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STELLINGEN

1. De bewering van Makowski e.a., dat gedurende de polymerisatie van butadieen
met n-butyllithium de graad van 1,2-additie continu afneemt naarmate de graad
van polymerisatie voortschrijdt, is strijdig met hun experimentele gegevens.

H.S. Makowski, M. Lynn en A.N. Bogard, J. Macromol. Sci.-Chem., A2, 665 (1968)

2. Ten aanzien van de frequentie-afhankelijkheid van de dynamische afschuif-
moduli van verdunde polymeeroplossingen leiden de berekeningen van Rouse
en die van Bueche to t verschillende uitkomsten. D it heeft twee oorzaken:
Rouse verdisconteert de 'diffusie- o f Brownse-bewegingskrachten', iets wat
Bueche nalaat; bovendien verzuimt Bueche de verandering per tijdseenheid
van de vrije energie van de macromoleculen op te nemen in zijn energiebe-
rekeningen.

P.E. Rouse, J. Chem. Phys. 21, 1272 (1953)
F. Bueche, J. Chem. Phys. 22, 603 (1954)

3. Gezien de structuur van koolstofvezels dient de term grafietvezels voor
deze materialen te verdwijnen.

A. Fourdeux, C. Herinckx, R. Perret en W. Ruland, C.R. Acad. Sc. Paris, C269,
1597 (1969)

4. Het door Overdiep en van Krevelen gegeven criterium voor stromings-
instabiliteit berust op een verkeerd begrip van de verdeling die de afschuif-
spanning in een stromende vloeistof heeft over de doorsnede van een cilin­
drische pijp.

W.S. Overdiep en D.W. van Krevelen, J. Appl. Polymer Sci. 9, 2779 (1965)
Zie bijv. J.R. van Wazer, J.W. Lyons, K.Y. Kim en R.E. Colwell, Viscosity and
Flow Measurement, Interscience Publ., New York, 1963, p. 189/190



5. Voor niet-newtonse vloeistoffen dient voor de beschrijving van de tempera­
tuurafhankelijkheid van de viscositeit het gebruik van de z.g. Arrhenius-verge-
lijking ten sterkste te worden ontraden. Een behandeling van de, bij verschil­
lende temperaturen bepaalde, curven van de afschuifspanning en van het
eerste normaalspanningsverschil als functies van de afschu if snelheid analoog
aan de gebruikelijke behandeling - met behulp van verschuivingsfactoren -
van de curven van de verliesmodulus en van de opslagmodulus als functies
van de frequentie, verdient verre de voorkeur en geeft een temperatuuraf­
hankelijkheid die voor de genoemde experimentele grootheden gelijk is.

6. Het door Yamaura voorgestelde mechanisme voor de hydrodynamische
inductie van de kristallisatie van polymeren u it geroerde oplossingen is
theoretisch onwaarschijnlijk en in strijd met experimentele gegevens.

K. Yamaura, Kolloid-Z.u.Z. Polymere 238, 522 (1970)
A.J. Pennings, J.M.A.A. van der Mark en H.C. Booij, Kolloid-Z.u.Z. Polymere 236,
99 (1970)

7. In de literatuur vindt men vaak schetsmatige curven, die het verband aan­
geven tussen de vrije mengenthalpie en de samenstelling van een binair
vloeibaar mengsel. Het is te betreuren dat in de figuren in leerboeken en
naslagwerken, niet altijd rekening wordt gehouden met de eisen waaraan
volgens de thermodynamica de vorm van deze curven moet voldoen. Zie
bijv.

I. Prigogine, The Molecular Theory of Solutions, North Holland Publ. Comp., 1957, p. 19
G.L. De Haas-Lorentz, De Beide Hoofdwetten der Thermodynamica, Nijhoff, Den Haag,
1942, p. 149
C. Tanford, Physical Chemistry of Macromolecules, John Wiley, New York, 1961, p. 246
M.L. Miller, The Structure of Polymers, Reinhold, New York, 1966, p. 146

8. Oe conscientieuse beschouwingen van Dahl en Ballhausen over de diverse
quantum-mechanische benaderingsmethoden voor de berekening van energie-
niveaus in anorganische complexen staan in schril contrast to t het invoeren van
het effect van de omgeving bij hun berekening van de energieniveaus in het
permanganaat ion.

J.D. Dahl en C.J. Ballhausen, Adv. Quantum Chem. 4, 170 (1968)



9. Naar aanleiding van het door Cox en Merz voor polymere vloeistoffen gevon­
den empirische verband tussen de viscositeit bij stationaire af schuif stroming en
de complexe dynamische viscositeit, stellen Onogi e.a. dat de stationaire visco­
siteit behalve visceuse effecten ook elastische effecten bevat. Een dergelijke
bewering heeft geen betekenis, indien niet gelijktijdig w ordt gedefinieerd wat
onder elastische effecten bij stationaire afschuifstroming moet worden ver­
staan.

W.P. Cox en E.H. Merz, J. Polymer Sci. 28, 619 (1958)
S. Onogi, T . Masuda en T . Ibaragi, Kolloid-Z.u.Z. Polymere 222, 110 (1968)

10. Ten aanzien van de aantrekkingskracht van dieren op mensen formuleert
Morris de wet: 'De leeftijd van een kind is omgekeerd evenredig met de af­
metingen van het dier waaraan het de voorkeur geeft'. Aangezien de aantrek­
kingskracht van een dier op een kind lineair toeneemt met de aaibaarheidsfac­
tor van het dier voor het kind en deze factor weer lineair van de sterkte van
het poppenhuis-syndroom van het kind afhangt, is het ten onrechte dat
Morris bij de interpretatie van zijn wet de leeftijdsafhankelijkheid van het
poppenhuis-syndroom buiten beschouwing laat.

Desmond Morris, De Naakte Aap, A.W. Bruna & Zoon, Utrecht, 1968, p. 233
Rudy Kousbroek, De Aaibaarheidsfactor, Th. Rap, Amsterdam, 1968

18 november 1970 H.C. Booij
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Chapter I

INTRODUCTION AND SURVEY

1. Introduction

The term inology used in rheology studies can be defined in a simple way only fo r strong­
ly idealized experimental circumstances. A  mode o f de fin ition  having more general appli­
cability calls fo r such a degree o f mathematical formalism as w ill cause the physical na­
ture o f the rheological concepts to  be masked to  a considerable degree. To avoid these
two extremes, we shall adopt a m iddle course in our introductory chapter. For th is pur­
pose we shall restrict ourselves in our considerations to  isotropic and incompressible
media. Further, in defining some rheological concepts, we shall set out from  the princi­
ple that the defin itions should be valid under the most current experimental conditions.
Although the defin itions may thus lose somewhat in generality and exactness, they w ill
certainly gain in understandability.

Nevertheless, it  remains necessary firs t to  make some general remarks about coordinate
systems and coordinate transformations. In the fo llow ing section, several concepts, like
shear flow , rate o f shear, superposition, stress tensor and dynamic properties, w ill be
introduced. A fte r that, we shall describe the object o f our study and, fin a lly , give a
survey o f the fu rther contents o f th is thesis.

2. D efin ition  o f some rheological quantities

a. Coordinate systems

Every point in the Euclidian space has a position vector r, which, in a system o f
Cartesian coordinates x, y and z, can be decomposed as follow s:

r = xe + ye + ze „  , ,* - x  ' - y  - z  (I  1)

where ex , ey and ez form  an orthonorm al system o f base vectors. Any system o f three
spatial vectors ^ , e2, and e3 can be used as basis, provided not all vectors are parallel to
any given plane. A  spatial po in t f  can therefore be uniquely described by

r * x , *1+xa?a +x3*3 (l2)

A coordinate system is a reversible one-to-one correspondence between points in the
Euclidian space and trip les (x1, x2, x3) o f numbers, known as coordinates.

From Eq. (I 2) i t  fo llow s that, if  the position vector r is known as a function o f the
three coordinates x 1, x2, x 3, the corresponding base can be found from
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e. (i “  1 .2 ,3 )  <l3)
3x'

Suppose the position of a point in the Euclidian space is denoted by cylindrical coordi­
nates r, and z. The position vector r can then be written as in Eq. (I 1) and the coordi­
nates are related as follows: x = r sin <p; y = r cos <pm, z = z. Eq. (I 3) yields

3r
e = —i *= sin ip e + cos <p e„-r 9r v -x -v

3r

^  = 3 ^ = rC ° S,P?x“ rSin^ ?y

9r
e =-z

The magnitudes of the base vectors e. are denoted by

ei = i ?i i = V ??

(I 4)

(I 5)

In the case of cylindrical coordinates, we thus have

er = 1 ;  \  = r> ez =  1
(I 6)

Complete analogous reasoning shows that the magnitudes of the base vectors er, e^, eg
in a system of spherical coordinates (Fig. 1,1) are:

er = 1 ;  = rs in 0; eg = r

Fig. 1,1 System of spherical coor­
dinates

(I 7)

A coordinate system is said to be orthogonal if
the natural base vectors (I 3) are orthogonal to
each other, i.e., if

e , . e. = 0  for i £ k (I 8)
- i  - k

For the basis of such a system to be orthonormal,
its vectors must satisfy the conditions

e<i>=iLfori = 1 (2 , 3  (19)
e i

The components of a vector v with respect to this
orthonormal basis are the physical components
of the vector; the latter are denoted by

v‘ = v . e<i:> for i = 1 ,2 ,  3 (I 10)

8



For the physical components o f a position vector r w ith  respect to a cylindrical coordi­
nate system, Eqs (I 1) and (I 4) consequently give:

xr = x sin ip + y cos <p = r

= x cos ip — y sin <p = 0

X2 =  2

and, hence,

r = re<r> + ze<2> (I 11)

We now suppose that the base vectors e. are not orthogonal. I t  is convenient then to
introduce a set o f reciprocal base vectors e*; these are defined by the equations

? j . e* = 6j. (I 12)

from which it follows that e1 is perpendicular to  the plane o f e2 and e , and that e2,
and e3, are perpendicular to  the planes o f •  and e3, and et and e respectively. Of
course the introduction o f this reciprocal basis does not serve any useful purpose if the
original basis e. is orthogonal, because in that case, e* is identical to e..

Again, any position vector r can be expressed in terms o f the reciprocal base vectors by
an equation o f the form

r = XjO1 + x2e2 + x3e3 (M 3)

where x t , x2 and x3 are now called the reciprocal coordinates o f r. When r is known as
a function o f the reciprocal coordinates, the reciprocal base vectors are obtained from

i 3-r
*  = 3x"j <,1 4 >

If the two sets o f base vectors e. and e* do not constitute orthogonal systems, three
types o f tensors can be constructed from the scalar products of the base vectors.
According to the definition equation (I 12), the products o f ej and e* give a diagonal
tensor w ith  elements equal to  1. The other two tensors are called the metric tensors;
the first one is the metric tensor o f Cauchy, which is defined by

£ = 6 , . ^  (M 5 )

w ith elements C.., the other is the metric tensor o f Finger

B - e ' . e '  (I 16)

the elements o f which are denoted by B1*.
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With non-orthogonal systems, these two tensors are different, and a distinct physical
meaning can be attached to them. As demonstrated fo r example by Lodge!), the quan­
tities Cj. can be used fo r obtaining complete information about the separation of parti­
cles of a material, whereas the separation o f pairs o f parallel material planes can be com­
pletely described by means of the quantities B1*. With orthonormal systems, the tensors
are equal.

Let us now check up on the transform ation properties o f the various quantities. Suppose
a position vector is described by two coordinate systems x '1, x '2, x '3 and x 1, x2, x3.
From Eq. (I 3) it  follows that

_ 3r — » 3x 'k —,  3x 'k

?ra7= k a7k U  k 1 7 e‘ (I 17)

and, conversely,

3r dr dxk —  3xk

?i ax'* k axk a ?  " k a? ?k (I 18)

Any vector v w ith the components v '1, v '2, v '3, or v1, v2, v3 can be written as

y = E  v'1 ?; = E  A,
i i

Substitution of Eq. (I 18) yields

i XT' d** i.v ' = X ; —  V'k
k 3x 'k

(I 19)

( 120)

The reciprocal base vectors have to  satisfy

k 3x 'k
(121)

as can be easily proved by substitution o f Eqs (I 21) and (I 17) in Eq. (I 12).
Substitution in equation

v = E v ;  ? ' * = ! > ' ? ; (I 22)

shows that the reciprocal components o f v transform according to

V
r - ,  OX "

E rr» ;k 3x
(I 23)

If three numbers v‘, referred to  the system o f coordinates x ‘, and three numbers v 'k ,
referred to  coordinates x 'k , are related by Eq. (I 20), then the quantities v 'k and v‘ are

10



called the contravariant components o f the vector v, whereas numbers transforming in
conformity w ith Eq. (I 23) are called the covariant components o f v.

A  typical example o f components o f a contravariant vector is formed by differentials of
coordinates. The components o f this vector transform according to

3x'i °x  < 3x' 9x*
d x '= -----  d x '1 + ------ dx '2 + -----  dx '3

3xf l dx’2 d x '3

J

(I 24)

A  prototype o f a covariant vector is the gradient o f a scalar. The components o f this
type o f vectors obey the following equations

3y> _ d x ^  JV 3x^ jV_ d x *  dip

dx’ 3x* Sx'1 3x* 3x '2 3 ^  (l 25)

The transformation formulae fo r the metric tensors are found by substitution o f Eq.
(I 17) in Eq. (I 15) and Eq. (I 21) in Eq. (I 16). This gives

r  -  V *  V *  dx 'k Sx'1

fo r the covariant components o f the Cauchy tensor, and

BiJ-  2  2  —  — B'
k J 3x 'k 3x'*

fo r the contravariant components o f the Finger tensor.

(I 26)

(I 27)

b. Deformable body

A deformable body consists o f material points liable to  change their relative positions
in space under the influence o f external forces. If  a material point in the Euclidian space
occupies a position r at time t, then it  w ill have occupied a position r ' at time t '  <  t. The
dependence o f r on r, t  and t '  is given by a displacement function  r ' = r ' (r, t, t ') ,  which
also defines the lines o f m otion  o f the material points.

This use o f the vectors r and r ' differs from that in the preceding section. There, r and r'
denoted the coordinates o f one and the same point in space w ith respect to  different
bases, whereas now r and r ' are used to coordinate a given material point at different
positions in space w ith  a basis which may now be regarded as orthonormal. Still all the
formulae given in the preceding section are applicable fo r describing the deformation of
materials, albeit that the interpretation must be slightly modified w ith  the aid o f embedded
or convected vectors. These vectors always connect the same material points in the same
set. Any three non-coplanar embedded vectors can be taken as an embedded basis, and
any position vector o f a material point can be expressed by an equation like

,r(t) = i 1 e, (t) + £2e2 (t) + £3e3 (t) (| 28)
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During deformation of the body, the embedded base vectors are functions of time, but
the coefficients £' are time-independent coordinates associated with the material point
considered. A t any time t', the embedded vectors can be related, by means of transfor­
mation formulae, with a spatially fixed orthonormal basis ex , ey , ez. All the equations
of the preceding section remain valid if we replace e^, e^, e'3 by ex, ey , ez, e. by e. (t)
(i = 1 ,2 , 3), x* by £' and xfi by x '‘ (t'), etc.; after this modification they relate the
embedded quantities to the spatial quantities.

For a proper understanding of a few theoretical treatments in Chapter I I I ,  some addi­
tional attention will now be given to the relations for the metric tensors. Execution of
the above-mentioned substitutions, changes Eq. (I 26) into

'* k I \3 $ '  f t

Because the spatial basis is taken to be orthonormal, i.e., (x', t') = Sk|, we have

Cjjtè.t') (I 30)

Further, the convected coordinate system is so chosen as to coincide with the spatial
system at time t. This gives £' = x ‘, if x* are the space coordinates, at time t, of the par­
ticle considered. But, since £' are independent of time, we also have £' = x 1 at time t'.
Hence, Eq. (I 30) takes the form

y ,  /  3x,k 3x,k\

YVdx* 3x‘ J
(I 31)

Similarly, we get

^9x‘ 3x*
Bi' ( t ' ) =  Y j a

k \3 x 'k 3x 'k/  t ')< 'k

It also follows from these equations that

0 32)

C(t) = B(t) = I (I 33)

where j_ is the unit tensor.

Still C(t') and B(t') retain their validity as measures of the separation of material points
and parallel material planes. This means that we now have two measures of the strain in
the material over the time interval t —t', namely

a contravariant strain tensor

S(t') = B(t') -  B(t) (l 341

and a covariant strain tensor

12



G(t') = C(t') -  C(t) (135)

The components o f the spatial velocity y(r, t) o f a material point at the time t  are given
by

The symmetrical part of £  is the rate-of-strain tensor É w ith components ê.. = éij equal

while the anti-symmetrical part constitutes the components cj.. = o f the vorticitv
tensor SI “  r

These quantities can also be defined w ith  respect to an embedded basis or w ith respect
to the reciprocal embedded basis. This being done, it  is seen that e.g. Ê provides a meas­
ure of the rate at which material points or planes are moving towards or away from each
other. In consequence two convected rate o f strain tensors can be derived in the same
way as the metric tensors. This procedure results in the following transformation fo r­
mulae fo r the convected components of

a contravariant rate-of-strain tensor

Continuously varying deformation o f a material is referred to as shear flow  if the mate­
rial in question comprises a family o f surfaces — the shearing surfaces — all o f which

an ortnonormal basis.

0 = 1, 2, 3)
v‘ 3 t' t '  = t

if x are the coordinates o f the position vector o f the material point at t '  w ith respect to

The components 7 .̂ -  o f the velocity gradient tensor £  are defined by

j  j [ ,  t) 0 37)

e.. (r, t) = )4 0 38)

coy (r, t) = V4 0 39)

0 40)

and a covariant rate-of-strain tensor

<,«•>-E E ‘ )
k I \ d x  3x* J\ 0 41)

c. Shear flow
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move rigidly in the sense that the separation between any two material points in such a
surface remain constant!). These surfaces can be denoted by x 1 = constant in an appro­
priate coordinate system.

If, considered in an orthogonal coordinate system x 1, x2 , x3 fo r which the magnitudes
e. o f the base vectors are constant along the lines o f flow, the components o f the veloc­
ity  field are

vl  = 0; v2 = u(xM; v3 = w (x ‘ ) (142)

the shear flow  is said to be curvilinear2). It  is called laminar if, measured in Cartesian
coordinates, the separation between shearing surfaces is independent o f the position on
the surfaces, while it  is referred to  as a simple shear flow  if, again considered in a Car­
tesian system,the shearing surfaces are parallel planar surfaces and the lines o f flow  are
straight lines.
Simple shear flow  arises when a liquid is sheared between two parallel plates. Examples
of cylindrical laminar shear flow  are the type o f flow  produced in rotational Couette-
type viscometers and that displayed by the flow  pattern of a capillary tube viscometer
(telescopic or Poiseuille flow), whereas a more general type of shear flow  is encountered
in cone-and-plate viscometers, even if  the apex of the cone is not in contact w ith the
plate3).
In a curvilinear flow, described by Eq. (I 42), the rate o f shear y is equal to2)

© '/•# )]
The shear flow  is said to be steady if the shear rate is independent o f time. A steady
curvilinear flow  is called a viscometric flow. Hence, the rate o f shear in a viscometric
shear flow  is a constant, which w ill be denoted by q. In oscillatory shear flow, the rate
of shear is of the form aco cos tot, where the amplitude a  o f the oscillatory shear
a  sin cot is generally supposed to  be small, and co represents the circular frequency of
the oscillation. A  liquid can be subjected to various modes o f shear flow at the same
time. Nevertheless, disregarding all other possibilities, we shall, fo r brevity, use the term
superposition when an oscillatory shear is superimposed on a steady shear flow. In case
v2 is proportional to (q + aco cos cot) x 1 and v3 = 0, the mode of superposition w ill be
called parallel, whereas we shall speak o ff orthogonal superposition if v2 is proportional
to q x1 and v3 to  (aco cos cot) x ‘ .
The definitions given w ill be illustrated by means of two examples o f flow, viz. helical
flow between concentric cylinders and cone-and-plate flow.

In a helical flow  the components o f the velocity field in a cylindrical coordinate system
x 1 = r, x2 = z, x3 = y>, are

vr = 0; v*= u(r); = w(r)

14



The rate of shear is given by Eq. (I 43):

+ (I 45)

We shall now consider a helical flow between two infinite coaxial cylinders — an inner
one with radius Rt and an outer one with radius R — whose angular velocities about
their common axis are constant and equal to and J22 respectively, and whose veloc­
ities in the direction of this axis are U 1 and U2 resp. There is evidence^) showing that,
if the fluid is assumed to adhere to the cylinders, the velocity profile depends on the
rheological properties of the material. However, if the relative gap (R2 — Rj ) /R j is very
small, the velocity gradients will be approximately constant in the gap. We now suppose
that the difference in displacement between the two cylinders in the z-direction is an
oscillatory function of very small amplitude A , i.e. U2 — Uj = A w  cos cot. We are then
dealing with orthogonal superposition, and the velocity gradients are equal to

dw ^ 2  — ^ 1  q . du Acj cos w t
“  rTa  n ^ R 7 = a u c o s w t

In this case the rate of shear, determined by means of Eq. (I 45), equals

7  ■ J"q2 + a 2w 2 cos2 w t l ^  (I 46)

A parallel mode of superposition exists when

dw R, (fi2-n ,) + A w c o s w t du

dr Rj IRj - R , )  and dr '
0

The shear rate now equals

7 = q + aw cos wt (147)

As regards their basic geometry, the instruments for producing cone-and-plate flow
consist of a rigid cone, rotating about its axis with an angular velocity , and a rigid
disc, rotating about the same axis with angular velocity f i 2, between which the test
fluid is contained. The axis of the cone is taken to be the polar axis of the spherical
coordinates 0, <p, r (see Fig. 1,1). We suppose that the disc lies in the plane 0 = ir/2, and
that the equation for the cone is 0 -  jt/2  - 0 , which means that the apex of the cone
just touches the flat plate. 0Q is the angle between the disc and the cone, the gap angle.
It can now be proved^, 5 ,6 )  that the velocity distribution may be approximately des­
cribed by a space-independent shear rate, on the condition that the quantity
(f i2 — ) pr202 (3 r j f 1, where p and rj denote the density and the viscosity of the
fluid respectively, is much smaller than unity. This condition is satisfied if the gap
angle 0Q is very small. Then, with zr/2 — 0Q <  0 <  7t/2 , cos 0 ~  0 and sin 0 ~  1.
Under these circumstances, the surfaces for which 0 is constant constitute the shearing
surfaces, while the velocity field has the components

15



( 148)v0 = 0; v *  = f i 2 + ( f i2 - ( 2 , 1 ( 0 -  tt/2)/0o; vr = 0

The rate o f shear found by means o f Eqs (I 7) and (I 43), w ith sin 0 = 1, equals

y ~ ( a 2- a l \ieo ( 149)

We are dealing here w ith parallel superposition if  the velocity difference £22 — £2, is
proportional to q + aco cos cot.

d. Stress tensor

Consider a point A  in the interior o f a deformable material. Construct a surface element
containing A. The orientation of this element in space is characterized by a unit normal
vector n (see Fig. 1,2).

Fig. 1,2 Definition sketch for the
introduction of the stress tensor

The material on the side to  which n is directed is
called 'positive'. Let p be the force per unit area
acting across the surface element and exerted by the
'positive' material on the 'negative' material. This
stress vector p may be dependent on n, on the loca­
tion o f A  and on time.

In every system o f base vectors the force p can be
written as

n = D 6 + D e +  P „r  ^ni -1 Kn2 -2 Kn3 -3

and the components are denoted by p .. Index n is
linked up w ith the orientation o f the surface element
and the index j w ith the direction of the stress vec­
tor. I t  can be shown that the set o f quantities pnj
(for any n) can be expressed in terms o f nine quan­
tities.

P l l P12 Pi

P21 P22 p2

ƒ 3 1 P32 p 3

constituting the stress tensor P. In consequence o f the law o f balance of angular momen
turn this stress tensor is symmetric, i.e. p,. = p.j.
If the normal n is in the ^-d irection , then the stresses p2 , and pJ3 are in the plane of
the surface element and p is normal to it. Conventionally, a tension is represented by
a positive p22. p , , ,  p22 and p3 3 are normal stresses, whereas p , ,  -  P22 is called the
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first normal stress difference, and p22 — P33 the second normal stress difference, p ,
pi 3 and p 2 3 are the shear or tangential stresses. For incompressible liquids the isotropic
hydrostatic pressure will be left out of account, and we shall deal only with the extra­
stress tensor caused by the deformation of the media.

It is a general result^ 7 ,8 ) of continuum mechanics that in viscometric flows of incom­
pressible fluids for which the stresses are only determined by the past history of the
strain, and which have been in the steady state for a sufficiently long time determined
by the material constants (the so-called incompressible simple fluids), all components
of the stress tensor are only functions of the steady shear rate. The actual form of these
functions is characteristic of the nature of the material. Furthermore, for these types of
flow of simple fluids the shear stresses are odd functions of the shear rate, whereas the
normal stresses are even functions of this rate of shear.

For non-steady curvilinear flows, the stresses are definitely not unique functions of the
value of the shear rate. This can be easily shown for the different cases of superposition.
For the case of orthogonal superposition, the rate of shear is given by Eq. (I 46). If  co is
of the order of q, or smaller, a good approximation is

• a2 co2
7  = q +":------ (1 + cos 2 cot)

4 q

If the shear stresses were unique odd functions of this shear rate, stress components
should arise at orthogonal superposition proportional to a 2co2 and of frequency 2 co.
In the case of parallel superposition Eq. (I 47) will give for the same reason rise to shear
stress components proportional to aco and of frequency co. However, this difference in
behaviour is definitely not in comformity with the experimental results, as will be shown
later. Moreover, it follows from Eq. (I 47) that in pure oscillation experiments the linear
viscoelastic region would be much smaller at high frequencies than at low frequencies,
and this is definitely not the case. The length of the linear region proves to be all but in­
dependent of the frequency6).

By means of a first order approximation of the theory of simple fluids Coleman and
Markovitz9) regained the commonly used 10, 11) expressions for the shear stress compo­
nents in sinusoidal shear of frequency co and with a small amplitude a. In the stationary
state, the shear stresses can be written as

Py = <i | G * | sin (cut + Sq ) = a G ' sin cot + o G "  cos cot (I 5 0 )

The normal stresses are equal to

pii = (TV® + A ' sin 2 cot + A "  cos 2 cot) (I 51  j

The quantities G' and G" are called the storage part, and the loss part of the complex
shear modulus G * and the phase angle between the shear stress and the shear strain
is given by tan 6 Q = G "/G '. The stress a G' sin cot is the component of the shear stress
in phase with the shear a  sin cot, and aG" cos cot represents the shear stress component
90 out of phase with the shear. The normal stresses are proportional to the square of
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the amplitude o f the strain and are sinusoidal functions of the double frequency 2 co.
A ll quantities G', G ", A0 , A ' and A "  are functions of the frequency.

If the shear rate 7 is constant and equal to q, the shear stresses are

pu = ̂ jj (q) q (l 52)

and the normal stresses

P i i= 0 i i< q )  q2 (I 53)

Generally, the viscosity 17 and the normal stress coefficient (3 are functions of the shear
rate. If rj is not a constant, the viscosity function rj(q) describes the non-newtonian be­
haviour o f the flu id . A  flu id , fo r which 0 is independent o f q, is called a second-order
flu id  and, hence, the functions 0(q) describe the deviations o f second-order flu id  behav­

iour.

In the case o f superposition, the stresses are o f the form

p.. = tjq + a  G'(co,q) sin cut + a  G"(co,q) cos cot 0 54>

p.. -  0q2 + 2 aq [N'(<o,q) sin cot + N"(co,q) cos cot] +

+ a2 [A 0 + A ' sin 2 cot + A "  cos 2 cot] (l 55>

In the normal stresses there arises a new component, proportional to a  and o f frequency
co. The quantities 2 q N'(co,q) and 2 q N"(co,q) may be called the in phase part, and the
90° out o f phase part of the normal stress modulus 2 q N*(co,q)12). (in ref. 12 the no­
tation is somewhat different; there, the normal stress modulus is simply denoted by N*).
The second term in the right-hand member o f Eq. (I 55) can also be written as
2 aq I N*(co,q) I sin (cot + 6N).
Collectively, the quantities G', G ", N ', N ", A0 , A ' and A "  represent the to ta lity  o f the
dynamic properties o f the flu id .
A t superposition these dynamic properties are not only functions o f the frequency, but
also become functions o f the steady-shear rate q. How and to  what extent this functional
relationship has been investigated, both experimentally and theoretically, w ill be dealt
w ith in the following chapters.

e. Average molecular weights o f polymers

Up to  now, almost all superposition experiments have been performed on polymer
fluids. Different kinds of synthetic polymers w ill come up for discussion, either as poly­
mer solutions or as non-diluted liquid polymers. A ll these polymers consist of mixtures
of macromolecules o f various molecular weights. The distribution of the molecular
weights can be described by means of a series o f moments of the distribution function.
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If a polymer contains a weight w. of molecules of molecular weight M. per gram, a series
of moments of the function describing the distribution of the weight fractions w. of the
various molecular weights M. can be defined according to

^ w j (M .)m (m = 0 , 1 ,2  etc.)

