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GENERAL INTRODUCTION AND SURVEY

The study of magnetism in ionic compounds has provided a remarkably rich source of
information for physicists and chemists alike. This is partly due to the great variety in
bonding complexes and ligand coordination structures, in which particularly 3d-transition
elements are engaged. It is also due to the increasing refinement in measuring techniques,
particularly those involving resonance methods, which has lead to detailed knowledge about
single ion properties in many crystals. The empirical knowledge of single ion properties is,
at least qualitatively, quite well understood in relation to ligand field theory.
In comparison, the existing information about magnetic interactions in ionic compounds is
less extensive and is poorly understood. The localized character of the ionic wave function
leads to the short range of the magnetic exchange interaction potential, which decreases
rapidly with interionic distance. Consequently, the exchange interaction strength is strongly
dependent on details of the ligand coordination of the magnetic ion, and may vary over
many decades in chemically related compounds. This is demonstrated, for instance, in the
large variation in magnetic interaction strengths exhibited in compounds of 3d-transition
elements, in which planes of 3d-ions can be separated by a class of organic molecules of
variable length, hence producing variable interplanar separations. A similarly large variation
in superexchange is noticeable when the number of intervening ligands between 3d-elements
is increased. Furthermore, since magnetic superexchange is correlated with covalency effects
in ligand bonding, the chemical coordination of transition metal ions influences the magnetic
interaction. Whereas a fair amount of experimental and theoretical investigations have been
dedicated to octahedrally coordinated transition ion compounds, relatively little is known
about the equally interesting tetrahedrally coordinated compounds. Several examples of
tetrahedral coordination will be discussed in this thesis.
Historically, exchange interactions among magnetic ions, derived from implementing the
rules of quantum mechanics, have been invoked in order to explain the occurrence of
magnetic phase transitions at rather high temperatures, such as in transition metal elements.
The information presented in this thesis includes magnetic phase transitions in transition
metal compounds, in which the magnetic ions are separated by at least two non-magnetic
ligands. These transitions occur at temperatures which are lower by roughly three orders of
magnitude. Hence, for a systematic study of exchange interaction through the determination
of the magnetic phase transition characteristics, measurements over many decades of temper­
ature are required. One advantage of studying magnetic interactions at low temperatures
consists of the following simplification.
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In many of the compounds mentioned above and further discussed in this thesis, e.g. the
tetrahedrally coordinated Co compound, rather low energy single ion eigenstates complicate
the magnetic behaviour of these compounds when studied at ordinary temperatures. On the
other hand, when cooling to the temperature of liquid helium or below, the ground states
may exhibit simple and extremely interesting properties.
Another advantage is that the lattice heat capacity, which occurs in all solids, and which
forms a sizeable hindrance to accurate measurement of magnetic heat capacity, is very
small at these temperatures. Further, if strong magnetic interactions are present, the crystal
lattice can be appreciably deformed by magnetic ordering, which reacts on the magnetic
interactions. This complication, however, is not important below 1 K due to weakness of the
interactions and smallness of the deformations.
The temperature interval in which measurements can be made, depends on the experimental
technique used. Temperatures of about 1 K could be reached when liquid helium became
available. After that time, new methods have been sought to reach still lower temperatures.
Although in recent years new methods, based on the remarkable properties of the 3He and
4He liquids and their mixtures, have been developed, the most fruitful method undoubtedly
has been that of adiabatic demagnetization. This method is based on the Zeeman interaction
between ionic magnetic moments and an external magnetic field. The Zeeman energy is, in
a sufficiently high magnetic field, larger than the thermal energy at liquid helium temper­
atures. Reduction of the magnetic field under adiabatic conditions leads to a corresponding
temperature decrease. Temperatures of about 0.01 K can be reached by demagnetization of
chromium potassium alum, and about 0.001 K by demagnetization of cerium magnesium
nitrate. Gradually this temperature range has become available for experiments of various
kinds, notably specific heat experiments.
Interionic magnetic interactions bring about an anomaly in the heat capacity at temperatures
of the order of the interaction constant divided by Boltzmann’s constant. For magnetic ions
of the iron group, the interactions correspond roughly to an ordering temperature smaller
than 1 K if their separation is greater than 6 A, whereas for the rare earth ions this distance
is about 4 A. Such separations are realized in a large class of magnetic compounds. In order
to investigate these substances, the demagnetization method can be applied.
In most cases, demagnetization of the sample does not give sufficiently low temperatures,
and indirect cooling via a demagnetized cooling salt must be applied. The lowest temperatures
thus obtained depend on the heat capacity of the sample. In favourable cases, measurements
can be obtained from about 0.04 to 4 K. Some of the experimental aspects of measurements
at these temperatures will be discussed in chapter I.
Several different types of magnetic interactions exist between ionic magnetic moments, e.g.
long range dipolar interactions and short range (super)exchange interactions. These inter­
actions can have a positive (ferromagnetic) or a negative (antiferromagnetic) sign. The form
of the interaction further depends on the ionic spin quantumnumber and on the number of
spatial components per spin that participate in the interaction. This number, which is called
the spin dimensionality, equals three if the interaction is isotropic (so called Heisenberg
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interactions). If the crystalline field imposes a constraint on the spin degrees of freedom,
e.g. in a crystal plane, the spin dimensionality is (at most) two (XY interactions), and if the
spin is constrained to a crystal axis, the spin dimensionality is one (Ising interactions).
The magnetic ordering phenomena also depend on the lattice geometry, in particular on the
number of interacting neighbours. It is also possible to assign a ‘dimensionality’ to the
magnetic lattice. For instance, if the magnetic interactions occur predominantly between
spins arranged in relatively isolated chains, the lattice dimensionality is one, whereas for spins
interacting in well-separated planes, the lattice dimensionality is two. If such isolated sub­
systems do not exist, obviously the lattice dimensionality is three.
In view of the multiplicity of these factors, it is not astonishing that a great variety of
magnetic ordering phenomena exists, even for the relatively simple systems to which the
following experiments have been restricted. The purpose of this thesis is to contribute to a
better understanding of this multitude of phenomena, and to obtain information about the
interactions (their form and their strength). The choice of the magnetic compounds is based
mainly on the following criteria:
1. sufficiently well-known single ion properties,
2. relatively simple geometry of the magnetic ion sublattice, and
3. sufficiently weak magnetic interactions.
In chapter II, several numerical methods will be discussed, which in many cases can be used
for the analysis of the experimental data, such that the character of the interactions may
become clear. The later chapters will treat experiments with such magnetic systems and their
interpretation.
The simplest form of magnetic interaction between a pair of magnetic ions is that of the
Ising type. In chapter III, experimental results on rubidium cobalt chloride will be discussed,
which are in complete agreement with the theory for the three-dimensional simple cubic
Ising model for exchange interactions between nearest neighbours. Experiments on the iso-
morphous manganese compound Cs3MnCl5 have shown that this is a good example of the
three-dimensional Heisenberg model, in which all three spatial components of neighbouring
spins participate equally in the interactions. This compound, together with other manganese
double chlorides, will be treated in chapter V. All these systems behave very differently from
the Ising system discussed in chapter III.
In addition to magnetic dipole-dipole and exchange interactions, other interaction mecha­
nisms also exist. For instance, electrical quadrupole-quadrupole (EQQ) interactions, or inter­
actions via the crystal lattice (virtual phonon exchange, VPE) cause another type of coupling
among magnetic moments. The EQQ and VPE couplings, however, are very weak in general,
and they can be better investigated in the rare earth (4f) compounds, since exchange inter­
actions in these compounds are much smaller than in the compounds of the iron group (3d)
metals. Such interactions have been observed in the rare earth ethylsulfates, and appear to be
strongest in cerium ethylsulfate. This substance is investigated in chapter IV. Since
interactions in cerium ethylsulfate are at least one order of magnitude smaller than those in
the other substances investigated here, experimental methods were used, which were not
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applied in the other chapters. These methods involved direct demagnetization of the sample,
and were applied at such low temperatures that no temperature equilibrium could be
established between sample and thermometer. It is found that the interaction between
nearest neighbouring cerium ions has a very remarkable form. The angular dependence
resembles that of magnetic dipole interactions, but is of opposite sign. The interactions are
found to occur predominantly in linear chains.
As already noted, rare earth compounds are characterized by much weaker exchange inter­
actions than in comparable iron group compounds, and thus by the possibility of observation
of further interaction types. If no data concerning these interactions are known beforehand,
one should restrict oneself to systems having a simple geometry. In this respect, the rare earth
double oxides of the pyrochlore structure, which are discussed in chapter VI, are good
examples. The interactions with the 6 nearest neighbours are determined by the same para­
meters, and any further interacting neighbours are at least at twice the n.n. distance. For this
reason, interactions with further neighbours are relatively weak, and the magnetic behaviour
of these substances is mainly determined by nearest neighbour interaction. The geometry of
the pyrochlore compounds is simpler than that of the rare earth oxides, and comparable to
that of the rare earth garnets. Since the crystal structure of the pyrochlore compounds
strongly influences the magnetic and caloric behaviour, calculations are given which relate
experimentally observable quantities to the interaction strength for a few simple interaction
types. The behaviour is then found to be strongly dependent on the spin dimensionality and
the sign of the interaction. The experiments show the existence of compounds which obey
reasonably well the behaviour that is expected for the pyrochlore Ising ferro- and antiferro-
magnet.
Summarizing: Sixteen magnetic compounds, exhibiting marked differences in spin
dimensionality and lattice structure, are studied in this thesis. The experimental results,
particularly on the heat capacity, provide valuable information concerning the magnetic
interactions in those compounds.
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CHAPTER I

THE EXPERIMENTAL TECHNIQUE

1. Introduction

Measurements at temperatures appreciably below that of liquid He require a technique which
is rather different from that used at higher temperatures. This technique has a specific
character which is determined by the thermal behaviour (specific heat, heat conductivity) of
materials at these low temperatures. These properties differ markedly from those found, for
instance, at room temperature. The so-called Fermi temperatures (of ‘free electron gases’ in
normal metals) and Debye temperatures (of crystal lattices) are generally very large compared
to 1 K. As a consequence, the number of thermally excited electrons in a normal metal is
proportional to the temperature, and in a lattice the number of excitations is proportional
to the third power of the temperature. Therefore, the specific heat of conduction electrons
in metals, and of lattice vibrations are also proportional to T and Is respectively. Since the
number of thermal excitations below 1 K is so small that scattering among excitations
is unimportant, the heat conductivities of these systems also have a behaviour proportional
to T  and 7s.
Below 1 K, the (molar) electron and lattice heat capacities are very small compared to the
gas constant R, in contrast to the values found at room temperature, which are generally in
the order of magnitude of R. At these low temperatures, thermal boundary (Kapitza)
resistance occurs between materials which are in mechanical contact with each other. The
thermal boundary resistance is proportional to T3. Among these conductivities, that of a
normal metal decreases least rapidly with decreasing temperature. Hence metals are suitable
for heat contact purposes at very low temperatures. In fact, the thermal resistance of a metal
becomes negligible at sufficiently low T (« 0.1 K), if contact and lattice resistances are
connected in series, even with maximum contact areas. Further, the lattice conductivity of
crystalline materials is much better than that of amorphous materials such as perspex, nylon,
graphite and cotton. The latter materials can be utilized as mechanical support of those parts
of an apparatus which should be thermally isolated.
Magnetic compounds may exhibit rather different heat capacities, in addition to the above
mentioned contributions at low temperatures. Magnetic interactions can cause a large
contribution to the heat capacity, of the order of R. Such contributions are encountered in
the samples to be investigated, and they are utilized in cooling salts. These cooling salts
consist of a paramagnet (at 1 K) which is usually isothermally magnetized at about 1 K and
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subsequently adiabatically demagnetized into a magnetically ordered state (due to conservation
of entropy) at a temperature far below 1 K. Due to the high heat capacity of the cooling salt
at these low temperatures, a considerable amount of heat can be absorbed before the cooling
salt is again ‘warm’ (» 1 K). Hence such a cooling salt can be used for the purpose of cooling
a calorimeter to low temperatures.

2. The demagnetization setup used for calorimetry

The operation of a demagnetization apparatus and a calorimeter such as used here has earlier
been described by Miedema1’2), Van Kempen3) and Wielinga4), and will be discussed here
only briefly. A liquid helium cryostat, in conjunction with an iron core electromagnet
provides the combination of low temperatures (» 1 K) and a strong magnetic field
(« 20 kOe) required for adiabatic demagnetization. Inside the He dewar of the cryostat there
was a vertical glass tube of 35 mm diameter and 50 cm length (fig. 1), which was connected
to a high vacuum pump. At the lower end of the tube, a glass joint was mounted, in order to

Rg. 1. A schematic picture of the apparatus in the liquid helium dewar. The vertical scale is three times
more compressed than the horizontal scale in order to obtain a figure of reasonable dimensions. The
meaning of the numbers is as follows: 1) susceptibility coil system, 2) heater coil, 3) susceptibility thermo­
meter, 4) eddy current heater, 5) sample, 6) heat switch, 7) cooling salt for the calorimeter, 8) cooling salt
for the thermal guard tube, 9) guard cooling salt, 10) glass joint, 11) electrical connections, 12) thin glass
tube.

make the tube accessible. At the bottom of the male part of the joint stood a small glass tube
with on its end the usual guard cooling salt. This guard salt should prevent most of the heat
leak from the He bath via the small glass tube. On the guard salt a 24 mm diameter quartz
tube was fixed concentrically in the 35 mm diameter tube. This quartz tube was cooled by
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means of a second guard salt and coil foil glued onto the tubes outer surface, which served
as a thermal screen to absorb most of the heat leak. Further, inside this guard tube were the
main cooling salt (a), and the ‘calorimeter’, consisting of the sample (b), the heater (c), the
thermometer (d) and the metal system (e). The cooling salt was thermally connected to the
metal system via a heat switch. These components were fixed inside the guard tube by means
of cotton threads.

3. The cooling salt and the components o f  the calorimeter

a. The cooling salt consisted of slices of chromium potassium alum single crystal which were
clamped between brass plates, and screwed onto a central copper axis. Heat contact between
the brass and the alum was improved by silicon grease. Heat contact between the brass plates
and the copper axis was established by mechanical forces on the screw thread.
b. In most cases, the sample consisted of a finely powdered substance mixed with silicon
grease. The mixture was brought into a small metal or perspex cylinder. A brush, consisting
of many electrically insulated (in order to decrease eddy currents) copper wires was inserted
for heat contact.
c. Heat input was provided either by a joule heater, or by an eddy current heater. The joule
heater consisted of a manganin wire resistor of about 1 kiï wound onto a 1 mm copper wire.
The resistance of the heater was measured at low temperatures, and the heat input was
directly found from the current which was led through the heater. Concerning the other
method, eddy currents were generated in a copper ring by an alternating magnetic field,
which was produced by a coil system around the 35 mm diameter glass tube. The heat input
was proportional to the square of the current through the coil system. A calibration was
obtained by a comparison of the heat input to that of the joule heater, and by measurements
of a sample having a known heat capacity, namely terbium metal. For this heat capacity, we
have taken experimental data of Anderson et al. 5). Both calibrations gave identical results.
d. During the experiments, two types of thermometers have been used: magnetic and
resistance thermometers. Of these, we shall first discuss the magnetic thermometers. These
consisted of slices of paramagnetic material, glued between thin brass plates. A constant
mechanical pressure was applied by thin nylon threads wound around the thermometer. In
many cases, cerium magnesium nitrate (CMN) was used as thermometer material. A small
amount of Cu was substituted for Mg in order to improve the spin-lattice heat contact®’7).
Measurements of e.g. Mess et al.8) have shown that CMN follows a Curie-Weiss law down to
very low temperatures. Parameters describing the Curie-Weiss law are found by calibration at
liquid He temperatures. Thus susceptibility measurements of the thermometer provided a
measure for the temperature. In other cases, cobalt cesium sulfate (CCS) was used as a
thermometer. CMN has the advantage that its magnetic specific heat is less than 1% of that
of CCS, and it obeys the Curie-Weiss law down to much lower temperatures. The advantage
of CCS is that it has a higher sensitivity. This is important at relatively high temperatures,
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where magnetic thermometers are the least sensitive. The susceptibility of the CCS thermo­
meter was calibrated to the susceptibility of CMN, which showed that the CCS thermometer
followed within experimental accuracy a Curie law at temperatures above 0.2 K. Even after
thermally recycling many times to room temperature, it was found that the heat contact of
thermometers of the above construction had not decreased substantially.
As a resistance thermometer, use was made of either carbon or germanium, the latter mainly
at temperatures near 1 K, and the former at lower temperatures down to about 0.05 K.
Carbon resistors have the advantage of having only a small sensitivity to a magnetic field
(see Edelstein4 * * * * 9) and Haasbroek10) ), which was particularly important for the experiments
described in chapter IV. Further, the heat capacity of resistance thermometers is much lower
than that of magnetic thermometers. A calibration of these resistance thermometers above
1 K was obtained by measurement of the He vapor pressure in the cryostat. Below 1 K, the
resistance was calibrated to a CMN thermometer. For the purpose of interpolation and data
handling by a computer, a polynomial in the logarithm of the resistance was fitted to the
inverse temperature, so that the temperature could be computed from the resistance readings,
e. The metal system consisted of 1 or 1.5 mm diameter copper wires, which thermally
connected the various parts of the calorimeter. The metal system was further connected via
a heat switch to the cooling salt. This heat switch consisted of one or more ca. 0.3 mm dia­
meter Sn or Pb wires. Since these metals are superconducting below He temperatures,
electrons do not contribute to the heat conductivity, and heat transport is confined to the
lattice. Thus the conductivity has T3 temperature dependence and becomes very small at low
temperatures. If a magnetic field of a few hundred Oe is applied, however, the metal returns
to the normal state, and the electrons contribute to the heat transport again. This contribut­
ion is, at low temperatures, much larger than that of the lattice. Application of a magnetic
field renders the heat switch conducting, in order to cool down the calorimeter by means of
the cooling salt.

4. The coil systems

For the purpose of susceptibility measurements, coils are wound around the 35 mm glass
tube (fig. 1). A primary coil supplies a 220 Hz alternating field at the sample or the magnetic
thermometer. The magnetization due to this field is detected by a secondary coil. The
susceptibility of the sample thus gives a contribution to the mutual inductance of this coil
system. In order to reduce a.c. pick up, the secondary coil was split into two identical sections
wound in opposite directions. The position of the sample is thus not in the centre of the coil
system, but in one of the secondary sections. For the purpose of reducing the influence of
other components of the apparatus, the primary and secondary coils were constructed such
that the field due to a current through the coils decreased rapidly outside the coils. Particularly
at the position of the cooling salt, which has a much larger volume than the sample, the
sensitivity of the coil system should be very small. In practice the cooling salt was placed at
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a distance of at least 8 cm off the center of a coil system, where the sensitivity was smaller
by a factor of at least one million than at the position of maximum sensitivity.
Two such coil systems were mounted around the 35 mm tube, one for the susceptibility
thermometer and one for the sample. Further, a coil was added for energizing the eddy
current heater. Since the position of the copper ring was not precisely the same in each
experiment, the heater coil was constructed in such a way that its field was constant within
2%0 over a distance of 9 mm. At somewhat larger distances, the field was made to decrease
rapidly to about 1 % at 25 mm from the coil centre. This arrangement was chosen as to
reduce eddy current heating in other metal parts of the apparatus.

5. Susceptibility measurements

Signals from the secondary susceptibility coils were detected by means of a Hartshorn mutual
inductance bridge. The principle of this method is that the mutual inductance of the
susceptibility coil system is compensated by a variable mutual inductance. The out-of
balance signal of the bridge was amplified and fed to a recorder. Out-of phase signals could
be compensated by an auxiliary resistance network. A contribution to these 90 degree out-of
phase signals arises if the sample exhibits hysteresis or relaxation effects (a non-zero x” )- The
reading of this off-phase network is referred to as ‘a.c. losses’.
The mutual inductance of the Hartshorn bridge is expressed in units called bridge turns, to be
denoted by n. Hence, the relation between the molar susceptibility of the sample, x, and n
has the form

n - n 0 = ax (1)

where n0 is the extrapolated bridge reading at infinite temperature, and a is a constant that
is proportional to the sample volume and the sensitivity of the apparatus. The absolute
accuracy of a is poor, in view of the lack of a precise determination of the position of the
sample in the coil system. The determination of n0 may present problems, since measure­
ments of « above liquid He temperature are liable to inaccuracy due to thermal deformation
of the susceptibility coil systems. In fact, the bridge reading was very sensitive to mechanical
deformation. Therefore care has been taken to wind the coils as tightly as possible, avoiding
open spaces.

6. 77ie determination o f  n0

In order to interpret susceptibility data, knowledge of n0 is necessary. Since n0 is not
reproducible through thermal deformation, its value had to be found for each experiment.
This is possible e.g. if one may assume that x = 0 for a certain bridge reading, which situation
occurs e.g. in chapter III. Further, if the sample (or thermometer) follows the Curie law,
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combination with eq. (1) gives

n — n0 = h/T

where h is the product of a and the molar Curie constant. Then n0 is simply found by a plot
of n vs l/T  and extrapolation to 1/7’= 0.
If the sample obeys a Curie-Weiss relation, and the Curie-Weiss constant 0 is unknown, the
method is somewhat less simple. The relation between n and T is now written as

n — n0 = h/(T  — 0). (2)

Hence three constants, n0, 0 and h must be found from the experimental relation between
n and T. For this purpose, one can calculate the quotient A n/A T between successive data
points. If eq. (2) is valid, this quotient is in first order approximation:

ta — —— — —  or In — nol *  VM VI An/AT  I (3)
A T dT h
where n stands for the average of the two values which bound the interval. One then can
estimate n0 and h by plotting V IA n/A 71 versus n and extrapolating to the abscissa. When
n0 is known to a first approximation, one can include higher order terms:

|n — nol *  Vlhl V \An/AT I [ 1 + —-----w°) (A7*1  ̂ 4̂^
8 h1

and now n0 is derived more accurately from a plot of

, , r (n -  n0)J (A T) 2 ,
VlAn/ATM [1+ -------------------1

8 h1
versus n. The linearity of this plot is a test of the validity of the Curie-Weiss relation.
Knowing no enables one to obtain the Curie-Weiss constant 0 by plotting l/(n no) versus T,
and the Curie constant is obtained as well.

7. Heat capacity measurements

After demagnetization of the cooling salts, the heat switch was closed in order to cool the
sample. Subsequently, after opening the heat switch, the thermometer signal was continuously
recorded. When the temperature behaviour had become reasonably linear in time, a discrete
amount of heat input was applied. The thermometer signal was recorded again until it was
linear over a sufficiently long period of time. A part of such a temperature recording, and
the extrapolation to the middle of the heating period (solid line) are shown in fig. 2. Thus
the effective temperature increase due to the known heat input was obtained. From these
data the heat capacity of the calorimeter could be calculated.

18



Fig. 2. A typical recording of a susceptibility thermometer after heating. The temperature scale is indicated
in the figure. The full horizontal time scale corresponds to about 10 minutes. The full line is the extra­
polation of the average calorimeter temperature to the middle of the heating period.

In general the sample mass was in the order of 1 g. The mass of the other parts o f the calori­
meter (the empty apparatus), such as grease, copper brush, metal system, heater and thermo­
meter, was about 20 g. Thus the sample mass was only about 5% o f the calorimeter. If  the
molar heat capacity of this sample was in the order o f R,  the empty apparatus contribution
to the total heat capacity of the calorimeter was, generally speaking, a few percent. However,
at temperatures where the sample heat capacity is small, the empty apparatus heat capacity
becomes very important. Therefore, this heat capacity was measured in separate experiments.
Metals and other solids are expected to  give contributions proportional to  T  and T3 to  the
heat capacity. From the thermometer, one may expect a magnetic contribution proportional
to  T~2. However, the empty apparatus heat capacity, cempty, could not be well fitted by a
linear expression of three o f these terms. This may be due to  non-T ' 2 behaviour of the
magnetic thermometer, such as observed in pure CMN6). A good fit was obtained by an
expression

^ empty = &iT 2 + &2 T  * + 3 3  + 8 4 ?’ + as I 2

This expression provided an efficient method for the calculation o f the empty apparatus
correction during the processing of the experimental data.

19



8. The experimental accuracy o f the heat capacity measurements

For most of our experimental results, we estimate the accuracy of the heat capacity as about
1%, and that of the temperature scale about 0.5%. However, several circumstances may limit
the accuracy:
1. At temperatures below 0.1 K, long relaxation times and poor heat conductivity may cause
long thermal equilibrium times.
2. At temperatures near and above 1 K, He gas absorbed in the demagnetization procedure
may come free and then cause a time dependent heat leak, such that the extrapolation of
the temperature versus time curve becomes inaccurate. Further, the sensititvity of magnetic
thermometers decreases with increasing temperature.
3. If the heat capacity of the sample is not large compared to that of the empty apparatus,
the error in the empty apparatus correction contributes considerably to the error in the
result.
It is not possible to give precise bounds of the errors mentioned in the above three points,
since these circumstances are too strongly dependent on the samples in the various experi­
ments.

9. The heat leak

At low temperatures, a constant heat leak of about 0.15 erg/sec was measured. This may be
due to residual gas and radiation not trapped by the guard tube, and perhaps vibrations from
rotating pumps etc. Further, input of discrete heat portions varying from about 1 - 10000 erg
were found to be due to strong 4 Hz vibrations of the soggy soil around the Kamerlingh
Onnes Laboratory, generated by heavy traffic.
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CHAPTER II

SOME NUMERICAL METHODS

Summary

In this chapter a description is given of some methods which are used for calculations o f physical
quantities for systems of interacting spins. These quantities are: the Curie-Weiss constant, the T"1
coefficient in the high temperature heat capacity series, the magnetic energy at T = 0 , and the heat
capacity o f a system of interacting spins in the presence of an external magnetic field.

1. Introduction

Although precise theoretical predictions exist for the thermal and magnetic behaviour of
several simple lattices containing magnetically interacting spins, for many magnetic systems
such theories are not available. Fortunately it is possible to calculate several quantities for
less simple systems. Procedures will be given for the calculation of the high-temperature
asymptotic behaviour of the heat capacity (section 4) and of the Curie-Weiss constant
(section 5). Such calculations have already been described by Van Vleck1) and Daniels2 * * *).
Furthermore, classical methods will be given to derive the magnetic energy at zero temper­
ature (sections 6 and 7). One method is that described by Luttinger and Tisza2). An essential
part of all these methods consists of lattice summations, the convergence of which will be
discussed. An approximative method, resembling the Bethe-Peierls-Weiss4,5’6) method to
calculate the energy and heat capacity as function of temperature for a system of spins
having interactions of the Ising type in the presence of a magnetic field, will be discussed in
section 9. Finally, numerical results of the formalism of Yang and Yang15) for the ground
state energy of anisotropic linear chains will be derived in section 10.

2. The hamiltonian

In describing the properties of the magnetic spins, in particular their interactions, we use
mainly the notation of Daniels2), which we shall generalize to cases s > —. The g tensor of
the i-th ion will be denoted by giap. The Greek suffixes have values 1, 2 or 3, and refer to
the cartesian coordinate axes x, y or z respectively. The dummy suffix summation convent-
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ion will be used for indices being of the Greek type. Hence we can write for the magnetic
moment p, of a spin i:

Via VQSiaPsiP >
if the Sjg are the spatial components of the spin labeled i. In gaussian units, the dipole-dipole
interaction between spins i and j can now be written as

.. ft» 3
Jfy (i?ia|3£j7(3siasj7 J"

Ü rij
Here mb is the Bohr magneton, r-̂ a the vector connecting the lattice positions i and j, and
/•jj the length of this vector. If we define

j 2
\̂ja/3 = ^  (f>iay8j{Sy “j" ̂ iaX̂ j(3v̂ ijX̂ ijv) > (ÏB)

rij Hj
we can write

Jfd P = ^ija^ia^P  •
Other types of bilinear spin-spin interactions can also be written in this form (see e.g.
chapter VI, section 2):

< ndiP = Aja(3siasiP ■ <2)

Hence we shall write spin-spin interactions in the form

ïf y -  KjjapSiaSjp , (3a)

^ija/3  = 2ija/3 ^ija(3 •

The Zeeman interaction of a magnetic spin i is expressed by:

i = VB^aSiapsip ~ ^a^iaP^iP  > Wa)

where G-iap = MB£ja0 (4b)

Hence the hamiltonian of a macroscopic system of N  spins becomes

<K — X + 2 ^f\^kXMskn •
(ij) k

(5)

Here (ij) means that during the summation, each pair of spins is counted once.

3. The partition function

For a calculation of observable physical quantities, we start from the partition function

Z = 2 exp,(—Z’j /kT),
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where the summation is over the (2s+ 1)” energy levels. The computation of these levels
can be circumvented by writing this expression as

oo

Z = Sp[exp(-*V£r)] = 2 -tJ- Sp[(-3C/fc7)>], (6)
j= 0 J-

which is independent of representation. If we substitute eq. (5) for 3C in this expression, it
will be found that the second term is zero, since it contains sia only to the first power. Using
this result, we find the first terms in the high temperature series expansion of the entropy S:

S/R = -  - T ( J in  Z) = In (2s+1) - ( 2 s + ir Nsp(?f2)
2NklrP

( 2 s + i r N Sp(3f3)

INVP
(7)

The high temperature expansion of the susceptibility can also be found from Z. We shall
define the susceptibility xap as the quotient of the magnetization component Ma in the a
direction and the small magnetic field H r  in the /3 direction, which causes the magnetization.
We can find xap from the equation

*a/3
9

3 Hp (In Z).

Substituting eq. (6) gives the first terms of the series for xap:

(2 tf i r N ~ s  h  Sp(3fJ) (2s+1)"^  ■—  ^  Sp(Jf3)_ oHg 9Hp________ ___________ dHa 9Hp_______
aP 2 kT 6k,1 T1

(8)

4. The asymptotic high temperature behaviour of the specific heat

By relating the expansion of the entropy to that of the heat capacity c, one finds from
eq. (7) for high temperatures

Nk1

If no magnetic field is present, we can use the hamiltonian defined by eqs. (1) tot (3). Using
well-known trace theorems, we derive

Sp(Jf2) = Sp[( 2 = ̂ 2(s+1 )2 (2s+1 2 (^ijafl^ijaö) •
(«) (ij)

If all spins are equivalent, we can take one arbitrary ion i and the expression reduces to

Sp(JC2) = yg (2s+ 1 yV(s+1 )2 2 (KiiapKiiap) ,
1=1
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and the 7” 2 coefficient becomes

s2(s+ 1 )J N
C r / R =  £ ^ ijag^ ijap ) (9)18k2 j= i

If the K  tensors are known, this expression can be calculated. If the magnetic ions are not
equivalent, a summation over inequivalent ions i must be applied.
Nondipolar spin-spin interactions are in general confined to a few neighbours lying within a
distance of about 10 A. Dipolar interactions are proportional to r~3, if r is the distance
separating the interacting spins. Hence the terms in eq. (9) are proportional to r~6. The
number of magnetic spins in a shell between radii r and r+Ar is proportional to r^dr, and the
contribution to eq. (9) will be proportional to r ' 4dr. When we calculate the sum for all neigh­
bours lying within a distance r, the sum will depend on r by a term proportional to r~3.
Apparently the sum converges rapidly, and thus is shape independent for a macroscopic
crystal.
However, in order to calculate the right-hand side of eq. (9) with reasonable accuracy, the
sum must include hundreds of magnetic neighbours j, and for each j, the K^ap elements must
be calculated. Therefore the use of a digital computer is a powerful aid in these calculations,
and a summation over thousands of neighbours can be carried out in a short time.
The convergence can further be improved by replacing the sum outside the sphere having
radius r' by an integral. This procedure is discussed in appendix I.
Results of the calculations of T~2 coefficients are given in chapters III to VI.

