydrogen decreased
by 20%, when cooled down from 4.2° K to 1.7° K. This was attributed
by him to an increase of the paramagnetic susceptibility of ortho-hy
drogen. The paramagnetic susceptibility arising from the rotational
magnetic moment of the molecules is only 3% of the nuclear para
magnetism. The experiment yields a value for the proton moment
lying between 2.3 and 2.7 nuclear magnetons. It is to be noted that
hydrogen with its few electrons (small diamagnetic effect) and its high
density of protons with their relatively large nuclear moment is an ex
ceptionally favorable case. For other substances still lower temperatures
would be required. It is almost superfluous to note that saturation ef
fects in nuclear magnetism would occur only at extremely low tempe
ratures. The decisive quantity is y tiH J k  T, which at room temperature
is 7.10-6 for protons in a field of 104 oersted. Therefore the L a n g e v i n
formula (1. 18) should be valid down to about 0.01 °K.

1.7. Nuclear magnetic resonance absorption and dispersion.

G o r t e r  (G 5) remarked that, just as e.g. in Na-vapor an anomalous
electric dispersion occurs at the position of the yellow resonance line,
there must be an anomaly in the nuclear paramagnetic susceptibility in
the radio frequency range, if the substance is placed in a large magne
tic field H 0. The anomalous dispersion, accompanied by an absorption,
will occur at the frequency v0 — y H J 2 n.

The susceptibility will, roughly, increase by a factor v0l/ \v  =  H0//\H ,
where is the width of the resonance line. W e shall see later that
the line width is of the order of a few oersted or less. Therefore the
volume susceptibility given by (1, 18) can be increased by a factor 104
at resonance or more and would there suddenly jump from practically
zero to about 10-5. In 1942 G o r t e r  (G 5) attempted in vain to detect
this change in susceptibility at low temperatures. The tank coil of an
oscillator, filled with KF or LiCl powder, was placed in a field H 0. At
the resonance of F 19 and Li7 a sudden change in the inductance of the
coil should have produced an observable change in the oscillator fre
quency. Already six years earlier another unsuccesful attempt (G 4, G 6)
has been made by the same author to detect the absorption by a
resulting rise in temperature of the sample.



21

The absorption can be described in the following way. In each tran
sition from a level to the next higher one an energy hv =  y h H 0 is
absorbed by the nucleus, in the reverse process the nuclear spin system
looses the same amount. The transition probability for absorption and
stimulated emission is the same. But if the nuclear spin system is in
thermal equilibrium there will be more nuclei in the states with lower
energy. Thus there will be more transitions up than down, resulting
in a net absorption.

W e make the table

L e v e l E n e r g y B o ltzm a n n  factor

— yhmjHo exp (+  y tl rn, H0 /  kl)

Since h v y hH0 «  kT. as we have seen in section 6, there is a
constant difference n in population between two adjacent levels, which
is small compared to the total number of nuclei N;

y fi H0 N
kT 2 1 + 1 ( 1. 20)

W e have to multiply (1. 15) by (1. 20) to get the net surplus number
of transitions up per second. If we then multiply by h v, we find for
the absorbed power

P =  i/ s ^y 2Q K) (y h H +  N  I ( i +  1 )/kT (1.21)

The first positive effect of nuclear magnetic resonance absorption was
obtained at the end of 1945 by Purcel l ,  T o r r e y  and Pound  (P 7),
soon afterwards, independently, by Bloch,  H an se n  and P a c k a r d
(B6). The resonance effect in the paramagnetic susceptibility is able to
give at least as accurate information on nuclear moments as the mole
cular beam method. The most important new result for nuclear physics
so far obtained with this new method is the magnetic moment and spin
of H ! (A 3, B 5), and the redetermination of the ratio of the moments
of proton and neutron and proton and deuteron (A 4). The subject of
the present thesis, however, is not to find resonances in a series of iso
topes, but to investigate the interaction of the nuclei with one another
and with other components of the surrounding substance.

For while in the beam method each particle can be considered as free,
in the case of solids, liquids and gases the interaction between the nu
clei and their surroundings cannot be neglected. They are, in fact,
essential. If it were not for these interactions, the energy absorbed by
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the nuclei under the influence of a radio frequency magnetic field could
not be dissipated and the temperature of the nuclear spin system, en
tirely isolated from the rest of the sample, would rise. The surplus
number in the lower state would decrease, and soon the absorption
and stimulated emission would be equal and in the stationary state no
net absorption would take place. In the case I  =  1/2 the differential
equation for the surplus number n would be

d t
(1.22)

with the solution

n — n (o) exp (— 2 Wt) (1.23)

In this formula W  is given by (1. 17). The factor two is inserted,
because in one transition the surplus number changes by two. W ith
the relation (1.20) we find immediately that the temperature of the
system of free spins would increase exponentially

T = T t =  toe x p ( +2  Wt)  (1.24)

To avoid this heating up of the nuclear spin system, a process of
energy dissipation must be taken into account. It will be shown in
chapter 2 how the interaction between nuclei provides such a process
by which thermal equilibrium is restored. The shape and the width of
the resonance line will be shown to depend also on these interaction
mechanisms, as one would expect. In chapter 3 the experimental method,
developed by P u r c e l l ’s group at Harvard University, will be described.
In chapters 4 and 5 the theory will be applied to various substances and
compared with experimental results obtained with nuclear resonances of H \
H 3, Li7 and F 19 in these substances. It must be noted that actually a
considerable part of the theory was developed after the experiments
had been carried out, although sometimes the reverse was true. In order
to present a readable account it proved necessary to deviate from the
historical development in this thesis.



CHAPTER 2.

THEORY O F TH E NUCLEAR MAGNETIC RESONANCE.

2. 1. Rigorous classical solution for free spins.

The description given in section 1. 4 of the transitions of a free spin
in a rotating magnetic field needs some rectification. It is clear that,
when in the classical picture the gyroscope has been turned over, the
resonating field will start to turn it back, a^d the result will be an
oscillatory motion. The gyroscope will assume a nutation. The most
convenient expression for the equation of motion of this problem is that
the rate of change of angular momentum ƒ equals the torque exerted
by the magnetic field: i

d  1
d t ~  [/‘ X H]

or with (1.4):
—>

d  n >
5 1 =  r t » X H ]  (2.1)

In a constant field Hx =  Hy =  0, H z =  H0 the solution of these
equations is simply

P x  =  A  cos (o)0t +  <p)
Py =  A  sin (co0t +  <p) (2. 2)
Pz = B

with u>0 — y H0, and A 2 +  B2 — [A. Classically tg ïï =  AIB  can have
any value. From quantummechanics we have the restriction that
cos$ =  m1 /  F I  (I -f- 1). If we have a large number of nuclei which combine
to a large total quantumnumber I, the quantummechanical condition will
not be severe and the total magnetic moment of the system of nuclei
will be correctly described by (2. 1). T o r r e y  showed that an exact
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solution can also be obtained for the rotating field (1.6) by transforming
to a coordinate system that rotates with the same angular velocity co
as the magnetic field. The equations of motions in the new, primed
system are (J 2):

where denotes differentiation with respect to time in the moving

In this formula the sign of co is positive if co points in the same
—>•

direction as H 0. At resonance co =  co0.
The precession becomes a nutation in the original system. W e can

impose various initial conditions on the general solution of the differen
tial equation. If at t =  0 the moment fx is parallel to the vector H ' — co/y,
there is no nutation. In this case we have a pure rotation in the resting
system with an angle ft given by

At resonance we have ft — ji/2. If we start with a constant field
H z =  H 0 and /I aligned in the z-direction, and at t =  0 suddenly apply

— y

a rotating component H lt the moment /x will start to precess with an
angular velocity A and angle ft — arc tg coll{co() — co). Then it follows
from simple geometrical considerations, that the z-component of fx as a
function of time in the original system is given by

y[/*’ X  ( -  +  H0] (2. 3)

d t
system. In the primed system the magnetic field is constant H x ' — H lt
H '  —  0, H Z' =  H 0.

“  —k. —v

So fx' will precess about the fixed vector -|- H ' — co/y according to
equation (2. 1) with an angular velocity

l  =  1{±m  +  y H 0)°~ +  =  f (±  co +  co0) 2 + <  (2. 4)

co/y +  H , — co +  co0
(2. 5)

fx (1 — 2 sin2 ft sin21/2 11)
i =  [x cos2 ft T" fx sin2 ft cos A t

(2. 6)
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2. 2. Rigorous quantummechanical solution for free spins.

The quantummechanical solution (1. 14) also needs some revision. The
application of perturbation theory is only valid for a short period of
time, at the end of which the probability of finding the system in the
original state is still of the order of unity. In other words (1. 14) holds
only as long as w «  1. An exact solution valid for any time t has
been given by Ra b i  (R 1) in the case The problem is to solve
the time dependent Schrödinger equation

The normalised spin wave functions ipy2 and y_y„ belong to the
eigenvalues mj =  ’/ 2 and m1 =  —V2; | ci/s (f) |2 and | c_y,(t)  |3 are the
probabilities to find the system at time t in the state mj =  4-1/i or
m j =  —1/2 respectively. Since the system must be in one state or
another, we have the normalisation condition

Equation (2. 7) can be written in matrix form

These two simultaneous differential equations can be solved with the
initial conditon | cu (t) |2 =  1 at t — 0.

This correspondends exactly to the classical solution (2.6), if one re
members that for spin 1/a, p z ~ p { \ — 2 » _ y i,yj),

S c h w i n g e r  (S3) showed that for obtaining the quantummechanical

ti d ip (t)
7 dtHopw(t)' (2. 7)

where the Hamiltonian H op is given by (1.9), and the wave function
ip (t) has two components

yj (t) =  ciA (f) rpi/s +  c_y2 (t) v>_v, (2. 8)

cVü W I2 +  I c_i/, (f) |2 =  1 (2. 9)

Ra b i  finds for the probability that the system is in the state mj — — 1/i
at time t

®c)2 +  < (2 .1 1 )
CO o )2 +  C O

solution it also has some advantage to transform to a rotating coordi-
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nate system. The results can be extended to the case of arbitrary spin
by the general M a j o r a n a  formula, which one can find in R a b i ’s paper
(R 1, B 8). W e note that (2. 11) goes over into (1. 14) for very small
values of the perturbation field cox <C<C to — to0. At resonance co — co0,
w_Y2, iy2 becomes equal to unity for t =  n/co1. The system then oscil
lates between the states with spin parallel and antiparallel to the mag
netic field. If co ^  co0, the system never attains the pure state with
m — —V2, and oscillates more rapidly than at resonance for the same
value of H 1. W e can define the width of the resonance curve as the
distance between the points, where the maximum chance to find the
system in the antiparallel state is one half. From (2. 11) we see that
| co — co0 | =  co1 for those points, or the width measured in oersted is
twice the amplitude of the radiofrequency field. The energy of the spin
system in the magnetic field H 0 (at t =  0, all n spins are parallel to
the field) is given by

and the time derivative of this expression yields the absorbed power,
which behaves as sin t l̂ (a> — a>0)2 -f- cop1. In the average no net ab
sorption of energy takes place. Suppose now that we have an assembly
of free spins in a not perfectly homogeneous magnetic field. The distri
bution function of the spins over the resonance frequencies be cp (v) which
is normalised f<p{v)dv=  1 . W e assume that the distribution over the

o
inhomogeneous field is much wider than the width of the resonance,
which, expressed in oersted, is about H^. W e assume that cp (v) is prac
tically constant near the resonance cp { v ) ^  cp (v0) for | v — v0 I »V
Then the energy absorbed by the system is

Take the time derivative, representing the power absorbed, of this
expression. The integral can then be evaluated in terms of the Bessel
function of zero order.

E  (t) =  —Vs ( 1 — 2 tv) y % H 0n (2. 12)

E  (t) =  f w _ i/2, i/a (v) y ll H 0 ncp (v) d v  —
0

a) ! 2 sin2 T f(co — cop1) 2 +  co
y t l H 0cp(v0)n  I to o1)2 + to -- d  co0l (2. 13)

2

= P ( t )  =  lU « I 3 y h H 0cp (v0) n j 0 (y Hj t) (2. 15)

For small t we find, substituting f0 (0)— 1, in (2. 15)
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P(f) =  V4 y>H 1*<p{va) n y H H 0 (2.16)

It is not surprising that this comes out to be the same as if we had
used a time proportional transition probability given by (1. 17) to cal
culate the absorbed power.

In the derivation of that formula we had supposed a range of fre
quencies in the radio frequency signal, over which we had to integrate,
as is usually done in optics. In the case of a single applied frequency,
but a distribution over H 0, we have to integrate rather over a range
of resonance frequencies. Since co and co0 occur only in the combination
co — co0, the result is the same. In r.f. spectra this last case is more
common, quite contrary to the situation usually encountered in optics.
From (2. 15) we see that in the stationary state here is again no net
absorption of energy as the Bessel function vanishes as for large
arguments. This means that the free spins, initially all oriented in one
direction, start oscillating under the influence of the applied signal, get
out of phase and for large t there are always as many pointing up as
down.

2. 3. Interaction with radiation.

In order to keep an absorption in the stationary state, it is necessary
that there is some mechanism trying to restore thermal equilibrium so
that the population of the spin levels does not become equal. The time
Tlt it takes for the spin system to come back to thermal equilibrium,
after this has been disturbed some way or other, e.g. by a large radio
frequency signal at resonance, is called the relaxation time. The expe
riments described in chapter 3 and 4 yield values for the relaxation
time, ranging from 10—4 to 102 seconds. W e shall now discuss some
interaction mechanisms which tend to restore thermal equilibrium. Even
for the so called „free” particles one always has the interaction with
radiation. The spontaneous emission which usually limits the life time
for an atom in a electronically excited state to 10—8 sec, is negligibly
small for radio frequency transitions. The coefficient for spontaneous
emission A  of dipole radiation ( Hi )  is proportional to the cube of the
frequency and the square of the dipole moment.

A  =  8 n h v s Blcs (2.17)

where B  is the coefficient of absorption or induced emission, i.e. w in
(1. 15), i£ q (v0) and t are taken to be unity. Substituting numerical va
lues for protons in a field of 10  ̂ oersted one finds A  =  10—25 sec- ' ,
corresponding to a life time of 1019 years. This is not the relaxation
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time caused by the radiative interaction. For, in addition to the spon
taneous emission, we have the transitions induced by the thermal radia-
tion field. Take I = 1/a, and let n+ and n denote the number of spins
in the upper and lower level respectively, n+ satisfies the differential
equation

d n ^
— B Q (v)n~ — {A +  B Q (v)\ n+ (2.18)

Using n+ +  n =  N  we find

„+  =  C c - l A  +  2B p (y )|f  | B q (v)
+  A  +  2 B q {v) (2. 19)

Thus the relaxation time Tlt if radiation were the only interaction,
would be \A -\-2 B q (v(—h Here q (v) is the energy density of the electro
magnetic field. As for the nuclear resonance h v/k T  «  1, we may use
R a y le ig h ’s approximation

q (v) =  8 7i v2 k T  c~~s (2. 20)

W ith B =  2 n y 2, we find T ^ ^ I O 13 years. Although the influence
of the thermal radiation field is much larger than that of the sponta
neous emission at these low frequencies, the effect of the radiation is
far too small to play any role in the explanation of the observed relaxa
tion times. P u r c e l l  (P 4) pointed out that the energy density of black-
body radiation is not given by R a y l e i g h ’s formula, if the wave length
is large compared to the dimensions of the black body. This is exactly
the case at radio frequences in a tuned LC circuit. The energy density

at the resonance frequency is increased, be
cause the energy k T  of the circuit is stored
in a narrow frequency range.

The mean square voltage across a resistor
of temperature T  is V 2 — 4 R k T  A v.

At resonance the current is

4 k T  A v/R

The energy stored in the coil is x/s L i2.
Introduce Q =  co L/R  and the volume of the
coil V. W e find for the energy density of

the supposedly homogeneous magnetic field per unit frequency range

Figure 2. 1.
Noise in a tuned circuit.

q (v) — k T  Q/n v V (2.21)
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The increase over the energy density in a large black-body cavity is
given by the factor 2 s  Q/8 n2 V. Substituting V  =  1 cc, A — 10s cm, Q =
100, we find that the relaxation time is decreased by a factor 109, but

tal values.

2. 4. Dipole — dipole interaction.

Looking for other types of interaction besides the very small radia-

world appears to be very limited. Electric forces, which act during

mechanism of arcs, readily establish an equilibrium for electronic states.

trie field can interact with a nuclear quadrupole moment, as will be
considered in chapter 5.

W e shall neglect the possibility of interaction by exchange forces.

sometimes considerable (ferromagnetism or antiferromagnetism). But for

likely to occur.
So we come back to a magnetic type of interaction, by means of

the magnetic moment associated with the nuclear spin. This interaction

action of electronic moments, as the nuclear magneton is so much smaller

was taken to consist only of the externally applied field H0 -f- H 1 and
the thermal radiation field. Every nucleus, however, also experiences
the field produced by the magnetic moments of its neighbours. If this
dipole — dipole interaction is taken into account, the Hamiltonian (1.9)
for an assembly of spins becomes

local field will, at any time, be of the order of few oersted. It is mainly

is still 10s years, so several orders of magnitude above the experimen-

tion damping, the contact of the nuclear spin system with the outside

atomic and electronic collisions and play e.g. an important role in the

But they do not perturb the nuclear spin. Only a gradient of an elec-

For electronic states with overlapping wave functions this exchange is

the nuclei in crystals and liquids at room temperature exchange is not

will of course, be much smaller than the corresponding magnetic inter-

than the Bohr magneton. So far the magnetic field acting on a nucleus

y f11. 3y.%  r. .(r... I
_j ___j_ ' j  < ] '  i j  i2 i yt ft L . H 0 +  2. y. ft I. . 2 . (2.24)

The sum over j  in the right hand term represents the internal or

local field H loc at the ith nucleus; r . =  r. — r. is the radiusvector con
necting the i and they spin. The problem connected with (2.24) is
one of an extreme complexity. It is the equation of motion for N  par
ticles, where N  is of the order of the number of A v o g a d r o .  The
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determined by the nearest neighbours, since the magnitude of a dipole
field decreases as the inverse cube of the distance: H loĉ  y fl/a8where
a is the internuclear distance. For two protons, one Angstrom apart,
we find H loc 10 oersted, The problem (2. 24) of an assembly of spins

tronie magnetism in paramagnetic salts. G o r t e r  (G 3) gives a survey
of experiment and theory in this field. The reader will find in this
book ample references to the existing literature. Using the classification
customary in electronic magnetism, the case which is of interest here is
that of no electric splitting and a strong transverse field. It must be
stressed that we are interested in a resonance absorption. Recently the
first experiments of electronic magnetic resonance at microwave frequen
cies have been reported (C 6). Most of the work on absorption and disper
sion in paramagnetic crystals, however, relates to the non-resonant
absorption. W e shall here proceed on similar lines as B r o e r  fB 12).

The energy levels of the unperturbed system, without dipole-dipole
interaction are (compare (2. 12))

spins which are parallel or antiparallel to H 0. Since n is even or odd,
depending on whether the total number N  =  N + +  N ~  is even or odd,
the spacing between the equidistant levels is y h H 0. The degeneracy of
the levels is high, N \ / N r ! N  !, but is lifted by the interaction term
in (2.24). Now the perturbation energy will be of the order I\A2 y h H hc,
Although H hc «  H 0, the perturbation energy for an assembly of many

also comes up in the theory of the absorption and dispersion of elec-

E n — 1/;in y t i H 0 (2. 25)

If I = 1I2, n =  N + — N  is the difference between the number of

D

i ,

J .X
0

E N E  R G Y

+N^H„
k T

Figure 2. 2.
The distribution D  of energy levels of a spin system in a magnetic
field H0 and the distribution of occupied states p, obtained by
multiplying D  with the Bolzmann factor e’ ~Hop,,kT. Both functions

are normalised.
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spins ( N  =5= 10s2) will be large compared to the spacing of the unper
turbed levels. In view of the large number of non-degenerate levels
we can say that the energy levels belonging to (2. 24) are spread over
a continuum. The density D  of the energy levels as a function of the
energy has'sharp maximum, the width being of the order N ' h y h  H 0.
The average occupation q of the continuum is obtained by multiplying
D  by the Bolzmann factor exp (— H j k  T). The regular spacing y % H 0
has completely vanished from the picture. It seems as if the whole re
sonance phenomenon disappeared, for one might expect transitions from
any level p to any level q in the continuous distribution, when a rotating
magnetic field H l is applied with frequency v — E  — E  /h. The pro
bability for such a process per unit time is

q + -  p —  I (p I 2 ( I X 4- i  I y)J  I q)  I* Q p

(2. 26)

where M pq is the matrix element of the rotating component of the
total magnetic moment between the states p and q. The absorbed power
P (v) is obtained by subtracting from (2. 26) the transitions from q to
p, multiplying by the involved energy h v and summing over a small
frequency interval 2 A  v around v. For h v/k T «  I we can write

Pp — Qq — epq h v/k T  (2. 27)

with Qpq ^  (ffp Qq)/2

P(v) = H h " v 2 V + Av
4fi2 k T  v _ Av ePq

Introducing the absorption coefficient A  (v) =  P  \ 6 71 and the den-
i i j

sity function of the magnetic moment

f(r) =  2 2
v — A v

(2. 28)

we find

. . .  8 v*

A ^  =  ' T T  f { ) (2. 29)

These last two equations are identical with those of B r o e r  (Thesis,
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p. 63). The problem is reduced to determining f(v). The only exact way
for solving this problem is the diagonal sum method, developed by
W a l l e r ,  V a n  V l e c k  and B r o e r  (W  1, V  2, B 13). Neglecting terms
in h v/k T, they find the relations

ƒ f  (v) d v — Spur M 2
0

ƒ v2 f(v) d  v — Spur M s/4 7T2
o

ƒ v* f  (v) d  v — Spur M */16 n* etc. (2.30)
o

Furthermore we have the general relation for the time derivative of
a quantum mechanical operator

i ft. M  =  H M - M H  (2.31)

where H is the Hamiltonian.
The mean square frequency of the absorption curve A  (v) is the

quotient of the first two expressions (2. 30)

- j _  Spur ( H M - M H ) 2

v “  h2 Spur M 2
(2. 32)

The shape of the curve remains obscure. Strictly speaking, one does
not even know whether there is a resonance at all. Unfortunately the
the quantities v*, v* etc. are hard to calculate, although in principle
they will give more information about the shape of the absorption
curve (V 3).

Our knowledge is supplemented by the perturbation method. At first
it may seem strange that a perturbation theory can be applied, since
we have seen that the perturbation energy is larger than the spa
cing of the unperturbed levels. However, as B roer  pointed out, the
matrix elements of the magnetic moment operator differ appreciably
from zero only when the energy difference h A v between two states
p and q satisfies the relation h A v ^  f ti Hioc or h A v *=» y ti(Ha zh ^ ;0c)
or h A v «5 y% (2 H 0 ±  H loc).

The schematic behaviour of f(v) is plotted in fig. 2. 3. The absorp
tion can be obtained from (2. 29). The absorption at the Larmor fre
quency is a first order effect, in which we are interested. The absorp
tion near a frequency of zero or 2 v is of the order (Hioc/H 0)~ and so
about 106 times smaller than at v0, and unobservable in the case of
nuclear magnetism.

The use of the perturbation theory is justified by its results, which



33

Figure 2. 3.
The density function f  (v) of the magnetic moment (cf.

B roer, B 12).

are in agreement with the experimental facts, one of which is the occur
rence of a sharp resonance at the frequency v0. The perturbation method
gives more details than the diagonal sum method, but is less rigorous
and certain. Sometimes it is advantageous to combine them.