A series of average molecular weights is obtained by means of the definition

M ---------------------  ; m = 0 ,1 , 2 etc.

The averages obtained by setting m equal to 0, 1 and 2, are the number average M , the
weight average Mw and the centrifugal average Mz respectively. Definite values of only
M n' Mw and Mz confine the molecular-weight distribution to a certain region of the
multidimensional polymer composition space, but this limitation gives only a very rough
characterization of the composition of the mixture. Although it is possible to obtain a
much more comprehensive description of the molecular weight distribution, e.g. by
equilibrium ultracentrifugation13), the polymers used in this research will only be
characterized by at most three average molecular weights.

3. Object of the investigation

The aim of this research is to review and extend the experimental and theoretical work
performed on the effect superimposed steady shear flow exercises on the dynamic pro­
perties of polymeric fluids. So far, the investigations have been restricted mainly to the
linear range of the dynamic properties, i.e. to the range of amplitudes a for which the
oscillatory shear stresses are proportional to the oscillatory shear. This has the conse-
quense that stresses proportional to a2 are very small, and for that reason these stress
components have not been investigated experimentally. Hence, the dynamic quantities
A , A ' and A " will be left out of consideration. The greater part of the experimental
work deals merely with the effect of superimposed steady-shear flow on the dynamic
quantities G'(w,q) and G"(co,q).

Polymer melts, or concentrated polymer solutions, generally exhibit a marked non-
newtonian viscosity and a great normal stress effect in steady shear flow. On the other
hand, the linear viscoelastic behaviour of these fluids can be characterized phenomenolo­
gically by a so-called wedge-box type distribution of relaxation times. As seen from the
molecular point of view, both features seem to disclose the important role played by the
entanglement couplings between polymer chains. The cooperative motions of a multi­
plicity of molecules joined together by the entanglements give rise to the special shape
of the relaxation time distribution 1,14-19). The normal stresses have been accounted
for by a large elastic deformation of the quasi-network structure formed by the entan-
glements20-22) and the non-newtonian flow behaviour can be ascribed to a decrease in
the degree of entanglement with increasing rate of shear23-27). |t  seems obvious there­
fore to expect that measurements of the complex modulus in superposed steady-shear
flow can be used as a tool for analyzing the distribution of characteristic modes of mo-
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tion associated w ith the entanglement coupling in polymer fluids subjected to steady
shear. However, this train o f thought presupposes that as far their effects are concerned,
there is no interrelation between the two types of flow  used in a superposition experi­
ment, but this is not always born out by reality. In a way superposition experiments
come under the category of compounded experiments. As such, they yield more infor­
mation than simple experiments in which use is made only o f either steady-shear flow  or
oscillatory-shear flow. The interpretation and theoretical description o f the experimental
results proves to  be more d ifficu lt than could be expected in view of the additivity of
effects. On the other hand, if  it  were possible to  find a theory which describes these
results fa irly well, this theory would certainly give a good explanation of such effects
as non-newtonian viscosity and deviations from second-order flu id  behaviour. This is why
Huppler et al28) recommend this type of superposition experiment as a sensitive method
for testing the capabilities o f model theories.

Various investigator have tried to  give a theoretical analysis of the experimental super­
position results. Phenomenological theories, as well as theories based on continuum me­
chanics, were used w ith  varying success. Molecular theories were simply left out o f con­
sideration; they were considered useless, because, at least up to some years ago, they were
not even capable to  describe the non-newtonian behaviour o f more concentrated poly­
mer solutions. It  is the intention of this thesis to  prove that a molecular theory, after
being generalized on sensible grounds and after introduction of an energy postulate,
certainly gives a qualitative, if not quantitative, description o f the majority of experi­
mental results.

4. Survey of the contents

In chapter II the published results o f superposition experiments w ill be treated in
chronological order. The object of all investigations was to determine the effect super­
imposed steady-shear flow  has on the dynamic shear properties, hence on G '(u ,q) and
G"(cu,q). Moreover, in practically all work a parallel mode o f superposition has been
considered. Only one comprehensive study deals w ith  the case o f orthogonal superposi­
tion. We shall,of course, not attempt to  review all the results, but give the attention
mainly to those aspects that play a part in the several investigations.

A  recapitulation o f the theoretical approaches to the superposition problem w ill be pre­
sented in chapter III. In doing so, we shall have to exercise some restraints, and in some

shall merely indicate the kind of theory used and the extent to  which some theory
describes the experimental data. The success o f the various approaches w ill prove to be
very different and, particularly in a quantitative respect, not always equally satisfying.
The descriptions yielding the best agreement w ith experimental results have in common
that the steady-shear flow  somehow introduces a destruction of the liquid structure w ith
the result that the dynamic properties are affected.

A  new molecular approach w ill be presented in chapter IV. This theory is based on
Rouse's spring-bead model fo r macromolecules in dilute solutions. The effect o f entan­
glements on the relaxation time distribution has already been investigated by others, but
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will now be generalized. Further we shall introduce a postulate stating that the amount
of free energy which can be stored in the several modes of motion of entangled macro­
molecules is limited. By means of this disentanglement theory the stresses arising during
superposition will be calculated.

Chapter V will be devoted to a comparison of the theoretical predictions with already
published and new experimental results.
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Chapter II

SURVEY OF PUBLISHED EXPERIMENTAL RESULTS

1. Introduction

More than twenty years ago already Weissenberg 1) formulated the principles of a test­
ing instrument -  the 'rheogoniometer' -  fo r measuring the stresses and strains over
the entire solid angle at any point in a flowing material. A very preliminary prototype
of this instrument was demonstrated by him and Freeman 1-4). Further essential im­
provements were introduced particularly by Roberts5-9), after which the rheogonio­
meter was brought into production by Farol Scientific Instruments Ltd. (now Sangamo
Controls Ltd.) of Bognor Regis, Sussex, England. The theory of the measuring proce­
dure has been described by WeissenberglO) and more recently, by WaltersU), the
latter using a more up-to-date and direct way of approach.

One of the most important geometries that can be used in this instrument is that of
the cone-and-plate system. In this system the rate of shear is essentially constant
throughout the sample (see chapter I, 2c). The bottom plate can either be rotated
continuously fo r measuring the stresses at steady shear flow, or be oscillated w ith a
variable amplitude fo r collecting information about the material in its natural, un­
sheared state. Both the rotational speed and the frequency of oscillation can be varied
over a wide range by means o f gear boxes and motors. In addition, Weissenberg also
introduced the possibility of using this instrument fo r superposing an oscillatory mo­
tion on and parallel to a continuous rotation in order to investigate the material in
any sheared state by means of vibration methods.

Still, the first superposition results published were not obtained w ith a Weissenberg
rheogoniometer, but w ith  a coaxial-cylinder rheometer made in Japan.

2. Measurements of dynamic shear moduli by Osaki et al. (parallel)

In 1963, Osaki, Tamura, Kurata and Kotaka12) were the firs t to publish the provi­
sional results of a systematic study on the dynamic viscoelasticity of concentrated
polymer solutions under conditions of superposed parallel steady shear flow. They
studied 15 % w toluenic solutions of polystyrenes differing in average molecular
weight at 30 °C. In the range of newtonian flow  no effect of the steady shear rate
on the dynamic properties was found. A t higher rates of shear, where the viscosity
is lower according as the rate of shear q is higher, both G' and G " appeared to  be
functions of the frequency co and of q. The values of G'(w,q) and o f G"(co,q) de-
creased w ith increasing q, and these effects became more evident at lower frequencies.

In a subsequent paper13) the number of solutions investigated was extended w ith a
5 % solution of poly-n-butyl methacrylate in diethyl phthalate and a 10 % solution of
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polymethyl methacrylate in the same solvent. Both solutions showed a very strong
non-newtonian behaviour. Qualitatively, however, all these solutions displayed the same
effects. In the range o f low frequencies G'(co,q) and G"(w,q) decreased w ith increasing
rate of shear q, and the effect on G'(w,q) was invariably greater than the effect on
G '(co,q). A t high frequencies, however, G"(co,q) fo r the two strongly non-newtonian
solutions increased slightly, whereas G'(co,q) decreased w ith increasing q. The instru­
ment used did not permit measurements to  be performed at frequencies which are
Small w ith respect to q 14).The range in which the dynamic moduli at constant shear
flow could be determined was therefore fa irly limited.

3. Dynamic shear moduli experiments by Booij (parallel)

In 1966 the present writer published the results of an investigation into the influence
of superposed steady shear flow  on the dynamic properties o f two kinds of non-new­
tonian liquids15). The measurements were carried out w ith  a Weissenberg rheogonio-
meter, type R16, provided w ith a cone-and-plate system. In this investigation, but also
in all later work, the cone angle was 1°28', and the diameter of the plates 7.5 cm.
The entire instrument.had previously been tested w ith a newtonian liquid -  a low-
molecular-weight polyisobutylene. The dynamic viscosity G'Vcu of this liquid was
found to be independent of the frequency to, while the rotational viscosity p2 /q
during shear flow  in the 1-direction w ith a velocity gradient in the 2-direction, proved
to be independent o f the rate o f shear q. Moreover, the two viscosities were equal
w ithin the accuracy o f measurement and the phase angle between the oscillatory shear
stress and the oscillatory shear was 90°. Superposition o f the two kinds o f shear in
this newtonian liquid appeared to have no effect on the dynamic viscosity and the
rotational viscosity.

Subsequently, the investigation o f two distinctly non-newtonian solutions was de­
scribed, although, actually, more solutions were studied. Some data on these solutions
are listed in the following table. The solvent was invariably decalin.

Sol.
no.

Dissolved
substance

Cone.
% w

Propylene
% w

Mw
x 10‘ 6

Mn
X 1 0 '4

fa]
dl/g

1 Al. dilaurate 10 _
2 E.P. copolymer 5.0 41 7 6.3 6.7
3 E.P. copolymer 5.85 41 7 6.3 6.7
4 E.P. copolymer 5.0 47 1 5.2 3.6
5 E.P. copolymer 5.0 41 66 5.4 4.0

The intrinsic viscosity [17] was measured at 135 in decalin, M was determined
by osmometry and by light scattering.

To give at once some idea of the properties o f these solutions, the steady-state values
of the rotational viscosity are presented in Fig. 11,1 and the normal stress values in
Fig. II,2, both as functions of the rate of shear q. A ll the measurements were carried
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out at 25 °C .

—•Logq

Fig. 11,1 Steady-state rotational shear viscosity TJ, in poises, as a
function o f the shear rate q, in sec * ,  fo r several solutions

—•L o g q

OjO 0.5-1.5 -1.0 - 0 5

Fig. 11,2 Steady-state normal stress difference P u - P2 2 ' *n dVnes cm »
as a function o f the shear rate q, in sec * ,  fo r several solutions

It is evident from these figures, that, in a qualitative respect, the solutions all show
the same behaviour. They all display non-newtonian viscosity and a departure from
'second-order' behaviour. Only the degree of this departure and the absolute values
of the quantities differ from one solution to another.

We shall now broadly recapitulate the results obtained on solution 1. Those relating
to solutions of the ethylene-propylene copolymers (rubbers) in decalin will be dis-
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cussed mainly in a following section o f this chapter, and in chapter V.

A solution o f aluminium dilaurate in decalin forms a structure o f interconnected m i­
celles, which implies that a great many molecules are linked up. Although we are con­
sequently concerned here w ith a to ta lly different physico-chemical system, this kind
of solutions shows many visco elastic phenomena similar to those o f polymer solu­
tio n s ^ ). The viscosity o f the solution is fa irly high at low rates o f shear (about
1800 poises at 27 °C), and strongly decreases at higher rates o f shear, as appears
from Fig. 11,1. The normal stress may rise very high at high q-values, and rapidly de­
creases at lower q-values (Fig. 11,2). A t higher rates o f shear, both quantities pass
through a maximum at the beginning o f rotation, but then decrease to  constant values.
These values are plotted in the figures.

A ll superposition measurements were evidently carried out in the range o f linear visco­
elasticity, because, w ithin the error o f the measurement, the amplitude o f the oscillatory
shear stress was found to  be proportional to  the amplitude o f the oscillatory shear.
It is always seen that the constant values o f the shear stress and o f the normal stress caused
by the rotation are not affected by the superposed oscillation. What is measured experi­
mentally is the ratio o f the amplitudes o f the oscillatory parts o f the shear stress and of
the shear, which gives |G*(oj,q)|, and the phase angle 5Q between the oscillating compo­
nents o f shear stress and shear. Both quantities are functions o f the frequency io , but
upon superposition they also become significant functions o f the rate o f shear q. Fig. 11,3
shows how the phase angle 8q  fo r solution 1 depends on the two parameters co and q.

-Q3 0 0 0.3 OS 0.7 IO  1.21.4

—► Log go

Fig. 11,3 Phase difference 5q  between the oscillatory part of the
shear stress and the oscillatory part of the shear, as a function of
the angular frequency W, in radians sec"1, for the indicated values
of the logarithm of the parallel superimposed steady shear rate q
Solution 1, 27 °C .
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The curve rnerked -  00 shows Sq es s function of oj for q 0, i.e. for pure oscillation.
A t low frequencies, the phase angle approaches to 9 0 °, i.e. to the newtonian region.
A t high frequencies, 5_ becomes highly dependent on co, more so than for the major­
ity of polymer solutions. The parameters at the other curves all give the pertinent
values of log q. A t increasing values of q, the phase angle appears to increase strongly
at all frequencies, but particularly at frequencies of the same order as q or smaller. In
many experiments it was found that the phase angle 8q can be even greater than 90 ,
although angles larger than 110 °C  have never been found. Measurements in this region
are not very accurate owing to the low signal-to-noise ratio, and these observations
have therefore been omitted in the figure. What is very clear, however, from the var­
iation of 6g as a function of co is that these curves intersect the value of 5Q = 90
when q > 0.
The frequency at which 8Q becomes equal to 90 ° is called coQ. In Fig. II,4 this fre­
quency co has been plotted against the pertinent value of the superposed rate of shear
q, not only for solution 1, but for all solutions investigated.

Log Go,

Log q

1.0 -OS

Fig. 11,4 Frequency C00 at which the phase
difference Sq  equals 7T/2 as a function of the
superimposed rate of shear q for solutions
1 {□ ), 2 (X ), 3 ( • ) ,  4 (O) and 5 (A )

The drawn line represents the relation coQ = 14 q. It now appears that all solutions
examined satisfy this relation within the accuracy of the measurement, irrespective of
the temperature at which the measurements were carried out. Solution 1 is an excep­
tion, however. A t lower temperatures (27° and 40 °C ) and higher q-values coQ is lower
than would be expected in view of the relation coQ = 14 q, but at 52 °C  the relation
is met again. It  is known. however17), that at higher rates of shear a solution of
aluminium dilaurate in toluene displays special inhomogeneous birefringence effects,
as are also observed for example upon melt fracturing of polyethene; we shall there­
fore regard this deviation as an exception to an, apparently, rather universal relation.

The absolute value of the complex shear modulus G *(w ,q) is reduced by the super­
posed steady shear flow, and that increasingly according as q increases. The reduction
is largest at the lowest frequencies. Fig. 11,5 shows the change of |G (co,q)| with the
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as

Fig. 11,5 Absolute value o f the complex shear modulus G*(Cd,q), in
dynes cm , as a function of the frequency Cd, in radians sec” 1, for the
indicated values of the logarithm of the superposed steady shear rate q.
Solution 1, 27 °C

- 1.0 - 0.5 rS 2p

Fig. Il,6  Dynamic viscosity G"(Cd,q)/Cd, in
poises, as a function o f the frequency Cd for
the indicated values of log q. Solution 1, 27 °C

Fig. 11,7 Quantity G'iOJ.ql/CJ2, in dynes cm-2
sec , as a function of the frequency Cd for the
indicated values o f log q. Solution 1, 27 °C
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frequency to fo r various values of q.
From the average experimental values, as represented by the drawn curves in Figs 11,3
and 11,5, G"(co,q) = |G*(w,q)| sin 5Q and G'(co,q) = |G*(co,q)| cos 6Q were calculated,
after which the quantities G"(cj,q)/co and G'(oo,q)/oo2 were plotted as functions of the
frequency to fo r the various values o f the superposed shear rate q in Figs 11,6 and 11,7.
Both figures show that the effect o f superposition on G'(cj,q) is invariably greater than
the effect on G"(co,q). G"(co,q) is always reduced at low frequencies, but not always at
high frequencies, while G'(cu,q) decreases at all frequencies when q increases. The most
noteworthy feature o f these figures is that the curves G'(co,q)/co2 vs to pass through a
maximum, especially at high q-values. Curves of this shape have never been found in
pure oscillation measurements.

4. Dynamic shear moduli experiments by Simmons (orthogonal)

Using a rheometer developed by himself18, 19), Simmons carried out various kinds of
superposition experiments18-20). The geometry of this instrument is such that the liquid
examined is contained in a gap between two coaxial cylinders in which a thin-walled tube
oscillates in axial direction. The liquid is sheared inside as well as outside the tube. As
the cylinders can also be rotated, or oscillated, around their axis, a steady shear flow or
an oscillatory shear flow  can be orthogonally superposed on the afore-mentioned shear
produced by the oscillatory motion of the tube. We shall now briefly give only the re­
sults o f the orthogonal superposition o f a steady shear flow  on the dynamic properties
o f the liquid.

For newtonian liquids it  was found that the dynamic viscosity G"/co is not influenced
by the rotation. The non-newtonian liquids investigated consisted fo r the greater part o f
solutions of polyisobutylene (PIB) in cetane and, fo r a smaller part o f solutions o f car-
boxymethylcellulose in water. The measurements were all carried out at 25 °C. The
amplitude a  o f the oscillation was taken so small as to ensure that during pure oscillation
the measurements would be performed in the linear viscoelastic region. Simmons did not
check experimentally whether the dynamic moduli were independent o f a also during
superposition, but considering the very low values o f a, we may suppose that they were.

To permit some comparison o f the results fo r orthogonal superposition with those for
parallel superposition, we shall now also give some o f Simmons' results, expressed in
|G*(to,q)|, 6_, G"(co,q)/o; and G'(w,q)/co2 . This can be done because in Simmons'
thesis19> G"(co,q)/uj and G'(w,q) are presented in tabular form. For our purpose we
take the experimental values obtained on a 8.54 % solution of PIB in cetane. In Fig. 11,8,
5 has been plotted as a function o f low to fo r some values o f log q.
Simmons mentions the value of G'(to,q) = 0 fo r several relatively low frequencies. The
corresponding value fo r 5G being 90^ would imply however, that the curves o f as a
function o f log to show a discontinuity at 6G = 90° (see fo r example the curve fo r
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F ig. I I ,8 Phase difference 5 q  as a function of the frequency CO for the
indicated values of the logarithm of the orthogonal superimposed rate
of shear. Simmons, PIB-solution

log q = 2.61). Since such a discontinuity is not acceptable, we must assume that also in
Simmons' experiments G'(co,q) must have had small negative values at low frequencies,
just as they had in our case of parallel superposition. Such a conclusion is not in conflict
with the experimental evidence, because under these conditions also Simmons' rheometer
does not give accurate data of G'(cu,q)21).

If we now compare Fig. 11,8 with Fig. 11,3, it can be seen from the curves for log q = -  °°
that in the case of pure oscillation the aluminium dilaurate solution shows a much stronger
dependence of S Q  on the frequency than the solution of PIB. Qualitatively, however,
superposition produces the same effect. In a quantitative respect, on the other hand,
orthogonal superposition of a steady rate of shear appears to have a smaller effect on the
dynamic shear moduli than parallel superposition. This is particularly clear from the fact
that the relation u }Q = % q does not hold in the case of orthogonal superposition.
Here WQ appears to be much smaller than % q. Comparison of Figs 11,5, 11,6 and
11,7 with the frequency plots of Simmons' values of |G*(to,q)|, G "(w ,q )/w  and
G'(co,q)/cu2 for orthogonal superposition (Figs 11,9, 11,10 and 11,11, next page) also
shows that the effect of parallel superposition is much greater than that of orthogonal
superposition.

Another difference between the two types of superposition is that during parallel super­
position at high frequencies G'(o>,q) decreases with increasing q, whilst during orthogonal
superposition the effect of q on G'(co,q) is negligible at high values of co. Moreover,
Tanner and Simmons22) point to another peculiar effect. With orthogonal superposition
the limit of the dynamic viscosity G"(w,q)/co for co— 0 appears to be significantly
greater than the rotational viscosity rj(q) at the same value of q. In the first instance, one
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Fig. 11,9 Absolute value o f the complex shear modulus G*(CO,q) as a
function o f the frequency CO for the indicated values of log q in the case
o f orthogonal superposition. Simmons, PIB-solution

— -L o g  oj

20 25 3.00.0 0.5 1.0

Fig. I I ,10 Dynamic viscosity G"(CO,q)/CO as a
function o f CO for the indicated values of log q
in the case of orthogonal superposition.
Simmons, PIB-solution

0.80

—► Logoj

Fig. 11,11 Frequency dependence of G'lCO.ql/CO2
for the indicated values o f log q in the case of
orthogonal superposition. Simmons, PIB-solution
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would expect these two viscosities to be equal. With parallel superposition it is just the
reverse. Here, the limit for co— 0 of G"(co,q)/co is significantly lower than ry(q). We
shall revert to this problem in Chapter V.

5. Dynamic viscosity measurements by Kuroiwa and Nakamura (parallel)

On the basis of the Oldroyd theory, the present author predicted (see Chapter II I)  that
for viscoelastic liquids under parallel superposition the dynamic viscosity G"(cu,q)/co as
a function of the frequency may show a maximum. This prediction induced Kuroiwa
and Nakamura23) to study this dynamic viscosity under superposition on two electrolyte
solutions, viz. on a solution of carboxymethylcellulose and a solution of sodium poly­
acrylate. They used a coaxial-cylinder rheometer whose outer cylinder can be rotated at
various speeds, while the inner one can be brought into a state of damped oscillation at
various frequencies. The dynamic viscosity as a function of the frequency was now
measured at various values of the superposed steady rate of shear, particularly at co-values
much smaller than q, i.e. in the range where the investigators mentioned in the previous
sections did not succeed in performing measurements. It now appears that for both solu­
tions this dynamic viscosity during parallel superposition is indeed an increasing function
of the frequency in the range of frequencies smaller than the value of the steady rate of
shear. Besides, this dynamic viscosity during superposition is invariably smaller than the
rotational viscosity at the same q-value.

6. Measurements of oscillatory normal stress components by Booij (parallel)

So far we have dealt only with the effect of superposed steady shear flow on the dynam­
ic shear properties. However, the oscillatory normal stress components are also strongly
influenced by superposition. Parallel superposition is accompanied by the development
of a new normal stress component, whose shape is sinusoidal with the same frequency
as the shear and proportional to a. A t higher values of the steady rate of shear, this
component comes to predominate over the oscillatory terms proportional to a2 and of
frequency 2 co (see Eq. (I 55)). The total normal stress at parallel superposition can then
be described as

P u -P 3 i “ (P ii -P 22,rot + 2 a q |N * (w^ ) l sin M  + 5n ) =

= p̂ i l —P2 2 ^rot+ 2 oq [N '(w ,q) sin cot + N"(co,q) cos cut]

in which (pt , ~ P 2 2 )rot represents the steady normal stress difference resulting from the
rate of shear q. As has been established experimentally, the value of (p —p ) at a
given value of q is not measurably influenced by the superposed oscillation. A t low values
of q, the second term does not yet predominate, so that this oscillatory component can
be determined experimentally only over a limited range of q- and co-values.
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For the solutions 2 .4  and 5 mentioned in the table of section 11,3, the normal stress
components have been investigated experimentally, and the results have been published^)
The constant values of the normal stress and of the viscosity as functions of q were given
already in Fig. 11,2 and Fig. 11,1, respectively. These quantities differ considerably from
one solution to another. This is not surprising if we consider the difference between the
M values for the three rubbers. Still, this is by no means the only cause. The molecular
weight distribution and the degree of branching and the branching structure of the three
samples are also completely different. All these differences contribute to the difference
in the viscoelastic properties of these solutions. As the properties of solution 2 will be
further dealt with in Chapter V , we shall restrict ourselves here to solutions 4 and 5.

In measurements of oscillatory normal stress components very stringent demands had to
be made on the Weissenberg rheogoniometer, particularly as regards correct alignment,
etc.24). Although in the case of superposition we are not concerned with truly visco­
metric flow, the normal stress is again an even function of the rate of shear q. When the
direction of the steady rate of shear q is reversed, the constant component (Pj l  —  P2a'rot
remains exactly the same, but the phase angle 8N turns through exactly 180°, as a result
of which the oscillatory component also becomes an even function of q. The experimen­
tal value of 8 M at a negative q will be denoted 6N , that for an equally large, but positive
a 8 These two phase shifts were measured for many combinations of co and q; one
third+of all the observations is represented in Fig. 11,12. From 128 observations we found
5 _  8 = (180 ± 1) °  where the error of 1° ,  which represents the average absolute
deviation from the mean, corresponds to the experimental inaccuracy.

14°* - i f  -20* Of » •  20* 30* 40° SO* 1 2 3 4  5

/
X X
/

Fig. I I ,12 Phase difference between the oscil­
latory part of the normal stress and the oscilla­
tory part of the shear at equal, but oppositely
directed superimposed steady shear rates - 0 ^ ,

Fig. 11,13 Amplitude of the oscillatory normal
stress component, in cm recorder output, at equal,
but oppositely directed superimposed shear rates
. a  for positive and A for negative q - for various
combinations of CO and q for the rubber solutions

for positive and 8 N for negative q - for several
shear rate and frequency combinations for the
rubber solutions 2, 4 and 5.

2, 4 and 5
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The amplitude o f the oscillatory part o f the normal stress is independent o f the direction
o f q This is seen in Fig. 11,13, where the measured amplitudes, expressed in cm deflection
of the UV recorder, are represented fo r several combinations o f u> and q, both fo r clock­
wise and counter-clockwise rotation. Averaging over 128 measurements gives
A +/A  = 1.00 ±0.03,

the absolute mean error o f 3 % corresponding again to the experimental error.

Figs 11,14 and 11,15 show how the experimental values o f 5N fo r the solutions 4 and 5
vary w ith the frequency at several values o f the superposed rate o f shear q.

— ' 1.0

-♦Log  co

' * - 0.6

Log co

Fig. 11,14 Phase difference 5 N as a function of
the frequency C0  for the indicated values of
log q. Solution 4

Fig. 11,15 Phase difference 6N as a function of
the frequency O fo r  the indicated values of
log q. Solution 5

The phase angle 6N increases w ith q. The curves «N -  log w  are nearly parallel to each
other, and demonstrate that, at least in the frequency range examined, 6M decreases
with increasing oj. N

The phase angle 5N can be positive as well as negative, as appeared already from Fig II 12
and fo r most values o f q one can find a value o f w  at which 5 = 0 ° . This value increases '
w ith q. The frequency at which 6N = 0°, has been plotted in Fig. Il,16 as a function
of the steady rate o f shear q fo r the three solutions 2 ,4  and 5.
The three curves thus obtained certainly do not coincide. For the sake o f comparison
also the line coQ -  % q has been drawn in this figure. We demonstrated already in Sec-

" Z  * 5 *  m the C3Se ° f  paral,el suPerPos't i°n  this line describes the relation between
q and the frequency r t  which 5Q = 90°, and is independent o f the other properties
of the solution. From Fig. 11,16 it appears that the nature o f the solution has a pro­
nounced effect on the relation between and q. However, what this effect is like
cannot be established from the small number o f experiments made.
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— ►Log q

Fig. 11,16 Frequency COj at which the phase
difference 6 ^  equals 0 ° , as a function of the
superimposed rate of shear q for solutions
2 (x ), 4  (O) and 5 (A)

The absolute values of the complex normal stress 'viscosity' N*(co,q) as a function of co
at some values of q has been given in Fig. 11,17 (solution 4) and in Fig. 11,18 (solution 5).

0 .4  — »

0.6— * Log|N*(oj,q)|

1.0 - '

Log|N*(CJ,q)|

Log o j
Log co

Fig. 11,17 Absolute value of the complex nor­
mal stress viscosity N*(CO,q), in poises, as a
function of the frequency CO for the indicated
values of log q for solution 4

Fig. 11,18 Absolute value of the complex normal
stress viscosity N*(CO,q), in poises, as a function
of the frequency CO for the indicated values of
log q for solution 5

A t a given q the maximum in | N*(co,q) I as a function of co shifts to higher frequencies

increases
Starting from the curves drawn through the experimental values in the above f i^ e s w e
can now calculate N'(co,q) = I N*(co,q) I cos 5 N and N"(co,q) = IN  (co,q) I sin 6 N - Fo
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solution 4 these quantities are given in Figs 11,19 and 11,20, and for solution 5 in Figs
11,21 and ll,22 *).

