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IN TR O D U C TIO N  A N D  SU M M A RY

In this thesis we shall deal with the Hole Equivalence Principle, the van Vleck
relation and the application to the theory of d-ions in crystal (Ligand) fields.
The lowest configuration of a given ion will consist of a number of closed shells
and a partly filled shell. The shells are defined by means of a self consistent one-
electron hamiltonian h. The hole equivalence principle and the van Vleck
relation apply to partly filled shells and we shall discuss in an introductory
Chapter whether the influence of closed shells can be neglected. The one-electron
states determining the partly filled shell can be taken to be u,(r) t , u,(r) \  ,
i =  1» 2, . . . ,  p, where the u, form an orthonormal set and span the linear
manifold of eigenstates of h for one or more eigenvalues. They span also a
number of irreducible representations of the symmetry group G which leaves h
invariant, f and |  are the spin states sz =  y2 and sz =  — / 2.

The hole equivalence principle can now be formulated as follows. If we have
an arbitrary basis in the configuration L with n electrons, then we can choose
a basis in the configuration R with 2p-n electrons in the partly filled shell such that
i) Both bases have the same transformation properties relative to the group O
of orthogonal transformations in the space of and hence in particular relative
to the group G.
ii) There are simple relations between the matrix elements of one and two
electron operators relative to both bases.

The van Vleck relation can be formulated as follows:
Starting from a basis <p(n) of maximal Sz states in the configuration with n
electrons we can obtain by coupling with the minimal Sz state of the half closed
shell and antisymmetrization a basis <p(n+p> of minimal Sz states in the configu­
ration with n +  p  electrons.

Both bases have the same transformation properties relative to the group SU„
of unitary transformations with determinant 1 in the space of ut, w2, . . up and
in particular the transformation properties of <p (" lp) and q>(m> o relative to the
group G are the same, o is the high spin state of the half-closed shell and belongs
to a one-dimensional representation of G. In addition there are simple relations
for the matrix elements of one- and two-electron operators not acting on spin
relative to both bases.

A general proof for both relations independent of the group G and the choice
of one-electron states will be given in Chapters I and II. In Chapter III we shall
apply the hole equivalence principle and the van Vleck relation to the theory of
d-ions in Ligand fields. As is well known an octahedral Ligand will split the
states of a d1 ion in a t2 level and an e level, e and t2 being certain representations
of the octahedral group. We can choose as a basis of maximal Sz states in the
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configuration d1 a basis consisting of a basis of the t2 level and a basis of the
e level.

For the maximal Sz states of a d2 ion there are various possibilities in particular:
i) The weak field representation, in which the Coulomb interaction is diagonal.
ii) The strong field representation, in which the octahedral component of the
Ligand field is diagonal.
iii) The intermediate representation, in which the Hamiltonian consisting of the
Coulomb interaction and the octahedral component of the Ligand field is
diagonal.

In the configurations d4, d‘, d® and d®, d7, d® we can find bases corresponding
to the bases in d1 and d® according to the hole equivalence principle and the
van Vleck relation.

The matrix elements of one-electron operators relative to these basis can be
calculated easily from the matrix elements for d1 and d®. Although in principle
everything may be calculated exactly by means of computors, there is some need
for closed formulae which form reasonable approximations. Various approxima­
tions are closely connected to the choice of basis in d®: the weak field approxima­
tion, the strong field approximation and the intermediate approximation in which
the Hamiltonian consisting of the Coulomb interaction and the octahedral
component of the Ligand field is treated in an exact way and the other terms of
the Hamiltonian by means of perturbation calcalution. In spite of the frequent
use of the first two approximations, the intermediate approximation will be much
better in many cases and we shall present some results based on this approxi­
mation. From the results the influence of the weak field and strong field approxi­
mation can be investigated.

We are in particular interested in:
1) The splitting pattern due to the tetragonal or trigonal component of the
Ligand field and the spin orbit coupling.
2) Some quantities appearing in the spin hamiltonian such as for instance the
g factors g and gj_ and the hyper fine structure constants A and B. Simple
approximations for the so-called second order contributions to the g factors and
the dipolar parts of the hyper fine structure constants have been obtained by
neglecting the admixture of excited states in the wave functions of the ground
level of 3(„ due to the tetragonal or trigonal field.

In general the weak and strong field approximation can give bad results for
the quantities 1) and 2). This is also the case for the constants describing the
tetragonal and trigonal distortions in the static Jahn Teller effect.

In Chapter I we shall deal with the hole equivalence principle, in Chapter II
with the van Vleck relation and in Chapter III with the application to the theory
of d-ions in Ligand fields. The physical background is discussed more into
detail in an introductory Chapter.
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D ISCUSSIO N OF TH E PHYSICAL BA CK G RO U N D

In this thesis we shall deal with the Hole Equivalence Principle, the van Vleck
relation and their application to the theory of d-ions in Ligand fields. A Ligand
field is an operator which represents generally the electrostatic interaction
of a transition metal ion and the surrounding ions, including in p a r t ic u la r
covalent bondings. We shall speak of Ligand fields rather than crystal fields
since according to many authors crystal field expansions imply the assumption
that the surrounding ions can be consideied to be point charges. This
assumption can not explain the experimental data in a satisfying way and it is
better to introduce a number of parameters in agreement with the symmetry
in order to fit the experimental data.

In order to describe properly the content of the Hole Equivalence Principle
and the van Vleck relation we shall briefly review the building up of electron
shells. The main terms of the Hamiltonian acting on an ion or neutral atom are
the electrostatic interaction between nucleus and electrons, the electrostatic
Coulomb interaction between electrons and eventually also a Ligand field. (The
spin orbit coupling is assumed to be small compared with the Coulomb inter­
action between the electrons). These terms of the Hamiltonian can be replaced
by a self consistent one-electron hamiltonian h, cf. for instance the Hartree Fock
approximation in the case of free ions or atoms [1]. The eigenvalue problem
arising from h may be solved at least in principle. The eigenvalues e, of h will
have certain degeneracies n, («, will be an even number due to the two fold spin
degeneracy).

In this approximation the lowest energy state of an ion can be obtained by
constructing a Slater determinant of one-electron states such that the eigenstates
of h for the lowest eigenvalues occur in the Slater determinant. Here the Pauli
principle must be taken into account. The Slater determinant will vanish, if the
one-electron states are not linearly independent. If we have an ion with n electrons
and n0 +  nx <  n <  n0 +  «i +  n2, then the lowest energy state can be obtained by
constructing a Slater determinant from the n0 linearly independent states of
energy e0, the nx linearly independent states of energy and n — n0 — nx linearly
independent states of energy e2. So we arrive at the situation in which all the
states of the lowest energies are occupied, i.e. occur in the Slater determinant.
If all the states up to a certain energy are occupied, then we can speak of a closed
shell. In addition there may be a number of states which form a partly filled shell.
In the example this are the n — n0 — n± linearly independent states of energy e2.
Partly filled shells give always rise to a degeneracy (within this approximation).
In the example there are n2! {(« — n0 —  «,)! (n8 — n +  n0 +  « ,)! }-i ways in
order to select n n0 states from a set of n2 linearly independent states and
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this number is equal to the degeneracy of the lowest level.
The degeneracy will be lifted (completely or partly) by the other terms of the

Hamiltonian, which are not contained in the self consistent one-electron hamil-
tonian h, for instance the Ligand field as far as not contained in h, the Coulomb
interaction between the electrons of a partly filled shell, the spin orbit coupling, the
coupling with an applied magnetic field and so on. In some cases if the other
operators in the Hamiltonian are not very small relative to the operators occur­
ring in h, or if two different energy levels of h are close to each other, it can be of
interest to consider excited configurations in which more than one partly filled
shell occurs. This for instance is the case in the neutral transtion atoms of the
iron group, where the 3d shell and the 4s shell can be partly filled at the same
time. It is also of interest in problems of configuration interaction. The remaining
terms in the Hamiltonian not contained in h may give an important admixture
of states belonging to excited configurations in the configuration corresponding to
the lowest energy of h. This picture does not change the situation in an essential
way. We can consider all the electrons in partly filled shells to belong to one
same partly filled shell, if we admit the possibility that the one-electron states
of the partly filled shell span the linear manifold of eigenstates of h for more
than one eigenvalue.

Now the Hole Equivalence Principle as well as the van Vleck relation deal with
partly filled shells and it will be assumed that the influence of closed shells can
be neglected. This assumption is correct for one-electron operators. In the matrix
elements between Slater determinants which differ in one one-electron state of
the partly filled shell, the states of the closed shells do not appear. In addition
the states of closed shells give a constant contribution to the diagonal elements,
independent of the basis states. For two-electron operators the situation is more
involved. In the matrix elements between Slater determinants which differ in
two one-electron states of the partly filled shell, the states of the closed shells do
not appear. Moreover the states of the closed shells give a constant contribution
to the diagonal elements. However the closed shells can give an essential contri­
bution to the matrix elements of Slater determinants which differ in one one-
electron state of the partly filled shell. This contribution can be represented in
terms of a fictitious one-electron operator as has been observed by G riffith [2].