The unperturbed state of the system is specified by the quantum-
numbers mjj of all spins, the total z-component of the spins being
m 2' m.j. We assume that these magnetic quantum numbers still

characterize a state after the introduction of the perturbation

V=2 z v ij
j > i  1

V ij — T‘i. , [ 4 .  4 .  0 — 3 al3) +  I y. Iy.  (1 -  3 « / ) + / z. 4 . (1 3 as2) —

3 ( 4 . 4 . +  4 .  i y . ) ai «2 — 3 ( 4 . 4 .  +  4 . 4 . )  ai «3 —
— 3 (!y. 4 .  + 4 ;- 4 )  «2 «s] y 7 (2. 33)

V,y is the magnetic interaction between the ith and jth spin ; a1( a0

and ag are the direction cosines of the radius vector "r,-■ with respect
to a system, of which the z-axis is parallel to H q. Ŵ e shall now write the
operator (2. 33) in the m-representation, so that we can distinguish terms
which leave the total z-component m unchanged, A m =  0, and terms
for which =  or —1 and those for which A n ? = + 2  or _2.
The elements with A m - 0  leave the energy unchanged. With off-
diagonal elements is a change in energy A m y h H 0 connected. We
Qiake use of the relations

3
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Ix i S  +  Iyi Iyj

I x i Ijcj  I y i I y i

(Ix . — * ■ +  l I y )  V*i +  ‘ V ' S  ' V
_ J ---------- ^ ------------- 2 —

(7X. +  ' h:  ) ̂  + ' V , ^  _ ' V) ̂Ixi ~ lW
+

( / , . + - y f c  +  ' V
l x .  I(jj + I x j  ly . —  T7 21

i x . h .  =  v* ('*. + '  y  ^  + 1/3 (V r  iIy) h j

*,t h j  =  r f i xt + ‘‘V S  ~ h v * i  “ ' V S

and introduce the polar and azimuthal angles V  and\ q>t j , instead ° f
the direction cosines. W e can then write (2.33) in the form, adding t e
Heisenberg time factors exp (f A  m y H  t),

V r  =  ^  (A  +  B  +  C + D  +  E  +  F ) (2.34)
1 r ij

A  =  7Z. I ,  (1 — 3 cos3 # t j )

B =  - lU {Vx. -  i \ ) {Ixj +  1 Iyj ] +
+  (Ix . +  i t y U x j  ~  «■ (1 “  3 COS" &ij)

A m  =  0

A m = 0

A m = l
C = - V 3 ( ( / , . + i ^ . ) / z y +

A m =  — 1

A m = 2

1  ̂ „ —i «>. . i y  Ho t
+  (ƒ +  i Iy.) h .  I sin 0, j  cos # t j e IJ e

b = - Sl3 {(Ix . - H y . ) h . +
' 1 .  +  i<p- ■ — i y  Hot

+  ( I x .  -  1 h }  1*i * Sin C° S ’V  lJ 6

— 2 i (p ■ ■ 2 i y Ho f
£  =  s/4 (4. +  i Iy{) (7x. +  '■ h )  sin ^  e

A m = — 2̂ +  2 i <p ■, — 2 i y  Ho t
F = Sh  (Ix. - U y t) ( I x j - i t y ^ t J  e

The first two terms give rise to secular perturbations, the last four
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are periodical perturbations of very small amplitudes. K r a m e r s  gives a
clear exposition of these two different types of perturbation in his book
on quantum mechanics (K6). That the terms C to F cannot give rise
to appreciable changes also follows from the principle of conservation
of energy. So we keep only the terms A and B. Classically A corres
ponds to the change in the z-component of the magnetic field by the
z-component of the neighbouring nuclear moments. This local field will
vary from nucleus to nucleus, slightly changing the Larmor frequency
of each. Let us consider in somewhat more detail the situation at the
r'f nucleus. Let us suppose for simplicity that the neighbouring nuclei
have spin / = V 8. Each of them can be parallel or antiparallel to H0.
For each configuration we have a definite value of the z-component of
the local field. Let us first consider only the nearest neighbours. Instead
of one value H0, we have e.g. ten possible values around H0, depen
ding which neighbours are parallel and which antiparallel to H0.
Now all the configurations of the next nearest neighbours will split
each of the ten values into many more, and so on for the third nea
rest, etc. The result will be a continuum of values of the z-component
of the local field and therefore a distribution over a range of Larmor
frequencies. In many cases this distribution, approximately will have
a Gaussian shape, as was pointed out by several authors (K 10, V  2).
But we want to stress that this is not necessarily so. Take for in
stance the case of a substance in which the nuclei occur in pairs.
That is, each nucleus has one very close neighbour, while the
next nearest are relatively far away. The nearest neighbour will split
the H0 value into two discrete values, rather far apart. The next nea
rest neighbours will produce a bell shaped distribution of the Larmor
frequency around each of these two discrete values. The nuclear reso
nance line will show a fine structure in this case. This has been observed
experimentally in many crystals by P a k e  (P 1). It will be very diffi
cult to obtain information about the fine structure with the diagonal
sum method.

So we see that for each crystal a detailed investigation would be
required. But as in r&any cases the line will be a Gaussian anyway,
we can obtain an estimate of the line width by calculating the mean
square contribution of each nucleus separately, and taking the square
root of the sum of these contributions, as the orientation of each nu
cleus is independent of the others. The mean square local field from
term A is given by

(&7Ö = ffi+ii 2- ( l r 3‘°»%)
j ; r°

J i j
(2. 35)



and the mean square deviation in frequency by

(A ©)* =  y8 (A H hcy.

To this we have to add the contribution of term B. To B corresponds
the simultaneous flopping of two antiparallel spins (A +* an
A m . = _ l  or vice versa). This process is energetically posable and
is caused by the precession of the nuclei around H 0 with the Larmor
frequency. So they produce an oscillating field of resonance frequency
at the position of their neighbours, resulting in reciprocal transitions.
Classically one might say that this process limits the life time of the
spin in a given state and therefore broadens the spectrum, io  12.33)
we have to add a numerical factor to take the effect of B into account.

The proper factor has been calculated by V an  V le c k  (V 3) in a
rigorous manner with the diagonal sum method, using formula (2. 32).
For H op we take the terms of type A and B of the perturbation
2  2  V tJ. The component of the magnetic moment, rotating with the

applied radio frequency field, is proportional to 2  A . +  ^ y . ' W e can

evaluate the commutator by making use of the commutation rules which
exist for the components of the angular momentum operator I. V an
V le c k ’s (V 3) result is

(1 / T , ' ) asymptotic =  |/(A v f  =  s/3 ] / *
7 (1 — 2 3 * * cos3 ^ ij)3 (2. 36)

' r6,.

This formula, valid for a system of identical spins, holds for any
shape of the nuclear resonance line. W e have no information what the
contribution to f(A cof from the tails is. For a Gaussian (2/T a )asymptotic
is the width between the points of maximum slope. The reason for this
notation we shall see later.

2. 5. The relaxation time.
So far we still have not found a relaxation process. For we argued

that only processes with A m =  o can occur. To restore thermal equi
librium it is essential that the energy of the spin system changes. W e
have tacitly assumed that the position coordinates rt j , &{j and <ptj  are
constants, and we have seen that the dipole-dipole interaction of nu
clei at fixed positions only gives a broadening of the levels. Now we
shall show that energy transfer is produced, if the position vectors rtj
are functions o f the time (B 11). This is the only new feature in the treatment
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of the spin system presented here. In practice the nuclei will always
move to some extent, if the system has not zero temperature. In a
crystal we have the lattice vibrations, while in a liquid or gas we have
the Brownian movement. As far as the Hamiltonian (2.24) for the nu
clei is concerned, we can consider this motion of the molecules as to
be produced by external forces, since the atomic interactions are mainly
of electric nature. In doing so we neglect, of course, the reaction of
the magnetic moment of the nuclei on the Brownian motion. W e ex
pand the factors in (2. 34), which contain the position coordinates and
are thus functions of the time, into a series of Fourier or better a Fou
rier integral. W e want to distingiush in our complex notation between
positive and negative frequencies and we therefore define the intensity
J(v) of the Fourier spectra of the functions of the position coordinates

F0 — 2  (1— 3 cos2
ij J

F1 =  2  sin ■&ij  cos e 1 Vtjf
ij

F,, =  2  sin2 &ij e 2‘ ft  I r'\j

by the equations*):

2
j

(1 3 cos2 jj'ij {t)) I
+  °°

[  J o  M  d  (v) (2. 37)

sin &ij (t) cos &i j  (t) e 1 'W ^  /  r8fj- (f)

W e shall first reconsider the terms C, D, E and F in the expression
(2. 34) for the perturbation. If J 2 (2 v0) and J 2 (— 2 v0) are different from
zero, E and F become secular perturbation, because the time factor
cancels out. Similary C and D become secular perturbations, if J 1 (v0)

*) In section 4. 1 the reader will find a short discussion of the Fourier series and
spectral intensity of a random function.
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and (_ v 0) do not vanish. The action of the terms C and D may classi
cally be described as transitions induced by the Larmor frequency of the
spectrum of the local field. The thermal motion provides the energy neces
sary for the change A m. The interaction of the nuclei with the thermal
motion is the relaxation mechanism. From E and F we see, that, quantum-
mechanically the simultaneous transition of two nuclei is also a possible
process. Let us ask for the probability for a change A =  +  1 in
the magnetic quantumnumber of the ith spin. W e repeat the simple
perturbation calculation of chapter 1 with the terms C and E rather than
(1.12): Taking the average over all values rtij of the neighbours we
find for the transition probability,

W m.+ i <- mi =  9/1674h 2 J 2 (— 2 i^) 2/31 {I +1)1(1— m,) (I +  mi +  1) +

+  Vi V4 ti*Ji (-Vo) 7s I (I+  1) V - m i)(I +  mi +  1) (2. 40)

It is simple to generalize (2. 40) to the case that the spins and magneto-
gyric ratio’s of the nuclei are not all the same

Wm+1  <_m = % > i*tl*(/-m J)(/i +  fli, +  l) ƒ  (- V  ~ V ° j )  +

+  2 J lj  (—v0i)] (2.41)

where J,  j  stands for the intensity of

Yj tlj(Ij+ 1 ) s ir )2  A  / e  2

The neighbouring moments may now also be caused by molecular
rotation or they may consist of electronic spins and orbital momenta.
In these cases not only the position coordinates may be a function
of the time, but also the quantisation of the spin rrij (f) must be re
garded as time dependent under the influence of external forces. Instead
of (2, 41) we should write

W m.+ l <-m — mi)(Ii +  mi +  1) [J " {—v0. — v0. ) +  J' (—v0.)J
(2. 42)

where J"  (r) is the intensity of the function

i V z V j - m j ( t ) ] [ l j  +  mj ( t )+\ ]  sin2 dtj (t) e2 ' Vtj W/ r*.. (t) ]
j L_

and J '  (r) is the intensity of
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2  V2 I''3 (f) sin />,-y (f) cos #,y (f) e' v ij W / r \ j  (t)

These intensities represent the spectrum of the local magnetic field.
Identical expressions exist for transitions with A  m,- =  — 1. In that

case the intensities have to be taken at positive frequencies in the
Fourier spectrum. W e shall see later that J  (v) is an even function.
This is plausible, since the negative frequencies have no specific physical
meaning and are merely a consequence of complex notation. One might
object that on this basis the thermal motion would produce as many
transitions upward as downward, and still the desired energy dissipation
would not occur. Since we have to do, however, with a thermal mecha
nism, it is appropriate to weight the transition probabilities with the
Bolzmann factor of the final state. Dealing with the interaction with
radiation, E i n s t e i n  did essentially the same thing by introducing the
spontaneous emission, so as to increase the number of downward tran
sitions. This procedure can be justified by postulating that in the case
of equilibrium we have a Bolzmann distribution over the energy levels
and a detailed balance for each transition process (G 6).

Nq Wp^ N p Wq^p

N qlN P =  exp (Ep — Eq)/k T  (2. 43)

W p<_q/ W q^p =  exp (Eq — Ep)/k T

In the case that we can write down the differential equation
for the population in the upper and lower state in the same way as
we did in dealing with the interaction with radiation (section 2. 3)

- - - - -  —^ V  N +  exp 7 - f  W  jty— exD y h H 0d T  w  iV exp ^ k T  +  W Psl exp ^ k T

N +  +  N ~  — N  (2.44)

' ^ ( ^ + l + ^ A m =  - l ) / 2

Expanding the exponentials and keeping only terms of the first order
in y ti H 0/k T, the solution becomes

N +  =  C  e~~2 W t  1li N  (\ — ytl H J2 k T) (2.45)

The constant C is determined by the initial conditions at f =  0. So
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2V+ approaches its equilibrium value asymptotically according to an ex
ponential function with a characteristic time given by

7 \ =  1/2 W  * (2.46)

The surplus number n =  N  — 2 iV+ has the same characteristic re
laxation time. For W  we shall take the value given by the formulae
(2 .40) to (2. 42), although this is not quite correct for the processes with
A m — +  2, nor for the case, that there are different magnetogyric
ratios.

Then we should solve a more complicated system of simultaneous
differential equations.

The case that 7 >  1/i is more complicated. If there are only two
possible orientations of the spin, a temperature of the spin system can
always be defined by the relation N + /N ~  — exp (— y \ l H 0j k l ) .

If /  1/3, a temperature can only be defined if

N j INj__i =  INj—2 =  . . . =  exp ( - y \ i  H J k  T) (2. 47)

W e require that this condition is fulfilled at t =  0. It is easily checked
for the case 7 = 1  by solving a set of three simultaneous differential
equations for N lt N 0, A/_x that the relation (2. 47) is in general not
satisfied at all times. W e shall prove, however, that for
ö — y ft H0/k T  «  1, a temperature and a relaxation time can always
be defined. There is hardly a loss of generality, since the condition
<5 «  1 is fulfilled down to 0.1 °K. W e start from the set of 2 7 + 1
equations

7 7  =  ~  W l~'<l N l  +  W l  ' - 1 Nl~ X (2. 48)

—— -i = ( —W/_2,/-i — WJt 7_f)iV/__i +  W ĵ x jNj J_2 N j_2

etc. with

W m + l , m =  W  ( !— m)(J +  m +  1) exp (— m d), (2. 49)

where W  is the transition probability from the state m =  J/2 to m =-1/2,
if 7= V ,.

From (2. 49) we derive a set of linear combinations for N m +  7V_m

d(N _ +  N _ J
—  =  - W m + i ,w+ W m_ f tm)(iVw +  jV _ J  +

+  Wm,m+m(Nm+1+ i V _ m_ 1) +  Wm,m_ 1(iVm_ 1 + i V _ m+1) +
+  2 m < 5 N _ m +  2(m +  l )<5N_m_ !  +  2 (m — l ) ^ N _ m + 1 (2.50)
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The last three terms on the right hand side can be neglected com
pared to the first three.

Next we derive a set of equations for N m — N _ m. W e make use
of the relation 2 m d N  —m — N m — N _m, the difference of the popu
lation of the levels m and —m at thermal equilibrium. W e obtain

d t + 1, m + —1, m) t̂ Ym N m i ^ —m—N _ m)] +

m + 1 [N m + 1 j (N _ m — j — N _  m _  j)] +

+  W m m_ j  [(Nrn_ j — N m _ j) — ( N _ m + l — N _ m+1)] (2.51)

Equations (2. 50) can be solved by anticipating that N ni -f- N _ m is in
dependent of the time, N m +  N _ m =  2 N /2 / +  1. If 7 is an Tnteger,
No =  N/2 /  +  1 is constant in time. The solution of the equations (2. 51)
is obtained by making the supposition that the difference in population
between two adjacent levels n = N m — N _ m/2 m is independent of m.
W e find that the set (2.51) reduces to a single equation

d n „ TI, , °°
~ = - 2 W ( n - n )  (2.52)

The result is that the relaxation time for a nucleus with spin I  is
the same as for a nucleus with the same magnetogyric ratio, but spin 1/a.

Using (2. 40) we find for the relaxation time

V T1 =  S/4 y\ ^  1 ( I -+  1) U  (2V0) +  2J, (r0)] (2. 53)

and analogous expressions besides the equations (2.41) and (2.42).

2. 6. The line width.

W e now return to the terms A and B in (2. 34) to see what happens to
the line width, when the nuclei are changing their positions as they take part
in the Brownian motion. These terms will still represent secular pertur
bations, if we take the components near zero frequency in J"0 (v), the
Fourier spectrum o f 2 ( l - 3  cos3 êtj (t)) /  r ( f ) .  The question is, which
frequencies must be considered to be „near zero”. W e may say that
the perturbation is secular up to that frequency, for which hv  is of the
same order as the actual splitting of the energy levels by the pertur
bation. The actual width expressed in cycles /sec may be called
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2 A v — A c o /n =  1/n TJ.  A combination of (2.36) and (2.37) yields
the relation for the width

If the nuclei do not all have the same magnetogyric ratio, we can
alter the treatment for term A in the same way as we did in the pre
ceding section for Tv  The term B, however, changes its character com
pletely, because it now contains a time factor exp i (•/, — y2) H01. The
components of J 0 (v) at v =  ±  (jq —y2) H J2  n determine the transition
probability for a process in which to antiparallel nuclei with different
magnetogyric ratios jump together. W e shall not discuss it further.

The observed line width is not determined by Ta' only. There also
is a contribution arising from the finite life time of the nucleus in a given
state by the relaxation processes, represented by the terms C, D, E and
F. For I  — 7S, the life time of both the upper and lower level is l / W = 2 T 1.
As W e i s s k o p f  and W a g n e r  (W 3) pointed out, we have to think
that each of these levels is broadened into a continuous distribution

The distribution in the intensity of a resonance transition between
the two levels is consequently

distribution over the resonance frequencies, caused by the perturbation
A and B, will often have an approximately Gaussian shape,

• + 7

g1 (v) d v
VoY + JU w*

9 iV) v2 _|_ 4 (V()2 --  v2)2 7^2
2 r, (V  +_v»i

or to a high degree of approximation

/  ̂__________ ~ 11________
9 (V) ~  1 +  16 n* T^{v  -  v0)2

(2. 55)

This is the broadening caused by the finite relaxation time T L. The

g11 (r) =  T /  e ~  2 (v ~  v°V (2. 56)

Combining (2. 55) and (2. 56) we get for the line shape

I n s (v'-v0y T ,

1 +  1 6 3T2 (»'1--v)a 7 \S
(2. 57)
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Roughly we can say that the combination of two bell shaped curves

sum of the widths of the composing curves. W e can express the total
line width by

Instead of the unwieldy distribution (2. 57), we shall assume that cp (v)
can be well represented either by a Gaussian distribution like (2. 56)
or by a  damped oscillator distribution like (2.55). This may seem

arbitrary, but the choice of (2. 56) was already arbitrary, and the two
possibilities, which we admit, are good representatives for the case that
there are practically no tails (gaussian), and that the tails of the reso
nance curve contribute considerably (damped oscillator). Note that in
the latter case 2/ T s is the total width between the half maximum points.
For the Gaussian 1 j T 2 denotes the root mean square deviation of the
frequency. This quantity diverges for the damped oscillator curve.

W e have derived general expressions for the relaxation time and line
width in terms of the local field spectrum. In order to evaluate these
quantities for any given substance, we only have to compute the in

will yield another bell shaped curve, of which the width is about the

(2. 58)

X

Figure 2. 4.

The behaviour of the real and imaginary part of the magnetic
susceptibility near resonance. The curves are drawn for the case

of a damped harmonic oscillator (compare section 2. 7).
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tensity of this spectrum. In chapter 4 applications are given for solids,
liquids and gases.

The meaning of the quantities T l and T J  in terms of the density
function f  (v) represented in fig. 2. 3 might be formulated in the follo
wing manner. The time, which is required to restore the shape of ƒ (v)
around the frequency v0 after the equilibrium has been disturbed in some
way or other, is Ta'. The time required to restore the area under the
f  (v) curve around v0 is T v  W e shall now see how the introduction of
the quantities T 1 and T2, which describe the interactions between the
spins, changes the results obtained in the beginning of this chapter for
free spins.

2. 7. Classical theory with interactions.
W e shall first give a brief outline of B lo c h ’s phenomenological theory

(B 4). An assembly of spins is initially so oriented in ^  magnetic field
H 0 as to give a resultant macroscopic magnetisation M . B l och  notes
that the spreading of the energy levels makes the nuclei precess with
slightly different Larmor frequencies. Therefore the nuclei get out of
phase in a time t ~  T2 and the magnetisation in the x and y-direction
will be destroyed. The perpendicular components satisfy the equation

d M x
d t

=  - m x/ t 2
d My

d t
—  My/T  2 (2. 59)

The z-component, however, will change appreciably only in a time Tlt
and will reach for time f » 7 \  its equilibrium value M 0.

For M z we have the differential equation

~  = - ( M z -  Mq)/T, (2. 60)
d t

Bl oc h  mentions that T1 »  Tv  W e shall see in chapter 4 that this is
not always the case, and in the following no use of this inequality is
made. W e can now write down the equations of motion in case of an
applied r.f. field by modifying the equations (2. 59) and (2.60) to

d M  - *  - >

- ^  =  r [ H X  M]z -V (M0 -  MZ)!TX
d t  (2.61)

To solve these equations, for a magnetic field (1. 10)
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H x  — Hj cos co t, H y— H\ sin co t and H z =  H 0

transform again to a rotating coordinate system

M x --- u cos co t —  v sin co t

M y — +  (u sin co t +  v cos co t)

The — sign is used for negative y. Using the abbreviations

r =  b t

b =  \y \H 1
a =  \/b Tj

0 = 1  lb Tt
(5 =  (co0 — co) / b — A co/b

the equations of motion reduce to

+  0 u +  <5 u =  0

d v
+  Pv — du +  M z =  0 (2.62)

d M z
—i-----1- a M .  — v — an r  *

A time independent solution is possible with d u
d t

d  v d M ,=  , =  o.dr  d r

we obtain: M z i +  (Tt A coy_______
1 +  (T, A cof +  (y H t f  T ,  T~ M 0

[y I Hi r g (A co T 2)
1 +  (T„ A cor + V W T \ T l Mo

V =
1 +  (T2 A®)* +  (y H 1)*t 1 t 2 M 0

(2. 63)

The strength of the resonance effect we want to measure is — as will
be shown in more detail in the next chapter — proportional to the
components of the magnetisation perpendicular to H 0, which vary with
the same frequency as the applied signal. W e shall therefore maximize
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the expressions (2. 63) for a and v with respect to the frequency co and
the applied field H x.

W e see immediately that the out-of-phase component v of the magne
tisation which is responsible for absorption, is maximal for A  co — 0.

The optimal value

i» =  7* M j T j T i  (2- 64)

is then obtained if y2 Hy T x T z =  1.
The component u, which is in phase with the magnetic field Hy and

describes the dispersion, reaches asymptotically the same maximum va
lue as v for 'A  co =  Vl +  y2 Hy2 TyTvt j \y  an(  ̂ ^ 2  »

If we introduce the complex magnetic susceptibility % =  %' — i x" and
write M — x H ,  then it follows that u — x 'Hy,  v =  %" Hy and from (2.63)

/ _  1 y  I T u i & m T J X o H o
X -  \ + ( T 2 &co)* +  y2Hy2 T yT 2

_______ Irl T i  x q H q_______
* ~  1 +  (r2 A ")* +  y * r i T *

(2. 65)

(2 . 66)

where x0= M 0IH0 is the static susceptibility (1. 18).
The susceptibility must be considered to have different values for the

three components of H. For the z-component of H  and the component
rotating in the opposite direction around the z-axis, the susceptibility
has the static va luer: no resonance phenomenon occurs. W e see from
(2.63), (2.65) that in strong radio-frequency fields of the resonating
component a saturation effect occurs. The susceptibilities decrease for
y2 Hya Ty T o »  1 in proportion to Hy~K The externally induced tran
sitions then compete too succesfully with the transitions caused by the
relaxation mechanism. In the case Ty =  the magnetisation is zero.
This is the heating up (1. 24) in a system of free spins. In the limit
^ —> 0 ' when y* Hys T y T 2 « l ,  the line shape (2.65) is identical
with a damped oscillator curve like (2. 55), as shown in fig. 2. 4. This is no
surprise, since we have rather arbitrarily assumed the exponential decay
of the perpendicular components in (2. 59). The reasoning in this section
cannot be considered as a proof that the line shape near resonance is the
same as that of a damped harmonic oscillator. In the preceding sections we
have already seen that this is in general not the case. B l o c h s  classical
equations (2.62) are especially useful to obtain solutions for non-stationary
phenomena and transient effects (B 7). For these the reader is referred
to the original literature.
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2. 8. Quantumtheory with interactions.
W e shall now derive the saturation formulae for absorption and dis

persion in the stationary state along quantummechanical lines (G 6, K 8).
W e start with the absorption for 1 =  1j2. The situation to be described
is that of a competition between the applied signal and the local field
spectrum, the former tending to make the surplus number n =  N +  — N ~
zero, the latter to keep it at the value of temperature equilibrium

"o
N+  +  N  - n H 0

2 7 k T '

The surplus number n can formally be thought of as being distributed
over a frequency range according to a function <p(v), as'was discussed
in section 2. 6.

n(v) =  ncp(v) j (p (v )d v — \ (2.67)
0

The frequency of the applied signal H x — ƒ H x (v) d v is so well defined,
that cp (v) can be considered as constant over the region where H l is
different from zero. In the radio frequency range such a pure sine wave
for H 1 is practically realisable. According to (2. 16) this signal causes a
surplus number of transitions per second

1U n<p (v) (2.68)

In the stationary state this must be equal and opposite to the num
ber of transitions caused by the relaxation mechanism.