5. The susceptibility

We can write expansion (8) as

x a (3  -  j  + p (10)

if we introduce

f2 s+ n - ^  3 3 ,
C“« -  2*

(11)

( 2 ^ 3  3
p 6k2 3 Ha 3 Hp

(12)

Substituting eq. (5) into eq. (8), we need only consider terms in Sp(Jf2) that are dependent
on Ha and Hp. Further, it is easy to see that the trace of the cross term between the spin-spin part
and the Zeeman part vanishes. Thus the following trace must be calculated:

Sp( 2 2 ~ ^P( ^ —
i j i
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“ i  & + 1 1 ) *  .
i

Hence, if all spins are equivalent, we derive

M (s+1)
'■ '* &  TT7 > , (13)

and otherwise we find Caj3 by a summation over inequivalent ions i. This first term in the
susceptibility series represents the Curie law, and Ca(3 is the Curie constant. For a further
approximation we have to find Cap. For small fields, we have to evaluate the field-independ­
ent part of Cap, which follows from the terms in Sp(3C3) which are quadratic in the field
components. Thus we have to evaluate

3Sp( Ï Ï  2 KijapGlllxGmuvHKHIJLsiasipslxsmv) =
(ij) l m

6Sp( * « W » )  =l<2i+ irKiiapGitaGtopH'Hn .

We obtain, if all spins are equivalent,

^  _ N s\s+  1)J Af ^
*  KiinvGianG$ v  > (14)

and if inequivalent spins exist in the lattice, we obtain Cap by summation over the inequi­
valent spins labeled i. From expansion of the Curie-Weiss law

X = C/(T-e) = C/T+ 6C/T‘ + . . .  (15)

one can see that the Curie-Weiss constant is given by the quotient of the coefficients of the
second and first terms. We now define a unit vector ha along the direction in which the
infinitesimal measuring field is applied, and a unit vector mp along the direction of magnetiz­
ation measurement. The Curie-Weiss constant is then, according to eq. (15), given by

0 = (.C'apharnp)l(Cllvhllmv).

The calculation of is simple, but that of Cap in general requires summation over many
interacting neighbours, and can better Be programmed for a computer. As in section 4, it is
useful to divide the calculation in two parts: a summation inside a sufficiently large sphere
and an integration over a hypothetical continuum outside that sphere, where only long
range dipolar forces are important. From eq. (lb), one expects a contribution proportional
to dr/r from a spherical shell between radii r and H- dr, and one might expect that the
integral diverges for r * °°. However, the proportionality constant is zero as a consequence of
angular cancellation. For a spherical sample, the integral thus vanishes, but otherwise the
integral has to be evaluated. If we choose the radius of the spherical surface sufficiently large,
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we may write the sum in eq. (14) as:

S ( 2  —̂  5-----) GianGÏKnGjKVGjPv >
j= l  h . k . l ' i j '

where j ’ is the lattice site found by a translation of site j by

r ij' =  +  ha +  kft +  lc

where h, k and 1 are integers and a, b and c are the axes of the crystallographic unit cell
which contains m spins. If we consider the volume of summation as a continuum, the term
between brackets can be replaced by an integral. From well-known electromagnetic theory,
it is known that for a class of surfaces bounding the integration volume (spherical, ellipsoidal,
infinitely long or infinitesimally flat) this integral is not dependent on the position inside
the inner surface. The integral equals —D ^ /V ,  where V is the volume of the unit cell, and
D^k the difference of the demagnetizing tensors of the inner spherical surface and the outer
surface. Hence the contribution to Ca« from spins outside the sphere amounts to

Ns2(s+ 1 )2 m
9 k 2V j=i D\n GianGi\n GjPvG)KH ■

If the direction of the magnetization vector Ma = CapHp is along one of the principal axes
of the demagnetizing tensor, we may replace that tensor by a scalar D. The contribution to
Caa from spins outside the sphere can then be written

N D s\s+ \)2
9 k2V

m
2

j= l
GiaiiGi\n G)\v G)pv Gia \G\fi >

where Ciax is the Curie constant calculated for ion i only (eq. 13).
For the inner spherical surface, the contribution to the demagnetizing factor D amounts to
4tt/ 3, for a needle-shaped outer surface the contribution is zero (Mv parallel to the major
axis) and for a flat crystal (Mv perpendicular to the plane of the crystal) it amounts to — 2it.
For a discussion about the convergence of the summation inside the sphere as a function of
the radius, see section 8.

6. The magnetic energy

It is often useful to calculate the energy contribution due to dipolar interaction of an
ordered spin system. For instance, this information is desired for deriving the dipolar
anisotropy energy of a Heisenberg spin system (e.g. chapter V), and for Ising systems, one
may be interested in the fraction of dipolar energy (e.g. chapter III). These energy calculations
will be made in the classical approximation, which implies that the spins are considered as
vectors s of length s having a definite orientation. This approximation is good if the
anisotropy of the magnetic spins is strong, if the number of interacting neighbours of each
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spin is high, and if the spin quantum number is high. In this approximation, the ionic
magnetic moments are also considered as classical vectors given by

M = mbS,-s •
The magnetic structures on the basis of which the energy was calculated, were all periodic,
which means that a magnetic unit cell having axes a', b ', c' exists, such that the magnetic
lattice is invariant under translations \\a' + \ab' + lc', where h, k and 1 are integers. In many
cases, the axes of the magnetic cell coincide with those of the crystallographic cell. They
should, however, not be confused with the crystallographic axes, since they are very different
in other cases. The primes are added to avoid such confusion.
If the magnetic cell contains m spins, the magnetic structure is given by a set of m magnetic
moment vectors /»i- The dipolar energy per gram ion of an ordered crystal is now given by

2mfci=i j*il i ^  i
i

2m k
m
2  Hi H i ,

i=l

where Hi is the molecular field at site i, given by

j # i / ^  r?j )

This field can be split into two contributions, one originating from neighbours inside a
sufficiently large sphere, having radius r' (the convergence properties are equal to those in
section 5) and a contribution from a hypothetical continuum outside the sphere:

to - 3 jsafrl-g g'n,
j# i; ry< r ' T*jj Jy [ ^  n=l

(16)

The first term gives the summation inside the sphere. The second term is zero for antiferro­
magnetic structures. The factor D is the difference of the demagnetizing factors of the inner
spherical surface (4jt/ 3) and of the outer surface. Since the energy of a macroscopic ferro­
magnetic crystal is minimal if it is split into long domains having zero demagnetizing factors,
we may substitute D = 4ït/ 3 in eq. (16). For a treatment of the convergence of the sum
inside a sphere, see section 8.
We emphasize that nondipolar interactions were not included in this energy calculation. In
simple cases, nondipolar contributions can easily be added, while in more complicated cases
the ground state is not known in general, so that other methods must be applied (next
section). Results of this type of dipolar energy calculations can be found in chapters III, IV
and V.
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7. The magnetic structure

In simple magnetic systems such as e.g. a simple cubic lattice having only nearest neighbour
Ising interactions, it is easy to see which magnetic structure has the lowest energy, but for
more complicated systems, this is in general not a trivial problem. In order to solve this
problem, we first study the behaviour of an isolated spin s, having quantumnumher s in a
magnetic field H at T= 0. The Zeeman hamiltonian for this system is

X  = — Uh^aSapsp-

We now introduce hp = ii^Hagap, which may be considered as an effective field acting on s,
and new coordinate axes x' y' z' with z' along h. The hamiltonian then reduces to —hz’sz '. The
lowest eigenstate is that one having sz ' = +s. Hence the expectation value of s is given by
<sa> = shjs/hphp  (17)

This result was derived in coordinate system x'y'z' but is, of course, valid in all cartesian
coordinate systems. The classical approximation which we will use, implies that the electronic
spin is considered as a classical vector which equals the expectation value given in eq. (17).
Since we are dealing with an assembly of spins, we add a Latin index to s, sa and ha , in order
to distinguish between the different lattice sites. The /ija follow from the hamiltonian given
in eq. (3a):

h a  = 2 Kiiapsi p , • 0 8 a )
j* i

and eq. (17) is now written as:

sia = Sihals/hphp. (18b)

From eqs. (18), the sia can be solved in principle. However, a set of 3 N  coupled equations
is not tractable, and a simplification is introduced. We assume that the structure is periodic,
such as described in section 6, and we choose a magnetic unit cell. This restriction can be
alleviated since the influence of this choice on the result of the calculations can be
demonstrated by repeating the procedure, starting from different cells. The gist of the
method is that, if the cell contains m magnetic ions, we can describe the problem by 3 m
coupled equations, which can be solved if m is not too large (m ^  32), with help of a large
digital computer. The magnetic cells are labeled by indices h, k and 1. We choose the origin
of our coordinate system at the origin of the cell labeled 0,0,0. In this cell we label the spins
from 1 to m. Eqs. (18) can now, after some rearrangements, be written as:

X K[japsip = cisia (i = 1 . . .  m) , 0 9 a )
j=l

ci =\ / ^  ^  ^ ija^ ik o y ^ j^k y  /si > (19b)



where

K'iW = 2 Ki)'afl (19c)

In expression (19c), j' is the number of the spin whose position is determined by index j and
the indices h, k, 1, such as described in section 6. When we split the summation in eq. (19c)
into a sum inside a sphere and an integration outside, and assume domain splitting for ferro-
magnets, we obtain the demagnetizing correction to K[tap. The condition under the summation
sign in eq. (19c) excludes the term Kiiap which is not desired. The q  in eqs. (19) are
proportionality constants. About the convergence of the lattice summation in eq. (19c), the
same remarks as in section 5 can be made. By substitution of eq. (19a) in (19b), we obtain

si = ^io^ia ■ (20)

This trivial result can be seen as a condition, the so-called strong constraint, which must be
satisfied by solutions of eq. (19a), so that eq. (19b) is also satisfied. The energy of a spin
configuration satisfying eqs. (19) is (per spin)

1 _ m m i m
E/R = 2mk *  *W *ltt*j0* 2mk * ci*i • (21)

1=1 j= l  i= l

Two methods will be applied to solve eqs. (19).
Method 1. The first method searches for solutions in which all q  are identical, hence
Cj = c. Thus the effective fields at all ionic sites are constrained to be equally strong, so that
this method is in general only applicable to magnetic systems consisting of equivalent spins
(equivalent in this sense, that all interactions in which these spins participate, are equally
strong; this situation is realized if a crystallographic symmetry operation exists which
transforms these spin sites into each other). Because the spin quantum numbers must be
equal, they will be denoted by s. If we introduce new suffixes, according to

su sia
•^uv = ^-ija/3

u = 3 i + a  —3, v = 3 j  + 0 — 3,

we can write eq. (19a) as

3m (
2 ^uv^v i , (u = 1 . . .  3m) . (22)

v=l

This is an eigenvalue equation which has 3m solutions. The corresponding eigenvalues will be
denoted by cu in order to obtain a notation different from that of q  in eqs. (19). By
summation of eq. (20), one finds

3m
2 susu = ms2, (23)

u=l
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the so-called weak constraint, which can always be satisfied by multiplying the su by a
properly chosen constant. By a ‘solution’ of eq. (22) we shall from now on mean one which
is normalized according to eq. (23). This does not, however, imply that the strong constraint
(eq. 20) is also satisfied, and this must be checked for each solution of eq. (22). Degeneracy
(different solutions of eq. (22) having equal cu) can give complications. Even if 3m solutions
of eq. (22) which also satisfy eq. (20) exist, it is often possible to form (new) solutions not
satisfying eq. (20) by taking linear combinations of degenerate solutions. In that case,
degenerate solutions obtained from eq. (22) by standard computer procedures, will in
general not satisfy eq. (20), but properly chosen linear combinations will. Niemeyer7,8) has
shown, that, if the magnetic unit cell consists of 2x2x2 Bravais cells containing 1 or 2 equivalent
spins, eq. (20) is always satisfied. In our experience with more complicated cells, it has, in those
cases that we tried, always been possible to form solutions satisfying eq. (20) from a set of
degenerate solutions. Nondegenerate solutions not satisfying eq. (20) do, of course,not exist
for a cell consisting of equivalent spins. If a solution of eq. (22) corresponding to the lowest
eigenvalue, satisfies the strong constraint, then it is also a lowest-energy solution of eqs.(19).
This can be understood by substitution of that solution into expression (21), which then
attains its minimum value. This method was introduced by Luttinger and Tisza8). Daniels
and Felsteiner9) have used it to fmd the energy of ordered cerium magnesium nitrate. The
application of this method to a 2x2x2 simple Bravais unit cell was extensively discussed by
Niemeyer7).
This method gives all solutions of eq. (22) for systems of equivalent spins, but
we have to consider the possibility that solutions of eqs. (19) exist which do not satisfy
eq. (22), and hence cannot be found by this method. Whether this situation can occur in
practice, may be found by method 2 for solving eqs. (19).
Method 2. Solutions of eqs. (19) can also be obtained by iteration. We then start from a
chosen set of vectors (a ‘first approximation’) and we calculate

* £ )=  * ^ W 8 ) (i = i . . .  m ) ,
j“ l

which vector is proportional to what may be considered as the molecular field acting on the
spin at site i (if the spin vectors would be given by the ). A decrease of the energy is then
obtained by rotating the spins towards the fields. A second approximation is thus given by

* P M a )  +  '4 a ) > < * • ■ ' • • • “ ) »

where a is an arbitrary constant which controls the convergence of this method. The /cf1-* are
constants which are determined by the requirement that the s jp  must be nomialized at
length Sj (the strong constraint). In a similar way, further approximations can be
obtained. The convergence rate can be judged from the variation of the energy, which can be
calculated after each step according to eq. (21). If the convergence rate is not satisfactory,
the parameter a can be adjusted. This method does not always converge to that structure
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having the lowest energy. Therefore the actual calculations were done for several different
‘first approximations’ . Application of this method has shown that indeed solutions of
eqs. (19) exist for systems of equivalent spins, which do not satisfy eq. (22), because the q
are not all equal. In table I, an example of such a magnetic structure is given for a magnetic
pyrochlore lattice having only dipolar interactions determined by s =—, g) -  1, = 1 and
a lattice parameter a = 10 A. The energy of this solution is E/R  = —0.00877 K, which may
be compared to a value —0.00897 K for the lowest energy value found by the eigenvalue

i *ii si2 Ji3 c,/4* (K)

1 0.2147 0.3193 0.3193 -0 .00906
2 0 -0 .1 6 7 7 0.4710 -0 .00847
3 0.2147 0.3193 0.3193 -0 .00906
4 0 0.4710 -0 .1 6 7 7 -0 .00847
5 0 -0 .1 6 7 7 0.4710 -0 .00847
6 -0 .2 1 4 7 0.3193 0.3193 -0 .00906
7 0 0.4710 -0 .1 6 7 7 -0 .00847
8 -0 .2 1 4 7 0.3193 0.3193 -0 .00906
9 0.2147 0.3193 0.3193 -0 .00906

10 0 0.4710 -0 .1 6 7 7 -0 .00847
11 0.2147 0.3193 0.3193 -0 .00906
12 0 -0 .1 6 7 7 0.4710 -0 .00847
13 0 0.4710 7-0.1677 -0 .00847
14 -0 .2 1 4 7 0.3193 0.3193 -0 .00906
15 0 -0 .1 6 7 7 0.4710 -0 .00847
16 —0.2147 0.3193 0.3193 -0 .00906

Table I. A solution of eqs. (19) which does not satisfy eq. (22). This solution was calculated for a
cristobalite lattice having a = 10 A, isotropic# tensors and dipolar interactions only. For the lattice
positions, see chapter VI, table I.

method. For the crystal structure, the lattice positions, and the orientation of the g//
directions (which depends on the lattice position), see chapter VI. Further, the values of
c-J4k are shown in table I. These numbers give in this case (s =2-) the energy of spin i in the
molecular field at site i.
For clarity, the main advantages and limitations of the two methods will be summarized:
1. Both methods are constrained to periodical magnetic structures, and in practice the
magnetic cell may not contain more than about 32 spins. This means that e.g. most helical
magnetic structures cannot be found by these methods.
2. Method 1 is in general only applicable to systems containing equivalent spins. For systems
of inequivalent spins, method 1 gives solutions which in general do not satisfy the strong
constraint. Method 2 may be used for systems having inequivalent spins.
3. Method 1 gives at once all solutions of eq. (22) (hence also the one having the lowest
energy, in which we are mostly interested). The result of method 2 depends on the first
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approximation sv j), which may be arbitrarily chosen before starting the calculations, and
does not in general give certainty that the solution is that one having the lowest possible
energy.
4. For systems of equivalent spins, method 2 may give solutions of eqs. (19) which cannot
be found by method 1. An example is given in table 1. In all cases studied here, however, the
lowest-energy solution of method 1 satisfied the strong constraint and hence method 1
yielded the minimum energy solution of eqs. (19).
5. In contrast to  m ethod 1, method 2 is applicable when an external magnetic field is present.
The uncertainties in the results o f these methods related to the above mentioned point 1
can be decreased by varying the choice of the magnetic cell, particularly also choosing larger
cells.
As an example, a com puter program working according to  method 2, written in PL1
programming language, is shown in appendix II.
Results o f these methods are given in chapter VI.

8. The convergence o f  lattice sums having r~3 dependence

The lattice sums for the calculation of the energy, the Curie-Weiss constant and the dipolar
contributions to the K[iap tensors in section 7 consist of terms which are proportional to  the
inverse third power of the distance to  the origin. Convergence is yet obtained because of
angular cancellation in spherical shells, at least if the inner radius is so large that the shell
may be considered as a continuum. In practice, however, the cancellation is not complete
and the lattice sums show considerable fluctuations as a function of the radius r' o f the sphere
in which the summation is carried out. This is demonstrated in fig. 1 in which the calculated
dipolar energy gain E/R  o f possibly antiferromagnetically ordered cerium magnesium nitrate
is shown for several values of r' up to  150 A (open circles). The magnetic structure used for

Fig. 1. The dipolar energy of (hypothetically) antiferromagnetically ordered CMN, calculated by summation
of the contributions of all neighbours within a radius r .
•  data calculated using a weight function; o data calculated without use of a weight function.
The magnetic structure used for these calculations is given in table II.
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V positions ± b axis

1 0 0 1/4 +
2 0 .0 3/4 -
3 1/6 1/3 7/12 -
4 1/6 1/3 1/112 +
5 1/3 -.2/3 11/12 +
6 1/3 2/3 5/12 -
7 1/2 0 1/4 -
8 1/2 0 3/4 +
9 2/3 1/3 7/12 f

10 2/3 1/3 1/12 -
11 5/6 2/3 11/12 -
12 5/6 2/3 5/12 +

Table II. The hypothetical antiferromagnetic structure of CMN for which the energy was calculated. The
lattice positions are in units o f the crystallographic a, b and c axes, for which we have used a = 21 .84 A,
b = 10.92 A, c  = 34.44 A. For the g value we have taken 1.82. The last column indicates whether the spin
is aligned along the positive or negative b axis.

the calculations is shown in table II. Spin alignment was along the positive or negative b
axis, and is indicated by + or — in the table. This structure was found by Daniels and
Felsteiner9) as one having-the lowest dipolar energy. However, if one includes a demagnetiz­
ing correction in the energy calculation and assumes splitting in needle-shaped domains, one
obtains a comparable energy value for a ferromagnetic structure, as discussed by Mess
eta l.10).
The fluctuations in fig. 1 can be understood if we consider a plane containing parallel spins
which lies at a distance r of the origin, which is much larger than the distances between neigh­
bouring spins in that plane. If the radius r' of the sphere in which the summation takes place
now becomes greater than r by Ar, we obtain a contribution to the lattice sum originating
from a group of parallel spins at a distance between r‘ and r, hence occupying a surface of
about 2irrAr in the plane. Hence the lattice sum will approximately behave linearly as a
function of r' until a new plane (or a set of planes) is encountered. These planes lie at
regular intervals and hence it can be understood that a sort of periodic behaviour is visible in
fig. 1. Above we found that the number of spins causing a ‘fluctuation’ is proportional to r' ,
and for a sum of terms having r'~3 dependence, we thus expect fluctuations proportional
to r'~2. This is in approximate agreement with the data shown in fig. 1.
If high accuracy for the lattice sums is required, the summation must be carried out in a
sphere having large r' which may take substantial time even for a fast computer. In such cases
the method of Peverley and Meyer1 *»12) can be used which utilizes a weighting function for
obtaining a smoothed value. This method is discussed in appendix III. As an illustration of
this method, in fig. 1 weighted results using the exponential g function (III.3, appendix III)
are shown by black circles for a number of r' values, in addition to the unweighted results
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for the dipolar energy of CMN ordered according to the magnetic structure given in table II.
As we expected, the convergence of the weighted sum is much better.

9. A cluster method

The caloric behaviour of simple magnetic systems is rather well known theoretically if a
magnetic field is absent. In the presence of a magnetic field in general (not for linear Ising
chains), one requires simplifications in the theoretical description. Such a simplification is
introduced by e.g. the molecular field model. This simplification consists of replacing all
spin-spin interactions by interaction of one spin with a mean (molecular) field which is
proportional to the magnetization. Although the molecular field model has proven its
usefulness in many applications, it is not astonishing that this simplification is too crude for
some purposes, especially those where external field and magnetization are small or zero. In
the latter case, the mean field is zero, and hence energy and specific heat are also found to be
zero.
An improvement may be obtained if we do not replace all spin-spin interactions by a mean
field, but if we retain the spin-spin interactions in a group (cluster) of spins having in its
center one spin for which we shall calculate thermodynamical quantities. This method
resembles the Bethe-Peierls-Weiss4,5’6) method. However, unlike BPW theory, the cluster
used here may contain more spins than nearest neighbours of the central spin only, and
interactions may occur among all these neighbours. Further, the calculations in this section
are restricted to Ising systems. For other Ising cluster calculations, see e.g. Kikuchi13).
In these cluster theories, the mean field now replaces the interactions of spins inside the
cluster with their neighbours outside. The value of this mean field is found in the molecular
field approximation by relating it to the expectation value of the relative magnetization Mt
of the central spin. For a cluster we may require that the mean field has such a value that
the expectation value of the relative magnetization per spin Aft of the whole cluster equals
that of the central spin. This problem becomes relatively simple if the interactions are of the
s = — n.n. Ising type:

2

Jf = _ i_  s  Jaizoiz -  X Hokz (24)
(ij) k

where J  is the exchange constant, alz = 2s;z, and H  stands for one half of the product of the
Bohr magneton, the z component of the external field, and the g value. The summation
indication (i j )  means here that each pair of n.n. is counted once. For simplicity, JC, J  and H
are taken in units K. If all individual spins are in states corresponding to ojz = ± 1, then the
system is in an eigenstate of Jf. This state is determined by the set of all alz. If we now make
the above mentioned approximation, we can calculate the energy levels of a cluster
consisting of n spins. Therefore we now define several constants determined by the set of
ajcz. Interactions of spins inside the cluster give a contribution to the energy
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(25)A -  ,  J  21 O i z ^ j z  ■
(ij)

Each pair of n.n. in the cluster is counted once.

The relative magnetization of the whole cluster is

Mt = - ï o l z . , (26)
”  k

The interaction between the mean field and a spin k which has ck neighbours outside the
cluster can be written as-i- 7mckokz, where m is the relative magnetization of the hypothetical
continuum outside the cluster. The interaction between the mean field and the whole cluster
can now be written as mJMu, if we define

Mu =-i- 2 ckakz . (27)
k

The relative magnetization Mi of the central spin simply equals

Mt = a l t  (28)

The interaction energy of the central spin with its neighbours amounts to

/, = - - L /  2 ol t oj t . (29)
( U )

Because we are interested in the energy per spin, this is only one half of the sum of the pair
interaction energies in which spin 1 participates. The total energy of spin 1 amounts to

Ei = / ,  - M i H , " (30)

and the energy E of the whole cluster is

E = It - n M tH - m J M u . (31)

In this expression, m is to be determined by requiring that the expectation value him, T) of
the central spin is equal to a function fi(m, T) which is in the molecular field theory equal to
m, and for which we shall choose here the expectation value of the magnetization of the
whole cluster. Thus we calculate m(T) from the equation

fi(m, T) = f 2(m, T) . (32)

The thermal average of the energy per spin is obtained in this model by calculating the
expectation value of Eu thereby using the E values for a calculation of the Boltzmann
factor. In order to obtain a short notation for the sums required for the following calculations,
in table III several sums of the general form

a=  2 i ;  expCEj/fcT) v (i = 1 . . .  2“) (33)
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a o P q r s t u V w X y z

A M tM u M t E M , E iE M t E M aE t E i M iE M ,M U

Table III. Definition of several sums required for evaluation of c/R in eq. (37). The symbol a stands for
o . p . . .  which are defined by substituting for symbol A in eq. (33) the quantities M, Mu, Mt . . . given in
the lower row of this table.

are defined. With help of these sums, we can write the expectation value of the energy of
spin 1:
<Et> = x / s . ' (34)

By differentiation one can obtain the heat capacity:

d< £ i>  _  / d < £ i> \ + / 3 < £ i> \  dm ^
dT  \  bT ) m \  dm )  T AT

dm
—  can be found from eq. (24):
AT

^  = (36)
d r  V a r  a t J  \ a  m a m /

Using the sums defined in table III and eq. (33), one obtains:

c/R = -=  Its — qx+  (y/s — wx/s2X— ys + rq + us — pq)/(zs — rw — os + wp) \ . (37)

This method will now be applied to interpret the heat capacity of cobalt formate dihydrate
at low temperatures.' From a series of experiments, which were discussed in ref. 14 by
Matsuura et al., it has been concluded that the spin system in this compound can be split
into A planes, which order antiferromagnetically at 5.1 K, and B planes, which remain para­
magnetic below that temperature. This situation occurs because the interactions in which
B spins are involved, are much smaller than those among A spins. Each of the systems
contains one half of the total number of spins. At 0.5 K a broad Schottky type anomaly was
observed in the heat capacity (fig. 2). This suggests that the B spins are aligned in the
molecular field originating from two neighbouring A spins, corresponding to an exchange
constant / Ag/fc = 0.6 K. The heat capacity at 0.5 K is, however, nearly 5% larger than one
half of a two-level Schottky anomaly. This discrepancy is beyond experimental inaccuracy.
It may be explained if we consider the effect of a nonzero interaction 7gg among nearest
neighbours in the B planes. The Co spins have very anisotropic properties, and thus Ising
type interactions are expected. Since the A planes order antiferromagnetically, the
molecular field at the 3  sites is expected to be staggered. Therefore the situation is analogous
to a system having an exchange interaction of the opposite sign, in a uniform i. e. non-
staggered field. From the crystal structure, one concludes that each B spin has four equi­
valent B neighbours. Hence we may consider the B plane as a square lattice. Using these data,
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0 .25

0.10

0 .05

Fig. 2. Heat capacity of cobalt formate dihydrate per mole. The experimental data are given by small
circles. The dashed line is a Schottky anomaly for.Af/2 Co spins, and the drawn line was obtained with use
of the calculations described in this section.
-  -  -  / AB/* = -0 .6  K, JBB/k  = 0 K
------- * / ABM = -0.53 K ,/BB/k = -0 .04  K.

the specific heat of the B spin systems was calculated as a function of temperature for several
values o f /g g . A two-dimensional cluster of 9 spins arranged in a 3x3 square, was used. A
good fit to the experimental data was obtained fo r /AB/)fc = -0 .53  K and an antiferro­
magnetic coupling between B spins ./gg/fc = —0.04 K (fig. 2, solid line), except at relatively
high temperatures where the A system may contribute. These results were very close to
those found for a 5-spin cluster, consisting of a central spin plus its four nearest neigh­
bours. Also results for an 11-spin cluster, which is defined by adding one pair of n.n. to
a pair of n.n. in the 9-spin cluster, were practically identical. This suggests that in this case,
where the exchange interaction is small compared to the external field, the approximation
is good even for a small cluster.

10. The ground state energy o f  anisotropic Heisenberg chains

Yang and Yang1 ) have calculated the ground state energy of anisotropic linear Heisenberg
chains, described by the following hamiltonian for a pair of neighbouring spins:

x ij “  “  h i* ix sU  + siy % )  ~  2 J 0 sizsjz (38)

They found that the ground state energy E  is independent of the sign of J^, and they derived
expressions for £  as a function of /// and J±. If Jf/\J\\ < -  1, then E  is given by

. , sinh X r , °° 1
■j cosh X------------[ -  X + 2 X 2 -----------------  ]

X 2 n=l l+exp(2Xn)
(39)

37



where X is given by

cosh X = — J// /  L/jJ , X >  0.

The expression for E exhibits appreciable deviations from the classical value — for small
X. In the case of X = 0, that is the isotropic case, Yang and Yang derive

\JL\
E/R = (i-  -  In 2) ——

4 k
(40)

which exceeds the classical value by 77.3%. Numerical results of expressions (39) and (40)
are given in table IV for several values of J//, and 1/jJ = 1.

-Jf/K (K) -E/R (K) -Jf/k  (K) -E/R (K) K) -E/R (K)

1 0.44315 1.25 0.48160 5 1.2995
1.001 0.44329 1.3 0.48968 6 1.5414
1.002 0.44344 1.4 0.50627 7 1.7855
1.005 0.44389 1.6 0.54117 8 2.0311
1.01 0.44463 1.8 0.57825 9 2.2777
1.02 0.44611 2.0 0.61722 10 2.5249
1.04 0.44909 2.2 0.65778 12 3.0208
1.06 0.45210 2.5 0.72101 15 3.7666
1.08 0.45512 3.0 0.83102 20 5.0125
1.1 0.45816 3.5 0.94497 30 7.5083
1.15 0.46584 4.0 1.0615 50 12.5050
1.2 0.47366 4.5 1.1799 100 25.0025

Table IV. Ground state energy of anisotropic Heisenberg chains for several values of J/, and !/jJ =  1.