The most important two electron operator is the Coulomb interaction which
is invariant for all rotations and in particular for all transformations of the point
group G which leaves the one-electron hamiltonian determining the electron
shells invariant. (In the case of free ions G will be the full rotation-reflection
group. However in the case that also a Ligand field is to be contained in h, G will
be the point group consisting of all proper (pure) rotations and improper
rotations (rotations combined with an inversion), which leave the Ligand field
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invariant). The fictitious one-electron operator corresponding to the Coulomb
interaction is also invariant for all transformations of G and has the same
transformation properties as the one-electron hamiltonian. This is more exactly
the reason why the Coulomb interaction can be contained in the self-consistent
one-electron hamiltonian h.

The Hole Equivalence Principle is an important relation between two ions
with the same closed shells and one partly filled shell. If the configuration L
contains n electrons in the partly filled shell and there are q linear independent
states in the shell, then the related configuration R  will have q-n electrons in
the partly filled shell i.e. R  is the closed shell in which n electrons are missing.
(The symbols L  and R  indicate left and right and refer to the positions of both
the configurations in a periodical system). The Hole Equivalence Principle is not
only a relation between the classifications of energy levels in both configurations.
There is also a relation between the matrix elements of one- and two-electron
operators within both configurations L  and R.

The following simple argument is sometimes used in order to establish such a
relation for one-electron operators: choose the basis of one-electron states in the
configuration with one electron such that a given one-electron operator A is
diagonal. In the configurations L  and R  bases consisting of Slater determinants of
these one-electron states are chosen. Then it can be easily shown that the matrix
elements of A in R  are equal to minus the matrix elements of A in L  apart from
a constant diagonal contribution.

This simple argument is not exactly the content of the Hole Equivalence
Principle. More precisely: If we have an arbitrary basis in the configuration L,
then we can indicate a basis in the configuration R  such that:
i) Both bases have the same transformation properties relative to the group G
which leaves the self consistent one-electron hamiltonian h invariant. In particular,
if we apply a transformation of G to the Unear manifolds of states corresponding
to the configurations L  and R, then the Unear manifolds wiU be mapped on
itself. Hence if we choose bases in the Unear manifolds, then the transformation
can be represented by means of transformation matrices. Both bases have the
same transformation properties, if and only if the transformation matrices are
the same for aU transformations of the group G.
ii) There also simple relations between the matrix elements of arbitrary one- and
two-electron operators relative to both bases. These relations are independent
of the transformation properties of the one- and two-electron operators. The
relations hold simultaneously for aU one- and two-electron operators, whether
they are commuting or not. It must be noted that the simple argument for one-
electron operators cannot be used, for, if we apply an unitary transformation
in the space of one-electron states in order to diagonalize a given one-electron
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operator, then the unitary transformations within the configurations L  and R
induced by the unitary transformation in the space of one-electron states are
not necessarily the same.

We shall now give a short historical review of the development of the Hole
Equivalence Principle. Pauli was the first to observe that for the case of free
ions in the configurations L  and R  the same L S  terms occurred and each L S
term the same number of times, i.e. we can choose the bases such that they have
the same transformation properties relative to the rotation group. In 1942
Racah [3] proved the Hole Equivalence Principle for the case of free ions.
The basis states in the configuration L  were taken to be | a S  L  M s ML > ,  where
a is an additional parameter in order to distinguish between different L S  terms
with the same L  and S  value. Racah indicated the corresponding basis states
in the configuration R  by means of an expansion for the closed shell state. The
equivalence for matrix elements for one-electron operators was formulated in
terms of reduced matrix elements of tensor operators.

In 1961 Griffith [2] gave a proof for the case of d-ions in octahedral
Ligand fields. This proof is necessary since because of covalent bonds [4] the
wave functions cannot be taken to be of the form \ a S L M s ML > . Griffith
observed that for the calculation of the lowest energy levels it will be correct to
assume that the one electron orbitals of the partly filled shell span the same
representations of the octahedral group, as they would do in the free ion case, i.e. the
representations e (two dimensional) and ta (three dimensional). The basis states
of the configuration L(d") were taken to be | ^ ( S i  r j e " * ^ , / 1,) S T M s M r >
where «i +  na =  n, St and S2 are the spin quantum numbers of the con­
figurations with /jj electrons in the t2 shell and na electrons in the e shell,

and r a are representations of the octahedral group. The basis functions of the
configuration d" are obtained by coupling the representations R  and r a to the
representation r  and the spins S1 and Sa to the total spin S. M s =  S, S  — 1,
. . . ,  — S  and M p  indicates tho rows of the representation R  It may be noted
that for the case of d-ions these symbols give an unique description of all possible
states, so that there is no need for additional parameters a. For this choice of
basis Griffith indicated the corresponding states in the configuration R  by
means of the closed shell expansion. The Hole Equivalence Principle was proved
first for ta shells and e shells separately and then by coupling and antisymme-
trization for configurations d".

Griffith showed clearly that the relation between the matrix elements of
one-electron operators relative to the corresponding bases in L  and R  is indepen­
dent of the transformation properties of the operators. The crucial point is here
the behaviour of the operators with respect to the time reversal operator K  [5].
Real operators which commute with K  such as for instance all electrostatic
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interactions and the spin orbit coupling have a relation of the type minus, i.e.
the matrix elements in R  are equal to minus the matrix elements in L  apart from
a constant diagonal term. Imaginary operators which anticommute with K  such
as for instance all angular momenta and hence the coupling with an applied
magnetic field have an equivalence of the type plus, i.e. the matrix elements in
R  are equal to the matrix elements in L.

This fact suggested strongly that the Hole Equivalence Principle is independent
of the transformation properties of the one-electron states of the partly filled
shell. In Chapter I we shall give a formulation and a derivation of the principle
for an arbitrary electron shell. As basis states in the configuration c1 with one
electron in the partly filled shell we can choose u, (r) f , u,(r) | ,  i =  1, 2,
. . . ,  p, where the u, form an orthonormal set and span one or more irreducible
representations of the group G, which leaves h invariant, f and 4- are the spin
states sz =  Y2 and sz =  — x/i- As basis states in the configuration L  (c") with
n electrons in the partly filled shell we can take Slater determinants constructed
from n of the 2p  one-electron states, but also an arbitrary basis which can be
obtained from the basis of Slater determinants by means of an unitary transform­
ation. The crucial point is that we can find a basis in the configuration R, which
has the same transformation properties as a given basis in the configuration L
relative to the group Op of orthogonal transformations in the space of uu u2, .., up.

An essential assumption is that A is a real operator, i.e. commutes with the
time reversal operator K  [5], This assumption is correct since h does not contain
magnetic fields. Then the space of ult u2, ■ ■ up will be invariant for the action
of the time reversal operator and the basis functions ult u2, . . . ,  up can be chosen
to be real. Hence each transformation of the point group G, which leaves the
self consistent one-electron hamiltonian h invariant, can be represented by means
of an orthogonal p X p matrix. Hence the basis in the configuration R  will have
the same transformation properties as the basis in the configuration L  relative
to the group G. In this way the Hole Equivalence Principle can be derived
independent of the transformation properties of the one-electron states.

The advantage of this treatment can be summarized as follows:
i) The background of the Hole Equivalence Principle has been demonstrated
more clearly.
ii) A justification for arbitrary electron shells has been given. This can be useful
if there are large Ligand fields with lower symmetry than octahedral symmetry
and also in problems where configuration interaction is important.
iii) If we have an arbitrary basis in the configuration L  expressed in terms of
linear combinations of Slater determinants of n one-electron states, then we can
express immediately the corresponding basis in the configuration R  in terms of
Slater determinants of 2p-n one-electron states. If we change the basis states u,
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in the configuration with one electron, then the bases in R  corresponding to a
given basis in L  with respect to both sets of one-electron states are equal apart
from a common phase factor el<p. In this way we do not have to bother about
phase conventions.
iv) The formulations of Racah and G riffith suggest strongly to use a
special choice of basis. In the case of free ions it is always good to choose a basis
of the form | a S  L  Ms ML > .  The choice of basis by GRIFFITH is appropriate
in the case of very strong octahedral Ligand fields, i.e. if the Ligand fields are
much stronger than the Coulomb interaction. In other cases where the Ligand field
and the Coulomb interaction are of the same order of magnitude it may be
useful to choose the basis such that the Hamiltonian of Ligand field and Coulomb
interaction together is diagonal. The treatment given in Chapter I leaves the
choice of basis completely free.