N'(in poise)

—►Log u )

Fig. 11,19 Real part of the normal stress vis­
cosity N'((o,q) as a function of the frequency
CO for the indicated values of log q for solu­
tion 4

N(in poise)’

—-Log cu

Fig. 11,20 Imaginary part of the normal stress
viscosity IM"(<o,q) as a function of the frequency
CO fo r the indicated values of log q for solution 4

It is evident from these figures that in the range measured N '(w,q) decreases with in­
creasing q. Further, N (w,q) is invariably positive and shows a maximum as a function
of 03. This maximum becomes less pronounced and shifts to higher frequencies according
as q increases. N"(co,q) may be positive as well as negative. It is very small at high q
values and varies much more according as q is smaller. In the latter case, N"(co,q) as a
function of co shows a distinct minimum which shifts to higher frequencies with in­
creasing q.

) The shape of all these curves differs from that of the curves plotted in Figs 4 to 7 of ref. 24.
This is exclusively due to the fact that the normal stress modulus used in ref. 24 is equal to 2 q
times the normal stress 'viscosity' N*(CO,q) used here.
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N'(in poise)

— ►Log co

Fig. 11,21 N'(CJ,q) as a function of log CJfor
the indicated values of log q. Solution 5

— ►Log co

Fig. Il,22  N"(OJ,q) as a function of log co for the
indicated values of log q. Solution 5

7. Dynamic shear experiments on polyethylene melts by Kataoka and Ueda (parallel)

Using a cone-and-plate type rheogoniometer specially developed fo r the investigation of
rheological properties o f polymer melts, Kataoka and Ueda25) carried out parallel super­
position measurements on molten polyethylenes. They studied four samples distinctly
differing in viscosity and normal stress.
A ll the superposition measurements were performed at fa irly low values of w  and o f q
(w and q smaller than 2 sec4 ). The effect of the steady shear flow  on the dynamic
properties o f these molten polymers appears to  be qualitatively the same as the effect
on other viscoelastic liquids described in the previous sections. A t a fixed value of co,
and increasing values of q, 8_ strongly increases, and |G*(co,q)| strongly decreases. Here
again the equipment used did not permit satisfactory measurements to  be carried out
at frequencies much lower than q. Also w ith  these melts the frequency coQ at which the
phase angle 8 Q becomes equal to 90° appears to a good approximation to  satisfy the

relation cofl = % q.

8. Dynamic shear moduli measurements by Walters and Jones (parallel)

Waiters and Jones26), using a Weissenberg rheogoniometer, measured the dynamic vis-
cosity and the in-phase modulus o f some solutions in water of a polyacrylamide. The solu­
tions show a very strong non-newtonian behaviour and at higher values o f q their viscos­
ity is only o f the order o f 10 poises.
The curves o f G"(co,q)/co and o f G'(co,q) as functions of w  at various values o f q again
have the same shape as those fo r other viscoelastic liquids studied by other investigators.
The only difference was that Walters and Jones could also carry out measurements on
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their solutions at frequencies much lower than q. Their curves clearly show a maximum
in the dynamic viscosity as a function o f to and negative values o f G'(co,q) when to <  q.
They further show that also fo r this type o f solutions the relation to = H q  is valid.

Besides, l im -------— js invariably smaller than rt(q).
to—o w

9. Summary

If a viscoelastic liquid is subjected to a steady shear flow  o f shear rate q on which a
parallel oscillatory shear w ith frequency to and a small amplitude a is superposed, experi­
ments disclose that:

(i) The shear stress is composed o f the sum o f a constant stress and an oscillatory stress
with frequency to. The magnitude o f the constant stress at a given rate o f shear q is in­
dependent o f the superposed oscillation. The oscillatory component is proportional to
a, but the proportionality coefficient decreases when q increases. The phase angle 6r
o f this component w ith respect to the oscillatory shear increases according as q increases.
Between the frequency coQ at which 6q = 90°, and the rate of shear q, there appears to
exist a relation <oQ = % q, which was observed experimentally over a range o f four decades
in w  and q. This relation seems to be universal and has been found fo r liquids covering a
viscosity range o f 5 decades.

(ii) A t higher values o f q also the normal stress consists o f the sum o f a constant stress
and an oscillatory stress w ith frequency oj and an amplitude proportional to aq. The
proportionality coefficient decreases according as q increases, and the phase angle be­
tween this component and the oscillatory component o f the shear is greater according as
q increases. Besides, this phase angle shifts by 180°, if the direction o f q is reversed. The
magnitude o f the constant component at a given value o f q is not influenced by the
superposed oscillation.

If an oscillatory shear is orthogonally superposed on a steady rate of shear q, experi­
ments show that the constant shear stress, resulting from the steady rate o f shear is not
affected by the oscillation. In a qualitative respect the orthogonal oscillatory shear stress
resulting from the superposed oscillation is influenced in the same way by q as the oscil­
latory component of the stress during parallel superposition but, quantitatively, to a
lesser degree. The relation = 14 q is not applicable in the case of orthogonal super­
position.
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Chapter III

SUMMARY OF PUBLISHED THEORETICAL APPROACHES

1. Introduction

In chapter I, section 3, it was briefly indicated how a number of important properties of
polymeric liquids can be considered from a molecular point of view. However, attention
may be turned also to other properties of viscoelastic liquids. When a viscoelastic liquid
has been deformed, elastic recovery takes place when the forces acting on it are removed
Upon extrusion of these liquids through fine perforations, the diameter of the resulting
fibres may well be much larger than that of the perforations. Many other properties of
viscoelastic liquids can be mentioned which rather emphasize that the rheological pro­
perties are at any moment a function of the recent history of the material. For describ­
ing this type of effects, many theories make use of a special system of coordinates, the
so-called convected or embedded coordinate system, which has already been discussed
in chapter I, section 2b. Rheological equations of state are then defined in this system.

In the present chapter we intend to deal merely with those theories which have been
used in explaining the results of superposition measurements on polymer systems. The
chapter has been subdivided in accordance with the differences in theoretical approach.
However, this treatment will be rather brief and not chronological. A molecular-theoreti­
cal approach will be discussed fairly extensively in the next chapter.

A very extensive discussion on various kinds of theories, in which special emphasis is
given to their suitability for explaining superposition results, can be found in the thesis
by Simmons^).

2. Application of Oldroyd's theory

Oldroyd starts from the concept that the rheological properties of a material volume
element of a viscoelastic substance, which at a given moment t  is located at a position r
in space, are determined i.a. by the quantities associated with the same volume element
at previous times t', when it was located at positions r'(r,t,t'). As, however, tensor quan­
tities associated with different points in space cannot simply be added up, use is made
of convected quantities that remain associated with the same volume element whose
coordinates relative to a convected system of base vectors remain constant throughout
the deformation history. As we have seen in chapter I, there exist certain transformation
rules which express these convected quantities in terms of the fixed coordinates x' at
time t. When all convected quantities occurring throughout the deformation history are
transformed back into quantities expressed in the coordinates of a single point x ‘ in
space, summation of these quantities becomes again possible. In 1950, Oldroyd2) gave
the various transformation formulas, not only for tensor quantities such as the rate of
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strain, which is described by formula (I 40) or (I 41), but also fo r converted integrals,
time derivatives, etc.
The procedure presented in the foregoing is useful only if the quantities governing the
rheological properties of the volume element at time t  are known. In other words, the
rheological equation of state, so the relation between stress, strain and time, must be
known first. In addition, fo r application of the procedure to  be possible, the deformation
history of the volume element must also be known, since it is from this deformation
history that the displacement functions r'(r,t,t') must be derived.

For the rheological equation of state Oldroyd uses the following differential equation
between stress tensor P^and rate of strain tensor E:

<1+t1- ï )P = 2 t?0 (1 + ’-2 (III D

It contains two characteristic parameters Tl and t2 , both having the dimension of time.
In the case of low shear rates Oldroyd3) derived this equation fo r a dilute emulsion of a
newtonian liquid in another newtonian liquid; it  is equivalent to that derived earlier for
a dilute suspension of perfectly elastic spherical particles in a newtonian liquid by
Fröhlich and Sack4). Both physical models give r l  >  r 2.

Oldroyd2) now supposes that this equation holds for the system of converted coordinates,
in which 9 /9t becomes equal to  the converted time derivative 6/St, and, hence, equal to
the rate of change as 'seen' by an observer in a convected coordinate system. Under con­
ditions o f simple shear flow  in the 1-direction w ith a constant velocity gradient q in the
2-direction, it  appears that the shear stress is proportional to q (and, hence, the viscosity
tj independent o f q) and one normal stress component proportional to  q2 . In the co- and
contravariant cases we thus have*»)

A (covariant) t? = V0 > Pi i  “  P33 ^  P22

B (contravriant) n = 17 < P n
Hence, w ith Eq. ( I l l  1) applied in a convected coordinate system, we find a second-order
flu id  behaviour, while it  can also easily be demonstrated that, according to this equation,
the dynamic moduli in the case of parallel superposition w ill be independent o f q. Con­
sequently, the equation is unsuited fo r describing the properties o f viscoelastic fluids.

In subsequent considerations, Oldroyd5, 6) replaces the derivatives in Eq. ( M ID  by other
types o f time derivatives. In doing so he uses the so-called Jaumann derivative, which
makes allowance fo r the translation and rotation o f a material element, but not fo r the
deformation. The results of this approach5-7) prove to agree better w ith the observation
that in viscoelastic materials under conditions of simple shear flow  there may arise shear
stresses and normal stresses whose increase w ith the rate of shear is neither linear nor
quadratic but more complicated. In addition, this theory provides8, 9) equations fo r the
dynamic quantities of oscillatory shear which are in good agreement w ith the phenomeno­

logical expressions.
Simultaneously w ith the firs t experimental superposition results the author published a
theoretical approach!0) based on the use o f the Jaumann derivative in the differential
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equation (III 1). These calculations w ill not be repeated here. For the various stress com­
ponents in the case of parallel superposition the following equations were derived (see
also ref. 11):

Pj i  =7»0P
1 +T l T2q2

1 + 7^q2
(III 2)

v y  r ^ - r J ( 1 + r X - 3 r ? q a)
G'(co.q) = — ------  — ------ 2---------- !------------- i------

1 + tJq2 |_(1 - t \ u 2 + T2q2)2 + 4 t2co2

G"(co,q)

N'(oj,q)

f d  + T jT w 2 - r  t q2)(1 +T2w2 - T 2q2) + 4 t t q2l
= 7? w  -------------------------------------------------------i------------- !-------

|_ ( 1 - r ^ w 2 + w 2q2)2 + 4 t2co2 J

tiou,2ti T <T! - T2K3 + T jw 2 - r 2q2) 1

1 + tJq2 j^(1 —t^co2 + r 2q2)2 + 4 t2co2J

(III 3)

(HI 4)

(Ml 5)

(III 6)

N"(w,q) = 2 rj w  ---------------- ---------------------------  ( IH 7)
° |_ (1-rJto2 +rJq2)2 + 4 r X j

Qualitatively, some o f these equations are in agreement'll. 11) w ith  certain experimental
features, whereas others are definitely not:

i) According to  Eq. ( I l l  2), the viscosity is a decreasing function o f q. This also appears
from experimental data (Fig. 11,1).

ii) According to  Eq. ( I l l  3), the normal stress increases less than quadratically w ith  q, as
is also confirmed experimentally (Fig. 11,2).

iii) According to Eq. ( I l l  4), G'(co,q) becomes negative if w2 < 3 q2 1/t2 , whereas the
experiments yield negative values of G '(w,q) if w  < % q (Fig. II,4)

iv) According to Eq. ( I l l 5), w ith r 2 = 0, G"(w ,q) becomes negative if  w 2 < q2 — 1/t2 .
However, there is no experimental evidence showing that G"(co,q) ever becomes negative.

v) Eq. ( I l l 6) predicts negative values fo r N'(a>,q) if w2 < q2 -  3/t2 . The experimental
values of N'(co,q) are all positive (Figs 11,19 and 11,21)*

vi) Eq. ( I l l  7) predicts positive values fo r N"(<o,q) at all values o f co and q, but, as has
been found experimentally, N"(co,q) can become negative (Figs ll,20  and ll,22).

Upon a further, more quantitative, comparison w ith  the experimental data these equations
moreover appear to  have the following drawbacks; these are o f a more general nature:
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a) The number o f parameters is very small. The shape of the curves representing the
stress components as a function o f co or o f q is, in fact, determined mainly by the one
relaxation time t . Asa result, the calculated curves show much larger changes in slope
than any experimental curve! 0).

b) The expressions fo r the dynamic quantities have almost a pole. According as c*j ap­
proaches q, the denominator becomes very small, w ith the result that all dynamic quan­
tities show a maximum and G'(a>,q), G"(w ,q) and N'(o>,q) pass very sharply through
zero. These singularities were pointed out already by Yerushalmi, Katz and Shinnar12).

Both drawbacks are clearly evident from the following figures. With the aid o f Eqs (III 4)
to (III 7) (with t2 = 0) the quantities |G * I = (G'2 + G "2) * , 5 Q = arc tan (G '/G "),
IN * | = (N '2 + N "2 ),/4and 6N = arc tan (N'VN') have been calculated as functions o f the
frequency fo r some values o f the superposed shear rate expressed as T jq.

Fig. 111,1 Calculated absolute value of the reduced complex shear
modulus G*(6J,q) Tj/T}0 as a function of the reduced frequency TjCO
for the indicated values of the reduced superimposed shear rate Tt q

From Figures 111,1 and 111,3 it appears that, in particular at higher shear rates, both IG * I
and | N * | go through a maximum, and Figures 111,2 and 111,4 show that in Oldroyds
theory the phase angles 6Q and 5N are highly dependent on the frequency. In particular,
5 can assume very high values, while 6 ^  is always positive and increases to slightly
beyond 90° only at higher q-values. These quantities may vary considerably w ithin a
fairly narrow frequency range. In a qualitative respect the experimental results presented
in the previous chapter show some agreement w ith  this theory; quantitative description,
however, cannot be given on this basis.

Another drawback of the differential equation (III 1) to be mentioned is the following.
Tanner and Simmons!» 13)( analyzing various generalized forms o f (III 1) fo r the case of
orthogonal superposition, noted an instability. If a disturbance in velocity is orthogonally
superposed on a steady flow, it  appears that under certain conditions this disturbance is
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Fig. 111,2 Calculated phase difference 5q  as a function o f the reduced
frequency Tj CO for the indicated values o f the reduced superimposed
shear rate 7^ q

L°g —

Fig. 111,3 Calculated absolute value o f the reduced complex normal
stress viscosity N#(co,q)/J}0 as a function o f T CO for the indicated
values o f T. q 1

not damped, but rather enhanced. A similar flow instability in the Oldroyd model was
noted by Pearson and Petrie 14). These instabilities are inconsistent with the experi­
mental data, which strongly detracts from the value of such differential equations as

43



p.OvO.5

- 1.0 - 0.5 0.0 05

—» Log (£)<*>)
10 15

Fig. I I I ,4 Calculated phase difference 5^ as a function of CO for the
indicated values of T q

3. Application o f Walters' equation (thixotropy theory)

a. Introduction

Walters15-17) also uses a system o f convected coordinates, but fo r the rheological
equation o f state he takes the following integral equation:

- o o  o

This integral equation is a very general one, and indicates that all components o f the
stress tensor at a given time t  are related to the corresponding components of the rate
of strain tensor at all previous times t '  via proportionality constants which decrease
exponentially w ith  increasing (t—t') / r .  In other words, at any time t  the stress in a volume
element 'remembers' all rates o f strain to  which it has been subjected previously. How­
ever, it remembers less of the previous history according as the time interval t —t '  is greater
and the relaxation time r  is shorter. Consequently, the stresses in deformation mechanisms
\A/ith long relaxation times, remember relatively much of the rates of strain that have
occurred relatively long ago. For the time being, the distribution function N(t ) o f the
relaxation times r  is still an unknown factor. A model fo r the behaviour of the liquid
which obeys Eq. ( I l l 8) is a generalized Maxwell model, consisting o f an elastic spring
in series w ith  a dashpot o f a viscosity equal to  the elasticity constant o f the spring mul­
tiplied by the relaxation time.

It is again assumed that this equation (III 8) holds fo r a system of convected coordinates.
Since integration is a special form o f summation, the transformation to  the system of
fixed coordinates can be carried out in a simple way by means o f Eq. (I 40) or (I 41).

t 00
(t—t') /r  Ê(t')dt'dT (III 8)
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In the case of contravariant transformation form, Eq. (1118) yields fo r the components
p'*(r,t) o f the stress tensor:

Under conditions o f steady simple shear flow, Eq. (1119) yields a shear stress proportional
to the shear rate q (so a newtonian viscosity), and a normal stress proportional to q2,
exactly as in the case where Eq. ( I l l 1) was used in convected coordinates. Walters pointed
out that if N(r) represents the sum o f two 5-functions Eq. ( I l l  8) is the integrated form
of Eq. (1111). It is obvious therefore that if the differential equation (III 1) as well as the
integral equation (III 8) are considered to be valid in a convected system, both w ill yield
the same expressions fo r the stresses.

That Oldroyd, although starting from Eq. ( I l l  1), yet arrived at a more satisfactory de­
scription o f the stresses in viscoelastic fluids must be ascribed to  the fact that he introduced
Jaumann derivatives into the equation. As seen from the physical angle, this implies that
he validates his simple equation in a coordinate system that makes allowance only for
the translational and rotational motion, and not fo r deformation, o f the volume element.
Physically, however, it is more appropriate to define the rheological equation o f state in
a true convected system and, hence, to include also the deformation o f the volume ele­
ment in the considerations:

In the following section we shall discuss a method by means o f which Walters' integral
equation can, after introduction o f a hypothesis, be used even fo r describing the dynamic
moduli of sheared viscoelastic fluids.

b. Thixotropy theory

The so-called th ixotropy theory o f Leonov and Vinogradov 18-20) js based on Walters'
integral equation (111 8); its main assumption is that only part o f the mechanical energy
sqpplied to  a viscoelastic medium goes into the deformation process. The other part o f
this energy is consumed in the generation o f a reversible structural rupture (thixotropy)
in the medium. A further assumption is, however, that before this rupture is initiated,
the energy must have reached a certain minimum or critical value. This implies that if
the amount of elastic energy stored is below this critical value, no structural breakdown
w ill occur. The latter assumption renders the theory defin itily  non-linear.

The th ixotropy theory w ill be briefly dealt w ith below. We point out that, although our
way of approach differs rather strongly from that originally followed by Leonov and
Vinogradov, the two are in fact equivalent.

Suppose that a liquid fo r which Eq. ( I l l 8) holds in a system o f convected coordinates
is subjected fo r a period t '  to a flow  field which, in a system of fixed coordinates, is
described by a rate o f strain tensor ek l(r',t'). If we consider only those Maxwell elements
whose relaxation times come between t and t + dt , and whose collective elasticity modu­
lus equals N(r)dT, it follows from Eq. ( I l l 9) that the stress on these elements is given by:

t <*>

pii(r,t) = 2 ƒ  ƒ  N(r)e—< ^ d r X £ ’ ( I l l  9)
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3x' dx*
p'*(r,t)dT = 2 f êk (r',t')dt'dT

k i 3x 'K 3x
(III 10)

The elastic deformation o f these elements at time t  then equals:

p Mf.t)dT

N (r)dr
(III 11)

The amount o f work done upon the springs, i.e. the elastic energy stored in one Maxwell
element w ith relaxation time r ,  equals:

As we have already seen, a mechanism w ith a long relaxation time remembers more of a
strain rate which occurred a time t - t '  ago than does a mechanism w ith a short t. There­
fore the elastic energy stored over the interval t —t '  is also greater fo r a mechanism with
a large r  than fo r one w ith  a small t , it being assumed that the deformation history is
the same fo r both mechanisms.
Let us now firs t calculate the energy fo r a fa irly  general flow  field, comprising a simple
shear flow  in the 1-direction w ith  a non-constant velocity gradient 7 (t) in the 2-direction
and, superposed thereon, a simple shear flow  in the 3-direction w ith a non-constant
velocity gradient x(t) in the 2-direction. For this flow  field the displacement functions

f(r,t)  = % (III 12)

where:

3x* 3x*f  e - ^
J k I

ék l(r ',t')d t'
k I 3x 'k 3x ‘

(III 13)

x '1 = x 1 -  x2 J 7 ( t" )d t" (III 14)

t ’

t

X'3 = x 3 - x 2 /  K (t" )d t"

t '

The components o f | ( r ' , t ' ) , which d iffer from zero, are:

é i2 = é2 1 = Ya -y(t') (III 15)

# 3  = é 32= ’/2(C(t')

To calculate the energy we need only the terms:
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ax1 ax1

ro I-x|
CO \II d x 1 d x 3 ax3 ax1

ax'1 3x'2 3x'2 ax'1 d x '2 d x '3 ax'3 ax'2

ax1 3x2 ax2 ax1 d x 2 d x 3 d x 3 d x 2
ax'1 3x'2 3x'2 ax'1 d x '2 8x'3 d x '3 d x '2

ax3 d x 3 d x 3 d x 3 ax1 ax3 d x 3 d x 1
ax'2 3x'3 d x '3 d x '2 ax'1 ax'2 d x '2 d x ' 1

7 (t" )d t"

=  1

I

f K (t")d t"

The terms differing from zero in Eq. ( I l l  13) then are:

e11 (r,t)
r  - ( t - t ' ) / T .  r.
I  e r ( t ) /  7( t" )d t"d t '

(III 16)

(III 17)

I

e12 (T,t) = e21 (T,t) = % ^  e- ( t - t ' ,/T7(t')dt'
— OO

t

e2 3 (r,t) = e3 2 (r,t) = % ƒ  e~( t_ t , / r K(t')dt'
— OO

t  t

e3 3 (T,t) = J e“ ( t - t ' ,/rK(t') ƒ jc(t")dt''dt'
— OO I»

t  _  1 t

e13(r,t) = e31(T,t) = % J e~(t_ t')/T I K(t')ƒ 7(t")dt" + i( t ')^ K(t" )d t" | dt'
-OO L  J. t' J

The elastic energy stored per mechanism w ith relaxation time r  can now be calculated
with Eq. ( I l l 12) and, fo r the present case, equals

f ( r , t ) “ V4 [(e 11)2 + 2  (e12)2 + 2  (e13)2 + 2  (e23)2 + (e33)2 ] (III 18)

A t this point a simplification is introduced into the original th ixotropy theory. For cal­
culating the elastic energy Eq. ( I l l 13), which yields the convected deformation, is dis­
placed by an equation corresponding w ith Eq. ( I l l 8) which gives th&deformations in the
fixed system o f coordinates. However, the calculation o f the stresses is still carried out
with Eq. ( I l l 9). Owing to  this approximation the terms quadratic in the shear rate are
neglected w ith  respect to the linear terms. This is a serious restriction as a result of which
the th ixotropy theory can be applied only when the normal stresses are small compared
with the shear stresses. With this simplification the elastic energy in our example is given
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by:

f(r,t) = (e12 )* + (e2 3 )2 <"M 9 >

In what follows it will be assumed as a special case that /c(t') =  0 and that 7 ( t ) = 0 for
-oo <  t ' <  0 and 7(1') = q = constant for 0 <  t ' <  t, or in other words, that the liquid is
subjected to a steady simple shear flow from the moment t ' = 0. Then e23 =  0 and:

t

.■’ (,.«) -  * ƒ  -  e -" '] (III 201

°  qr
This means that the deformation tends exponentially to a final value o f— , which is
reached more rapidly according as the relaxation time is shorter, as can be seen in Fig.
111,5, which shows the function ( I II 20) for q — 2 sec 1 and for t equal to 1 ,2 , 3 and

4 sec.

- I.=4 sec

-I. "3  sec

-T s1 sec

Fig. 111,5 The function ( III  20) for q = 2 sec 1 and for the indicated
values of the relaxation time r

Generally, the energy f(r,t) is a function of y (t), r and t. A t a given q, a given value of
f(T,t) is reached more rapidly according as t is greater.

Leonov's basic hypothesis^) is that if the elastic energy stored increases beyond a given
critical value f *(t), the mechanism with relaxation time r is broken down. If, however,
the elastic energy f(r,t) decreases again below the critical energy f * ( r ) ,  for example owing
to a decrease of -y(t), the structure will be restored. The relaxation time of the mechanism
that has just escaped this breakdown is indicated by Tm(t). In the case considered here
application of Eqs ( I II 19) and ( III 20) then yields the implicit equation

o

[ƒ* - ( t —t')/T
7 (t')e mdt'1 = 1 1 2 .^ 1  _ e t/Tmj  = f* ( r ) ( III 21)

r = r.
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from which the maximum relaxation time t (t) can be calculated.

One consequence o f the abovementioned breakdown is that in all formulae, e.g. in the
stress equation (111 9), we can no longer integrate from 0 to  <» but only from 0 to  t (t).
From the equations (III 17) and m

r m(t>/ •m

p'* =  J  N(r)e‘* (r,t)d r

o

it follows that in our special example o f steady shear flow  starting at time t '  = 0 the nor­
mal and shear stresses differing from zero are given by:

ImW * t
P11 = 2 ƒ  N(r)dT J  q e~*t ~ t ’^ r  j  q d t"d t ' =

t (t)
/ •  r

2J  N (r) r 2q2 | t  -  e~t / r  - - e ~ t/TJ , (III 22)

and

> (t) ;  rm(t)
P21 = P12 =J  N(r)dT J  q e~ ( t - t ' )/Td t' =J '  N (r)rq  ^ 1  -  e ~ t /T J d r (III 23)

which stresses w ith t  ■ * «  transform into:
r  j

p l -  2 q2 /  N (r)r2d r and p21 = q  /  N (r)rd r

o o

The viscosity r?(q) during steady shear flow  hence equals

P21/q
- /

N (r)rd r.

The value o f rm can now be determined from the experimental data. Let us suppose
that fo r a given flu id  N(r) has been established, e.g. by dynamic measurements. The
integral

ƒ N (r)rd r

can then be calculated fo r every value o f rm. Putting these calculated values equal to  the
experimental values o f 7j(q), we find a relation between rm and q. From the experimental
results18, 20) jt  now appears that over a fa irly wide rangeof shear rates r  fo r various
polymeric liquids is inversely proportional to q, i.e. rm = a/q, a being o f the order o f 1.
Substitution of this experimental relation into Eq. (ID 21) fo r t — «> gives:
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f* ( r )  = a2/4 (III 24)

showing that the maximum elastic energy which can be stored in a Maxwell element
before rupture occurs is a constant that is independent o f the relaxation time. A ll ele­
ments break down at the same value o f the stored energy. It  also follows from Eq. ( I ll 21)
that immediately upon the onset of the shear flow  elements w ith longer relaxation times
are liable to  rupture sooner than those w ith  shorter relaxation times, whereas elements
w ith relaxation times r < a /q  are not affected at all. By means o f Eqs (III 21), (III 23) and
(III 24) Leonov and Malkin20) succeeded in describing how, after the start o f a high shear
rate, the shear stress firs t rises to  a maximum, and then decreases to  a constant level.

The th ixotropy theory w ill now be applied to the case of parallel superposition, where:

?(t) = q + oco cos cot; K(t) =  0 (III 25)

In this case substitution o f Eq. ( I l l  25) into Eqs (III 15), (III 16) and (III 19) and various
integrations give as stationary stresses (so w ith  t —-°°):

t  T  t
rm rm n (t )co2t2 j / *  N(t)cot ....

n 12 =  /  N ( r ) T q d f  +  a s i n  c o t  ƒ  - - - - - - - - - - - - - d r  +  a c o s c o t /  (- - - - - - - - —  ^ t  ( H I  26)
P J  J  1 + co2t2 J  1+W 2r2

r m ,  ,  r  N(t)co2ip11 = J  N(f)T2q dT + 2aqsincoty ------- —
N(t)coV ( 3  + coV )

co2t2 )2
dT + (III 27)

+ 2 aq cos cot
2 N(t)cot2 j  t 2 C N(t

t 1 ----------------- dr + a I  -------
J  ( 1 + co2t2 )2 J  1 +

N(t)co2t2

co2t2
dT +

+ a2 sin 2 cot
y v l l l

“/ •

3 N(t)co3t3

(1 + co2t2 )2 (1 + 4 co2T2 )

+ a2 cos 2 cott f  N(Tl
J  (1 +

N(t )co2t2 (1 — 2 co2t2)

(1 + co2t2) (1 + 4 co2t2)

For parallel superposition it  follows from Eqs (III 17), (III 19) and (III 24) that under
stationary conditions:

T q + ---------—  (cos cot + cot_  sin cot) = a (III 28)
m 1 + co2t2m

Since at all values o f co the coefficient o f a in Eq. (111 28) lies between 0 and 1, and a is
of the order o f 1, we may say that, w ith a <  1. the superposed oscillation disturbs the
value o f t  by an amount proportional to a. Eq. (111 28) is obeyed up to  the order of a

m
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if  we put

1 OUT21 o (cos cot + cotq sin cot) (III 29)T_ = Tm o Toq 1+co2r 2

where r  = a/q.
This equation shows that the value o f r  varies around the value r  determined by the
steady-state value o f q. The superposed oscillation affects the lim it value o f r , and this
effect appears to  become smaller according as q increases, as is to be expected.