— W ( n  — n0) =  — (n — n0)/2 T x (2. 69)

Equating expressions (2.68) and (2.69), we find for n in the statio
nary state

n =  n° 1 + 1/t T 1H l*y»<p(v) (2>7°)

The power absorbed in the stationary state is obtained by substitu
ting (2.70) in the expression (2.68) and multiplying by the energy
h v =  y ti H 0 absorbed in each transition. Here we assume that the shape
of the distribution of the surplus number is independent of H t

p _  V4 n0 <p(v) y* y t i H a
1 +  Vs y2 H i2 T x <p(v) (2. 71)
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The absorbed power can be expressed in terms of the complex sus
ceptibility. The energy of the system is

is made up from the contributions of v in the x- and y-component of
M.  W ith the use of v — /" H 1 the result for the average absorbed
power is

Using the relation M — lli n0y\i, c o ^ y  H 0 near resonance, and ta
king for <p(v) a distribution (2.55) we get back to B lo c h ’s expression
(2. 66), as it should be.

If ƒ y 2> we must have a detailed balance for transitions between
each pair of adjacent levels. The transitions probabilities for the applied
signal and the relaxation mechanism depend in the same way on rrij.
W ith the result of (2. 52) the difference in population between any two

adjacent levels is again given by (2.70), where now no — ' k T ° '

Already in (1. 16) we have seen that the result of summing over all
values of m leads to the result, that the power absorbed is proportional
to /  ( / +  1). So we find immediately

The spin I  can be determined from the total line intensity.
The corresponding formulae for the dispersion can be derived by

a general theorem. Kr amer s  (K 7, K 9) showed that the relation

M .  d H

The power absorbed by it.

j*  d H M .  H ,

P = a )  %" H x (2. 73)

From (2.71) and (2.73) we find

Vi tio 72 ft l +  Vs y2 H - f  T x c p { v )
(2. 74)

Vs n h 0
ys fi,3 cp (j>) ƒ ( ƒ + ! )  (2.75)k T  1 + V 2 y1 H /  T x cp (v)

2 rv'x"(r' )

0

(2. 76)
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exists between the real and imaginary part of an electric or magnetic
susceptibility. But if the absorption (2.74) is described by B lo c h ’s
expression (2.65) for %" also the corresponding dispersion must be des
cribed by the expression (2. 66) for / .  The integration (2.76) must give
this result (2. 66).

W e have not emphasized a very important assumption in the deri
vation of the saturation formulae. The distribution function <p (v) has
been taken independent of H lt that is: the shape of the distribution of
the surplus nuclei is independent of the saturation. In fig. 2. 5. the ori-

ep(t>) or h(D)

Figure 2. 5.

The distribution of the surplus population over the resonance
frequencies.
a) No saturation
b) Saturation without change of shape
c) Partial saturation in inhomogeneous fields.

ginal distribution is represented by curve a, b is a saturated distribution
of the same shape, and will be realised, if T 1 »  \ /y H\ »  T  Then
the rapid spin-spin interaction will be able to maintain the distribution
b, although the signal only induces transitions near the frequency v. The
assumption is still approximately true if T 1 »  \ /y H\ and T„ »  \ j y H
For then the large applied field will produce transitions over the whole
width of the resonance curve. But in this case formula (2. 65) is not
quite correct as follows from the consideration, that in the limit of very
large H lt we must get R a b i’s formula (2.11) with a line width
A co — y Hlt while (2/65) gives

4

A co =  y H 1 i T J T t

One might infer from this that the saturation is still rather well des-
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cribed by (2.71), if T1 is of the same order as T2. In chapter 4 we
shall see that this is the case for liquids ands gases. For a special model
of He-gas the Bl och  formula will be derived in a independent way.
The assumption that the shape of the distribution function does not
change is definitely wrong, if the distribution is mainly determined by
inhomogeneities A H  in the field H0. In this case the saturated distri
bution will look like curve c in fig. 2. 5. The nuclei which are in another
part of the field are not at resonance and there the unsaturated
distribution h (v) remains. The line shape, determined by a point-by
point measurement at various frequencies v of the applied signal, is al
ways h (r), independent of the degree of saturation. W e have in
general:

+ 00
y" =  y M 0

1 + 77(0 +  y* J+ 2 T \ T  ,
h(v' )dv ' (2.77)

If h (v) varies only slowly in the region where transitions are appre
ciable this becomes

*' =  h  M y  M ° f + T M H T W

- h{v) 2 f l  +  r  7 7  T } T s

Finally it must be stressed that all formulae are derived for a rota
ting magnetic field. Experimentally always an oscillating field is used.
This, however, can be decomposed into two fields rotating in opposite
directions. The field H x — 2 H l cos cot. H y — 0 is equivalent to the set

Hx =  7+ cos co f Hx =  cos co t

Hy =  H ! sin co f Hy — — H i sin co t
(2. 79)

Now only one of these — the right or left circular polarised one for
a positive or negative magnetogyric ratio respectively — will be effec
tive in producing transitions. The transition probability, the absorbed
power, the components of magnetisation u and v etc. in a linear oscil
lating field with amplitude 2 Hj are the same as in the rotating field
with a component H l perpendicular to H 0, for which all discussions
were made. If one prefers to express the magnetisation u and v in
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terms of the linear field H lt one must use a susceptibility x,in, which is
one half of that occuring in (2. 65). Note that H in the"saturation
term of that formula must be replaced by ]/4 Hx\  The maximum va
lue of the magnetisation x ^ i  remains unchanged:

u m»x  =  v m ax =  V , M 01/TJ7\

The reader can easily adapt the other formulae to the case of a linear
field H x. Bloch  and S i e g e r t (B9 )  have discussed the influence of the
other rotating component, which we neglected. The resonance frequency
is displaced by ( H J H q)2 v0 in order of magnitude. Under experimental
conditions one always has H^/H0 <  10~s. So this correction is comple
tely negligible. The only disadvantage of a linear field is that the sign
of the magnetogyric ratio cannot be determined. Nevertheless this infor
mation has been obtained from resonance experiments, for which we
must refer to the literature (M3).



C H A P T E R  III.

THE EXPERIMENTAL METHOD.

3. 1. The experimental arrangement.
3 1.1. The original experiment, by Purcell, Toney and Pound.

From the preceding chapters it should be clear .ha. theproblem is to
measure a small change of the magnetic suscep.tb.hty »
freauency range, caused by the resonance of the nuclei. The essentia
nart of the apparatus will therefore be a coil, placed in a cons an
magnetic field H 0 and filled with a material, which contains the nuc ei
to be investigated. The coil is tuned by a condenser in paraUd. and
a current in the coil is excited by coupling it to a generator. The position
nf the cofi is such, that the radio-frequency field in the coil is per
pendicular to H 0- On the other hand the circuit is coupled to the inpu
of a receiver, tuned to the same frequency. A t the output of the receiver
we measure the transmission through the LC-circuit W e j a r y  „
slowly On hitting the resonance of the nuclei at the value H 0 -  2*  o//-
a change in the output reading will be recorded, as the absorption y
L  nuclei lowers the Q of the LC-circuit by a small amount. The
quality factor Q is defined by

energy stored in the jiircuit
power dissipated per cycleQ =  2 tt

(3. 1).

At resonance the power absorbed per unit time is in reased by the
energy absorption of the system of nuclei. The real part of the n
susceptibility causes a shift in phase of the radio-frequency signal, which
was not detected by the original arrangement. It is plausible, an wi
be proved in section 2 of this chapter, that the relative decrease ‘n
vnltaae across the coil is proportional to the change in the nuclear
susceptibility and the Q of the coil. In the original experiment by
P u r c e l l  T o r r e y  and Pound ,  the resonant circuit consisted of a
short length of coaxial line, tuned by a capacitance to 30 Mc/sec as
shown in fig. 3. 1. The power was inductively coupled in and ou y
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small loops A and B. The inductive part of the cavity was filled with
850 cc. paraffin. The Q obtained was 670. Assuming a line width of
5 oersted in paraffin, a change in % of the order of 3.10“ 6 could be ex
pected, corresponding to a change
of less than 1 % in output power.

To increase the relative change a
bridge circuit was built, which ba
lanced out the main part of the sig
nal going into the receiver. By
means of an attenuator and pieces
of coaxial line of variable length the
signal going through one branch
could be adjusted so as to have
about the same amplitude and 180°
phase shift with respect to the sig
nal going through the cavity in the
other branch of the bridge.

At the resonance of the protons
in the paraffin the output changed by 50 %. The change was positive
or negative depending on the way the bridge was balanced. The reso
nance occurred at that value of the magnetic field H0, which could be
expected from R a b i’s measurement of the proton moment and the re
sonance frequency used. With the same circuit also the resonance of H1
and F19 nuclei were observed in a mixture of Ca F2 powder and mi
neral oil. The amplitude of the radio-frequency field in the cavity was
kept as low as possible «  10-4 oersted) in order to avoid saturation.
From (2. 65) we see that saturation occurs if ys 7\ T2 «te. 1.

Assuming T2= 1 0 -5 sec, corresponding to a width of the proton
line of about 3 oersted, we find that the relaxation time could be about
four hours without saturating the spin system. An upper limit for the
relaxation time in paraffin of 60 sec was established by observing the
resonance as quickly as possible after the magnetic field H 0 is applied.
Immediately after the field is switched on, the relative population of
the protons in the upper and lower level will be given by the a-priori
probabilities of these levels, which are equal. Therefore a resonance can
only be observed after a time comparable to the relaxation time has
elapsed. This upper limit of 60 sec is historically important, since the
available information at that time, consisting of W a lle r ’s theory and
G o r te r ’s experiments, indicated very long relaxation times.

3. 1.2. Further experimental development.
Already in their first papers Purcel l ,  T o r r e y  and P o u n d  (P 3)

E222 Brass
E 3  Coppei

Mica

Figure 3. 1.
Cavity, used in the first experiment of
nuclear magnetic resonance. The cavity

was filled with 850 cc. Paraffin.
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mentioned the advantage of modulating the magnetic field H„ with an
alternating field of small amplitude and low frequency,

H z =  H 0 +  H s sin cos t (3. 2)

The method of modulation had been applied in other fields on many
occasions (e.g. in photo-electric amplifiers (M2)). The advantage is not
an improvement in the essential signal-to-noise ratio, but a reduction
of the influence of external disturbances. Instead of measuring the d-c
output of the detector directly, in the modulation method the audio
frequency signal is fed, after detection, into an audio-amplifier which
has a very narrow band around the frequency cos, which was taken
equal to half the frequency of the mains, i.e. 30 cycles per second.
One could use an ordinary audio-amplifier with an a.c. galvanometer
at the output. Actually a phase-sensitive ,,lock-in” amplifier (D3) was
used, which will be described in the next section. The cavity was
replaced by a coil, of about 2 cm long and 0.7 cm in diameter, tuned
by a variable condensor. The quality factor was about 10 times smaller
for this circuit compared to the preceding one, corresponding to a
similar decrease in linear dimensions. This implies, of course, a loss
in signal strength. The cavity, however, required a large magnet,
which was not permanently available. Furthermore even in the large
magnet the field was not homogeneous over the region of the cavity,
so that the maximum signal from the nuclei was decreased according
to the lower value of h (v) in (2.78). In addition the cavity required
unwieldy and sometimes not available quantities of material. Also the
bridge circuit was improved as described in the next section.

R E  B R IDG E

MAGNET

□  MODULATION COILS

DUMMY
CIRCUIT

3 0  Me
GENERATOR DETECTOR

3 0  ~
GENERATOR

„ L o c k  in"
3 0  ~

RECEIVER

■RESONANT

CIRCUIT

Figure 3. 2.
Block diagram of the experimental arrangement, which is described in sections 3.1.3. and 3.1.4.
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W ith the apparatus represented schematically in fig. 3. 2 the nuclear
resonance could be observed either on the screen of the oscilloscope
or on the output L of the 30 ~  audio amplifier. In the first case the
amplitude of the 30 ~  modulation sweep is larger than the line width.
On passing through the line the detector current measured by M changes
proportional to the absorption by the nuclei, if the bridge is balanced
properly. The change in voltage across a resistor in the detector circuit
is put directly on the vertically deflecting plates of the cathode ray tube.
On the horizontal plates we put a synchronous 30 ~  sine sweep. On
the screen appear two absorption curves, because in each cycle the
sweep passes twice through resonance. The two curves can be made
to coincide by proper adjustment of the phase of the horizontal sweep
(see fig 3. 15). By changing the main field H 0 the absorption lines would
shift together and finally disappear from the screen. A section of the
magnetic field from H 0 H s to H 0 -f- H s is plotted in the horizontal
direction on the oscilloscope. For observation on the meter L the sweep
amplitude was made small compared to the line width. As will be
shown later the deflection of this meter was then at any point H 0
proportional to the derivative of the curve on the oscilloscope at the
corresponding field strength.* By changing H 0 very slowly the entire
derivative function could be measured point by point. W e shall now
describe the apparatus in the block diagram in more detail.

3. 1.3. The radiofrequency bridge.

It is important to be able to balance the bridge independently in
amplitude and phase. To obtain these two orthogonal adjustments
first the circuit shown in fig. 3.3. was used. The various parts are
linked together with coaxial lines, of which the outer conductors are

r '.f : b r id g e

Figure 3. 3.

Radio-frequency bridge, described in the text.
Gi — 3 [Xfx F C2 — 5 u y  F C — 100 y y  F.
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connected to the grounded terminals of the generator, resonant circuit
and receiver. T h e  attenuator A was of the inductive type, used for 10
cm. waves. T h e  inner conductors of the coaxial lines w ere term inated
in small loops, the distance betw een which could be varied. T h e  attenuation
between the loops is characteristic for a wave guide (K 11) „beyond cut
off". At 30 M c/sec the impedance of the loops is practically zero. T he
attenuation is large and not accompanied by a noticeable phase shift.
In order to obtain the same low transmission in the other branch a
very  short closed stub S was inserted, which also acted practically like
a short circuit. T o  this voltage generator of very low internal impedance
the resonance circuit was loosely coupled by a small condenser Q ,  while
on the other side it was critically coupled to the receiver input by
another condenser Q .  T he non-resonant line betw een P and the carbon
resistor R, which is equal to the characteristic impedance of the coaxial
cable is of variable length and provides a pure phase adjustment. T he
lines of one quarter w ave length transform the short circuits into
open circuits. Looking from the generator into the bridge one „sees
the resistance R. This expression means that the impedance between
the two terminals of the bridge at the side of the generator is R.
Between the terminals, which are connécted to the input of the
receiver, is the impedance of the LC circuit, tranform ed by Q .  If this
coupling has the desired critical value, the maximum available power
from the resonance circuit will flow into the receiver. T he disadvantages
of this bridge are its low transmission and its asymmetry. T he minimum
attenuation is about 40 db, and the generator has to be unnecessarily
powerful. T he power required for the nuclear experiments is essentially
low, but since the maximum output of the available generator was 2V.
into 75 12, it was desirable not to waste too much power.

T h e  asymmetry of the bridge allowed a balance of the bridge only
at one frequency. Since the generator showed some frequency modulation,
this was very undesirable. M oreover was the balance sensitive to very
slow drifts of the frequency. Therefore the circuit of fig. 3. 4 was adopted
for the final measurements. T he generator pow er is fed into two coaxial
lines of equal length term inated in their characteristic impedance. T he
condensers Q  and Q  provide a loose coupling to the resonance cir
cuits, which are tuned at exactly the same frequency and have the same
Q. T he output condensers C 3 and C 4 provide critical coupling between the
resonance circuits and the receiver, for which the tw o circuits appear
in parallel.

Since part of the change in pow er from the nuclear resonance now
flows into the dummy circuit instead of into the receiver, the available
signal-to-noise power ratio is only one half of the optimal value, obtained
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R .F  BRIDGE

Figure 3. 4.

Improved radio-frequency bridge, described in the text.
Ri =  R2 =  50 fi
Q  =  3 //// F, C2 — C7 =  Ca =  5 m i  F, C3 =  C4 =  4 F
C5 =  C6 =  60 j-i/i F.

with the preceding diagram. A coaxial line of one half wave length
produces a phase shift of 180° degrees. For reasons to be discussed in
the next section, the balance was never made complete. W hen the
remaining unbalance is in amplitude, the imaginary part of the nuclear
susceptibility is measured; when the remainder is phase unbalance, the
phase shift of the signal and thus the real part is measured. The
unbalance used in the experiments varied from 0.1 to 0.001 in ampli
tude of the original signal (20-60 db) and was stable at these values.
For short time intervals balance to one part in 30000 (90 db) could be
obtained. The ratio by which the signal is reduced in the bridge we
shall call b. The radiofrequency coil, which is placed in the magnetic
field, is shown in fig. 3.8. The coil consists in a typical example of 11
turns of copper wire of 0.1 cm diameter. The length of the coil is 1.7
cm, and its inside diameter 0.6 cm. Samples, contained in thin walled
cylindrical glass vessels of approximately 0.5 cc, could easily be placed
in the coil and replaced. The brass box, which was below the magnet
gap, contained the other circuit elements of the nuclear resonance circuit
in fig. 3. 4.

With the trimmer C7 minor adjustments in the phase could be made.
The dummy circuit contained essentially the same elements, although
no particular care was taken to make a geometrical copy. For the
dummy the resonance frequency was adjusted by selecting the tuning
capacitance C6; the coupling condenser C3 formed together with C8 a
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differential air trimmer. If G, increased, C, decreased by about the same
amount and this provided a phase-independent adjustment of the amplitude
for the balance of the bridge. The Q of the dummy was made equal
to that of the nuclear resonance circuit by putting a carbon resistor
R8 as a parallel load on the circuit. The analysis and trimming was
done by connecting the resonance circuits to a signal generator and
measuring the transmission as a function of the frequency with a syl-
vania crystal detector, shown in fig. 3.5. Resonance circuits were also

made for 14.4 Mc/sec and 4.85 Mc/sec
respectively. As a matter of fact, the
same size of coil was used and only
the condensers were adjusted. Of
course also the half wave length cable
had to be changed, which at the lowest
frequency had a length of about
twenty meters. The Amphenol cables
have a polythene dielectric and a
characteristic impedance of 50 Q. It
might be worth while to obtain the
180° phase shift by a radio frequen

cy transformer with centre-groundecPsecondary instead of a difference
in line length, although the method used by us proved to be successful.

3. 1.4. Other apparatus.

The signal generator was of the type General Radio 805 C. The
frequency ranged from 16 kc to 50 Me. The output could be varied
continuously from 0.1 p V  to 2 V. The characteristic output impedance
was 75 O. So there was a mismatch of three to one with the bridge.
This was harmless and no attempt was made to eliminate it, as could
be done, e.g. by a quarter wave transformer, The receiver is a National
H R 0  5. The narrow passband of this instrument (1500 cycles/second)
was of little use in the present experiment. It necessitated more frequent
adjustments of the tuning. Only for observation with the oscilloscope
it improved the signal to noise ratio. The H R O 5 was fed by an
electronically regulated power supply. In the experiments at 30 Mc/sec
the receiver was preceded by a pre- amplifier, developed at the Radia
tion Laboratory, Cambridge (Mass.). Originally designed for use in
Radar equipment, it had a pass band from 25-35 Mc/sec. Its use for
our investigation was by virtue of its extremely low noise figure, at
least 10 db less than the commercial receiver. Thus it made possible
the detection of signals three times weaker in amplitude, and increased

o.cozjiF

Figure 3. 5.
Crystal detector with galvanometer.
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Figure 3. 6.
T he phase sensitive, 30 ~  mixer-amplifier, according to D  i c k e (D 3).

the accuracy of measurement of signals of the same size by a factor
three. The wiring diagram of the tuned phase sensitive audio-amplifier
is given in fig. 3.6. The twin T  feed-back filter-stage tuned at 30~,
is to reduce the influence of harmonics and to prevent overload of
the later stages by spurious induction from power lines etc. In the
other 6 SJ 7 tubes the 30~ signals originating from the nuclei in the
modulated field is mixed with a 30~ signal of about 30 V  put on the
suppressor grid. The last stage is a balanced amplifier for direct cur
rent. If the output meter is fast, the time constant and the pass band
are essentially determined by the RC-circuits between the mixer and
final stage. These lead to a differential equation for the output-reading
which is similar to that of a critically damped galvanometer. The be
haviour of the phase sensitive amplifier with respect to the signal-to-
noise ratio is the same as for a critically damped a.c. galvanometer
with time constant RC. The detection is sensitive both to frequency
and phase. The generator providing the 30 ~  signal is represented in
fig, 3. 7. It consists of a multivibrator with subsequent filters to get a
30 ~  harmonic oscillation, a power amplifier to provide the current for
the modulation coils, a phase shift circuit and an amplification stage
for the beat voltage on the suppressor grids of the audio mixer, at the
same time serving for the horizontal sweep of the oscilloscope. Alter-
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natively to the multivibrator a synchronous motor was used to drive
a small 30— generator (40 Volt, 1000 & ) . The use of 3 0 ~  excluded
any response of the audio-amplifier to spurious 60 ~  signals or harmo
nics thereof. Because the multivibrator was locked to the frequency of
the mains, possible zero drifts, arising from slow changes in phase with
respect to the mains, were excluded.

The magnet was made by the Société Génévoise. The pole pieces
are schematically drawn in fig. 3. 8. The face of the pole pieces was
14 cm in diameter and
the width of the gap
was varied between 1.8
and 3 cm. For the first
width a field of 7000
oersted was obtained at
15 amp. and 10 Volt,
11.000 oersted at 30
amp. and 16.000 oer
sted at 80 amp. The
strongest field used was
8700 oersted. The cur
rent was supplied by
two heavy duty truck
batteries of 300 ampere
hours each. An unsuc
cessful attempt had
been made to regulate

POLE PIECE
fp E?

I§2

POLE PIECE

1
s cm

^  Brass
■  Copper
vm Polystyrene

Figure 3. 8.

The radiofrequency coil, in which the nuclear resonance
takes place, between the pole pieces of the magnet.

the magnetic field, if the power was supplied by a generator. Since the
time constant of both the magnet and the generator were of the order
of one second and at the same time and unusual large periodic pertur
bation in the generator voltage occurred at about this frequency caused
by an imperfection in the generator, the system would break into os
cillations before sufficient regulation was obtained. The batteries, how
ever, supplied a current which was very stable over intervals of ten
minutes or more. Around the pole pieces two modulation coils were
placed consisting of about 50 turns each. At 0.5 amp. they could pro
vide a 30 ~  sweep of about 3 oersted in amplitude (6 oersted total
width). The amplitude of this sweep was constant within 2 %  over the
whole region of the gap. The main field was supposed to be made
more homogeneous by the rim of 0.04 cm high and 0.8 cm wide on
the edge of the pole pieces (R 8). A discussion of the actual homogeneity
will be made in section 3, 5. The current through the magnet coils was
measured by the voltage drop across a shunt of about 10~2 Q .  The
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E.M.F. was balanced by a Leeds and Northrup type K potentiometer.
The magnet current could be adjusted roughly by the number of 2 V
cells used. Then the current passed through a manganin band of 0.2 Ü,
of which any part could be shorted by a sliding contact. The fine re
gulation was achieved by a rheostat of 5 Q, in parallel to a 0.05 Q
manganin resistance in the magnet circuit.