In Chapter II we shall deal with the van Vleck relation. It is well known that
that the maximal spin levels of a d-ion in an octahedral Ligand field can be
expressed in terms of a splitting parameter, in particular the splitting A which
the same Ligand field would give between the e level and the t2 level of a d1 ion.
In 1932 van Vleck [6] observed that the maximal spin levels expressed in
terms of A have the same relative positions in the configurations d ” and d"+5 and
also in the configurations d5~" and d10wi, if the order of the levels is inverted'.
The relations d" -*■ d10~" and d5-" ->• d5+" are due to the Hole Equivalence
Principle. In addition there is a relation d" -* d"+5 which we might call a van
Vleck relation according to Jorgenson [7] who observed possibilities for
application of such a relation.

This relation holds also for arbitrary electron shells and is independent of the
transformation properties of the one-electron states. Starting from an arbitrary
basis <p(n> of maximal Sz states in the configuration c" with n electrons in the
partly filled shell we can obtain by coupling with the minimal S, state of the half
closed shell (cp) and antisymmetrization a basis rp(n+p> of minimal Sz states in
the configuration cn+p. Both bases have the same transformation properties with
respect to the unimodular group SUp of unitary transformations with determinant
1 in the space of one-electron orbitals uu us, . . up. This implies in particular
that the basis states <p(H+pJ in d '+p transform in the same way as the states <p<n>o
with respect to the symmetry group G of the one-electron hamiltonian h. o is the
minimal Sz state of the half closed shell, o is symmetric in the spin dependent
part and completely antisymmetric in the orbital part, o belongs to a one dimen­
sional representation of the group G which is not necessarily the identical
representation. For instance is the case of t2 shells (d-ions in octahedral fields),
the high spin state of the half closed shell t |  is a 4A2 state.

There are also simple relations between the matrix elements of one- and two-
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electron operators not acting on spin relative to both bases <p(n> and q>(n+p).
These relations are somewhat analogous to the corresponding hole equivalence
relations, but now there is no difference between real and imaginary operators.
In both cases we have a relation of type plus, i.e. the matrix elements are the
same apart from a constant term in the diagonal.

Contrarily to the Hole Equivalence Principle, the van Vleck relation applies
only to the maximal spin states of the configurations c" and d>+p and only
to operators not acting on spin. The latter restriction is not serious, the matrix
elements between maximal S  states in the configuration cn+p of an operator
which can be written as a linear combination of products of spin angular mo­
mentum operators and operators not acting on spin can be easily calculated.
It must be noted that the spin quantum numbers of the maximal S  states in the
configurations c" and c"+p are different in general. The maximal S  value in c"
for n <  p is equal to y2 n, whereas the maximal S  value in cH+p is equal to
y2(p-n).

A more serious limitation of the van Vleck relation is the restriction to the
maximal S  states. The van Vleck relation will be useful if we are only interested
in the lowest energy levels and if Hund’s rule is well obeyed, i.e. the m axim al S
states have the lowest energy. This will be correct in the case of free ions if the
spin orbit coupling is small relative to the Coulomb interaction and we can use
the Russell Saunders coupling scheme rather than j j  coupling. Hund’s rule will
also hold in the case of Ligand fields, if the Ligand fields are not very large. The
Ligand fields cannot give a mixing between different S  states. However in the
configurations d4, dB, d6, d7 it can occur that the ground state has a lower spin
value than the maximal value. Let us for instance consider an octahedral Ligand
field with 6-coordination. Then the energy of the t2 level of a d1 ion will be
lower than the energy of the e level. If the splitting A between the ta level and the
e level is very large, then the lowest energy level in the configuration d® can be
obtained by putting all the six electrons in a ta orbital. The ground state is a *AX
state corresponding to the closed ta shell. It the splitting A is not very large, then
the ground level in the configuration d® will be a ®Ta level which can be obtained
by putting in an appropriate way 4 electrons in a ta orbital and 2 electrons
in an e orbital.

In Chapter III we shall apply the Hole Equivalence Principle and the van Vleck
relation to the high spin states of d-ions. We can choose bases of maximal Sz
states in the configurations d1 and d2 and corresponding bases of maximal Sz
states in the configurations d9 and d8 according to the Hole Equivalence Principle
and also bases of minimal Sz states in the configurations d®, d7 and d4 and d®
according to the van Vleck relation. The matrix elements of one-electron operators
for d4, d®, d* and ds, d7, d8, follow from the matrix elements for d1 and d2 using
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the Hole Equivalence Principle and the van Vleck relation.
We consider in particular the following one-electron operators: A large

Ligand field of octahedral symmetry, a much smaller component of tetragonal
or trigonal symmetry, the spin orbit coupling, the Zeeman term, i.e. the coupling
with an applied magnetic field, and hyper fine structure and quadrupole coupling.
In order to take into account the effect of covalent bondings between the d-ion
and the surrounding Ligands we have introduced two orbital reduction factors
k  and k ' for the matrix elements of the orbital angular momentum appearing
in the Zeeman term and in the same way two spin orbit interaction constants
C and C' for the spin orbit coupling. For the evaluation of the hyper fine structure
we also need the matrix elements of a tensor operator of degree two which
describes the dipolar part of the hyper fine structure. Although for an exact
parametrization in the octahedral case four parameters are needed we shall
assume that the matrix elements can be found from the corresponding matrix
elements for the free ion case by multiplying them with one reduction factor p.

The most important two-electron operator is the Coulomb interaction. It has
been assumed that the Coulomb interaction can be described effectively in terms
of Racah parameters which can be different from the free ion case. Then the
Coulomb interaction does not give a splitting of the high spin states of d1, d4, d®
and d9. The Coulomb interaction for the high spin states of d9, d3, d7 and d®
can be described in terms of a splitting parameter Ep, i.e. the difference in energy
between a 7-fold degenerated “F level” and a 3-fold degenerated “P level”. In an
exact approach if we are restricted to the high spin states four parameters are
needed cf. [2]. Up till now no progress has been made in order to arrive at an
unique determination of these parameters.

For the configuration d1 we can choose a basis of maximal S2 states consisting
of a basis of the t8 level and a basis of the e level. We shall be in particular
interested in octahedral complexes with 6-coordination, so that the t2 level is
the lowest level and the splitting parameter A is positive. In the configuration d2
we can choose a basis of maximal St states consisting of the 10 Slater deter­
minants which we can construct from the five one-electron states with s2 =  54-
An arbitrary basis can be introduced by application of an unitary transformation.
We consider in particular the following possibilities:
i) The weak field representation in which the Coulomb interaction is diagonal.
ii) The strong field representation in which the octahedral component of the
Ligand field is diagonal.
iii) The intermediate representation in which the Hamiltonian 0(o consisting
of the Coulomb interaction and the octahedral component of the Ligand field
is diagonal. The basis states can be expressed in terms of the parameter x  =

W r
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It must be noted that it is possible to calculate matrix elements of arbitrary
operators relative to any reasonable choice of basis. In this picture the choice
of basis is not important. The physical quantities of interest can be solved
exactly by diagonalizing large matrices by means of computers. Although this
procedure will be necessary in order to obtain exact results, the procedure in
general will be very laborious since the parameters are not known a priori but
must be chosen in order to fit the experimental data as good as possible. This is
the reason why there is some need for closed formulae which form reasonable
approximations.

The various approximations are closely connected to the choices of basis:
i) The weak field approximation, in which the octahedral component of the
Ligand field is treated as a small perturbation relative to the Coulomb interaction.
ii) The strong field approximation in which the Coulomb interaction is treated
as a small perturbation relative to the octahedral component of the Ligand field.
iii) The intermediate approximation in which all the one-electron operators
apart from the octahedral component are treated as a small perturbation relative
to the Hamiltonian 9(0 consisting of the Coulomb interaction and the octahedral
component of the Ligand field.

In spite of the frequent use of the first two approximations we want to present
in Chapter III the results of some calculations according to the intermediate
approximation. This approximation will be in many cases much better than the
weak and strong field approximation since the octahedral component of the
Ligand field and the Coulomb interaction are of the same order of magnitude
and the tetragonal or trigonal component are often much smaller. The physical
quantities according to the intermediate approximation are expressed in terms
of x  =  AfEp and from the formulae obtained in this way we can investigate the
influence of the weak field and strong field approximation by taking the limits
jc -* 0 and x-+  oo.