Appendix I

For the calculation of the contribution to the T ~2 coefficient in the heat capacity due to
spins outside the sphere, we consider the crystal outside the sphere as a continuum which
contains mdv/V  magnetic ions in a volume element dv, if the volume of the crystallographic
cell is V  and the cell contains m magnetic ions which may be inequivalent. From eq. (9) we
find that the contribution to cl^ /R  originating from integration over these volume elements
amounts to

s2(s+ l)2 m
18 k1 j=i ^ ija0 ^ ijaK (1. 1)

The integration is outside a sphere having radius r', which is always chosen so large that we
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need only consider dipolar interactions. If we introduce spherical coordinates, we obtain for
expression (1.1)

s2(s+l)2p i m u  2» it
l g . B s  { r d r  f  d* ƒ d6 sine [ 2 2 (giaegiPe
18 k2V j=i /  0 0 a P 3 Hian&jpv ~ ~  1 (1.2)

The expression between square brackets can be written as:

10
2  S ( 2 * ija(3pSp)J
a p p=l
where we have introduced

^ija0p = 8iaef>jpe j if p = i

5 p = l  *

and

^ija/3p = 3 gian&jPv j

Expression (1.3) can now also be written as

10 10 100
2 2 2 2 îjafJp îja/lq'Sp'Sq = ^ ^ijt^t
a P p=l q=l t=l
if we define

(1.3)

U[ji 2 2 îja(3p îja/3q
a p

Vf = SpSq
with t = p + lOq — 10

The hundred Vt elements are goniometrical functions of ip and 6 independent of the length
of r, and the f/jjt elements are independent of <p and 0. Therefore expression (1.2) reduces to

™ s2(s+l)2pg 100
j=l 54 fc2Fr'3 t=l ^ijtA (1.4)

where 7t is given by

2ir it
I\=  ƒ dtp ƒ d0 Ft(0,ip)sin0 .

0 0
By symmetry arguments one can see that only 28 of these integrals are nonzero and that
only four of these are independent. Using expression (1.4), only the C/jj  ̂elements have to be
calculated from the g tensors, to find the contribution of the continuum outside the sphere.
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Appendix II

/«BEPALING MAGNETISCHE STRUCTUUR TGV OiPOOL E.A.INTERACTIES*/
SPINOR*PROC OPT IONS(MAIN);DCL(H,I,IF2,IF3,IF4,J,JS»JV,K,KF,L,N,N,NF,NH,NK,NL,NR,NI,NI0,

NT,NO*NA*NB.MG)FIXED BlN(3lM
OCLIA,B.C.GR,S,E,SPIN,EF,SOM,COSA,SINA,COSB.SINB,COSC.SINC.RT,
GR1»GR2»P»AFV»QF,DA»DB»DC»OF»CH,CK,CL»SF»VF»V»GE,GL»GF,EV *GEH,

,RM3,RM5,TOL,AA,AB,AC,AV(3).BV(3),CV(3),R(3),RR(3.3)1

OCL(TEKST)CHARI8011
GET LIST(TEKST))IF TEKST»'EINOE' THEN STOP;

OVER* PUT PAGE LIST(TEKST);
AFV=0.2;QF=0.31I3;
NH» l; NK» 1; NL» I; MG* 1; GE, GL-.O; NR*0; GF* I; ÖF*«. 1888; E»1E*50;
tol»o.ooo i;sf»i;vf»1;nf«u i f 2«io;if3»3o ;ifa»60;kf»o ; js»i; jv»1;
M*1;GR*1;A,B,C»1;COSA,COSB,C0SC»01SPIN=0•5;GET DATA;
n»m ;m»m*nh«nk*n l;
A*A«NH;B» B*NK;C»C*NL;
PUT SKIP OATA(NHfNKtNL);
PUT SKIP DATA(A,B,C);
PUT SKIP OATA(COSA,COSB,case);
PUT SKIP EDIT('SPIN»* MA) ;
IF FL00R(SPIN+0.25)=FL00R<SPIN+0.75)
THEN PUT EDIT(FLOOR(SPIN+0.5)I(F(2*0))»
ELSE PUT &DIT(FLÖüR(SPIN*2+0.5),'/2'))F(2,0),A);
PUT SKIP OATA(DF);

PROGS BEGIN;OCL(XI(M),VI(M),ZI(M),SR(M,3),VR(M,3),VT(M,M,3,3),
GRE(MG),GRL(MG),GTE(MG,3i3),GTL(MG,3,3),G(MG,3,3),
ERE(MG),ERL(MG))FLOAT(16);
OCL(NG(M))FIXED BIN(31);

VtRVs CALL VBER;
CALL poe f;
CALL GBER;
CALL SDEF;
CALL SPRT;
CALL grb r;
CALL TBER;

VOEG: CALL MBER;
CALL VPRT;
CALL EBER;
CALL CNTR;
CALL KLAP;
CALL SPRT;
(CALL MBER;
CALL VPRT;
CALL EBER;
CALL CNTR;

LOOPS CALL RBER;
CALL SPRT;
CALL MBER;
CALL VPRT;
CALL EBER;
CALL CNTR;

Q,EXE,EXL
FLOAT!16)
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IF  NF-»<0 THEN GOTO LOOP;
PUT SKIP DATAIGRI;
PUT SKIP  D A T A !N I)I
GET L IS T IT E K S T L lIF  TE K S T-'E IN D E ' THEN STOP;
IF  TEKST-'STAND* THEN 00;N R ,K F -0 ;N F «1;G E T  D A T A ;t« lE *5 0 ;
PUT PAGE L IS T ('HERHALING VAN DE BEREKENING MET NIEUWE STANDEN'I ;
CALL SDEF;CALL SPRTlGOTO VOEG;ENDS
GOTO OVER;

VBER: PROC;/«OEF ASSENSTELSEL TOV ABC ASSEN*/
S INA-SORTI l-COSA*COSA);
SINB-SQRT( l-COSB*COSB) ;
SINC-SQRT11-COSOCOSC ) ;
A V ( l> -A :A V (2 ) -0 ;A V I 3 1 -0 ;
BV< l)-B*C O SC ; B V I2 )-B *S IN C ;B V I3 )-0 ;
C V I1 )-C *C O SB;C V(2 »-C*(COSA-CQSB*COSCI/SINC;
C V(3 l-S Q R T IC *C -C V (1 l* C V (1 ) -C V I2 ) * C V I2 )  I  ;
V -A V I1 ) *B V I2 I*C V 1 3 ) ;ENO VBER;

GRBRt PROC;/«BEREKENING NH.NK EN N L * /
ABOL: R11 )-B V ( 2 )*C V (3 )-B V ( 3 ) «CV I 2 ) ;

R (2 ) -8 V (3 ) * C V (1 ) -B V (1 ) * C V (3 ) ;
R I3 )-B V I 1>*CV( 2 ) - B V I2 ) * C V I l)  ;
S 0 M -0 ;S -0 ;D 0  1 -1  TO 3 IS -S + R I I I  « A V II I;S O M -S O M « R (I)*R ( II;
END; S -AB S IS I/S O R T( SON); NH-GR/S+1;

BBOLi R( 11-C  V12 ) *  A VI 3 )—CV( 3 ) *A V (2 1 ;
R (2 1 = C V (3 )  *  AV ( I ) -  C V 11) *  A V 13 ) ;
RI 3 »*C V (1 )* A V (2 ) “ C V I2 )*A V I1 1;
S 0 M -0 ;S -0 ;D 0  1 -1  TO 3;S>S»Ry(I )*B V (I) ;S 0 M « S 0 M « -R (I)*R (I)4
E N O ;S -A B S IS I/S Q R TISOM»; N K -G R /S + l;

CBOL: R (1 ) -A V (2 )*B V (3 1 -A V I3 )*B V (  2 ) ;
R I2 ) -A V I3 ) * B V I1 ) -A V I1 ) * B V I3 ) ;
R I3 I-A V C I» *B V (2 » -A V (2 )*B V ( 1 ) ;
S 0M -0 ;S « 0 ;0 0  I - i  TO 3 ;S -S -» R ( I I * C y iI ) ;S 0 M -S 0 M + R II ) * R ( I ) ;
E N O ;S -A B S (S)/SQ R T(SO M );N L-G R /S«i:
ENO GRBRr

POEF: PR O C ;/«O EFIN IT IE  IONPLAATSEN*/
n i- o; do i - i  to n;
GET L I S T ( X I ( I ) « Y I ( I ) t Z I I I ) t N G ( I ) ) ; E N O ;
00 H - l  TO N H ;C H -H -l;D O  K - l  TO N K;CK-K>1;D0 L—1 TO N L ;C L - L - i ;
00 I - I  TO N ;N I» N I * l ;
IF  NI>N THEN 0 0 ;
N G (N I>—N G f I I ;
X I ( N I  ) * X I ( I ) * C H / N H ;

r  V K N I  l - Y I  ( I  l + C K /N K  ;
Z I ( N I ) * Z I ( I I + C L /N L ;
END;ELSE 0 0 ;
X I ( N I ) - X I ( I ) / N H ;
V K N I l - Y i m / N K ;
Z I ( N I ) - Z l n  ) /N L ;
eno; eno; énd; end; end;
PUT S K 1 P I2 IE D IT I'P O S IT IE S  IO N E N 'M X (9 » , A ) ;
PUT S K IP ;Ö0 1 -1  TO N;
PUT SKIP E D IT ! I t X H  I ) , Y I ( I  ) , Z I ( ! I , N G ( I ) ) ( F I 3 ) , 3  F I 1 0 ,6 ) , F I 4 ) I ;
ENO;END POEF;

GBER: PROC;/«GEEF COËFFICIËNTEN VOORK R IC H T */
OCL R O TO *3)FL0A T( 16) ;
DO 1 = 1 TO M G;IF(GE=0)G(GL = 0 »THEN GET L IS T IG R E II) , GRL( I ) ) ;
ELSE 0 0 ;GRE11»-GE $ GRL11) -G L ; ENO;
GET L IS T !A A .A B .A C f;
PUT S K IP I2 ) E D IT !• TENSOR N R ', T , 'C O EFF.VOORK.R IC H T .; ' , AA,AB»AC)
IA ,F ( 4 ) ,X ( 4 ) ,A ,F ( 1 2 » 4 ) ,F (  1 2 ,4  ) ,F ( 1 2 ,4 )  I ;
PUT S K IP (2 )E 0 IT ( 'G  EVENWIJDIG TEN SO R ','G  LOODRECHT TENSOR*I
( X I4 ) t A f X l iO ) « A l l
IF IA A -0 )& (A B -0 ) THEN DO;ROT=OjDO J=1 TO 3 ; ROTIJ , J ) - 1 ; END;END;
ELSE 0 0 ;S-SORTIAA*AA*AB«AB*AC*AC) ;
A A -A A /S .A B -A B /S ;A C -A C /S ;S -S Q R TtA A *A A +A B *A B );
ROTI 1 ,1 )=  AB/S;RO T( 1 , 2 ) -A A *A C /S ; ROT 11 .3 )=  AA;
ROTI 2 . 1 ) — AA/S;ROT ( 2 ,2  )-A B *A C /S ; ROT ( 2 , 3 ) - AB;
ROTI 3 y l) > 0  ;ROT( 3 ,2 )  — S ;R 0 T 1 3 ,3 )= A C ;
END;DO J - l  TO 3;PUT S K IP (2 ) ;0 0  K - I  TO 3 ;
GTE! I ,  J»K)-R O T( J*J3 l«R O T (K ,3 );
PUT EO IT( GTE11, J , K ) ) I X I2 1 » F I7 » 4 )) ;END;DO K=1 TO 3 ;
G T L I I , J ,K I -R O T IJ , I ) * R O T IK ,1 l+ R O T IJ ,2 )*R 0 T (K ,2 ) ;
PUT E O IT IG T L II, J , K ) 1 1X 12), F 1 7 ,4 1 ) ;
END;END;END;
PUT S K IP (2)D ATA(G E,G L,G F);PU T SK IP ;
00 1 -1  TO MG;PUT SKIP D A TA !G R E II) ,G R L ( I ) ) ; END;
00 1 -1  TO MG;00 J - l  TO 3 ; OP K - l  TO 3 ;
G ( I , J ,K )-G F *G R E (I> *G p E (I ,J ,K )♦ G F *G R L (I)*G T L 1 1 ,J ,K ) ;
end; end; end; end gber;

SDEF: PROC;/*GEEF M SPINS FUN R ICHTING */
. 00 1 -1  TO M;00 J - l  TC 3 ; GET L IS T !S R I I , J ) I ;

ENO;END;CALL NORM;END SDEF;
KLAP: PROC;/*ZET SPINS MET VELD M EE*/

DO H - l  TO M;DO L - l  TC M ;P = 0 ;00  K - l  TO 3 ;
P -P « S R (L » K )*V R (L ,K ) ; END;
IF  P < - (A B S (^ F H -A B S IQ F /(A * *3 t) )« 1 .0 E -4  TFEN 0 0 ;
00 K - l  TO 3 ;S R (L ,K )~ S R (L ,K ) ;E N O ;
call mber; l- m; eno;EKC;end; eno k ia p ; -■

NORM: PROC;/«NORMERING SP INVECTOR*/
00 1 -1  TO M ;S -6 ;0 0  J - l  TO 3 ;
P-SRI I , J )  1 IF  A B S IP X 1 E -2 0  THEN DO ;P -0 ;  SRI I  ,  J )-O lE N D l
S -S *P *P ;E N O ;S -S Q R T (S );IF  S -0  THEN DO;
SRI I f 3 ) - l ;S « l ;E N D ;C C  J - l  TO 3 ;
S R ( I , J ) « S R ( I t J ) «SPIN /S;ENO;ENO:END NORM;

TBER: PROC;/«BEREKENING INTERACTIETENSOREN*/



NI«OS DO N 10*1 TO N ;N O -N G IN IO I*00 1-1  TO N IO S N T -N G d l;
00 J - l  TO 3 ;0 0  N - l  TO 3 |
P *0 ;D 0  NA-1 TO 3;P-P*G<NOt J tN A I*G (N T tN .N A IïE N D ;
V t lN IO t l f J » N  )-Q F *O M P /V  ; END; END; RR-O;
da- x i  ( n i o ) - x k  i »; o e -v iC N io ) -Y H  i  i ; o o z i ( N i o > - z i m ;
00 H—  NH TO NH;CH-H;AA-CH*DA;
DO K— NK TO NK;CK-K;AB-CK+D8;
DO L— NL TO N L ;C L-l;A C «C L*O C ;
SOM»O; DO J - l  TO 3 lS -A A *A 3M J) ♦ AB*BV( J » *A C *C V U lI
R(J1-S;SO H-SO M *S*S;END;RT-SQ RTISCM I;
IF  ( RT>TOL) G(RT<GR) THEN D 0 ;N I- N I* 1 ;
IF  A FV-0 THEN GEH-1 ;ELSE GEW»1-EXP((RT-CR) * A FV I;
R M 3 -(R T **(-3 II*G E M *Q F ;R M 5 — R N 3 *3 .0 /(R T *R T I;
DO NA-1 TO 3 ;R R IN A *N A I-R R (N A ,N A )*R N 3;
DO NB-1 TO 3 ;RR ( NA * NB I-RR-I NA * NB I ♦ R M 5*R t NA I * R ( NBI S
END;ENO;ENO<END;ENG; END;
DO J - l  TO 3 ; DO N - l  TG 3 ïP * 0 ;
DO NA-1 TO 3S0U NB-1 TO 3 ;P -P *G (N 0»J«N A I*G (N T fN «N B I*R N (N A fN B I;
ENDjEND; V K N IO » I  * J t K I-V T IN IO * I *  J tN I**P ;
ENDSENDtEND;ENDS
PUT S K IP ! A l EDIT ( '  DIPCOL WISSEL WERKING' H A ) ;
PUT SKIP  CATA(GR»N I »Q FI;

EXCH: GET L IS T IG R IIS IF  GRIM) THEN DOsGET LIS T IG R 2,E F ,E X E ,E X LIS
PUT S K IP (2 )E D IT ( • EXCHANGEPARANETERS' H X Ü 1 I  * A l ;
PUT DATAI E F I ; PUT S K IP ;O—  EFj
00 1 -1  TO NGSIF ( EX E -O IS IE X L-O I THEN GET L IS T !EREI I I - ER LC I> > S
ELSE D O ;E R E (II-E X E ;E R L (II-E X L lE N C ;
PUT SKIP CATAIER Ef11»ERL( I I I ;E N O ;
PUT S K IP ;N I-0 ;D O  N IC -1  TO NsNO-NGINIO lIDO 1-1 TO N IO SN T-N G C II;
DA-XI ( N IO I-X K  I  l ;O e - V I ( N IO I - V I (  I I ;  OC-Z I ( N I O I - Z im  ;
DO H-—I t 0» 1;CH-H{AA-CH+OA;
00 K—  ltO » l;C K -K ;A E -C K « C B ;
DO L—  ItC tU C L -L lA C -C L ^ D C ;
SOM-OSDO J - l  TO 3 ;S -A A *A V (J I*A B *e V (J I*A C *C V (J l;
R (J I-S ;S C P -S O M *S *S  SEND;RT-SQRTISCPI;
IF  IRT>GR1 1C (RT<GR2 I THEN D O |N I« M * lS
PUT SKIP E D IT ! 'N R  ICN 1 : * , N I O , ' N R  ION 2 : ' , I . ' H K L  : ' , H , K , L .
•AFSTANO : ' t R T I ( 2 ( A t F ( A ) f X ( 3 l  ) , A ,3  F I 3 I t X ( 3 l ( At F ( 1 0 , 6 l I ;
RR-OsOO J - l  TO 3SDC N - l  TO 3; D 0  NA-1 TO 3 ;
R R IJ*N 1-G T E (N 0*J*N A l*G T E IN T *N *N A I*E R E IN C I*E R E (N T I*Q *
R R (Jt N)♦GTE(NO,J ,  N A > *G Tl (N T, N ,N A ) *  ERE ( NO) -ERL ( NTI *£)♦
G T L IN O tJ*N A I*G T E IN T *N *N A I*E R L IN O I*E R E (N T I*Q -
G T L IN O tJ tN A I*G T L (N T ,N ,N A ) -E R L(N O l-E R L( N T)* 0 ;
ENO;END}ENDS
DO J - l  TO 3SD0 N - l  TC 3 ; V T IN IO t I* J tN I - V T IN IC t I t J tN I - R R IJ ( N I ;
END;ENDS ENDS ENDSENC S END; ENDS END;
PUT S K IP I2 IC A TA (G R ltG R 2 »NI ISGOTO EXCH; ENO;
00 1 -2  TO M ;J - I - l ;C C  N IO -1  TO J;DO NA-1 TO 3S00 NB-1 TO 3 ;
V T IN IO t I fN A tN B I-V T II fN IO tN B fN A I;
END;END;END;END;ENC TBER;

MBER: PROC;/«BEREKENING VELD TER PLAATSE VAN CE ICNEN*/
DO N IO -1  TO M;DO J - l  TO 3 S V R IN IO tJ l-O ;
DO 1 -1  TO M;DO N - l  TC 3 ;
V R IN IO tJ l-V R IN IO *J l-V T C N IO * I# J » N I*S R (I» N );
ENO;ENDS ENOSENO;ENC PBER;

NRMR: PROC;/*NORNEER R OP 1 * /
RT-OSOO K - l  TO 3 ;R T -R T *R (K I**2 ;E N D ;R T -S Q R T (R T I;
IF  RT>0 THEN DO K - l  TO 3 ;R tK I-R (K I/R T ;E N 0 S
ENO NRMR;

RBER: PROC;/«R ICHT SPINS IN  VELD VAN HUN BUREN*/
DO 1 -1  TO N ;00  J - l  TC 3 ;R ( J I - V R U tJ I ;E N 0 ;
CALL NRMRSOO J - l  TC 3 ;S R ( I t J I - S R l I , J I * S F - R ( J  l*S P IN *V F ;E N 0 ;E N 0 ;
CALL NORM SEND RBER;

SPRT: PROC;/*DRUK SPINVECTCREN A F * /
IF  JS -1  THEN DOS
PUT S K IP I2 IE D IT I'S T A N D E N *I ( X ( 1 0 1 ,A l ;
PUT SKIP;DO 1-1  TO N;PUT S K IP ;
PUT E O IT l I f lS R I I t J IC C  J - l  TO 3 I M F ( 3 I ( 3 F f lC t A I I ;
ENO}END}ENO SPRT;

VPRT: PROC;/*ORUK VELOVECTCREN A F * /
IF  J V -1  THEN DO;
PUT S K IP I2 IE O IT ( 'V E L C E N 'l(X (1 0 lfA I ;
PUT SKIPSOO 1 -1  TO NSPUT S K IP ;
PUT E D IT ! I t lV R I I f J IO C  J - l  TO 3 l l ( F ( 3 l t 3  F I lO t A I I ;
ENO;ENO;ENO VPRT;

CNTR: PROC;/«CONTROLE OP STADIUM ITERATIEPROCES*/
NR-NR-1;
IF  E-<EV THEN N F -N F - l!
IF  N R -IF 2  THEN N F -2 ;
IF  N R -IF 3  THEN N F -3 ;
IF  N R -IFA  THEN NF-AS
IF  KF—  1 THEN NF— lsELSE DO;
IF  N F-1  THEN D 0 ;S F -2 ;V F -1 ;J S - lS J V -1 ;E N D ;
IF  N F-2  THEN D 0 |S F -1 |V F -1 |J S -O ;J V -0 ;K F -K F - l|
IF  K F -3  THEN D 0 ;K F -C ;JS -1 ;JV -0 ;E N C ;E N D ;
IF  N F -3  THEN 0 0 ;S F -  0 |V F « l|J S - 0 ;J V - 0 |K F - K F » i|
IF  K F -3  THEN D O ;K F -C ;JS -1 ;JV -0 ;E N C ;E N D ;
IF  N F-A THEN D O s J S - llJ V - lS K F — 1 ; ENDS
ENDSENO CNTR;

EBERt PROC;/«BEREKENING ENERGIE * /
E V-E ; E »0 ;00  I - l  TO PSOO J - l  TO 3 | ,E - E * S R ( I tJ l* V R d t  J l  SENOSENOS
E— E/FLOATCMI;
PUT S K IP I2 IE D IT I ' FASE* *N F * 'N R -*  »NRf • E / R - ' ( E I
U t F ( 3 l t X ( A l t A f F ( A l t X ( A l t A f E ( 1 6 *8 1 1 SEND EBER;

EIND: END PROG;ENO SPINOR;
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A ppendix III

Suppose that we wish to calculate a lattice sum

A( / ) =  S Arj)
r i< r '

over all lattice sites rj within a radius r ' from the origin. If A(r') has a limit A  (<*>) for r' * 00
and A ( /)  fluctuates about this limit, and if these fluctuations decrease when r' increases, we
can define a ‘smoothed value’ of the lattice sum:

I

3 ( 0 = -  ƒ G (r")3 (r" )d r"  (III. 1)
0

which will be a better approximation of A(<*>) than A(r') if the weight function G(r") is
chosen carefully.
This function must satisfy the following requirements:
1. G(r") must be very small if r" < r' since then A(r") is not a good approximation of AG0).
2. G(r") must be an increasing function of r" because A(r") becomes a better approximation
of i4(«>) if r" increases.

r'
3. lim ƒ G(r") dr" must be zero, otherwise A t f )  will contain a finite unsmoothed

Ar'»01 r '-h r '

contribution from A(r') which exhibits the fluctuations which we wish to avoid.
Expression (IIL1) defining A(r') can be rearranged according to

__ r* r'
3 (r’) = ;  G(r ) I  flr\) dr" = S f[r{) ƒ G(r") dr” = 2 Afj) g ^ r ' )

0 >■,</•" ri< r ' rj r i< r '

r'
where gfr^r*) = ƒ C(r") dr".

r i
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The calculation of A(r') can now be executed without calculating Air") for all values of r".
An additional practical condition for the new weight function g is that it must be one simply
calculable. For the weight function we have chosen

G(r") = — exp[(/-''-r')/o]a
with a «  0.1 r\ corresponding to

g(rvr') = 1 -  exp[(rj—r')/a] (HI-2)

or
G(r") = 0 i f —a
G(r") = 3(r ''+ a -r ')2/a3 if r" >  r> -  a

with a »  0.3 r', corresponding to

g(r,.r') = 1  if /-j < r* — a

i f o i O -  1 - ( 1 - - — f  i fri > r ' - a

(III.3)
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CHAPTER HI

HEAT-CAPACITY MEASUREMENTS ON Rb3CoCl5
COMPARED WITH THE ISING MODEL FOR A SIMPLE CUBIC LATTICE

Summary

Heat-capacity measurements on RbjCoCls have shown a magnetic phase transition at 1.14 K. The behaviour
of the powder susceptibility showed that the transition is to an antiferromagnetic phase. The analogy with
the isomorphous cesium compound and the experimental data make it plausible that the Ising model is
appropriate for RbjCoCls. It is shown that the specific heat agrees very well with accurate numerical
predictions for the simple cubic Ising model.

L Introduction

Experiments onCs3CoCl5 have shown1-2-3) that this substance is a fairly good example of a
simple cubic Ising lattice. In this chapter, heat capacity data will be presented on the iso­
morphous compound Rb3CoCl5. One may expect that the smaller ionic radius of Rb+, and
the correspondingly smaller lattice constants and Co-Co distances, will influence the values
of the exchange constants. A comparison with theory may show whether the simple cubic
Ising model is still applicable on this substance.
Unlike the two-dimensional case, for the three-dimensional Ising lattices no exact theoretical
expression in closed form for the heat capacity is available. However, very precise computat­
ions exist for the heat capacity. In the last years, mathematical analysis of series expansions
below and above the critical point has yielded analytical expressions for the specific heat
which must be considered as having a higher precision than our experimental results. There­
fore, these analytical expressions are for our purposes sufficiently precise, even although they
do not represent a rigorous result for the heat capacity.

2. Structure and spin hamiltonian

Powell and Wells4) and Engberg and Soling5) have shown that Rb3CoCl5 is crystallographic-
ally isomorphous to Cs3CoCl5, which has tetragonal symmetry (14/mcm, D 1̂ ). The structure
is also discussed in ref. 1 (for Cs3CoCl5) by Wielinga et al. , and in chapter V (for CssMnClj)
which is also isomorphous. The crystal structure is given in fig. 1 of chapter V. These
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discussions show that all magnetic ions are magnetically equivalent, and that they form a
simple tetragonal magnetic Bravais lattice. Four nearest neighbours (n.n.) are situated at
6.22 A in the a-a plane, and two next nearest neighbours (n.n.n.) lie at 7.12 A along the
c axis.
Around each Co2+ ion, four Cl" ions form a slightly distorted tetrahedron, in contrast to
most other Co salts where the Co1* ion is surrounded octahedrally. On account of the tetra­
hedral surrounding of Co2* ions, the sign of the cubic crystal field parameter in Rb3CoCl5
(and in isomorphous compounds) is opposite to that usually found. In a cubic field, the
1 = 3 orbital multiplet is split in two triplets and a singlet. In nearly octahedrally coordinated
Co salts, a triplet is lowest, and spin-orbit coupling together with low-symmetry crystal field
components (if present) cause a further splitting into states which are in general a complicated
mixture of orbital and spin functions. Due to the sign of the crystal field parameters in
Rb3CoCl5 and its isomorphous compounds, the orbital level scheme is inverted, and the
singlet is lowest. Therefore the magnetic properties of these Co ions become much simpler.
Orbital magnetism is quenched, at least in first approximation, and the magnetic properties
are mainly determined by the spin S =-j of Co2*. In second order, the presence of a tetra­
gonal component of the crystal field together with spin-orbit coupling, causes a splitting
into two Kramers doublets described by Sz = ± ̂  and ±4-. In Cs3CoCl5 it has been found
that the ± — doublet is lowest3). This doublet cannot be split in first order by the Sx and 5y
operators, from which it follows that only the z component can interact with neighbouring
spins and an external field, or, in other words, the interactions among ground state Co spins
are of the Ising type.
E.P.R. data on Cs3CoCl53’6) have shown that the Zeeman splitting of the lowest Kramers
doublet of the Co ion can be described by an (effective spin a = --) hamiltonian:

3CZ — g//P-B^zsz
with g// = 7.23, and with the z direction along the crystallographic c axis.
At temperatures much lower than the splitting between the two doublets (which corresponds
to 12.4 K in Cs3CoCl51,3), possible exchange interactions occur entirely among Co2* ions in
the ground state, and hence the (super)exchange mechanism causes Ising type interactions:

3€ij = —2 /ijsizsjz •

Further, E.P.R. measurements on Co pairs in a Cs3ZnCl5 lattice7) have shown that, apart of
the sign, the interactions among nearest neighbours were approximately as large as those
among neighbours along the c axis. Accordingly, Cs3CoCl5 proved to be a fairly good
example of a simple cubic (s.c.) Ising lattice, as shown by caloric1) and magnetic ) experi­
ments. The antiferromagnetic transition temperature for Cs3CoCls was found at TN = 0.52 K.
In view of the tetrahedral Cl" surrounding of the Co2* ions, we expect in the isomorphous
rubidium compound Rb3CoCl5 also spin-only magnetism at low temperatures, but the
relative position of the 5Z = and ± -^doublets is uncertain, since this depends on the sign
of the tetragonal distortion of the nearly-cubic crystal field, the sign of which is not known.
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However, Co2 ions in CS3C0CI5, Cs3CoBr5 and Cs3ZnClj all have the ± d o u b l e t  lowest®).

3. The experiment

The sample was prepared by heating together stoichiometric quantities o f RbCl and anhydrous
C0CI3, to a temperature of about 800 K in HC1 atmosphere. The blue-violet polycrystalline
mass was ground until the particle dimensions were about 0.2 mm. X-ray powder photographs
showed that the structure was identical to that described in refs. 4 and 5 .
The heat capacity of a powdered sample thus obtained exhibited a sharp peak at 1.14 K,
which we attribute to magnetic ordering. The heat capacity data c/R are given in table I and
are plotted in fig. 1 on a logarithmic scale versus the reduced temperature T/TN (7"N = 1.14 K,
the critical temperature). For a comparison, also data of Wielinga on Cs3CoCl5 have been
shown as black dots, using r N = 0.52 K1).

Fig. 1. Heat capacity of Rb3C0CI5 versus reduced
temperature T/TN. The circles represent the
measured points, and the full curve is calculated
for the simple cubic Ising model. For comparison,
the heat capacity data on CS3C0CI5 have been
plotted as black dots.