For calculating the stresses w ith the aid o f Eqs (III 26) and (III 27), the upper lim it o f
the integration has to be replaced by Eq. ( I l l 29). The effect o f this, e.g. on Eq. ( I l l  26),
is that the first integral yields an extra contribution that is proportional to  a and negative,
whereas the following integrals give additional terms that are proportional to  a2; the
latter w ill be neglected. The additional terms proportional to  a indicate the way in
which the stresses decrease and increase periodically under the influence o f the periodic
breakdown and recovery o f relaxation mechanisms w ith relaxation times in the neigh­
bourhood o f tq . We shall now carry out the integrations in the following way. We first
integrate up to r  and then replace the integral over the oscillatory part o f r m by the
product o f this part and the integrant. For the stresses we thus find, w ith  an accuracy up
to the order o f a,

p12 = (p12) + a G'(w,q) sin to t + a G"(co,q) cos cot

and

p11 = (p11) + 2 aq N'(co,q) sin cot + 2 aq N"(co,q) cos cot

where

N(t )co2t3N (t )co2 t 2
G'(w,q)

1 + co2t2 1 + co 2r 2o
(III 30a)

o

N(t )COT2
N (t )cot

G"(co,q)
1 + co2t2

(III 30b)

T N(T )c o Vo o
N '(co ,q ) =

°  N(t)coV  (3 + coV )  .---------------------------- — d r
(1 + co2r 2 )2 1 + co2t2

(III 30c)

o

N(t )cot3N(t ) 2 cot2
N"(co,q)

(1 + co2t2)
(III 30d)

The steady stress components equal:
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N (r)rq  d r (III 31a)

o

Tr o

(p,1 )rot = 2 /  N (r)r2q2 dr (III 31b)

o
These formulae, except (III 30c) and (III 30d), are also given by Leonov, Tsiprin and
Faitel'son21). Hence, superposition o f a steady shear manifests itself in two ways. First
the relaxation-time spectrum on the side o f the long relaxation times narrows down to a
value o f tq which is characteristic of steady flow. Second, negative terms appear in the
expressions fo r the dynamic quantities; these are to be ascribed to the disturbance o f the
lim it t by the additional small deformations caused by the oscillations.

The above formulae enabled Leonov, Tsiprin and Faitel'son21) to  give a very satisfactory
description o f the results the present author had obtained during superposition on a
rubber solution22). The relaxation-time spectrum was calculated from the results ob­
tained w ith  pure oscillation, whereupon the relation between tq and q was derived from
viscosity measurements w ith  the aid o f formula (III 31a). Subsequently, the normal
stress was calculated as a function o f q by means o f Eq. ( I l l 31b), and the dynamic shear
moduli G'(co,q) and G"(co,q) as functions of co fo r two values o f q, viz. q = 1 sec-1 and
q = 10 sec"1, by means o f Eqs (III 30a) and (III 30b). The calculated normal stress was
about 30 % lower than the experimental one, but the difference between the calculated
and experimental dynamic modulu was much smaller. Extension o f the calculations to
cover frequencies lower than those at which experimental measurements could be carried
out, predicted that G '(w,q) becomes negative at frequencies lower than q, but that
G"(to,q) remains positive, and that the curve o f (co,q) passes through a maximum. Even
the theoretical values o f 5Q agreed, w ith in  a few degrees, w ith  the experimental values.

Let us now apply this th ixotropy theory also to the case o f orthogonal superposition.
Here, y(t) = q and x (t) = aco cos cot. For the elastic deformations under stationary con­
ditions, Eq. ( I l l  17) then give:

e11 = 2 r 2q2

e12 = e21 = rq

e23 = e32 sin cot +
1 + co2r 2

cos cot
1 + co2t2

co2t2 (co2t2 -  1)

(1 + co2t2 )
sin cot +

(1 + co2t2 )2

2 co3t3 cos cot
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The component e33is proportional to  a2 and w ill therefore be neglected. Using again the
expressions (III 18) or (III 19) fo r the stored elastic energy, we find that these expressions
contain only constant terms or terms proportional to  a2, but no terms that are proportion­
al to a, in contrast to what we have w ith parallel superposition (see Eq. ( I l l  28)). As a
result, the disturbance o f rm in the case o f orthogonal superposition is o f the order o f a2,
and the integrations needed fo r calculating the dynamic quantities, do not yield extra
terms proportional to a. The formulae fo r G'(co,q) and G"(co,q) in the case o f orthogonal
superposition are equal to (III 30a) and (III 30b) minus the negative terms outside the
integral sign. Here again, tq = a/q. Hence, according to this theory the effect o f super­
position on the dynamic quantities is greater w ith  parallel than w ith orthogonal super­
position.

4. Calculations based on Lodge's equation

a. Introduction

The first prediction o f the stress components that w ill arise in the case o f superposition
was given by Lodge23) on the basis o f his theory concerning rubber-like liquids. The
rheological equation o f state fo r these liquids has the same form as that derived, i.a. by
Lodge24), from a molecular theory fo r concentrated polymer solutions in which, owing
to physical entanglements, a network is formed which, under the influence o f thermal
motion and external forces, is continuously broken down and rebuilt. The concentration
of the network junctions formed in a time interval between t '  and t '  + d t' and still existing
at a later time t  is represented by a memory function / / ( t - t ')d t ',  which decreases as the
value o f t —t '  increases.

Now, according to Lodge's theory, all stress components at time t  are related, by the
same function n(t - t ' ) ,  to  the corresponding components o f the strain tensor at time t '
(and not to  the rate o f strain tensor, as in Walter's equation o f state (III 8)). Expressed in
fixed coordinates, the following equation holds:

t

P(t) ju ( t- t ')  S(t') d t' (III 32)

where S(t') is the contravariant strain tensor as defined in Eqs (I 34) and (I 32). For the
fairly general example of flow treated in the preceding section, we can calculate the com­
ponents o f this strain tensor directly from the displacement functions (III 14). The
differential quotients occurring in the Finger tensor B(t'), which are unequal to  zero, are

dx1 dx1 dx2 dx2 dx3 dx3 _

d x '1 dx’ 1 dx’2 dx’2 dx’3 dx’3 “ 1 (m  33)

, „ * t
dx1 3x2 r . dx2 dx3 f

—  = /  T ( t " ) d t " ; ~  -2 5 - = ƒ  x ( t" )d t '
9x '2 d x 2 J  dx'2 dx'2 J
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—  — = [ / *  7 ( t " )d t " l  <•— 2 — 2 = |" f
3x'2 3x'2 I J  J  3x'2 3x'2 I J  J

t t

—  —  = f  7 (t" )d t"  f  K (t")d t"
3x'2 3x'2 J J

t t'

Putting *y(t) equal to  q + d  cos co^t and x(t) to  tt2co2 cos u>2t, this flow  corresponds
to parallel superposition if a2 =  0, and to  orthogonal superposition if a t =  0. If confusion
is excluded, a I = a, or a2 = a. For simplificity we now put

t

J  7 ( t" )d t"  = q ( t - t ')  + a l  (sin cOjt -  sin c ^ t ')  equal to gQ +

t'

and
t

f  x ( t" )d t"  = a2 (sin co2t  -  sin co2t')  equal to a2g2

t'
With the aid of Eq. ( I l l 33) we then find fo r the contravariant strain tensor

(fl0 + a l fll )i g + a  gao i a i (go + a i 9 1)a2g.

90 + 0 i9 i 0 a 2g2

(9o+ a i gi K 9 2 a 292 a 2g22*2 (III 34)

When the rate o f shear is constant, i.e. w ith  a l ~ a2 = substitution of Eq. ( I ll 34) in
(111 32) gives a shear stress that is proportional to q and a normal stress difference
p _  p that is proportional to q2 , which shows that Eq. (111 32) does not adequately
describe^he actual viscoelastic behaviour o f polymeric liquids. It is evident from Eq.
( Ill 34) fo r the strain tensor that the shear stress during parallel superposition23) is a
complete superposition of the separate stresses that would occur w ith oscillatory shear
and w ith steady shear. A  superposed shear rate therefore does not have any effect on the
dynamic shear quantities, which is fu lly  incompatible w ith the experimental results of
Chapter II. With parallel superposition this theory w ill, however, owing to the term
2 a  g g in Sl 1, give rise to a new component in the normal stress which is proportional
to aq and oscillates w ith  an angular frequency co.

Eq. ( I l l  32) has been modified in many ways in order to obtain an improved description
of the properties of viscoelastic media. Two o f these modifications have been applied to
superposition and w ill now be discussed.

b. The WJFLMB model

Ward and Jenkins25) extended Eq. ( I ll 32) to
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t

Pd) = J [jUj S(t') + n2G(t') J d t' (III 35)

where both n and n are memory functions depending on t —t \  and G(t') represents the
covariant strain tensor as defined by the Eqs (I 35) and (I 31). With the aid o f these
equations and Eq. ( I l l 14), G(t') fo r the above case o f flow  can be calculated. The co­
variant strain tensor then has the following form:

G(t') -  (g0 + a i 91)

-<f lo+ a i M

(g0 + o , g i>2 + a’ g — a a
2 *2

— a2 g2 u (HI 36)

As appears from a comparison o f Eqs (III 36) and (III 34), the only effect o f introducing
this tensor is that in the case o f stationary shear there arises a second normal stress
difference P22 — P3 3 > which is proportional to  q2.

Lodge23) already suggested that the usability o f Eq. ( I l l  32) can be considerably improved
by making the memory function a function o f the shear rate in such a way that at any
value of t —t* the function / i ( t - t ')  w ill decrease w ith  increasing shear rate. On the basis
of this suggestion, Spriggs, Huppler and Bird26) proposed the WJFLMB model. They
started from Eq. ( I l l 35), to  which they added elements from various other theories in
a more or less empirical manner. The memory functions are made dependent o f the ab­
solute value o f the shear rate and written as a sum o f exponentials w ith characteristic
time constants An = X/na , where A and a represent constants that are to be adapted. In
the case o f steady shear flow, this model leads to the following formulas fo r the shear
stress and the normal stresses27):

% f>  V» (III 37)

A V

P n - P a a
2 «o y  n

c2 A V
(III 38)

(III 39)
P22 - P 3 3 = e ( P l l - P22)

The constants 17 , c and e may also be obtained by adaptation to experimental results.
So, in this theory there are five constants in all. Macdonald and Bird28) applied this
model to the case o f parallel superposition, and found fo r the dynamic shear moduli:

G'(w,q)
fo_  A  [ ( * +  A2 co2) + c2 A2 q2 (X2 w 2 - 3 ) ]

n= 1 (1 +A 2 co2 )2 (1 + c2A2 q2 )2
(III 40)
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and

S  "=1

tj ~  X co [ ( 1 +X 2« 2) + c 2X2q2 (3X2« 2 - 1 ) ]'o _n_________n n n (III 41)
(1 +X 2co2)2 (1 + c2X2q2)

n
Comparing these formulae w ith the expressions (III 4) and (III 5) fo r G'(co,q) and
G"(co,q) we found on the basis o f the Oldroyd theory, one sees that the two objections
a) and b) mentioned in section 2, viz. the small number of parameters, and the pole in
the expressions ( i l l  4) and (III 5), do not apply to the formulas (III 40) and (III 41).
Furthermore, according to  Eq. ( I l l 40), G'(co,q) may be negative at low values o f w  and
relatively high values of q. Therefore, Macdonald and Bird, succeeded by means o f these
expressions in giving a very reasonable description o f the influence o f q on G'(co,q) and
G"(co,q) measured by Osaki, Tamura, Kurata and Kotaka29) during parallel superposi­
tion.
According to  Simmonsl), this model also gives a fa irly quantitative description o f the
experimental results in the case o f orthogonal superposition.

c. The network rupture theory

In Lodge's original theory is independent o f the state o f deformation o f the net­
work. In the modification discussed above, ju ( t- t ')  decreases at all values o f t —t  at in­
creasing shear rate. Tanner and Simmons^ 3°) introduce a different assumption, viz.
that during deformation o f the network the function in Eq. ( I l l 32) is truncated
at a given value o f t —t ';  th is value is taken lower according as q is higher.

In the case of, e.g., simple shear flow, old portions o f the network, i.e. network linkages
that have existed fo r a long time, are very strongly deformed. Tanner and Simmons now
assume that the network w ill be ruptured after a given time t R (time to  rupture) when a
network linkage has been deformed to a given critical degree. This critical degree31)
comes somewhere between 1 and 10 and is indicated by B. A t the moment of rupture,
the memory function drops to zero. This implies that portions of the network older than
a given time t R w ill no longer contribute to the stress. In Lodge's theory, the deformation
of a network linkage equals the simultaneous macroscopic deformation of the flu id , so
that the strain tensors provide a direct measure o f the deformation o f the network. Tanner
and Simmons advanced the rather arbitrary hypothesis that the critical degree o f defor­
mation is reached when

From the matrix (III 34) it follows that fo r parallel superposition, this condition is

tr  S(t') = B2 (III 42)

(f l0  + ° , f l 1 >2 =  B *
(III 43)

and that fo r orthogonal superposition we have

g2 + a 2g2 = B2
a O 2 a 2
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The term a2g2 may be neglected because this term disturbs t R to  a degree proportional
to a2. In the case of steady shear flow  at a constant rate the following equation must
apply

q2t 2 = B2

so that the age t R o f the oldest, still existing junction is given by

t R ■ B/|q | (III 44)

In view o f what has been said above, calculation o f the stresses w ith  Eq. ( I l l  32) requires
that the lower lim it o f the integral be replaced by t —t D.R
The memory function o f Eq. ( I l l 32) is often written as a sum o f exponential functions

(III 45)ju ( t- t ')  = ^  —  exp
n t2 [ - ?

where an and r n are constants having the dimensions o f viscosity and time, respectively.
During rupturing o f the network this function becomes suddenly equal to  zero, so that
M (t-t')  is given by Eq. (111 45) fo r t R >  t - t '  >  0 and ju ( t- t ')  = 0 fo r t - t '  >  t R.

From Eq. ( I l l 32) it now follows that at a constant rate o f shear as well as at orthogonal
superposition two stress components are given b y !. 30-32)

t l = q E /  ~ < t—Oexp

E  °" tR/r"] -  q E  1 ' ‘ B/Iq

• 2 « 2 E

(III 46)

(III 47)

During orthogonal superposition there arises a shear stress which equals'!. 30)
t_

P32 aƒ  ju ( t- t ')  r sin cut — sin cot'J d(t—t')

: a  G'(to,q) sin w t + a  G"(co,q) cos w t (III 48)

with

G '(co ,q )=V ------------------ L 2t2 - ( 1 + w 2t2
n t ( 1 + w 2t2) n nn n L

+ cjt^ sin oot_ -  cos cotD )en n n (III 49)
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( I l l  50)G"(co,q) = Y ,
an cor — (sin cot_ + cor cos co t_ ) e R nfl ri n n

"n t (1 + co2r 2 )n n

In all these form ulae t R is given by Eq. ( I IÏ 44). As can be seen from  the above formulae,
i t  fo llow s from  th is theory tha t in the case o f orthogonal superposition G'(co,q) and
G"(co,q) remain positive at all values o f co and o f t R , i.e. o f q.

W ith parallel superposition, the situation is slightly more complicated. Eqs (III 34) and
(III 42) give

|q tR, + a  sin cot — a  sin co(t—t R,)| = B

from  which i t  follows32) that, w ith  an accuracy up to  the order o f a,

Substitution o f th is expression in the upper lim it o f the integral ( III 46) introduces addi­
tional negative terms in to  the Eqs (III 49) and (III 50) fo r G'(co,q) and G"(co,q); a sim i­
lar feature has been mentioned in our discussion o f the th ixo tropy  theory in the preceding
section. These terms are equal to

n r n
Owing to  these terms the dynamic m oduli in the case o f parallel superposition may be­
come negative at low frequencies^).

Consequently, th is theory o f the network rupture also discloses a d is tinct difference
between the effects o f the tw o  types o f superposition.

Simmons and Tanner used the equations (III 49) and (III 50) fo r G'(co,q) and G"(co,q)
in the ir description o f the results obtained in orthogonal superposition experiments. The
constants a and r  were obtained by adapting the form ula fo r G " to  the experimental
results o f pure oscillation measurements, w hile  B was found by adapting the theoretical
shear stresses as can be calculated as a function  o f q fo r  various values o f B w ith  the aid
o f Eq. ( I l l  46), to  the shear stresses measured during steady rota tion. B appears to  be
not quite independent o f q, and the values found are between 2 and 6. By means o f
Eq. ( I l l  47) the normal stress could then be calculated as a function  o f the shear stress.
This calculated p t 1 was found to  increase less sharply w ith  q than had been observed
experimentally.

Next, the dynamic m oduli in the case o f orthogonal superposition were calculated w ith
the aid o f Eqs ( I II 44), ( III 49) and (III 50) and the constants found. The agreement
w ith  the experimental results is indeed good over the major part o f the frequency range

B a
tR, ----------
R q q{sin cot — sin co ( t - - ) (III 51)

R n cos cot. ( III 52)

n
and

R ' nA G " = V sin cot, ( III 53)
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measured, but less satisfactory fo r G'(w,q) at lower frequencies. This is because, in
theory, the slope o f the curves o f log G' as a function o f log co is always approximately
equal to 2 at low values o f co and high values of q, whereas, as can clearly be seen from
Fig. 11,11 where G'(ou,q)/«2 vs w  goes through a maximum, the slope found from ex­
periments is occasionally much larger. Furthermore, from a quantitative point o f view
it is remarkable that at low frequencies and high shear rates the dynamic viscosity found
experimentally is always higher than the theoretical value.

5. Considerations on nearly viscometric flows

The treatises in this section are mostly based on Noll's theory o f simple fluids33). The
often used linearized rheological equations o f state can be represented3^) in a form
analogous to  Eq. ( I l l  35), and fo r this reason the present section might have been added
to the previous one. However, in this section we intend to  review several theoretical
treatments which all lead up to  lim it relations only.

Superposition flows as dealt w ith so far can be looked upon as viscometric flows w ith a
constant rate o f shear which are disturbed by small time-dependent displacements. As
such, flows o f this type come exactly under the category o f the nearly viscometric flows
introduced by Pipkin and Owen3^ ). The theory dealing w ith  flows o f this type starts
from the covariant strain tensor. The cases o f superposition belong in the non-viscometric
flow field (III 14) the covariant strain tensor fo r which is given in Eq. ( I l l 36). The
functions a g and a g are now considered to  be disturbances o f the viscometric main
flow which*w'ith t - t '2=2s, has the strain tensor:

0 —qs 0

G° = -q s qV 0

0 0 0
The additional strain caused by the disturbance superposed on this viscometric flow  is
indicated by AG = G — G °, and is equal to

0 0 0 0 0

AG = 2 a g g —a g„1 2a2 + 0 0

0 —a a 02a2 0 0 0 (III 54)

We assume that the second-order terms in the second tensor may be neglected against the
first-order terms in the first tensor. The theory o f nearly viscometric flows assumes that
the additional stresses Ap.. are linear in the additional deformations AG.., so that they
can be written as33) :
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Apj.(t) = f  Y  £  Sijk|(q.s) AGk| ds (III 55)
o

Here, are material quantities (relaxation moduli) which depend on the shear rate q
of the viscometric main flow and on the time lapse s. These quantities must satisfy a
few special symmetry rules, viz.

C =  Q — Q
°ijkl jikl ijlk = Sjilk and Y  Siikl = 0 (III 56)

Moreover, all S..kj functions disappear if an odd number of indices are equal to 3, while
the functions that have an odd, or even, number of indices equal to 1, or 2, are odd,
or even, functions of q. Applying formula (III 56) to the case where AG is given by
Eq. (Ill 55), then we find for the total stresses in the case of superposition

OO

P1 2 =i?(q)q + f  <s 1212a i9 , “ s l i a2  2 a 1g0g1)ds (III 57a)
o

f * * 1 3 2 3 a 2®2
(III 57b)

OO

p = /  S a  g ds (III 57c)
p 2 3 /  2 3 2 3  2 * 2

O
oo

Pji= 0jj(q)q2 + ƒ  <s ni2a i . i  " s ü22 2 a i9o9i )ds: i = 1' 2>3 <lll57d)
o

This case of superposition has also been dealt with by Pipkin36) and by Markovitz37)(
but their results do not contain the products a ^ g ^ . In my opinion the above authors
are wrong in considering these products to be second-order terms. Although the products
are proportional to a 1, they also contain the factor q(t—t'), which may assume a large
value. Hence, they are certainly of the first order.
The remarkable feature of this theory is that it discloses that stress components Ap..
may occur when the corresponding strain components AG^ are equal to zero. For example
a superposed orthogonal deformation a .  g2 will influence not only p23 but also p13.

With parallel superposition, the full expressions for the additional stresses read:

af (S — 2S qs)| (1 — cos cos) sin cot + sin cos cos cot I ds (III 58a)
1 2 1 2  1 2 2 2  ^  I
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- ƒ
(S.. — 2S.. qs)' 1 1 1 2  1122 H ' cos cus) sin w t + sin cos cos co tj ds

so that

G'(w,q)
/ Ŝ 1 2 1 2  - 2 S 1 2 2 2  qŜ * 1 _COSC,;s) ds

(III 58b)

(III 59)

G "(« ,q )

00

■ ƒ ( S 1 2 1 2  “ 2 S 1 2 2 2  QS) Sin WSdS (III 60)

Analogous expressions are found for N'(co,q) and N"(co,q). A t low values o f 00, cos cos
and sin cos can be written as power series, from which it follows that at all values o f q

lim
G'(co,q)

f {S1 2 1 2  2 Si 2 2 2  qs)1̂ s 2 ds (III 61)

G"(co,q)
lim
co-o w I (S1212 - 2 S 1222 qS,SdS (III 62)

Suppose now that agj is not an oscillatory function, but a parallel incremental simple
shear. In that case agt = (Aq)s, where Aq ^  q. According to Eq. ( I l l 57) the superposed
shear stress (see also Eq. (3.3) o f ref. 36) is now given by:

, ƒ  (S1 2 1 2 ~ 2 S 1 2 2 2  qS,SdS (III 63)

The resulting flow  is again a viscometric flow, but the shear rate now equals q + Aq.
Hence:

A P i:
d <P.2>mt

Aq + terms o f higher order in Aq (III 64)

From Eqs (III 63) and (III 64) it follows that

d(P i2 ,mt
OO

ƒ ( S 1 2 1 2  " 2 S 1 2 2 2  qS)SdS (III 65)

and therefore, in the case of parallel superposition,

lim
G"(co,q)

co-o w
(o,q) d <P .2>* : r?(q) 1 +("1 + ËJÜ2.1

|_ d In q j
(III 66)
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For polymeric liquids tj usually decreases w ith q, so that the term d In 17/ d In q is nega­
tive. For this type o f non-newtonian liquids it follows from the present theory that in the
case of parallel superposition

t?JJ (o,q) < r?(q) (III 67)

For orthogonal superposition Eq. ( I l l 57c) gives

p2 = a  G'(co,q) sin cot + a  G"(co,q) cos cot

with

G'(co,q)

and

OO

ƒS2323(q,s) (1 -  cos cos) ds

G"(co,q) S2323(q,s) sin cosds (III 68)

o
If ag2 denotes a small simple shear (Aq)s w ith Aq ^  q, the overall flow includes a
small angle w ith  the direction o f the main viscometric flow. The stress

P2 3 = A q  ƒ S 2 3 2 3 ( q ' S ) S d S
o

is then found to equal Aq7?(q) w ith an accuracy up to  the order of Aq. In the case of
orthogonal superposition this relation, combined w ith Eq. ( I l l 68), gives:

7)  ̂ (o,q) = r?(q) (III 69)

The main result o f this theory on nearly viscometric flows therefore is

d(p ) .
-----~ t)j! (o,q) < t j j  (o,q) — T}(q) (III 70)

dq 0 “

The theory further contains a large number o f unknown functions. However, as there
exist many relations like Eq. ( I ll 65) -  the so-called self-consistency relations35) _  suit­
able relations can be found in all kinds o f limiting cases.

Another approach starts from the BKZ-fluid theory o f Bernstein, Kearsley and Zapas38).
The rheological equation o f state used can again be written in the form of Eq. ( I l l 35)
(see ref. 34, p. 120 ff) , where the relaxation functions ft, and n2 are, however, no longer
mutually independent and are functions not only of s but also of the invariants o f G, so
of the absolute value of the strain. Bernstein39), applying this equation to the case of
parallel superposition, obtained four rheological relations which, expressed in our nota­
tion, are of the following form
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lim
G"(co,q)

—  (p )
C0~O CO dq ' K21 'rot

lim
2 G'(co,q) d ^2 2^rot

co«o w 2 dq q

(R-1)

(R-2)

2 q N "(« ,q )
Mm ------------------
co-ó ^2 2 rot (R-3)

lim 2 qN '(co ,q )= — -q(p  ) (R-4)
(o-oo dq 21 rot

The first relation is equivalent to Pipkin's36) equation (III 66) fo r simple fluids. Bernstein
and Fosdick^O) demonstrated that the relations (R-2) and (R-4) are valid only in the
BKZ-theory, whereas (R-1) and (R-3) hold also fo r general simple fluids. The right-hand
members o f (R-1), (R-3) and (R-4) are positive at all values o f q, but if  the slope of the
curve o f log(pt t -  p2 2) versus log q drops below unity, the right-hand member of
(R-2) w ill become negative, w ith  the result that G'(co,q) w ill be negative at sufficiently
low frequencies. Bernstein and Fosdick40) state that, as far as they have been able to
ascertain, the relation (R-2) does not conflict w ith the results o f superposition studies22)
performed by the present author. A  more accurate consideration o f the normal stress
data fo r the solutions investigated (Fig. II,2) discloses that the slopes o f the curves are
indeed smaller than unity fo r the solutions 2, 3 and 4 at all values o f q, but larger than
unity fo r the solutions 1 and 5 at log q values smaller than 0.3 and 1.5, respectively. How­
ever, all solutions satisfy the relation cjq = % q. Experiments performed on solution 1 at
log q values of —0.5, —0.3, 0.0 and 0.3 and on solution 5 at log q values of —0.4,0.0, 0.4
and 0.8 confirm this relation, but the slopes o f the curves are larger than unity at these
rates o f shear. This proves that relation (R-2) does conflict w ith  the author's results.
Moreover, the other relations can hardly be verified, especially, because it is very d ifficu lt
on the basis o f experimental evidence to say anything definite about the lim it values of
the normal stress components.

Walters and Jones41) treat superposition w ith  the aid of a third-order integral equation
given by Pipkin42)( which, however, also comprises many unknown functions. Although
their approach w ill not be discussed further here, it is interesting to note that the above
authors also arive at Eq. ( I l l 66) in exactly the same form as given here, and confirm it
experimentally.

6. Some entirely different approaches

Overdiep43) describes a mechanical model which, from the mathematical angle, is
equivalent to a Maxwell element (spring in series w ith dashpot) connected in series w ith
a Kelvin-Voigt element (spring parallel to dashpot). The viscosity o f the dashpot of the
Maxwell element is considered to depend on the deformation o f the Kelvin-Voigt element.
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This model comprises five parameters in all. It  is used successfully for describing some of
the experimental relationships between shear stress, shear rate and time given in the liter­
ature for some macro-molecular liquids. The dynamic behaviour of the liquid during
parallel superposition proves to be given by a second-order differential equation in which
two coefficients are dependent on q. By adapting the constants. Overdiep succeeded in
giving a very reasonable description of the properties displayed by the solution of alumi­
nium dilaurate mentioned in chapter II . Of course, the model is uni-dimensional. It cannot
be transformed into a three-dimensional one, and, in consequence, is unfit for describing
normal stresses.

Evans, Warner, Ramakka and Bird44) gave a solution for Kirkwood and Plock's rotational
diffusion equation for a suspension of rigid dum bbells^) in the flow field at parallel super­
position. We shall not discuss this model any further here, but merely wish to refer to the
work done by others on this point (ref. 46). The above authors have shown that the
dynamic viscosity as a function of the frequency passes through a maximum and that, at
low frequencies, G'(to,q) becomes negative at high values of q. Hence, this model gives a
qualitatively correct description of the effect q has on the dynamic shear moduli.

Booij and van Wiechen47) tackled the problem of superposition from an entirely different
angle. In their approach they started from Rouse's molecular theory, which will be dis­
cussed extensively in the next chapter. Since the experimental results clearly demonstrate
that in the case of parallel superposition G'(co,q) may decrease strongly, they searched for
a molecular mechanism that would allow the more or less periodical dilatation a macro­
molecule undergoes during steady shear flow to interact somehow with the periodical
deformation caused by the superposed oscillation. They thought that the concept of the
internal viscosity of macromolecules advanced by Kuhn and Kuhn48) might come in
useful here. Into each segment of the Rouse model they introduced an internal viscosity
force acting in the direction of the line connecting the end points of the segment, and
being proportional to the rate at which the distance between the end points of the seg­
ment is changed. In principle, this modified Rouse model can be treated mathematically
in its entirety, but a full calculation was carried out only for a single-segment dumbbell
model with a low internal viscosity. This treatment demonstrated that under certain
conditions G'(co,q) can indeed be negative. However, the most important effect of the
internal viscosity proved to be that in the case of superposition G"(w,q) increases
strongly with increasing values of the steady shear rate q. As this effect is distinctly in­
compatible with the experimental results, we feel justified in leaving this approach out of
consideration in the further part of our study.