In particular we shall be interested in the lowest energy level by the action
of the Hamiltonian 9f0- For d1 and d® this level will be a Ta level, for d® and d7
a Tx level, for d® and d® an Aa level and for d4 and d® an E level. We shall not
deal extensively with d4 and d® since the formulae for the physical quantities
are simple and well known from many text books cf. [2], [4] and also from
the original publication of Abragam and Pryce [8]. The cases of d®, d®, d7
and d® are more interesting because of the various approximations. The case of
d® has not been treated extensively up till now and in the case of d1 we shall
complete the Abragam and Pryce formulae for hyper fine structure and qua-
drupole coupling which apply only to the case of tetragonal fields [8].

In the case of a Tx or T2 level the orbital angular momentum acting on the
states arising originally from the Tx or Ta level but somewhat modified by the
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action of the tetragonal or trigonal field can be associated with the action of an
orbital angular momentum operator on the states of a p electron [8], [9]. The
relation between the two angular momenta involves two constants a and a'.
An analogous relation holds for the spin orbit coupling and involves two con­
stants y  and y'. The constants y  and y' follow from a and a' by replacing the
orbital reduction factors k  and k' by the spin orbit interaction constants £
and £'. In addition the Tj or Ts level is split in a doublet and a singlet with sepa­
ration <3. We shall give formulae for the quantities a, a', y, y' and d. The expressions
for the configurations d1, d4, d# and d9 are exact. The expressions for da, ds, d7
and d8 have been obtained by means of a second order perturbation calculation
in the intermediate approximation.

Now due to the spin orbit coupling and the axial field, the Tj or T2 level will
be split into a number of energy levels. We consider in particular the group of
the lowest energy levels such that the separation between the levels of the group
is small (of order of some tens of cn r1).

Then using the theory of Abragam and Pryce [8] we can establish a spin
hamiltonian for this group of states. The remaining terms in the Hamiltonian
are replaced by fictitious spin angular momentum operators. The Zeemanterm
of the Hamiltonian involves two g factors gn and g±  and the hyper fine structure
constants A and B.

The g  values g and g , can be considered to consist of two contributions:
The first order contribution which can be calculated neglecting the matrix
elements of the spin orbit coupling between different energy levels of the Hamil­
tonian 9(o consisting of the Coulomb interaction and the octahedral component
of the Ligand field and the second order contribution which arises from the
admixture of excited levels in the ground level of iJf0 by means of the spin orbit
coupling. The calculation of the first order contribution is well known from many
detailed analyses and we shall review the results. The exact calculation of the
second order contribution which in general is small but not negligible is very
laborious. Abragam and Pryce [9] have obtained numerical values for the
case of C o++ (d7). A reasonable approximation can be obtained by neglecting
the admixture in the wave functions due to the trigonal or tetragonal field. In
this Way we can derive simple formulae for the second order contributions which
depend on x  =  A/Ep for d2 and d7.

The hyper fine structure constants consist also of two contributions [9], the
contribution of the orbital angular momentum and the contact (Fermi) term
which can be easily expressed in terms of g factors and the contribution of the
dipolar part of the hyper fine structure. The latter contribution in general is
rather «mall. A good approximation can be obtained by neglecting the admixture
in the wave functions due to the trigonal or tetragonal field. The formulae for
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these contributions Asd and Bsd to the hyper fine structure constants A and B
in the configurations d* and d7 are extremely dependent on a correct choice
of x  =  A/Ep.

A correct choice of x  will also be important for the constants describing the
tetragonal and trigonal distortions in the static Jahn Teller effect [10], [11]. For
instant in the case of d2 we can expect that in the weak field approximation the
trigonal distortions are stable, whereas in the strong field approximation and
probably also in actual cases the tetragonal distortions will be stable.

We see that some quantities such as the constants relative to the Jahn Teller
effect and the dipolar part of the hyper fine structure are extremely dependent
on a correct choice of x. Such a choice will also be important for the second
order contributions to the g factors, and the quantities a, a', y, y ' and b. In these
cases neither the weak field approximation nor the strong field approximation will
lead to good results. We have also calculated the g factors for the case of ds
and d8, where an A* level is the lowest level. The results are not very dependent
on a correct choice of x  and both the weak field approximation and strong field
approximation will be good.
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C H A P T E R  I

THE HOLE-EQUIVALENCE PRINCIPLE

§ 1. Introduction
We might call “hole theories” all theories which establish simple

relations between an electron configuration L  with n electrons in a shell
and the corresponding hole configuration R  (closed shell with n electrons
missing).

From a good hole theory we can expect that, given a basis in the
configuration L, a basis in R  is indicated such that
i) the matrices of one and two-electron operators with respect to both

bases are simply related to each other;
ii) corresponding states in L  and R have the same transformation

properties with respect to the symmetry group G of the problem,
i.e. the one-electron states which determine the shell can be considered
as eigenstates of a one-electron Hamiltonian h for one or eventually
more eigenvalues. G is the group of transformations which leave h
invariant.

For the case of full rotational symmetry (free ions or atoms, I shells)
the problem was solved by Ragah [1, 2], As a basis in the configuration L
\<xSLM sM l)  was taken where a is a parameter classifying the repeated
SL terms. In fact, oc can be taken to be the seniority v, but in the case
of f  shells an additional classification is necessary [2, 3]. The corresponding
functions in R  were defined by the expansion of the antisymmetric wave
function of the closed shell as a sum of products of states of L  with
states of R. An equivalence for the matrix elements of one-electron
operators was formulated in terms of reduced matrix elements of tensor
operators by application of the Wigner-Eckart theorem [4, 5].

In the case of d ions in octahedral Ligand fields it is not allowed to
identify the one-electron states with pine d states. For the lowest levels
it is reasonable to assume that the partly filled shells of the complex
span the same representations eg+ t 2g of On (eventually e-t-tg in the case
of tetrahedral symmetry Ta), just as those of a d electron would do [6].
For this case a hole theory was established by Griffith, first for ta shells
and e shells separately then for configurations t2 m en by coupling and
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antisymmetrization [7]. The equivalence for matrix elements of one-
electron operators was formulated with the help of Kramers’ star
operator [8], apart from a change in sign of the time scale identical with
Wigner’s time reversal operator [9, 10].

Here a hole theory will be established which is independent of the
transformation properties of the one-electron states. Starting with an
arbitrary basis in the configuration L  expressed as linear combinations
of determinantal functions, a basis in the configuration R  is indicated
satisfying i) and ii).

§ 2. Basic concepts
Consider an electron which can be described by the functions

the U( form an orthonormal set
|  and |  are the spin states sz = |  and a* = —

The u\ can be considered as basis functions of the space of eigenfunctions
of a one-particle Hamiltonian A for one or more eigenvalues.

Assumption: h is a real operator, i.e. h commutes with Kramers’ star
operator K.

This assumption is satisfied in physically important cases.

The operator K  can be defined in different ways by some of its properties,
see for instance [9, 10, 11, 12], but all the definitions lead to the same
operator, specified uniquely apart from a phase factor.

We shall define K  by
(1) K  = DVlDy, ... DVnC,

where C takes the complex conjugate of all coefficients and orbital parts
of wave functions and DVk is an operator working on the spin of the k01
electron in the same way as — iovl, oy being the Pauli operator.

For instance for one electron
(2) K\m,y = (-l)« -» i|-m ,> , m, = ±  $.

The phase convention for orbital wave functions is such that

(3) K\l, m/> = 11, mt}* = (— 1)*-»»* 11, -  mj>.

(\l,mi) corresponds with ilYim).

When we have two angular momenta ji and satisfying
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(4) K\ji, mi> = ( -  |jit —mi) for i = 1, 2
and couple these to an angular momentum J  in the standard way with
Clebsch-Gordan coefficients:
(5) K \J ,M )  = { - i y ~ * \J ,  - M ) .

This can be derived with a symmetry property of Clebsch-Gordan
coefficients
(8) (j\j*~m i—HH\J—M ) = ( — l)h+h-J(j1jtfn1'rm\JMy.

The functions \vi)L (* = 1, 2, 2p; 2p=q) obtained by an unitary
transformation from and Ui\ form an arbitrary orthonormal basis of
the configuration c1.

An orthonormal basis of the configuration c” is formed by

(7) |g<(,,)>L = |»<i, ...... «<»>; »i < *a <•. .<»»< g
with the notation

( 8)  <f>2 ,  <f>m )  —

V m T
fim{ 1)

-== 2  e(<x) ^ « (1 ) ... <f>aim)(m)
ym\ a

where the summation is over the permutations of 1, 2, m; e(o) being
the sign of the permutation.

The subscript L  is added in order to distinguish the functions from
the corresponding functions | ) r in the hole configuration R  to be defined
in a moment.

The index i characterizes in an unique way the possibilities
»i<*2 < . ..< i»<g.

An arbitrary orthonormal basis in the configuration c" is given by

(» )  !/«»>*-2i
the matrix U being unitary.

The closed shell state (configuration o®) is described by
(!0) |0> =  («1, V2...... vt>.