“  o Rb,  Co C l9
• C s 3 Co C l s

0.05

0.02

0.01
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Table 1.
T(  K) c/R
0.30 0.0060
0.33 0.0120
0.35 0.0164
0.38 0.0258
0.40 0.0350
0.45 0.0650
0.50 0.107
0.56 0.165
0.62 0.240
0.70 0.370
0.76 0.470
0.80 0.570
0.84 0.650
0.88 0.750
0.90 0.810
0.94 0.910
0.98 1.05
1.00 1.13
1.04 1.35
1.06 1.50
1.08 1.67
1.10 1.85
1.12 2.25
1.14 2.60
1.145 2.15
1.15 1.30
1.16 0.900
1.17 0.680
1.20 0.440
1.25 0.280
1.30 0.240
1.40 0.170
1.50 0.130
1.60 0.102
1.70 0.085
1.80 0.069
1.90 0.059

Table I. Heat capacity c/R in dimensionless units

versus temperature T

Integration of c/RT versus temperature for the Rb compound yielded an entropy change
AS/R  = 0.701 «  1.01 In 2. Hence magnetic ordering takes place between ions having only
twofold Kramers degeneracy. Further, integration of c/R yielded a total energy E/R  =
-0 .767  K for the magnetic ordering. Both integrations require some extrapolation of the
c/R versus T  curve, but it can be seen that the extrapolated portions are quite steep, and
therefore the errors involved are comparatively small. At high temperatures (~ 2 K), we find
cT*/R « 0 .1 6  K2. This number is not so accurate, because the heat capacity becomes very
small near 2 K.
There was no observable contribution from hyperfine structure coupling on the low temper­
ature side. Neither did we find evidence for the presence of a Schottky specific heat arising
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from the higher Kramers doublet. This shows that the splitting between the two doublets
must be at least about 18 K.
Thé experiments also included 220 Hz a.c. powder susceptibility measurements at temper­
atures below 4.2 K. A low maximum in x is reached near 2 K, below which x decreased
rapidly. The a.c. losses (chapter I) were constant above 2.5 K, which presumably indicates
that x" is zero at those temperatures. Near 2 K, the a.c. losses reach appreciable values.
Therefore the steep decrease of the susceptibility below 2 K is attributed to relaxation
effects. Since the higher doublet is sufficiently distant, the susceptibility between 2.5 and
4.2 K may be expected to follow a Curie-Weiss law, but this temperature interval is too
narrow to obtain an accurate fit of three unknown parameters (chapter I, section 6).
Therefore, we have tried to obtain one parameter in another way. Below 1 K, the suscept­
ibility was experimentally found to be constant, and we have assumed that it was zero. This
assumption is correct if the magnetic spins have very anisotropic properties, hence if the
Sz = ±~  doublet is lowest. The assumption leads to a value of the constant n0 (see chapter I)
and now the Curie-Weiss law can be demonstrated by plotting the inverse susceptibility
versus temperature (fig. 2). We then obtain a reasonably accurate Curie-Weiss constant
0 = —1.5 ± 0.2 K.

0= -1.5 K

Fig. 2. Inverse a.c. susceptibility of Rb3C0 CI5 versus temperature. The sharp decrease of x below 2 K is
attributed to relaxation effects. For the derivation of these data it was assumed that x equals zero below
1 K (see text).

4. Analysis o f the experimental results

If all spin-spin interactions in Rb3CoCl5 were purely dipolar, we could calculate the
asymptotic high-temperature behaviour of the heat capacity: c'P/R = 0.005 K2. The energy
of the magnetically ordered substance would be E/R ^  —0.1 K. These calculations are
described in chapter II, and the g values are taken from the Cs compound. The above
numbers are much smaller than the experimental data, and therefore the phase transition of
Rb3CoCl5 is ascribed to exchange interactions. First we shall try to find the effective number
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of interacting neighbours and the so called spin dimensionality from the experimental data.
Therefore, we consider a system of spins, having an exchange interaction of arbitrary sign
and absolute value J  with z neighbours, and spin dimensionality d (which has the value 1 for
Ising, 2 for XY, and 3 for Heisenberg type interactions). Dipolar interactions are neglected,
and the hamiltonian for a pair of interacting spins becomes

d
Jfy -  * 2 / I  SiaSja 0 )

a=l

If a spin configuration exists in which each spin is surrounded only by neighbours which are
energetically favourably oriented, then the energy at zero temperature is approximated by

E/R *  —-zJ /k , (2)
4

and if such a configuration does not exist, l£l is smaller. At high temperatures the heat
capacity obeys

c'P/R =±zdJ2/k1.

From these formulas one obtains

z/d E2/2cT1R *  7.

The latter value is found by substitution of the experimental data. If the ± y  doublet is
lowest then d = 1, and if the ± — doublet is lowest d is expected to be intermediate between
2 and 3. In the latter case, there would have to be at least about 14 equivalent neighbours,
and .his seems very improbable in view of the crystal structure. Therefore the ±-2-doublet is
very probably lowest, and the assumption used in section 3 for the determination of the
Curie-Weiss constant is justified.
Thus the effective number of neighbours is about 7, and they are energetically favourably
oriented at T = 0. This suggests that the interactions are mainly due to the four n.n. in the
a-a plane and the two n.n.n. along the c axis, and that these interactions are, at least in
absolute value, approximately equal. Information about the signs of the exchange constants
can be obtained from the Curie-Weiss constant 0. This constant can now be related to these
exchange parameters:

0 = 2Jaalk + Jc/k

Substitution of the experimental value 0 = —1.5 ± 0.2 K, and a comparison with eq. (2) leads
to the conclusion that both Jaa and Jc are negative. This situation corresponds to 0 = 2E/R,
which is satisfied within experimental error. This result indicates that in Rb3CoCl5 the
magnetic ions are antiferromagnetically coupled to the 4 n.n. and the 2 n.n.n., which has
also been found in the isomorphous compound CsjMnCls (see chapter V). Hamman ) has
also found that in Cs3CoCls, these 6 neighbours are antiparallel at low temperatures, but this
result is not in agreement with caloric and magnetic^ ’ ̂ ) and pair resonance ) experiments.
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We shall now consider the influence of dipolar interaction. As already pointed out in the
beginning of this section, these interactions are too small to explain the magnetic transition
observed at 7^ = 1.14 K. Further, for Ising type dipolar and nondipolar interactions, the
pair hamiltonian has the same form. Thus for the 4 n.n. and 2 n.n.n., dipolar interactions are
accounted for by adding a dipolar contribution to the in eq. (1), and we shall consider
now only the consequences of interactions of further neighbours. If these interactions are
purely dipolar, they contribute only 0.0007 K2 to the T~* coefficient of the heat capacity,
which is only 0.4% of the experimental number. Dipolar interactions of further neighbours
give a contribution of about 0.001 K or 0.2% to the energy if we adopt the antiferromagnetic
structure which follows from the preceding analysis. Therefore the long-range dipolar
contribution to the magnetic energy is negligibly small.

5. A comparison o f  the heat capacity to theory

The analysis in section 4 suggests that Rb3CoCl5 is an example of a simple cubic (s.c.) Ising
system, and a comparison of the experimental to the theoretically calculated heat capacity
may be useful. Although no rigorous closed-form solution exists at present for the thermal
behaviour of a s.c. Ising lattice, approximative methods exist. These approximations are
obtained by fitting mathematical expressions to series obtained from expansion of the
partition function. These methods were described in e.g. refs. 9, 10, 11 and they will be
presented here only briefly. Since the thermal behaviour (in the absence of an external
magnetic field) does not depend on the sign of J, we may choose a positive J.

5.1. The heat capacity below the transition point

At low temperatures, only the lowest energy levels of the magnetic system contribute
significantly to the partition function, which is defined as

Z  = 2 txp(-E-JkT).

The summation is over all states of the system. For a s.c. s = — Ising system, the summation
index i takes 2N values. The Ei are the energy levels. From the s.c. hamiltonian it is easy to
see that these levels are multiples of 2/. Since the ground state energy is given by

E0 = —— NJ, w t can now write
* —Ni

Z  = expë-NJ/kT) I  Wj [exp(—2//)fc7’)]1.
* i=0

Here mj is the multiplicity of the i-th level, which is the number of states in which 2i pair
interactions are inverted with respect to the ground state. In practice, only about 15 terms
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can be obtained, since the amount of work increases rapidly with i. From this series, the low
temperature expansion of the heat capacity can be found:

y n
c/R = (J/2kT)2 2 a{ [txp(~2JlkT)]\ (3)

i= l

The coefficients öj are found from the coefficients in the expansion of Z. Numerical values
were obtained by Baker12). However, a number of about 15 terms is not sufficient to
describe the heat capacity up to the immediate vicinity (1 — T/Tc <, 0.3) of the critical
point. Therefore the series are analytically continued by means of an expression from which
one may expect to give a good description of the heat capacity also just below the critical
temperature. In this case, the so called Padé approximant10) technique was used to analyze
the heat capacity series. The [m,n] Padé approximant to a function F(x) is written as

n . m
( 1 + 2  ftpc'VC 1 + 2 Cj*J ) ,  (4)

i= l j= l

and the coefficients hj and Cj are obtained by equating the first n+m terms of the series
expansion of F(x) to those of the Padé approximant. Since F(0) must be unity, power series
have to be divided by their leading term before such an approximant can be calculated.
Baker13) has calculated a [7,7] Padé approximant with help of which eq. (3) can be
approximated by

7 . 7
c/R o> \44(J/2kT)2 exp(—6J/kT){. 2 V ‘)/( 2 cj*3),

i= l j= l

where x  is a function of temperature, defined as

x  = —In [1 — exp(,—2J/kT)/exp(—2J/kTc)].

The critical temperature Tc was given by 2J/kTc = 0.886883. The coefficients ft; and Cj are
given in table II.
This approximant is, if T is sufficiently close to Tc, proportional to ln(l — T/Tc), which
contradicts later conclusions14,15,16) that the heat capacity diverges at Tc proportional to

i ci
1 5.4804176 5.4804176
2 12.642667 11.228545
3 16.200486 10.843288
4 12.805225 5.3955361
5 6.5316176 1.6749843
6 2.0627710 0.40180954
7 0.32542223 0.0022218833

Table II. Coefficients bi (numerator) and ci (denominator) of the [7,7] Padé approximant which was used
for the calculation of the s.c. Ising heat capacity below r c.
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(1 — T/Tc)~ 1/8. However, the difference becomes manifest only if (1 — T/Tc) < 10'4, and
hence it does not influence the comparison between theory and experiment intended here,
since the experimental data exhibit a broadening of a few times 1CT3.

5.2. The heat capacity above the transition point

For high temperatures, the exponents of the partition function terms are small*, and hence
we can approximate Z by expansion of the exponential function for small argument. This
type of expansion is given in chapter II, section 3, and leads for the s.c. Ising system to a
heat capacity series in the form

c/R = 2
i= l

Also in this case, only a limited number of terms can be obtained. A number of coefficients
is given e.g. by Baker12). The high temperature series can be analyzed by the so called ratio
method, which is applicable to series of which the ratio between successive terms becomes
constant for high terms. In this case, a fit is obtained by equating the n available terms of
the heat capacity series expansion (which for the s.c. Ising model contains only even terms)
to that of the expression

A( i -  Tyrva + 2  f t r - 21.
, i=0

The parameters in the left-hand term are fitted such that the gj coefficients converge to zero,
or, strictly speaking, seem to converge in the range of i values for which /j coefficients have
been calculated.
Sykes17) has obtained such a fit, for which A = 1.232, a = —, and 2 J /k T ^  0.88676, which is
very close to the value given in section 5.1. The gi coefficients of the ‘correction polynomial’
are given in table III.

Table III. Coefficients^ of the correction polynomial which was
used for the calculation of the s.c. Ising heat capacity above Te.

5.3. A comparison with the experimental data

The s.c. Ising heat capacity was calculated according to the methods given in sections 5.1
and 5.2. The results are given in table IV, and are also shown in fig. 1 versus T/Tc as the

i
0 -1.2320
1 -0.0065
2 -0.0069
3 0.0030
4 0.0001
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V Tc c/R T/Tc c/R

0.1 1.97x1 O'9 1.03 0.519
0.15 6.23x1 O'6 1.04 0.460
0.2 2.96X10”4 1.05 0.417
0.25 0.00272 1.06 0.382
0.3 0.01130 1.08 0.331
0.35 0.0303 1.1 0.293
0.4 0.0623 1.12 0.264
0.45 0.1085 1.14 0.240
0.5 0.1690 1.16 0.221
0.55 0.243 1.18 0.204
0.6 0.332 1.22 0.1776
0.65 0.435 1.26 0.1569
0.7 0.554 1.3 0.1403
0.75 0.692 1.35 0.1237
0.8 0.854 1.4 0.1103
0.84 1.007 1.5 0.0899
0.86 1.096 1.6 0.0753
0.88 1.194 1.7 0.0642
0.9 1.307 1.8 0.0556
0.92 1.438 2 0.0431
0.94 1.515 2.2 0.0346
0.95 1.699 2.4 0.0284
0.96 1.817 2.6 0.0238
0.97 1.962 3 0.01747
0.98 2.16 3.4 0.01340
0.99 2.48 3.8 0.01062
0.995 2.78 4.2 0.00863
0.998 3.17 4.6 0.00716
0.999 3.45 5 0.00603
1 OO 5.5j 0.00497
1.001 1.437 6 0.00416
1.002 1.215 7 0.00304
1.005 0.951 8 0.00232
1.01 0.771 10 1.483xl0"3
1.02 0.607 15 6.57 xlO"4

20 3.69 xlO”4 Table IV.
Calculated heat capacity of a s.c. Ising system.

drawn curve. The agreement between the simple cubic Ising heat capacity and the Rb3CoCls
data is very nice, and is even better than in the case of CS3C0CI5. This may be attributed to
relatively smaller interactions with more distant neighbours than the 4 n.n. and 2 n.n.n. in
the Rb compound. Dipolar interactions are relatively smaller in the Rb compound, because
the exchange is about two times stronger, whereas dipolar interactions are only about 10%
stronger (on basis of the differences in the lattice constants), if the g values in these two
cobalt compounds are the same.
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6. Conclusions

The thermal and magnetic behaviour of Rb3CoCl5 agree with the simple cubic Ising model.
Thus the interactions of a Co spin with the 4 n.n. and the 2 n.n.n. are approximately equal
and are given by an average interaction constant J/k  = —0.511 K, as found from the
magnetic energy corresponding to the heat capacity anomaly, and J/k  = —0.505 K as found
from the Néel temperature r N = 1.14 K. These interaction constants include a contribution
due to dipolar interaction. If we adopt the g// value of the Cs compound, the dipolar
contribution to J/k amounts to —0.068 K for the 4 n.n. and to +0.091 K for the 2 n.n.n.
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CHAPTER IV

THE BEHAVIOUR OF CERIUM ETHYLSULFATE BELOW 1 K

Summary

Results of heat capacity, magnetic susceptibility and demagnetization experiments on cerium ethylsulfate
are reported. The demagnetization experiments did not indicate a sharp peak in the heat capacity. Instead,
a low and broad anomaly was found, having its maximum at T *  0.025 K. The energy of the magnetic
ordering of cerium ethylsulfate amounts to E/R =  -0.0245 K, and the high temperature tail of the heat
capacity corresponds to cT*/R =  6.7 x 10-4 K2. These values are smaller than those reported in other papers, ■
but they are still too large to be explained by magnetic dipole-dipole interactions only. Cerium ethyl­
sulfate does not behave like a simple Ising antiferromagnet, as one might have expected on basis of the high
gff/gl ratio. The negative value of the Curie-Weiss constant 6 f = -0.048 K of the susceptibility in the
direction of the c axis confirms the existence of antiferromagnetic interactions between the axial components
of neighbouring spins, but the susceptibility measured perpendicular to the c axis indicates ferromagnetic
interactions between equatorial components of the neighbouring spins. There are strong indications that
the spins do not order completely parallel to the c axis at low temperatures, and that a spontaneous
moment perpendicular to the c axis exists at very low entropies. The ferromagnetic character of cerium
ethylsulfate in the plane of nearly-zero g value is believed to be due to the uncommon type of spin-spin
interactions among Ce ions.

1. Introduction

In the past, many efforts have beeh made to investigate the low temperature magnetic and
thermal properties of cerium ethylsulfate (CeES), resulting in about 30 publications on this
subject.
It has been shown in several rare earth compounds (e.g. some of their ethylsulfates, cerium
magnesium nitrate, erbium and dysprosium chloride hexahydrate), that the magnetic and
thermal behaviour at low temperatures is mainly determined by magnetic dipole-dipole
interactions >2,3). In these compounds, the interionic distances are comparable to those in
CeES. On the basis of magnetic dipole-dipole interactions only, for CeES one would
expect asymptotic high temperature heat capacity behaviour according to c'P/R =
1.7 x 10~4 K2, and a magnetic ordering temperature of bout 0.02 K. However, adiabatic
demagnetization experiments of Cooke et a/. ̂ ), of Johnson and Meyer3), and an experiment
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of Meyer and Smith6), gave appreciably larger c P /R  values, namely about 12 x 10'4K2.
A relatively high ordering temperature was also reported. The present investigation of CeES
was originally intended to extend the direct specific heat measurements to lower temper­
atures. We measured (section 5) a heat capacity decreasing as c'P/R = 6.7 x 10“4 K2, which
is supported by further experimental results (section 3). The lack of agreement with the
values reported in the literature has stimulated us to perform also susceptibility measurements
and demagnetization experiments.

2. Crystal structure, spin hamiltonian and interionic interactions

The crystal structure was determined by Ketelaar2). The unit cell (fig. 1) has hexagonal
symmetry and contains two Ce ions. Since the unit cell has inversion symmetry, the two Ce
ions are magnetically equivalent. Each Ce3+ ion has two nearest neighbours (n.n.) lying at a
distance of 7.11 A along the c axis (z direction). Six next nearest neighbours (n.n.n.) are
situated at distances of 8.86 A, three of which at a distance—c{c = 7.11 A) above the
equatorial plane and three at—c below. Further neighbours are at a distance of at least
13.40 A and will not be considered here, except for the calculation of dipolar sums.

>  V20‘
C.7.11 A

. 1 4 . 0 4 8 A

Fig. 1. Crystal structure of cerium ethylsulfate. Left-hand part: the positions of the two Ce ions in the
hexagonal unit cell. These are: -  |  ^  and^ i  i .  Right-hand part: a Ce ion between its two nearest and
six next nearest neighbours. As far as magnetic interactions are concerned, all Ce ions are equivalent.

Early susceptibility measurements of Fereday and Wiersma®) and optical rotation measure­
ments (which can be related to the susceptibility) of Becquerel9)and Van den Handel10)
indicated the existence of a Kramers doublet close to the ground doublet. The energy
difference A of the two doublets and the g values were determined by Bogle et al.11) by
susceptibility and E.P.R. measurements. The c axis was found to be the principal axis of the
susceptibility and g tensors. Elliot and Stevens12,13) could derive the wave functions by
fitting the C3h crystal field parameters to the experimental data. The lowest J  = j  multiplet
is split into three Kramers doublets, which can be approximately described by Jz = 1-, ±
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± y. The energy difference between the lowest Jz = ± -  doublet and the next higher
Jz = ± j  doublet, has further been derived from heat capacity measurements of Cooke
et a/.4), and of Meyer and Smith6), and from susceptibility measurements of Van den Broek
and Van der Marei14), and Finn and Najafabadi15). A weighted average of the various
results gives A /k  = 6.75 ± 0.1 K. The position of the Jz = ±— doublet seems to be at least
20 times higher13,16) and its population may be neglected at liquid He temperatures and
below. As a result, the ground state of the Ce3+ ion in CeES can be described by an effective
spin s = j .  Corresponding g values, according to Bogle e ta l.11), are g /  = 3.80 ± 0.04,
S i=  0.2 ± 0.1. Van den Broek and Van der Marei14) found g// = 3.75 (± 2%). Recently, Finn
and Najafabadi15) reported that g// = 3.73 was in good agreement with their susceptibility
measurements between 1.1 and 4.2 K. The susceptibility, however, is influenced by inter­
actions of the antiferromagnetic sign as evidenced by the Curie-Weiss constants^ = -0 .048  K
(section 4). This suggests that g// is slightly larger than the results of Van den Broek et al.,
and Finn et al. would indicate. E.P.R. experiments of Dweck and Seidel17) on concentrated
CeES yielded g// = 3.760 ± 0.005, and we shall adopt this value. E.P.R. measurements of
Bogle et a t 11,13) on Ce ions in the lanthanum ethylsulfate lattice showedg /  = 3.72 ± 0.01,
£ l = 0.2 ± 0.05. These latter values, however, may not be valid in concentrated CeES,
because the g  values depend on the crystal field parameters. This dependence is clearly
demonstrated e.g. by the results of Anderson et al.1®), who measured the g values of Ce3+
spins in europium, yttrium and lutetium ethylsulfate lattices. The variation of the crystal
field parameters as a function of the rare-earth ionic radius is evident from an inversion of
the two lowest doublets of Ce3+ ions in  CeES when replacing most of the Ce by La15) and
from measurements of Larson19) of Ce ions in other rare-earth ethylsulfate lattices.
Regarding the spin hamiltonian, it should further be recalled that Ce has, due to the 100%
abundance of even-even isotopes, no hyperfine interaction.
The first demagnetization experiments were done by De Haas and Wiersma3®), who reached
a lowest magnetic temperature of 0.08 K. Cooke, Whitley and Wolf4) performed demagnetiz­
ations starting from 7 kOe and 0.95 K. They reported a high temperature limit c7*/R =
11.2 x 10 K2. This number was derived from the experimental S-T* (entropy versus
magnetic temperature C/x, where C is the Curie constant) relation and by equating T* to T
at high temperatures (above 0.13 K). A low maximum in the magnetic susceptibility as a
function of entropy was found, which suggested antiferromagnetic coupling between neigh­
bouring Ce spins.
The experiments of Johnson and Meyer5) extended to lower entropies, since they used
initial fields up to 25 kOe and an initial temperature of 0.9 K for their demagnetizations.
They measured the zero field susceptibility as a function of the initial entropy. The existence
of a maximum in the susceptibility was confirmed and interpreted as a Néel point. The
temperature scale (i. e. the relation between temperature and e.g. susceptibility) was
established in the following way:
1. at temperatures above the maximum in the susceptibility by measuring the relation
between entropy and susceptibility (by demagnetization experiments) and the relation
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between the susceptibility and the energy content (derived from the magnetic heat capacity)
2. at temperatures near the maximum and below by measuring the direct relation between
entropy and energy content (the amount of energy required, to increase the magnetic
entropy to R In 2). The energy input was provided by gamma ray heating. A calibration of
the heat input was made by application of the Curie-Weiss law at high entropies, and using
the S-\ relation. The Curie-Weiss 0 was reported to be about zero from the susceptibility at
liquid He temperatures. From these data they derived the high temperature asymptotic
behaviour of the anomaly below 1 K. Their result was close to that of Cooke et al .) .
Further they measured isentropic magnetization curves and derived the magnetization as a
function of entropy for several field strengths. From these functions, and the relation
d r  = —(bM/bS)ffdH, the temperature variation induced by adiabatic field variation was
calculated. Minima in the T vs H  curves were identified with the passage of a phase boundary
between the paramagnetic and antiferromagnetic region, although this may not be strictly
valid. An important result of the parallel (9 c axis) susceptibility (xƒ) measurements of
Johnson and Meyer is the low temperature limit, which is not zero as one would expect
from e.g. molecular field and spin wave theory for a uniaxial antiferromagnet, but attains a
constant value, corresponding to T* = 0.13 K.
The experimental results on c P/R may be compared to the calculated value on the basis of
dipolar interactions only. This calculation was first performed by Daniels1), who found
CdjpT^/R = 1.93 x 10"3 4 K2. However, using the same data, we obtain 1.74 x 10"4 K2 (for
other ethylsulfates there was close agreement). From the above comparison, it was concluded
that in addition to dipolar interactions yet another kind of interaction exists in CeES which
is appreciably stronger than the dipole coupling. Finkelstein and Mencher21) attempted to
explain these interactions by considering the influence of electric tjuadrupole-quadrupole
(Q-Q) coupling of the 4f charge clouds of neighbouring Ce ions. Although these charge
clouds have nonzero quadriipole moment, this moment is the same for Jz = + — and
Jz = ——states, and hence the Kramers degeneracy is not removed in first order. However,
the Q-Q interaction induces admixture of higher Jz = ± — and Jz = ± ̂ -states into the ground
state, and a second order perturbation calculation shows that the ground quadruplet of a pair
of Cei+ ions is split. These calculations have been reconsidered in papers of Bleaney22),
Baker23), and Dweck and Seidel17). Baker2) considered interactions between the 4f charge
clouds via the crystal lattice (virtual phonon exchange) and he concluded that this
mechanism gave a better explanation of the interactions in CeES.

3. Experimental part

During most experiments a carbon resistor was used as a thermometer because the
application of magnetic fields was required (see chapter 1).
For magnetization of the CeES sample, a movable electromagnet producing a horizontal
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field could be placed around the cryostat. The vertical position of the magnet and its
direction in the horizontal plane could be varied. The mutual inductance coil system
(chapter I) allowed susceptibility measurements only in the vertical direction.
The sample consisted of a CeES spherically shaped single crystal embedded in thin copper
wires. Apiezon N grease was added for thermal contact between the sphere and the metal
system. The copper wires were pressed firmly on the CeES surface by cotton wires. Two
different spheres were used, one having 14.7 mm diameter and weighing 3.07 g, which we
shall refer to as sphere I, and the other (sphere II) having 12.7 mm diameter and weighing
1.90 g. The larger sphere was mounted with its crystalline c axis in a direction intermediate
between the vertical axis of the demagnetization apparatus and the horizontal plane. The
reason for this was to have an appreciable g value both in the vertical direction for suscept­
ibility measurements as well as in a horizontal direction for magnetizing the sample in the
field produced by the horizontal iron magnet.
Since the direction of the c axis was not precisely known after the crystal had been mounted,
magnetic measurements were employed to determine the angle between the crystalline c
axis and the vertical axis of the susceptibility coil system. For this purpose, the sample was
cooled in zero field to temperatures ranging between 0.13 and 0.21 K. In this temperature
range, the zero-field heat capacity could be described by c/R = b/T1 (section 5) and the
susceptibility was found to follow a Curie-Weiss law (section 4). Hence, for small magnetic
fields (H *  100 Oe), the entropy is expected to obey (see the appendix):

m 2 - S / R = £ & ? »  + —  ( 1)
8 k2( T - e y  2 T

where g  is the effective g value in the direction of the applied magnetic field H. Because of
the large gf/gx ratio, the measured susceptibility is nearly proportional to the susceptibility
along the g// (c axis) direction, except if we would have measured close to the perpendicular
direction. Therefore we may consider 0 as a constant. The projection of the c axis was easily
found from the temperature variation of the sample when a magnetic field of constant
magnitude was slowly rotated in the horizontal plane. A pronounced minimum is reached
when the magnetic field is aligned along the intersection line of the horizontal plane and the
plane perpendicular to the c axis (the plane of minimum g). A pair of Helmholtz coils was
placed around the cryostat in such a way that its field direction coincided with the projection
of the c axis on the horizontal plane. A cylindrical coil was placed around the cryostat to
provide a vertical field. Horizontal and vertical fields of about 100 Oe were applied, and the
temperature variation of the carbon resistor was recorded. These experiments were carried
out under adiabatic conditions so that we can apply eq. (1). From the temperature
variations and the magnitudes of the magnetic fields, the ratio of the effective g values in the
horizontal and vertical direction was evaluated. The gvert/ffhor ratio was 0.72, which
corresponds to an angle of 36 between the c axis and the horizontal plane, and to =
2.19 and ghor = 3.06 borrowing the resultsg / = 3.7617) and g± = 0.24 from section 4.
Absolute values of gyert and £hor can also be directly obtained from a comparison of eq. (1)
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to the experimentally determined T vs H relation. These values are nearly 2% higher than the
above set, but the difference lies within our experimental accuracy. The approximate agree­
ment gives additional support for our b value for the high temperature limit of the low
temperature specific heat anomaly (section 5).
The CeES sphere II was mounted with its c axis approximately horizontal. Measurement of
the vertical susceptibility gave a low Curie constant (section 4) showing that the misalign­
ment of the crystal axis was less than 3 degrees.
After completion of the experiments, inspection of the samples did not show decomposition
and only minor cracks were found.
As a check, some of the heat capacity measurements were carried out in a different apparatus,
using a sample consisting of slabs of single crystal, and a CMN susceptibility thermometer
instead of a carbon resistor. The results of these measurements did not show appreciable
systematic differences with the earlier ones and provided a measure for the accuracy (about
2%).

4. The susceptibility

4.1. Experiments on the Curie-Weiss relation

The procedure described in chapter I for analyzing susceptibility data was followed for
magnetic susceptibility measurements at temperatures between 0.06 and 0.6 K for sphere I.
It was found that the data obeyed a Curie-Weiss law and the inverse a.c. susceptibility is
shown in fig. 2, utilizing the inverse Curie constant as a unit. Due to the large g)tg\_ ratio, the
result is interpreted as x/■ The Curie constant is in agreement with the corresponding
effective g value derived in section 3 within experimental accuracy. The Curie-Weiss
constant, as determined from fig. 2, namely 6 j = —0.048 K, has the antiferromagnetic sign.
Susceptibility data are also shown in fig. 2 for sphere II. For this orientation, the Curie-Weiss
constant 0n = +0.027 K has the ferromagnetic sign and the Curie constant, which was about
one hundredth of that of sphere I, corresponds to an effective g value g = 0.26. The loss of
the experimental accuracy due to the much smaller Curie constant is at least partly
compensated by the extension of the measurements to much lower magnetic temperatures.
The c axis of sphere II was almost horizontal and hence the measurements apply to a
direction near the plane of minimumg. However, we may not interpret these data as xi
because a small deviation from the minimum g direction gives a large X/f contribution. Let us
denote the angle between the axis of the susceptibility coil system and the plane of
minimum g by a. Now, if a < 1, we can describe the behaviour of the susceptibility x by

X = x i +  a i X//-
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0 j = - 0.048 K

0.8 K

Fig. 2. Inverse susceptibility versus temperature data for cerium ethylsulfate.
o sphere I, □ sphere II, 4  sphere II, from x-S data.
Because g// ̂ gj_, the data for sphere I, which were obtained at an angle of 54° with the c axis, are interpreted
as X f  For the same reason the data for sphere II, which were obtained at an angle of about 90° with the
c axis, cannot directly be interpreted as x^. The data for the two spheres show that the interactions between
the z components of neighbouring spins are predominantly antiferromagnetic and that the interactions
between the x and y components are predominantly ferromagnetic.