3. 2. The radio signal caused by nuclear resonance.

W e shall assume that the amplitude and frequency of the modulation
sweep are so small, that the solutions obtained in chapter 2 for a time
independent field H 9 remain valid. In section 3. 7 we shall indicate some

violations of the results, if the rate
of change of the magnetic field is
too fast. Since the condensor C, in
fig. 3. 4 provides a loose coupling,
we can consider the resonance cir-
cüit, which contains the nuclei, as
being driven by a constant current
generator i0 =  i co Cx Vlt where V1
is the voltage on Rx (fig. 3. 4). The
admittance at resonance of the cir

cuit consists only of the conductance 1/R0 =  1/co L Q. At nuclear reso
nance the value of L changes according to

Figure 3. 9.

The aequivalent diagram of the nuclear
resonance circuit, loosely coupled to the

signal generator.

A L = [ i + 4  n(x' - i z " ) q

. A £ * » 4 ot(*' — i / ) q L ,

(1 +  4 n Xo q)] Lv

(3. 3)

since Xo is negligibly small compared to x! and x"• The susceptibilities
are given by (2. 75) and (2. 76), and q is a filling factor. If the field H1
in the coil were homogeneous, it would be the fraction of the volume
filled by the sample. The change in admittance produces a change in
voltage across the coil

A V -  V0

Vo ~  ifj Ro

v=:°iTïd+Tt, + i“Cr
Making use of (3. 3), of the expression for R0 and of the fact that

the change in admittance by the nuclear absorption and dispersion is
small, we obtain finally:
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A V  — ^ z ) ceŝ  L — 4 71<7 Q ( /  +  i ï )  v 0 (3. 4)

W e are allowed to consider the nuclei as a voltage generator re
presented in fig. 3. 10. The diagram holds also for the bridge of fig.
3. 3. The bridge of fig. 3. 4 behaves as a voltage gene
rator A V/2 with an internal resistance R0/2.

By virtue of its dependance on the susceptibility is A V
a function of the Larmor frequency and so of the magnetic
field H 0. One can plot A V  in the complex plane. If one
uses B 1 o c h’s expressions (2. 65) with a factor 1/s for the li
near x' and x", one finds that the locus of A V  is a circle
in the case y3 H V T1 Tz «  1.

On substitution of z =  A co T 2 we have in this case

(A V)abs =  2 n q Q V 0M 0y T a{ l +  z3)-1 (3. 5)

(A V)disp = 2 7 t q Q V 0M 0y T 2z(l  + z T '  (3.6)

If the saturation term is taken into account, on
of z the locus is found to be an ellipse the eccentricity of which de
pends on Hi. Now it has to be remembered, that the receiver detects
only changes in amplitude of the input voltage. If the balance were
complete, the output of a square law detector would be proportional
to | A V |3. Under operation conditions the balance is never made com
plete and the situation is represented by fig. 3. 11. OA is the unbalanced
signal, BO is the signal coming through the dummy circuit. If we go
through the nuclear resonance by varying H 0, A goes around the circle,
and the input signal of the receiver for a given value of H 0 is BC, and
on the screen of the oscilloscope we see the variation of |£ C |3 during
the sweep of the magnetic field. It has to be borne in mind that the
course of C over the circle during the sweep is far from linear in H 0.
The entire lower half e.g. represents the narrow part between the maxi
mum and minimum of the dispersion curve, and C will travel much
faster here than on the upper parts of the circle. On observation with
the phase sensitive audio amplifier the small modulation of the field
causes C to go back and forth over a small part of the circle. The
amplitude of BC is then a function with a period of 1/30 sec. The
amplifier is not sensitive to the harmonics and will record only the
30 ~  component in the signal. In principle this can be calculated from
fig. 3. 11 for any kind of balance, that is for any point B, and for any

--------o

R0

o
Figure 3. 10.

The nuclear
magnetic reso
nance is aequi-
valent to a vol
tage generator
with internal
impedance R 0.

elimination
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value of H0 and Hs. Although fig. 3. 11 is drawn for the special case
that the locus of A V  is a circle, this is not essential either and the
same reasoning holds for any distribution function cp (v), and any value

of H1 in (2. 75). Here we
y  /# shall discuss the limiting case,

very well approximated in
practice, that the change in
voltage produced by nuclear
resonance AC is small com
pared to BA, the signal
which is left after the main
part of OA =  Vq has been
balanced by OB. The rela
tion | AC | < <  | BA | can be
written as

A V  «  b V0 (3.7)

Assuming a square law de
tector, the output will be
proportional to

I V |2 =  b2| V0|2 +
+  2b R e(V 0A V) +  | A V |2

(3. 8)

Neglecting the last term,
the nuclear signal is propor
tional to the real part of the
product V0 A V. If B there
fore lies in line with A and
O, only the real part of A V,
that is only %" contributes

to the signal. With unbalance in amplitude the absorption is measured.
If B is in the position B', only %' contributes. With unbalance in phase
the dispersion is measured. To obtain the reading of the meter L, we
have to look for the 30 ~  component in (3. 8). Assuming that the am
plitude of the sweep is small compared to the line width H ,T a «  1,
we can expand A V, which via /  and %" is a function of
H  =  H0 +  H, cos co, t, in a Taylor series.

Figure 3. 11.

Diagram of the voltages in two branches of the
bridge, OA and BO, and of the voltage AC,

generated by the nuclear resonance.

A V(H ) =  A V (H 0) +
d  (A V) Hs cos m31 +  y s d2 (A V)

d  H 2 H s2 cos2 cost + ...
(3.9)
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The quadratic term has no components at cos . W e neglect terms in
H s and higher orders. It is readily seen from (3.4) and (3.9), that
the voltage from the bridge can be described by a 30 ~  modulated

Formula (3. 11) holds for unbalance in amplitude. On the output meter
L we then measure the derivative of the absorption function. For phase
unbalance we measure the derivative of the dispersion function, and a
linear combination of these derivatives, if the balance is of an interme-

In this experiment an essential limit for the obtainable accuracy is
set by the thermodynamically determined fluctuations in voltage across
the equivalent resistance of the generator of fig. 3. 10. To a resistance
R 0 of temperature T  an effective noise voltage generator has to be
attributed. The mean square voltage of this generator in a frequency

The precision of a measurement is limited by this fluctuating vol
tage and the decisive quantity is the signal to noise ratio f V j j V r f .
W e shall now see what becomes of this ratio with the various methods
of observation. W e first suppose that the receiver has no sources of
noise in itself. The voltage from the bridge can be represented by
Vs +  V„, where V, is given by (3.4) or by (3. 10), and

The problem consists in finding the low frequency part of the output
spectrum after detection. W e shall give the results for a square law
detector in the case that the pass band of the receiver is a rectangle
(outside the frequency range >'0 -  Vs/?. v0 +  % 0 the gain is zero). A

w ave.

V s — b V 0 cos co0 t [1 -f- m cos cos f] (3. 10)
with

4 n q Q (3. 11)

diate type.

3. 3. Limitation o f the accuracy by noise.

range A v is

V„2— IN ( v ) d v = z 4 R k T  A r (3 12)

V n =  j  A  (co) eico (d  co

I V„ I2 =  ƒ IN (v) d  v (3. 13)

5



detailed theory of the noise with special attention to the noise in non
linear devices has been given by Ri c e  (R 4). He also gives the results
for a linear detector, which are not essentially different from the follo
wing ones. First we deal with the case that the signal is given by

V,  =  (Vo -(- A V) cos co0 t (3.14)

and the observation is made on the screen of the oscilloscope, which
has a pass band larger than /?, or with the meter M (see fig. 3. 2),
which we assume to have a rectangular pass band ft. The time of
indication of the instrument is related to fix and approximately rl VA*
If the balance of the bridge is complete and the signal power small
compared to the noise power: b V 0 — 0, A V 2 «  4 R k T ft, the
signal to noise ratio of the amplitude is A V"2 /8 R k T ft for the oscil
loscope and A V z \ R k T  M & ft ftY for the slow output meter. If ft V 0 =  0
and A V2 »  4 R k T  ft, these ratio’s become A V/ V 3 2 R k T  ft and
A V I '/ 3 2 R 0 k T  ft1 respectively. If there is a large unbalance b V 0 »  A V
and also if b~ V0*»  4 R k T  ft, we find

/signal) _ A V
y noise Jc.r.o. l /&R0k T f t

/signa!) -  A V  —  (3.15)
\  noise jmeter M I7 8 R 0k T p 1

If the meter M has the characteristic pass band of a critically dam
ped galvanometer, with a period of the free system equal to t, (3. 15)
goes over into

/signal) _  AV ( (3. 16)
y noise j meter M Ï  2 n R ak T

W e see that the cases with a large unbalance are the most favo
rable. If the observation is made with the phase sensitive audio ampli
fier and r is the time necessary to take a reading, equal to the RC-
value of the filter, we find for the case of large unbalance

/signal) _ V 0m b i r  ^  j ^
\ noise jmeter L \ '4nR0k T

W e now substitute the expression for the signal A V  (3.4) into
(3. 16). A limit is set to the maximum value of the occurring products
u — yr' V 0 and v — x" V 0 by the relaxation tim e!). The voltage across
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the coil is. of course, proportional to the amplitude of the radiofrequency
field T/j. If we assume the field H r to be uniform over the whole vo
lume Vc of the coil, we find

In chapter 2 we already found that the maximum value for H x or
X" is Vs Xo Ho T3 T1-1 /2. Inserting this value and (3. 18) into (3. 16)
we find after elimination of a>0 and L

noise =  1/fl 9 N  QVl Vc Vs 76/2 H08/> T r ^  r 1* h2I ( I+  l)(k T ) ~ ^  F ~ '/«

Using the modulation method we have to insert (3. 11) and (3.18)
into (3. 17) and then to determine the maximum value of

The sweep amplitude Hs cannot be chosen larger than the line width
21 y  T2. If we take this value, we already should take into account
higher order terms in the expansion (3. 9). So we introduce a number
7, smaller than one, and put y Tg H s =  2 A. W e obtain for the signal
to noise ratio with the modulation method

noise =  1//l2 1/2 ^  T2'^ T ~ 1̂  //• ft2 ƒ (7  +  1 )(kT)~3̂  F ^
(3.21)

If we use  ̂the bridge of fig. 3. 4 instead of fig. 3. 3 we have to add
a factor 2 /» to (3. 19) and (3.21).

Furthermore we have already added a factor F ~ V«; F  is a number
larger than one and is called the noise figure of the receiver. Due to
the shot effect of the current in the tubes and the Brownian motion in
the resistors, the receiver itself is also a source of noise. The over-all
effect of this additional noise on the precision is described by the quan
tity F, defined by
signal output power of generator _  p  signal output power of receiver
noise output power of generator ~  noise output power of receiver
or F  is the number, by which the absolute temperature of the internal

V 0 =  H x co0 i  Vc L /4 n (3. 18)

(3. 19)

W e find =  74 xo H 0 7 \ - v * r 8v* (y r 3 h .) (3. 20)
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resistance of the generator has to be multiplied, if we w ant to ascribe
all the noise to tha t resistance. T he factor (AT) —3/2 F ~ '/ 'i n  (3. 19) and
(3. 21) must be split in two parts.

In ( k T ) - '  the tem perature T  refers to the sample, and in ( kFT)~X
the effective noise tem perature of the bridge is denoted by FT.

T h e noise figure is not a constant of the receiver, but depends on the
impedance across the receiver input, and may also be a function of the
frequency. It can be measured by the circuit of fig. 3. 12. T he tube is a

TO BRIDGE
TO RECEIVER

Figure 3. 12.
The noise diode. The filament is heated by a variable current,
which passes through an r.f.filter. The plate current also passes
through an r.f.filter. The impedance of the LC circuit is
high compared to the various resistors R, parallel to it.
W ith the switch A we can also put the bridge impedance in
parallel to the tuned plate impedance. Further explanation is

given in the text.

diode with tungsten filament, the tem perature of which can be varied.
T h e  diode current id, measured by the ma-meter, is always tem perature
limited. W e  switch A into position 2 and measure the diode current
necessary to double the noise power output of the receiver for various
values of R. From this we obtain the noise figure as a function of R
according to

2 e i d R*&v 4 R  k (F T) / \ v_ g
4 R  k T A v ~~ 4 R k T & v

Usually we find that the function F( R)  has a minimum. T hen  we
switch A into position 1 and measure the noise figure with the bridge
impedance. If the value of F  so found is not close to the minimum value,
the impedance of the bridge should be transform ed, e.g. by another choice
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of the coupling condensers. T he condenser C x is in every case adjusted
for resonance. T he noise figure for the pre-am plifier in combination with
the bridge was found to be 2, for the N ational H R O  5 receiver about 12.

W e  now summarize the results of this section. T he precision of the
method is limited by the general thermodynamical fluctuations in voltage
across a resistance. These could be reduced in our case by lowering the
tem perature of the bridge impedance. A t the same time, however, care
should be taken that the relative influence of noise sources in the receiver,
expressed by the noise figure F, remains low. Form ulae for the signal to
noise ratio have been derived. It appears from (3. 16) that the radio
frequency bridge must never be completely balanced; moreover, a stable
complete balance would be hard  to attain experimentally. W ith  sufficient
unbalance the signal to noise ratio is independent of the degree of balance
b. T hen  the nuclear signal is detected by mixing with the main carrier
ra ther than by a square law  detector.

By observation on the audio output meter L the ratio is independent
of the band w idth of the receiver. Increasing the precision by narrowing
the pass band of the audio amplifier, is equivalent with an increase in
the time required to make one measurement. T he main advantage of the
phase sensitive audio amplifier is not a better signal to noise ratio, for
according to (3. 19) and (3 .2 1 ) one looses a f a c t o r ^  A compared to
the reading on meter M  in the detector circuit, having the same time of
indication. But the apparatus becomes less sensitive to external distur
bances, as these usually do not have 30 — components. T h e  effects
of drifts in generator output and detector current are eliminated to a great
extent. T he zero reading is steadier. T he balance of the bridge is ne
cessary, as it is hard  to find a detector, which can indicate changes of one
p art in 105 and still has a good noise figure. T h e  balance reduces
further the influence of drifts and frequency modulation in the output of
the signal generator. From (3. 21) we see that for the same coil the ac
curacy increases as v0 U, as H 0 is proportional to the resonance frequency
v0 and Q  to v„ Vs. Since Q  is also proportional to the linear dimensions
of the coil, the accuracy increases proportional to V c Vs, when the coil
is enlarged.

For large coils, however, more current is needed to produce the same
field density, and therefore higher demands are put on the balance. Also
the field H 0 has to be homogeneous over a larger area. Finally we w ant
to stress the importance of having a good filling factor q  and a high
density o f nuclei N .
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3. 4. Measurement of the line width and relaxation time.

In this section we assume that the magnetic field H0 is perfectly homo
geneous. Suppose that we have adjusted the frequency of the signal
generator and the magnetic field H0 approximately to the gyromagnetic
ratio of the nuclei in the sample in the coil. On applying a modulation
of sufficient amplitude to the field we shall pass through the resonance
twice in each cycle. On page 71 an oscillogram of a resonance line at
29 Mc/sec of protons in 0.4 g glycerin is represented. Figure 3. 13 shows
the absorption, figure 3. 14 the dispersion. The pictures were taken with a
linear time base, while the field modulation was a 30 —' sine function.
If we also put a 30 sine sweep on the horizontally deflecting plates of
the oscilloscope in phase with the other sweep, we obtain a linear scale in
oersted. The oscillogram in fig. 3. 15 shows a resonance line in the forth
and back sweep. The curves do not coincide because a small phase
shift was left on purpose. The peculiar wiggles will be discussed at
the end of this chapter. We determine the amplitude of the sweep by
using a pick up coil of 1200 turns with an average area of 3 cm2. The
30 — voltage induced in this coil, when it is put in the magnet gap is
measured with a Ballantine vacuum tube voltmeter. Another way to
calibrate the horizontal scale on the oscilloscope in oersted is to change
the radio frequency, say, by 0 . 0 5 After rebalancing the bridge the
resonance line appears on the screen somewhat shifted with respect to its
original position. The displacement corresponds to 0.05 % of the total
magnetic field.

Thus we are able to express the distance between the points of half the
maximum value in oersted. The relation between this AH  and T2 for a
damped oscillator curve is (compare section 2. 6),

7 A H =  2/T’2
and for a Gaussian (3.22)

7 A H  — Ain 2/T2

With the audio amplifier the line width can be measured too. A sweep
of a fraction of the line width is used and the total magnet current, deter
mining H0, is changed in small steps. The calibration can again be made
by the shift of the resonance with a small variation in the frequency.
For variations of the magnetic field of less than 0.05 '% a linear relation
between the current and the field was found. The determination of the
line width in this way was less accurate, as slight hysteresis effects can
not be entirely excluded. It was only applied to wide and so usually very
weak lines, which were hardly visible on the oscilloscope because of the



Figure 3. 13.

Oscillogram of the nuclear mag
netic resonance absorption of
protons in glycerin at 29

Mc/sec.

Figure 3. 15.

Oscillogram of the nuclear magnetic reso
nance absorption of protons in water at 29
Mc/sec. The peculiar wiggles are a transient
effect, which is discussed in section 3.7.
Two resonances occur because a sinusoidal
sweep was used with a small phase shift,
so that the curves do not coincide. The
wiggles always appear after the sweep has

passed through resonance.

Figure 3. 14.

Oscillogram of the nuclear magnetic reso
nance dispersion of protons in glycerin at

29 Mc/sec.

Figure 3. 16.

Oscillogram of the nuclear
magnetic resonance absorp
tion of protons in water at
29 Mc/sec. The wiggles are
shown for a linear sweep.
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noise background. In fig. 3. 17 a typical derivative absorption curve is
plotted for the proton resonance in a 0.5 N  solution of Fe ( N 0 3)3.
It must not be confounded with a dispersion curve! T he distance AH '
between the maximum and minimum in these curves, that is between the
points of maximum slope in the original absorption curve, is related with
T 2 for the damped oscillator by

r & H '  =  2/V3 r 3
and for the Gaussian by (3. 23)

7 A =  2/Tj

T he actual shape of the resonance curves is discussed in detail by Pake
( P I ) .  It cannot be easily distinguished from the experimental curves,
which type of curve we have. Dispersion curves would give a better
criterium. A Gaussian distribution is the most likely.
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Figure 3. 17.
* c

The derivative of the magnetic resonance absorption of protons in a
Fe (N03)3 solution, measured with the phase sensitive audiomixer.
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If the width is measured in stronger radio frequency fields a broadening
of the line by saturation will set in according to (2. 63). T he saturation
effect enables us to measure the relaxation time T ±. T he absorption curve
is measured at various values of the output of the signal generator. O ff
resonance the detector current meter M reads proportional to this power,
that is proportional to V q2. However, it the power of the generator has
been turned up, we turn  the gain of the receiver down, so that M reads its
original value. In this w ay a direct influence of the change in the gene
ra tor output on the reading of the meters M and L is eliminated. T he

J
. . . . . . . .
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modulation H s and the balance of the bridge are kept unchanged. From
(3. 8) we see that the deflection of the audio meter L will be proportional
to the 30 ■—' modulation, and under the conditions mentioned will be

d y "
proportional only to ~ -ry-

a H
U sually we do not make use of the whole curve, but merely determine

the maximum deflection in either direction. A simple calculation *) shows
that the extreme values in the derivative of the absorption of the damped
oscillator type (2 .6 3 ) decrease with increasing H x yielding a deflection
proportional to

(1 + y ‘ H 1* T l Ta)-*/' (3.24)

T he extreme in the derivative of the dispersion should decrease only as
(1 + y 2 H x2T 1T 2)~i. So for higher degrees of saturation it becomes
more and more im portant to have pure balance, as the effect of / '
decreases more slowly than of F o r the Gaussian distribution it is not
possible to give the decrease in the meter reading in a closed form, but
the general behaviour is the same. T he reading starts to decrease rapidly
with increasing power, when y 2 H x2 T x T2 becomes of the order of unity.

In any case, for the same line shapes
d H will be the same function of

y2 H x2 T \ T 2 and H x is proportional to the output voltage of the gene
rator. If we plot therefore the maximum deflection of meter L against the
reading of the output meter of the signal generator on a semi logarithmic
scale, we obtain a series of parallel curves, which decrease rather
suddenly around the value of H x given by y 2 H x2 T x T 2 = 1 . In fig. 3. 18
some typical curves are drawn, obtained for saturation of protons in ice
at various temperatures. For comparison the theoretical curve (1 +  x2 Y~dA
is indicated. N ow  twice the horizontal distance between the curves for
different samples will give us the ratio of the products T x T 2 in these
samples. A nd if T 2 has been measured in an independent way, we
obtain the ratio of the relaxation times T x. An absolute determination
would be possible if the value of H x in the coil were known. O f course
we know its order of magnitude from the circuit constants, but it is hard
to make an estimate of the insertion and coupling losses. T herefore it was
decided to make an absolute determination of the relaxation time in one
substance along other lines.

*) Strictly speaking, formula (3.24) holds only for the case cos Tl < <  1. For
®s Ti »  1 the saturation is described by a different expression, which falls off somewhat
slower than (3. 24) with increasing Hi.
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Distilled w ater was taken, since it was known that its relaxation time
is of the order of a second, and so long enough to apply the following
method.

O n the screen of the oscilloscope the proton resonance was observed
with a large amplitude of the sweep (about 5 oersted). T he power of
the generator was chosen such that no saturation occurred but was about
to set in. T hen  the sweep amplitude was turned down to 0.5 oersted, but
still the whole line, which was narrow er than that value, was covered.
Since the time spent at resonance was then 10 times longer, saturation
would occur. A fter that the sweep amplitude was suddenly turned up to
its original value. T he height of the absorption peak immediately after
this would be small, since the surplus number of protons was reduced by
the preceding saturation. Exponentially the absorption peak would in
crease to its unsaturated value.

-  35°C
Ic e  x

io- 2 io -’
GENERATOR OUTPUT IN VOLTS

Figure 3. 18.
The saturation effect of the proton spin system in ice. The maximum
of the derivative of %" is plotted, essentially against the amplitude
of the alternating field H i. The dotted curve, representing (1 +  x!) 3|2,
is indicated for comparison with theory. Data like these, in combi
nation with data on the line width, were used to construct fig. 4. 9.

This last process was filmed with a movie camera and yielded
2.3 ±  0.5 sec. for the relaxation time in w ater. T he same experiment was
done for petroleum ether, giving 3.0 sec, and for a 0.002 N  solution of
Cu S O 4 in w ater we found 0.75 sec. All other relaxation times were
measured relative to these values.

3. 5. The inhomogeneity of the magnetic field.
It turned out that in many substances, especially in liquids and

gases, the measured line width was caused by the inhomogeneity of
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the field. T he coil with sample was moved around in the magnet
gap until the narrow est line was obtained. T he best spot in our magnet
appeared to be closer to the edge than to the centre, and there
is reason to believe that the inhomogeneity is not so much caused by
the geometrical conditions, as by inhomogeneities in the iron pole pieces.
T he best condition obtained was an inhomogeneity over the region of
the sample of 0.12 oersted in a total field of 7000 oersted, and an inhomo
geneity of 0.015 oersted in a field of 1100 oersted. This latter field was
used for proton resonances at 4.8 M c/sec. All lines taken in this spot in
the gap, which are w ider than these limits, show of course their real
width. T here are reasons to believe that the line width, e.g. of water, is
still much narrow er than 0.015 oersted.

« 2  OERSTEDT.