Apart from G, we want to consider the following groups:
i) Up of unitary transformations in the space of ui, u%, ..., up.
ii) Op of orthogonal transformations in the space of u\, u%......up.
All transformations of Op commute with K. This together with the fact
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that the space of vi, v%, vt  is invariant for K  which follows from the
assumption that A is a real operator plays an essential role.

§ 3. The equivalence of representations
For each value of n<q  the functions | s p a n  a representation

r<»> of Up.
Let us apply a transformation of Up

(H) T\Vi)L = 2  £w|»*>£.

The functions transform like

( 12) T  2
k1< k , <  ... < k H

£*i<l t*H»

tk n t l  tknin

The character of Tl») is given by

fcl*l <*!*»
(13) x ln)(T)

Here

2
kl < k t < < k H

£*n*l £*»*»

2  *̂1̂ *2 • • • It»
fct <  k , < ... < k n

2*,<*,<

( i)* ïj-# .

£*1*1 £*l*n

£*»*i £*»*»
is one of the so-called invariants of the matrix £« (in fact, the invariance
follows from its definition as a group character).

Also
(14) *<«-»>(T) =  ( - ! )« —»r„.

If  A-1 satisfies the secular equation of T, then A satisfies the secular
equation of 21-1 = T1, where Tf = T* is the hermitian adjoint matrix of
T, and also of T *.

Thus

2  t?-»A«-* =  0 and 2  — 2  ( - 1)1 rm  =  0• « T# » |-£ I
have the same roots and the coefficient of A® equal to 1.

Hence
_* ( - l) * r ,
T«—n \m\ •( 15)
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I f  we restrict ourselves to 0 P then all r„ are real and |T| = 1. (Choose as
a basis in c1 w<f, where the m4 are real functions. This is possible
as A is a real operator. Then each operation of Op generates an orthogonal
matrix To among the states ui, u^, ..., uv.

Î ol = ± 1 \T) = ( Q° ° 80 \T\ = |To|* = 1.)

Then
Tq -n  — 1)®T» .

and

( 10) X{t~n)(T ) =  Z{n){T).

and span equivalent representations ƒ’<*) and / ’(«-*) of
Op. I t is possible to find a basis in the configuration c®~*, which transforms
in the same way as 10<<»>>z, under all operations of Op. The functions
\g<(n)>i and |gr4(e-»»))L however span different representations of Up. so
the group Up is useless for our purpose.

I t  is of interest that, in the case of I shells, use has been made of the
irreducible representations of Oam to give a classification, i.e. the
seniority classification, for different SL  terms [1, 2, 3].

§ 4. Expansion of the closed shell state
We define as the corresponding functions in the hole configuration R

(17) =  ( - 1  )*!+».+<.+«<•—U/ljqO- K ,  vi2, ..., Vin)> (i)
where

(18) \0~ (v tl, tffe.......«<»)> =  K ,  vjq, »ƒ,-,>

and ji< j2< ~ '< jt-n< q  together with *i<i2< ...<»»<q form the set
of subscripts 1, 2, ..., q.

(19) !/«<*-•>>* =  J  Uy4|^<8-»)>jj, (Ü)
i

where U has been given in (9).
In  fact the functions |/4(®~»)])B form an orthonormal basis of o®~*,

which can be easily derived using the antiunitarity of K.
From this definition a simple expansion of the closed shell state nan

be derived.

I°> =  j/=  2  e(°) « W 1) •••(20)
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Given a permutation a, we can denote the set <r(l), a(n) by »i, *2...... in,
such that ii<»2< ... <»», and the set <r(w + 1)......a(q) by fa, fa....... jq-n,
such that fa<fa< ... < jq - n .

Now the inverse permutation a-1 can be performed in the following way:
(i) Bring <r(l)......a(n) in the order fa, fa, ..., in by n  interchanges of
two numbers.

Define oi by oi(it) =a(Je), so that e(ffi) = ( —1)T‘.
(ii) Bring <r(» + l), .... a(q) in the order fa, fa...... jq-» by t2 interchanges
of two numbers.

Define 02 by 02(1 k) =  a(n + k), so that e(ff2) = ( —1)T*.
(iii) Bring *1, ..., in, fa, .... jq-n in the order 1, 2, ..., q.

This can be carried out by

2  (fa—k) =  *i + ... +»» —„ (n + 1)

interchanges.

Then both a~x and a may be performed by

. . » (»+ l)
T =  T l +  T2 +  »X +  . . .  +  tn -----------g ------T =  Ti + T2 +  fa +  ... +  in —

interchanges.
Hence

( 21) e(a) =  ( —l)*(*+1>/a ( —l)*x+—+<» e(<n) e(ff2).

Thus

( 22)

(_ l)»<»+l)/2

( -  i)B (® ) * 2  b<(w)>i • |A<(<,-n)>

2  ( - 1  )<1+- +<« 2  e(«rx)f,,«,)(1) • • • * W » )

2  c(ffaKl(i,)(»+1) ••• >(?)

where

(23) =  (_ i)» (» -D /2 + < i +...+<* 1 . . . ,  V i,)).

Now

(24) \g,«,-n)yR = K \ht«l-»)y (cf. 17).
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Making use of

(25) K*ip — ( — l)"*y>

for an arbitrary m-eleotronstate

(20) ( - 1)» -  K

Hence

(27) |0> -  2  |f7,<»>>L • K\gt«-*)}R.

When we take an arbitrary orthonormal basis (9) of o*, it follows the
antilinearity of K  and the orthogonality relations of U, that

(28) 10> -  2  |

Remarks  : Alternatively we can consider (27) as the definition of the
corresponding hole states When we start from another basis
vt in c1, we can also define a basis by (17) and (19) corresponding
to !/«<•>>*. The basis obtained from t><' is not necessarily equal
to the basis | o b t a i n e d  from Vi, but (27) ensures that both bases
are equal apart from multiplication by the complex conjugate of the
phase factor by which the closed shell state is multiplied, i.e. the
determinant  of the inverse transformation Vt —► v<.

The definitions (15a) of Racah [3] and (9.41) of Griffith  [7] for the
corresponding hole states can be considered as special cases of (27).
In  the case of I shells, (Racah [3])

|0> =  / 4Z + 2V t ^  ( -  1)8-Mb+l-ml \ocSLMsMLyL \ocS L - M s - M l >r .
\  n  /  <x.S .L .M s .M l

In  the case of d ions in octahedral Ligand fields (Griffith  [7])

|o> = (  10 V * 2 ( - I w o s i  A) e"(-s2r2)s r M sMryL.
\  7 /6  T "  Tv /v ' • |t2«-»(-sfiA) &-*(S2r s) . s r - M sMryR.

(The representations r ,  Mr  are supposed to have been brought into a
real form).

§ 5. Transformation properties of the corresponding functions in the hole
configuration

The functions |/<<«-*>>* have the same transformation properties as
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the for all operations of Op.

P ro o f I : Let us apply a transformation of Op.
The transformation properties of the functions |gr<(n)>L are given by (12).

The functions (c/. 23)), transform like

(28)
*

t l q - n J l

hlJq-»

—nJq—n

where h< lt<  ... <lQ-n<q together with ki<kz<  ... <kn<q form the
set 1,2, ...,q  of subscripts and j \ < j z <  . . .  < jq -n  and »i<i8< ... <i«
form a similar set.

(29) Now ( — l)<i+...+*»+*!+...+*» T ’m. ■ *». <1 —
tlq—nil ^Iq—niq—n

where is the determinant of the matrix T’ obtained from
T  by putting (for « = 1, ...,» ) all elements of the kxth row and the i»*8
column equal to zero, except the kxixih element which is set equal to
one. can be considered as a n-fold underdeterminant.

Making use of the fact that each operation of 0 P commutes with K
and also of the antilinearity of K

(30) T\gt«-*>>R =  2  T'h.....**.<i..... <.
I

From the explicit formula

(31) T  — 2  ®(̂ )  ̂1.0(1) •••  ̂aMa)>
a

where
( )tf , if r is one of the numbers k a

(32) ’ r. air) I trMr), if r #  for * = 1......

it can be shown that

(33)
2 - fn = J."  ̂l̂ l

/ k i ' . . . k n' \
- \ h  . . . k n ) ’

I h....<«-l

where T"  is the matrix obtained from T  by replacing the k®* row by
the ka,^  row and
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ei is the sign of the permutation ki ... k,
and is zero when the sets kx and ka' are not identical.

(33) can be considered as a straight-forward generalization of a well-
known determinant property.

Now taking the complex conjugate of (33), multiplying by
sum m ing  over k\ , ..., kn' and making use of the orthogonality relations of T

From (12), (30) and (34) it follows that and have the
same transformation-properties. In  addition it is now easy to show (cf.
(9) and (19)) that |/i<n)>£ and have the same transformation
properties.