Substituting Curie-Weiss relations for xx and x f, one obtains for sufficiently large T:

Ci + a}Cf C
x -  -------- -------—----------------------- = —;—  . n t

T  — (Ci 6l  + a2C(6 + a2C f) T— 6

Apparently, the susceptibility obeys a new Curie-Weiss law, with Curie constant

C = C j.+  a2C/ (4)

and a Curie-Weiss constant

_ CL6L + a2C#6//

Ci + aJC/ (5>

Because CL > 0, we find from eq. (4) that a < s /C /Q  or a < 3 degrees. The condition
a2 > 0 implies that CL < C o rg L < 0.26 (eq. 4) and 0L > 0.027 K (eq. 5).
The validity of the Curie-Weiss law (eq. 3) suggests that the value of Bi is smaller than the
lower bound of the temperature range of the measurements. The energy at t  = 0 also
imposes this upper bound for 0j_, as will be seen in the discussion. Thus $i <  0.05 K. From
eqs. (4) and (5) we then calculate g > 0.224. The bounds for g must still be taken a little
wider (0.21 < g <  0.28), in view of the inaccuracy of the determination of the Curie
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constant. This result is in disagreement with the g± value reported by Dweck and Seidel1')
(gl <  0.1), but it fits well in the series of g± values for Ce ions substituted in the ethyl-
sulfates of La (g-j_ = 0.2013) ) and of Eu, Y and Lu (g± = 0.23, 0.27 and 0.2318) ).
It can further be remarked that our result 0// = —0.048 K is lower than that of Johnson and
Meyer5) and Van den Broek and Van der Marei14). Their measurements were performed at
liquid He temperatures.

4.2. x I at l°w entropy

Below 0.06 K there was no proper heat contact between the CeES samples and the thermo­
meter. Susceptibility data at lower temperatures can be obtained by demagnetizations from
a known initial field and temperature. The entropy after demagnetization can then be
calculated (see section 6). The data points for sphere II are shown in fig. 3. The data are not
very accurate, because x^ decreased rapidly in time, and further proved to be strongly

15000

I O O O O

5000

Fig. 3. The susceptibility of sphere II at low entropies. These data are interpreted as Xĵ  text). This
picture suggests that at zero entropy Xi will reach its saturation value of 3/4ir for a sphere.

dependent on variations of the remanent field of a few Oe of the iron magnet. The suscept­
ibility increases rapidly to high values when S  becomes small. The x~S relation can be trans­
formed into a x- T  relation, using the S- T  relation derived in section 6. Some of these data points
are added to fig. 2. It is seen that the susceptibility increases less rapidly than according to
the Curie-Weiss relation when T  falls below 0.05 K. Nevertheless, the highest susceptibility
value (observed at an entropy S/R  *  0.015) corresponds to a magnetic temperature of
9 x 10*5 K. The ferromagnetic saturation value for sphere II corresponds to T* = 6.9 x 10"5 K,
and hence the highest observed susceptibility value amounts to -2- of the saturation value.
This suggests that in the limit of zero entropy, the ferromagnetic saturation value for the
susceptibility of a sphere x = 3/4ir (x per cm3) will be reached, and that there may be a
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spontaneous ferromagnetic magnetization. It seems reasonable to attribute the high
susceptibility to a ferromagnetic moment of that part of the sample which had the lowest
entropy after demagnetization. During the demagnetization, irreversible heat production
increases the entropy of the sample, mainly of those parts of the sample which are in good
thermal contact with the metal system, and thus entropy differences may arise.
The x-S relation of sphere I (of which the c axis made an angle of 36° with the horizontal
plane) was in approximate agreement with that found by Johnson and Meyer for x#
(parallel to the c axis), except at entropies below about S/R = 0.05, where again we
found a sharp increase, this time to about 50% of the saturation value. Johnson and Meyer
stated that x// was constant within a few percent for 0.02 <  S/R <  0.05. All these data
suggest that the high susceptibilities originate from (perpendicular to the c axis). In order
to exclude the possibility of a large isotropic susceptibility contribution, the low-entropy
vertical susceptibility of the spheres was measured as a function of a weak magnetic field
(about 20 Oe) of a vertical solenoid around the sample. A maximum in the susceptibility
was found for zero vertical field. These measurements were repeated in the presence of
several horizontal magnetic fields Hhol along the projection of the c axis on the horizontal
plane. The vertical field Hms for which the maximum in the vertical susceptibility was reached, was
measured as a function of tfjjor- It was seen that Zfms was proportional to/f^or.and the ratio
HmJHhor was about 0.7 for sphere I and about 0.05 for sphere II. Apparently, for weak fields, the
vertical susceptibility is only dependent on the field component in the plane of minimum g. These
data lead to an unambiguous interpretation of the large susceptibility as Unfortunately, no
precise determination of the angle of the c axis of sphere II with the axis of the susceptibility coil
system could be found from these measurements, because there is an uncertainty (about one
or two degrees) in the direction of the latter axis with respect to the horizontal field. One
might argue that even a small misalignment (e.g. 0.5°) of Johnson and Meyer’s sample would
have caused a visible increase of their susceptibility data at the lowest entropies. However,
the absence of such an increase could possibly be due to a (small) irreversible entropy
production in their demagnetization experiments. From fig. 3 it is seen that a rather small
increase in S causes a drastic reduction of xj_.
From the susceptibility versus vertical field measurements we found that the large x^ could
be saturated in a magnetic field H of about 10 Oe. Integration of Xj_ versus H gave an easy
magnetization of about 140 gauss cm3 per mole CeES. On basis of a g± value of 0.24, one
calculates a maximum possible magnetization— Ngp B = 670 gauss cm3 per mole for complete
spin alignment perpendicular to the c axis. Thus the presence of a Ce spin component in the
a-a plane can explain this magnetization. The magnetization value calculated on basis of
equilibrium proton polarization at the initial conditions before demagnetization of the
sample (H  = 3874 Oe, T »  0.05 K) is much smaller than the observed value. It should be
noted that x i decreased rapidly (the ‘lifetime’ of x^ was a few minutes) after demagnetization,
due to the heat leak, x^ was also found to be strongly dependent on the initial entropy, and
it seems likely that experiments at still lower entropies would give higher magnetization
values.
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4.3. The frequency dependence of x

We have also examined the frequency dependence of the susceptibility. In the liquid He
temperature range, measurements at 1120, 260, 87, 20 Hz and ballistic measurements did
not show any differences. Down to 0.1 K, the susceptibilities for 260 and 20 Hz were found
to be equal. The large x_l at low entropies was studied at 260 Hz and by ballistic measure­
ments (using a d.c. field of 4 Oe), and comparable values were found. It should be remarked,
however, that the ballistic (d.c.) measurements were not accurate due to the strong field
dependence of xi •

5. The heat capacity measurements

A joule heater, which was in thermal contact with the metal system in the apparatus, enabled
us to produce a known amount of heat and hence to make heat capacity measurements by
observing the temperature of the sample with a cerium magnesium nitrate or a carbon
resistance thermometer. The heat capacity of the metal system and other parts of the ‘empty
calorimeter’ were taken from separate experiments (chapter I) and subtracted. The corrected
molar heat capacity is shown in fig. 4 on a logarithmic scale. Numerical data are presented
in table I. From about 0.06 to 0.4 K the data points lie close to the straight line described by

0.02

0 .0 0 5

0.002

0 .0 0 1 K 2 0O.) T ■ 0.2

T
(K) c/R T

(K) c/R

0.08 0.105 0.60 0.0041
0.09 0.083 0.65 0.0055
0.10 0.067 0.7 0.0078
0.12 0.047 0.75 0.0105
0.14 0.034 0.8 0.0145
0.16 0.0260 0.85 0.0208
0.18 0.0207 0.9 0.0290
0.20 0.0168 0.95 0.037
0.23 0.0126 1.0 0.048
0.26 0.0099 1.1 0.074
0.30 0.0076 1.2 0.103
0.34 0.0061 1.3 0.139
0.38 0.0051 1.4 0.175
0.42 0.0042 1.5 0.21
0.46 0.0037 1.6 0.25
0.50 0.0033 1.7 0.28
0.55 0.0034 1.8 0.31

Table I.
Heat capacity of CeES for 0.08 K <  T<  1.8 K.

Fig. 4. Heat capacity of cerium ethylsulfate. The straight line corresponds to ct*/R  =  6.7 x 10 4 K2. The
drawn curve is the calculated Schottky heat capacity for a splitting of A/k = 6.9 K.
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cT^/R = 6.7 x 10"4 K2. As already noted in the introduction, this low temperature heat
Capacity is much smaller than the results (about 12 x 10'4K2) from earlier experiments4,5,6).
However, these authors used a Curie-Weiss relation with 0 about zero for their temperature
determination, which introduces appreciable errors at temperatures below 1 K (see
section 4). Further, they made demagnetizations from initial entropies of nearly R In 2, in
which case appreciable corrections are required by entropy contributions due to e.g. higher
levels, which may cause systematic errors.
Returning to fig. 4, one sees that a minimum in the specific heat is reached at 0.52 K, and
above that temperature an anomaly appears which has been observed in detail by Meyer and
Smith6). The origin of this anomaly lies in the population of the Jz = ±—doublet. To our
data we could fit the low-temperature side of a Schottky anomaly for two levels having a
splitting of A/k  = 6.9 K. Agreement within experimental accuracy was obtained at temper­
atures between 0.8 and 1.7 K. The difference between our value for the splitting and that
of Meyer and Smith6) (A/k  = 6.7 K) is not significant because our carbon resistance thermo­
meter was not very sensitive at such high temperatures. Meyer and Smith6) have found that
the heat capacity of this anomaly near its maximum (3 K) is higher than that expected on
basis of a Schottky anomaly for two energy levels. Attempts to explain this by strong spin-
phonon interactions have led to some theoretical publications24,25,26). Our experiments,
although extending to temperatures of about 3 K, are not sufficiently accurate above 2 K
to shed any further light on this problem.

6. The Q-S measurements

6.1. Experimental method

An experimental determination of the relation between the total heat content Q and the
entropy S of the spin system of the sample can be obtained by a familiar method in adiabatic
demagnetization experiments, known as the ‘integral Q-S method’. The sample was slowly
magnetized while the heat switch was closed, so that the magnetization heat was transported
to the cooling salt. When the sample had reached the desired temperature T and magnetic
field strength H  (which determine S), the heat switch was opened in order to create adiabatic
conditions. When temperature equilibrium was reached, the magnetic field was removed, and
subsequently the joule heater was switched on, thereby developing a known amount of heat.
When the temperature had reached a value at which good thermal contact between sample
and thermometer existed, the heat input was stopped. From the initial conditions (T, H) and
the total energy input, the Q-S relation was found.
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6.2. Entropy corrections

The problem of calculating S from H and T  was handled in the following way. In a first
approximation, we can consider the sample as a simple two-level Zeeman system, of which
the entropy Sz obeys the relation

XE^e\p(—EJkT)
S JR  = --------------------- + In X exp(—E:/kD

kTL exp(—E-JkT) i
i

(6a)

with E{ = ±-j gghH (i= 1, 2) (6b)

Several corrections must then be applied. The doublet at 6.75 K causes an increase of
entropy, relative to eqs. (6). The entropy St of two doublets, separated by an energy
distance A and having effective g values gj (lower doublet) and gh (higher doublet) is also
given by the right part of eq. (6a), if we take

A  = ! A i - g ^ H  (i= 1, 2) and

£i = + -A  (i=3, 4).

The correction ASt is now defined by ASt = St — Sz. Further, the heat capacity of the lattice
and the adjacent metal system (the empty calorimeter) was taken from separate experiments,
and was as usual expressed in third and first powers of T  respectively. The corresponding
entropy contribution ASt  was calculated from these coefficients. The influence of the
magnetization on the effective field acting on the Ce3+ spins was treated with the help of
molecular field theory. The relative magnetization m for a two-level Zeeman spin system in
an effective field Hm is given by

S Sijexp(—g / i B # A  7)
m =  — ---------------------------------------------  (7)

X -i-exp(—g/i nHmsi k D
i *

with Sj = ±— (i=l, 2), and the molecular field approximation implies that

2ke /Hm = H +------- m (8)
S*B

where H  is the external field. Eq. (8) was substituted in eq. (7) for Hm , yielding an equation
from which the unknown m was obtained by an iteration method. Hm was found from
eq. (8). Substitution of this value for H  in the right-hand part of eq. (6a) gave the entropy
Sm in the molecular field approximation. This correction amounts to ASm = Sm — Sz, and
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the entropy S i before demagnetization was simply calculated as

Si = Sz + A St + A Se + A Sm .

Fluctuations in the mean field value, originating from neighbouring spins, have been
neglected since the molecular field correction (< 500 Oe) was small compared to the external
field, which was 3874 Oe in most cases.
An uncertainty in the entropy after demagnetization arises from the irreversible entropy gain
during the demagnetization, caused by e.g. heating of the metal system by eddy currents.
This entropy gain was approximately determined by auxiliary experiments, in which, after
demagnetization, the field was returned to its initial value and the corresponding entropy
increase A S ^  was calculated from the initial and final temperatures and the field. The
entropy production was determined for several values of the initial entropy Sj. Fig. 5
shows the results for sphere II. The entropy gain A ^^ is seen to be strongly dependent on

0.02

° 0  Si/R

Fig. 5. The irreversible increase of entropy AS^ after demagnetization and magnetization, as a function of
the entropy S, before demagnetization.

Sj. The increase of entropy after demagnetization is estimated as— A S ^ .  Hence after
demagnetization, we use the following expression for the entropy:

S  =  Sz + ASt + A Se + ASm + ■jA.S’in.

After the demagnetization, a known electrical current was led through the joule heater, and
the heating was stopped when the sphere had reached a temperature Tf  of about 0.2 K. Thus
the heat input Q must be increased by a correction which was calculated by integrating the
heat capacity above Tf. The heat Q must be considered as the energy required to heat the
spin system to infinite temperature without populating the higher doublets. Therefore the
heat capacity was taken to be cT*/R = 6.7 x 10“4 K2 over the whole range of integration.
Furthermore, a correction to Q was applied for the heat leak of about 0.1 erg/sec. For this
purpose, the heat leak was measured after each Q-S data point measurement. (The heat leak
into the Ce spin system just after demagnetization could be estimated by observing the
decrease of x^ in time and using the x i-S  (section 5) and Q-S relations. The leak was
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comparable to the former value, which suggests that at low T the Ce spin system exchanges
only very little heat with other systems (due to e.g. possible vibrations or rotations in the
ethylsulfate lattice).)

6.3. Experimental results

Thus the Q-S data points were calculated from the experiments. The full curve in fig. 6 has
been drawn through these data points, and the dashed line was calculated on basis of an
extrapolation of the direct specific heat result cV /R  = 6.7 x 10"4 K2. At high entropies, the
two curves coincide, which means that the Q-S and direct specific heat measurements are

0.025

v * — 0.03 K
QOIK

0.020

003 K0.015

OlOSK

0.010

0.005

Fig. 6. The Q-S data. The heat Q required to increase the entropy of the ground-state Ce ions to R  In 2 is
plotted versus the entropy (before heating). S. A large heat capacity peak, due to a collective magnetic
phase transition, would correspond to a straight section in this curve. At S = 0, we find the energy of the
magnetic ordering: E/R = —0.0245 K.

in good agreement. As for a comparison with the Q-S data of Johnson et al.5), a difference
in the vertical (Q) scale by a factor of about 1.7 originates from the difference between the
respective T~1 coefficients which has already been discussed in section 5. Further, a differ­
ence between the respective horizontal entropy scales, especially at low entropies, could be
due to different procedures of entropy calculation. (This difference consists of the molecular
field correction and the irreversible entropy gain which we have applied.)
From the Q-S relation one can obtain the temperature for each point of the curve by
differentiating: T= dQ(S)/dS, yielding the T-S (fig. 7) and the T-Q (fig. 8) relations. From
the T-Q relation, one derives the heat capacity by a second differentiation. These findings
are plotted in fig. 9 as black dots which exhibit a broad and a low anomaly. Although the
results at the high temperature side are in approximate agreement with direct heat capacity
measurements, appreciable systematic errors may have been introduced by differentiating
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0.04

Fig. 7. The relation between entropy S and temperature T. The temperature was obtained by differentiation
of the relation shown in fig. 6. The curve has been drawn smoothly through the points because we do not
expect an irregular behaviour of the entropy.

0.025

0.020

0.015

0.010

0.005

0.02 004

Fig. 8. The relation between the heat Q and the temperature. The rather small slope of this curve over the
whole temperature range corresponds to the absence of a large heat capacity peak.

two times, hence one should consider fig. 9 as a somewhat qualitative picture. Especially
the results below 0.015 K are tentative. The absence of a large anomalous peak is in
qualitative agreement with the data of Johnson and Meyer^). We believe that on the basis of
our data we can rule out the existence of a large peak due to a critical point at a temperature
of about 0.04 K. If a sharp peak occurs, it is presumably a small one, or one to be found
below 0.015 K, at the low temperature side of the anomaly, such as is observed for e.g.
ytterbium titanate27) (see also chapter VI). From the small slope of the curve in fig. 6 at
low entropies, it follows that the decrease of entropy extends to low temperatures and that
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Q4f

0.04

Fig. 9. The heat capacity of cerium ethylsulfate below 0.08 K, as derived from the Q-S relation. The data
points are obtained by differentiation of the relation shown in fig. 8. These results contain an appreciable
systematic error.

T
(K) c/R SIR QIR

(K)

0.0 0.0 0.0 0.02430
0.002 0.03 0.03 0.02440
0.004 0.06 0.06 0.02428
0.006 0.08 0.09 0.02413
0.008 0.11 0.12 0.02397
0.010 0.16 0.13 0.02369
0.013 0.20 0.20 0.02313
0.016 0.24 0.24 0.02232
0.020 0.29 0.30 0.02141
0.024 0.33 0.33 0.02031
0.028 0.34 0.41 0.01874
0.032 0.31 0.46 0.01721
0.036 0.26 0.49 0.01619
0.040 0.23 0.31 0.01340
0.043 0.24 0.34 0.01419
0.030 0.22 0.363 0.01300
0.033 0.20 0.585 0.01192
0.060 0.18 0.602 0.01090
0.070 0.13 0.627 0.00933
0.080 0.10 0.640 0.00842

Table II. Heat capacity, entropy and energy for T <  0.08 K. Tand c were derived from the experimental
Q-S relation by differentiation. Therefore the relation between Q and S is more accurate than all other
relations in this table. Especially c may contain appreciable errors.

the heat capacity does not fall rapidly to zero below the maximum near to T= 0.025 K
(cf. fig. 9). The heat capacity data from the Q-S measurements are plotted in fig. 10 on a
logarithmic scale, together with direct heat capacity measurements: also data taken from
Meyer and Smith6) are shown. These data cover four decades of temperature. A comparison
between the two anomalies shows that the low temperature anomaly is even broader than
the Schottky type curve at 3 K.
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1.0

Fig. 10. The heat capacity of cerium ethylsulfate over four decades of temperature.
D data taken from Meyer and Smith ). o from direct heat capacity measurements, a from the Q-S data.

7. Discussion

7.1. Main results

We shal present a discussion of the magnetic behaviour of CeES on basis of the following
experimental data:
1. the known single ion properties, namely g// -  3.7617) andg^ *  0.24.
2. the heat capacity shows a broad anomaly having a maximum at T<* 0.025 K, while no
sharp peak has been observed. The energy of ordered CeES amounts to E/R  = -0 .0245 K,
and at high temperatures the heat capacity obeys c V /R  = 6.7 x 10~4 KJ.
3. x f  becomes constant at low temperatures, corresponding to T* = 0.13 K5). xi nearly
reaches the maximum possible value for a sphere, 3/4rr.
4. dipolar interactions cannot explain the behaviour of CeES, but they are not negligible.
5. the Curie-Weiss constants are 6 / = -0 .048  ± 0.004 K, 0X > +0.027 ± 0.005 K.
6. the result of Dweck and Seidel17), to be discussed in section 7.3.

7.2. Possibility of a critical point

Johnson and Meyer5) inferred the existence of a critical point near 0.05 K from the maxi­
mum in x// and from the minima in the H-T curves. However, calculations about non-long
range ordering antiferromagnetic Ising linear chains, for example, also predicts a maximum
in x and minima in the adiabatic H-T curves (see e.g. ref. 30), and e.g. observations of Landau

ty a

et at. ) show that the minima do not coincide with the critical point for the case of
dysprosium aluminium garnet. Further, no evidence for a large heat capacity peak (at a
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critical point) is found from the Q-S data, although at the lowest observed temperatures
(T  < 0.015 K) the existence of such a peak cannot be ruled out. The behaviour of x^ at low
entropies (fig. 3) suggests that at T  = 0, will reach its maximum value of 3/477 for a sphere,
and hence that the ground state of CeES exhibits ferromagnetism in the a-a plane. From the
Q-S data we could not conclude whether or not a corresponding heat capacity peak occurs
in that temperature range. Thus we only have evidence for a low and broad anomaly. As a
general rule, it may be stated that broad heat capacity anomalies (and predominance of
short range ordering) occur for:
a. a small number of interacting neighbours, particularly if they are confined to a low
lattice dimensionality (e.g. linear chain).
b. a high spin dimensionality of the interaction hainiltonian (e.g. Heisenberg systems).
During the following analysis of the experimental data, we shall see that both effects play
a role in CeES.
Before correlating the interaction parameters to the observed susceptibility data, we must
consider the possibility of a deformation in the CeES lattice causing weak ferromagnetism.
A rotation of the preferred gg directions by an angle a of about 1° and a simple two-
sublattice antiferromagnetic long range order might explain the easy magnetization, but the
zero temperature limit of xg would correspond to about T* = — 6//sin2 a or x// less than one
thousandth of the value reported by Johnson and Meyer. Therefore we shall propose a
different magnetic structure and we shall investigate whether it is possible to interpret the
susceptibility data without assuming a crystal lattice deformation.

7.3. Calculation of x// for ferromagnetic alignment in the xy plane

Both molecular field and antiferromagnetic spin wave theory for an uniaxial antiferromagnet
predict x^ = 0 at the low entropy limit, but an explanation for the observed x// value can be
found if a magnetic moment in the a-a plane exists. A small magnetic field along the c axis
will then slightly polarize the spins. In order to estimate this susceptibility, we shall now
make a molecular field calculation, thereby not distinguishing between dipolar and other
interactions in the hamiltonian for two interacting effective s =— spins:

2

X j j  =  S j '/C i-S j

We now define two parameters for a macroscopic system of equivalent spins:

*'4? *ï. 4,i#j i¥=]

We suppose axial symmetry around the z axis, ferromagnetic alignment in the xy plane,
Kg > 0 and Ky <  0. Note that the ‘parallel’ direction refers to the gg direction and is
perpendicular to the direction of spin alignment. If we apply a magnetic field H  parallel to
the z axis to such a system, the spins will rotate by an angle <p to the z axis. For a completely
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ordered system, we can write the magnetic energy:

E = N  (Kpsin2p + Ki cos2<p) — — NgiinHsinp
8 2

If we now expand shty and cosip in a power series for small <p, and require df/di^ = 0, we find

ip = IgjifcHKKp — K\_), and hence

Kp and K^ can be related to the Curie-Weiss constants:

Bp = Kp/k and 0^ = -  — K Jk.

Applying these relations to CeES, the Kp and K± values can now be derived from the
susceptibility data in section 4, and we find T* w 0.1 K, which has roughly the same
magnitude as the experimental result 0.13 K~*). Later in this discussion we shall see that K^
is probably too small to account for the observed energy gain. The above calculation rather
serves to demonstrate that an appreciable moment perpendicular to the c axis is related to
3 Xp value at low temperatures (7* much smaller than the K/k  values) of the same order of
magnitude as the observed value. It is plausible that this also holds if there is only short
range order in the a-a plane.

7.4. Magnitude of the interaction constants

For consideration of the spin-spin interaction, we shall now write the spin hamiltonian for
a pair of ground state Ce ions as

The first term describes the dipolar part, the second term the nondipolar part of the inter­
action. In view of the crystal structure of CeES (section 2), we suppose that the components

of the nondipolar interaction tensors are nonzero only for the 2 nearest neighbours (n n )
and for the 6 next nearest neighbours (2n). These components can be related to the Curie-
Weiss constants:

X* (T m 0) = i  NpgMB/H  = - L 2 L
2 Kf-Ki

or T* = (Kp -  KL)/4k

2 )(gi-*i)-(gj-Sj) Ua-siKiitorV-M] ) + irA ij
4 J

9* " - f  J p / k  + Bpiip =  -  Ljp/k + 0tdjp (9)

el = ~ ~  J T ' k  ~  + Ofdip = "  ~  J J k  + 0idip ( 10)

75



where we have neglected possible nonaxial terms in the J  tensors and where we have intro­
duced J f  = T jy 1 + 6jj/n and = l / ”n + 6j f n. The calculation of the dipolar 0’s has been
described in chapter II and leads to

^dip  = +0.0153 K and 0idjp = —0.000031 K

if we take g// = 3.76 and gi = 0.24 (section 4). From our susceptibility measurements we
have found 6# = —0.048 ± 0.004 K, 0  ̂>  + 0.027 ± 0.005 K. Substituting these data in eqs. (9) and
(10), we obtain Jf / k  = 0.252 ± 0.016 K, J J k  <  -0 .108 ± 0.020 K. Dweck and Seidel17)
have measured by an E.P.R. line shift method {J// — J\)/2hc  = 0.113 ± 0.003 cm-1 or
(J// — J \) /k  = 0.324 ± 0.009 K. This experimental result and the results for 6// and 0^ are
shown in fig. 11 as regions in the J± — J// diagram .^ small triangle belongs to all three
regions and the J± and J// values must be in or close to this triangle. The values 0// = —0.045 K,
61 = +0.023 K, corresponding to J f / k  = 0.24 K, J J k  = —0.092 K are a fit just within the
bounds set by the accuracy of the experiments of Dweck and Seidel and of us.
Using these numbers, we can make a comparison with the experimental value of c’P /R . We
have computed the dipolar sum as described in chapter I, using g// = 3.76 and g i = 0.24. For
the case of axial symmetry of the nondipolar interaction we obtain

cT2/R  = (1.67 x 1(T4 — 6.12 x 10'3j y / k  + 6.25 x 1 0 J f 2 /k2
+ 2.49 x 10'5 j y / k  + 1.25 x 10’1
+ 2.45 x 10'3/ i n/jfc+ 1.875X10'1 A ^ / k 2
-  1.00 x 10'3j y i k +  3.75 x 1 0 ', / | “ , /k2)K 2 (11)

We shall first investigate whether the experimental c'P/R  value can be explained by
assuming nondipolar interactions among nearest neighbours only. To this end we calculate
the values shown in column 1 of table III from eqs. (9) and (10) and substitute them in
eq. (11). The result c'P/R  = 5.97 x 10~4K2 is too small, but sufficiently close to the experi­
mental value (6.7 x 10 '4 K2) to indicate that the nondipolar interactions arise mainly from

1 2 3 4 5 6 7 Exp. value

JT lk <K) +0.120 +0.128 +0.120 +0.148 +0.108 +0.108 +0.144
/ “ /* (K ) -0.046 -0.046 -0.052 -0.018 -0.058 -0.058 -0.022
J**/k (K ) 0 0 0 0 0 + 0.004 -0.008
j l n/k (K ) 0 0 0 0 0 +0.004 -0.008
9 n (K ) -0.045 -0.049 -0.045 -0.059 -0.039 -0.045 -0.045 -0.048 ±0.004
«± (K ) +0.023 +0.023 +0.026 + 0.009 +0.029 +0.023 +0.023 >0.027 ±0.005
(J„-/±)/k(K) +0.332 +0.348 +0.344 + 0.332 +0.332 +0.332 +0.332 +0.324 ± 0.009*
eT2/X (10-*K2) 5.97 6.7 6.7 6.7 6.7 6.7 6.7 6.7 ± 0.2

* Value taken from ref. 17.

Table III. Seven sets of four nondipolar interaction parameters J  are given. Dipolar interactions have to be
added to the J  values quoted here. The dipolar equivalent amounts to —0.049 K. Further dipolar
parameters are much smaller. From the parameters, four observable physical quantities were calculated.
Agreement with the experimental values is obtained for columns 6 and 7.
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the nearest neighbours. We can, of course, find close agreement with the experimental
c’P /R  value if we substitute e.g. J^n/k  = —0.052 K (column 3), which values are also in agree­
ment with our susceptibility results. These numbers, however, lead to (J/  — J ^ /k  values
which are a few percent beyond the experimental accuracy of Dweck and Seidel. In
columns 4 and 5, values are shown which fit well to the cT*/R value and the Dweck and
Seidel number, but the values of column 4 are in disagreement with both experimental 0
values and the numbers in column 5 are not satisfactory in view of the B) value. In fig. 11,
the parameters of columns 2-5 correspond to four points lying on curve a, which illustrates
relation (11) for zero next nearest neighbour interaction. No point of this curve a obeys
the three experimental results. If we want a good fit with all experimental data, we have to

Fig. 11. The Jy-Jn diagram. The two lines marked D + S give the experimental result of Dweck and Seidel17):
(Jf ~ Jl)/k = 0.324 K. The experimental 8// and 8^ values (see text) also put bounds to the Jff and values
resp. A small triangular region in this diagram obeys the three experimental results. Curves representing
eq. (11) are shown for three isotropic n.n.n. interaction values:
curve a: J2n/k = 0 K
curve b: J2n/k = -0.008 K
curve c: J2n/k = +0.004 K.

assume nondipolar next nearest neighbour (n.n.n.) interactions. Information about n.n.n.
interactions has recently been obtained by Anderson et al.18) for Ce pairs in some non­
magnetic rare earth ethylsulfates. They found several elements of the traceless (hence non-
isotropic) part of this interaction which were different from the dipolar values by only a few
times 10 4 K. Therefore we studied the effect of an isotropic n.n.n. interaction contribution
J  • Good agreement with the experimental numbers is obtained for two sets of parameters
shown in columns 6 and 7 of table III. For the corresponding J2n/k values, eq. (11) is
illustrated in fig. 11 as curve b (J2n/k = -0.008 K) and curve c (J2n/k = +0.004 K).
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The experimental accuracies indicated in fig. 11 give an impression of the errors in the two
sets of parameters, and we have to keep in mind that these parameters are liable to appreciable
changes if one or more experimental numbers are outside their estimated bounds.