7. Discussion

A review of the theoretical treatments of the superposition problem dealt with in this
chapter shows that in many theories a viscoelastic liquid is looked upon as an assembly
of elements which, after an enforced deformation, relax with different relaxation times
r. The stresses at a given time t are defined by the strains, or rates of strain, of the ele­
ments at all previous times t', and by a relaxation function N(t ) exp [ - ( t - t ' ) / r ] , where
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N(r) denotes the number of elements w ith relaxation times r . If, now, this relaxation
function is not influenced by the steady shear o f the liquid, the system w ill exhibit a
newtoman viscosity and a normal stress proportional to  the square o f the shear rate q,
i.e. a second-order behaviour. In that case, the dynamic properties measured during
parallel superposition would be independent o f q.

However, as found experimentally, many o f the viscoelastic liquids described in the
literature have quite different properties. In order to explain these, we have, in this chap­
ter, dealt w ith various suppositions regarding the effect a steady rate of shear q might
have on the relaxation function. The WJFMB model is based on the supposition that at
any value of r , the number of relaxation mechanisms decreases with increasing q, which
would imply that the effect deformations at previous times t '  have on the stress at time t
w ill be smaller at high than at low shear rates. Tanner's theory of network-rupture supposes
that a deforming element w ill rupture the moment the strain o f the element exceeds a
given value and that, whatever their relaxation time, elements in a steady shear flow  w ill
rupture after a deformation time t R that is inversely proportional to the value o f q This
implies that only the deformations of the liquid that took place w ithin the time interval
from ( t - t R) to t  w ill contribute to the stresses at time t. Finally, Leonov, who advances
the th ixotropy theory, supposes that a deforming element w ill rupture, and no longer
make a contribution to the stress, as soon as the stored elastic energy comes to exceed a
given critical value. Elements w ith longer relaxation times break down sooner than those
with shorter relaxation times, while elements w ith relaxation times shorter than t are
not affected at all. The maximum relaxation time t  o f elements that still contribute to
the stresses during steady shear flow  is found to be inversely proportional to q.

The above assumptions enabled the advocates o f the respective theories to  describe such
phenomena as non-newtonian viscosity and deviations from second-order liquid behaviour
in stationary shear flows. Further, these assumtions lead up to the conclusion that during
parallel superposition the superposed oscillation w ill give rise to an additional oscillatory
structural breakdown.with the result that negative terms are introduced into the expres­
sions fo r the dynamic quantities. Another conclusion drawn from all these theories is
that the superposed oscillation during orthogonal superposition does not have an addi­
tional effect on the structural breakdown.

The way in which the elastic energy is calculated in the th ixotropy theory seems rather
doubtful, while the network theory uses a fa irly arbitrary measure o f the maximum strain
of the element. A clear shortcoming o f all these theories is their lack o f a definite physi­
cal-molecular basis permitting the derivation of an unambiguous criterion o f the influence
the deformation history has on the structural breakdown in viscoelastic liquids. In the
following chapter we shall attempt, by means of a molecular model, to  obtain some more
clarity on this point, and, next, to use the theory so developed (the generalized pearl-
necklace model or disentanglement theory) in tackling the superposition problem
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Chapter IV

MOLECULAR THEORY

1. Pearl-necklace model

In the pearl-necklace model of a linear macromolecule in solution, inspired by the ideas
of KuhnD, the molecule is regarded as a chain of submolecules (segments or links). These
segments constitute the connections between beads in which the hydrodynamic resistance
of the monomers of a segment is supposed to be concentrated. Part of the chain model
used is represented in the figure below.

The length of a segment is determined by the conformation
of the monomers w ithin this segment. In principle, the num­
ber o f monomers comprised in one segment is only limited
by the requirement that the segments should not be impeded
in rotating w ith respect to one another.

The position of the centre of gravity of the beads is taken to
be an independent variable.

It is further assumed that as long as no external forces act on
the solution, the two following conditions w ill be satisfied:

1) the length of a segment can be described by a, normally
Fig. IV ,1 Part of the gaussian, distribution function </>.
necklace model used 2) the length o f the various segments and the position o f the

centre of gravity are mutually independent.

Let us assume that the above conditions can be met by dividing the macromolecule into
n segments constituting the links between n + 1 beads. The conformation of the macro­
molecule can then be described by means of a cartesian coordinate system in which rQ,
r ___ r are the position vectors of the beads and every r. has the components x., y jf
z*. Let R be a rectangular matrix of n + 1 rows and three columns, w ith the transposed
vectors7[ forming the rows. The matrix R then completely defines the position and the
conformation o f the macromolecule.
We now introduce the concept o f a complex o f macromolecules. A complex consists of
x macromolecules which may be completely independent o f each other, entangled or
crosslinked. The number x is a parameter determined by the nature of the system con­
sidered. For a very dilute solution x can be taken equal to 1, but fo r a concentrated
solution, or anon-dilute polymeric flu id , x may, in principle, be very large. We first
suppose that all macromolecules in the complex are equally long. The complex then
consists o f x(n + 1) beads and xn segments. The location and the whole conformation of
the complex can be completely defined by an x(n + 1) x  3 matrix R, the rows in which
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represent the coordinates o f the beads.

The conformation of a complex can also be defined by giving the dimensionless position
vectors o f the x centres o f gravity of the individual macromolecules and o f the xn dimen­
sionless position differences o f the successive beads. This is done as follows: number the
beads o f the firs t molecules from 0 up to and including n, those o f the second from n + 0
up to  2 n, etc, and those o f the x-th molecule from (x—1 )n + 0 up to  xn. Let 3 b2 be the
mean square o f the segment lengths if no forces are exerted on the flu id**. The coordinates
of the x centres o f gravity then fo llow  from

-P b
1 J2Üi E w

k » (p— 1)n+0

and the xn coordinate differences from

for p = 1 ,2 ,___ x

V b

i = 1 , 2 , . . . .  n, n + 1 , . . . .  xn

i—1 = 0 ,1 , .........n—1, n+ 0 ,.......... xn—1

(IV  1,1)

(IV  1,2)

Denote the components o f s by up, v , wp, and those o f s. by u., v., w.. Let S be a
rectangular matrix of x(n + 1) rows and three columns. The first x rows are formed by
the transposed vectors s [,  and the following xn rows by the vectors s7. Now the location
and the conformation o f the complex are completely fixed also by the matrix S.

S and R are unambiguously related by the expression

S = f a  R
—  b  ■ — (IV 1,3)

where a is a square x(n+1) x  x(n+1) matrix. An example o f this transformation matrix
for the case x=4 is shown below.

Under these conditions 3 b2 denotes the average value of (x. — x. ^)2 + (y .— y. ^)2 + (z . _  z . )2
for i -  1, 2 , . . .  n, n+  1 , . . . .  xn and i—1 = 0 , 1 , . . . .  n—1, n + 0 , . . . .  xn—1. This value can be related
to the monomer length I and to the number of monomers in one segment n by means of the
expression 3 b2 = The parameters a  and y  denote quantities that are affected by all kinds of
refinements of the model, such as the thermodynamic (equilibrium) flexibility of the chain?),
the swelling power of the solvent?), the excluded volume e ffe c t^ ), the finiteness of n, the concen­
tration of the solution, the temperature, etc. A t very large values of r. —r. 7, 8), as well as at small
values of n 8-11), u$e has to be made of non-gaussian statistics.
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1 1 1 . . . . . 1 1 0 0 0 . . . . 0 0 0 0 0 . . . . . 0 0 0 0 0 . . . . . 0 0 '
0 0 0 . . . . . 0 0 1 1 1 . . . . 1 1 0 0 0 . . . . . 0 0 0 0 0 . . . . . 0 0
0 0 0 . . . . 0 0 0 0 0 . . . . 0 0 1 1 1  . . . . . 1 1 0 0 0 . . . . . 0 0
0 0 0 . . . . 0 0 0 0 0 . . . . 0 0 0 0 0 . . . . . 0 0 1 1 1  . . . . . 1 1

- 1 1 0 . . . . . 0 0
0-1 1 0 0
0 0-1 0 0

0 0 0 1 0
0 0 0 . . . . . -1 1

-1 1 0 . . . . 0 0
0-1 1 0 0
0 0-1 0 0

0 0 0 1 0
0 0 0 . . . . -1 1

-1 1 0 . . . . 0 0
0-1 1 0 0
0 0-1 0 0

0 0 0 1 0
0 0 0 . . . . -1 1

-1 1 0 . . . . . 0 0
0-1 1 0 0
0 0-1 0 0

0 0 0 1 0
0 0 0 . . . . . -1 1

(IV 1,4)

The statistical distribution of the complex over the various conformations is described by
a distribution function \p o f the variables R or S. If  no external forces are applied to the
flu id , the conditions o f independence formulated above are applicable. The special dis­
tribution function satisfying these conditions is called 0. In the absence of external
forces, we can therefore put ip =<p. From what has been said above it follows that in the
case of a gaussian distribution, we have

(/> =

n g (s  )
p= 1 p ~p

(2 7T)3xn /2

(IV 1,5)

where g (s ) denotes a, still arbitrary, normalized distribution function for the centre of
gravity of the p-th macromolecule. The function <p has been normalized over the relevant
coordinates, i.e., /# d S =  1.
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In the strongly simplified form of a single two-bead segment, the necklace model de­
scribed above is referred to as the dumbbell model o f Kuhn12). Simplification o f the
complex to one macromolecule yields the necklade model which Roused) and Bueche14)
used in 1953/1954 in their first complete description o f a polymer molecule in a dilute
solution under conditions o f simple shear flow. In the following treatise we shall describe
a complex o f several entangled macromolecules acted upon by various types o f flow  fields.
This treatment, although strongly formal, w ill prove useful in describing the features of
real viscoelastic media.

2. Entropy-elastic forces

If forces are exerted on the flu id , the equilibrium distribution o f the complexes w ill
generally be distorted, and, hence, 1 $. In this section, we shall calculate the force
acting on the various beads o f the complex as a result o f the change o f \p. i//(R )dR is
the fraction o f complexes w ith the conformation c, that is to say w ith a conformation
fo r which the variables R assume values between R and R + dR .We now introduce an— —c —c —c
ensemble consisting of v complexes in a liquid volume V. The number o f complexes in
this ensemble, which adopts the conformation c, is denoted by mc and equals

mc = u\MRc) dRc (IV  2,1)

If no external forces are acting on the liquid, and = 0, the number o f complexes w ith
conformation c w ill be

moc = ^ < R C> dBc (IV 2,2)

Wall 15) calculated the difference in entropy between these two states o f the ensemble
from the difference in the number of possibilities fo r realization o f the two states. Accord­
ing to this author, the difference in entropy is given by

AS = k £  mc In (moc/m c) (IV 2,3)
c

In what follows it w ill be assumed that during all changes in conformation the internal
energy of the ensemble does not vary*^. We further suppose the temperature to be con­
stant. The difference in free energy between the two states o f the ensemble is then given
by

A F = - k T £  mc |n (moc/mc> (IV 2,4)
C

*) This assumption is certainly not valid for all polymers. For example, in the case of polyethylene,
the difference in internal energy during deformation is proportional to the strain^®); this may give
rise to large energy-elastic forces^7)
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The thermodynamical potential o f the complexes w ith conformation c is equal to

Hc = 8AF/3mc = kT Pi + In (mc/m oc) l = k T + In W R c)/</>(Rc))J

and, in general, to

ju = k T [ 1 + l n  (tfr/0 ] (IV 2,5)

AF is an extensive quantity fo r the to ta lity  o f all complexes in the ensemble. Calling the
number o f complexes per unit volume N = u/V, we find the free energy difference per
unit volume o f liquid from:

AF = —NkT ƒ $  In (0/VO dR v  2<6)

The thermodynamical potential ju is a function of the space coordinates of the beads of
the complex and, hence, an intensive quantity*).

The gradient of the thermodynamic potential equals the entropy-elastic forces F® acting
on the beads o f the complex:

F® = -b u m  (IV 2'7)

where F® is a matrix o f x(n + 1) rows and three columns. The rows are formed by x(n+1)
vectors~f?T (i = 0 ,1 ,2 ,___ n, n+0........... xn), representing the entropy-elastic forces
acting on the various beads.
The matrix F® can be transformed by means of the matrix a into a new system o f forces,
according to

H® is a matrix w ith the transposed vectors h®T as the firs t x rows and the vectors h*T as
the following xn rows, h® represents 1/b times the sum o f all forces acting on the beads
of macromolecule p (i.e.Pthe force on the centre o f gravity p), whereas h® (i = 1 ,2 ,------xn)
denotes 1/b times the difference between the forces on the i-th and the (i—1 )-th bead.
Application of Eq. (IV 2,7) changes H® into

H® =
bji
9R

With S = 1/b a R, and, hence, w ith

b_
3R

— aT
b -

b_
3S '

we get.

•) In the treatments of, for instance, DeWames c.s.18) and BlatZ19>, the free energy is considered to
have intensive properties. As seen from the angle o f thermodynamics, however, this view is incorrect.
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(IV 2,9)

Substitution of Eq. (IV 2,5) in Eq. (IV  2,9), finally yields

He =

as the expression fo r the entropy-elastic force acting on the beads*).

(IV 2,10)

3. Friction forces

Let us suppose that a flu id  is exposed to  forces producing a macroscopic velocity profile.
We shall denote this macroscopic velocity field by a matrix V the rows in which are
constituted by the vectors v j.  representing the macroscopic velocity o f the flu id  at the
positions r. (i = 0 ,1 ,___ n, n+ 0 ,____xn).

Under conditions o f flow, solvent, if present, as well as the other macromolecules w ill
exert friction forces on the beads. An essential contribution to this friction may come
from the entanglements between various macromolecules. We now assume that all macro­
molecules entangled in some way or another constitute a complex as meant above. As
entanglement may take place in many ways, we have to  give a more precise definition
for our ensemble of complexes to which we wish to apply our considerations. For the
time being, we shall consider an ensemble consisting o f v identical complexes, all of
which comprise the same number (x) o f macromolecules o f equal length and all being in
exactly the same state o f entanglement. If the k-th bead contacts the l-th bead in one
complex, it w ill do so in all other (u— 1) complexes.

Two special types o f friction can be distinguished. Whereas some friction forces may owe
their existence to the friction between solvent and beads, others may be caused by the
friction between different macromolecules w ithin one complex. Both types o f friction

*) This entropy-elastic force is directly opposed to the force referred to in the treatments of e.g.
Zimm^O), DeWames c.s.18) and Blatz 19). However, since these authors use a wrong sign in drafting
the equilibrium of forces, their equation of motion is still approximately identical to that found by us.

Many investigators split up Eq. (IV  2,10) into the parts

kT t  3 In ^  kT t 3 In Ó
----- aa —r - —  and— aa — r— ,
bs -- 3s b* -  3s

and call these the diffusion, or Brownian motion force, and the entropy-elastic spring force, respec­
tively. Pao21) already remarks that this procedure is misleading. The difference between these
'forces' constitutes the total entropy-elastic force. The free energy is minimum if \j/ = 0  and, in that
case, the beads are not exposed to any forces, except perhaps to fluctuating Brownian motion forces
caused by fluctuations in the density of the surrounding medium. However, in view of the short times
involved, these may normally be neglected.
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forces w ill now be considered in the extreme cases where friction takes place either only
between solvent and macromolecules, or only between macromolecules in the same com­
plex.

The friction  between bead i and solvent is supposed to be covered by Stoke's law. The
friction force then equals the product of a fric tion  coefficient f. and the difference between
the velocities of the surrounding solvent and the bead. We further assume that all beads
have different fric tion coefficients. The friction forces exerted on the beads can then be
written as

Ff = f(V ' — R) (IV 3,1)— - —o —

where f  is a diagonal matrix w ith elements f., R is the velocity of the beads expressed in
■ I “  , T  X

the matrix notation w ith the transposed velocities r. serving as the rows, and F denotes
the friction forces acting on the beads. The matrix V^ represents the effective velocity of
the solvent at the location R. The direction and magnitude o f this effective velocity are
not equal to those of the macroscopic velocity, but vary w ith the friction forces on all
other beads. This hydrodynamic interaction can be accounted fo r by means of a matrix
T. The effective velocity equals

V ' = V — T F f (IV 3,2)
— o  — o ---------

where V represents the macroscopic flu id velocity at the position R,and T is an
x(n + 1) x  x(n + 1) matrix w ith  regard to  which we suppose that the elements T jk are in­
dependent o f the space coordinates R but may be functions of, e.g., the absolute value
of the distance between the i-th and the k-th bead. This implies that in very dilute solu­
tions T corresponds to  the Kirkwood and Riseman22) approximation of Oseen's inter­
action tensor23). We suppose, however, that also in more concentrated solutions the
effect which a force f* on the k-th bead exerts on the effective velocity at the i-th bead
equals the effect which a force f  j  on the i-th bead has on the velocity at the k-th bead,
provided the two forces are equal,'i.e., we suppose T to be symmetrical. Besides, T.. = 0.
From Eqs (IV 3,1) and (IV 3,2) it  follows that the friction force the solvent exerts on the
beads can be written as

Ff = (ƒ -> + 1 ) ’ 1 (Y0 - R )  (IV 3,3)

where ( f-1 + T ) "1 is a symmetrical matrix, because f  and T are symmetrical.

We shall now look at the other lim it, namely the case that the friction is exclusively due
to friction between entangled macromolecules w ithin one complex. Suppose the beads k
and I are in rubbing contact, and call the fric tion coefficient w. The friction force exerted
by bead I on bead k then equals

f f  = w (f | - f k ) (IV  3.4)

where r. and r^ represent the velocities of the I-th and k-th bead. But, because action =
— reaction, we further have
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(IV 3,5)

This equation can also be written as

—ff  = + = w (v . — r. — v . + r.)-I -k -ok -k -o l -I (IV  3,6)

because, w ith the beads k and I being in practically the same position, the macroscopical
velocities vQk and v are equal. An identical line o f reasoning may be followed w ith
regard to each pair o f beads k and I, provided allowance is made fo r the possibility that
the friction coefficient w may differ from one case to  the next. Hence, all friction forces
between macromolecules w ithin one complex can be represented by

where W is an x(n +1) x  x(n +1) matrix o f the fric tion coefficients. For any value o f k
and I Eq. (IV 3,6) can be found from Eq. (IV 3,7) by setting the elements Wkk and W(|
of W equal to w, and Wk| and W|k equal to  —w. This shows that W is a symmetrical
matrix w ith equal elements in the diagonal positions (kk) and (II), and w ith equally large,
but negative, elements in the symmetrical positions (kl) and (Ik).

Summarizing, we find that in cases where the friction is due to the solvent, as well as in
those where the friction is caused by contact between beads w ithin one complex, the
friction forces can be described by a formula like (IV 3,7) in which a symmetric friction
matrix occurs. By way o f generalization, we may now state that also w ith the two types
of friction occurring simultaneously the friction force is represented by Eq. (IV  3,7),
where W is then something like the sum of terms appearing in Eqs (IV 3,3) and (IV 3,7).

Using an analogous procedure as in the case of Eq. (IV  2,8), we now introduce a trans­
formed system of fric tion  forces, according to

Ff = W (Vo -  R) (IV 3,7)

(IV 3,8)

and define, in analogy to Eq. (IV  1,3):

and S (IV 3,9)-o  b
and S = —  a R

-  b - ~

where S , and S, denote matrices of x(n +1) rows and three columns, w ith the vectors
-op anc* ?o i'anc* ?p anc* respectively, serving as the rows. Multiplication of Eq. (IV 3,7)
by 1 /b a gives

H - a W a -1 (S - S )
—  -------------- — O  — (IV 3,10)

for the friction force on the beads.
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4. Equations of motion

In developing the equations of motion, inertia forces are neglected*). Assuming balance
of forces on all beads, we have**)

Fe + Ff = 0

and, after transformation,

He + Hf = 0 <IV 4 '1>

Substitution of Eqs (IV  2,10) and (IV  3,10) gives:

_JL[ a g T i i n M + a W a - 1 (S - S )  = 0 (IV4.2)b2 - - as • •
which is equivalent to

_JSl a W~‘ aT dln ^  + S - è  = 0 (IV 4,3)
b2 - -  - 9S -o

The matrix a W "1 aT is a mobility matrix, which, since (a W "1 aT )T = a W 1 T a , will be
symmetric if W is symmetric. The matrix 9 (In i///$)/9S is an x(n+ 1) x  3 matrix the first
x rows of which represent differentiations to the positions of the centres of gravity of
the x macromolecules of the complex. In the next section, it will be proved that, provided
the macroscopic flow field meets one special condition, it is always allowed to suppose
that the centres of gravity of the molecules are homogeneously distributed through the
liquid, both before and after application of the flow field. Then, both <j> and ip  are in­
dependent of s , and 9(ln »///0)/9s is always equal to zero, and the first x rows of the
matrix 9(ln ^ /$ )/9S  will contain zero's only. This implies that the first x columns of
the matrix a W '1 ar in Eq. (I V  4,3) can be replaced by columns with zero's without
affecting the equations.

From Eq. (IV  4,3) it follows that the velocities of the centres of gravity are given by

*) This assumption is permissible because the characteristic time associated w ith the Brownian motion
of a mass in a viscous medium -m/f (see refs. 9 and 24) - is very short compared with the experimental
times. For a segment, f  is of the order 6 m?ahmm, and m -  nm M J M "1, where Mm denotes the mo­
lecular weight of a monomer, N the Avogadro number and ah a measure of the hydrodynamic radius
of a monomer. So, m /f d  M x 10"25 a” 1 T f1. For many molecules this quotient comes between
1q- 15 anc| 1 o-1 7 t)- * . A t viscosities around 10 2 poises, the characteristic time w ill, therefore,
be of the order o f 10"14 sec. A t higher viscosities even shorter times w ill be found.

• • )  we suppose that no other external forces are acting on the flowing liquid. For example, if the
beads contain electric charges, and an oscillatory electric field is applied to the solution, the dielectric
properties of polymeric fluids can be treated by the same theory20,25,26).
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fo r p = 1 ,2 ,___ x (IV 4,4s-p s y * ( a W - 'a T )
■°p b2 él ' " ‘ F

9 In 0 /0

3?k

so that the motions o f the centres of gravity can be calculated if 0 and all elements o f W
are known.

The velocities o f the position differences o f the beads are, according to Eq. (IV 4,3), given by

S* = S* B 3 ln-  ^  b2 -  as* (IV 4,5)

In this equation S*, S* and are identical to the matrices S, S and S , but fo r the first
x rows with index p. The m obility matrix B represents an xn x  xn matrix, identical to
the matrix a W "1 aT , but fo r the firs t x rows and the firs t x columns. Hence, the matrix
B also equals a*W "' a*T if a* is the matrix a minus the first x rows. The elements of B
are indicated by Bjk (i,k, = 1 ,2 , . . . .  xn), and B is symmetric if W is symmetric. In the
special case that x=1, the matrix a*a*^ equals the n x  n matrix A  o f Rouse, whereas the
(n + 1) x  (n + 1) matrix a*^a* is then equivalent to Zimm's matrix A z.

Although the whole problem has now been reduced by means o f Eq. (IV 4,5) to a re­
presentation very much analogous to that of Rouse and Zimm, we still want to proceed
with the further elaboration o f the problem, because there are several points where
specific deviations arise, while others permit o f a more general or elegant treatment.

We shall first perform a coordinate transformation in which the matrix B becomes diag­
onalized. B is a symmetric matrix w ith xn different real eigenvalues X , X ........ X
For very dilute solutions, x=1 and f.=f  for all i/s. Using fo r T the pre-averaged represen­
tation by Kirkwood and Riseman22) o f Oseen's hydrodynamic interaction tensor, we
find Rouse's13) eigenvalues if Jean be ignored, those given by Zimm, Roe and Epstein27)
if T  is dominant, and Tschoegl's28) if T comes between these two extremes. Duiser,
Staverman, Chömpff and Prins29-33) calculated the eigenvalues for some special modes
of crosslinking or entanglement w ith x=2. In the very general case we are dealing w ith at
the moment, calculation of the eigenvalues of B is possible only if all elements o f W are
known. Notwithstanding that the calculation may remain extremely d ifficu lt then, all
eigenvalues can, in principle, be obtained. The situation becomes somewhat simpler if
some elements of B are extraordinary small, which may be the case fo r instance if the
friction coefficient w in an equation like (IV  3,6) becomes exceedingly large. The matrix
calculus then provides some methods fo r obtaining a fair approximation of the smallest
eigenvalues. As a general rule, it may be stated that when W contains several elements
that are very much larger than the others, some o f the eigenvalues found w ill be very
small. We shall now continue our argument along purely formal lines, and suppose that
all eigenvalues of B have been established.

Let now Q be the matrix which contains the normalized eigenvectors o f B as the columns.
The matrix A  = Q~‘ B Q w ill then be a diagonal matrix w ith elements X , X , . . . .  X
Owing to the symmetry of B, the very important relation QT = Q '1 wil'l be^alid.

New, so-called normal, coordinates are introduced as follows:
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(IV  4,6)P = Q “ 'S *

which also leads to the definition:

P = Q - ‘ S* (IV  4,7)
—o — -o

P, and P are matrices with xn rows and three columns, and comprise the vectors pj, and
pT., respectively, as the rows, which, in turn, are composed of the components T}jf f  j(
and |  ., rjoi, f Q. (i = 1 ,2 ,___ xn). It follows from Eq. (IV  4,6) that

a/as* = (c r1 )Ta/ap = oa/ap cv 4,8)

Multiplication of Eq. (IV  4,5) by Q~‘ yields:

p = p kT A  3 In (IV  4,9)
0 b2 "  3P

As A is a diagonal matrix, this set of equations represents xn separate equations each of
which depends on the three variables p-y only. This means that the coordinate transforma­
tion described above has led to a decoupling of the system of equations (IV  4,5). An
essential condition for the introduction of normal coordinates is that the friction forces
can be written in a form like (IV  3,7) containing a symmetric matrix W.

5. Continuity equation and solution for ip

The rate of change of the distribution function i// in a given volume element dS in the
3xn dimensional space is determined by the flux of \p across the boundaries of the ele­
ment dS. Hence, the law of continuity applies:

| ^  + div (S *) = 0 CV 5,1)
3t

This equation can also be written as

d\p
3t + t i rD= 1 - n  —

(IV  5 ,2)*)

*) An expression like A:B or A..B, known as the direct or double dot product of two matrices,
denotes the sum of the inner products of the rows of the matrix A and_the corresponding columns
of the matrix B. Written in components, this product is equal to 2 2  »V, i.e. equal to tr(AB).

“  i j
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Making allowance for Eqs (IV  4,8) and (IV  4,6) and a special property of direct products

as* ( S »  = - j£  Qt  : (QP i t )  =■—  : (QT Q P * )  = | J  : (P * )

we can transform Eq. (IV  5,2) into

(IV  5,3)

*  p^19?p
(sp«A) (Pi//) = 0 (IV  5,4)

This is a differential equation, in which i// is a function of the independent variables s ,
P^and 1 .1// is a distribution function and has to be normalized; which means that every
solution of Eq. (IV  5,4) has to meet the following requirement:

/ ^ pni dsp d P = 1  (IV  5,5)

Now, \j/ can in principle be solved. To this end, we write ^  as a product of distribution
functions

x xn
t  “ pPt W  t l W  (iv 5,6)

If every \jjp or \(/. in this product satisfies the normalization conditions

ƒ tf'p(Sp) dsp = 1 for p =  1,2..........x (IV  5,7)

or

ƒ (J/.(p.) dp. = 1 fo r i = 1 ,2 ,------xn (IV  5,8)

Eq. (IV  5,5) will also be satisfied. Substitution of Eq. (IV  5,6) in Eq. (IV  5,4) then gives

(s iji ) n iii n i  +
P P Jq=1 4 i=1 1

dT  . 1  X xn

tS l5r+¥k A * p & * > m0

Eq. (IV  5,9) will apply if

aT

lT  + arMp ) = 0  f o r p = 1 '2.....*
-p

and

3* k  aTi r v kw=° f o r k = 1 '2 "  - ‘ xn

(IV 5,9)

(IV  5,10)

(IV  5,11)
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Evidently, all variables are mutually independent, and the distribution function can in­
deed be factorized as in Eq. (IV 5,6).