This derivation has certain features in common with a derivation of
Condon and Shortley of a relation between transformations connecting
two systems of zero order states for L  and the corresponding hole con­
figuration R  [13].

Proof  I I : Suppose the functions and transform like

fe ii i  <*i<*

(34) — 2  e(ff) ••• toQcJi, —
a

**»<! tint»

(35) k

T \ f i  <«-*>>* = 2
k

We have to prove then:

(36) y<»> =  2W  for all T e  Op.

Clearly |0> is invariant, i.e.

(37) T |0 ) = |Oy, since |T| =  1.
From (28) it follows that

(38) </<(*>l|0>

Since K  commutes with all operations of Op

I = K T \ n ^ y R = k  2  !/*<«-*>>« =
(39) k

k
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In  addition, from (37) and (38)

( TK\f{(«-*)>R =  <t  fiWL\Toy =  ( < 2  r<*)« /*<")i|o> =
(40) < W W  *

I *

Now (36) followB directly from (39) and (40).

§ 6. One-electron operators
I f  Y A t is an arbitrary hermitian one-electron operator

(41)

then
(42)

| fc- 1
I 16

i - i

p s (e-»> =  — jyPx,(») -(-1 Tr A,

where
»y =  l, if A is a real operator, *.e. commutes with K,
t]=  — 1, if A is an imaginary operator, i.e. anticommutes with K,
1 is the unit matrix and Tr A is taken over a basis in the configuration c1.

P roof I : With the rules for matrix elements of one-electron operators
between determinantal functions [14].

We can restrict ourselves to the basis The transformation to
|/<(">>i is achieved by a similarity transformation with the unitary matrix
U (cf. (9) and (19)), leaving the relation (42) invariant.

Now
(i) I f  at least two indices »/ of are different from all it of |sr<<">>£,

then
Q — % 16

(43) <*<'<«-*>1 2  =  <0,<(B)| 2  =  O.
t - i  * - i

(ii) If  t* of »i...... t» differs from »*' of i i , ... *»', the indices ia and ia'
being furthermore the same, then
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2  t t+  2  i k '+ M it f* * ')  +«*(**.**'>
I*"1 *-1 n

fc-1 <JF«(*>| 2  A^gi'M 'ïL
(44) fc-1

= -  <g«<">| 2

(The indioes ji< jz<  ... <?'«-» together with ti< ia  • <»» form the
get 1, 2......q of subscripts. n<(i*, it') and nj(it, in) are the num er o
indices ».=».' and ƒ.=■ƒ.' in the open interval (it, it')-

Clearly »i(it, i t ') + »ƒ(**> i**) = |i*—i* I—

Hence £  »»+ 2  **'+«<(**’ **')+«#», »*') = 0(1(1 ^fog01-)

(iii) If  the indices i„ and ia' are identical, then

(45) <A,<«-»>| 2* = -  <0<(B)| 2  A k\ g ^ L  + Tr A.
t - i  * - 1

Now we consider separately the two possibilities i?=1 and » ? = - l ,
remembering that Tr A  vanishes, i f i j=  1. _

Making use of the facts that K  is antiunitary and J ,A k m hermitian
(42) can be established from (24), (43), (44) and (45).

P roo f I I :  (This proof is essentially the same as the proof of
Griffith [7], but in an appropriate formulation.)

From (28) it can be shown that

(46) |/«<*>>i ̂ |//<«-*)>« = ) * l°> d« + 2 v.

where the rp belong to other representations than the antisymmetric
representation of the permutation group Sq. _

As 2  A t  belongs to the identical representation of Sq, it follows from

the orthogonality relations for inner products (see for instance Ch. 12 of
reference [10]) that

(47) <Y»| j  ^t|0> = o.

Hence

«ƒ<<">|l K<J,«-*\r I 2 ^ * 1 °) = *«(n) <0'
(48)

Tr A.
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Furthermore, splitting up

2 =  2 +  2 A *>fc-1 K-l fc-n+1

and making use of the expansion (28) o f the closed shell state and again
of the facts that K  is antiunitary and 2  A t  Is hermitian, the le ft hand
side of (48) reduces to

( £  M f i (n)>L+<K //®“l,)l*2 A i \k /,<«-»>>*) =
( « )  W  ~  ( q  w

From (48) and (49), (42) follows directly.

§ 7. Two-electron operators

I f  % A (k , I) is an arbitrary herm itian two-electron operator

(50)

then

QL<.»)t j =  <0|<»)| J  A (k, I) |

Qrü-'U ]  =  <Sr<(s“ *> | 2  * )  l & tó~ B )> * >
k < l

(51) =  gL(»> — (n—1) <0| 2  M k ,  I )  |0> 1 +  Cf»-1-»>,
»<j

where the m atrix elements of are formed as follows:

(i) I f  a t least two of the two-electron states of are different
from all one-electron states of then

(62a) d p * *  =  0.

(ii) I f  only one one-electron state of |j7i <b>>£ differs from one one-
electron state of |gt'W ^Lt the one-electron states being further­
more the same, then writing and |vi*'(®-1)>fl for the functions
corresponding (cf. (17)) w ith and |tV > £ , it  follows that

(52b) C tr**- » =  (-l)«M fc .V >  <»*(•-« ) 2  A {k, i)Ivft,<«-1>>«.
><i

nt(iic, i t )  is the number of indices *«=*«' in  the open interval (in, i t ) -

(iii) When all the one-electron states are the same the (diagonal) elements
are given by

(52c) <*-»••» =  2  I 2  A (k, I ) |vu«-»>n .
k - 1  k < l



39

P ro o f : The proof can be established with common rules for matrix
elements of two-electron operators [14].

For instance, if one one-electron state vtk of \g<<*>>£ differs from one
one-electron state vik of then

/ a—» *
\  2  M h  l)\ht^ y  =  <flr<<»)| 2  A(k, l)\gt'w>L +

(53) < *<* *<l
I +  ( — 2  {(v*kv1 M \VikV]y —
v

with the notation

(54) <oh|4|cd> =  <o(l) 6(2)|^(1, 2)|c(l) d(2)>.

Writing
(55) K (a-1)>« =  ( - 1)** K  \0 -  («<*)>,
then

( <«4<*-1>| 2 01 »fe,<a-1)>ii =
(56) < k<l

) =  - 1? 2 {<y*kvi\A \v<* vi> -< v*kvAA \v} vi*y}-
( <«■<*.«*'

I f  the one-electron states of |gri(n)>L and | a r e  identical
a —h

| < l

<?<<»> I 2  0 b i (*>> +  2  /(». i) - 2  /(**. fl.»<i *<(

(59)

(60)

J(i, ƒ) =  like a Coulomb integral
1 if(i, ƒ) =  like an exchange integral.

<0| 2  A(k, l)\Oy = 2  /(*. J) (=  0, if ij =  -1 ) .
k<I i<)

2  <«ft<®"1)| 2  4(*, 0|v<*(a-1)>* =  rrn 2  /(*> j ) - v 1  /(**• ?)•
4 -1  * < l  <<i t*.#

R e m a r k : Formula (51) holds also in the trivial cases » = 0  and *=*1.
The matrix C**-1-"* does not vanish because no simple correspondence
exists for arbitrary two-electron operators between the configurations
c1 and c®-1. Hence the relation (51) is as simple as it can be.
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§ 8 . Transformation and coupling properties
I) Transformation properties.
(i) |/i<B)>ü and |/<<«~b)>b have the same transformation properties for
all operations of Op. In particular they have the same transformation
properties with respect to G, as each transformation of G generates an
operation of Op. If  |/<b)>l belongs to the row Mr  of an irreducible

representation of T  of G, then |/<«~B>>jt does too.
a

(ii) From the general relation (42) it follows that the matrix element
of with respect to the bases |/<(b)>l and | a r e
identical. (All angular momenta are imaginary operators).

Now 2 S<*> 2 a<»> do n°t have non-vanishing matrix elements
between states of cB and other (orthogonal) n-electron states.

The matrices of (2 afe)2> (2 5<v)2> (2 5<*)2 can b® found by matrix multi­
plication and also are identical. In particular: if |ƒ<">>£, is an eigenstate
of S2 = (2*<)2 for the eigenvalue S(8 +1) and of St — for the eigenvalue
Ms then the same holds for |/<e-B)>n.

II) Coupling properties.
The functions «< span a representation y of G.
The decomposition of y in irreducible representations is given by

(61) y  -  J  y*.
k - l

We choose ui\, u i\ as a basis in the configuration c1, where the u\ belong
to the rows of the representations y*.

Then each function |g«(n)>£ (c/. 7) belongs to a subconfiguration
d Bi C2b2 ... crBr, if nic of the functions vik belong to y*.