7.5. Linear chain calculations

We shall now investigate whether a choice between the two sets can be made by relating the
experimental energy E at T = 0 with the J  components. In both cases the interactions are
predominantly of the linear chain type. Therefore we shall apply the formalism of Yang and
Yang2®) for anisotropic Heisenberg linear chains. These authors derived the energy E at
T = 0 for such chains having only nearest neighbour interaction:

3Cjj “  ̂ K^ix ĵx SiySjy ) (12)

However, in this case we are studying a system which is more complicated because further
neighbours within a chain have nonzero (dipolar) interaction, and nearest neighbouring
chains are coupled by n.n.n. interactions. In order to estimate the anisotropy parameter A,
we calculated the energy for some magnetic structures in the molecular field approximation,
considering the spins as classical vectors having a definite orientation, namely s H c and s i c
axis. Further, this approximation makes it possible to estimate the energy contribution
from interchain (n.n.n.) interactions.
Taking the interaction parameters of column 6, and the hamiltonian(12), the classical energy
values were calculated for the following two magnetic structures, which are based on the
signs of the J components:
1. antiferromagnetic chains along the c axis (stc axis). The interaction energy of a chain with
its three nearest neighbouring chains is zero and hence the result E/R = —0.0152 K is nearly
completely due to intrachain interaction.
2. ferromagnetic chains (s in the a-a plane) along the c axis, which have their three nearest
neighbouring chains antiparallel. This structure leads to E/R = —0.0175 K. A contribution
—0.0145 K originates from intrachain interactions.
The anisotropy parameter A from eq. (12) may be estimated by taking the opposite of the
quotient of the intrachain energies of structures 1 and 2 respectively, namely A = —1.05.
Using numerical results derived in chapter II, section 10, we find an energy —0.0261 K for
intrachain interactions (this corresponds to an energy reduction of 72% relative to the
classical result for structure 1. For an isotropic Heisenberg linear chain, having A = + 1, the
energy reduction amounts to 77%). A further energy contribution arises from interchain
(n.n.n.) interactions. Its value is expected to be intermediate between about zero (structure
1) and —0.003 K (structure 2). Hence, for the parameters shown in column 6 we estimate
the energy at 7’= 0 to be E/R »  —0.0276 K. In view of the approximations used in these
calculations and the inaccuracy in the parameters used, we can only conclude that the set of
parameters shown in column 6 of table III is compatible with the experimental energy gain
E/R = -0.0245 K.
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Similarly to the above procedure for column 6, we shall now compute the energy using the
interaction parameters of column 7. A classical energy E/R = -0 .0242 K was found for the
structure labeled 1 above. This value is nearly completely due to intrachain interaction.
Interchain interactions of column 7 have the ferromagnetic sign and therefore we define,
instead of structure 2, a ferromagnetic structure 3 (all spins parallel in the a-a plane). The
molecular field approximation gives an energy E/R = -0.0115 K from which -0.005 K is
due to intrachain interaction. Hence we obtain an anisotropy parameter A = —4.4 for the
opposite of the quotient of the intrachain energies of structures 1 and 3. For column 7, we
then find an intrachain energy -0.0254 K according to the data derived in chapter II. This
corresponds to an energy reduction of 5% relative to structure 1. The interchain contribut­
ion is expected to be closer to that of structure 1 (about zero) than to that of structure 3
(—0.006 K) because the interaction parameters in column 7 are predominantly antiferro­
magnetic. Again the energy estimate is compatible with the experimental value E/R =
-0.0245 K.
Thus we cannot decide which one of column 6 and 7 is to be preferred from these energy
considerations. There is, however, experimental evidence favouring one of the two sets. The
easy magnetization in the a-a plane (section 4) at low entropies is difficult to understand if
antiferromagnetic interchain interactions (column 6) are present. Hence the parameters in
column 7 give the best interpretation of the experimental data now available, and some
comment may be useful. Since it is argued above that spin wave contributions to the
magnetic energy are small, one may analyze the energy in various contributions,according to
the molecular field model. In this approximation, nondipolar n.n. interactions give an energy
contribution of —0.036 K for ordering in antiferromagnetic chains (sfc axis). Nearest
neighbour chains, if completely ordered, have zero interchain interaction energy, and next
nearest neighbour chains are assumed to have zero nondipolar interaction (section 2) and
their dipolar interaction ehergy is small. The total dipolar energy, which arises mainly from
the two n.n., has the positive sign; for such a structure we calculated Edjp/R  = + 0.0118 K.
The sum of the dipolar and nondipolar energies is liable to an estimated 5% correction for
intrachain quantummechanical (spinwave) effects. Energy contributions from ferromagnetic
interchain interactions are believed to be small.
Although quantummechanical effects only give a small energy contribution, they may give
an explanation for the susceptibility behaviour (large xi  values, nonzero X) at low entropies),
where the classical approach fails. To our knowledge, no calculations about this subject have
been published for the type of interactions considered here.
For ordered antiferromagnetic chains, the interchain interactions are expected to be small
(see above), and one would expect long range order to occur at low entropies only. This is
in accordance with the absence of experimental evidence for a heat capacity peak (see
section 6). Further, the heat capacity data are in qualitative agreement with results of
Bonner and Fisher30) for anisotropic Heisenberg chains.
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Conclusion.

The magnetic and thermal behaviour of CeES is dominated by anisotropic n.n. interaction,
which gives short range ordering in linear chains. The type of ordering is antiferromagnetic
as far as we consider the components along the hexagonal c axis of neighbouring spins.
However, when we examine the behaviour of the spin components in the a-a plane, we find
ferromagnetic properties.

The entropy S(H,T) of a system in a magnetic field H and at temperature T can be derived
with help of the thermodynamical relation

If the susceptibility follows a Curie-Weiss law, we have for small fields (gp^H < kT):

Appendix

&T/ n
Cjj is the heat capacity in a constant magnetic field, and M is the magnetization.
If the zero-field heat capacity obeys

b

we find by integration

S(0 ,oo)-S (0 ,T )= ^-
27*

( T - e fHT/H
and hence we find

b CH1
S(0,«) -  S(H,T)

2{T -e f
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CHAPTER V

MAGNETIC PHASE TRANSITIONS
IN FOUR MANGANESE DOUBLE CHLORIDES

Summary

Heat-capacity and magnetic-susceptibility data in the temperature range 0.05 K <  T <  3 K are presented
on CsjMnCls, Cs?MnCl...2H20 , K4MIi( !(, and a-Cs2MnCl4 . Sharp maxima in the heat capacities corresponding
to magnetic phase transitions from paramagnetic to antiferromagnetically ordered states are observed. The
Néel points are respectively, TN =0.601, 1.81, 0.439 and 0.935 K ± 0.5%. For K4 MnCls, another sharp peak
is found at 7"= 0.332 K.
From the measured energy gain E/R, the high-temperature heat capacity ch 1a/R, and the Curie-Weiss
constant 0, information is obtained about the magnitude of the exchange interaction parameter. Further­
more, at low temperatures hyperfine heat capacities have been measured.

1. Introduction

Magnetic phase transitions have been observed in many divalent manganese compounds, and
have been studied rather extensively, particularly on manganese halogenides like MnFj1).
Most of these compounds are antiferromagnetic at low temperatures, while the height of the
Néel temperature and the magnitude of the superexchange interaction are smaller for Cl
than for F compounds in general. Hence it is not surprising that, because of its low
temperature, magnetic phase transitions have not yet been observed in many double chlorides
of Mn, in which the interatomic distances are somewhat larger than in MnCl2, which has a
Néel temperature of about 2 K2). The successful application of low-temperature calorimetry
in the range of roughly 0.04 to 4 K, extending over two decades on the temperature scale,
has proved to be quite useful in locating the position of the critical temperature. Further,
by integration of the specific heat versus temperature over a sufficiently wide temperature
range, one obtains the magnetic energy gain with fair accuracy, which may yield at least
an average value of the superexchange interaction parameters. Mn2+ ions are particularly
favourable in this respect, because their lowest energy level is an S state, which favours
an isotropic exchange interaction, while crystalline field effects are, in general, only of
secondary importance. A systematic study of the magnitude of the exchange interaction in
many Mn compounds is required in order to gain more insight into the superexchange
mechanism.
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We shall discuss experimental results on four manganese double chlorides. Numerical heat
capacity data have already been published in ref. 32, in which also an attempt has been made
to analyze the critical behaviour of the heat capacity versus temperature curves. The
transition temperatures for the various compounds are obtained from that analysis.
For an interpretation of the experimental results, we shall enumerate some formulae for
Heisenberg spin systems described by the following interaction hamiltonian:

7C = —2 X ./ ijS  j ■ S  j

« , / >

The first formula relates the magnetic energy gain to the exchange constant J  for an ion with
z neighbours:

E/R = zs2J/k (1)

This is a molecular field approximation for an antiferromagnet having two sublattices with
antiparallel spin orientation. Interactions are assumed to occur only between spins which
belong to different sublattices. The molecular field theory is only satisfactory as a first
approximation and a better approximation is given by spin-wave theory. It follows that to
the right-hand part of eq. (1) a correction must be applied:

E/R = zsJ(l + a/zs)J/k, (la)

where a follows from the crystal structure, and 0 < a < 1. Fors =— this correction usually
2

amounts to only a few percent.
The Curie-Weiss constant is given by

0 = 2zs(s+ 1 )J/3k. (2)

At high temperatures, we can describe the decrease of the heat capacity by:

chT*/R = 2zs\s + \)2P /3k2. (3)

If there exist different types of neighbours, we can replace z in eqs. (1) to (3) by a summation
over all neighbours. When we divide the square of eq. (2) by eq. (3) we obtain:

R e'/ciT 1 - J *  *****  ®w , i a v o l b n  (4)

Stanley and Kaplan3) have derived the critical point Tc fór a two-dimensional ferromagnet:

\kTJJ\ =-—(z -  l)[2s(s + 1) -  1], (5)

while Rushbrooke4) obtained for a three-dimensional ferromagnet:

\kTJJ\ = f 6(z -  1)[1 ls(s + 1) -  1]. (6)

Fors = —we do not expect large differences between ferro- and antiferromagnets, hence we
2 g ,

shall use eqs. (5) and (6) for the antiferromagnetic transition temperature r N.
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2. Preparation o f the samples

a. The sample of Cs3MnCl5 was prepared by fusing together stoichiometric quantities of CsCl
and MnClj. After cooling to room temperature, the polycrystalline mass was ground until
the dimensions of the particles were roughly 0.2 mm. X-ray powder photographs showed
that the structure was the same as given by IJdo^) for Cs3MnCl5-
b. Cs2MnCl4.2 H2 0  was grown from aqueous solution.
c. K4MnCl6 was prepared by fusing together the components (MnCl2 and 4KC1). Since this
substance melts incongruently, the solidified sample was finely ground, and then heated to
about 380°C for several hours. (This temperature is higher than that prescribed by Swanson
et al. Using their recipe,we obtained samples of insufficient purity. This may be caused
by a different particle size after grinding.) An X-ray examination confirmed that the sample
consisted, apart from minor impurities, of K4MnCl6-
d. a-Cs2MnCl4 was also prepared by fusing together its components. The a-modification is
stable above 297°C7,8). At this temperature, a phase transition occurs, and at lower
temperatures the ^-modification, which has the K2NiF4 structure8), is stable. Under certain
circumstances, however, it is possible to conserve an unstable phase by rapid cooling to a
temperature where the transition rate is low. For this purpose, the fused sample was cooled
to room temperature in a few minutes. Grinding, inserting in the sample container and
cooling to liquid He temperatures took about 2.5 hours. A discussion, of the chemical
composition of the sample will be given in section 6.2.

3. Heat capacity o f Cs^MnCls

3.1. Crystallographic data and spin hamiltonian

According to IJdo5), Cs3MnCl5 crystallizes in a tetragonal structure (D*^, 14/mem) and is
isomorphous to Cs3CoCl5, for which the crystal structure has been determined by Powell
et al?) and Figgis et al. 10). The unit cell is presented in fig. 1. Upon dividing the unit cell
into two halves by a plane parallel to the a and b axes, one finds the upper and lower half
subcell to be equivalent, except for mirror reflections of the [MnCU] and [ClCs4] groups.
Since mirror reflections do not alter the magnetic properties of the Mn2+ ion and the value
of the exchange constants, one may consider the two subcells to be magnetically equivalent.
This justifies the consideration of the simple tetragonal Bravais lattice as the basic unit cell
for the Mn ions, for which the dimensions are: —a J2  = 6.514 A and—c = 7.454 A.

2 2
E.P.R. measurements of Henning and Bongers11) in the isostructural Cs3ZnCl5 have shown
that the energy levels of the Mn2+ ions (which were all found to be magnetically equivalent)
can be described by a spin hamiltonian

X = 8HV%H2s2 + g±tiB(Hxsx + HySy) + D{s\ -  ^ )  + ~a(sx + s* + s2 — ~ )  + As-I.
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a = 9 . 2 1 4  X C = 14.91 £  9  Cs 0 U n  O c i

Cs ,  Mn Cl,

Fig. 1. Structure of CsjMnCls. For clarity, only the chlorine tetrahedra around two Mn ions have been
shown. The tetrahedra at A and B are identical, except for a mirror reflection. This holds als for the cesium
squares in the planes z/c =— and z/c = —. As far as magnetic properties are concerned, we need to consider

4  4
only a simple Bravais lattice for the Mn ions (thick lines).

The constants are as follows:

gf = 2.0110 ± 0.0005,
gl  = 1.992 ± 0.0005,
A = (-73.1 ± 0.4) x lO^cm*1,
D = (-89.6 ± 1.5) x lO ^cm '1,
a = (+10.7± 1.5) x lO-’ cm '1.

Both the relatively small A value and the rather large g// suggest appreciable covalency of the
Mn-Cl bonds.
The energy splitting for zero external magnetic field is mainly determined by the terms
containing A and D, while the additional splitting by the a term amounts to only about
10"3 cm '1, and the latter will be neglected in the following. Further, the anisotropy of the
g tensor if negligible for our considerations, so that we will simplify the spin hamiltonian

X = giiBH'S + As-I + D(s\ --p-).
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It may be noticed that the D term corresponds to a rather small distortion of the Cl tetra­
hedron surrounding the Mn ion. In the magnetically ordered state the influence of the D
term may be approximately described by an anisotropy field f /A = 2Ds/gp.B = 490 Oe.
The measurements of Henning and Bongers have been performed on Mni+ in the lattice of
Cs3ZnCl5, of which the lattice parameters are slightly different from those of Cs3MnCl5,
namely a = 9.251 A, c = 14.500 A, and a = 9.214 A, c = 14.908 A for the two salts, respect­
ively. The c/a ratio in the Zn compound is slightly different from that in the Mn compound.
This may influence the shape of the Cl" tetrahedrons and the value of D. However, the
magnitude of this effect seems uncertain. Thus we cannot estimate D for the Mn salt
accurately, but from the similarity of the structures, we expect a comparable value.

0 .0 5

0.02
0 .0 5 K 5 .0

Fig. 2. Heat capacity of CS3M11CI5 versus temperature. A theoretical curve (dashed line) has been fitted to
the hyperfine heat capacity at the lowest temperatures. The full line represents the experimental data after
subtraction of the hyperfine heat capacity. Between 1 and 2 K the data obey a c ~  T""2 relation.

3.2. Experimental results

The heat-capacity data (fig. 2) clearly exhibit a phase transition at r N = 0.601 K. The
increasing heat capacity below 0.1 K can be explained by the hyperfine coupling term As-1
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in the hamiltonian. This term causes a splitting of the ground state into six (nearly) equi­
distant levels. Therefore we fitted a Schottky anomaly (for such a level system) to the
experimental data, with the energy spacing A between two successive levels as a variable
parameter; we obtained A/k  = 0.0263 K. For a fixed spin—, A is related to the hyperfine
coupling constant as A =-|-1/11. This would give \Ajk\ = 0.0106 K. This is in good agreement
with the E.P.R. result of Henning and Bongers11) on Mn2+ ions in CsaZnCl,: A/k  =
-0.0105 K.
Using A/k  = 0.0263 K as a splitting parameter, subtraction of the hyperfine heat capacity
(dashed line) form the data yields the extrapolation (full line) of the electronic heat capacity
below 7^ (fig. 2). Integration of the electronic specific heat curve, including the extra­
polated parts, gives the entropy as a function of temperature. The total entropy change AS
associated with the magnetic phase transition amounts to AS/R = 1.799, which equals the
expected value of In 6 = 1.792 within experimental error. The entropy gain above the
critical point amounts to 0.283 or 16% of the total measured entropy. Integration of the
electronic heat capacity with respect to temperature leads to E/R = —0.892 K.
For a completely ordered antiferromagnet consisting of two interpenetrating sublattices with
antiparallel alignment, we calculated for the dipolar energy according to the molecular field
approximation:

E^jp/R = +0.0178 K for s )  [1,0,0], [1,1,0];
Eiip/R -  -0.0356 K for s !  [0,0,1];
E&p/R = -0.0089 K for s S [1,1,1],

The crystallographic directions refer to the crystallographic unit cell. It is seen that the
dipolar interaction accounts for at most a few percent of the observed energy gain, and we
may consider the above mentioned value of E/R to be almost entirely due to superexchange.
The heat capacity at temperatures far above 7jj may be described by the asymptotic relation
chP /R  = 0.16 K2. A much smaller value of c ^ P / R  = 0.014 K2 is calculated on the basis of
a dipolar interaction summed over all ions within a 40 A radius and integrated to infinity.

O T ,

Fig. 3. Inverse a.c. powder susceptibility in arbitrary units, 1/x, of Cs3MnCl5 versus temperature T. The
susceptibility obeys a Curie-Weiss law (full line) to temperatures close to . This is consistent with the
small amount of short-range order above r N. The maximum value of x is observed at TN.
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Further, the a.c. powder susceptibility of Cs3MnCl5 has been measured below 4 K (fig. 3).
A value of the Curie-Weiss constant 0 = —0.9 ± 0.1 K was obtained.

3.3. Discussion

We assume in the following that the exchange interaction among nearest-neighbouring Mn
ions along the c axis is equal to that among n.n. ions in the a-a plane. This assumption is not
plausible a priori since the interionic distances along the c axis and in the a-a plane are
appreciably different, namely 7.54 and 6.51 A, respectively. However, for convenience of
discussion we will not introduce two exchange constants Jaa and Jc. Rather, we will consider
only one average constant J, which may be useful until more data become available. Hence,
using eq. (1) and taking z = 6 and E/R  = -0 .892  K, we find J /k  = -0 .024  K.
Further, from c^T^/R = 0.16 K2 and eq. (3), and again assuming z = 6 nearest neighbours,
we derive \J/k\ = 0.023 K. Using 0 = -0 .9  K and eq. (2), we obtain J/k  = -0 .026  K. Con­
versely, the approximate agreement between the J  values obtained from 0 and from E/R
indicates that the Mna+ ions are antiferromagnetically (J  <  0) coupled to the 4 n.n. in the
a-a plane, and to the 2 n.n. in the c direction. This will lead to a simple two-sublattice
magnetic structure, for which we calculated the dipolar energy (section 3.2). It is seen that
dipolar interactions (as well as a negative D term) favour spin orientation along the c axis.
Looking now more precisely at the exchange constant, we apply the dipolar correction
Edip/R ~ -0.0356 K to the magnetic energy gain, and we find, from eq. (la ) and adopting
a = 0.5821) for a simple cubic structure, that J /k  = -0 .0220 K for pure exchange coupling.
When we apply the dipolar correction c ^ P / R  = 0.014 K2, and cMsT1/R  = 0.002 K2 to
ch E^/R, we find from eq. (3) another value for the exchange coupling constant proper,
namely \J/k\ = 0.022 K. We have not considered here the effect of D, however, in section 3.1
we argued that D is presumably small, and the agreement between the two latter J /k  values
shows that z = 6 equivalent neighbours is a good starting point for an explanation of the
results. The difference with J/k  derived from 0 can be explained by a small n.n.n. exchange
interaction, and by experimental inaccuracy in 0 CG.1 K, corresponding to 0.003 K in J/k).
Assuming isotropic exchange interactions between spin-only magnetic moments of Mn2+, one
may compare the experimental value for the short-range ordering entropy to theoretical
calculations for the Heisenberg model. Although theoretical results for s =— are not directly
available, an estimate for a simple cubic lattice with n.n. interactions only can be obtained
from the results for ferromagnets of Baker et al.12) for s =— and Bowers and Woolf13) for
infinite spin. Fisher1̂ ) has noted that the short-range ordering entropy varies approximately
linearly with l/s(s + 1 ) .  This interpolation procedure leads to (S_ — S c)/R «  0.4, hence to
about 22% of the total entropy. We do not expect large differences between ferro- and anti-
ferromagnets for s = -|, hence we can conclude that the experimental fraction of short-range
ordering entropy (16%) is smaller than the theoretical value for an s.c. spin— antiferromagnet.
We can not explain this discrepancy by assuming that the exchange constant in the a-a plane
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is different from that in the c direction, because the ratio E2/Rc^Tl , and probably also
RTff/E  reach a maximum for Jaa/Jc = 1. Both quantities may be correlated with the amount
of short-range order, such that high values of these quantities correspond to a small value
of the short-range ordering entropy. For an explanation, we may consider the afore mentioned
dipolar interactions, and possibly to some extent also a negative D term. In this connection
it is interesting, that theoretical results of Dalton and Wood30) for s = y  ferromagnets, predict
that even a small anisotropy in the magnetic interactions results in a considerable change of
the critical energy.
For further testing of our model, we can relate the exchange constant to the transition
temperature for the following cases:
1. Simple cubic antiferromagnet. When we substitute = 0.601 K and z = 6 into eq. (6),
we find J/k  = —0.0242 K, which must be compared to J/k = —0.024 K from eq. (1).
2. It was already mentioned that the distance to the nearest-neighbour Mn along the c axis
is greater than that in the a-a plane. Moreover, from the crystal structure it is seen that the
exchange path in the c direction takes place along three Cl' ions instead of two. For this
reason we also tried eq. (5) for a two-dimensional Heisenberg system, leading to J/k =
0.0597 K for z = 4. From eq. (1) we find J/k  = —0.036 K.
These calculations clearly favour the three-dimensional model.
We conclude, that Cs3MnCls behaves like a three-dimensional antiferromagnet, having
Heisenberg exchange and a relatively small amount of dipolar interaction.

4. Heat capacity o f  Cs^MnCl^ 2HfO

4.1. Crystal structure and recent experiments

According to Jensen15), Cs2MnCl4.2H20  has a triclinic structure (PÏ) in which the Mn ions
are arranged in a simple Bravais lattice (fig. 4). The Mn ions are surrounded by a slightly
distorted octahedron of four Cl' ions and two H20  molecules. From the crystal structure at
room temperature, it is found that all Mn ions are in identical positions, while N.M.R. data of
Spence et al. 16) at low temperatures show that the Mn spins are arranged in two inter­
penetrating magnetic sublattices having antiparallel spin alignment. Susceptibility measure­
ments on this compound by Smith and Friedberg1̂ ) have indicated that the O-Mn-O axis of
each [MnCl42H20]2'  group coincides approximately with the x// direction (x/ > xj.)> both
in the paramagnetic and in the antiferromagnetic state. They suggest a single-ion anisotropy
originating from a Ds\ term in the spin hamiltonian, in which D «  —0.1 cm '1 or D/k <*>
—0.14 K. Using this value, they derived from x i at zero temperature zJ/k = —0.54 K, while
from the Curie-Weiss 0 it was found that zJ/k = —0.55 K. From the good agreement between
the two values one can conclude that antiferromagnetic interactions between ions in the
same sublattice are relatively small.
Magnetization measurements below the transition point of Cs2MnCl4.2H20  by Hoel4 * * * * * * * * 13)
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a  = 5 .7 4  A b= 6.66 A r  c = 7 . 2 7 A
a .  6 7 .0 °  p= 8 7 .8 °  Y= 8 4 .3°

C*j Mn C l4 . 2 H ,0

Fig. 4. Crystal structure of CsjMnCl4.2H20. The complete [Cl4.2H20 ] octahedron around one Mn ion
is shown. Spence has found that the antiferromagnetic unit cell has a shape different from that of the
crystallographic cell (which is shown here). Spin reversal was found to occur along the [1,0,0], [0,1,0]
and [0,—1,1] direction.

yielded zJ/k = —0.49 K, and an anisotropy field 77A = 6.5 kOe corresponding to
D/k = -0.175 K.
A short note about the heat capacity of this compound hais been published by Love et al. *9).
They found the Néel temperature as TN = 1.84 ± 0.01 K.

4.2. Experimental results

The heat-capacity data are shown in fig. 5. A sharp phase transition, is clearly exhibited at a
temperature of 1.81 K, below which antiferromagnetic long-range order exists. The anomaly
at low temperatures can be explained by a hyperfine coupling As*ƒ in the magnetically
ordered state. The calculated Schottky heat capacity for six equidistant h.f.s. energy levels
at energy distant A =—L4I has been fitted to the data between 0.1 and 0.2 K, corresponding
to A/k  = 0.030 K, hence to \A/k\ = 0.012 K. The latter value is not significantly different
from what is found in many other Mn2+ salts having nearly octahedral surrounding of Cl"
and H20, like MnCl2.4H20 2°).
The subtraction of the hyperfine heat capacity from the measured data points yields the
drawn curve in fig. 5. The data above 7jj are extrapolated by a c ~  T~2 relation, as indicated
by the dash-dotted line in fig. 5. The resulting curve presumably represents the electronic
heat capacity, which leads to an entropy change AS/R = 1.817 which is not significantly
higher than the expected value ln(2s + 1) = 1.792. Integration of the electronic heat capacity
with respect to temperature leads to E/R = —3.47 K. The dipolar contribution is very small*2).
The entropy and energy gain obtained in short-range ordering above TN amount to 27% and
51% of the total entropy and energy gain respectively. The high-temperature heat capacity
near 3 to 4 K corresponds to the asymptotic relation cbT*/R *  3 K2. It should be noted that
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Fig. 5. Heat capacity of CS2M11CI4.2H2O. The nuclear heat-capacity curve (dashed line) has been obtained
by fitting a Schottky curve to the data between 0.1 and 0.2 K. Subtraction yields the electronic heat
capacity (full line), which has been extrapolated at the high-temperature side (dash-dotted line), for
evaluation of the entropy. It may be remarked, however, that the experimental error increases rapidly with
increasing temperature.

at these high temperatures our measuring accuracy is poor (10-20%), but this value is, by any
means, very much larger than the calculated dipolar contribution c ^ P / R  = 0.021 K3 for as
many as 1038 neighbours in a sphere of 40 A radius.
Below 4 K, the powder susceptibility of Cs2MnCl,,.2H20  has been measured. The results are
consistent with those of Smith and Friedberg1') .

4.3. Discussion

The fraction of short-range ordering entropy in C ^M nC U ^^O  (27%) is comparable to
that in the isomorphous compounds Cs2MnBr4.2H20  and Rb2MnCl4.2H20  (26% and
25%)22,23), and is higher than the theoretical number for a simple cubic Heisenberg system
(see section 3.3). When we substitute c^P /R  = 3 K3 and 0 = —3.2 K (value taken from Smith
et al., see ref. 17) into eq. (4) we obtain z <*> 5 neighbours.
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These results, and the simple Bravais lattice, which splits up into two antiparallel sublattices16),
suggest either a three-dimensional magnetic lattice having z = 6 approximately equivalent
neighbours or a two-dimensional lattice having z = 4 approximately equivalent neighbours.
The reality may, of course, also be intermediate. We shall now discuss the first alternative.
For a determination of the exchange constant /  and the crystalline field parameter D, we
have used the formalism developed by Kubo21) for an anisotropic Heisenberg antiferro-
magnet. This is possible because, T ĵ being rather high, the magnetic heat capacity can be
measured down to temperatures far below 7^ before the hyperfine heat capacity becomes
important. The low-temperature heat capacity of such a system can be described by

c/R = {(Ek/kT)2txp(Ek /kT)l[exp{Ek/kT) -  I]2 }av (7)

AV represents an averaging of the expression between curly brackets over all jV/2 values of the
wave vector k  in the first Brilliouin zone, and with

Ek = - 2 zJsz {(1 + D lz J f  -  [1/z 2 cos(*Tn)]J I 1/* (8)
n

where n is a summation index running over all z nearest neighbours at distance rn.
For simplification, we used a simple cubic (s.c.) structure for the magnetic lattice.
The antiferromagnetic sublattices then take f.c.c. symmetry, with the summation over k
throughout the first b.c.c. Brilliouin zone. Using this procedure, we have calculated the heat
capacity as a function of T, using /  and D as parameters, and have made a comparison with
the experiment. Below 0.3 K, the hyperfine structure contribution to the heat capacity
dominates, while Kubo’s formulae are only valid as a low-temperature approximation. There­
fore we compared the part of the experimental curve between 0.3 and 0.5 K to the compu­
tations. For a good fit, two conditions must be fulfilled: a) at 0.4 K, where the fit should be
the best, the calculated and measured values of c must be equal and b) the shape of the
calculated and measured curves must be the same. Because the slope in the c versus T  curve
is large, normal measuring inaccuracy has little influence on the best fit, thus condition a)
must be satisfied rather accurately. Condition b) is a weaker one, because the slope of the
computed curve is not strongly dependent on the D/J ratio in this temperature range.
Conditions a) and b) give relations between D and / ,  shown in fig. 6 as curves a3 and b3.
Further, we have calculated in this model the energy at zero temperature for several values
of /  and D. When we insert an sz independent term ±s(s + 1 )D in the anisotropy hamiltonian
given by Kubo, we obtain for the magnetic energy gain:

E/R  = s(s + 1 )zJ/k + -s (s  + 1 )D/k + {Ek /2k\AV (9)

in which the notation is the same as in eqs. (7) and (8).
Because E/R  is a measured quantity, eq. (9) gives another relation between /  and D, which
is also shown in fig. 6 as curve c3.
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0 .5 0 0 .5 4  K

Fig. 6. Exchange versus crystalline field diagram of Cs2MnCl4.2H20 . The lines marked a, b and c in this
figure represent results of spin-wave calculations for two- and three-dimensional anisotropic Heisenberg
antifenomagnets.
First symbol : a: obtained from the heat-capacity value at 0.4 K

b: obtained from the shape of the heat capacity curve near 0.4 K
c: obtained from the energy gain
d: D value taken from literature
e: exchange constant taken from literature

Second symbol: 2: calculated for a two-dimensional lattice
3: calculated for a three-dimensional lattice

18h: value taken from Hoel )
17s: value taken from Smith ).

In order to study the influence of different exchange constants, we shall now take the
extreme case of zero exchange for one pair of neighbours and therefore we carried out the
spin-wave calculations for a two-dimensional anisotropic antiferromagnet. The results are
shown in fig. 6 as the dashed lines a2, b2 and c2, of which the meaning is analogous to a3,
b3 and c3, respectively. For completeness, also the data of Smith and Friedberg namely line
ds (D/k »  —0.14 K) and line es (zJ/k = —0.54 K ± 10%), and of Hoel, namely line dh
(D/k *  —0.175 K) and line eh (zJ/k = —0.49 K), are shown.
From the three-dimensional analysis in fig. 6 we find zJ/k  = —0.50 K and D/k = —0.06 K,
and from the two-dimensional analysis zJ/k  = —0.48 K and D/k  = —0.10 K. The exchange
parameter is in good agreement with the results of Smith et al.17) and with that of Hoel18),
in contrast to our \D/k\ values, which are much smaller than those of Smith and Hoel. How­
ever, zJ/k  = —0.48 K and D/k  = —0.10 K correspond to an exchange field f /E = IzJs/gfi B =
18 kOe, and an anisotropy field / /A = 2Ds/gp.^ = 3.7 kOe, leading to a prediction of the
threshold field Hü„. »  (2H^HE)t/2 = 11.5 kOe, which is close to the experimental result
(11.6 kOe) of Hoel18).
Paying attention to the effective number of neighbours (about five) we estimate that the
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values of zJ/k  and D /k  are in the shaded area,intermediate between the two- and three-
dimensional results in fig. 6. Taking the average of these results, we find zJ/k  = —0.49 ± 0.02 K
and D /k  = -0 .0 8  ± 0.03 K.