Figure 3.19.
The absorption of protons in water in
an inhomogeneous field, as observed on
the screen of an oscilloscope.
a. Unsaturated.
b. Partial saturation. The dip disappears

in about the relaxation time.
c. Partial saturation over a larger region.

Where the residual sweep went slow
and reversed, the saturation is more
complete.

(fig. 3. 19 b ). O ne can also leave a small residual sweep and saturate the
spin system over a somewhat broader range of the inhomogeneous field
(fig. 3. 19c). T he little dips indicate more saturation at the points where
the sweep goes slower and reverses, tha t is w here the nuclei are longer
at resonance.

T he experimental results and the
theory of the line width will be fur
ther discussed in the following chap
ter. H ere we must consider, w hat
happens to the saturation experi
ment, when we are forced to measure
the resonance in an inhomogeneous
field which determines the line shape.
F irst we shall describe an experi
ment, that was of „historical inte
rest” in the discovery of the narrow
resonance lines. Suppose we have a
w ater sample in a rather inhomoge
neous field, so that the line w idth is
two oersted. T he sweep amplitude is
originally, turned off and the system
of those nuclei, which are a t reso
nance, is saturated. If one then
suddenly turns on a sweep of 5 oer
sted, one sees a "hole” in the reso
nance line, which disappears in
about 2.3 sec, the relaxation time

For the measurement of the relaxation time by the
we must distinguish three cases.

decrease of \d H i™ax
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a. A h  «  H s «  1/y T  3. H ere A h '  is a measure for the inhomogeneity
of the field which is described by the distribution function h (v). In this
case we can consider h(v) as a d-function and the considerations of the
preceding section with formula (3. 24) are valid.
b. H a«  1/y T 2 «  A  h. As here the total sweep is still less than the
natural line width, we can integrate the result for a single line derived
in the preceding section over the distribution in the field. T he reading v
will be proportional to

OO () y "
v ~ j

Remembering that H  = 2 jiv(y and -  =  —  we obtain by partial

integration for the deflection

■ƒ x ! d  v ’
d v '

^  ^ 7  changes slowly over the region of the natural width we find:

v ~ h ’ (v) T2) - lh (3.25)

So the signal should decrease more slowly with increasing ƒƒ, than
in case a.
c. 1/y T,  «  H s «  a  h.

In this case the amplitude of the sweep is large compared to the natural
width. W e  assume for the moment, that the sweep comes back before the
nuclear system has had a chance to relax cos» l / 7 \ .  W e  can define
an average field density as the product of the actual density and the
fraction of the time, spent at resonance. W e  have something as is indi
cated in fig. 3. 19c. W e  are going back and forth in the bottom of the
hole and have to determine the 30 — component. For the sake of sim
plicity let us assume that the sweep has a constant velocity given by
d H  J
Q-j: ~  H* “ s an<i  that the line shape is a rectangle with width 2/y T 2.

T he fraction of the time spent at resonance is then given by 1/2 n y  T , H s
Repeating an argum ent similar to that leading to (2. 70) we find that

the surplus number of nuclei over the region of the sweep is reduced by
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a factor 1/(1 + y2 HL2 TJ2 n yHs) and the deflection of the meter is
proportional to

h ' ( r )
\ + y * H x* T j 2 n y H t (3.26)

It has been observed experimentally that the value of H x, necessary
to produce saturation, depends on the amplitude of the sweep as must
be expected from (3. 26). If Hs is kept constant for various samples, we
obtain a set of parallel saturation curves, which should decrease as
(1 +  jc2 )—1.

If we plot the curves again on semi logarithmic paper, twice the
horizontal distance between them gives immediately the ratio of the
relaxation times 7\. If Ha is varied in order to go through the curve
h(v) in fig 3. 19, we meet unsaturated groups of nuclei and we must
“dig a hole” in the distribution h(v), before we obtain the equilibrium
value *).

So far we have assumed that H0 +HS sin cos t is slowly varying, so
that we could make use of the stationary solution of Bloch’s equations.
For narrow lines this assumption is not justified. The modulation of the
field should be taken into acount by considering a frequency-modulated
spectrum of the radio-frequency signal.

To estimate the order of magnitude of the transient effects, which
will be discussed somewhat further in section 3. 7, we assume that we
have only one passage of the sweep with a velocity Hs cos. The time
spent at resonance is not, as was suggested, 1/2 ny Hscos T2. For if the
nuclei experience a signal only during a time f ,  the angular frequency
is not defined better than to A 1 Jt, and if 1JT2 <Acowe should
write 1/t7 =  A co =  y H s a>s//\u>. Substituting the experimental values
H„ =  0.02 oersted, u>s— 60 n sec-1 we find for protons A co = 550 sec—1.
Since yHs =  600 sec-1, the nuclei are at resonance practically during the

*) This „hole” effect makes it necessary to be very careful in carrying out the
experiment.

I f  we go through the resonance too fast, in a time comparable to the relaxation time,
we are always operating on the right hand side of the hole with increasing Ha and on
the left hand side with decreasing Hc. So we get large readings on meter L in opposite
directions depending on the sign of the variation in H0. So we have to go very slowly,
but we cannot go too slow either, because shifts in the battery current will alter the
magnetic field by a few parts in a million over periods of about half a minute and so
cause jumps to other places in the line.
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H  2 2 nwhole sweep. The effective energy density of the field is q (v) —  — —  ^

and the saturation should be described by a function

v h'(v)
1 + 7 i  y2 T j y H ' W ,

(3.27)

which displays the same dependence on H 1 and T 1 as (3.26). We now
got rid of the restrictioncoJ» l / T ' 1 for T2 > 1/550 sec. If this condition
is not satisfied, we immediately come back to the cases a or b. The inter
mediate case b should occur for values of 3. 10-4 < T2 < 2.10 3 but
experimentally it could not be distinguished from case a, which occurs
for T2 < 3. 10—4 sec.

The ratios of the relaxation times 7 \ were determined with formula
(3.24) for 1/y T2 >  H„ and with (3.26) for l/y T 2 <  Hs

This method gave very satisfactory results which are shown in the
graphs of chapter 4. But we cannot exclude with certainty a serious
systematic error in the determination of relative relaxation times in the
region of transition, for intermediate values of T2. The error, however,
is probably less than a factor 2. For in the preceding discussion we have
made some drastic simplifications, that the line shape is rectangular and
the sweep linear. In fact the sweep is sinusoidal and we do not have a
single passing through the resonance, so that the approximation of a
signal smeared out over a frequency range [\(o is rough. Neither did we
discuss the transitions from one case to another. Furthermore we have
assumed that the oscillating field H x has a constant amplitude over the
region of the sample. At the ends of the coil, however, 77 x will certainly
be smaller. For broad lines, where H0 can be considered as homogeneous,
this will tend to make the saturation curves less steep, since the systems
of nuclei in various parts of the sample are not saturated at the same
current in the coil. If both Ha and H 1 are inhomogeneous, the situation
is very complicated. Suppose that in the middle of the coil H0 has its
highest value, at the ends its lowest. Then the inhomogeneity of Hi
will even influence the shape of the unsaturated line, and on saturation
we cannot expect to measure a curve given by e.g. (3. 25).

Experimentally we found that the saturation curves for small values
of 1JT2 (case c) were almost parallel to those for lines with real width in
case a. The small deviation would be to the other side than predicted by
(3.24) and (3.27). The curves would be steeper than (1 + x2)~312.
In fig. 3. 20 we give a typical example. The relaxation times, obtained
from these curves and many others, will be described and compared with



theory in the next chapter. In fig. 3. 21 the roughest set of curves which
has been used in the evaluation of the data is represented, so that the
reader may form his own opinion on the obtained accuracy.

°  W A TE R ,
x 6 0 %  GLYCERIN
A 9 8 %  GLYCERIN

GENERATOR OUTPUT IN VOLTS

Figure 3. 20.
Saturation of the magnetic resonance absorption of protons in mixtures

of water and glycerin.

F . (N 0 j ) j  SOLUTIONS

GENERATOR O UTPUT IN VOLTS

Figure 3. 21.

Saturation of the magnetic resonance absorption of protons in solutions of
Fe (N03)3 of various concentrations. Data like these were used to construct fig. 4.5.

Any systematic error could be eliminated if the field were made so
homogeneous, that always the real width would be measured. In the
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relative measurement within the group of lines wider than 0.3 oersted,
we do not expect systematic deviations. T hese are also eliminated in
comparing the lines, which are narrow er than 0.01 oersted. In these
cases the error arises from the inaccuracy in the calibration of the radio
frequency power meter and in the decade system to reduce the output
of the signal generator. According to General Radio Co. this systematic
error can amount to about 2 0 '% in power at 30 M c/sec. Slight drifts in
balance of the bridge and gain of the receiver in the time necessary to
plot a curve might affect the result by 1 5 For  wide lines another 10 %
has to be added for inaccuracy in the determination of T 2. In the mea
surement of the line width we can also expect systematic errors, caused
by the line shape or the finite velocity of the sweep. T he noise was always
less than 10 % and in most experiments less than 1 |% of the reading,
Since each relaxation time is determined from an entire saturation curve,
accidental errors will average out to some extent. Several runs were
repeated on different days. T he resulting relaxation times were repro
ducible within 30 %.

3. 6. Comparison with the “nuclear induction" experiment.

T here has been some confusion about the question, how the method
of P u r c e l l ,  T o r r e y  and P o u n d  ( P 7) compares to that of B l o c h ,
H a n s e n  and P a c k a r d  ( B7 ) ,  which is called the method of nuclear
induction by those authors. It may be pointed out here that there is no
essential difference. B l o c h  c.s. pick up the nuclear signal in a separate
coil, the axis of which is perpendicular to H 0 and to H 1. P u r c e l l  uses
the same radiofrequency coil for supplying the field and picking up the
signal. W e  have seen in chapter 2 that the nuclear resonance depends
only on one rotating component of H x- T herefore the signal picked up
in any coil perpendicular to H„ will be the same. Nothing prevents us
from supposing a second coil to be present in the P u r c e l l  experiment,
just as in B 1 o c h ’s arrangem ent. In this coil are flowing two equal and
opposite currents, providing a field H y ~  x/ 2 H 1 sin w t and a field
H v =  —  y 2 H± sin co t. Since the sum of the currents is zero, we can leave
the coil out. T he only advantage to pick up the signal in a separate per
pendicular coil is that one has autom atically achieved a balance by the
geometrical arrangem ent. For very high values of H 1 (>  1 oersted),
where B l o c h ,  H a n s e n  and P a c k a r d  carried out their experiments,
this is probably the only w ay of attaining the required balance. T hey
also operate, however, for the same reason as we do, with some residual
unbalance. O n the type of unbalance it will depend again, w hether the
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real or imaginary part of the susceptibility is measured. But at very
high values of H t the absorption goes to zero, so that one can only
measure the dispersion anyhow (G5,  B7) .  At these high field strenghts
information about the natural line width and relaxation time can then
only be obtained by making use of nonstationary conditions, in which
the frequency and amplitude of the sweep are varied. Once more it may
be asserted that exactly the same phenomena would occur in the
P u r c e l l  experiment with the same values of the parameters.

3. 7. Transient effects.

The non-stationary conditions, caused by the finite speed of the sweep
and which are made use of in B 1 o c h ’s method, cause some undesirable
transient effect in our arrangement. If the time spent at resonance in the
course of the sweep becomes short compared to T 1 and (or) T2, it is
not permissible to solve B l o c h ’s equations (2.59)  under the assump
tion, that He is independent of time. W e shall not go into the theory,
but must point out that the picture of the observed proton resonance in
water (figs 3.15 and 3,16) can be explained by these non-stationary
conditions. The wiggles occur after having passed through resonance.
At resonance all nuclei are brought in phase by the applied radio
frequency signal. W hen the sweep goes on, the Larmor frequency
of the nuclear precession changes and the nuclear signal will beat with
the applied signal, causing alternating minima and maxima. The phase
angle between the beating signal after passing the resonance at t =  0
is given by

<P =  f  y \  H  (t) — H0 \ d t
o

For a linear sweep cp is a quadratic function of the time. The time lapse
between successive wiggles varies in the predicted way as a function of
the amplitude or frequency of the sweep. The amplitude of the wiggles
decays, as the nuclei get out of phase with one another. The decay time
is T 2 or in an inhomogeneous field IJyAh, whichever is the shortest. The
decay is partly caused by the narrow pass band of the receiver, as was
checked by the use of a receiver with a broad band of 100 kc/sec. It was
even possible to tune the narrow band receiver to the Larmor frequency
in the wiggles, so that they become more pronounced relative to the main
absorption line. If H  (t) is an increasing function, the wiggles, always
occurring after the resonance, arise from signals of higher frequency,

6
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with decreasing H ( t )  from signals with lower frequency than the applied
signal. T o  the observed w idth of the main absorption line on the oscil
loscope is also set a lower limit by the time spent a t resonance, as we
discussed already in section 3.5. If this time is 10~2 sec., the measured
width cannot be narrow er than 100 cycles/sec. or about 0.02 oersted for
protons. W ith  the sweep H s — 0.02 oersted, a>a =  60 n  sec-1 , used in
the relaxation experiments in very narrow  lines, the signals get hardly
out of phase before the sweep turns back, so that the measurements
of T 1 are not much affected by the wiggles.

T he wiggles disappear for very small amplitude or low frequency of the
sweep. Furtherm ore the meter L is sensitive only to the 30 ■—' component
in the energy absorption and will not be seriously affected by the
transient effect of the wiggles.



CHAPTER 4.

T H E O R Y  A N D  E X P E R IM E N T A L  R E SU L T S.

4. 1 . Relaxation time and line width in liquids (B 10, B 11).

4. 1 . 1 . The Fourier Spectrum  o f a random function.

In chapter 2 a general theory for the relaxation time was presented.
In order to apply it to practical cases we have to evaluate the Fourier
spectra of the functions of the position coordinates F 0, F t and F 2 of
section 2. 5.

In a liquid these functions will vary  in a random fashion with timè,
as the particles containing the magnetic nuclei take part in the Brownian
motion. T he fluctuating functions F 0(t),  F 1(t)  and F 2(t)  satisfy the
condition

Re F(t )  — Im F(t )  =  0 (4. 1)

T he statistical character of the motion justifies an assumption, custom
ary  in the theory of fluctuation phenomena, that

F(t)F*(t +  r) =  k( | r | )  (4.2)

T he left hand side is called the correlation function of F( t ) .
T he correlation function of the random function F ( t )  is independent

of t and an even function of r. From these assumptions it follows immedia
tely tha t k(<r) is real. W e  shall now derive briefly the relation between this
correlation function and the intensity of the Fourier spectrum of F ( t ) .
A very general theory of random processes has been given by W  a n g
and U h l e n b e c k  (W  2, R 4),  where the reader may find further
references. M any other investigators have pointed out the connection
between the spectrum and the correlation function. W e  shall here follow
closely K e l l e r ’s ( K l )  argument, although there are some slight
modifications, as we w ant to distinguish between positive and negative
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frequencies and our function F( t )  is complex. Expand F(t )  in a Fourier
integral

W e  assume that F( t )  '=  0 for | t | >  T,  w here T  is a time large
compared to all times in which we ever have made or shall make obser
vations. T his assumption therefore will not alter the physical results,
and in the end we can get rid of it by taking the limit T  —> oo. Between the
functions connected by the transform ation of Fourier (4 .3 )  exists the
P a r s e v a 1 relation

1 - |- o o  4 - T  4 - T

F ( i i F * ( t ) = —  J d v J  ƒ F ( t ) F * ( t ' ) e 2 l i ' (‘ - ^  d t d t '  (4.5)
Z 1 — oo — T —T

W e  next make the substitutions a =  t  and r — t — t'. Using the fact
th a t F(o) F* (a — t) is only different from zero for small values of | r j,
at any rate much smaller than T,  we obtain after some calculation

Since k(t)  is real and even, J(v) is real and even. Because we made
a distinction between positive and negative frequencies, the intensity in
(4. 7) is half the value usually found in the literature. In the following
discussion we shall see that k ( r )  often has the form:

F ( t ) = f A ( v ) e 2* ivtd
(4. 3)— OO

A  (v) =  f F * ( t ) e - 27livt d t
— OO

(4.4)F ( t ) F * { t ) d t  =  J A ( v ) A * (v)dv
— OO

W ith  (4. 3) and our assumption we can w rite this in the form

________  + 0 0  + 2  T
F( t )F*( t )  =  f d v j  e2nivz F(a)F* (o — r) d  t (4.6)

+  °°
— I  J(v) d v
— OO

with the expression for the spectral intensity

J ( v ) = J k  (r) e2j l i vrd r (4. 7)
— OO



k(t) — F (t) F* (t) exp {— | t | /rc j (4 . 8)

The combination of (4.7) and (4.8) yields

' 4 - 9 >

In general we can say that k(r) is a function which goes rapidly to
zero, if | r exceeds a value rc which is characteristic for the mechanism
of the Brownian motion and is called the correlation time. The general
behaviour of the Fourier spectrum is therefore such that the intensity J(v)
is practically constant for low frequencies and falls off rapidly, when
2 jivtc > 1. The time average F(t) F*(t) can be replaced by the sta
tistical average according to a general theorem from statistical mechanics.

4. 1.2. Evaluation of the relaxation time in water.
We start out with one water molecule, surrounded, say, by carbondi-

sulfide, which contains no nuclear magnetic moments. W e assume that
the rotational magnetic moments of the molecules are also zero. We want
to calculate the relaxation time of one proton due to the presence of the
other. The functions F consist each of a single term:

F1 =  sin ft cos ft e‘v /b* F<i — sin2 ft e21 v /bs

where b is the constant distance between the two protons. The rotation
of the molecule in the liquid will change the angle between the magnetic
field H0 and the radius vector connecting the two protons in a random
fashion.

The correlation function of the expressions F can be calculated if we
adopt the same simple picture as D e b y e (D 2) did in his famous theory
of dielectric absorption and dispersion, namely a rigid sphere of radius a
in a medium of viscosity r] and absolute temperature T. D e b y e  applies
to this model E i n s t e i n ' s  theory ( El )  of the Brownian motion. In
the case that no external forces besides the thermal collisions are present,
the probability to find a fixed axis of the sphere in the solid angle
sin ft d ft d <p is described by the ordinary diffusion equation

_  d f j ^ = D A m ( p )  (4.1 1)

The diffusion constant D is given by the general expression
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D =  kT/p

The damping constant (J8 for the rotation of a sphere in a viscous
medium was calculated by Stokes: J3i= 8 n rj a.

The Laplacian A acts only on the angle variables and cp .
A solution of (4.11) may be written in a series of spherical harmonics

f = Z c UmYUm(»,cp) e tD 1(1+ 1)/a2
I, m

At t =  0 the sphere is in the position #0, cp0 and f  — d — #0) . d {cp — 9?0).
From this condition we find the coefficients

2 n
Cl.m= Y Lm (00 •%) / ƒ  ƒ I m (0-<p) I2 Sin

0 0

In order to find the correlation function F  (0) F* (t) note that
i?  =  b- 3 y 2, 1 (0. 'f') an d  ^2 — b..3 Y 2, 2 (0- v)-

2
W e have bs (t) —J ƒ f Y 2,l sin $ d  ft d  cp — c2 j e

6 D f/aa
0 0

The average has to be taken over all possible initial positions, i.e. over
#0 and 930-

The final result is

6 D t

F1 (0) Fx* (t) =  b-* Y I ! (#„, cp,) y 2, 1(0O'9’„) e a* — TE b 6e f/l<:

F2(0)F2*(f) =  ̂ f T 6 e ^ c

with rc =  4 jz rj a3/3 k T

(4. 12)

(4. 13)

The characteristic time of D e b y e  t we obtain by carrying out the
same procedure for the function cos ■& =  Y lt 0

The result is

t  — Ant]  a 8/ k T  — 3 tc (4. 14)

In D e b y e’s theory r is the time in which an assembly of water mole
cules, originally oriented by an electric field, loses its distribution around
a preferred direction by the Brownian motion, after the electric field has
been switched off. In our case xc is the time, in which a molecule is



rotated by the Brownian motion over such an angle that the relative
position of the nuclei with respect to the external field and thus the
functions F  have changed appreciably.

Using (4 .9 ) , (4. 12) and the general formula (2. 53) we find for the
relaxation time of a proton in a watermolecule

Substituting numerical values T  — 300, y =  10—2, a =  1.5 X 10—*,
IP = Yi we find that t c =  0.35 X 10~11 sec, and since v0 =  3 X 107
cycles/sec we have 2 n r cv0 «  1. W e  see from (4. 15) that in this case
1 /T j is proportional to rc and we can w rite with (4. 15)

molecules, but other H 20  molecules. W e  can estimate the influence of
the other protons on the relaxation time in the following way.

A gain the Brownian motion is responsible for the Fourier spectrum,
but the cause is now ra ther the relative translational motion of the mole
cules than a rotation. Let us consider the protons in the other molecules
as independent of one a n o th e r1). W e  ask for F  (t) F  (t t) and tc for
the protons in a spherical shell between r  and r +  dr around the proton
of which we wish to determine the relaxation process. A reasonable value
for rc is apparently  the time it takes for a molecule to travel over a
distance r. For in that time the relative position and with it the spin spin
interaction has changed appreciably. From the theory of Brownian motion
we have the expression for the mean square displacement of a particle

1 )  It would be better to consider the molecules as independent and attribute to them a
moment 2 /i;( if the spins are parallel, or zero if they are antiparallel, and then apply to
these moments the statistical weight of the parallel and antiparallel state. The same
answer would be obtained. In the preceding problem of the rotating molecule also ortho-
and para- states should have been distinguished. W e shall come back to this question
at the end of chapter 5.

1 +  4 Ji2 v0 2 t c 2 y * W I p (Ip +  1 )6 -6
1 -f- 16 'n2 v0 2 rc 3I

(4. 15)

” 0-9 y4 t i 2 b - 6 Tc (4. 16)

T he value of t  — 3 rc ^  10 11 sec is in excellent agreem ent with ex
perimental data on the dielectric absorption and dispersion in w ater at
microwave frequencies (C  5).

N ext we consider the practical case that the neighbours are not C S2

x 2 — 2 k Tr-JP (4. 17)
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where ,/3 is a damping constant. For a sphere in a viscous medium S t o k e s
derived /? =  6 n t] a

If one prefers to use the diffusion constant D  — k TJJ3, we find for
the correlation time

=  ~x * I 2 D  =  t* I \2D  (4.18)

since r is the relative displacement of two particles in any direction.
T o  find F( t )  F( t )  we have to average the angular functions over the

spherical shell and multiply with the number of protons in the shell as
we treat them independently. T hen  we have to integrate over r to include
all other molecules, so approxim ately from 2a, the distance of closest
approach, to infinity. Using again (4. 9) and (2. 53) we find

d /nu ,= i. 6 *n,‘ </„+ o f  £ | r
(4. 19)

In the integral we can neglect the term with v02 rc 3 in the denominators,
since 2 j i t cv0 « [  1 for r <  10—7, and the most im portant contribution to
the integral comes from the nearest neighbours. Integration of (4. 19)
then simply leads to

= 0 .9  n » y * W t , N l k T  (4.20)

Substituting numerical values in (4 .1 6 ) and (4 .2 0 ), a =  2 X 1 0 ~ 8,
b =  1 . 5 X  1 0 -8, v =  10~2, N = 7 X  102S, r =  2 . 7 X  104
we find

(T iLt  ~ 5 2  sec- (T’iL n.i =  10 sec- T i =  3-4 sec.

T his value is in good agreem ent with the experimental value of 2.3 sec.
In the case of a rotating sphere it was possible to calculate the correlation
function explicitly. For the translational effect and the rotation of more
complicated molecules in liquids this would be very difficult. In these
cases one might assume formula (4. 8) or a linear combination of them
with various t c. T h e  correlation time rt should be larger in more viscous
media as the molecular motion becomes slower. In the next section we
shall discuss the general relation between the relaxation and correlation
times and the viscosity.