If  we assume that each representation y* is a representation of type a,
i.e. yic can be brought into a real form by an appropriate choice of basis [15],
then if | / (B)>x, belongs to Ci*i C2B2 ... cr"r, it follows that belongs
to ci2,i-»i C22J2-B 2 ... cr2Lr~nr, where h  is the dimension of y*.

We now choose the numbering of the such that
tt*f=t>2*-i «1, span yi

= V2k Mii+i> •••» wji+j2 span y2
%-if+i» •••> % span yr»

Then, if belongs to the subconfiguration ciwi ... Cf̂ r, we can write

(62) |̂ i<B>>£, =  A<»> [|fif<(̂ ( l ,  2, ..., tci)>z, ... \gi^)(n-nr+ l, ..., »)>i]
where
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nx functions
(63) |fir<(ïf)>L-

and v moves through the functions Vtk (i* increasing), belonging to yi.

(64) A<»> =  —  2  e(P) P,
yn\ p

summed over the permutations of 1, 2......n, implies antisymmetrization
and normalization.

From (17) it follows that
/  0 4<e-»>>a =  ( -  l)<i+...+<n+n(»-i)/2 K \ 0 - ( g tW)Ly

(65) ] =  (-l)< i+ ...+*.+»(»-i)/2 KA«~*)  ... |Or - ( ^ r!)L>]

( =  ( -  i).(»-i)/2^(»-») [ |( _  i ) S ,l> K\Ox- M U »  . ..  | ( - l)S*<r> K l O r - g t t h } } ]

where
(66) |0i> =  |« if, « 4 ....... « iif, « j4> .
is a notation for the closed yi shell.

XiO) is the sum of the indices i* such that vik belongs to y\. Then
f
2  ntnt _

(67) =  ( - 1  f <f • ••

Alternatively we can take linear combinations of the basis
functions |<jr«(fti>£.

Since the antisymmetrizing operator does not act on the coefficients,
the corresponding function of

(68) |/<»>>L =  AW  ... 1 / ^ ) 4

is given by
r

2  w h
(69) !/(«-*)>« -  ( - 1 ) « '  A («-»)[!/<<«)-»*'>« ... |

So if |ƒ<*>>£ can be obtained by coupling from states of Ci“i, 02"*, ..., <V*r
with given transformation properties with respect to G and rotations in
spin space (for instanceSiJ\, S2 F2 ......Srr r), then can be obtained
by coupling from states of

C12»i-»i> C22*2_n2, ..., Cr2V-»f

with the same transformation properties with respect to G and rotations
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in spin space.

(for instance &1/ 1»&>-?*» 8rrr).
The factor ( — 1)»»» appearing in formula (9,42) of reference [7] can

2  n<rH
be considered as a special case of the factor ( —1)<<#

§ 9. Coulomb interaction
For the sake of convenience we choose the basis functions «1, «2, ..., vt

as in § 8 H .

A ssu m p tio n : Each irreducible representation of G occurs at most
once in the reduction (61) of y.

This assumption is justified in most physically important cases.

Then, if  i i', and are either eigenstates of 8t for
different eigenvalues, or belong to different representations or different
rows of the same representation o f G. As the Coulomb interaction belongs
to  the identical representation of G, all off-diagonal elements of
(c/. (62)) vanish.

I f
.......vtu span yt, being eigenstates of 8 t =  i

vt[.......vtlk span yt, being eigenstates of $» =  —£,

then

( < V ff-1> I Fccui. I tV e-1)>ii =  <V®-1) I ^coui. 11^«•-1)>a (which
j is independent of j) =

where is the Coulomb energy of the closed shell in which a yt
electron is missing.electron is missing.

I f  belongs to the subconfiguration oi»i ... Cr**, then

(71) = D{ni, «2, ..., nr) — fti Ey to-U + . . .  +«r ^yr<a-1>

and

(72) £*<«-»> =  Ql<»>-(w-  1) Eo 1+D(ni, m .......Mr),

where

D (»i, ..........nr) is a diagonal matrix with elements D(n\, n̂ , ..., nr) and
Eo is the Coulomb energy of the closed shell.
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The same relation (72) holds if we choose a basis in c" composed from
arbitrary bases in spaces corresponding to subconfigurations ci*i ... (v’V.

Application of (72) for the maximal 8  states in the configuration cv
gives the relation
(73) (p— 1) Eo =  D(li, k, ..., Zr) = hEyto-i) + ... + lr

When the representation is irreducible, which is the case in shells, the
matrices #*<«-«> and Ql(b> are equal for any choice of basis in c* apart
from a constant diagonal energy.

That is, i.e.
(74) =  Ql O  + (Eo-na) 1,

where a is the difference between the Coulomb energy of the closed shell
and of the shell from which one electron is missing.

In  particular
(75) Io  =  po ,

which relation is well-known for I shells.
The conclusions of this section also hold for any real two-particle

operator, not acting on spin and invariant for transformations of G.

§ 10. Applications for a half-closed shell
Let us choose a basis | o f  the configuration c*.
By (17) and (19) we can define another orthonormal basis of d*.
I f  now for certain t

(76) =  ƒ«<*>>*,
then we call self conjugated.

We now assume that the phase of the closed shell state is such that

(77) K\oy = |0 >.
This condition is satisfied for instance if we choose as a basis in the con­
figuration c1
®1, . . . ,  V p ,  V p + l ,  . . .  Vg  4—> W l’j ' , . . . ,  W pj', W lj,, . . . ,  U p O r U ] c [ ~ V  2*—Is ViX,

where the are such that the determinant of the transformation w< -*■ u f
is equal to 1. The latter condition is satisfied in a trivial way, if the
are chosen real, but also if the ut are functions \l, rn). (I is an integer,
the transformation to |Z, my* being described by the matrix
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(78) <1, m)*> = ( - 1)'-»* dm', - m.

If K\Oy =  |0>, then each self conjugated state has a definite parity, t.e.
« =  ±  1.

Proof: From (28)

/' |0> =  2  IHw  (1, 2 , p)>L K \ftw  ( p + 1 , g ) > *

(79) ) K\Oy = |0> -  2  jr|/,w (I, 2, p)>£ **!/,<*> ( p + l , .... g)>* =

/ = ( - I ) 3» 2  !/«<»> (3>+i, ...,g)>**|/«« (1,2, ...,P)>L.
\  i

In addition

(80) |l>„+l, ..., vq, V i, ..., «*> =  (-1)3»® |«1, ..., Vp, Vp+l, ..., vay =  (-1)3» |0>.

Hence

(81) |0> =  2  It*w  (1. 2.......p)}R K\fi&> ( p + l , g ) > x , .
4

Alternatively we can take as a basis |<̂<(3>))x, of c3».
The conjugated basis of | ̂ «O»)  ̂ is defined by

(82) |0> =  2  I fa ^yL  K\<f>iW)R.
*

Thus

(83) |̂ <*>>* =  W p)>l .

If

(84) |/4<»)>ji *» *|/<<i»)>£, then |<̂<<3»)>fl =  a |/4<J»>>* =  a2|/i<3»>>x,.

So « = ±  1, and |/4(i»>)l has a definite parity.

R em ark: A generalization of the considerations above is possible.
We can define the double conjugated state |/(n)>itR of by

(85) !/<»>>** = | <£<»>>*, if

Then, if A |0 ) = |0>, for arbitrary |/<">)x,:

(86) |/<»>>** = |/<*>>£.
For states with a definite parity we have the following selection rules
(cf. [1]):
(i) All matrix elements of real traceless hermitian operators between
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states of the same parity vanish;
(ii) All matrix elements of imaginary hermitian operators between
states of different parity vanish.

We on.™ now take as a basis states of the form | <xSrMsMryL, where a
is a set of parameters in order to distinguish the different possibilities
ST, r  is a representation of G and Mr  indicates the rows of r .
(i) If  we choose a basis composed from bases of subconfigurations

Ci*i ... CrBr, only the states of cjh ... c^r have a definite parity.
(ii) Each [ocST^r can be written as a linear combination of functions
[(xST^l, the coefficients being independent of Ms and Mr.

By choosing appropriate linear combinations to be the new
we can diagonalize the unitary matrix (ot ST^oiSTt).

Then, if A|0> = |0>, each |ocST^l has a definite parity (c/. [1]). Such
a situation is realized, if we take the basis functions such that they belong
to irreducible representations of 0 P. Since corresponding functions |)l
and |>« have the same transformation properties with respect to 0 P, the
parity of the basis functions can depend only on the representations of 0 P.

In the case of I shells, Racah has expressed the parity in terms of the
seniority v making use of fractional parentage coefficients [2, 3]. Eor
particular cases another approach is very simple.