Before continuing our argument, we shall have a look at Eq. (IV 5,10) for the centres of
gravity. If \{/ and g are constant and independent of s , it follows from Eq. (IV 4,4)
that O t /9 s I s = 0 T/9s )s , which means that the divergence of the velocity of the*p “P -p -op m
centres of gravity equals the divergence of the macroscopic flow field. However, it then
follows from Eq. (IV 5,10) that this divergence is equal to zero. Hence, a homogeneous
distribution of the centres o f gravity, before as well as after application of a flow field to
the liquid, conforms to the Eqs (IV 4,4) and (IV 5,10), on the condition that the flow
field is divergence-free. If it is not, a homogeneous distribution of the centres of gravity
conflicts w ith the equations of motion (IV 4,4) and (IV 5,10). Since transition of matrix
a W '1 aT to matrix B requires that (9/9s ) In \p = 0, we have to  restrict ourselves in the
following to a consideration of divergence-free flu id flows.

The equations o f continuity (IV 5,11) fo r the various modes can now be solved for every
type of macroscopic flow  fo r which the velocities are linear functions o f the coordinates:

v =r . r  orV =RfT (IV 5,12)-ok — -k —o -------

Here, T is a 3 x  3 matrix, viz. the velocity gradient matrix, w ith elements •yjk(t) which
are only functions of time. This type of flow  is rather general, and covers not only any
time-dependent shear flow  but also, fo r example, linear elongational flow. The additional
requirement of non-divergence means that

trf' = 'y + 7  +7 = 0  (IV 5,13)
—  ' 1 1  ' 2 2  ' 3 3

It can be easily demonstrated that the relation between the transformed velocities and
coordinates shows the same linearity, for

S-o =—aV =-j-a R rTb - - o  b -------- = s rT

and, hence,

p = q * 1 s *  = c r ’ s *  rT * p rT 0V5,14)
—O —  —o  —  —  - -  r -------

Upon substitution of this expression for the macroscopic flow  field in Eq. (IV 4,9), we
combine Eq. (IV 4,9) w ith Eq. (I V 5,11). We further introduce the parameters Tk defined
by

r =b2/(2kTXk) k -  1,2........ xn

and called relaxation times. This yields the differential equation

i t
Tk 9t +

T p T i t  , ü
a?k 2 a?k

(IV 5,15)

(IV 5,16)
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Substitution of the gaussian distribution (IV  1,5) for the equilibrium distribution function
0, changes this equation into

T f T ^ k '  aT  W k T 0 * k
c i r + T k A  I j * el a - -  3 /2  K (IV  5,17)

which completely describes the state of one set of normal coordinates p with the aid of
one characteristic time constant tk - The function 0 k describes a so-called normal mode
o f motion of the complex.

The general solution for this equation can be derived34) by means of a Fourier trans­
formation; for simplicity, we shall give it right away. However, before doing so, we must
first introduce some moments of the distribution function 0. . The moments t i  of
0 k are defined by k k p**1,

+oo +oo +®o

^kpqr = ƒ ƒ f  WV̂ k̂ k̂ k̂ k (IV  5,18)
— oo — oo — oo

If 0 k is a normalized distribution function, A«k 200 denotes the value of f? averaged over
*k -  Mk 0 2 0  the avera9e value of r?k,Mk l l 0  the average value of £kr?k, etc. For these
second moments we introduce a new symmetric 3 x  3 matrix Mfc, which is equal to

” k 2 0 0 * V r i o ^ k  i o i

" k n o
u ,
H < 0 2 0 f t  t i l

/ * k  l o i ” k o i  i ^ k 0 0 2

(IV  5,19)

and denote the value of the determinant of this matrix by |M |.

The general normalized solution of Eq. (IV  5,17) is now given by

0 k = (2 7t) 3/2 IM J -^ e x p  [ - % P k Mk *Pk l (IV  5,20)

on the extra condition that the moments satisfy the symmetrical matrix equation
dM

r k~ 5 r + Mk -  r k (£  Mk + r T ) = 1  (l v  5.21)

l_ is the 3 x  3 unit matrix. This solution holds for every value of k, so that the distribution
function of the whole complex of macromolecules equals the product of all 0  's, each
with its own relaxation time Tk and its own moments /ll . ^

The solution (IV  5,20) indicates that, whatever the form of the time dependence of the
velocity gradient matrix T, the distribution of the normal coordinates is a time-dependent
symmetric normal distribution whose moments have to satisfy a system of six linear
differential equations. By solving these equations, one obtains the moments, with the
exception of a constant that must be determined from the initial conditions.

As a matter of fact, the Eqs (IV  5,21) are not new. By way of illustration, these equations
will be completely written out for two elements of M, namely for M = u  and

_  1 2 *1 1 0
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M = u  , w ith omission of the index k:22 20

10 + ^ 1  1 0 T ^ 1  1 ^ 1 1 0  + ^ 1  2^*02 0 + " ^ l  3 ^ 0  11 + ̂ 2 0 0 ^ 2  1 + ^ 1  1 0 ^ 2  2 +

+ u y  ) = 0
p 1 01  ' 2 3

(IV 5,22a)

T^ 0 2 0  + ^ 0 2 0  ^ * ” 2 1 ^ 1 1 0  + ^ 2 2 ^ 0 2 0  + ^ 2 3 ^ 0 1
) = 1 (IV 5,22b)

The procedure introduced by Hermans35) enables all the equations (IV 5,21) to be ob­
tained in a direct way, viz., by multiplication of Eq. (IV 5,17) by £tj, t?2, etc., and sub­
sequent integration over the space o f the normal coordinates. For example, multiplication
by yields

ƒ [ * > ! *

= f / 2 f il ( ^ - +  —  + — ^  d|drjdf
J  \ a £ 2 3 t?2 3 f 2 /

d^drjdf =

Bearing in mind that \p and all derivatives o f \p decrease exponentially at the boundaries
of the integration region, we find that partial integration fo r divergence-free flows yields

^ 110+ 1/a(2 M 1 1 0 + 2 Ju1 1 0 + M110) - 3 / 2 M 1 1 0 - r ; ( 7 ) i o +  ?r)o) ^ d^ d f  = 0

This equation is again equal to  Eq. (IV 5,22a). A ll the Eqs (IV 5,21) can be derived in
the same way.
The second-order differential equation (IV 5,17) fo r the distribution function t h a s
now been reduced to  a system o f first-order differential equations fo r the moments of
i//k which can be easily solved*). These solutions being known, the expression for iPk can
be found from Eq. (IV 5,20).
In many cases only the moments of the distribution function need be known**). This
w ill be demonstrated w ith reference to the calculation of the increase in free energy.
Eq. (IV 5,20) yields

*) If no external forces are applied to the fluid, so with F *  0, Eqs (IV  5,211 correspond to
Verdier's^l auto- and cross-correlation functions for the normal coordinates.

♦*) For example, in computing the lines of motion of the individual beads, we need the exact
solution for lp. .  This has been demonstrated in the Appendix of ref. 36, where the rates of rotation
and deformation of the normal modes are calculated as functions of position, time, and rate of shear
in a steady simple shear flow of dilute solutions. The motions of the beads are found through back-

transformat ion.
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In i^k = -  3/2 In (2 7f) — V4 In |Mfc | — % Mk 1 pfc

and, hence.

ƒ ^ k In \l/k dpk = -  3/2 In (2 tt) -  1/i In |M J -  1/2 Mk : M "1

= -  3/2 In (2 n) -  % In IMJ -  3/2 (IV 5,23)

From Eq. (IV 1,5) it follows, after transformation, that

In <t>k = — 3/2 In (2 n) — % pk pk

and, hence.

ƒ In 0k d pk = -3 /2  In (2 7r)-%  (p
Ik 2 0 0 k  0 2  0 k 0 0 2 (IV 5,24)

Substitution of Eqs (IV 5,23) and (IV 5,24) in Eq. (IV 2,6) gives the following expression
for the increase in free energy of a mode with index k:

Hence, in order to calculate the increase in free energy, we only need the values of the
moments, which can be found directly by means of Eq. (IV 5,21).

The purport of the above treatment will be demonstrated with reference to a special
macroscopic flow profile: a simple shear flow in the x-direction with a gradient in the
y-direction only, plus a superimposed simple shear flow in the z-direction with a gradient
in the y-direction only. This flow belongs in the group of curvilinear flows as defined in
chapter I, Eq. (I 42), with x 1 = y, x2 = x, x3 = z. All elements of T are equal to zero,
except y 12 and T32, which, for brevity, will henceforth be denoted by 7  and k , respec­
tively. For this case, Eqs (IV 5,21) give

'k 2 0 0 k 0 2 0 kooo - 3 - In |Mk|] (IV 5,25)

Tk ^k 2 0 0  + ̂ k 2 0 0 1 + 2 Tk7 (IV 5,26a)

Tk ^k 1 1 0  + ^k 1 10 Tk^ ^k 0 2 0 (IV 5,26b)

+  T. K p .^ T P ,k 101 k 101 k 0 1 1 k 1 1 0 (IV 5,26c)

^k ^k 0 2 0 + ^k 0 2 0 =  1 (IV 5,26d)

Tk ^k 0 1 1 + ^k 0 1 1 Tk K ^k 0 2 0 (IV 5,26e)
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(IV 5,26f)
T k  ^ k 0 0 2  +  ^ k 0 0 2  ^ +  2  Tk K ^ k o i  l

The moment Hk020 is independent of 7  and k, and may be equated to 1. If 7 and k are
further specified, all moments can be calculated straightforwardly. With k equal to zero,
there will be simple shear flow in one direction. In this case, the solutions for the last
four equations comprise only damping terms of the form exp (—t/rk), and no loss in
generality is involved if we state that 0 , ,  = /Ik l oi = 0 and Mk002 = #ik020 = 1‘
Consequently, with simple shear flow in one direction, only the moments Mk j 10 and
juk 00 are dependent on the value of the velocity gradient 7 , and for any form of time
dependence of 7  these moments can be easily calculated with the aid of Eqs (IV 5,26a)
and (IV 5,26b). Once these moments are known, ^ k follows direct from Eq. (IV 5,20).
In this way we arrive at the important conclusion that for any type of simple shear flow
in the x-direction with a velocity gradient in the y-direction only, the distribution
function of the k-th mode is, according to Eq. (IV 5,20), of the form

^  2 0 0  ^ k  1 1 0 ^ '

-expU
*2k - 2 "k n o k \ + * k 200^k

^  ^ k  2 0 0  ^ k 1

(IV 5,27)

Now, the increase in free energy of the k-th mode is given by

* F k =  % k T  K 2 0 0  -  1 " ' " K s o o - ^ k i i o »1
(IV 5,28)

Although these formulae hold also under starting and transient conditions, we will, for
the sake of clarity, leave these conditions out of consideration.

6. Generalization

In the preceding section we dealt with a very definite ensemble of complexes of equally
long macromolecules, all being in the same state of friction characterized by a matrix W.
We proved that the state of this ensemble can be described by a distribution function
which is the product of xn distribution functions of the various modes, each with its own
characteristic relaxation time r k- We further demonstrated that the eigenvalues ^  for the
general case cannot be calculated in a simple manner, but also that strong enlargement of
some elements of W will normally give rise to some very small eigenvalues Xk and, hence,
to large values Tk.
A real polymer solution, or polymer melt, can be conceived as a collection of ensembles
of complexes differing both in nature and in state of entanglement. If, moreover, the
polymer is polydisperse and the chains vary in length, it is virtually impossible to make
any quantitative statement as to the distribution of relaxation times. This distribution
depends on the molecular weight distribution and on the distribution of the ensembles
over the various complexes that may be present. As a result, the distribution of relaxation
times for polymeric fluids can be approximated by a continuous distribution. The number
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of relaxation times per unit volume of fluid coming between r  and r  + dr is set equal to
N(r)dT. O f course, this number is also equal to the number of normal modes, and, hence,
to the number of ^/-functions belonging to the T-values. The distribution function of
every normal mode with relaxation time t is still given by Eq. (IV  5,20) plus Eq. (IV  5,21),
in which r R should, however, be replaced by r. The associated moments are denoted by
^ ) 200.nCr)l l 0.etc.

Suppose we want to calculate the average value of the sum of squared projections in the
x-direction of the segment lengths of all molecules per cm3 . We first assume then that
the molecular weight distribution is mono-disperse and that there are N complexes per
cm , all comprising x molecules with n segments and being in the same state of friction
characterized by a given W. The demanded average then equals

The matrix Q is formed by the normalized eigenvectors of the symmetric mobility
matrix B (which, in consequence, are orthonormal), so that

This result holds for any molecular weight and for any ensemble of complexes. If the
distribution of the relaxations times is represented by N (r), the mean square x-dimension
of the segments is equal to

(xk“ xk-i)2 WR)dR = N1b2

/V I»  A 1 1  A  I I  -

k=1 j=1 j= l  i /

xn xn xn

(IV  6,1)

xn xn

where 5 j. is the well-known Kronecker delta.

The average value sought for hence equals

~  xn
2_j h l M P)dP = N b2 £
k«1 J k 200 (IV  6,2)

OO

N(T)M(T),ftn dr (IV  6,3)
o

In an analoguous way we find that
OO

<xk - x k - l ,<V k ~ v k - l ) ^ (B )d R  = b 2 N(r)/Lt(r) dr (IV  6,4)
o

oo

<Vk-Vk-i>2 *<B)dR = b2 N (r)/i(r ) dr (IV  6,5)
o
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For the case of simple shear flow, all these averages can be expressed in the parameters
7, t , and N(t).

7. Stress tensor

There appears to  be no unanimity in the literature as to the way o f assigning a macros­
copic state of stress to  a system o f chain molecules described by a distribution function
,P  and exposed to a flow  field. The various methods used fo r the purpose can, in princi­
ple, be classified into two categories, according as they are based on

i) additivity o f forces or deformations

ii) energetical calculations.

The methods w ill now be reviewed and applied to a single ensemble o f complexes as
defined in sections 1 and 3. In doing so, we shall restrict ourselves to the case o f simple
shear flow.
i) Hermans35), using a model in which only the end-to-end distances o f the molecules
are taken into consideration and the friction is supposed to be concentrated in these end­
points, concludes on simple geometrical grounds that the extra shear stress in a solution
of chain molecules under conditions of shear flow is given by

p2 j = - N  <  (fn  e j ) (rTe2) > (IV 7,1)

where N is the number of molecules per unit volume, f f  is the force exerted by the end­
point on the medium, r is the end-to-end distance of the molecule, ^  and e2 are the base
vectors in the x t and x2 directions, and <  >  denotes averaging over the distribution
function of the end-to-end distances.
Using an approximation o f the Oseen-formula fo r the perturbation o f the velocity field,
Kirkwood and Riseman22) arrived at an expression fo r the extra shear stress in the
necklace model at low shear rates:

=-NL<<fkT?X?2>>
k - o

(IV 7,2)

where r. is the cartesian position vector of the k-th bead, and f£ the hydrodynamic force
exerted by bead k on the solvent. This expression has been elaborated by Kirkwood37)
and used in all the subsequent work done by him and his collaborators38, 39).

The same expression has been found5,26,40-42) by using the time-correlation formalism
of irreversible statistical mechanics; however, since averaging was performed over the
equilibrium distribution, this derivation holds only in the case of low shear rates.

Irving and Kirkwood43, 41) obtained a simular expression fo r the total stress tensor,
expressed in the pair-correlation function, fo r a homogeneous simple liquid in which the
forces between the molecules are only due to  intermolecular potentials.

Kotaka44) generalises the formula of Kirkwood37) and defines the stress tensor of a
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solution o f macromolecules as follows:

xn

Pij = - N E < <fkT ?i>(-r^ j ) > ;  «1-1X3 (IV  7,3)
k=o

Williams'^) used this expression to calculate the normal stresses in the pearl-necklace
models of Rouse and Zimm.

Another method based on the additivity o f deformations, uses the concept o f a stress-
optical coefficient. In the case o f simple shear flow, this coefficient C relates stresses to
the flow  birefringence An and the optical extinction angle according to the relations^)

An sin 2 x  = 2 C p21 and An cos 2 x  = C (p2 j - P 22)

where C denotes a characteristic quantity fo r a type o f polymer which, as demonstrated
both theoretically and experimentally47-49)( is independent o f concentration, molecular
weight (distribution), shear stress, etc. However, as demonstrated by Janeschitz-Krieg|50)f
there is one definite requirement, viz, that the stresses, as well as the birefringence, must
have a purely entropy-elastic source.

For the necklace model we have, according to Zimm20, 51)(

An = NkTC 1 Z -f ^k 200V k= 1
and

2 £
tan 2 x  = —

k

^ k 2 0 0  ^ k 0 2 0
k k

so that this optical analogon method results in

P21 = N k T E  ^ k i t o  <I V 7 >4>
k

P1l - P 2 2 = N k T E  K i O O - J W o 1 <'V7.5)
k

ii) The energetical calculations based on work of Debye52) start from the fact that in
simple shear flow  the work per unit time and per unit volume, P2 ,7 , done by the imposed
shear stress is equal to  the total change per second and per cm3 o f the energy content of
the liquid, whatever the time-dependence of 7 .

The work done by friction o f the liquid on the beads in one second equals^)

xn
- N £ < f j 7 < y o k - 0 >  (IV 7,6)

k - o

where <  >  again denotes averaging over the distribution function \jj o f the segment
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lengths*). The reversible work done on the dissolved macromolecules is often wrongly
left out o f consideration in energetic calculations. In the isothermal case, this work is
equal to the increase o f free energy per cm3 and per sec. According to  Eq. (IV  2,6), this
increase is given by

NkT-^- f  'l l In4 dR = N k T - ^  ln ^ ->  ('V  7 ,7)**)
d t J  0 ~  d t 0

The sum of the two types o f work must equal the work per cm3 and per sec. done by the
additional external force

P217 = NkT- < |n ^ > + N i :  < C  (yo k- ! k) >  (IV 7,8)

We shall now prove that, applied to the necklace model w ith  a given friction coefficient
matrix W, the various methods yield identical results. In doing so, we may start from
Eq. (IV 4,5), preferably after changing over from S “ -coordinates to R-coordinates. Eq.
(IV 4,5) in S*-coordinates is equivalent to  the following equation in R-coordinates

r = V - k T W 1- ^ ^ - - — W "1 a*T a* R (IV 7,9)
O — oR |^2

because multiplication w ith 1/b a* restores Eq. (IV 4 ,5 )***).

A fter substitution o f Eq. (IV 7,9), Eq. (IV 3,7) fo r the friction forces on the beads changes
into

F* = k T - ~ ^  + —  AZR (IV 7,10)
3R b2 "  ”

if Az = a*Ta*, which, in combination w ith Eq. (IV 7,3) fo r p.., gives

*) Many investigators (e.g. Rouse13)( Blatz1^), lsihara^3)) have set this friction work equal to
xn

- N L <  ïk1" * < * >
k=o

The meaning of this expression is not clear. In addition, the expression is not transformation-invar­
iant; for, if the liquid were stagnant and the velocity of a bead f. , the formula would suggest that no
work is done, which is certainly incorrect. The work done by the beads is always nil, because the
forces acting on the beads will always be in equilibrium. (This invalidates the theory of Isihara53)).

• • )  DeWames et al.18) take this work into account but, wrongly, define it as
^  d \L

NkT < — ln -T ->
dt 0

Owing to the normalization of 0, this expression should always be zero.

* * * )  This equation is very similar to the equation of motion used by Zimm20). with x=1, the
matrix 8*"^a* is identical to Zimm's matrix A^. The role of the matrix W is analogous to that of
Zimm's hydrodynamic mobility operator H/f.
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(IV 7,11)
xn - .  , xn xn

P ..  ■ N <  kT  bk £  £  A -, a, b , > ; ,.b  -  x.»A
k=o dk b2 k=o l=o

If \p is independent o f the centres of gravity, we have

d In ^  1 * d In 4/

9ak " £

Eq. (IV 7,11) thus changes into

^ab

xn ,  . . xn
: N k T —  d. + 2  c.d. > ; d  = u,v,w

j-1  0  °j 1 j= i 1 '

After transformation w ith the matrix Q, we thus get:

xn - ,  , xn

Pab = N k T ” 5 ^  Pj + Ë  PjPj > '  P-P = t V . i
3 Pj Mj jU

(IV  7,12)

(IV 7,13)

Pab = NkT

so that

xn xn

P2 i = Nk T  E / Z k i 10; P23 = N k T £ Mlc011;
k=1 k= 1

(IV 7,14)

xn -
P.i = NkT g  [ - 1 + M k200 |;e tc .

and, hence,

P ,, -  P, NkT [*k200  ^*k02oj (IV 7,15)

These formulae fo r the stresses are again identical to the formulae (IV 7,4) and (IV 7,5)
obtained by the optical analogon method.

With the energetical method, the different terms in Eq. (IV  7,8) have to be calculated.
The rate o f change o f the total free energy of all normal modes obtained by differentiation
of Eq. (IV 5,28) and combination with Eqs (IV 5,26a) and (IV 5,26b) is equal to

NkT ±<ln±>=NkTV - L
d t <t> T.k= 1 2 + 2Tk ^ k i i o - ^ k

1 + n l____ i io

^k 2 o o ^k 11 o_

(IV 7,16)

The irreversible work done by friction w ith  the surrounding medium is given by Eq.
(IV 7,6), which expression is equal to

89



N <  F' : (V -  R) >

The friction force given by Eq. (IV 7,10) can be rewritten as

F< Jsl,-T  [i!ai♦ s-1 -iLa-TQ r u ï ±  * p i
-  b • ds# ~J  b - dP -J

so that, using Eq. (IV 3,7), we get

V 0 - B - W - ' ^ a - s [ ^ + p ]

By means of these expressions, the friction work can be defined as follows

N < F TI : <Vo - R ) >

NkT <

Nk2T * T i

b2 " L
1 / 3  In <// \ 2 .

S^(T5Ttfc) 5

>

(IV 7,17)r9 In \]/

k=1 - 'k \ 3pk

as a* W-1 a*T = B and QT B ( .  -  A . Eq. (IV 5,27) fo r ^  plus some rather lengthy calcu­
lations, yields the irreversible friction work

xn -
N < £ f T : (V - R ) > = N k T ^  —

k=1 2 r k
~ 2  +  / i k 2 0 0 + '

1 + m;k 110

^k200 ^klio
(IV 7,18)

Substitution of Eqs (IV 7,16) and (IV 7,18) into Eq. (IV  7,8) gives

xn
P2, = N k T I > k i i ok=1

It is evident, therefore, that the various methods indeed yield identical expressions for
the shear stress and fo r the first normal stress difference in simple shear flow.

So far, we have dealt again w ith complexes belonging to a special ensemble, and not w ith
a mixture of ensembles typical o f a real polydisperse polymeric flu id . Just as in section 6,
a generalization of our results w ill therefore be the next step. With N (r)dr again denoting
the number of relaxation mechanisms per cm3 w ith relaxation times between t and T+dr,
the generalized expressions fo r the stress components under shear-flow conditions become

OO

p2 1 = k T  / N ( r > „ < r > 1 I0 d r (IV7,19)

O
OO

Pll“ P22 =  k T f  N(T> WT,200 - * {T)0 2 0 ] dT (IV 7'20)
o

For every mode o f simple shear flow, the moments in these expressions can be determined
by means of Eqs (IV 5,26).

90



Let us now consider the expression (IV 7,19) fo r shear stress during stationary parallel
superposition. In this case, Eq. (IV 5,26b) has the form

< ^ „ 0
t —t------+ u = t  (q + aco cos cot) (IV 7,21)

d t 110

w ith, as stationary solution,

COT
ju = rq  + a  (cot sin cot + cos cot) (IV 7,22)

1 + co2t2

Substitution in Eq. (IV  7,19) yields

P2 = (p2 j ) + a G' sin cot + a G " cos cot (IV  7,23)

with

(P 2 ! ) rot  =  C' k T

oo

ƒ
N(t )t dT

■ / “

N(t ) co2t2
— ^  I

!t2+  CO

■I -
N (t ) cot

+ co2t2

According to  this expression, the steady rotational viscosity (p2 )rot/q equals

' f N(T)dT

fo r all values o f q. Since nowhere in the above treatment any supposition has been made
as to an effect o f q on the relaxation time distribution N(t), this theory consequently
suggests that the viscosity bears a newtonian character. From, the expressions fo r G' and
G" it further appears that - again according to this theory - a superposed shear rate q does
not have any effect on these dynamic quantities. These two examples already clearly
demonstrate that the theory of entangled macromolecules in its present form is unfit
for describing polymer flu id properties like non-newtonian behaviour and a strong effect
of superposition on the dynamic quantities (see chapter II).

In the next section, we shall introduce an energy postulate by which i.a. the viscosity and
the dynamic moduli are, in fact, transformed into functions of q. A  quantitative compa­
rison between the predictions of this modified theory and the experimental results w ill
be given in the following chapter.
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8. The energy postulate

We have seen that the increase in free energy per unit of volume of an ensemble of com­
plexes (N per cm3) described by the distribution functions <p (undisturbed state) and ip
(disturbed state), is given by

The function 0 is given by Eq. (IV  1,5), and the function \(/ for any type of flow con­
forming to Eq. (IV  5,12) is defined by Eqs (IV  5,6) and (IV  5,20), while the moments
fxk of i//k have to satisfy Eqs (IV  5,21). The increase in free energy for every mode k is
represented by Eq. (IV  5,25), and it may be stated as a general rule that every conceivable
mode characterized by a distribution function i//(r) and a relaxation time r  will show an
increase in free energy by an amount

As argued above, the possibility of assigning a difference in free energy to every conceivable
mode is bound up with the circumstance that, owing to the symmetry of the friction
matrix W, \p, as well as 0, can be written as the product of different t//(r)'s and <P(t ) 's. As

illustrated by the derivation of this formula, A F (r) consists of two parts: an increase
equal to M(t )200 + ju(t)Q20 + ^ T\ o 2 ~  ^ causet* by the deformation of the mode, and
a decrease In |M(r)| brought about by the normalization condition and consequently re­
lated to the increase in volume, or to the decrease in density, of a mode in the deformed
state.

We now pose the following energy postulate:
A mode characterized by a relaxation time t can never store an amount o f free energy
larger than k T a 2 (r). The mode disappears when this lim it value is exceeded during the
deformation process.

The reasons why we wish to advance this postulate are the following. An entanglement
point, or a crosslink point, produces very large or infinite elements in the friction matrix
W. As a result, the transformation to normal coordinates yields very small or even zero
eigenvalues (see also Duiser et al.29-33))f and, in consequence, normal modes of motion
with very large or infinite relaxation times, which, during deformation, undergo a
considerable increase in free energy. The physical idea underlying the energy postulate
now is that if an entanglement of chains is placed in a field of forces, the point of entan­
glement will shift, or the entanglement will cease to exist altogether, when the chains
have deformed to a degree corresponding to a given critical level in the amount of stored
elastic energy. Shifting of the entanglement point will cause other elements of W to be­
come very large. This produces new modes of motion with relaxation times smaller or
larger than the original ones. In these new modes, free energy will again be stored until
a new shift sets in. However, if their relaxation times were small enough, these new modes
could survive the deformation process. Under conditions of steady shear flow, the net
result of the process covered by the above postulate is that many mechanisms with long

AF = NkT ln ~ d R (IV  8,1)
— oo

A F(t ) = V 4 k T U ( r ) 2 0 0  +M(t )020 +M (r)002 -  3 -  In |M (r)|] (IV  8,2)
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relaxation times have disappeared and, possibly, have been superseded by new mechanisms
with shorter relaxation times. However, since in most stagnant polymeric fluids the num­
ber o f relaxation times N(t ) is much larger according as these times are shorter, it  is per-
missable to neglect the relatively small number o f new relaxation times w ith respect to
the number already present. This approximation may not be made if, e.g., N(t ) is nearly
independent o f t, but this possibility w ill be left out o f consideration fo r the time being.

We shall not venture on an opinion as to the energy level where disentanglement takes
place. This level is normally denoted by kTa2 (r); the factor kT is used here because it
also occurs in the expression fo r the free energy. It is likewise unfeasible to make an
apriori statement as to the relation between critical energy and relaxation time t . How­
ever, as w ill appear from our discussion on the experimental results, this critical energy
is practically independent o f r ,  a circumstance which w ill be used already in the following
calculations.

In formular form, the energy postulate can be written as

M(t)200 + M(r)020 + #t(r)002 -  3 -  In |M (r ) |<  2 a2 (t ) (IV 8,3)

We shall now elaborate this postulate fo r some special flow  fields (IV 5,12), namely for
the cases o f parallel and orthogonal superposition. Both types o f shear flow  belong in
flow category treated in section 5. Hence, we have

case a) parallel superposition; y = q + aco cos cut, k = 0
case b) orthogonal superposition; y = q, k = aco cos cot.