4.1.3. The relation between the relaxation time, the viscosity, the
correlation time and the Debye time.

There may be some doubt whether is is permissible to extend the
macroscopic notions of viscosity and diffusion to regions which contain
only a few atoms. The same objection can be raised against D e b y e ’s
theory. There, as in our case, the procedure is justified by its success.
Since we obtain the right order of magnitude for the relaxation time, we
might even inversely use the latter to extend our information regarding
the motion of the molecules. From our general considerations we would
expect that the relaxation time would decrease with increasing viscosity,
as long as the condition 2 jiv0zc<C<C 1 is satisfied. This is confirmed by
the experimental evidence in Table I and Table II.

Table I
Relaxation time of protons at 29 Mc/sec in hydrocarbons at 20° C

V isco sity
in cen tipo ises

R e lax a tio n  tim e
in seconds

P e tro leu m eth er 0.48 3.5
L ig ro in 0.79 1.7
K erosin 1.55 0.7
L ig h t m ach ine  oil 42 0.075
H e a v y  m achine oil 260 0.013
M in era l oil 240 0.007

Table II
Relaxation time of protons at 29 Mc/sec in polar liquids at 20° C

V isco sity
in cen tipo ises

R e lax a tio n  tim e
in seconds

D ie th y le th e r 0.25 3.8
W a te r 1.02 2.3
E th y la lc o h o l 1.2 2.2
A cetic  acid 1.2 2.4
S u lfuric  acid 25 0 .7 s
G ly cerin 1000 0 .0 2 3

The viscosities in table I were measured with a viscosimeter, (time of
flow measurement), those of table II were taken from the Physikalisch
Chemische Tabelle.

We also measured the relaxation time in mixtures of water and glyce
rin, of which the result is shown in fig. 4. 1.

The dependence of the relaxation time on the viscosity is not quite the
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inverse proportionality, which one might infer from (4. 16) and (4. 20).
The relaxation time in glycerin is only 102 times smaller than in water,
while the viscosity is 103 times larger. In the first place one can remark
that in going from one substance to another the quantities -a, b and N
change too. The deviation in sulfuric acid can so partly be understood
because the proton density in it is much smaller than in the other sub
stances. But for the latter the density of nuclei nor the internuclear
distances b change very much from molecule to molecule. The molecular

WATER-GLYCERIN

icT2 I0H I 10
VISCOSITY IN POISES

Figure 4. 1.

The relaxation time of the proton resonance at 29 Mc/sec in mixtures
of water and glycerin.

diameter a changes of course, but this would cause a deviation from the
inverse proportionality with 17 in the direction opposite to that observed.
W e can only say that our treatment of a molecule as a sphere with a
magnetic moment in the centre becomes very crude for large molecules,
each containing several protons. In the modern theory of the viscosity a
concept exists, that continually transitions are made between configura
tions around a given molecule, which are more or less stable. The rate at
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which these changes in configurations take place determines our correla
tion time tc which will depend therefore in a complicated manner on the
shape and size of the molecule. For the large chain-like molecules in the
hydrocarbons one has furthermore the possibility of bending and twisting
of a molecule, which changes the relative position of the protons in that
molecule.

The reader may be reminded that similar difficulties arise in D e b y e’s
theory of dielectric dispersion. His time r determined experimentally,
does not always correspond to the one calculated from (4. 14). Attempts
have been made to explain this deviation by taking into account the elec
tric dipole interaction between the polar molecules and introducing diffe
rent models for the electric local field. Note that glycerin which shows the
largest deviation in our case, also violates D e b y e ’s formula (4.14) most
severely. W e want to stress, however, that the D e b y e  time r and our
correlation time xc characterize different physical processes. D e b y e’s z
refers only to the orientation of the polar group in space, while for rc
any relative reorientation between the magnetic nuclei must be considered.
The following formulation then seems appropriate. The characteristic
timer of D e b y e  and the correlation time tc in the magnetic local field
spectrum are proportional in one sample. They both vary in proportion
to fi/T, if the temperature of the sample is changed.

The proportionality constant between r and rc varies from substance
to substance, depending on the detailed picture of the molecular motion
in each substance, but the ratio will always be of the order of unity.
For the model of a sphere in a viscous medium we have 3 rc — r.
Experimental values for the proportionality factor are given in section

W e can obtain a better test of the theory if we carry out measurements
of the relaxation time and line width in one substance at various tempe
ratures. W e shall first describe in some detail the behaviour of T 1 and
T2, that must be expected from theory. Substitution of (4. 9) and (4. 12)
into (2. 54) and (2. 53) leads to

4.3.  1.

l / 7 \ = ^ i 1 -)- 4 7 f2 Zc  3 1 + 16 n 2 v2 rc 2
2 Tc (4.21)

1 -(- 4 zz2 v2 rc —1 arc tg ~  (4.22)n 1 2

with

and

* 1  =  75 yi V I ( I + l ) b ~ ('

K  = 3  Kx

(4. 23)

(4. 24)
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It has been assum ed th a t the  averag ing  over could be carried  out
independen tly . U se  has been m ade o f the  relations (4. 12). F u rtherm ore
the form ulae are  w ritten  for a single re laxation  time r ~  c r j jT .
A ctually  w e have a d istribution  of re laxation  times as w e have seen for
the  tran sla tio n a l effect in w ater. W e  should  w rite  in stead  of the  constan t
c the function c ( X) and  in teg ra te  over the p aram eter X.  In m ost cases
the d istribution  will be narrow , since only the  n earest neighbours con tri
bu te  strong ly . S tric tly  speaking the constan ts  K  a re  functions of the
tem perature, as they  v a ry  w ith  the density  of the sam ple, bu t this effect

coozo
CO

The theoretical behaviour of the relaxation time Ti and T :, which is
a measure for the inverse line width.

is com pletely negligible. T h e  sim plifying assum ptions now  perm it to point
ou t clearly  the general behaviour of T  \ an d  T g, w hich are  p lo tted  as a
function of t c in fig. 4 .2 . H e re  T 2 is defined  by  (2 .5 8 ) .

F o r 4 n 2 vs t c 2 «  1, T 1 is inversely  p ropo rtiona l to  rc an d  thus to  r j / T ,
and  for 4 n 2 v2 tc2 »  1 d irectly  proportional. T h e  plot on a double

1C
3

10

1C

l/iW  -(TgJggymptotjC

F-7̂ 0l)o=iirz j*-TcAh)-i/Vg

SECONDS

Figure 4. 2.
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logarithmic scale therefore shows two straight lines making angles of 45°
and 135° degrees with the x-axis.

In the transition region (4 n 2 tc2 v2 ^  1) T x has a minimum value

(T i)mia =  (4.25)

for rc =  V, 12 n  v0

T he quantity To' is a monotonie decreasing function of rc and reaches
an asymptotic value

0 / r A . ymptotic =  1 7 7 ^ , (4.26)

for very long correlation times. This value is of course exactly the same
as the one we calculated for the static case (2. 36) where the nuclei are
at rest. For tc « (7V )asymptotlc, T /  is inversely proportional to zc. T he
horizontal distance between the points, w here T x and T„ bend over
respectively, is given by the ratio 2 jiv0 {T2')asymptotic ^  H„ /H loc. For
4 si2»>2tc2 «  1, 7 \  and T 2 are proportional and from (4. 21) and (4. 22)
we find for the proportionality constant

7Y =  V s»  T x ’ (4. 27)

T he line width is given by (2. 58) with one of the relations (3. 22) or
(3.23). For 4 jt2 v02 tc2 »  1 w e have

T 2 ^  Ts' (4. 28)

for 4 v0 2 tc 2 «  1 w e have with (4. 27)

r 2 =  0. 85 T x (4. 29)

W e  must not attach too much weight to this particular ratio, for about
the limits in the integral in (4. 22) we only know that they must be of the
order of m agnitude of the line width expressed in cycles/sec. It might be
better to take the limits as ±  I /ti T 2 instead of ±  1 /si T / . This would
not make any difference for long i c’s, and does not affect the order
of magnitude for the region where T x and T 2 are proportional. W e  shall
see in the next paragraphs that the experimental ratio between T x and T 2
is close to the value predicted by (4. 28) and (4. 29). O n this basis the
resonance line in w ater e.g. with T x — 2.3 sec. should be very narrow
indeed. T h e  w idth should be of the order of one cycle or about 10~^
oersted. T he experimental width is then, of course, determined by the
inhomogeneity in H„ as we have already pointed out several times.
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4 .1 .4 . Experim ental results in ethyl alcohol and glycerin between

+  60° C and  — 35° C.

In order to vary the tem perature of the sample in the radiofrequency
coil, copper tubing (3mm inside diameter) was soldered around the
grounded shield of the radiofrequency coil (see fig. 3. 8 ). T o obtain
low tem peratures acetone, cooled by dry ice, could flow through the
tubing from a container, which was placed above the magnet, under the
influence of the gravitational force. This acetone was not in direct contact
with the dry ice. For dissolved C 0 2 would be set free, when the acetone
was warmed up in passing through the narrow  tubing. T his would prevent
a regular flow. T he apparatus in the m agnet gap and all other cold
parts were thermally insulated with glass wool and asbestos paper. T he
tem perature was measured by a copper-constantan thermo-element. O ne
contact point was brought in the liquid through the small cork stop closing
the thin walled glass tube which contained the sample. T here was no
trouble of pick-up of radio frequencies, since the coupling between the
leads of the thermo-element and the coil was very small indeed, as the
contact point was kept well outside the volume of the coil. T he other
contact of the element was put in melting ice. T he thermo —  E .M .F.
was measured with a Leeds 6  N orthrup type K potentiometer. T he
element was calibrated a t +  100° C, 0° C and — 78° C, which checked
with the calibration data given in the H andbook of Chemistry and Phy
sics, so that this table was used. T he tem perature of the sample could be
varied by changing the flow of the cooling liquid. T he tem perature
remained constant to within 0.5° C during the determination of each
saturation curve. T h e  balance of the bridge was also stable, once thermal
equilibrium had been established. T o  cover the range of higher tem pera
ture, the container was filled with iced w ater or hot water.

T h e  variation of the viscosity with tem perature was taken from the
Physikalisch-Chemische Tabelle. T he data obtained with ethylalcohol at
two frequencies are shown in fig. 4. 3. T he variation of the relaxation time
with viscosity is inversely proportional. T he line draw n through the points
makes an angle of 135° with the x-axis. A lthough the variation in the vis
cosity is not large, the points clearly indicate the theoretical behaviour, to
be expected for short rc. T he real line width could not be measured. T he
limit set by the inhomogeneity of the field is 0.015 oersted at 4.8 M c/sec.
According to theory the line width should be much narrow er than this.
As was pointed out in chapter 3, any systematic errors in the relative
determination of 7 \  cancel out in this case. M ore interesting are the
results for glycerin shown in fig. 4 .4 . T he freezing point of this sub-
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stance is 18° C, but it usually gets supercooled and very high viscosities
are obtained at low temperature, where the substance becomes almost
glasslike. The experimental points show that we have reached the region
where 2 n  v0 tc > 1. The drawn lines are theoretical curves. The observed
minima are somewhat flatter and on the low temperature side the points
do not quite fit a 45° line. This can, at least in part, be explained by a
distribution of correlation times rc, rather than the single value to which

ETHYL ALCOHOL

x a t 29  Mc/sec
o a t 4 .8  Mc/sec

I0"5 5 .I0 '5 I0 '4
POISES/DEGREE

Figure 4. 3.

The relaxation time of the proton resonance in ethyl alcohol between
60° C and — 35° C. The straight line makes an angle of 45° degrees

with the negative x-axis.

the theoretical curves pertain. It would be interesting to extend the
measurements to lower temperatures to get more information about this
distribution. The shift of the minimum with frequency is somewhat less
than predicted by (4. 25). We find a factor 4 instead of 6. On the low
temperature side the relaxation time should be proportional to v0S. In
stead of a factor 36 we find a factor 14. Again this deviation can, at
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least partly, be understood by remarking that (4. 25) holds only in case
of a single correlation time, or if one wishes, of a single correlation
function. T he data on the line width are plotted in the same diagram
with the aid of formula (3. 22) for a Gaussian curve.

A t room tem perature the line is narrow er than the inhomogeneity of
the external field. Extrapolation of the dotted line tow ards higher tempe
ratures gives the ratio T V\T% =  1. In the region where T 1 is proportional
to the viscosity and T 2 inversely proportional, the saturation of the line
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Figure 4. 4.

The relaxation time and the line width of the proton resonance in glycerin between 60° C and
—35° C. The lines, drawn through the experimental points, have the theoretical form of fig. 4.2.

always occurs at the same output power of the generator, that is at the
same density of the applied radio frequency field, as the product T XT^
is constant. From the viscosity, measured at 20° C, it followed that the
glycerin used in the experiment was not pure and probably contam inated
with 2 % water. Experim ents carried out with mineral oil gave similar
results both for the relaxation time and line width.
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4. 1 .5 . The influence of paramagnetic ions.

So far we have considered the dependence of the relaxation time on rc
It is also possible, however, to bring about changes in the quantities K l
and K 0 in (4. 21) and (4. 22) by mixing the substance with paramagnetic
ions. From (4 .2 3 ) and (4 .2 4 ) we see that the large y-values of the
electronic moments will enhance the values of K x and K 2. T he larger
interaction of the nuclear moment with the electronic moment will shorten
the relaxation time and enhance the line width, rc remaining constant.
Let us consider an aqueous solution of ferric nitrate. W e  can calculate the
influence of the F e+ + +  ions in the same w ay as we did, when we
estimated the contribution of the protons in other molecules to the relaxa
tion time in pure water. An adapted formula (4. 20) would read

l / T . - U ^  Yp Y L  k 2 S lon (Sion +  1) N ion, /5  k T  (4. 30)

This applies for ions of the iron-group, which are of the “spin-only”
type. For others we should replace y2 ti2 5  (S  4- 11 bv u2

s~ \ r i i i i t *on  ion   ̂ io n  '  ' eff*
(J t course we should add to (4. 30) the contribution of the protons in

the solution, which in pure w ater are solely responsible for the relaxation
time. But as y2m is about 106 times larger than yp2 , the influence of the
param agnetic ions is predominating even in a concentration of 10~3 N .
or 10'8 ions/cc. According to (4. 30) the relaxation time should be inver
sely proportional to the concentration and to the square of the magnetic
moment of the param agnetic ions. In fig. 4. 5 the results for three ions
are given. It appears that the curves, also to the absolute magnitude,
can be well represented by (4. 30). O nly for very low frequencies there
seems to be a deviation tow ards longer relaxation times. This is all the
more remarkable since the straight lines finally must bend over to the
left to the asymptotic value of 2.3 sec. in pure water. W e  do not know
if the effect is real. It certainly seems too big for a systematic error.
W e  would like to point out that (4. 30) certainly needs some correction.
For while the motion of a watermolecule relative to the ion is still given
by (4. 17) and (4. 18), where a is the radius of the watermolecule, the
distance of closest approach is determined by the radius of the ion and
its hydratation. W e  must insert a correction factor ajb. It is very hard
to estimate correctly the motion of a watermolecule in the dipole atmo
sphere around an ion. But if there is an effect from the hydratation, it
should become more pronounced at small concentrations.

Furtherm ore we should take into account that the correlation time in
the local field spectrum is not solely determined by the molecular motion
in the liquid, but also by changes in quantisation of the electronic spins,

7
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which possibility was already indicated in (2.42). The characteristic
time for this latter process is not known experimentally, as the para
magnetic electronic relaxation times g/2 n in solutions are short, of the
order of 10-10 sec.1). This implies that in the derivation of (4.30) we
should have used for rc the constant g instead of (4. 18) for values of

SATURATION OF PARAMAGNETIC SOLUTION

NUMBER OF lONS/cc

Figure 4. 5.

The relaxation time of the proton resonance in aqueous solutions of
paramagnetic salts. The lines, drawn through the experimental points,

make angles of 45° with the negative X-axis.

r, where tc would become larger than g. This reduces only the influence
of the ions which are rather far away, so that this correction is not

i) One might be tempted to calculate p in the same way as we did for the nuclear
relaxation time. However, more important than the magnetic interaction between the
spins will be the electric interaction in the polar liquid via the spin-orbit coupling. The
only experimental information, known to the author, comes from Z a v o i s k y  ( Zl ) .
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important. The inverse proportionality with ^  is rather well realised
for some ions, and completely violated for others (Ni++, and especially
Co++ and Fe(CN )e------ ), as is shown in Table III.

TABLE III.

Ion
,«eff in Bohr magne
tons from relaxation

experiments

/<e(F in Bohr magne
tons from susceptibi

lity measurements

E r “f  "4“ + 9.5 9.4
Fe +  +  + 6.3 5.9
C r+  +  + 4.7 3.8
C u +  + 2.3 1.9
N i+  + 2.1 3.2
C o +  + 1.3 4.5—5.3
Fe(CN)e------ 0.12 2.4

The second column is computed with (4.30) from measurements of
the nuclear relaxation time in solutions of known concentration. The
values in the last column were taken from G o r t e r  (G3).

They were obtained from the measurement of the static susceptibility
of solutions (comp. V 1). The value for Fe(CN6)------ was taken from
measurements on solid K3Fe(CN)6 (} 1). The large deviations for the
last three ions can be understood, because nondiagonal elements 1) con
tribute greatly to the magnetic moment of these ions. With these elements
components of the local field spectrum are connected, which have a
higher frequency than v0 + 1 Jtc, where l/rc is the limit where the local
spectrum caused by the Brownian motion drops off rapidly. Thus these
non-diagonal elements do not contribute to the nuclear relaxation mecha
nism, and the /xetf for this process is correspondingly smaller. The ex
tremely small influence of Fe(CN )e is probably partly caused by
the six CN groups around the iron atom, so that the b is very large.
For variations of b for the various ions have not been taken into account
in Table III.

Finally we may ask what the influence can be of oxygen gas dissolved
in water. The magnetic moment of 0 2 is 2.8. The maximum concentration
of dissolved 0 2 in water at room temperature under 18i% of the atmo
spheric pressure is 1.5 X 1017 molecules/cc. The relaxation time, due to 0 2
alone, could not be smaller than 2.5 sec. The relaxation time in water
is therefore determined by the neighbouring protons and the dissolved

x) For C o + +  and Fe (CN )o even important deviations from C u r i e ' s
law have been found.
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oxygen. In the determination of the absolute value of the relaxation time
(see chapter 3) distilled w ater was used. As the distillation was not
done in vacuo, we have no guarantee that for pure w ater the relaxation
time is not somewhat longer.

W e  now consider the line width in the solutions. As the correlation
time r c in param agnetic solutions is essentially the same as in w ater and
thus 4 v03 rc 2 «  1, we expect that T 2 is proportional to T his is
confirmed by the experimental result in fig. 4. 6. T he line width, measured

Fe+++ SOLUTION

NUMBER OF lONS/cc

Figure 4. 6.

The line width of the proton resonance in aqueous solutions of Fe(N03)3.
The quantity T 2 is inversely proportional to the line width, which appears

to be proportional to the concentration.

between the points of maximum slope in an assumed Gaussian, is 2/y T 2,
and is proportional to the concentration. For small concentrations the
width is again too narrow  to be measured. Comparison of fig. 4. 5 and
4. 6 yields T 2 =  1 /2  T 1 or T 2' =«/*' T t . T he same ratio was found for
C uTT solutions and is in good agreem ent with the value found in glycerin.

It may be well to point out here that the proton resonance in para-
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magnetic solutions appears to be shifted, because the field inside the
sample is different from the field elsewhere in the gap. T he microscopic
field inside the sample at the position of the protons always determines
the position of the proton resonance. W e  are interested in the field
produced by all param agnetic ions at the position of a proton and not
of all but one at the position of another ion. It is not permissible to put

—►
the macroscopic H  inside the sample into the resonance condition (1. 7).
O ne has to take the average microscopic field at the position of the
protons. A t the same time we might mention another factor which changes
slightly the magnetic field experienced by a nucleus, namely the dia
magnetism of the surrounding electrons. This effect has been calculated
by R a b i  and coworkers and is very small for light elements (K 12).

4. 1.6. The resonance o[ F 19 and LF in liquids.

T o compare the resonances of F ]9 and H 1 in a liquid compound, a
F reon”, C H F C I 2 , monofluoro-dichloro-methane, was condensed in a

glass tube and sealed off. Both the H 1 and F 19 resonance were narrow er
than the inhomogeneity in the field. T he total intensity of the two lines
was the same (within 15 % ) so that it was confirmed that F 19 has the
same spin as the proton. T he relaxation times were 3.0 sec. for H 1 and
2.6 sec. for F 19. T he yF is 6.5 % smaller than yP, but the Fi® nucleus
experiences a somewhat larger local field as its nearest neighbour is the
proton in the same molecule, while the proton has in turn the F 19 nucleus.
W e  should expect on this basis the relaxation times to be the same, as
is confirmed within the experimental error.

Experim ents were also carried out in solutions of KF. Since the signal
to noise ratio drops proportional to the number of nuclei per cc, only
very concentrated solutions could be investigated to obtain a sufficiently
intense F 19 resonance. Again the resonance lines are narrow. T he result
for the relaxation times is shown in fig. 4. 7. T he decrease in the proton
relaxation time can be explained by the increase in viscosity of the
concentrated solution. T he much more pronounced decrease for fluorine
may be an indication that the motion of these ions is more quenched, when
one comes very close to the transition point, w here the solution changes
into the solid hydrate K F .2H 20 .  A more careful study of the nuclear
relaxation might give information about the character of this, and other,
transitions. Anticipating the results for solids we can say that in the
crystalline K F.2H 20  the lines are wide and that we are in the region
w here 4 tF tc 2 v02 » 1 .

An interesting substance is also B eF2, which can be mixed with w ater
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in any proportion. For high concentrations the substance becomes very
viscous, and finally goes over into the glasslike, amorphous BeF2, when
no water is present. Preliminary experiments showed that the behaviour
of both the proton and the fluorine resonance in Be F2 + H20  is similar
to that of the proton resonance in glycerin. With increasing viscosity of
the mixture the relaxation time first drops to about 10—3 sec., then rises

K F SOLUTIONS
o H 1

x F19

x  10

0 0.1 0.2

/ NUMBER F 19
NUMBER H'

Figure 4. 7.

The relaxation time of the proton and fluorine resonance in aqueous
solutions of K F of various concentrations.

again to 0.2 sec in pure BeF2. The line width measured between the
points of maximum slope increases from very small values to about
10 oersted in pure BeF2.

Experiments on the Li7 resonance were carried out at 14.5 Mc/sec
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TABLE IV.

Substance
Number of Li atoms Relaxation time in seconds
Number of H atoms for Li7 for H1

LiCl +  HsO 5.8 1.75 0.4
LiNOs +  H20 14 2.7 1.1
LiNOs +  H20  +  Fe(N03)3 8 0.11 0 .0 0 2 3
LiCl +  H20  +  CrCl3 6.5 0.24 0.0094 * 6
LiCl H2O H" C11SO4 6.6 0.18 0 .0 1 s

in solutions of LiCl and L iN 03. Table IV gives some results. For
the solutions without paramagnetic ions the decrease in relaxation
time of the proton resonance compared to pure water can be explained
by an increase in viscosity of the concentrated solutions. The relaxation
time for Li7 in this case is somewhat longer. The ratio of the local field
spectra is given by

Spectral intensity at Li7 nucleus ( T x y2) p
Spectral intensity at proton (Ti  y2} rp

Since yp2/j'£,s — 6.6, the local field has a somewhat higher intensity
at the Li-nucleus. The cause could be the slower motion of the largely
hydrated Li-ion. A more likely explanation however, is, as we shall see
later, that the intensity of the magnetic local field is the same, or even
smaller but that there is a contribution to the relaxation process from
the quadrupole moment of Li7, which has a spin I  =  3/ 2.

The influence of paramagnetic ions is much smaller on Li7 than on the
protons. In the first place the local field spectrum at the Li7 nucleus will
be smaller because the repulsion of two positive ions will make it less
likely for them to come close together, and then they have to compete
with the quadrupole transitions (cf. chapter 5). At the conclusion of
this paragraph we direct the attention of the reader to the results found
by other investigators (B 2, B 7, R5) ,  which seem to be in agreement
with the general ideas, here proposed. Especially we might mention the
experiment in liquid hydrogen b y R o l l i n  (R6) .