5. Heat capacity o f  KJAnClt

5.1. Crystal structure and recent experiments

K4MnCl6 crystallizes in a rhombohedral structure (space group D‘ or R 3 c), but the unit
cell described by Bellanca24) (fig. 7) is very nearly cubic (a = 89° 32'). There are two formula
units in this unit cell, such that Mn2+ ions form a nearly b.c.c. Bravais lattice. The magnetic
ions are surrounded by a slightly distorted octahedron of Cl" ligands.

•  K ©  Mn Q  C l
a  =  8 .4 -7  X a  =  8 9 °  32*

K+ Mn C l 6

Fig. 7. Crystal structure of K4MnCl6 according to Bellanca. Bergerhoff has suggested that the K and Cl
positions are not correct (see text). The Mn ions form a nearly b.c.c. lattice.

E.P.R. measurements25) on Mn2+ ions substituted in K4CdCl6 have shown that the hyperfme
coupling constant A /k  = -0.0116 K was about 10% smaller than in .octahedrally H20-
coordinated Mn2+ compounds, and that the crystalline field parameter has the small value
D/k = —0.0125 K. This negative value of D corresponds to an elongation of the chlorine
octahedron along the trigonal axis. K4CdCl6 has, like K4MnCl6 a rhombohedral structure.
However, the lattice positions of K and Cl in K4CdCl6 described by Bergerhoff et al. 25) are
different from those for K4MnCl6 of Bellanca. The chlorine octahedra around the divalent
metal ions are rotated about the [1,1,1] direction, and the octahedra around 0,0,0 and
2 . 7 .  j  are also rotated with respect to each other. On the other hand, Bergerhoff et al.
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suggested that K4MnCl6 has the same structure as K4CdCl6,in which case fig. 7 does not give
the correct positions of the chlorine and potassium ions, but this does not affect the cell
dimensions or the Mn positions.
E.P.R. and susceptibility measurements on concentrated K4MnCl6 powder between 1.4 and
300 K have been performed by Swanson et al.6). At about 80 K, abrupt changes in the
behaviour of the line-width and the magnetic susceptibility are observed, which might be
associated with a decrease of symmetry of the crystal structure, for example. Above this
temperature, a Curie-Weiss constant 0 = —7.8 K was observed, and below, 0 = —6.0 K.
Below 20 K, again a deviation in the susceptibility was observed. Swanson et a l . )  did not
present a Curie-Weiss relation that might describe the susceptibility between 1.4 and 20 K;
however, from his plot we can roughly estimate 0 *  —2 K.

5.2. Experimental results

The results of the heat-capacity measurements are shown in fig. 8. Two sharp maxima in the
heat capacity are observed, associated with phase transitions at 7\ = 0.439 K and T2 = 0.332 K.

0 .05
1.0 K 2 .0

Fig. 8. Heat capacity of K^nCls. The dashed line gives the hyperfine structure specific heat, which is
subtracted from the experimental data (full line).
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We attribute both phase transitions to K4MnCl6 and exclude the possibility that one of the
peaks is due to a large amount of impurity. This point of view is based on the following
two reasons:
1. the X-ray examination,
2. the measurements were performed on several samples, some of which were rejected
because of insufficient purity, due to incomplete sintering (see section 2.1). The heat
capacity of three samples near 0.4 K is shown in fig. 9 on a logarithmic scale. These samples
certainly contained different amounts of impurity. This resulted in a shift of the specific
heat by a constant factor, and not in a change of the ratio of the heights of the two peaks,
as is clearly visible in fig. 9.

K.  Mn  Cl

0 .4  0.5 K

Fig. 9. Heat capacity of three samples of K^nClg near their maxima. The shape of the three full curves is
identical. For clarity, the part of the curve near the left-hand peak is shown for sample b only.

On the high-temperature side, it is seen that, even near 2 K we cannot properly describe the
heat capacity by T~2 behaviour. Up to 2 K, no significant difference in the shape of the
curves is seen between different samples. However, one may expect that at 2 K, or nearly
5 times the critical temperature, cT2 is near to its limiting value. Therefore we extrapolated
from the experimental points at 2 K, according to c’P /R  »  0.26 K2. The dipolar contribution,
amounts to cdip T2 /R = 0,012 K2.
At low temperatures we found, by fitting a six equidistant level Schottky curve to the
experimental results, that \A/k\ = 0.0112 K, which is close to the value for Mn2+ in K4CdCl6.
Taking this value for subtracting the hyperfine contribution, and using the above mentioned
extrapolation, we obtain the entropy gain AS/R = 1.784, which differs by 0.5% from the
theoretical value. The magnetic energy gain is evaluated as E/R = —0.778 K. It is seen that
53% of the total entropy change takes place below T2, and 22%,above Tt.
The inverse magnetic a.c. susceptibility of K4MnCl6 powder as a function of temperature is
shown in fig. 10. A comparatively large Curie-Weiss constant 0 = —1.7 ± 0.3 K is observed.
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O T

Fig. 10. Inverse magnetic a.c. susceptibility, 1/x, of a powdered sample of K4MnCl6 versus temperature, T.

Especially near the temperatures of the maxima in the heat capacity we have searched care­
fully but futily for anomalous behaviour of the susceptibility or the a.c. losses. Hence no
indication for weak ferromagnetism is observed.

5.3. Discussion

In view of the practically b.c.c. crystal structure and the isotropic exchange of most Mn salts,
it might be anticipated that this salt would behave like a three-dimensional Heisenberg spin
system. Further, sin ;e 0 is negative, and large compared to 7\, antiferromagnetic interactions
are thought to predominate. Instead of a simple antiferromagnetic phase transition, however,
a more complex behaviour is observed, which shows some similarity with anhydrous MnClj2).
The complex behaviour of K4MnCl6 may be associated with the following circumstances:
1. the chlorine octahedra in the structure described by Bergerhoff et al.26) are rotated
relatively to each other about the [1,1,1] direction. In such circumstances, a decrease of
crystal symmetry (as is suggested by the data of Swanson et al.6) near 80 K) may easily lead
to the existence of two different crystalline field axes.
2. substitution of the experimental results into eq. (4) leads to an effective number of
z *  17 interacting neighbours. Looking at the nearly b.c.c. crystal structure, it is seen that
we can come close to this number only if we assume antiferromagnetic exchange interactions
with the 8 n.n. as well as with the 6 n.n.n. magnetic ions. In that case, no magnetic structure
will allow all interacting spins to be antiparallel. (This will result in a reduction of the E/R6
ratio, as is experimentally observed (E/R6 = 0.45, compared to 1.07 from eqs. (1) and (2)),
and in a negative T~3 term in the high-temperature expansion of the heat capacity. A negative
T '3 term leads to a temperature range where the heat capacity is smaller, and decreases less
rapidly, than according to the asymptotical T~2 behaviour. This is also observed (see fig. 8).)
The circumstances mentioned under 1. and 2. respectively might provide a mechanism
leading to a spin reorientation transition between two different antiferromagnetic states.
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6. Heat capacity o f a-CsJMnCL

6.1. Crystallographic data

Similar to CsjCoCl4, a-Cs2MnCl4 has the orthorhombic KjS04 structure according to
Legrand8), and is characterized by (Pnam). Unfortunately, no precise cell dimensions
and position parameters have been published to our knowledge. Therefore we have adopted
the values given by Porai-Koshits27) for Cs2CoCl4. The unit cell, containing four formula
units, is given in fig. 11. All Mn2* ions are equivalent and are arranged in layers perpendicular

0  Cs
a =s 9 .7 3 7 %, b ® 7.392 A c = 1 2 .9 7 2 A

tt-C s2 Mn C l4

Fig. 11. Crystal structure of a-Cs2MnCU. The lattice and position parameters have been borrowed from
Cs^oCl* The chlorine tetrahedron is drawn around two Mn ions only.

to the b axis. Around the Mn2* ions are situated two nearest neighbours at a distance of
6.2 A. A total of twelve neighbours is found for distances up to 7.5 A; for all these neigh­
bours, possible exchange paths can be found.

6.2. Experimental results

The heat capacity of a fresh sample of Cs2MnCl4 is given in fig. 12. A fairly sharp maximum
is observed near TN = 0.935 K. At low temperatures a hyperfine structure heat capacity is
found, which can be fitted by a Schottky type heat capacity for six equidistant levels at
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Mn Cl

0 .0 5

0.02
0 .0 5 •K 5 .0

Fig. 12. Heat capacity of a sample of a-CssMnCL,. The full line represents the experimental data corrected
for the nuclear heat capacity (dashed line). Only 84% of the expected entropy was observed.

energy distance A/k = -  \A/k\ = 0.026 K, corresponding with \A/k\ = 0.0104 K or \A\ =
72 x 10~4 cm '1. This low value would suggest a fair amount of covalent bonding of the Mn2+
with the surrounding Cl" ions, such as is also observed e.g. in Cs3MnCl5 and other tetra-
hedrally coordinated Mn compounds3*). When subtracting the calculated h.f.s. heat capacity
(dashed curve) from the data, one obtains the drawn curve, representing the electronic
magnetic heat capacity. On the high-temperature side the data up to 2 K cannot be well
described by the usual asymptotic relation c ~  T~2. Somewhat arbitrarily, we have extra­
polated the high-temperature data by the relation c'P/R = 0.9 K2 indicated by the dash-
dotted line in fig. 12.
Evaluation of the total entropy involved in the magnetic ordering of the electronic spins,
using the above extrapolation, gives AS/R = 1.50, which is 16% lower than the expected
value of ln(2s + 1) = 1.79. For an explanation, we shall first consider the following experi­
mental facts:
1. when the measurements were repeated, after keeping the sample for some days at room
temperature, it was seen that the nuclear heat capacity had remained the same, but that the
electronic heat capacity had decreased drastically. Plotted on a logarithmic scale the shape
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of the electronic heat capacity curves was the same, consequently the heat capacities were
shifted by a constant factor. Apparently the measured electronic heat capacity originates
from an unstable phase, while the decrease of the heat capacity is due to a slow conversion
into the stable phase.
2. (3-CsjMnCU, having the K2NiF4 structure5) is stable at room temperature7). In this material,
strong magnetic interactions were observed; Asmussen28) published a plot containing
susceptibility data from which we estimated the Curie-Weiss constant as 6 = —140 ± 10 K.
Further, Epstein et al.29) observed magnetic ordering at jTn »  55 K by means of neutron
diffraction. It seems very likely that below 3 K, the electronic heat capacity of this material
is very low and that only the h.f.s. heat capacity is observable.
3. above 297°C, a-Cs2MnCl4 is stable7). Asmussen’s plot also contained data concerning this
material. From this plot, we deduce a relatively inaccurate Curie-Weiss constant
0 = —25 ± 30 K. From the susceptibility measurements of our sample (see below), we found
a value consistent with the data of Asmussen.
From these points it seems reasonable to attribute the observed electronic heat capacity to
a-Cs2MnCl4; however, we have no definite proof for this assumption.
A calculation of the entropy, from the electronic heat capacity, showed that approximately
28% of the entropy is obtained in short-range ordering above the critical point. As noted
before, a fraction of 1.50/1.79 of the expected entropy has been observed. In order to
obtain the c^P /R  and E/R values for a pure sample of a-Cs2MnCl4, a correction factor of
1.79/1.50 has been applied to the experimental data. We obtained E/R = —1.79 K and
cbP /R  «  1.1 K1.
We have calculated the high-temperature value of the dipolar heat capacity, namely
cdip P /R  = 0.022 K2. We have also made some computations of the magnetic dipole energy,
Eftp, for some antiferromagnetic spin configurations. All results were in the range
—0.131 K <  Eiip/R <  0.239 K. It is seen that the dipolar interaction cannot account for the
magnetic ordering, but it leads to a substantial amount of anisotropy energy. For these
dipolar calculations we used the crystallographic data for Cs2CoCl4, because those for
a-Cs2MnCl4 are not known to us at present. We do not expect that the error introduced in
this way exceeds a few percent.

C s , MnCI,

Fig. 13. Inverse magnetic a.c. powder susceptibility of a-C^MnCU in arbitrary units.
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Further, we consider the influence of the crystalline field on the heat capacity For the
usually observed magnitudes of D/k in Cl-coordinated Mn compounds, the contributions to
E/R and chT2/R are relatively small. We shall therefore explain the values on the basis of
exchange interactions.
Fig. 13 shows the inverse susceptibility versus T for a-Cs2MnCl4. At temperatures between
2 and 4 K, Curie-Weiss behaviour is observed. Because of this small temperature interval the
Curie-Weiss constant is not as accurate in this case. We found 0 = —4 ± IK .

6.3. Discussion

a-Cs2MnCl4 has a more complicated crystal structure than the three other Mn salts. Around
each magnetic Mn2+ ion, many exchange paths pan be found to neighbouring Mn2+ ions.
Referring to the similar discussion in section 5.3, we note that a high experimental Rd^/cT2
value is associated with a large number of neighbours. In this case, from 0 = —4 K, we even
find more neighbours than seems reasonable in view of the crystal structure. This can be
explained by the large experimental error in 0 (about 1 K). Under these circumstances, we
cannot determine the exchange constant accurately in this salt: very tentatively we note
that 0 * - 3 K  would correspond to z *  12 neighbours and to an exchange parameter
zJ/k *  —0.5 K.
For this salt, as for K4MnCl6, we can understand the low E/R6 value by considering anti-
ferromagnetic interactions among the z neighbours of each Mn2+ ion.
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CHAPTER VI

MAGNETIC ORDERING PHENOMENA IN RARE EARTH DOUBLE OXIDES R2M20 7

Summary

Heat capacity data on several rare earth double oxides o f the pyrochlore type are presented. Anomalies in
the heat capacities are ascribed to magnetic ordering, although a critical point has not been observed for a
few of these compounds. Calculations are given which relate some observable quantities to  the interaction
strength for a few simple types o f spin-spin interaction. These calculations are used for the interpretation
of the experimental data. It is found that Nd2Sn20 7 behaves like an Ising antiferromagnet, and Yb2Ti2Oj
like an king ferromagnet. For Ho2GaSb07 and Tb2GaSb07 dipolar interactions are sufficiently large to
explain the heat capacity.

1. Introduction and crystal structure

It was shown by Roth1) that cubic compounds R2M20 7 exist for a variety of combinations
of trivalent (R) and tetravalent (M) metal ions. In our experiments R = Nd, Tb, Dy, Ho, Er
or Yb and M2 = Ti2, Sn2, Zr2 or GaSb. The crystal structure of these compounds was found
to be similar to that of the mineral pyrochlore designated crystallographically as Fd3m (0 7h).
The crystal structure has been more precisely determined for the case of Er2Ti20 7 by X-ray
and neutron diffraction by Knop et al.2). The cubic unit cell of these compounds (fig. 1)
has dimensions of about 10 A and contains 16 trivalent R (rare earth) ions, which form a
so called3) Laves or cristobalite lattice. The point symmetry at the rare earth sites is trigonal
(D$ j) ,  but the trigonal axes point into four different directions. For convenience, to these
directions a number has been assigned which is shown in table I, where also the lattice
positions can be found. In table II, the crystallographic directions corresponding to these
numbers are given. Two oxygen ions are diametrically opposed around the rare earth sites at
about 2.2 A and lie on the trigonal axis. Six other oxygen ions lie more near the equatorial
plane (perpendicular to the trigonal axis) at a distance of about 2.5 A. The R ions are located
at the common vertex of two diametrically opposed R tetrahedra and in this respect they
are all equivalent, i.e. each R ion has 6 nearest (R) neighbours (n.n.). The n.n. distance is
about 3.5 A. Further neighbours are at least at twice this distance, and hence, in these
discussions, we shall restrict any nondipolar interactions to n.n.
In view of the n.n. distance, it may be anticipated that the magnetic interactions in the pyro-
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ion
number

position number of
axis direction

1 6 0 0 1
2 1/4 0 1/4 2
3 1/2 0 1/2 1
4 3/4 0 3/4 2
5 1/4 1/4 0 3
6 0 1/4 1/4 4
7 3/4 1/4 1/2 3
8 1/2 1/4 3/4 4
9 1/2 M l 0 1

10 3/4 1/2 1/4 2
11 0 1/2 1/2 1
12 1/4 1/2 3/4 2
13 3/4 3/4 0 3
14 1/2 3/4 1/4 4
15 1/4 3/4 1/2 3
16 0 3/4 3/4 4

Table 1. Crystallographic data about the pyrochlore structure.

Fig. 1. Crystal structure of RjMjC^. The f.c.c. unit cell contains 8 formula units, of which only the R (rare
earth) ions are shown. In the figure, the numbers given to the ions in table I, are shown. The trigonal axes
of the R ions lie along body diagonals of the cubic cell (table I and II). Each R ion is surrounded by
6 nearest neighbours. Each pair of nearest neighbours has two common nearest neighbours.

number of
axis

crystallographic
direction

1 1 1 1
2 - 1  1 - 1
3 — 1 ~ - 1  1
4 1 - 1  - 1

Table II. The directions of the trigonal axes at the rare earth sites.

chlore type compounds are intermediate or comparable to that in the rare earth oxides ) and
the rare earth gallates®) where the n.n. distances are respectively 2.66 A and 3.8 A and in
which magnetic interactions were found to be relatively weak. Hence the pyrochlore
compounds may exhibit magnetic ordering in or below liquid He temperatures. Susceptibility
and adiabatic demagnetization experiments on some of the pyrochlores (R = Gd, Ho, Dy,
Er) were reported by Van Geuns6). He investigated these materials because the small values
of the Curie-Weiss constant, together with the relatively high ionic densities, favour them for
adiabatic refrigerating techniques. The results indeed suggested that magnetic ordering would
take place at temperatures of at most a few K.
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The present investigation was undertaken in order to study the thermal properties of these
cubic compounds near and below 1 K. Magnetic ordering phenomena in cubic compounds
are determined by fewer parameters, and are more accessible to theoretical interpretation
than those in noncubic compounds. However, no E.P.R. data are available, and this may
give problems for the interpretation of the measurements.
In section 2 some types of interactions will be mentioned which may occur in these com­
pounds, and in section 3 the consequences of these interactions for the caloric and magnetic
properties will be studied. The experimental data will be presented in sections 4-8. In
section 9 these data will be compared to those derived in section 3.
The samples for the experiments were only available in the form of (sintered) powders. They
were supplied by Dr. P.F. Bongers of the Philips Research Laboratories in Eindhoven,
Mr. W.F. Engelenburg and Dr. D.J.W. IJdo of the Inorganic Chemistry Department of the
Leiden University. Preparation was done by firing a finely divided and compressed stoichio­
metric mixture of the oxides during many hours. X-ray powder patterns confirmed the
chemical identity of the samples.
A previous paper on the subject of this chapter is given in ref. 12. The experimental data
have now been re-analyzed, leading to results which slightly differ from those quoted in
ref. 12.

2. Considerations on magnetic interactions in the pyrochlore lattice

In this section we shall consider three types of magnetic interactions: dipolar and nondipolar
interactions among electronic spins, and hyperfine interactions between electronic and
nuclear spins.

2.1. Magnetic dipole-dipole interactions

Dipolar spin-spin interactions are adequately described by the usual dipole-dipole hamiltonian
for interactions between magnetic moments which are related to the electron spin Sj by

( 1)

where fig is the Bohr magneton, and the g tensor. In view of the trigonal point symmetry,
we expect that the g tensors have axial symmetry along the trigonal axes. In some cases g
values can be estimated from susceptibility data.

2.2. Nondipolar interactions

It should first be remarked that, in view of experimental evidence on similar rare earth compounds,
namely the oxides and the garnets, we expect that the magnitude of the spin-spin interaction
energy is very much smaller than the crystal field splittings. Hence we shall consider here
interactions between effective spins s =—.
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In general, nondipolar interactions will be described by more parameters than can be
determined from heat capacity and powder susceptibility measurements. Therefore only
three simple cases will be studied which are completely determined by one constant J  (which
we will designate as interaction constant, without differentiating between different types of
interaction mechanisms which are discussed e.g. in ref. 15), and by the spin dimensionality
(1 for Ising interactions, 2 for XY interactions, and 3 for Heisenberg interactions). The
peculiar geometry of the pyrochlore lattice makes the description somewhat more com­
plicated than in the case of for instance a simple cubic lattice. In view of the differences in
the directions of the crystalline field axes of neighbouring rare earth ions, the spin-spin
interactions may be expected to exhibit the anisotropic properties of both spins simultaneous-
ly. We shall describe nondipolar interactions by simple isotropic interactions between vectors
s[ which are formed by multiplying the spinvectors Sj with a tensor Tl having appropriate
symmetry. Hence the 7; will have axial symmetry along the trigonal axis at rare earth site i.
Hence

s| - (2a)

and

5C jj = —2Js\aŝ  = —2 (2b)

if we define

•Aj = JT'i (2c)

We note that the formulation of these interactions is analogous to that for dipolar inter­
actions in the sense that in both cases the hamiltonian can be written very simply by multi­
plying the spinvectors by a tensor reflecting the local symmetry (eqs. 1 and 2a).

2.2.1. Ising type interactions

In the case of extreme anisotropy, nondipolar interactions are restricted to the axial
components of nearest neighbouring spins, and the projection tensors 7j take the following
forms for ions having the indicated axis numbers (table I):

+1/3 +1/3 +1/3"
axis 1: +1/3 +1/3 +1/3

.+1/3 ■H/3 + 1 /3 .

’+1/3 +1/3 - 1 / 3 '
axis 3: +1/3 +1/3 -1 /3

. —1/3 -1 /3 + 1 /3 .

’+1/3 -1 /3 +1/3’
axis 2: -1 /3 +1/3 -1 /3

.+1/3 -1 /3 + 1 /3 .

’+1/3 -1 /3 - 1 / 3 '
axis 4: -1 /3 +1/3 +1/3

. - 1 /3 +1/3 + 1 /3 .
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The hamiltonian can be written more simply if we introduce J' =—J  and new coordinates
for each ion. For the direction of the positive new z[ axis of the coordinate system for the
ion at site i (i = 1 to 16, table I) we choose the corresponding directions indicated in table II.
If we now transform eq. (2b), the pair interaction hamiltonian reduces to the following
simple form:

JCy = + 2 /’siz|sjzj (3)

which is, apart from the plus sign, the familiar Ising hamiltonian.

2.2.2. The XY model

Here only equatorial spin components appear in the hamiltonian. The T tensors are now
given by:

'+2/3 -1 /3 -1 /3 ' +2/3 +1/3 - 1 / 3 '
axis 1: -1 /3 +2/3 -1 /3 axis 2: +1/3 +2/3 +1/3

--1 /3 -1 /3 +2/3. .-1 /3 +1/3 + 2 /3 .

'+2/3 -1 /3 +1/3 ' +2/3 +1/3 + 1 /3 '
axis 3: -1 /3 +2/3 +1/3 axis 4: +1/3 +2/3 -1 /3

-+1/3 +1/3 +2/3. +1/3 -1 /3 +2/3 .

By multiplication of pairs of these tensors, the are obtained. The hamiltonian (2a) cannot
be substantially simplified in this case.

2.2.3. The isotropic (Heisenberg) case

The T are unity tensors and we obtain the usual Heisenberg hamiltonian,

Ê?C jj = — 2Js j *\j .

2.3. Hyperfine interactions

For electronic spins aligned along a direction a,the splitting A of the 21 + 1 hyperfine levels
is given by A/k  = sA/k, where s is the electronic spin quantumnumber. The hyperfine
constant A is proportional to the nuclear magnetic moment, and hence (if more than one
I  ¥= 0 isotope is present) the ratio of A values observed for different isotopes in a rare earth
compound is equal to the ratio found in each other compound of the same rare earth ion.
Further, for most rare earth ions the hyperfine constants are found to be approximately
proportional to the effective g value corresponding to direction a “ ).

108



3. Relations between the interaction constants and some observable quantities

3.1. Magnetic dipole-dipole interactions

If the g tensors are known, one can calculate the coefficient of the T~2 term in the high-
temperature heat capacity expansion for the case of dipolar interactions only. The calculation
procedure was described in chapter II and leads to the following formula if we adopt a
lattice parameter a = 10 A:

cT*/R = (10.8 g) + 2.8 g) g[ + 12.1 g j) lO^K2 (4)

Further we can find the magnetic structure at T = 0 and its energy in the molecular field
approximation according to the methods given in chapter II. Energy values thus obtained
are given in table III for some values of the g parameters. From a comparison with the
experimental values of the T~2 coefficient or the energy (found by integrating the heat
capacity) we can find g values that would be required to explain these data by dipolar inter­
actions only. We shall see that in most of these substances nondipolar interactions play an
important role.

u *L E/R(K)

1 1 -0.00897
1 0 -0.00686
0 1 -0.00720

Table III. Calculated dipolar energies at T= 0 for some g values.

3.2. Nondipolar interactions

The geometry of the pyrochlore lattice has some remarkable consequences for the calculated
magnetic behaviour of systems having interactions as defined in section 2.2. If dipolar inter­
actions are negligible in comparison to nondipolar n.n. interactions, and the nondipolar
interactions are of the types given in sections 2.2, we can calculate several observable
quantities. From the hamiltonian (2a) we can calculate the asymptotic T~2 behaviour of the
specific heat, and the Curie-Weiss constant 0 (see chapter II). The results are shown in
table IV. Note the expressions for the Curie-Weiss parameter Ö, which is e.g. for the Ising
model only one third of the usual expression. Further, the energy at T  = 0 can be calculated
in the molecular field approximation according to the method described in chapter II. The
magnetic cell was assumed to be identical to the crystallographic cell (16 sublattices). The
results of these energy calculations are also shown in table IV. We shall now discuss the
magnetic structures corresponding to the ground state energies for the various interaction
types listed in table IV.
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interaction type E/R (K) e (K) cT2/R (K2)

Ising ferromagnetic -1 /2  f / k f / k 3/4 ( f / k f
Ising antiferromagnetic +3/2 f / k f / k 3/4 ( f / k f
XY ferromagnetic -5 /6  J/k 5/3 J/k 5/6 (J/kf
XY antiferromagnetic <1/2 J/k 5/3 J/k 5/6 (J/kf
Heisenberg ferromagnetic -3 /2  J/k 3 J/k 9/4 (J/kf
Heisenberg antiferromagnetic <1/2 J/k 3 J/k 9/4 (J/kf

Table IV. Calculated observable quantities for some simple interaction types.

1. Ising ferromagnetic interactions (J and J' positive)
From eq. (3) we see that in the new coordinates the product must be negative for
minimum interaction energy of a pair of n.n. spins i and j. Because each pair of nearest neigh­
bours has two common nearest neighbours, no magnetic structure is possible in which the
products siz' SjZ' are negative for all n.n. pairs. Therefore the energy gain due to magnetic
ordering will be Relatively small. The lowest value of the magnetic energy is E/R  = -  -^-J/k
and refers to a number of magnetic structures in which, for each spin, 4 n.n. are ‘parallel’
(siz> s:z' negative) and 2 n.n. are ‘antiparallel’. Structures were found having a spontaneous

1 j  j y / 3

magnetization M  =------- gnub in the direction of a cubic axis (table V, column 1). Other

ion nr.

Table V. Magnetic structures. In each column the crystallographic directions of the 16 sublattice
magnetizations are given for a magnetic structure (see text).

110



structures having the same energy exhibited a magnetization M  = —— - £//mb along the

[1,1,0] or an equivalent crystallographic direction (table V, column 2). Column 3 of table V
shows an example where spontaneous magnetization is absent even although J  > 0. Which
one of these structures will be realized at low temperatures, will depend on other (e.g.
dipolar) interactions.

2. Antiferromagnetic Ising interactions (J and f  negative)
If we choose all Sjz' = + -L, the energy will be minimal (see eq. 3). Each R-ion spin then has
all 6 n.n. in the energetically most favourable orientation. For this antiferromagnetic
structure, the energy has its well-known two-sublattice value E/R  = + ^ J '/k .  The crystallo­
graphic directions of the 16 sublattice magnetization vectors are given in column 4 of table V.

3. Ferromagnetic X Y  model
Two ferromagnetically coupled n.n. spins can be oriented completely parallel (e.g. the spins
labeled 1 and 2 in table I in the [ 1,0,— 1 ] direction) but not all pairs can be simultaneously
parallel. Therefore the calculated ground state energy E/R = — — J/k  is higher than the sum
of the minimum pair energies. The structures corresponding to this energy were found to

have a ferromagnetic moment— -— g^/ig along a cubic axis (column 5 of table V).

4. Antiferromagnetic X Y  model
Neither in this case every pair of n.n. spins can be oriented energetically most favourably.
The eigenvalue problem (chapter II) gave 11 degenerate solutions for the lowest energy value
E/R  = —0.5 J/k. One solution is given in column 6 of table V.

5. Ferromagnetic Heisenberg interactions
For isotropic interactions, parallel spin alignment leads to simple ferromagnetic structures
having E/R = J/k  and a spontaneous magnetization M = (A72)g/ig in an arbitrary direction.

6. Antiferromagnetic Heisenberg interactions
Like case 4, magnetic ordering is hindered by common n.n. of the n.n. pairs. This leads to a
small energy gain E/R  = —0.5 J/k  for the magnetic ordering. The eigenvalue problem
(chapter II) gave as many as 27 degenerate solutions. E.g. also the structures given in
columns 4 and 6 of table V belong to these solutions.
It should be remarked that these energy calculations are only a classical approximation and
that quantum (‘spinwave’) effects may decrease the energy in the cases 4 and 6 just
considered. Therefore a <  sign has been added to the E/R  values in table IV.
High temperature series for the susceptibility and heat capacity of a cristobalite lattice
having Ising interactions were derived by Betts and Ditzian3). They started from the usual
Ising hamiltonian instead of eq. (3). Their susceptibility series can be applied to the staggered
susceptibility of a pyrochlore substance having an exchange constant opposite to the one
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used in the above series. Although the staggered susceptibility is not directly observable, the
series is very useful for determining the critical temperature Tc = (2.195 ± 0.003) J/k  for the
case of antiferromagnetic Ising interactions. Further, Betts and Ditzian derived the critical
energy Ec/kTc = 0.268 ± 0.006 and the critical entropy, Sc/R = 0.548 ± 0.003 from their
specific heat series.
For a classification of the interactions in the pyrochlore compounds measured, the above
results can be compared to the experimental data which will be presented in the following
sections. However, we have to keep in mind that this description is incomplete on the
following points:
a. Dipolar interactions also contribute to the magnetic behaviour.
b. Nondipolar interactions may include terms not considered in section 2, or may be inter­
mediate between the three extreme cases.
c. Distortions of the crystal structure may decrease the crystal field symmetry and may
influence the spin-spin interaction"
The influence of point a can be estimated if the g values are known. Point b may follow
from a comparison of the experimental data with theory if point c does not interfere.
Finally the influence of point c is difficult to estimate. We can only state that susceptibility
data of Van Geuns6) and of Townsend and Crossley7) on some pyrochlore compounds did
not give evidence for a crystalline phase transition, and that our analyses apply to the
possibility that the crystal symmetry at low temperatures is that described by Roth and Knop.