With parallel superposition the equations fo r the moments that are of importance here,
viz. Eqs (IV 5,26a) and (IV 5,26b), have the form

^ 2 0 0
7 + H20Q = 1 + 2 r  (q + oco cos cot) n % , Q (IV 8,4)

11 o ,
7 d t +M110 ° n q  + <Kdcoscot) (IV  8,5)

Their stationary solutions are

JUj, 0 -  rq  + a  ■■■ ■ [cor sin cot + cos cot]
1 + co2r 2

(IV 8,6)

1 + 2  r 2q2 + 2 aq*2 0 0
cor2

(1 + co2r 2 )2
[cor (3 + co2r 2) sin cot + 2 cos cot] +

+ a2 CQ2T2 r  + 3 COT

1 + co2 t2 I 1 + 4  co2 t2
sin 2 cot + 1 —2 co2r 2 „  1

-----------------cos 2 cot I
1 + 4 co2t2

(IV 8,7)

These solutions are not the most general ones; they also contain terms that are propor­
tional to exp (—t/r )  but these are o f minor importance because they damp out w ith a
relaxation time r.
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The stationary solution for ip (£, 77, f ,  t) can be found by substitution of Eqs (IV 8,6) and
(IV 8,7) in Eq. (IV 5,27). With constant shear rates (a = 0, q + 0), we find th e  solution
which, according to  Hermans35)i is to  be attribu ted  to  H.A. Kramers:

1------------------------ —  exp
(2 7r)3/2( 1 + r V ) 1/2

| 2 - 2 r q | r ;  + (1 + 2 r 2q2)T72

2(1  + T2 q2 ) 2
(IV 8,8)

Unlike to  w hat is suggested by Zim m 20), form ula (IV 8,8) cannot be applied to  the case
of oscillatory shear (q = 0, a t  0) after mere replacem ent of q by aco cos cut. In fact, the
solutions (IV 8,6) and (IV 8,7) w ith q = 0 have to  be substituted in Eq. (IV 5,27); this
yields a d ifferent result -  identical to  th a t found by Blatz19) -  which, for small values
of a ,  can be approxim ated by36)

1+M110^

(2 7r)‘
* exp (IV 8,9)

With parallel superposition (case a), the energy postulate (IV 8,3) becomes

u  -  1 -  In [u -  u2 ] < 2 a 2 (r) (IV 8,10)
A2 00  lM2 0 0  m i i o j

The solutions (IV 8,6) and (IV 8,7) are abbreviated to

M110 =Tq + aAi (t> (IV 8,11)

^200 = 1 + 2 t V  + 2 a T q  A2 (t) + a 2A3 (t) OV 8,12)

Here, A ( t ) , A (t) and A (t) are periodic functions of tim e with frequency w  and para­
m eter t; their absolute values com e between 0 and 1 a t low and high values of co, res­
pectively. The energy postulate thus changes into

2 r 2q2 + 2 a rq  A2 + a 2 A3 -  In [1 + r 2q 2 + 2 arq ) +

+ a 2 (A3—A2 )] < 2 a 2 (T) (IV 8,13)

With orthogonal superposition (case b), the m om ents are defined by the Eqs (IV 5,26)
w ith 7  = q and k = aw  cos cot. Their stationary solutions are

^ 0 2 0  =  1;  ^ 2 0 0  =  1 +  2 T 2 q 2 :  ^ 0 1 |  * a A . : ^ 1 0 1 = a T q A 2 ;

H = 1 + a 2 A <IV 8 .14>
^ 0 0 2  3

which change the energy postulate into:
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(IV 8,15)

2 r 2q2 + a 2A 3- l n  [1 + r 2q2 + a 2 (A3~ A 2) +

+ a V q 2{A 3 - A j - ( A ,  - A 2)2} ]  < 2 a 2(r)

Eqs (IV 8,13) and (IV 8,15) show that whereas the terms in the energy postulate for
parallel superposition are proportional partly to a, partly to a2, the energy postulate for
orthogonal superposition exclusively contains terms that are proportional to a2 . The
conclusion drawn from either equation is that during steady rotation (a = 0, q ^ 0) the
stored energy increases about quadratically w ith rq . As we supposed that a2 (r) is practi­
cally independent o f r ,  it follows that the maximum relaxation time r  under these
conditions must satisfy the relation:

2 r mq2- |n(1 +Tmq2, = 2a2(Tm> (IV 8,16)

During superposition, this value o f t is influenced by the oscillation, although not in
exactly the same way in the two cases. Let us suppose now that a  is small w ith respect
to I .  Terms of the order of a2 w ill be neglected, but terms o f the form a2T2q2 w ill be
maintained, because Tq might become very large.

The maximum relaxation time fo r parallel superposition is found from

2 r mq2 + 2 aTmq A 2 -  In [ 1 + r ^ q 2 + 2 aTmq (A 2 -  A t )] = 2 a2 (rm ) (IV  8,17)

that fo r orthogonal superposition from

2 rm ^2 - ln C1 + « ? £ <  I  A 3 - A ?-<A a- V 2 f ]  = 2 a2 (rm) (IV 8,18)

We suppose that in case a) t = t (1 -a P )  and in case b) r  = r  ( 1 -m o  m o
stitution in Eqs (IV 8,17) and (IV 8,18) leads to the solutions

Vi a2Q2). Sub-

2 r 2q2 — In [ 1 + T2q2 ] = 2  a2 (IV  8,19)

p A 1 +TOq2A2

Toq(1 + 2 r 2q2)
(IV 8,20)

^  A j - A - M A —A 2)2
(IV 8,21)

These formulae show that P and Q2 are indeed o f the order o f 1 or smaller at all values
of tqq and, hence, that the above approximation may safely be made. So, according to
this theory, the perturbation o f tq is linear in a in the case of parallel superposition, but
proportional to a2 in the case of orthogonal superposition. Terms of the order o f a2 are
negligible during small-amplitude oscillation. It is evident, therefore, that the perturbation
of tq will have a greater influence on all measurable quantities during parallel superposition
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than during orthogonal superposition.

With parallel superposition, the energy postulate consequently gives:

aco r2 f o O  + w 2r *  + 3 r 2q2 + co2r *  q2 )
7  = r  — . . I— ----------------------------------------------------sin cot +
m °  t q (1 + co2t2 ) I ( 1 + co2t2 ) ( 1 + 2 r 2q2)

o O L . o  o

1 + CO 2t2 + 2 T2q2

(1 + co2t2)(1 + 2 t2 q2)

indicating that the maximum relaxation time varies with time around the maximum
existing if only constant shear flow were present (a = 0). With parallel superposition, the
superposed oscillation contributes to the break-down of the relaxation spectrum. This
additional effect varies sinusoidally with time and, as appears from Eq. (IV  8,20), is in
phase with the oscillatory component of ju ,  t Q if tqq • <  1 , and in phase with the oscillatory
component of n if r  q >  1. Which of the two conditions will be realized fully depends
on the value of a^(r), and, hence, on the critical energy; with regard to the latter quantity,
however, no theoretical predictions can be made for the time being.

This additional time-dependent break-down effect caused by the superposed oscillation
does not occur if the direction of the oscillation is perpendicular to the direction of the
steady shear flow.

cos J (IV  8,22)

9. Some consequences of the energy postulate

The most important consequence of the energy postulate discussed in the preceding
section is that in the integrations to be performed for calculating the shear stress or nor­
mal stress, by means of Eqs (IV  7,19) or (IV  7,20), an upper limit is set to the interval
of relaxation times over which the integral can be taken. As a result, the formulae for
these stresses now become:

1m
P j i = k T /  N(t ) m (t )110 dr (IV  9,1)

o

Im
P i 1 " P 22  =kTJ N (T ) l > (T ,2 0 0  -  ^ 0 2 0 ]  dT  0  V  9 '2>

o

where t for any form of T  follows from the energy postulate (IV  8,3).

Earlier in this chapter, we already calculated the moments for some forms of £ , and it is
not much trouble to work out the formulae for the corresponding stresses. In the
following, we shall restrict our considerations to the case of parallel superposition. The
moments are given by Eqs (IV  8,6) and (IV  8,7), (for divergence free flows P020 always
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equals 1), while rm -  again set equal to tq (1-aP) with P smaller than 1 -  is given by
Eq. (IV 8,22). This expression is accurate up to the order of a, with the result that in the
computation of the normal stresses the terms proportional to a2 cannot be correct. For
this reason, and also owing to lack of experimental data, these terms will therefore be
omitted.

The integrations in Eqs (IV 9,1) and (IV 9,2) will now be carried out. We first integrate
up to tq and then set the integration over aPrQ equal to the product of aPr and the inte­
grant. For the stresses in the case of parallel superposition we thus find

P2, = (P2 j )rot + a G'(cu,q) sin cut + a G"(co,q) cos cot (IV 9,3)

and

p! j ~ p22 ~ (p, , — p22 )rot + 2 aq N'(cu,q) sin cut + 2 aq N"(cu,q) cos cut

where

(p21)rot = c>kT /  N (r)rd r

(IV 9,4)

(IV 9,5)

I

(pn “ P2 2, ro t“ 2q2kTƒ  N(T)r2 d r (IV 9,6)

i J r 2 N(r )cu2 t3
G'(cu,q) = kT /  N(t) dr -  k T ------------- -- xT f  N(r) -

+ cu2r 2 1 + 2 r 2q2

1 + cu2r 2 + 3 r 2q2 + cu2r 4q2o_____ o j ________

(1 + cu2r 2)2
(IV 9.7)

G - M - k T ,  N W - S ^ d r - W  (1V98|r/ 1 + cu2r 2 1 + 2 r 2q2 (1+cu2r 2)2

N'(wkii -  k t ,  n h  £ d i a i s £ £ }  dr -  kT.N|T»l" , , °
(1 + cu2r 2)2 1 + 2  r 2 q2u O

1 + cu2r 2 + 3 r 2q2 + cu2r 4q2
Q_______ ______________OJ1

(1 + cu2r 2)2o
(IV 9,9)
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(IV 9,10)N"(co,q) = kT /  N(t)ƒ 2 cor2 „ 1 T N' f , K  1+<o2r2 + 2 r 2q2
----------- d r —k l -------------- x

(1 + co2r 2)2 1 + 2 r2q2 (1 + <o2r 2)2

According to Eq. (IV 8,19), the upper limit r Q is now a function of q.
For better conformity with common practice^, 55)( We shall use the logarithms of the
relaxation times. If we put kTN(T) equal to H(t), H(r)dlnT represents kT times the number
of relaxation mechanisms per cm3 whose relaxation times, expressed logarithmically,
come between Inr and Inr + dlnr. Using this notation, we have

In r

<P2 i )mt = C’ ƒ H(r)rd Inr (IV 9,11)

In r

(p — P ) . = 2 q2'Ki i  H2 2 rot M ƒ H(t)t2 d Inr (IV 9,12)

G'(co,q)

in

ƒ H(r)
2r 2

1 + co2r2
d Inr —

H(r )co2r 2o o

1 + 2 r 2 q2

1 + <o2r 2 + 3 r 2q2 + to2r4q2o_____ o j_______ o

(1 + w 2r 2)2
(IV 9,13)

G"(co,q)

in

ƒ > H(r )wr 1 +w 2r2 + 2 r2q2
H(r)---- d l n r ---------------------- x --------- 0 . ■ (IV 9,14)

1 + oj2 t2 1 + 2 r2 q2 (1 +co2r 2)2

N'(cu,q)

in

ƒ . i w2r 3(3 + w2r 2) ..H(r)---------------------d I n r -------------------x
(1 + oj 2r 2)2 1 + 2 r2 q2

1 + co2r 2 + 3 r 2q2 + co2r4q2

(1  + < o 2 r 2 )2

(IV 9,15)

N"(w,q)
2 cor2

(1 + w 2r 2)2

H(ro)cor2
d In r ---------------

1+2 r 2 q2
X

1+co2r2o + 2 r 2oq2

(1 + (o2r 2)2
(IV 9,16)

The conclusions that can be drawn from the above formulae are the following: if an
oscillatory shear of very small amplitude is superimposed on a steady shear flow, the
constant parts of the shear stress and normal stress will not be influenced by it. The
dynamic properties, however, are certainly dependent on the value of the steady rate of
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shear. This dependency is reflected first of all in the fact that the integration on the long­
time side o f the relaxation spectrum cannot go beyond a value tq characteristic o f the
steady shear rate and, secondly, in the appearance, outside the integral, of a negative term
caused by the perturbation o f the lim it value r  under the influence o f the small dynamic
strains during parallel superposition.

In the case of pure oscillation, so w ith q = 0. the above equations fo r the shear moduli
change into the well-known formulae obtained from the phenomenologic theories^, 55).
With q = 0, tq becomes equal to °o and H(t ) to 0. The negative terms in Eqs (IV 9,13) to
(IV 9,16) disappear, so that the dynamic shear moduli are given by

+oo
> •  2  2

G '=  /  H(r) ^ L L -----d l n r  (IV 9,17)
J  1 + c o V

— O O

G"
on

—■ ■■■ d In r
1 + o>2t2

and the normal stress components transform into
OO

M' f  u . . w 2T3(3 +co2r 2) .N = ƒ H(t) --------------------- — d l n r
J  (1 +0J2T2)2

N" =
— OO

H(t)
2 on2— — — d Inr

(1 +co2t2)2

(IV 9,18)

(IV 9,19)

(IV 9,20)

Our next problem is to compare these theoretical results w ith the experimentally deter­
mined stationary properties fo r each of the three following cases: pure oscillation, pure
rotation, and superposition. For the execution o f this quantitative comparison we refer
to the next chapter; however, the procedure to be followed is briefly indicated below. An
extensive part o f the relaxation spectrum H(t) can be determined from simple oscillation
measurements by means o f Eqs (IV 9,17) and (IV 9,18). The integral

H(t )t d In r
— OO

can then be calculated fo r many values of In r  . According to  Eq. (IV 9,11) these inte­
grals must be equal to the steady shear-viscosity (p21 )rot/q at various values of q. Equal­
ization of these two quantities yields In t as a function o f q. By means of Eq. (IV 8,19)
it can now be established how the maximum increase in free energy kTa2 (t ) w ill vary as
a function of q or t . Eq. (IV  9,12) enables the normal stress to be calculated as a func­
tion o f the shear rate, and, fo r our theory to be correct, this function should coincide
with the experimentally measured normal stress. By means o f Eqs (IV 9,13) to (IV 9,16),
it is also possible now to  determine theoretically how the dynamic quantities are related
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to the frequency at different values o f the superposed steady shear rate. Comparison of
these theoretical predictions w ith the experimental effect of superposition on the dynamic
characteristics provides evidence on the value o f the present molecular disentanglement
theory.

A t this stage, we want to point out that the results obtained in the present chapter are
very similar to  those of Leonov's th ixotropy theory treated in chapter III (see e.g. Eqs
(III 29), (III 30) and (III 31)). Whereas the th ixotropy theory starts from a generalized
Maxwell model, and ours yields the formulae underlying this model, they agree in that
both introduce energy postulates which, expressed in the defining parameters o f the two
theories, are approximately identical in form. Furthermore, it appears that Eqs (IV 9,19)
and (IV 9,20) fo r N'(co,o) and N"(co,o) can be derived in exactly the same form from
Leonov's theory and from the generalized results o f the Oldroyd theory (chapter III).

10. Physical interpretation o f dynamic moduli

Whereas we have no objection whatsoever against the current terms 'in-phase component'
and '90°-out-of phase component' o f the complex shear modulus, the reader may have
been struck by our consistent use of the symbols G'(co,q) and G"(oj,q) fo r the concepts
normally referred to as storage modulus and loss modulus respectively. Although we must
admit that, properly speaking, also the notation G "(cj,q)/q  is not exactly equivalent to
the term 'dynamic viscosity' as normally used, we wish to point out that the above
terminology is not applicable to the present case. The considerations underlying this
statement w ill now be subjected to  some closer scrutiny.

In our calculation o f the shear stress we have made use o f the fact that the amount of
work done by the shear stress per unit time and per unit volume equals p y. I f  7  =
= q + aco cos cot, then p = (P2 j >rot + a  G'(w,q) sin cot + a G"(co,q) cos cot, and this
work consequently equals

(p21 )rotq + a2co G"(co,q) cos2 cot + a2co G'(co,q) sin cot cos cot + aq G'(co,q) sin cot +

+ aq [G"(co,q) + c o r j^ j coscot (IV 10,1)

Suppose now that a =  0; we then have q(p2 )rot = v mt 92 • This work is always positive
and represents the energy dissipation per cm3 and per sec. With q = 0, the work is
a2 co G " cos2 cot + a2co G' sin cot cos cot. The firs t term is always positive and represents,
a dissipated energy. The second term is positive during a certain part o f the oscillation
period, and negative during an other, the integral over the fu ll period being zero. It shows
how energy is stored over a given time lapse and released afterwards. This accounts for
the use of the terms storage modulus fo r G' and loss modulus fo r G " in treatises on linear
viscoelasticity, and also fo r certain physical interpretations of these moduli56).

However, the energy stored during superposition is determined by
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a2o) G'(co,q) sin cutcoscut + aq G'(co,q) sincot + aq [G "(w ,q )+  a»?rot] cos w t (IV 10,2)

and the energy dissipated by

t?rot + a2w G"(w ,q) cos2 cot (IV 10,3)

showing that G'(<o,q) and G"(cj,q) are no longer specific measures o f the stored energy
and the dissipated energy, respectively. This brings us to our conclusion that in the case
of superposition the terms storage modulus and loss modulus do not cover the contents
of the notations G'(u>,q) and G"(co,q). I f  during superposition G'(w,q) becomes equal
to zero, the stored energy is given by aq [G"(co,q) + cut?rotl cos cot, so that, though the
phase angle 6Q equals 90°, the liquid is still not a ideal viscous liquid.

Consequently, the current physical interpretation of the dynamic shear moduli is not
valid here. We have not succeeded in conceiving new formulations fo r these quantities;
neither have we been successful in forming a physical picture o f the dynamic normal
stress quantities N'(co,q) and N"(co,q), not even in the limiting case q = 0 where they
are described by the simple formulae ( IV 9,19) and (IV 9,20).
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Chapter V

COMPARISON BETWEEN MOLECULAR THEORY AND EXPERIMENT

1. Introduction

In the previous chapter certain relations have been derived between the flow  gradients
applied to a polymeric flu id and the stress tensor occurring in such a flu id ; this has been
done by means of a generalized pearl-necklace model. A factor of essential importance in
our theory is the relaxation spectrum H(t), in which any given relaxation time r  pertains
to a definite mode of motion o f the normal coordinates in a complex o f macromolecules.
We further introduced an energy postulate stating that only a limited amount o f free
energy can be stored in a given mode of motion. If this lim it is exceeded, the mode dis­
appears, owing to disentanglement of the polymer chains. The postulate yields a relation
between velocity gradients, time and maximum relaxation time rm. We studied this rela­
tion fo r several flow-fields. It appeared that in the case o f parallel superposition rm is a
function not only o f the steady shear rate q, but also o f the amplitude and frequency of
the superposed oscillatory shear and o f the time. This dependence has an effect on the
expressions fo r the stresses produced during parallel superposition; fo r a description of
these stresses we refer to Eqs (IV 9,11) up to and including (IV 9,20) in the previous
chapter.

In the present chapter the theoretical predictions w ill be compared w ith experimental
evidencè. For this purpose, however, we need the two quantities introduced into the
theory in the form o f adaptable parameters, viz. H(r) and r  (q).

2. Determination o f the relaxation spectra

The actual shape o f the relaxation spectra H(r) can be derived from experimental data.
Eqs (IV 9,17) and (IV 9,18) give the same expressions fo r G' and G " at pure oscillation
as have been derived from many phenomenological theories. Ferry 1) indicates several
procedures fo r calculating an approximate shape of the spectrum from the two shear
moduli established over a limited frequency interval. In our approach we primarily used
the first-order approximation method suggested by Ninomiya and Ferry2). The rather
limited part of the spectrum thus obtained was intuitively extrapolated towards long and
short relaxation times; this yielded a spectrum on the basis o f which the quantities G' and
G " were calculated on the computer. Since the first results did not show a close f i t  w ith
the experimental values of the moduli over the entire measuring range, we modified the
spectrum until the computer calculations gay§ a Sufficiently accurate description o f the
experimental results. We thus determined H(r) fo r the solutions 2 and 3 mentioned in
chapter 11,3. The spectra are illustrated logarithmically in Fig. V,1. The identity in shape
shown by the two spectra is in accordance w ith the circumstance that the only difference
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Fig. V,1 Intensity H(T) of relaxation mechanisms per unit volume, in
dynes cm” , as a function of the logarithm of the relaxation time T, in
sec, used in the calculations for solutions 2 and 3

between the solutions is a difference in concentration. The two spectra w ill be used as a
basis in our further calculations.

3. Steady stresses and critical energy

For the known spectra the integral

can be calculated as a function of In r  . According to Eq. (I V 9,11), the values so found
must be equal to  those o f the steady rotational viscosity (p2 J )rot/q at various values of q.
Equating these calculated integrals fo r various values o f tq to  the experimental viscosity
at various values o f q, we found a relationship between tq and q. For solution 2, as well
as fo r solution 3, this relation can be adeqately described by means of the expression
tq = 2.5/q, fo r all q-values used. The validity o f this relation is demonstrated in Figs V,2
and V,3. In these figures the shear stresses calculated from the spectra are shown as
functions of the shear rate q (= 2.5/tq) fo r each of the two solutions (drawn lines); in
addition, the experimental values o f p have been plotted versus q. It is seen that if the
spectrum H(r) is known, Eq. (IV 9,11) w ith tq = 2.5/q gives a good description of the
shear stress as a function o f the shear rate.

This finding implies that the critical energy a2 (r) found from Eq. (IV 8,19) is independent
of t, which confirms the correctness of our assumption in section IV,8 that a2 is not
strongly dependent on r.

In t

H(r)Td Inr
o
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Fig. V,2 Comparison of the calculated shear rate dependence of the
shear stress p2 j and of the normal stress difference Pj (—P22 (drawn
lines) with the experimental data (X and •). Solution 3

Fig. V,3 Comparison of the calculated shear rate dependence of the
shear stress p21 and of the normal stress difference p , , —p22 (drawn
lines) with the experimental data (X and • ) .  Solution 2
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Calculating the integrals

ln ro
J  H(T)T2d ln r

— OO

from the spectra and using Eq. (IV 9,12) w ith  t  = 2.5/q, we find the steady normal stress
difference Pj j — P2 2 as a function of q. These calculated values fo r the two solutions are
also shown in Figs V,2 and V,3. Whereas in the range o f low q-values there exists good
agreement between theory and experiment, i t  is seen that at higher q-values the theoreti­
cal results are significantly below the experimental ones. Consequently, in the case of
steady shear it  is not possible by means o f our theory quantitatively to describe p21 and
p i — p2 as functions o f q at the same time.

With t = 2.5/q, calculation by means of Eqs (IV 8,2) and (IV 8,19) shows that the
maximum increase in free energy fo r every mode equals

A F * = % kT [2 t2q2 -  In (1 + T2q2 )] = 5.26 kT,

which value, at room temperature, corresponds to  approximately 2.1 x 10"*3 ergs per
mode. As stated in the previous chapter, this is the energy needed fo r disentanglement.
Expressed in other units, the above energy is approximately equal to 3 kcals per gram-
molecule in normal modes, so, much lower than the bond energy of, say, a C-C bond in
polymers, which, depending on the further structure of the monomer3), lies between 50
and 70 kcals/mole. Gillespie^) states to have found that the energy needed fo r disrupting
a disentanglement in several solutions o f polyelectrolytes is 7-8 kT, against 20-25 kT in
polystyrene melts5). Further, the value o f 3 kcals/mole fo r the critical energy is virtually
equal to  the thermal activation energy o f the friction coefficient per monomer unit in
several polymers mentioned by Fox and Allen^), while Porter and Johnson?), fo r some
other polymers, calculated an entanglement dissociation ênergy o f the same order of
magnitude from the flow  activation energy.

Also on purely molecular grounds it  is to  be expected that the critical energy w ill equal
a few kcals/mole. For,the principal condition to be satisfied fo r disentanglement to take
place is that the chains concerned must change their conformation by rotation about a
C-C bond — a process in which rotation barriers of the above order play a part. In view of
this interpretation it is to be expected, therefore, that there w ill exist a relation between
the critical energy, and, hence tq at a given q, on the one hand, and the rotation barriers
in the main chain, on the other. It is evident from this that the solutions 2 and 3, being
different in concentration only, w ill both show the same relation between tq and q.

It remains to be pointed out here that a reasonable measure of the deformation experienced
by a mode is given by the root mean square o f the dimension of the segments parallel to
the shear velocity. In the case of simple shear flow this quantity equals b (/i(r)200 ] /*, as
can be calculated by means of Eqs (IV 6,1) and (IV 6,2). Since under critical conditions
we have r  q = 2.5, the critical deformation calculated by means o f Eq. (IV 8,7) equals
b (13.5),/4, i.e. less than four times the root mean square length at rest. A t this value o f the
end-to-end distance, the gaussian distribution is still a good approximation o f the equilib-
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rium distribution function of the segment lengths. This means that our energy postulate
is compatible with our original assumption of a gaussian distribution. Before the defor­
mation is about to exceed the limit up to which the gaussian distribution is applicable,
disentanglement of macromolecular chains sets in.

4. Dynamic shear moduli during superposition

By means of Eqs (IV  9,13) and (IV  9,14), and using the spectra in Fig. V,1 and the
relation t = 2.5/q, we calculated G'(co,q) and G"(co,q) on the computer. In Figs. V ,4
and V,5 both the theoretical and the experimental values of G'(co,q) and G"(co,q) for
solution 3 have been plotted logarithmically as functions of the frequency for some fixed
values of the superposed steady shear rate; the latter values (log q) are indicated beside
the various curves.

Fig. V ,4  Calculated values of G'lCO.ql/CJ*
(drawn lines) compared with experimental
data (X) for the indicated values of the
logarithm of the superposed rate of shear q.
Solution 3

- 0.7 *

Fig. V ,5  Comparison of the calculated frequency
dependence of the dynamic viscosity G"(CO,q)/CO
(drawn lines) with the experimental data (X) for
some indicated values of log q. Solution 3

The curve marked log q = - ° °  shows that pure oscillation measurements can be very ade­
quately described by means of the spectra given. The effect of q on the moduli is also
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described in a perfectly satisfactory manner, although, according to  theory, the quanti­
tative effect of superposition is slightly smaller than that found experimentally. The
deviation between calculated and measured values is greater fo r G'(w,q) than fo r G"(o<j,q).
However, the calculated G'(co,q)/oj2 vs co curves very clearly display the maxima charac­
teristic o f parallel superposition.

A  more direct comparison w ith the experimental quantities relating to some other values
of log q fo r solution 3 is given in Figs V,6 and V,7

Log|G*(co,q)|

Fig. V ,6  Experimental effect of superposed steady shear rate on the frequency dependence of
|G*(CU,q)| (broken lines) compared with the theoretical effect (drawn lines), for the indicated values
of log q. Solution 3

— ►Log co

Fig. V ,7 Theoretical effect of superposed steady shear rate on the frequency dependence of 8 q  (diawn
lines) compared with the experimental effect (broken lines), for the indicated values of log q.
Solution 3
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In these figures the drawn curves show the calculated values of the shear modulus
|G*(cu,q)| and the phase angle 5Q, while the experimental values are indicated by crosses.
It is seen that in all cases the theoretical effect o f superposition is again too small. From
Fig. V,7 it can be concluded that, theoretically, the phase angle at frequencies lower than
q comes to  exceed 90°, but also that at very low frequencies it tends again asymptotically
towards this value.

In Figs V,8 and V,9 we have compared the theoretical and experimental values of

10/ Aa

Fig. V ,8 Experimental effect (X) of logq on |G*(CO,q)| compared with
theoretical effect (drawn lines). Solution 2

X>.5

— ►Log co

Fig. V ,9  Theoretical effect of log q on 5 q  (drawn lines) compared
with experimental effect (X ). Solution 2
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|G*(co,q)| and 6Q for solution 2. Here again it is seen that the theoretical effect of super­
position is slightly smaller than has been found experimentally.

Experiments with all solutions examined in the present study have shown (Fig. 11,4) that
in the measuring range employed the frequency cjq at which the phase difference 5G
equals 7r/2 is related with the steady shear rate q via the expression coq = V2  q . Calculations
at various values of q also yield the frequencies co at which the calculated phase differences
equal 7t/ 2. These values, indicated in Fig. V ,10, prove to satisfy the relation co = 1/3 q.

Log co0

Log q

1.0 1.5- 1.5 - 1.0 - 0 5

Fig. V ,10  Frequency toQ at which the theoretical
phase difference 6_ equals 7T/2 as a function of the
superimposed rate of shear q for solutions 2 (X)
and 3 ( • )

and show a tendency to deviate in the low-frequency range. The experimental relation is
given for comparison. The difference between the two is not very great but definitely
exceeds the experimental inaccuracy. Unfortunately, it is not possible on the basis of
Eq. (IV  9,13) for G '(w ,q) directly to derive a simple theoretical relationship between <x>Q

and q.