4. 2. The relaxation time and line width in gases.

4. 2. 1. Hydrogen.

The only experiment of nuclear magnetic resonance (P6)  in gases
which has been reported was performed with hydrogen gas at room
temperature between 10 and 30 atmospheres of pressure. The accuracy
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was poor, as the density of the nuclei is low. It was found that the line
is narrow  (< 0 .1 5  oersted) and that the relaxation time at 10 atmospheres
7 \  «ss 0.015 sec. with an indication that T] increases with increasing
pressure. W e  shall now investigate w hat the theory predicts for this case.

T he local field at the position of a proton in an Ho-molecule in a
volume of hydrogen gas consists in the first place of the contribution

connected with the rotational moment ƒ of the molecule and the
magnetic moment of the other proton. According to P a u 1 i’s exclusion
principle the spins of the two protons can only be parallel, if the electronic
wave function is antisymmetric (ƒ  odd, orthohydrogen), and only anti
parallel, if the electronic wave function is symmetric (ƒ even, parahydrogen).
T he transitions from the ortho- to the para-state  in hydrogen gas are
extremely rare. Furtherm ore, if the system is in thermal equilibrium at
room temperature, 1 3 %  of the H 2 molecules have ƒ — 0, 66 .% have
7 = 1 ,  12 % have ƒ =  2 and 9 % have /  =*3. W e  ignore for the sake
of the simplicity transitions from ƒ =  1 to ƒ =  3. W e  assume that the
rotational angular momentum of orthohydrogen is a constant of the
motion. T he total nuclear spin ƒ =  +  / 2, /  =  0 for parahydrogen,
I  =  1 for orthohydrogen. O nly orthohydrogen will show nuclear reso
nance. A t room tem perature equilibrium the ratio of molecules in ortho-
and para-states is as 3 : 1. So the total intensity of the nuclear magnetic
absorption line is proportional to %  N I ( I  +  1). This is equal to
(1/ 2 . 3/ 2)W  T hus the total intensity of the line of orthohydrogen is the
same as if all N  protons were uncoupled in hydrogen atoms.

If the molecule is placed in a strong magnetic field, in zero approxim a
tion not only I  and ƒ, but also m j  and ni j  are constants of the motion.
W e  first consider the interaction of the nuclear spin with the rotational
moment. T he perturbation term in the Hamiltonian is given by

H op =  r h H ' ~ I J

=  V, V ft H'  \(IX +  i ly)(jx -  i j y ) +( l x -  Hy)(JX +  i Jy)\ + y h H '  IZJZ
(4.31)

From R a b i’s experiments (K 3) follows the value of H ' ;  the magnetic
field at the position of the protons produced by the rotation of the
molecule is 27 oersted. W ith  (4 .3 1 ) we can once more repeat the
reasoning explained in sections 2. 4 and 2. 5 in order to calculate the
relaxation time. If the quantisation of ƒ were fixed, that is if mj  did not
change during collisions, we would have no transitions in mj■ For the



first two terras on the left hand side in (4. 31), which have non-diagonal
elements in mj, involve also a change in mj. But the collisions in the gas
will change rrij and we can assume that after each collison mj has equal
chance for any of its 2/ +  1 values. As the distribution of the collisions

gas, we have a Fourier spectrum for mj and thus for ]x — i ƒ„. The
intensity of the spectrum of the latter is with (4. 9)

The number of molecules per cc, proportional to the pressure, is
denoted by N , a is the collision cross section, v is the average velocity of
the molecules.

To (4. 33) we have to add the contribution of the spin-spin interaction,
which is represented by the perturbation term

where n is the unit vector pointing from one proton to the other, and r
is the distance between them. The expression (4. 35) can be transformed

to one which only contains constants and the operators ]  and /  =  / x -j-

process, we have to write the operator between square brackets in the

in time of a given molecule, measured from the time of the preceding

collision, is given by — exp— tjtc, where rc is the mean collision time in the

_  4 / ( / +  1)
3 1 +  4 +  Vs T+ (4. 32)

From this and (4. 31) we obtain a relaxation time

/ ( / + i )
1 + 4  n~ v02 r.c (4.33)

with tc =  1,4/ v o N (4. 34)

H o p "  =  ~ J ^ J L  P  (A • n) (/, • n) -  +  . 7,J (4. 35)

/ ( / + ! ) +  4 +  ( / ,+ ! )
7e2tl3^ ( 2 / - l ) ( 2 / + 3 ) ( 2 / - l ) ( 2 / + 3 )

(4. 36)

In order to find the contribution of this interaction to the relaxation
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mj, mj representation. R a b i  and collaborators (K 4) found that this
operator is equal to

V* [3 A 2 - J  ( / +  1] [3 V  -  I  (I +  1)] +  A mj =  A mj =  0

+ 3A [ƒ* (Ac + Ay) + (A + Ay)/J [A (A -  i ly) + (A ~  ' /y) A1
— A m/ =  -f- A mj =  1

+’*/* [ƒ* (A -  *■ Jy) + (A -  Ay) ƒ J [A (A + «A) + (A + * A) A]
=  — A ^  =  1

+  A(A+ H y YU x - i J y Y  A m I = - A m ] =  2

+ S/4 (A — ' A)S (A +  lA)3 — A mj =  A m j  — 2
(4. 37)

The matrix elements can be written down immediately with the rules
of matrix multiplication and the expressions (1,1), (1,2) and (1.3). The
matrix elements of (4. 37) with Am j = 1 and 2, combined with the com
ponents at v0 and 2v0 of the frequency spectrum of the corresponding
terms in mj  give an expression for l/7 \, which must be added to (4. 33).

We write down the final result, first derived by S c h w i n g e r  for
the case realized in practice that rc is short compared to the Larmor
period 1 Jv0.

<l/r,)„, _ =  2,, [ i f f - ƒ(ƒ +  1) +  3 H " >  p j A y t j W ]

(4. 38)

where H "  — A 1/2y ft is the effective field from one proton at the position
r3

of the other. From R a b i’s experiments (K 3) follows H " — 34 oersted.
In (4.38) we have already asumed 4 n2 v02 rc 2 «  1. This is always
fulfilled under practical conditions. The opposite case 4 tt2 v02 rc 2 »  1
would occur at pressures of 1 mm Hg or less, where the signal is much
too small to be detected. From (4.38) and (4.34) it follows that the
relaxation time T j is proportional to the pressure. Substituting numerical
values yp =  2.7 X 104, J =  1, tc =  10~u sec. (Handbook of Chemistry
and Physics) for a pressure of 10 atmospheres, we find = 0.03 sec,
which is in agreement with the experimental value.
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T he line width can be calculated on similar lines as we did in chapter 2
from (4 .3 1 ) and (4 .3 2 ). As in liquids we find again th a t-Tg is of the
same order as 7 ^  so that the resonance line should be very narrow . As
To is proportional to 7 \ ,  the line width should be inversely proportional
to the pressure. W e  can speak of “pressure-narrow ing” of the nuclear
resonance line in H 2-gas.

T he conclusion is: T he magnetic interactions in the H 2-molecule give
rise to a fine structure of the radiofrequency spectrum in R a b i’s mole
cular beam method (K 3 ). Combined with the collisions in the gas sample
for pressures >  10 mm Hg, as used in P u r c e l l ’s method, they give
rise to a relaxation mechanism and the local fields average out to a single
very narrow  line.

W e  have not considered the influence of the other molecules during a
collision on the relaxation time. In the next paragraph we shall see, that
this effect can usually be neglected in hL-gas.

4. 2. 2. Helium.

A n entirely different state of affairs occurs in the interesting case of
H e3 gas. T he atoms are in an S-state. T he only perturbation is brought
about during the collisions by the nuclear magnetic moment of the col
liding atom. Unlike in hydrogen, here the influence of the other molecules
is the only effect. Suppose that the H e3 nucleus has the set of eigen
functions rpD in the constant field H 0. W e  ask for the chance that the
perturbation by a collision brings the system from the initial state i with
energy E t to the final state f  with energy E t. T he perturbation method,
which may be applied, if the chance in one collision is small compared to
unity, gives for the probability to find the system in state f  after the
collision

C f  •
, 2  _ L _ Et

( E f - E t f ( f  i Hop I i ) (4.39)

W e  cannot say precisely, w hat is going on during the collision. But
the order of magnitude of the matrix element of the perturbation operator
between the initial and final state will be the same as that of the inter
action energy sss y1 y2 ft2 d~s. T he colliding particles have magnetogyric
ratio’s yx and y2 and d  is the distance of closest approach between the
moments during the collision. T he time t, during which a strong inter-
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action takes place, is probably W  10~ 16 sec, at any rate t «  U JE,—E y ^
10—8 sec. We can therefore write instead of (4. 39)

Wf =  y!2 y22 ti2 f2 d~6 (4. 40)

If v is the relative velocity of the colliding particles, we have t djv.
We then multiply by the number of collisions per second 1 / rc and find
for the relaxation time

l/Ty — 2 jq2 y22 tl2 d~* v~"“ rc_1 (4.41)

Substituting numerical values for He3 at room temperature and atmo
spheric pressure, v = 1.4 X 105 cm/sec., rc = 2 X 10~10 sec, d — 2 X
10—8 cm, y] =  72 = 2.4 X 104, we find 7 \ = 106 sec. In order to avoid
saturation during the resonance measurements it is therefore necessary
to admit oxygen gas. The magnetic moment of an 0 2 molecule is about
103 times as large as of a He3 atom.

Taking 7l = 2.4 X 104, y2 = 2.8 X 107, d = 2.5 X 10~8 cm, rc =  10~ 10
sec we find for the relaxation time of He3 resonance, if the partial
pressure of the oxygen is one atmosphere, Ty ^  1 sec. From (4.41)
and (4. 35) it follows that in this case the relaxation time is inversely
proportional to the pressure. Strictly speaking we ought to add a term
which is similar to (4.41) to (4.38) in the case of H2. From the order
of magnitudes, resulting from (4.38) and (4.41), we see that such a
term in pure H2 gas is completely negligible for pressures below 103
atmospheres. For 0 2 pressures of 10- atmospheres, however, it is an im
portant contribution. In general we can say that most gases, consisting
of molecules, will behave like hydrogen and show the "anomalous”
pressure-narrowing. The noble gases, consisting of atoms in an S-state,
will behave like He3 and have pressure broadening.

W e shall now derive the relation between Ty and T2 for the case
of He3. At the same time we obtain an independent derivation of the
saturation formula (2.64). The He-nuclei can be considered as com
pletely free most of the time, but during each collision there is a small
chance for the nucleus to change its orientation. The probability w —
Y2T y for such a transition is given by (4.40). If a radio frequency field
H y  is switched on at t = 0, the free nuclei will oscillate between the upper
and lower state according to R abi’s formula (2. 11), until the situation
is interrupted by a thermal transition. We start out with the system of
nuclei in thermal equilibrium. The situation can be described by the
number of surplus nuclei, originally 4- n0 in the lower state, oscillating



between +  n0 and — n0, while the collisions tend to restore the equili
brium value +  n0. T he probability that this is achieved in the time
interval between t and f +  dt is given by I J T 1 exp (— tJT^)  d t, as T t
is the average time and the distribution of gas kinetic collisions in time
is given by an exponential. T he average energy dissipated from the spin
system and absorbed during the collisions is

n„ h v0j  wi/ti _  i/s d  t  (4.42)

where u>y2 _ y 2 is the probability that the surplus nuclei are in the upper
state at time t (2. 11).

A fter the equilibrium has been restored, the process repeats itself.
In our description we have artificially broken up the natural process into
self repeating steps. In reality the individual nuclei each have a chance
to make transitions both up and down, with a preference for the latter.
T he energy absorbed per second, which must be supplied by the radio
frequency field, is obtained if we multiply (4 .4 2 ) by 1 / 7 \ ,  the number
of times that the process is repeated per second. T he integration over t can
be evaluated by partial integrations. T he absorbed power P  is given by

P = n 0 h v0* sin- 0 j +  4 n% T * ^  +  v \  _  2r ^  cos ^  (4. 43)

Since always H ^ H o  «  1, we can put sin ■& H XJH 0 and cos & ss»
1 — H  y =  2 jivJ H q. N ear resonance v ^ v 0 we then have

2 T
P  =  V* n0 h v0 f  H x~ j +  T i » (a) _  o g s  H i » 7 - j  (4- 44)

which on comparison with (2. 71) and (2. 66) appears to be the B l o c h
formula with T x =  T 2.

It is interesting to apply the noise formula (3. 21) to the case of H e3
and see w hat the minimum detectable amount is. It is not justified, how
ever, to put in that formula T x — T 2, since the line width will always be
determined by the inhomogeneity in the field. Using 10 atmospheres of
0 2 we have 7 \  =  10—1 sec and we can take T ^ / T 1 ^  10~2.

Substituting for q, A and F  each x/ l  their ideal values of unity and
taking Q  =  102, y =  2.4 X 104, H a =  104, we find that 1 cc of H e3 gas
at room tem perature and atmospheric pressure would give a signal to
noise ratio about 5, if the indication time of the meter is one second.
In practice it would be very hard  to find such a signal of such an extre-
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mely narrow line. One would have a better chance by searching for
the moment in liquid He3 at 1° K.

Added in the proof:
Very recently A n d e r s o n  (A 5) succeeded in measuring in a

mixture of He3 and O a, each at a partial pressure of 10 atmospheres.

4. 3. The relaxation time and line width in solids. y
4, 3. 1. Solids, to which the theory for liquids is applicable.

In some solids there seems to be sufficient freedom of motion (S5)

TEMPERATURE IN °G
Figure 4. 8.

Values of the dielectric relaxation time r defined by Debye, in ice at
various temperatures. The points, indicated in the graph, are obtained
from measurements of the anomalous dielectric dispersion in ice by

Wintsch.

for the particles, that we can apply the same theory as in liquids. This
state of affairs was already evident from the dielectric dispersion of the
D e b y e  type occurring in solids (D2) .  The typical example is ice, of
which we show the D e b y e  time r as a function of temperature in fig. 4.8.
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T he data are calculated from measurements by W i n t  s c  h ( W 5 ) .
O f course, the molecules are not as free as in water; r is about 106
times larger than in water. W e  expect then that the correlation
time r c in the local field spectrum has increased by about the same
factor, so that the relaxation time in ice will behave in the same w ay as
in glycerin at low tem peratures where 4 j z 2v 02t c2 ] »  1. In fig. 4. 9 T 1
in ice between — 2° C and — 40° C is shown as a function of the Debye

x- at 29 Mc/sec

I0"6 IO‘ 5 I0 '4

DEBYE TIME IN SECONDS

Figure 4. 9.

The relaxation time of the proton resonance in ice between — 2° C
and — 40° C, plotted against the Debye time t. The line drawn
through the experimental points, makes an angle of 45° with the

positive X-axis.

time, to which r c is proportional. T he graph apparently  confirms the
ideas set forth in the beginning of this chapter. T he straight line draw n
through the points makes an angle of 45° with the x-axis. U nfortunately
we were not able to investigate the resonance in ice at 4.8 M c/sec,
because the signal to noise ratio became too low in that case. W e  would
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expect, of course, the relaxation time to be shorter, but having the same
dependence on r.

M easurem ents of the line width yield values of T 2 , which are shown
in fig. 4. 10. T he drawn line is the theoretical curve computed from
(4 .2 2 ), So here r c becomes so large that we approach the asymptotic
value of the line width, which should be, according to the graph, about
16 oersted for a Gaussian. This is in good agreem ent with the value
calculated from the crystal structure of ice (B 15), assuming that the

x- at 29 Mc/sec

DEBYE TIME IN SECONDS

Figure 4. 10.

The line width of the proton resonance in ice between — 2° C and
— 40° C. The theoretical curve (4.22) for the quantity T2, which is
inversely proportional to the line width, is drawn through the

experimental points.

nuclei are at rest. In ice a translational motion of the molecules in a
viscous surrounding is apparently  excluded. O ne might assume with
D e b y e  a hindered rotation of the H 20  molecules in the crystalline
structure, although a more recent picture by O nsager suggests, that
chains of lined up dipoles will reorient themselves at the positions, where
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there are misfits with other chains. E ither picture will produce the
required fluctuations in the local magnetic field and will only affect the
proportionality constant between t and t c. T he best explanation for the
fluctuations in the local field are perhaps the transitions between the
two available positions for the proton in the O -H -O  bond, as proposed
by P a u l i n g  ( P 8 ) .  For comparison the results for alcohol, glycerin
and ice at 29 M e are shown together in fig. 4. 11. For glycerin we can

ALCOHOL AT 2 9  Me ICE AT 2 9  Me

GLYCERIN AT 29  Me

DEBYE TIME IN SECONDS

Figure 4. 11.

The relaxation time Tj of the proton resonance in ethyl alcohol, glycerin and ice at
29 Mc/sec between — 40° C and +  60° C.

determine the ratio r / r c from comparison of the experimental result of the
minimum in the curve with formula (4. 25). W e  find r c =  2 r. T hen  we
must have for alcohol r c =  0.2 r  and for ice tc =  0.8 r. These results are
very satisfactory and must be considered as additional proof for our
theory.

W e  now give a very brief account of w hat can be expected in other
solids with some prelim inary experimental results to confirm our view.
M uch more detailed investigations have to be carried out to refine the

8
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following global exposition. In hydrated param agnetic salts like C u S 0 4.
5 H 20  the field at the position of a proton will fluctuate, because the elec
tron spins of the C u+ +  ion change their quantisation with respect to H 0
at the rate of the short electronic relaxation times' p, to which we must put
equal the correlation time r c. T he proton resonance in C uSÖ 4. 5 H 20
and C o S 0 4. 7 H 20  show line widths of only 12— 14 oersted, while the
instantaneous value of the internal fields in these param agnetic salts is
several hundred oersted. This can be explained by the short r 0. T he high
intensity of local field, arising from the electronic moments, makes the
relaxation time so short (<  3 X lO-4 sec), that we could not saturate the
proton line.

In paraffin the relaxation time was found to be 0.01 sec. and the line
width 4.5 oersted. These data are in agreement with the estimates of
other investigators. In molten paraffin the line is narrow. Paraffin  be
haves again in a similar way as glycerin. In the solid state there still
must be an appreciable opportunity for motion, either rotation or twisting
or realignment, of the molecules. A bout the same as for solid paraffin
holds for the F 19 resonance in teflon. T his carbon fluoride compound
can be considered for our purpose as paraffin, in which the protons are
replaced by F 19 nuclei.

For the proton resonance in N H 4C1 a relaxation time of 0.12 sec. at
+  20° C and 0.015 sec at — 20° C was found. T he line width at both
tem peratures was 4 oersted. These results can probably be explained by
a hindered rotation of the N H 4 tetrahedron (S 5).

V ery  interesting experiments have been carried out by B i 11 e r (B 2,
A 1), who observed a sharp transition point in the line width of the
proton resonance in solid C H 4, at the same tem perature where there
is known to be a transition point in the rotational degree of freedom of
the molecule. T he attention of the reader is also called to the measure
ments at very low tem peratures by R o l l i n  and collaborators ( R7 ) .
Possibly the rotation of the hydrogen molecule can be helpful in ex
plaining the experimental results in solid ortho-hydrogen.

4. 3. 2. Ionic crystals; the influence of the lattice vibrations.

4. 3. 2. 1. T he relaxation time.

W e  now take up the question of the relaxation time in those crystals,
in which lattice vibrations are the only motion. For this case the
theory of the relaxation time had been worked out by W  a 11 e r (W  1,
H 2 ) ,  who considered the interaction of the magnetic moments with
the lattice vibrations. W e  shall show that our procedure, which gave
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the new results for liquids and gases, is essentially aequivalent to
W  a 11 e r ' s  considerations, when it is applied to crystals.

For the lattice vibrations we shall adopt the same simplified picture,
which D e b y e  introduced in his theory of the specific heat of solids (S 5).
According to this picture there is an isotropic distribution of lattice oscil
lators. In the volume V c of the crystal there are 4 nv^  V c/c 3 oscillators
for one direction of polarisation in the frequency ranger, v +  dr.

H ere c denotes the velocity of propagation of elastic waves in the
crystal, which is taken to be the same for longitudinal and transverse
modes.

This formula is valid up to the frequency v determined by the equation

For r  >  rm there are no lattice oscillators; (4 .45) expresses that the

system of N  atoms.
W e  first consider the contribution of one neighbour j  to the Fourier

spectrum of 2  sin cos • e! ,piJ /  r \  j  ■

W e  take the z-axis in the direction of H 0. T he radius vector

T he relative displacement of the ith and j th nucleus for waves propaga-
—>

ting in the direction of r  { ■

ƒ \ 2 n v *  V c c -8 d v  — 3 N (4. 45)
o

total number of oscillators is equal to the degrees of freedom of the

j

r ij = r i — Tj connecting the equilibrium positions of the two nuclei ma-

kes an angle with the z-axis. T he displacement ut of the i‘h nu
cleus from its equilibrium position by the lattice vibrations is

ui = 2 A k sin 2 n v k ( t — ri /c+<pk)
n

(4. 46)

V k

since Xk =  c/vk »  r • T he variation in

F 1 = s i n  cos djj  e‘ ,p ii! F i -j

A k cos 2 n v k {t — r( /c +  cpk) (4. 47)A «tj =  rtJ

can be expressed by a T aylor series

8*
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A F i = ^  A r + * §  A^ +  V , ^ ( A r ) »  +  . . . . ( 4 . 4 8 )  ,

W e  dropped the subscripts i and j. For longitudinally polarised waves
we have only changes in r; for these A r  =  ( A n )  long.

T he direction of polarisation of one of the transverse modes is taken in
—►

the plane through r a n d  the z-direction. For this mode we have
r{j  A  (A  u) tr. I. For the second transverse mode w e have
tg A  <p =  (A u) tr. 11/r sin ■&. If A  u «  r sin #, we may write
r  sin #  A  <p =  (A  u) tr. II. O nly for very small & this relation is not
satisfied. For this last mode and very small values of #  the expansion
(4. 48) of F  is not suitable.

T o find the intensity J ] (v) of the spectrum of F lt we have to deter-
p in e  the sum of the mean square deviations (A )'2 in each of the
independent waves in the frequency interval v, v dr.

W e  can find an expression for the amplitude A k of each wave by
means of the aequipartition theorem. Each lattice vibrator has an energy

hv  \
kT I: — 1/ For small v or large T  this is equal to kT.  Let M  be the

mass of the crystal, q =  M /  V c the density. T h e  aequipartition theorem
can be w ritten with (4 .46 ) as

| A 12 _  h v  ___ ______k  T

( Aü \ 2 n~ vs M
2 it2 v2 M  \ e kT— 1/ (4.49)

W e  use the last approximation for the three first order terms in (4. 48).
T hese terms can be treated independently, as they belong to different
directions of polarisation. By squaring each of them and multiplying with
the number of oscillators, we find with (4 .47 , 4 .48 , 4 .4 9 ) for the
intensity of the spectrum of the first orders terms

J i  (”) =  4^ c3^C TvT J : ;  [” 9 sin3 §ij cos2 & ij +  cos2 2 &tJ  +  cos2 ö tJ  J

(4.50)

A factor is inserted, because the two directions of wave propagation
—►

perpendicular to rf • do not contribute, as in those waves the two nuclei
have the same phase.