3.3. Hyperflne interactions

Many rare-earth compounds exhibit an appreciable hyperfme (hfs) heat capacity near 0.1 K.
From the properties of the hfs constant A mentioned in section 2.3, it is easy to see that for
all I  =£ 0 isotopes of a rare-earth element, the hfs energy level schemes for different com­
pounds only differ by a constant factor. Hence, if a set of hfs constants A is known for one

isotope abundance
%

I
h

A Jk
K

8a a reference nr.

l43Nd 27.1 7/2 0.0512 3.50 z 8
,45Nd 8.3 7/2 0.0319 3.50 z 8
159Tb 100 3/2 0.0301 17.7 z 9
161Dy 18.8 5/2 0.0548 13.6 X 10
163Dy 24.9 5/2 0.0777 13.6 X 10
1<sHo 100 7/2 0.483 15.4 z 11
161Er 22.9 7/2 0.0683 13.7 z 8
1,1 Yb 14.4 1/2 0.175 4.57 X 10
113Yb 16.2 5/2 0.0490 4.57 X 10

Table VI. Examples of hyperfme data on some rare earth isotopes.
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compound, energy level schemes on a reduced scale can be calculated, which are valid for all
compounds of that rare-earth element. This was done for the examples listed in table VI.
Using the relative isotopic abundances, the nuclear heat capacity was calculated on a
reduced temperature scale. These curves can be used for fitting to the experimental heat
capacity data at low temperatures and thus A (and hence, because A/g  may be roughly
constant, g for the direction of spin alignment) can be estimated.

4. Three neodymium compounds

4.1. The heat capacity data o f NdjSn20 7 are presented in fig. 2. A sharp anomaly appears at
T= 0.91 K. At the low temperature side o f the data a slight upward curvature is seen. If we
attribute this to  hyperfine interactions, we can roughly estimate 143A/fc «  0.016 K. Using
this value, we can calculate the hyperfine heat capacity as a function of T  (section 3.3).
After subtracting this small contribution from the experimental results we obtain the full
curve. We attribute this anomaly to magnetic ordering. At the high temperature side the heat
capacity decreases rapidly and near 2 K the data obey c T*/R — 0.23 K2. Since we may expect
a nonzero T~3 contribution in these substances, this number may not be considered as a
precise measure for the asymptotic behaviour; therefore we should know the heat capacity

0 .0 5

0.02

o.oi 2 0  KQ 2  T

Fig. 2. Heat capacity of NdjSnj07. The anomaly is steep and narrow. This suggests the existence of
strongly anisotropic interactions in this substance. After subtracting the estimated nuclear heat capacity,
the full curve was obtained.
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at much higher temperatures. Above 2 K, however, the heat capacity becomes too small to
be measured accurately. The energy E and the entropy change AS corresponding to the
specific heat anomaly, have been found by numerical integration: AS/R = 0.690 (which
practically equals In 2) and E/R = —0.660 K. In these numbers extrapolations of the heat
capacity below 0.2 K and above 2 K have been included, which contribute 3% to AS and
14% to E. Further, 46% of the energy and 35% of the entropy change takes place above the
maximum.
The a.c. powder susceptibility of Nd2Sn20 7 has been measured at liquid He temperatures.
It is plotted in fig. 3 on a reduced scale. The susceptibility behaves antiferromagnetically.
The Curie-Weiss constant amounts to 6 = —0.39 ±0.1 K. From the Curie constant one can
estimate g2 = ~g}  + -|-gj «  14.2. This means that g// «  6.5 if g// > g±, and that ifg is iso­
tropic, g <*> 3.8. The measured hfs splitting provides an estimate (section 3.3) for the g value
along the spin alignment direction, which is much lower, namely g «  2.2. These g values are
too small to explain the experimental data by dipolar interactions only (see section 3.1).

O T ,

Fig. 3. Inverse 220 Hz a.c. powder susceptibility (x) of Nd^i^O-j; C is the Curie constant. The antiferro­
magnetic Curie-Weiss constant 8 = —0.39 K could be determined with reasonable accuracy (0.1 K) because
the transition point is rather low.

4.2. The heat capacity of Nd2GaSb07 is shown in fig. 4, and has some similarity with that
of Nd2Sn20 7, but the peak is lower and less steep. The singularity occurs at T= 1.16 K. The
measurements extend to low temperatures from which a hyperfine splitting 143A/k  = 0.012 K
could be estimated. After subtracting the calculated hyperfine heat capacity (dashed curve)
the remaining heat capacity (drawn curve) may be attributed to magnetic interactions.
A bump in the full curve is seen at 0.2 K. Further, there was 7% shortage of entropy;
integration of c/RT  gave only A S/R = 0.64. These phenomena may be due to impurity of
the sample. The energy of the magnetic transition amounts to E/R = —0.89 K and the high
temperature heat capacity behaviour is estimated as c'P/R = 0.4 K2 (both values not
corrected for entropy shortage).
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Fig. 4. Heat capacity of Nd2GaSb07. After subtracting the estimated nuclear heat capacity (dashed curve)
a bump is seen near 0.15 K in the remaining electronic heat capacity (full curve). This may be due to
chemical impurity. The peak is somewhat lower and broader than that of neodymium stannate.

A peak in the d.C. susceptibility was observed at the transition point. This peak disappeared
when a longitudinal magnetic field of 500 Oe was applied. Below the transition point the
susceptibility is practically constant. The heat capacity was also measured in the presence
of an external magnetic field and a shift of the heat capacity peak to lower temperatures was
noted (ATpejk *  -0.06 K for H = 3.3 kOe). Hence, presumably NdjGaSbO, becomes anti-
ferromagnetic, but weak ferromagnetism may also be present. From the hyperfine splitting
one estimates g <*> 1.7 for the direction of spin alignment. Like in NdjSnjO, this g value is
much too small to explain the phase transition by dipolar interactions.

4.3. The heat capacity of a sample of Nd2Zr20 7 (fig. 5) shows a pronounced maximum at
0.37 K, but no sharp peak. Since the height of the maximum is observed to be dependent on
the method of preparing the sample, we attribute the broadening of the peak to chemical
inhomogeneity.
At temperatures below 0.08 K we observe an increasing heat capacity from which we estimate
that 143A/k  = 0.014 K. Subtracting the calculated hfs heat capacity from the measured heat
capacity data, we calculate the remaining entropy, which amounts to AS/R = 0.70 = 1.01 In 2;
6% of this value is obtained by extrapolation below 0.1 K and above 2 K. Thus the heat
capacity may be explained by magnetic ordering among Nd ions having effective spin— in
the ground state.
The high-temperature heat capacity per mole is given by cl*/R = 0.23 K2 and the energy
gain associated with the heat capacity anomaly is E/R = —0.432 K. A large fraction (78%) of
this quantity is obtained above the maximum at 0.37 K, and the amount of short range
ordering entropy (S_ — Sc)/R = 0.33 is much larger than that of the two other Nd com­
pounds.

115



Fig. 5
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Fig. 6

3 K 4

Fig. 5. Heat capacity o f Nd2Zr2C>7 . The peak is not sharp, and its width is dependent on the method of
sample preparation. The full line is obtained after subtraction of the estimated hyperfine heat capacity.

Fig. 6. Inverse 220 Hz a.c. powder susceptibility of NdjZrjC^. The ordering temperature of this substance
is sufficiently low to determine the Curie-Weiss constant with reasonable accuracy (± 0.1 K). The small
value of 0 suggests that both ferromagnetic and antiferromagnetic interactions are present in neodymium
zirconate.

The a.c. powder susceptibility of neodymium zirconate was measured in and below the
liquid He temperature range. A low and flat maximum was found at the temperature of the
heat capacity maximum, which might indicate antiferromagnetism. Inverse susceptibility
data are shown in fig. 6. A small Curie-Weiss constant was found, which, however, has the
ferromagnetic sign (9 = +0.06 K). From the Curie constant we estimate g2 *> 9.6 and from
the hyperfine splitting g *  1.9. From these g values it can be inferred that the magnetic
interactions in this substance are mainly nondipolar.

5. Heat capacity o f  Dy2Ti20 7

The experimental results are shown in fig. 7. No singularity, but only a relatively low maxi­
mum is seen. At low temperatures the heat capacity data decrease very rapidly with temper­
ature. Although hyperfine interactions are expected to produce an observable heat capacity
at low temperatures, no indications for hyperfine contributions were observed. This may be
due to poor heat contact at low temperatures.
At the high temperature side the data points do not extend sufficiently far to estimate the
asymptotic behaviour. This has been determined by Van Geuns°) who found c'P/R = 2.5 K2.
Therefore the data in fig. 7 were smoothly extrapolated to the above behaviour (dashed
line). Integration of c/RT  gave an entropy change AS/R = 0.62 which is 10% below the
expected value In 2. The discrepancy can be explained by the uncertainties in the above
extrapolation. The energy (not corrected for entropy shortage) is estimated as E/R =
-1.46 K.
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Fig. 8

K 10

Fig. 7. Heat capacity of DyjT^Oj. The data points are shown by circles. The curve is smoothly extrapolated
(dashed line) to c 1*111 =2.5 K2, which value was found by Van Geuns6). No hyperfme heat capacity could be

observed.

Fig. 8. Powder susceptibility data of Dy2Ti20 7. No reliable value for the Curie-Weiss constant 0 could be
determined from these data. Van Geuns has found 0 =  +0.1 K above liquid He temperatures (dashed line).
Apparently the susceptibility deviates from the Curie-Weiss law in the liquid He temperature range.

The a.c. pow der susceptibility is show n in fig. 8. A m axim um  is observed a t 0 .9  K, and at
low er tem peratures x decreases to  zero a t 0 .4  K. D.c. m easurem ents gave identical results.
Susceptibility m easurem ents o f  V an G euns a t higher tem peratures followed a Curie-Weiss
law w ith  0 = 0.1 K (dashed line in  fig. 8). The rapid decrease o f  x below  th e  m axim um  may
be in terpre ted  as due to  strong anisotropy. The Curie constan t corresponds t o g /  «  17, hence
to  a Jz =  ± 15/2 ground state. This is in agreem ent w ith  susceptibility m easurem ents o f
Tow nsend and Crossley7), w ho found  only small deviations from  the Curie law a t tem per­
atures betw een 2 and 1400 K. F rom  the large g// value one concludes th a t dipolar in teractions
are im portan t in this substance.

6. Heat capacity o f  two erbium compounds

6.1. The heat capacity o f  E r2Ti20 7 has a sharp singularity a t T=  1.25 K. D ata from  tw o
samples are p lo tted  in  fig. 9 ; betw een 1 and 1.5 K data  are p lo tted  from  sample I, w hich
exhibited a sharp peak. In  the rem aining tem perature  intervals data  on sample II are shown,
w hich had a rounded hea t capacity  peak b u t w hich was m easured in a m uch b roader
tem perature  interval th an  sample I. Since the preparation  m ethods o f  the sam ples were
d ifferent, we a ttribu te  th e  peak broadening o f  sample II (abou t 0.1 K) to  chemical inhom o-
geneity.
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After subtracting the estimated hyperfine heat capacity (167A//c = 0.016 K), a curve is
obtained (the full line in fig. 9) which resembles that of Nd2GaSb07 (section 4.2). Also in
this case the bump may be explained by impurities due to chemical inhomogeneity, having
a heat capacity maximum near 0.15 K.
The entropy change associated with the heat capacity anomaly amounts to AS/R = 0.71
which is only slightly larger than the expected value In 2. The energy gain of the magnetic
ordering is E/R = — 1.06 K. A fraction 0.63 of the energy and a fraction 0.39 of the entropy
is obtained above the transition point. The behaviour of the heat capacity at high temper­
atures is estimated as c'P/R = 0.83 K2.
Fig. 9

0.05

0.02

Fig. 10

Fig. 9. Heat capacity of Er2Ti20 7. Data of two different samples in different temperature intervals are
shown. The bump at 0.15 K may be due to chemical impurity. The curve resembles that of Nd2GaSbO;.

Fig. 10. Susceptibility of Er2Ti20 7 powder in arbitrary units. It was not possible to fit a Curie-Weiss law
over a reasonable temperature range to these data. The peak in x is not consistent with simple antiferro­
magnetic behaviour.

Powder a.c. susceptibility measurements are plotted in fig. 10. A Curie-Weiss law could not
be fitted to these data over a sufficiently wide temperature range. Therefore we could only
roughly estimate g2 *  8. From the hfs splitting one estimates g «  6.4. Hence dipolar inter­
actions are comparatively small in this substance.

6.2. The rather surprising heat capacity data of Er2GaSb07 are plotted in fig. 11. No singul­
arity is seen and the curve is even broader and lower than a Schottky anomaly. For some
types of magnetic spin-spin interactions, however, we have to expect a broad anomaly (see the
cT’.R/E^values in table IV) and it is difficult to explain the anomaly of this Kramers com­
pound by other than magnetic spin-spin interactions. From the low temperature data one
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can estimate 167A/k  = 0.025 K. On basis of this value the hyperfme heat capacity was
calculated and subtracted. The remaining heat capacity is shown by the full curve in fig. 11.
By integration one finds AS/R = 0.61 and E/R = 0.75 K, which values are not accurate
because the extrapolation at the high temperature side is uncertain. From the heat capacity
behaviour it is estimated that c’P /R  > 7 K2. Fig. 12

0.1 T t a  2 0 5  1.0 K 2 .0  — 1—► 1

Fig. 11. Heat capacity of Er2GaSbO,. The dashed line gives the estimated hyperfme heat capacity. The
heat capacity remaining after subtracting the hyperfme heat capacity is attributed to magnetic interactions.

Note the difference with the heat capacity of the titanate.

Fig. 12. Inverse a.c. powder susceptibility of ErjGaSbO,. The Curie-Weiss behaviour (full line) is found from
data in a narrow temperature interval. Therefore the value of the Curie-Weiss 0 must be considered as
inaccurate. The maximum susceptibility is found at 0.4 K which is much lower than the temperature of

maximum specific heat.

Inverse a.c. powder susceptibility data are shown in fig. 12. Above 2.2 K a Curie-Weiss law
(drawn line) could be fitted to the data, yielding 0 =  + 0 .5  K. Since the fit is obtained in a
narrow temperature interval, and the heat capacity has already reached appreciable values at
these temperatures, we may not consider this value as accurate. The susceptibility behaviour,
however, does suggest a ferromagnetic 0 value. From the Curie constant we estimate
p  »  6.1 and from the hyperfme splitting g *» 10. If we adopt the former value, the conclusion
is that dipolar interactions do not strongly contribute to the heat capacity.

7. Two ytterbium compounds

7.1. The heat capacity of Yb2Ti20 7 (fig. 13a) shows an interesting behaviour. At 0.216 K a
sharp peak occurs. Especially just below the maximum the slope of the curve is very high
and the heat capacity c/R increases from 0.1 to 1 within a variation of only 8% of the
temperature. The height of the peak was found to be smaller for another sample, which had
been fired for a shorter time during the preparation. Above the peak, at 0.38 K, a minimum
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Rg. 13a. Heat capacity of Yb2Ti207 . The broken line represents the hyperfine heat capacity. The transition
temperature of this substance is very low compared to the energy gain associated with the heat capacity
anomaly.

Fig. 13b. Electronic heat capacity of Yb2Ti20 2 near the peak in several magnetic field strengths. The field
strengths for the different types of data points are:
oOOe; v 210 Oe; a 380 0 e ;0  710 Oe.
These results strongly indicate the existence of ferromagnetic interactions in Yb2Ti207-

is reached and above that temperature a broad anomaly appears, having its maximum at
about 2.5 K. The height of this maximum is only about one half of that of a two-level
Schottky anomaly. At low temperatures, a hyperfine heat capacity is observed. From the
data below 0.1 K we estimate tnA/k  = 0.041 K, and the corresponding hyperfine heat
capacity (broken line) has been subtracted from the data (full line). The entropy as a
function of temperature was calculated from the resulting heat capacity. The entropy below
the maximum at 0.216 K amounts to AS/R = 0.059 K which is a remarkably low value. The
entropy value at the heat capacity minimum at 0.38 K is A S/R = 0.164. This value is much
smaller than the expected value for magnetic ordering of a Kramers substance. Hence the
peak and the broad anomaly are not separate phenomena but they must have the same
origin. (The entropy at the upper limit of the measurements, 3 K, is A S/R = 0.498. At 3 K,
the data points are decreasing with temperature. A smooth extrapolation (dotted line) to
T ~2 behaviour according to cT*/R = 4.5 K2 gives a total A S/R = 0.666. This is still 4%
smaller than the expected value In 2. Hence we may estimate cV’/R > 4.5 K2. By integrating
the heat capacity one finds E/R *  1.71 K. Less than one percent (0.011 K) of this energy
gain takes place below the peak.
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The a.c. powder susceptibility of Yb2Ti20 7 is shown in fig. 14. A good fit of a Curie-Weiss
law to the data is obtained between 1.7 and 3.5 K, yielding 0 = +0.4 K (drawn line). In this
temperature range, however, the heat capacity has already reached appreciable values and
the susceptibility may very well behave differently above 3.5 K. In that case, the curvature
of the data points suggests that 0 may be larger than 0.4 K. The susceptibility of Yb2Ti20 7
above helium temperatures has been measured by Townsend and Crossley7). Below 20 K
their data exhibited a ferromagnetic deviation from the Curie law but no value of 0 was
given. Thus the susceptibility data suggest that ferromagnetic interactions are present.

K 4

Fig. 14. Inverse a.c. powder susceptibility ofYb2Ti20 7. Because the heat capacity reaches a maximum near
2.2 K, the susceptibility may not be expected to follow the Curie-Weiss behaviour to such low temperatures.
Therefore the fitted value of the Curie-Weiss constant 0 =  +0.4 K is not accurate.

In order to obtain furtner information about the interactions, the heat capacity has been
measured in the presence of several magnetic fields having values between 0 and 710 Oe
(fig. 13b). The low temperature heat capacity remained approximately constant in field
strengths up to 380 Oe, and at 710 Oe a shift of the curve to the high temperature side was
seen. These observations are consistent with ferromagnetism. Further it is seen that the peak
shifts towards higher temperatures when the fields are applied. For an antiferromagnet one
would expect a shift towards lower temperatures. The Curie constant of Yb2Ti20 7 yields
g2 = 5.7, while one can estimate from the hfs heat capacity that g «  2.1. Hence dipolar
interactions are negligible.

7.2. The heat capacity of Yb2GaSb07 shown in fig. 15 is similar to that of the titanate, but
a small bump instead of a peak is observed at the low temperature side. After subtracting
the hyperfine heat capacity as calculated from the estimated hyperfine splitting 173A/A: =
0.046 K, and smooth extrapolation to c'P/R  = 6 K2, we obtain an entropy value which is
about equal to the expected value In 2. The energy then amounts to E/R *» —2.1 K.
The susceptibility data were different from that of Yb2Ti20 7. A Curie-Weiss law (0 negative)
could be found which fitted the data over a wide temperature range, but we have to distrust
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Fig. IS. Heat capacity of Yb2GaSb07. No peak is seen but in other respects these results are similar to those
on the titanate.

a  Curie-Weiss law w hich is obtained  a t tem peratures near and below  the heat capacity  maxi­
m um . Below 1 K the susceptibility becom es larger than  according to  the ex trapolated  Curie-
Weiss behaviour. This is n o t usual fo r antiferrom agnets.
F rom  the hyperfm e splitting we estim ate g *  2 .3 , while from  the Curie constan t (w hich m ust
be considered as inaccurate) we o b ta in ?  *> 7 .7. D ipolar in teractions according to  these g
values are negligible.

8. Two non-Kramers compounds

8.1. The hea t capacity  o f  T b2G aS b07 (fig. 16) shows tw o maxim a. The large heat capacity

2 0  K0.1 T , 0 .2

Fig. 16. Heat capacity of Tb2GaSb07. The dashed line was calculated for a two energy level system, but the
splitting of these levels could not be explained satisfactorily. The dash-dotted line is calculated for a four
level hyperfme splitting A/k = 0.081 K. After subtracting of this heat capacity, the remaining curve (solid
line) is attributed to magnetic ordering.
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above 1 K can be interpreted as due to a splitting of about 5 K between two singlets, such as
is observed e.g. in Tb ethylsulfate9). The latter splitting would give rise to a Schottky type
heat capacity anomaly and to absence of magnetic ordering phenomena. The measured heat
capacity near 2 K in TbjGaSbO, does not fit a simple Schottky anomaly; however, magnetic
interactions (and non-uniformity of Jahn-Teller splittings) may cause a broadening of the
anomaly. The anomaly at 0.08 K might then be interpreted as due to a nuclear pseudo-
quadrupole splitting caused by perturbation of the electronic singlet by second order hyper-
fine interactions. This mechanism causes a splitting between the nuclear Iz = ±-  ̂ and 7Z = ± —
doublets. In fig. 16 the dashed line gives the heat capacity calculated on basis of a splitting
of 0.19 K. We shall now investigate whether a pure singlet electronic ground state is
compatible with this value. The maximum second order hyperfine splitting is realized when
the lowest electronic levels are approximately given in the Jz representation by

l / V 2 ( l + 6 > ±  I —6 > )

Hyperfine interaction then gives admixture of these states, resulting in a second order
splitting of the levels given by

E = -A * P / A
4

where A is the hyperfine constant (in the effective s = y  hamiltonian) and A is the original
splitting between the electronic singlets. The value of A must in this case be approximately
equal to the value found by Larson9) in Tb ethylsulfate (where the lowest non-Kramers
doublet is that one given above): A jk  = 0.30 K. The calculated splitting between the
ƒ, = ± — and ± — doublets then amounts to 0.02 K which is much smaller than the experi-

z 2 2
mental value 0.19 K.
Therefore we must conclude that the above model is incorrect and that the anomaly near
0.08 K is mainly due to first order hyperfine interactions. Hence the electronic ground state
has a nonzero magnetic moment, and therefore the anomaly at 2 K is attributed to magnetic
ordering. The data points below 0.1 K lie below the curve for four equidistant levels (dash-
dotted line) fitted at about 0.2 K. This can be explained by incomplete heat contact at low
temperatures, which was also observed experimentally. For the hyperfine splitting we derive
A/jfc = 0.081 K which corresponds to g »  9.1. Hence a non-negligible contribution to the
spin-spin interaction originates from magnetic dipole-dipole coupling (see section 2.1).

8.2. The neat capacity of Ho2GaSb07 is shown in fig. 17. The heat contact was poor below
0.3 K and hence those data should be distrusted. Second order hyperfine splitting of an
electronic singlet is, like in the Tb compound, too small to explain the data near 0.4 K.
Hence the electronic ground state must have a magnetic moment. The data can be fitted by
8 equidistant energy levels (A/k  = 0.23 K) of the I  =—Ho nuclei. The A value corresponds
to g = 14. After subtracting the hyperfine heat capacity, the remaining result (solid line,
fig. 17) can be explained by magnetic interactions, like the Tb compound.
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Fig. 17. Heat capacity of Ho^aSbO-?. Below 0.3 K the heat contact between sample and thermometer was
incomplete. Like the terbium compound, the data are interpreted as the sum of hyperfine (dashed line) and
magnetic ordering (full line) heat capacities.

9. Interpretation o f the experimental data

As already noted, the cT^/R values must not be considered as very accurate because we
expect in all cases appreciable T~3 terms in the heat capacity series expansion (due to the
occurrence of triangles of interacting neighbours in the pyrochlore lattice). Further, most of
the Curie-Weiss constants 0 could not be determined because the ordering temperatures were
too high. Only in the case of neodymium stannate and zirconate, 0 could be found with
reasonable accuracy (~ 0.1 K). Further, the data about Yb2Ti20 7 and Er2GaSb07 give an
indication for ferromagnetic interactions although the magnitude of 0 remains uncertain.
Experimental and theoretical data are shown in table VII. Here we wish to study the type of
the interaction rather than its strength. Therefore only dimensionless quantities are shown.
In the first column values are given of cT*R/E2 which is a measure of the width of a specific
heat anomaly. For a narrow anomaly its value is small, whereas it has the value 1 for a simple
two-level Schottky anomaly. Theoretical values for the critical quantities in this particular
lattice have only been obtained for the antiferromagnetic Ising model. They are taken from
ref. 3. For other types of interactions we expect a lower transition point if any, and more
short range ordering entropy and energy.
A striking discrepancy is found between g values as estimated from the hyperfine splittings
and from the Curie constants. Several effects may contribute to this observation:
1. At low temperatures incomplete heat contact may cause a decrease of the experimental
heat capacity data. However, this decrease is generally strongly temperature dependent and
can thus be detected. Hence this effect can only partly explain these large discrepancies.
2. In oxides, configuration mixing due to crystalline field effects (or covalency) may be more
important than in most hydrated salts. The admixture of higher states having different J
quantum numbers into the ground state J  multiplet invalidates the proportionality of g and
A (therefore we prefer the g values obtained from the Curie constant).
3. In an ordered substance, spin alignment may occur along a direction different from that of
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maximum g. Experiments on cerium ethylsulfate (chapter IV) have shown that spin
components in a direction of nearly-zero g can have appreciable interactions.
Further, the influence of splittings of nuclear quadrupole moments in the electric field
gradient at the M-ion nuclei is estimated. The quadrupole splitting of the 24 keV u9Sn level
was measured by Loebenstein et at.14) at the M sites in several rare earth stannates by the
Mossbauer effect. Splittings up to about 4x1 O'4 K were found. From the known ratios of
the excited Sn to other M-quadrupole moments we can now estimate the quadrupole
splittings in other pyrochlores. We find splittings up to about 10'3 K, which is small
compared to the hyperfine splittings observed here for the R nuclei. Hence quadrupole
splittings of M ions do not influence the observed hfs parameter values.

cT2R /E 2 E/R0 E /R TC S J R E J E

NcfeSnjO, <0.53 1.6 -0 .72 0.494 0.46
NdjGaSbO, 0.62* -0.72* 0.487 0.52
NdaZr20 7 1.23 - 7 -1.07 0.372 0.78
Dy2Ti20 7 1.01*
Er2Ti20 7 0.62* -0.90* 0.431 0.64
Er2GaSbO-7 >1.25 <0
Yb2Ti20 7 >1.54 <0 -7.9 0.068 0.994
Yb2GaSb07 1.28

Ising fm 3 -1 /2
Ising afm 1/3 + 3/2 -0.68 0.548 0.394
XY fm 6/5 -1 /2
XY afm <10/3 >+3/10
Heis. fm 1 —1/2
Heis. afm <9 >1/6

Table VII. Theoretical and experimental data. Dimensionless data are summarized. The critical quantities
for a system having antiferromagnetic Ising interactions are taken from ref. 3. The experimental values
marked with * are corrected for entropy shortage.

The measured pyrochlore compounds will now be compared to theory individually.
a. The experimental data of Nd2Sn20 7 are in approximate agreement with antiferromagnetic
Ising interactions. Further, Ising type interactions are also suggested by the steep decrease of
the specific heat at both sides of the transition point.
b. The data about Nd2GaSb07 are less complete (no 0 was found) and are in less good agree­
ment with antiferromagnetic Ising interactions. The heat capacity peak is lower than that of
Nd2Sn20 7. This may indicate that the spin-spin interactions are less anisotropic.
c. Nd2Zr20 7 behaves completely differently. The heat capacity anomaly is much broader
and the transition point is low. The small value of 6 suggests that both ferro- and antiferro­
magnetic interactions are present. If the crystal structure at low temperatures is not distorted
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(in that case the 6 n.n. are equivalent) this means that the interaction hamiltonian for a pair
of Nd spins contains both positive and negative terms. Such interactions have also been
observed in cerium ethylsulfate (chapter IV). In this case the character of the interaction
hamiltonian is less clear.
d. It was already mentioned that the Dy ions in Dy2Ti20 7 presumably have strongly aniso­
tropic properties. Dipolar interactions are important in this substance, and the nondipolar
interactions have the opposite sign because the estimated g values would lead to higher
cT*/R and E/R values than those experimentally observed. Dipolar n.n. interactions are ferro­
magnetic, and hence the nondipolar interactions have the antiferromagnetic sign.
e. The experimental data about Er2Ti20 7 tend to those corresponding to antiferromagnetic
Ising interactions. Van Geuns6) observed a negative Curie-Weiss constant 0 = —22 K. This
value can not be due to magnetic interactions but must be interpreted as a depopulation of
high g-valued Kramers doublet(s). The experimental data indicate that the anisotropy of the
spin-spin interaction is not complete. The peak in the susceptibility does not agree with
simple antiferromagnetic behaviour.
f. Also in the case of Er2GaSb07 the susceptibility data of Van Geuns6) (0 = —15 K) show
the lowest Kramers doublet to have relatively low g values. At lower temperatures the data
suggest a positive 0, and the caloric data tend to those derived for ferromagnetic Ising inter­
actions. However, interactions including equatorial spin components may also be present
although the data do not agree with isotropic ferromagnetic interactions.
g. For Yb2Ti20 7 the existence of ferromagnetic interactions follows from heat capacity
measurements in the presence of a magnetic field, and from susceptibility measurements.
Strong anisotropy of the interactions is suggested by the strong temperature dependence of
the heat capacity below the peak. Further, the caloric data (cT^R/E2) are also consistent with
ferromagnetic Ising interactions according to table VII. The susceptibility at the transition
point, however, is much too small for a ferromagnet. This can be related to the fact that for
one of the calculated minimum energy magnetic structures the net magnetic moment is zero.
The very low transition temperature can be explained as the result of hindered magnetic
ordering. Hindering occurs because the common n.n. of a pair of n.n. favour that pair to be
‘antiparallel’ (see section 2).
h. The similarity of the caloric data of Yb2GaSb07 to those of the titanate (g) suggests the
same type of interactions in this compound. The small bump at 0.4 K may be related to the
peak in the titanate. In the titanate the height of the peak was found to increase after a heat
treatment of the sample. Incomplete ordering of the crystal lattice may cause a decrease of
the peak height, and might even make it disappear.
i. After subtracting the hyperfine heat capacities of the two non-Kramers compounds
Tb2GaSb07 and Ho2GaSb07, broad anomalies remain which resemble that of the correspond­
ing erbium and ytterbium compounds. Strong anisotropy (g// > gjJ of the lowest Ho doublet
follows from susceptibility data of Van Geuns6). The free-ion magnetic moments of Ho and
Tb are sufficiently large to explain the energies E/R involved (2-3 K) if ± Jz is large for the
ground doublet. Further, from the results for anisotropic dipolar interactions already given
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in table III, one obtains c'PR/E*= 2.3 and hence these interactions lead to a broad anomaly
(see also table VII). Thus dipolar interactions can explain the experimental data. We have
to keep in mind, however, that these non-Kramers compounds may exhibit a singlet-singlet
splitting which may influence the magnetic anomaly.
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