5. Oscillatory normal stress components

Eqs (IV  9,15) and (IV  9,16), in combination with the spectra given and the relation
t = 2.5/q, enable us to calculate the quantities N'(cu,q) and N''(tu,q) and, from these,
IN*(c*;,q)| and 6 .. .Carried out for solution 2 at the log q values used in the experiments,
this calculation yielded the results shown in Figs V ,1 1 and V,12. The experimental values
of these two quantities are given in Figs V ,13 and V ,14, respectively. Comparing the
various curves, we see that the theory does not hold good at all. In the range of frequen­
cies examined experimentally (from log co = 0.0 to log co = 1.2), we have found that
log |N*(cu,q)| varies over no more than 1.7 decades, whereas, according to theory, the
variation covers 2.7 decades, which clearly demonstrates that the theoretical effect of q
on |N*(co,q)| is far too great. Comparing the figures for 5^ , we see that, both theoretical­
ly and experimentally, the range of §N is equal to approximately 90°, and that in both
figures 5N decreases with the frequency and increases with q. The most notable feature.
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Fig. V ,1 1 Calculated absolute value of the complex normal stress
viscosity N*(CU,q) as a function of the frequency CO for the indicated
values of the logarithm of the superposed shear rate q. Solution 2

-Log co

Fig. V ,12 Calculated frequency dependence of 5^  for the indicated
values of log q. Solution 2

however, is that according to theory 6^ is always positive, whereas experiment has shown
that it may be positive as well as negative. Venturing upon a, perhaps inadmissible, extra­
polation, we can conclude from Fig. V,14 that, w ith log q = -°°, 5N w ill be negative over
a large frequency range. According to theory, on the other hand, the phase angle SN re­
mains positive at all frequencies, even w ith  q = 0 (see dotted curve in Fig. V,12). This
follows directly from Eqs. (IV 9,19) and (IV 9,20), which indicate that, w ith q = 0, both
1ST and N ", and, hence, also öN, are positive at all values o f cu. In consequence, the dis-
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Log|N*(co,q)|

Log co

Fig. V ,13 Experimental value of the normal
stress viscosity |N*((0,q)| as a function of the
frequency CO for the indicated values of log q.
Solution 2

1.4

'* —• Q9

—* Log co

Fig. V ,14 Experimental frequency dependence
of 5 n  for the indicated values of log q.
Solution 2

crepancy found between theory and experiment cannot be due to  our energy postulate.
Also when q equals zero — a condition under which the postulate is not used — the dis­
crepancy is found.

The fact that the theory is not applicable here must, therefore, be related to  the expres­
sion fo r the moment u , or to  the relation between the moments o f the distribution
and the normal stress (chapter IV ,7). Although in the case o f steady rotation the theory
does give a reasonable description, also of the normal stress, the possibility that the time-
dependency o f the differential equations (IV 5,21) fo r the moments is invalid, should
certainly not be excluded; this invalidity would imply that the time-dependency of the
differential equation (IV 5,17) fo r \p is incorrect. However, the results achieved so far do
not enable us to  establish whether the theory is principally at fault here, or whether the
problem regarding the relationship between the deformation o f the molecules and the
ensuing stress factor has not been properly solved yet.

6. Lim iting values fo r the viscosity

As mentioned several times in chapter II, experiment has revealed that under conditions
of superposition and w ith co ——0, the limiting value o f the dynamic viscosity t? .(co,q)
is not equal to the steady rotational shear viscosity rj(q) at the same q. With orthogonal
superposition, it  is seen that ??d(co,d) may come to exceed T?(q), whereas with parallel
superposition the situation is just the reverse.

We shall first subject the lim iting values to a theoretical consideration. From formula
(IV 9,14) it follows that in the case o f parallel superposition the dynamic viscosity lim it
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at low frequencies equals
in t

G''(w,q) C  °
lim ------------- -- I  H (r)rd  In r — H(r )r .
co- 0  co J ' 0 0

— OO

Using the relation tq = 2.5/q, we find by means o f Eq. (IV 9,11)
To

H(T)Td In r  — H(to)tq,

so that, according to theory.

d <P2 ,>rot
111

ƒ

G"(co,q)
lim ------------
co—0 w

(0,q) =
d<P2i>

dq
rot . ,
—  =t?(q) [■

| d Inr?
d Inq

The same relation was derived in chapter 111,5, where we dealt w ith  various considerations
on nearly viscometric flows (Eq. 111,66)*). The relative incremental viscosity
(d (p2 ] )rot/dqI /r?(q) can now be calculated from both the theoretical and the experimen­
tal results. Since the experimental curves fo r the shear stress can be adequately described
by means the theory, the two calculations yield the same result. Moreover, the values
found fo r solutions 2 and 3 are substantially equal. In Fig. V,15 they are plotted versus
q (drawn curve).

Fig. V,15 Theoretical and experimental values of the relative incremental
steady-state viscosity [dp2 j/dq ] /T?(q) (drawn line) compared with the
experimental data of the relative dynamic limit viscosity in the case of
parallel superposition Tjjj (0,q)/TJ(q) for solutions 2 (0) and 3 (X)

*) Relations analogous to those derived by Bernstein and Fosdick (see Chapter 111,5) also follow
from Eqs. (IV  9,11) up to and incl. (IV  9,17), showing that among the four dynamic quantities
G'(CO,q) is the only one that can become negative under certain conditions.
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From the experimental values for log |G*(co,q)| as a function of log a> an estimate can be
made of the limiting value at very low frequencies of G"(co,q)/co. The quotient of
t?Jj(0,q) and 17(q) is also plotted versus the superposed shear rate q in Fig. V,15. The
quotients for solution 3 are indicated by crosses, those for solution 2 by circlets. It  is
evident from this figure that, as far as the limiting values of the viscosity is concerned,
there exists very reasonable agreement between theory and experiment.

In view of the theory it is to  be expected that in the case of orthogonal superposition
r^j(0,q) will be equal to  r?(q). meaning that the quotient T^j(0,q)/i?(q) must theoretically
be equal to 1 at all values of q. A  similar conclusion could be drawn from all theories
dealt with in chapter II I .  However, Simmons' experiments have shown that this quotient
may be 25 % higher than 1. An explanation for this high value cannot be given.

7. Discussion

The first discrepancy between theory and experiment was encountered when we made a
comparison between the normal stresses. Upon proper adaptation of the shear stress as
a function of q, we found too low a value for the normal stress.

We postulated that the relaxation mechanisms whose free energy has increased by an
amount AF greater than a given critical amount A F * are all bound to vanish, whereas all
mechanisms that have increased in free energy by less than A F * will remain in existence.
This involved that above a given relaxation time r ,  the relaxation spectrum suddenly fell
off to zero. As seen from the physical angle, such an abrupt truncation would be unlikely.
For, purely statistical considerations already suggest that, even though A F * has a sharply
defined value, not all mechanisms with a AF greater than A F * will disappear, and also
that a mechanism may disappear before AF has reached the limiting value. Another
complicating factor is that a wide variety of disentanglements may be conceived. So far,
it has been silently assumed that we are concerned exclusively with first-order entangle­
ments, or, to use Bueche's termS), entanglements with complexity index 1. This type of
entanglement is the most likely one, both in stagnant and in flowing polymer fluids. Dis­
entanglement can be achieved by simply pulling the free end of one chain through the
loop in an other one, whereas in the case of an entanglement with complexity index 2,
the free end must be pulled through two loops, etc. To release the simplest type of
entanglement it suffices for successive rotations to be performed about no more than one
main-chain bond, whereas disengagement of a more complex entanglement may require
simultaneous rotation about several bonds in the main chain. Such a concerted process
calls for more energy, and we may say, therefore, that the value of A F * will, in general,
increase with the complexity index of the entanglement. This also explains why A F *
will not have a sharply defined value, but cover a whole range of values. This involves
that the spectrum H(r) will not be abruptly truncated at r Q, but show a continuous and
steep decrease.

In Fig. V ,16 we have truncated the spectrum for solution 3 in a rather arbitrary fashion.
In the range of low r-values we have drawn a curve roughly parallel to the spectrum at
high T-values, with the sole intention of examining how a change in truncation manifests
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itself in the result of the calculations.
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Fig. V ,16  Two modes of narrowing the relaxation spectrum, resulting
in the same values of the calculated steady-state shear stress p21 and
in different values of the normal stress difference Pj j “" P22at *°9 P = 1-78.
Solution 3

The value of the shear viscosity for this modified spectrum has been calculated on the
computer. It  appeared to be equal to that previously calculated for a spectrum truncated
at log tq = 1.38 (see dotted line in Fig. V ,16). So, at log q = 1.78, the shear stresses for
the two spectra are equal. We also calculated the normal stress difference for the new
spectrum (indicated by a square at log q = 1.78 in Fig. V ,2), and found it to be much
higher than that calculated previously and to lie fairly close to the experimental value

The brief calculation dealt with above shows that a change in the shape of the truncation
does no affect the various stresses in the same way, a circumstance that may be used to
advantage in completely eliminating the discrepancy found. It  adds, however, to the
complicatedness of the calculations of the dynamic quantities in the case of superposition,
because the time-dependency of the breakdown and, hence, the negative terms outside
the integrals in Eqs (IV  9,13) up to and incl. (IV  9,16) can then no longer be calculated
in a simple way. Moreover, it is not possible to indicate straightforwardly how the
truncation should be made. We have therefore not elaborated this refinement of the
theory, but only mentioned it as a possible means for arriving at a better description of
the experimental results.

There is one point, however, on which the theory falls short very seriously, viz. in the
description of the oscillatory normal stress components. As already pointed out in
section 5 of the present chapter, this shortcoming has nothing to do with the shape of the
relaxation spectrum and the use of the energy postulate. The cause of the discrepancy
between theory and experiment on this point must therefore be sought in the basis of the
theory.

0fPll-P22-
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SUMMARY

The thesis deals w ith dynamic-mechanical properties o f flowing polymeric fluids. Besides
a survey of the relevant literature, it contains the results of an experimental and a theo­
retical study.

In his experimental work, the author measured shear stresses and normal stresses on
fluids exposed to steady shear, oscillatory shear, or to a combination o f the two (super­
position). The ratios between the stresses and the shear rates causing them can be
described phenomenologically by means of a series o f proportionality coefficients (moduli)
that vary w ith  the frequency (a>) o f the oscillation and w ith the value of the steady
shear rate (q).

The theoretical part starts w ith a very general description of the way in which the
phenomenological coefficients are related to the interaction between the molecule seg­
ments and to their spatial distribution. Use is made fo r this purpose o f a generalized
pearl-necklace model w ith constant interaction between the beads. A fter that, the author
states a postulate about the change in interaction brought about by the shear rate and
examines the effect of this change on the measurable quantities.

The principal information obtained from superposition studies by the author and other
workers is presented below.

1. A ll the fluids examined display a distinct decrease in viscosity w ith the shear rate q,
as well as a normal stress whose rate o f variation does not keep up w ith that o f q2 .
In the case of superposition both shear moduli decrease w ith increasing q, especially at
co-values that are small compared w ith q. The in-phase modulus is reduced more strongly
than the 90°-out-of-phase modulus and even becomes negative at low frequencies.
Measurements on widely differing viscoelastic fluids reveal that the frequency coQ at
which the in-phase modulus passes through zero is equal to  % q.

2. A ll qualitatively satisfying descriptions are based on theories in which a viscoelastic
flu id is looked upon as a collection of independent relaxation mechanisms w ith  different
relaxation times. In their original form, these theories predict that the viscosity of the
flu id is independent o f q, that the normal stress increases in proportion to q2 and,
further, that in the case o f superposition the moduli are independent of q.

3. The description o f the experimental data can be improved by assuming that the
relaxation mechanisms are broken down, and no longer contribute to  the stresses, as
soon as a characteristic quantity comes to exceed a given critical value during the
deformation process. The various theories can be differentiated by the type o f relaxation
mechanism, the nature o f the characteristic quantity, and the calculation of the critical
value.

a. In his th ixotropy theory (chapter 111,3) Leonov states that in every relaxation mecha­
nism the stress at any given moment is related via a relaxation function to all previous
deformation rates of the liquid regarded as a continuum. As soon as the elastically stored
energy surpasses a critical value, the mechanism is broken down. In the calculation of
this energy a drastic simplification is made, w ith the result that the theory loses its
validity at high q-values.
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b. According to Tanner and Simmons' network rupture theory (chapter 111,4) the stress
in every network linkage depends on the deformation of the continuous liquid at all
previous moments. Network rupture occurs when after a given time lapse the total
deformation o f the linkage reaches a given critical value. Hence, the contributions to
the stress at any given moment can come only from the deformation o f network linkages
formed w ith in  a given previous time interval. However, an unambiguous measure of the
total deformation cannot be given, which renders the calculation o f the critical deforma­
tion rather arbitrary.

c. In the generalized pearl-necklace model (chapter IV) Rouse's theory is extended to
cover also concentrated polymer solutions. A ll sorts of interaction types, such as friction,
entanglement, or hydrodynamic interaction between various parts o f one or several
necklaces, are described by means of a symmetric interaction matrix. It is shown that a
polymeric flu id can be characterized as a collection o f independent relaxation mechanisms,
the so-called normal modes of motion, w ith relaxation times that can be calculated from
the interaction matrix. The distribution function fo r every mode can be calculated for
many types of flow fields, and the distribution moments, which are related to the
stresses in a simple manner, must satisfy a set o f linear differential equations.
A fter that, the author introduces the postulate that a given mode of motion vanishes
when the increase in free energy of the mode reaches a given critical value. In various
polymeric fluids this maximum increase in free energy proves to  be approximately
3 kcals/mole, whatever the relaxation time o f the mode. It  is not unreasonable to suppose
that this value is correlated w ith  the energy barrier set to  rotation about the main chain
bonds.

4. A ll these theories demonstrate that in the case o f parallel superposition the structural
breakdown, which is determined by the stationary value o f q, is attended by another
type o f breakdown which, varying w ith time, is caused by the superposed oscillation.
Both types o f breakdown have an effect on the dynamic moduli.

5. In the theories referred to under a. and c., the change o f the flu id structure w ith the
shear rate finds expression in truncation o f the relaxation-time spectrum at the side of
the longer relaxation times, and in theory b. in termination of the memory function at
the side o f longer time intervals.

6. By means of the abovementioned theories a qualitatively satisfying description can
be given of the non-newtonian viscosity, the normal stresses and the dynamic shear
moduli o f sheared viscoelastic fluids. A  quantitative comparison of the experimental
data w ith the results of the generalized necklace model is given in chapter V. None of
the theories appears to  give a fu lly  quantitative description o f all the effects measured.

7. Among the theories treated there is not a single one by which the influence o f q and
gj on the oscillatory components of the normal stress can be described in a qualitatively
correct way.
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SAMENVATTING

Dit proefschrift behandelt dynamisch-mechanische eigenschappen van stromende poly-
mere vloeistoffen. Naast een overzicht van de literatuur op d it gebied bevat het de resul­
taten van een experimenteel en van een theoretisch onderzoek.

In het experimentele onderzoek zijn afschuifspanningen en normaalspanningen gemeten
in vloeistoffen welke onderworpen zijn aan stationaire afschuifstroming, aan oscillerende
afschuifstroming o f aan een superpositie van deze beide soorten stromingen. De verhou­
dingen van de optredende spanningen en de aangelegde afschuifsnelheden kunnen feno­
menologisch worden beschreven door een reeks evenredigheidscoëfficiënten (moduli)
welke afhankelijk zijn van de frequentie (co) van de oscillatie en van de waarde (q) van
de stationaire afschuifsnelheid.

Het theoretische deel geeft eerst een zeer algemene beschrijving van de verbanden tussen
de fenomenologische coëfficiënten en de wisselwerking tussen en de ruimtelijke verde­
ling van molecuulsegmenten. Hierbij werd gebruik gemaakt van een gegeneraliseerd parel-
snoermodel met constante wisselwerking tussen de parels. Vervolgens wordt een postulaat
ingevoerd omtrent de verandering van de wisselwerking onder invloed van de afschuif­
snelheid en wordt het effect van deze verandering op de meetbare grootheden onderzocht.

De belangrijkste feiten die in superpositieonderzoekingen, uitgevoerd door de auteur en
door anderen, naar voren treden, zullen nu worden weergegeven:

1. Alle onderzochte vloeistoffen vertonen een duidelijke afname van de viscositeit met
de afschuifsnelheid q en een normaalspanning welke veel minder dan evenredig met q2 3
toeneemt. Bij superpositie worden beide afschuifmoduli kleiner naarmate q toeneemt,
en wel speciaal bij waarden van co welke klein zijn t.o.v. q. De in-fase-modulus wordt
sterker verlaagd dan de 90°-uit-fase-modulus en wordt bij lage frequenties zelfs negatief.
U it metingen aan zeer verschillende viscoelastische vloeistoffen b lijk t dat de frequentie
co , waarbij de in-fase-modulus door nul gaat, gelijk is aan % q.

2. Alle kwalitatief bevredigende beschrijvingen zijn gebaseerd op theorieën waarin een
viscoelastische vloeistof wordt opgevat als een verzameling van onafhankelijke relaxatie-
mechanismen met verschillende relaxatietijden. In hun oorspronkelijke vorm voorspellen
deze theorieën dat de viscositeit van de vloeistof onafhankelijk is van q, dat de normaal­
spanning evenredig met q2 toeneemt en dat de moduli bij superpositie onafhankelijk van
q zijn.

3. Een betere beschrijving van de experimentele gegevens kan worden verkregen door te
veronderstellen dat de relaxatiemechanismen worden afgebroken en niet meer bijdragen
to t de spanningen indien gedurende de deformatie een karakteristieke grootheid een be­
paalde kritische waarde overschrijdt. De verschillende theorieën onderscheiden zich in
het soort relaxatiemechanisme, in de aard van de karakteristieke grootheid en in de
berekening van de kritische waarde:

a. In de thixotropie theorie van Leonov (hoofdstuk III ,3) is in ieder relaxatiemechanisme
de spanning op een bepaald tijdstip via een relaxatiefunctie verbonden met de deforma-
tiesnelheden op alle voorgaande tijden van de als continuum opgevatte vloeistof. Bereikt
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de elastisch opgeslagen energie een bepaalde kritische waarde, dan wordt het mechanisme
afgebroken. Bij de berekening van deze energie wordt een sterke vereenvoudiging toege­
past, waardoor de theorie bij grote waarden van q niet meer toepasbaar is.
b. In de netwerkbreuktheorie van Tanner en Simmons (hoofdstuk 111,4) is in iedere
netwerkverbinding de spanning afhankelijk van de deformaties van de continue vloeistof
op voorgaande tijden. Er treedt netwerkbreuk op als na een bepaalde tijd een gegeven
kritische grootte van de totale deformatie van de verbinding is bereikt. Tot de spanning
op een bepaald moment kunnen daarom alleen maar de deformaties bijdragen van net­
werkverbindingen welke minder dan een bepaalde tijd geleden gevormd zijn. Voor de
totale deformatie is echter niet een eenduidige maat te geven en de berekening van de
kritische deformatie is daardoor vrij willekeuring.

c. In het gegeneraliseerde parelsnoermodel (hoofdstuk IV) wordt de statistische theorie
van Rouse uitgebreid to t een theorie voor geconcentreerde polymeeroplossingen. Aller­
lei soorten wisselwerkingen, zoals wrijving, verstrengeling of hydrodynamische interactie
tussen verschillende gedeelten van één of meerdere parelsnoeren, worden beschreven met
een symmetrische interactie-matrix. Aangetoond wordt dat een polymere vloeistof te
beschrijven is als een verzameling van onafhankelijke relaxatiemechanismen, de z.g.
normale modi van beweging, met relaxatietijden welke uit de interactie-matrix kunnen
worden berekend. De verdelingsfunctie voor iedere modus kan worden berekend voor
velerlei vormen van het stromingsveld, en de momenten van de verdeling, welke op een­
voudige wijze verbonden zijn met de spanningen, moeten voldoen aan een stelsel lineaire
differentiaalvergelijkingen.
Als postulaat wordt nu ingevoerd dat een bepaalde modus van beweging verdwijnt als de
toename in vrije energie van de modus een bepaalde kritische waarde bereikt. Voor ver­
schillende polymere vloeistoffen blijkt deze maximale toename in vrije energie, ongeacht
de relaxatietijd van de modus, gelijk te zijn aan ongeveer 3 kcal/mol. Deze waarde zou wel
eens gecorreleerd kunnen zijn met de energiebarriere voor rotatie om hoofdketenbindin­
gen.

4. Volgens al deze theorieën treedt bij paral Iele superpositie behalve een structuuraf braak
welke bepaald wordt door de stationaire waarde van q ook een met de tijd variërende af­
braak op als gevolg van de gesuperponeerde oscillatie. Beide soorten afbraak beïnvloeden
de dynamische moduli.

5. De verandering van de structuur van de vloeistof met de afschuifsnelheid komt in de
theorieën a. en c. to t uitdrukking in een afsnijding van het relaxatietijdenspectrum aan
de kant van de lange relaxatietijden, en in theorie b. in een afbreking van de herinnerings-
functie aan de kant van de lange tijdintervallen.

6. Met behulp van de genoemde theorieën is het mogelijk een kwalitatief bevredigende
beschrijving te geven van de niet-newtonse viscositeit, de normaalspanningen en de dyna­
mische afschuifmoduli van afgeschoven viscoelastische vloeistoffen. Een kwantitatieve
vergelijking van de experimentele gegevens met de resultaten van het gegeneraliseerde
parelsnoermodel is in hoofdstuk V gegeven. Geen van de theorieën geeft een volledig
kwantitatieve beschrijving van alle gemeten effecten.
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7. Niet één van de behandelde theorieën is in staat om ook maar op een kwalitatief
juiste wijze de invloed van q en co op de oscillerende componenten van de normaalspan-
ning te beschrijven.
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LIST OF USED SYMBOLS

Sym bol Description Dimension Page

A Rouse matrix - 77

N<1 Zimm matrix - 77

a transformation matrix - 69

B m obility matrix [m ]- ‘  [t] 77

B(t') Finger's metric tensor - 9 ,12

b a dimension factor in macromolecules [1] 69

C stress-optical coefficient [m ]- ‘  [1] [ t ]2 87

C(t') Cauchy's metric tensor - 9 ,12

| rate-of-strain tensor [ t ] - ‘ 13

e base vector [1] 7

Fe matrix fo r entropy-elastic forces [m] [1] [ t ] ' 2 72

Ff matrix fo r friction forces lm ] [1] [ t ] ' 2 74

f* entropy-elastic force vector [m] [1] [ t ] ' 2 72

f f friction force vector [m] [1] [ t ] * 2 74

ƒ matrix fo r friction coefficients [m] W 1 74

G(t') covariant strain tensor - 13

G* complex shear-modulus [m] [ I ] - 1 [ t ] ' 2 17

G' storage shear-modulus [m] [ I ] ' 1 [ t ] - 2 17

G " loss shear-modulus [m] [ I ] ' 1 [ t ] - 2 17

G*(co,q) complex shear-modulus at superposition [m] [ I ] " 1 [ t ] ' 2 18

G'(to,q) in-phase component o f complex shear-
modulus

[m ] [ I ] - 1 [ t ] - 2 18

G"(w,q) 90°-out-of-phase component o f complex
shear-modulus

[m] [ I ] - 1 [ t ] “ 2 18

9 distribution function fo r centre o f gravity - 70

H (r) relaxation spectrum [m] [ I ] - 1 [ t ] - 2 98

He matrix fo r transformed entropy-elastic
forces

[m] [1] [ t ] ' 2 72

Hf matrix for transformed friction forces [m] [1] [ t ] ' 2 75

he vector of transformed entropy-elastic force [m] [1] [ t ] “ 2 72

hf vector of transformed friction force [m] [1] I t ] " 2 75
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1 u n it m atrix - 1 2 ,8 1

k B oltzm ann 's co n s tan t [m] [I]2 [ t ] “2 I T ) '1 71

1m m onom er length [1] 69

M m olecular w eigh t (m] 19

M m atrix  o f  m om en ts - 81

N num ber o f  com plexes per u n it vo lum e [I]-3 72

N(t ) relaxation -tim e d is trib u tio n  fu n c tio n [m] n r 1 [ t ] “ 3 or
[ I ] -3 [t]

4 4  o r
85

2 q  N *(cj,q ) com plex  norm al-stress-m odulus [m] ( I ] - 1 [ t ] - 2 18

2 q  N'(co,q) in-phase co m p o n en t o f  norm al-stress-
m odulus

[m] [ I ] '1 [ t ] - 2 18

2 q  N "(c j,q ) 90°-ou t-o f-phase  co m p o n en t o f  norm al-
stress-m odulus

[m] [ I ] '1 [t]~ 2 18

n n um ber o f  segm ents in a m acrom olecu le - 68

nm num ber o f  m onom ers in a  segm ent - 69

P stress ten so r [m] [ I ] '1 [ t ] “2 16

Q tran sfo rm atio n  m atrix - 77

q co n s tan t shear rate ( t ] ' 1 14

R m atrix  fo r  bead coo rd in a tes [11 68

R m atrix  fo r  bead velocities [1] I t ] ' 1 74

r position  vec to r (volum e elem ent) [1] 7

r.-i position  vec to r bead (i-th bead) [1] 68

r.-i velocity  vec to r (i-th bead) [1] [ t l* 1 7 4

S m atrix  fo r  co o rd in a te  d ifferences - 69

S* m atrix  fo r  co o rd in a te  d ifferences - 77

S m atrix  fo r  co o rd in a te  velocities [ t l ' 1 75

i o m atrix  fo r  m acroscopic velocity
d ifferences

I t ] ' 1 75

S*—o m atrix  fo r  m acroscopic  velocity
d ifferences

[ t ] - 1 77

S (t') co n trav arian t stra in  ten so r - 12

S ijkl relaxation  m oduli [m] [ I ]" 1 [ t ] ‘ 3 6 0

s coord ina te-d ifference  vecto r - 69

s bead-velocity  d iffe rence  vec to r [tr1 75

s-o m acroscopic velocity  d iffe rence  vecto r [ t ] - 1 75
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s time difference t —t ' [t] 59

T absolute temperature [T] 71

T hydrodynamic interaction matrix [m ]"1 [t] 74

t time ft] 11

u component o f s - 69

V volume [I]3 71

v 0 matrix fo r macroscopic velocities [1] [ t ] ' 1 73

V '—o matrix fo r disturbed macroscopic
velocities

M  I t ] " 1 74

V velocity vector (volume element) [1] [ t ] " 1 13

V-O macroscopic velocity vector [i] [tr1 73

V component o f s - 69

W matrix fo r friction coefficients [m ] [ t ] - ‘ 75

w i weight fraction - 19

w component of s - 69

X number o f macromolecules in a complex - 68

X .1 component o f r. [1] 68

Vi component o f r. [1] 68

2i component o f r. [11 68

a amplitude of oscillation - 14

fi normal-stress coefficient [m] [ I ] " 1 18

r velocity-gradient tensor I t ] ' 1 13,80

1r time-dependent rate o f simple shear [tr1 14

AF free-energy difference [m] [I]2 [ t ] - 2 71

An flow  birefringence - 87

AS entropy difference [m] [I]2 [ t ] ’ 2 IT ] " 1 71

5 phase lag - 17

r component o f p 78

i 0 component of p W 1 78

V viscosity [m] [ I ] ' 1 [ t ] " 1 15

v (q) non-newtonian viscosity function [m] [ I ] ' 1 [ t ] " 1 18

tr(w ,q ) dynamic viscosity at parallel superposition [m] [ I ] " 1 [ t ] " 1 61

tT(W,q) dynamic viscosity at orthogonal
superposition

[m] [ I ] -1 [ t ] " 1 62
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V component o f p — 78

%
component of pQ [ t ] " 1 78

e angle variable - 8

K time-dependent shear rate [ t ] - ‘ 46,83

A diagonal matrix fo r eigenvalues - 77

\ eigenvalue - 77

P thermodynamic potential tm] [ I ]2 [ t r 2 72

^*pqr moments o f distribution - 81

M (t-t') memory function [m] [ I ] ' 1 [ t ] " 3 53

V number o f complexes in an ensemble , - 71

% component of p - 78

lo component o f p Q i t ] - 1 78

p matrix fo r normal coordinates - 78
p—o matrix fo r macroscopic velocities in

normal coordinates
[ t ] - 1 78

P density tm] [ I ] ' 3 15

P position vector in normal coordinates - 78

Po macroscopic-velocity vector in normal
coordinates

[ t ] - 1 78

Tk relaxation time [t] 80

Tm maximum relaxation time It] 48,95

0 undisturbed distribution function ' ~ 68

0 angle variable - 8

X extinction angle - 87

0 distribution function - 70

angular rotation velocity [ t r 1 15

è vortic ity tensor w - 1 13

to circular frequency of oscillation t t ] - 1 14
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Levensloop

De schrijver van dit proefschrift werd geboren op 2 december 1935 te Surhuisterveen
(gemeente Achtkarspelen). Hij bezocht van 1948 to t 1953 het Christelijk Lyceum
voor Zeeland te Goes. Na het eindexamen HBS studeerde hij aan de Vrije Universiteit
te Amsterdam, alwaar hij in 1961 het doctoraal examen natuurkunde aflegde. Na het
vervullen van de militaire dienstplicht was hij werkzaam op het Centraal Laboratorium
van DSM (Afdeling Fundamenteel Polymeer Onderzoek), waar in 1965 een begin werd
gemaakt aan het in dit proefschrift beschreven onderzoek.
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