N ow  we can sum (4. 50) over all nuclei / =£ i. This is legitimate,
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although  th ere  a re  fixed phase  re lations betw een the  deviations of the
nuclei in  one w ave. F o r the quan tisa tion  of the  various nuclei is inde
pendent, so th a t the ir fields a id  or coun terac t a t random . If w e do not
have a  single cry sta l w e can average  over the  ang le  &, w hich y ields a
factor 2 for the  expression betw een brackets in (4. 5 0 ). T h e  contribution

T h is  resu lt is essentially  the sam e as W  a 11 e r ’s form ula 51 (W  1, p. 386),
derived for the  transition  p robability  of electronic spins w ith  I  =  Yl-
If  w e take  h v0/kT<^<i  1. y  =  2 an d  m ultiply W a lle r ’s resu lt by  2
to get 1J T i ,  w e find th a t our num erical factor is 1 2 ^ / 5  times larger.
T h is  d ifference could p robab ly  be explained by noting th a t W  a l l e r  used
a m ore detailed  p ictu re  for the  la ttice  v ibrations in  a sim ple cubic lattice.
H e  follow ed B o r n ' s  rep resen ta tion  of coupled harm onic oscillators.
F u rtherm ore  W a l l e r  quan tised  the lattice oscillators. T o  W a l l e r ’s
resu lt an d  our form ula (4. 51) a contribution  of the  processes in w hich
tw o spins flop sim ultaneously  should  be added . It w ill ap p ear to be
much m ore im portan t, how ever, to  consider the  influence of the  second
ord er term s in (4. 4 8 ). O n  substitu tion  of (4. 47) into these term s w e see
th a t p roducts of tw o harm onic functions a re  p resen t an d  term s w ith
frequency  v0 in the expression of AF 1 occur as the  sum o r the  d ifference
of tw o frequencies v1 and  v2. T h e  w hole spectrum  of the  lattice vibrations
is im portan t for the  second o rd er spectra l in tensity  of F.  Since the
density  of oscillators n ear the upper limit v m is so m uch h igher than
a t  the frequency  r0, it w ill tu rn  ou t th a t the  second o rd er contributions
are  la rg e r th an  the  first o rder effects. W e  find by the  sam e argum ent
w hich led to  (4 .5 0 )  for the contribution  of the  first second o rd er term
in (4 .4 8 ) to the spectra l in tensity

of the  Z  n earest neighbours a t a d istance a will be the m ost im portan t.
A pply ing  (2. 53) w e find for the  re laxation  time

l /7 \  =  4 7i y 4 t l2 1  {I I) Z  k T  v02/ q c6 a 6 (4. 51)

'4 n 2 v/  V c h v l 4 jr2 v22 V c h v 2
sin2 #: ; cos2 #,■ d v 1 d v 2

'J 4 r 6, ,■ c4
o M c 8 (e* T— 1) M c3 (e* T — 1)o

v1 ± v 2 =  v0

and, since v0 «  vm,

3 2 n 2 h 2 sin2 f y j  co s2 f y j v ' e
~7T7------ d v '  (4.52)
[ekT—iyo
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Since all frequencies up to vm are involved, we cannot make use of
of the condition x  — h r ' /  k T «  1, unless the tem perature T  is large
compared to the D ebye tem perature 0  =  h v mjk of the crystal. T he
relaxation time, determined by this second order process, is by the
same arguments which led to (4. 51),

l / r i =  I  y « Z  ƒ ( ƒ + ! )
{k T )7

e/T

c10 a 6 h 3 (ex — 1)!
d  x (4.53)

T o  (4. 53) should be added the result of the other second order terms
and the contribution of the double processes, in which two spins make a
simultaneous transition. T he numerical factor in (4. 53) would become
somewhat larger. But as it is, it is already 18 7r2 X 192/245 larger than
in W a l l e r ’s formula 56 (p. 388) for the quantised lattice oscillators.
In the language of quantummechanics we can say that to (4. 53) corres
pond transitions of the nuclear spin accompanied by the emission of a
phonon and the absorption of another in the lattice. O ne could develop
(4. 48) to the third order terms, etc. It turns out that the contribution of
the successive higher terms decreases as k T  vm3/Q c6 10~2; so they can
be neglected.

W e  see from (4 .5 1 ) and (4 .5 3 ) that the first order transition pro
bability goes as T,  the second order one as T 2 for 0 / T  *=& 1 but as T 7
for @ / T » l .  A t room tem perature the second order terms are more
im portant. Substituting numerical valuesq —  2, c =  2 X 1 0 5,?'0 := 3 X  10 7,
a =  2 X  1 0 -8, Z —  6, y =  3 X  10*, T  =  300°, 0  «  T  we find that
(7 \) first order 1014 sec and ( T x) second o rd e rs»  103 sec.

It was a surprise that, while W  a 11 e r ' s  theory predicted such long
relaxation times for the nuclear magnetic resonance, the first experimental
results gave much shorter times (10~2 sec in paraffin). W e  have shown
that in many solids the spectral intensity of the local field is caused by
other motions than the lattice vibrations and that so many observed
relaxation times could be explained. In ionic crystals like Ca F 2, however,
one would expect W  a 11 e r ’s theory to be applicable. Nevertheless the
relaxation time for the F 19 resonance in a single crystal of Ca F 2 ap
peared to be 8 sec. Relaxation times of the order of one second were also
found in powdered A1 F 3 and N a  F, and by other authors in Li F. T here
are some indications that impurities and lattice defects play an im portant
role in the relaxation process of these crystals (Com pare the note a t the
end of this chapter).
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4. 3. 2. 2. The line width.

The line width must be calculated from the components near zero
frequency in the spectrum of F0 — 2 ( \  —3 cos2 )/r8,y . In the evaluation

we can safely neglect the small and rapid lattice vibrations and assume
that the nuclei are at rest. For this static problem the line width is given
by (2.36). It should be independent of the temperature, but vary with
the orientation of the axes of a single crystal with respect to the direction

—►
of H„. Experiments (P5) with a single crystal of Ca F2 gave results
for the line width in accordance with (2. 36) applied to the simple cubic
lattice of F19 nuclei, the Ca ions having no magnetic moment. A detailed
investigation of the line width in solids with special attention to the line
shape was made by P a k e (P 1). In many compounds the same element
can occur in more than one position in the unit cell of the crystal. When
these positions are not aequivalent with respect to the internal magnetic
field, one should distinguish more than one relaxation time and line width
at the resonance of those nuclei. It is of no use, however, to discuss the
situation in crystalline solids in detail, before more experimental material
has become available.

Note added in the proof:

Recents experiments carried out in the Kamerlingh Onnes Laboratory
of the University of Leiden confirm the hypothesis that the relaxation
mechanism in ionic crystals is determined by paramagnetic impurities.

A theory, taking these into account, gives for T 1 a value of the order
of a few seconds, if the crystal is contaminated with 0.0001 % iron.
Furthermore this theory predicts that T 1 should be largely independent
of the temperature of the lattice. These features are in striking contrast
with W  a 11 e r’s results for an ideal lattice and agree much better with
the experimental data (comp. R7).

A full account of these researches will be given elsewhere.



CHAPTER 5.

RELAXATION BY QUADRUPOLE COUPLING.

5. 1. The influence of the quadrupole moment on the relaxation time
and line width.

If a nucleus has a spin I > ]/2, the possibility of a spherically asym
metrical charge distribution over the nucleus exists. The value of the
electric quadrupole momente e Q is defined in C a s i m i r’s basic treatise
(C 2) on the quantummechanics of the quadrupole moment as (compare
however B 14)

e Q = J { 3  z2— r2)QmI = i(r)dr  (5.1)

The integral is extended over the volume of the nucleus. The nuclear
charge distribution is taken for the state with maximum z-component of
the angular momentum mj — I. The quantummechanical operator asso
ciated with the electric quadrupole moment consists of the components of
a symmetrical tensor, the diagonal sum of which is zero. Since the group of
rotations transforms these components in the same way as the Legendre
polynomia of the second order, the components of the quadrupole moment
can be shown to have the form

Qfc 1 oP. ~ 7 ( 2 /? .  i) F 2 (4  h +  h h )  — &kl J21  (5. 2)
'—  —J  °P-

The subscripts k. I. can each denote the x-, y- or z-component. Each
of the components of the tensor is a matrix over the magnetic quantum-
number m j. The matrix elements can easily be evaluated from (5. 2) with
the given form (1.1), (1.2) and (1.3) of the operators lx. l v and I,.
It is directly seen that Q k/ has only elements connecting states with
Am = ±  2, ±  1 or 0.

When a quadrupole moment is present, we have to add a term to the
Hamiltonian

H q °p ~  f  nude. 6 f f  Qkl X  2 {dEk +  O E i ) ] (5.3)
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The gradient of the components of the electric field È, which occurs
in this expression, is, of course, entirely due to the charge distribution in
the sample. We do not apply an external inhomogeneous electric field. In
heavy water e.g. the inhomogenous field at the position of a deuteron
arises in the first place from the asymmetrical charge distribution of the
other constituents in the same water molecule, but also from the electric
dipoles of the neighbouring water molecules. W e can now apply to the
electric quadrupole perturbation (5.3) the same considerations as we
did in chapter 2 to the magnetic dipole interaction (2.33). We note that
because of the thermal motion of the molecules in the sample we again

have a frequency spectrum of each of the components of gradfi.
The correlation timerc for these components will be about the same as
for the magnetic field, since for both tc is the time in which the position
of the molecules with respect to H 0 and one another has changed appre-

—►

ciably. The intensity of the spectrum of grad£ at the Larmor frequency
v0 of the nuclei is responsible for quadrupole transitions with Am = ±  1,
the intensity of the spectrum at 2 v0 for quadrupole transitions with Am =
±  2. These transitions shorten the relaxation time T 1. The components
near the frequency zero in combination with the diagonal matrix elements
of Q„r will broaden the resonance line. As an example of the terms we
have to add to the formulae (2. 51) and (2. 53) for the relaxation time
and line width, we write down the contribution to T 1 by the quadrupole
moment of a nucleus with /  =  1:

0 /7\ )q - 4 1 + \l*EX
d y )  1 4\ d y + d x +

<5«
5.2. Experimental results for the resonance of H 2 and Li7.

The influence of the quadrupole moment on the relaxation time has
been observed for the resonance of the deuteron in water. Two samples
were used. One contained 0.4 cc of a mixture of normal and heavy water,
the other consisted of the same mixture with some CuS04 added. In
both samples 51 % of the hydrogen nuclei were deuterons. The magnetic
resonance of both protons and deuterons was observed at 4.8 Mc/sec and
saturation curves were taken which are shown in fig. 5. 1. For compa
rison the proton resonance in normal water was also measured.



T he relaxation time for the proton resonance in H 20  +  D 20  is about
1.4 times longer than in HoO. This is due to the decreased intensity of
the local magnetic field, since half of the protons are replaced by deu-
terons, of which the magnetic moment is about three times smaller.

T he intensity of the local field at the position of a deuteron will be
about the same as for a proton. It will be slightly higher because the
percentages of H sO, H D O  and D 20  molecules in the liquid are such
that the chance of a nearest neighbour of a deuteron to be a proton is

GENERATOR OUTPUT IN VOLTS

Figure 5. 1.

The saturation of the proton and deuteron resonance at 4.8 Mc/sec
in light and heavy water.
a) Proton resonance in H ,0  :
b) Proton resonance in 49%  H20  +  51 %  D20  ;
c) Proton resonance in 49%  H20  +  51 0/0 DsO +  CuS04 ;
d) Deuteron resonance in 49%  H20  +  51 %  D20 ;
e) Deuteron resonance in 49%  H20  +  51 %  D20  +  C uS04.
The relaxation times calculated from the saturation curves can

be found in the text.

larger than 4 9 Th e  local field intensity, however, can certainly not
be higher than in pure H 20 .

Suppose for the moment, that the deuteron would have no quadrupole
moment. T hen  we expect, that the saturation of the d-resonance would
occur at the same energy density of the applied radiofrequency field as
the proton resonance, namely, when this density becomes comparable to
that of the local field. W e  see, however, from fig. 5. 1 that the energy
density, required for the saturation of the d-resonance, is 180 times
higher. Taking into account that y ^ /y 2̂  — 39, we find that the re
laxation time for the d-resonance in w ater is 0.5 sec, while it should be
90 sec, if no quadrupole moment were present. T he explanation must be
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that the quadrupole moment of the deuteron is almost solely responsible
for the observed short relaxation time. Substituting the values for T 1

—►

and Q  =  2.73 X 10~27 cm2 in (5 .4 ) we can estimate the value of g ra d ii
in the liquid. It is the same as would be produced by one elementary
charge at a distance of one Angstr0m  from the deuteron. T his is a
reasonable value for the inhomogeneity of the electric field in the mole
cule. surrounded by electric dipoles. So even small quadrupole moments
can have a considerable effect.

Small concentrations of a param agnetic salt will have no effect on the
relaxation time, as the electric transitions remain more im portant at first
than the magnetic ones. But the addition of a sufficient amount of C u S 0 4
will increase the magnetic local field density so much that the relaxation
time is then determined only by the magnetic transitions. T he saturation
of the p- and d-resonance then occurs at the same value of the applied
field. T he curves c and e show this situation. T hey  should coincide
exactly. T he deviation of a factor 1.8 is probably due to a systematic
error (cf. section 3.5). T he inhomogeneity of the magnetic field for the
p-resonance (a t about 1100 oersted) is certainly different from that for
the d-resonance (a t about 7000 oersted).

O ne might ask why the influence of the quadrupole moment on the
relaxation time of Li7 is not more pronounced. In the first place is the
magnetic moment of Li7 rather large, making the relative influence of
Q  smaller.

Let us assume that the relaxation time of Li7 in an aqueous solution,
which according to tabel IV  is 1.75 sec, is for 50 % due to quadrupole
interactions. T he quadrupole moment Q  of Li7 is not known experi
mentally. A very rough theoretical estimate by W e l l e s  ( W 4 ) ,  built on
the H artree model, gives a value of — 2.7 X 10-26 Cm2. O n substitution
of this value and T t =  3.5 sec in (5. 4) we find that the gradient of the
electric field is the same as produced by an elem entary charge at least 3
Angstrom  away. T his distance seems to be too large, although
one must expect that grad E  is much smaller than in the case of the
deuteron, since the Li+ ion is in a 7S state and the neighbouring w ater
dipoles will arrange themselves around the ion so as to give an approxi
mately spherical charge distribution. It seems probable, that the qua
drupole moment of Li7 is about five times smaller than the theoretical
estimate, mentioned above.

T h e  line w idth of the D 2 and Li7 resonance in the liquids used is
determined by the inhomogeneity of the field Hn. T he influence of the
quadrupole moment could not be detected. P o u n d  ( P 9 )  recently has
found broad resonance lines of the two Br isotopes in a solution of NaBr.
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T he width must be ascribed to the large quadrupole moments of these
isotopes. P o u n d  also discovered a fine structure of the LF resonance
in a single crystal of Li2 S 0 4. T he diagonal elements of (5. 3), in which

—>
grad E  can now be considered as a constant, give the first order pertur
bation of the four levels ttij which the Li^ nucleus can occupy in a

magnetic field. If grad E  is known from the crystal structure, the observed
shift of the resonance frequencies enables one to determine the quadrupole
moment Q.

5.3. The quadrupole interaction in free molecules.

T he quadrupole interaction can be described more precisely, if we
have to do with only one molecule. T his is the case in molecular beam
experiments ( K4 )  and in the application of the theory of the relaxation
time to deuterium gas.

T he grad E  can then be w ritten in terms of the angular momentum /
of the molecule. By grouptheoretical arguments we have

1 (d E k d E t \
2 \ d l  +  d k )

e g
7 (2 / - 1)

2 { h J l + J l  Jk) — dk IP  J (5. 5)

/*3 z 2__r2
with e q - j -----—  Qmj = J (r) d l  ( 5 . 6 )

T he integration has to be extended over the charges of the molecule
outside the nucleus under consideration, and for the state mj =  J.

T he interaction term in the Hamiltonian can then be written as

H Q op
1 e2 q Q
2 1 ( 2 1 -  1) ƒ  (2 /  — 1)[f-'HW

op

(5.7)

W e  note that this operator has the same form as (4 .3 6 ) and can be
dealt with in the same w ay as described in chapter 4. For D 2 gas we
must expect a shorter relaxation time than in H 2 gas, for the quadrupole
interaction in the D 2 molecule is much larger than the magnetic interaction
in H 2, as follows from the splitting of the lines of the resonance spectra
obtained with the molecular beam method.

Finally we must mention a refinement of the theory given in chapter 2.
W hen  we consider the dipole-dipole interaction between two identical
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protons in the same molecule, we should distinguish between ortho- and
para-states, as we did for the hydrogen molecule. The magnetic inter
action in a linear molecule will again assume the form (4. 36). In a liquid
ƒ will probably not be constant of the motion which would make the
problem involved. But /  will usually be very high. The very light mole
cules like H 2 and D2 are an exception in this respect. W hen ƒ is large,
we can introduce the classical approximation and replace ƒ*/ƒ by cos &
and ƒ * +  i j y l j  by sin $ ei(P in the matrix elements (4.37). So we come
back to formulae of the same form as (2.34) previously derived.

W e do not touch the question how exchanges between nuclei in more
complicated nuclei and between nuclei in neighbouring molecules should
be taken into account. Under many circumstances — but not in H2 and D2
— the formulae (2. 51) and (5. 4), where all nuclei have been considered
as distinguishable and the motion of the molecules is not quantised, will
give a satisfactory description.



SUMMARY.

The exchange of energy between a system of nuclear spins immersed in
a strong magnetic field, and the heat reservoir consisting of the other
degrees of freedom (the lattice”) of the substance containing the mag
netic nuclei, serves to bring the spin system into equilibrium at a finite
temperature. In this condition the system can absorb energy from an
applied radiofrequency field. With the absorption of energy however,
the spin temperature tends to rise and the rate of absorption to decrease.
Through this saturation effect, and in some cases by a more direct
method, the spin-lattice relaxation time T t can be measured. The inter
action among the magnetic nuclei, with which a characteristic time T2
is associated, contributes to the width of the absorption line. Both inter
actions have been studied in a variety of substances, but with the em
phasis on liquids containing hydrogen.

Magnetic resonance absorption is observed by means of a radiofre
quency bridge; the magnetic field at the sample is modulated at a low
frequency. A detailed analysis of the method by which T 1 is derived
from saturation experiments is given. Special attention is paid to the
influence of the inhomogeneity of the external magnetic field and to the
limitation of the accuracy by noise. Relaxation times observed range
from lO-4 to 10 seconds. In liquids T j ordinarily decreases with in
creasing viscosity, in some cases reaching a minimum value after which
it increases with further increase in viscosity. The line width meanwhile
increases monotonically from an extremely small value toward a value
determined by the spin-spin interaction in the rigid lattice. The effect of
paramagnetic ions in solution upon the proton relaxation time and line
width has been investigated. The relaxation time and line width in ice
have been measured at various temperatures.

The results can be explained by a theory which takes into account the
effect of the thermal motion of the magnetic nuclei upon the spin-spin
interaction. The local magnetic field produced at one nucleus by neigh
bouring magnetic nuclei, or even by electronic magnetic moments
of paramagnetic ions, is spread out into a spectrum extending
to frequencies of the order of 1/tc where rc is a correlation time
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associated with the local Brownian motion and closely related
to the characteristic time which occurs in D e b y  e’s theory of polar
liquids. If the nuclear Larmor frequency m is much less than l / r c> the
perturbations due to the local field nearly average out, T y ^  l / r c,an d
the width of the resonance line, in frequency, is about 1JTy. A similar
situation is found in hydrogen gas where rc is the time between collisions.
In very viscous liquids and in some solids where <x>tc >  1, a quite
different behavior is predicted, and observed.

V alues of rc for ice, inferred from nuclear relaxation measurements,
correlate well with dielectric dispersion data.

W h en  the theory is applied to the motion embodied by the lattice
vibrations of a crystal, it becomes identical to that of W  a l l e r .  T he
values for T y predicted by this theory are several orders of magnitude
larger than those observed experimentally in ionic crystals.

T he theory is also extended to the interaction of an electric qua-
drupole moment with an inhomogeneous internal electric field. T he
results are in good agreem ent with the observed relaxation time for the
D2-resonance in heavy water.
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ERRATA

p age

17 formula 1.13, for read:
23 4th line from top, for ,,aud” read r „and”.
27 3th line from bottom, for „is” read: „if”.
31 5th line from top, add „a” between „has” and „sharp”.
31 formula 2.26, for „eq” read: ,,Qp ” .
32 18th line from bottom, omit „the”.
37 11th line from top, for „distinguish” read: „distinguish”.
39 formula 2. 44 should read:

d N +  , , ,  y  It H n . . . . y f i H 0— = - w N + e x p ~ j ^ + w N  exp— F r -

42 8th line from top, for „to” read: „two”.
46 10th line from top, read:

.................... for T % A m =  11 +  y~ H x2 T l T 2 and . . . .
50 formula 2. 77, the lower limit of the integral should be „
58 4th line from bottom, add reference „(V 0)”.

108 The value of y for He3 is not 2.4 X 104.
For correct value see reference (A 5).





S T E L L IN G E N

I.

De theorie van W a l l e r  *) over de wisselwerking van een systeem
van kernspins en een ideaal kristalrooster levert w aarden voor
de relaxatietijd, die een factor 1000 of meer groter zijn dan die,
welke experimenteel gevonden worden. Een theorie, die rekening
houdt met verontreinigingen, geeft evenwel een bevredigende over
eenstemming.

l )  W.  He i  t i e r  en E. T e l l e r ,  Proc. Roy. Soc. A 155, 629, 1936.

II.

H et is te begrijpen, dat de relaxatietijd van een systeem van
kernspins in een niet-ideaal kristalrooster in vele gevallen vrijwel
onafhankelijk is van de tem peratuur van het rooster.

III.

De waarneming van R o l l i n ,  dat voor de magnetische resonantie
van deuteronen in vloeibare w aterstof enerzijds de relaxatietijd
langer, anderzijds de lijn wijder is dan van protonen, valt moeilijk
te begrijpen.

B. V. R o l l i n  et al., Nature 160, 436, 1947.

IV .

T en  onrechte meent E n g s t r o m ,  dat een versterker van ladings-
stoten, die veroorzaakt zijn door afzonderlijke lichtquanta in een
fotocel met inwendige versterking door secundaire emissie, een
hoge ingangsweerstand moet hebben om de gunstigste verhouding
van signaal tot geruis te verkrijgen.

R. W . E n g s t r o m ,  J.O.S. A. 37,  420, 1947.

V .

De door S i m o n  gevonden anomalie in de soortelijke w arm te
van vaste ortho-w aterstof doet vermoeden, dat deze stof absorptie
zal vertonen in het gebied van de centimetergolven.

F. S i mons ,  K. M e n d e l s s o h n  en M. R u h e m a n n .  Naturwissen-
schaften 18, 34, 1930.
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VI.
V oor de detectie van periodieke spanningen dient men uit

practische overwegingen aan een fase-gevoelige versterker de
voorkeur te geven boven een wisselstroom- of vibratiegalvanometer.

V II.

De kristalteller is reeds in het huidige stadium van zijn ont
wikkeling een w aardevol instrument voor het onderzoek van deeltjes
met grote energie.

L. F. W o u t e r s  and R. S. C h r i s t i a n ,  Phys. Rev. 72, 1127, 1947.

V III.

R u t g e r s  heeft in zijn „Leerboek der Physische Scheikunde” bij
de behandeling van de theorie van D e b y e - H ü c k e l  voor sterke
electrolyten niet voldoende nadruk gelegd op de benadering, die
bij het veronderstellen van de continuïteit van de ladingsverdeling
en tevens van e tp k T  is gemaakt.

IX.

Bij kunstbemesting van niet-zure, niet-ijzerhoudende gronden zal
men met in w ater oplosbaar fosfaat meestal betere resultaten be
reiken dan met onoplosbaar fosfaat.

E. ]. Ru s s e l l ,  Artificial Fertilisers, London, 1933.
A. W i l h e l m j ,  Ursachen der Wirkung des Thomasmehls, Berlin,

1931.

X.

H et is soms wenselijk, dat proefschriften over wetenschappelijke
onderwerpen, die niet aan nationale grenzen gebonden zijn, in
een andere taal dan de landstaal w orden geschreven.

vgl.: R. P. C l e v e r  i nga ,  Rectoraatsrede, Leiden 1947.

XI.

H et begrip „U niversitaire Gemeenschap” — c.q. „Civitas Aca
demica" — komt in de „Colleges” van de V erenigde Staten beter
to t zijn recht dan aan de N ederlandse Universiteiten.
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