The parity of the maximal $=p/2  states in the configuration c* can
be evaluated in an elementary way by (17). Furthermore for all states
of the form |... f, ...> the diagonal element of the parity operator
vanishes, if the w< are chosen real. Hence we can say that the sum of
parities of all states with fixed 8Z value is equal to the parity of the maximal
8  states. Furthermore we can reduce the space of functions with fixed 8Z
value according to irreducible representations of 0 P. Then by application
of the diagonal sum rule it may be possible to determine the parities,
taking into account that the parity has to be ^  1. A general justification
of this procedure may be a difficult problem concerning the irreducible
representations of 0 P.

We now assume that the high-symmetry (G) components of the Hamil­
tonian, not acting on spin, give a well defined splitting, and that the
low-symmetry (real) one-electron operators and also the spin-orbit
coupling are “small”. Then, if a certain energy level has a definite parity,
(this is certainly the case if S T  occurs once in the decomposition of the
space of cp states), we can conclude that the real low-symmetry one-
electron operators and the spin-orbit coupling do not give a first order
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perturbation on the level S I1. This for instance was pointed out by
Sugano and T anabe for the configuration ta8, where all levels S T  occur
once [16],
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CHAPTER II

THE VAN VLECK RELATION

§ 1. Introduction
The High spin levels of d ions in octahedral symmetric Ligand fields

can be expressed in terms of a splitting parameter, for instanoe the
splitting A, which the same Ligand field would give in the configuration
d1. In 1932 Van Vleck remarked that in this case the high spin levels
have the same relative positions in the configurations dB and d*+B and
also in the configurations d5~* and d10-*, apart from the fact that the
order of the levels is inverted [1].

More generally, if  we assume that the Coulomb interaction, as for the
case of free ions, can be described by R agah parameters [2], we can
characterize the Coulomb interaction for the high spin states of d2, d®,
d7 and d® by Ep=  15B, where Ev is the splitting between the “F ” and “P ”
levels in the lim it A -*■ 0.

In actual complexes Ep is always smaller than for the free ion. I f  now
the high spin levels in the configuration d® are given by fi(A, Ep), the
relative positions of the high spin levels in the configuration d7 are the
same, but the relative positions in the configurations d® and d® are given
by ft( - A , E P).

This can be explained by the hole-equivalence principle [3, 4] together
with an additional relation between the high spin states o f d" and d*+®
which we might call a Van Vleck relation, in agreement with J orgenson [5],

(If it is taken into account that the one-electron states cannot be
identified with pure d states in an exact way, nine parameters are needed
to describe the relative positions o f the Coulomb levels [3] and four if
we restrict ourselves to  high spin states. The relations now are less simple.)

However, a Van Vleck relation holds very generally for arbitrary
electron shells and the proof of it is very simple.

Starting from an arbitrary basis of maximal 8 t states in the configuration
c" (c/. § 2 of [4]) we can obtain by coupling with the minimal 8t  state
of the half-closed shell and antisymmetrization a basis of minimal St states
in the configuration cn+J). Both bases have the same transformation
properties with respect to the unimodular group SUp of unitary trans­
formations with determinant 1 in the Hilbert space o f u\, «2, . . . ,up.
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The basis of m inim al St states in the configuration 0"+» is determined
uniquely, apart from a common phase factor, by its transformation
properties with respect to SUp.

Simple relations hold for the matrix elements of one- and two-electron
operators not acting on spin.

§ 2. Basic concepts
Working with the same formalism as § 2 of [4] we take |»«> =  |“<t>

t =  l, 2 ,..., p as basis of maximal #*=$ states in the configuration c1.
Furthermore vp+i, ..., ve= « i|, ..., uv\.

An orthonormal basis of maximal Sz states in the configuration o*
(n<p) is given by
(1) =  vu, *i<»2 <  ... < in<P

where i characterizes in an unique way the possibilities

*i<*2< ••• <»»<p.

An arbitrary orthonormal basis of maximal Sz states in the configuration
c« is given by

(2) ^ i(n) =  2  V fl

the matrix V being unitary.
As basis states with minimal Sz in the configuration c»+» we can take

(3) y>iin+v) = \vit, Vii t . . . ,»«,, »p+i,..., ««>
and
(4) <f>t(*+P) =  J  V a  */•+*>.

Each transformation of SUp generates an unitary transformation among
the vi, Vi, ..., vq
(5) U|v<> =  2  «*, where <t>*| U|v<> =  Uu, i, k = 1, 2, ..., q.

t

Introducing the notation

(6) <ttt|U|«<>=Mw, », t - 1 ,  2, .... p,
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it is obvious that
(tij* if  i , k < p

(7) 17m  =  I t t i i - j i  i —p  if i > k > p
(o if i < p  k > p ;  * > p  k < p

M = 1
since the transformation of SUj, do not act on spin states.

§ 3. Transformation properties of corresponding functions
The functions have the same transformation properties as the

functions with respect to SUP.

P ro o f r We can restrict ourselves to the basis yi{ and the transformation
to the basis <f>t in both cases is realized by a similarity transformation
with the unitary matrix V.

The functions ip^n+v) transform like

Efy,<*+v )  = J
<  <  • • • <  <  * » + i <

where

^ 7 * i t p + i .....*«;<i..... ,...,a *
< k ,< q

X I»*l>  •••>*’*»>v *p + l>

(8)

U m U t o t n U k !  p+1 U k \ t

I n
ü t n i  X U k » t» U i ^ p + l  U kn Q

U k p + i i i  U k p + i in U k p + ip + 1  U k p + iq

m IV
U k q t l U k q in U kq p + 1  U k g q

All ki, k„ in the right hand side of (8) must satisfy

(9) k i < k 2< ... < k n<p.

Then from (7)

( 10)
II = 0

|IV| =  S k p + l.P + l  ••• &kq, a-

( 11)
i ; n

m r v |I | |IV| =  U je i ...icn , i i . . . l n dkv + i ,p + l . . .Ö k g,<)’
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Substituting this in (8)

(12) Efy,<»+J» =  J  Ukl...tn, t l ...tnipk^+P).
*j<...<*,<»

Clearly also

(13) UipiW =  2  ££*»...**,*... fa

R em ark: Corresponding functions <̂*> and <f>(n+P) have the same
transformation properties with respect to SUP. In particular <f><fl+v) has
the same transformation properties as <̂“>o with respect to the symmetry
group G, which leaves the one-particle Hamiltonian h invariant (c/. § 2
of [4]). o is the high spin state of the half-closed shell; it is symmetric in
the spin-dependent part and anti-symmetric in the orbital part. It belongs
to a one dimensional representation of the symmetry group G which
is not necessarily the identical representation. For instance, in the case
of t>2 shells, d ions in octahedral fields [3], the high spin state of the half-
closed shell is 4A2 . Then 8Ti of t24 corresponds to ^ 2  of f2 1 and 2T2

of t28 corresponds to ®Ti of t2 2. In the case of I shells o belongs to the
identical representation D<o) of the rotation group and <£<“> and <f><n+P>

have the same transformation properties with respect to G.
The basis is determined uniquely apart from a common phase

factor by its transformation properties with respect to SUP. This follows
directly from Schub’s lemma [6] and the fact that the matrices

(14) £7*1 ...*»,<! ...fa =
W*1<1

w *n<l

“ *1 in

M*»fa

ki< . . .<kn< p
»!< . . .<*»  < p

span an irreducible representation of SUP.
Although the latter fact is well-known from more general group

theoretical considerations [7], a simple proof is possible along the lines
of W ig n e b ’s proof [8] of the irreducibility of representations D<L> of
the rotation group, making use of Schur’s lemma.

Suppose F * ! . c o m m u t e s  with 17*1...*», <!...<» I°r all U e  SUP
then

2  £7*i...*».n.«*» —

2  Vki...t»,h...J» £7*1...fa, fa ...fa*
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When the sets ki ... kn and ii ... t„ are not identical

k\ ... kn contains an index a, not occurring in t’i ... I»
ii ... in contains an index b, not occurring in ki ... kn.

Define: u diagonal
(  U a a  —  o i ^ k n

(16) < «66 =  e-u
( uu = 1  for t i* (a, b)

then

(17) U 6 SUP and V ^ ..... tn.ti......u =  0.

So V is a diagonal matrix.

Hence for all U e  SUP

Suppose h < h <  ... <lp-n  form together with k \< k z <  ... < k n the set of
subscripts 1 ,2 ,.. .p  and j i< j% < . . .<  jp-n form together with »i< i s< ..•  < *»
a similar set.

Define
( Uiniii =  bpiia for <X =  1, . . . ,n

(19) < uipm =  dm]fi for 0= 1, 2, .... ( p - n - 1 )
( =  edm}P_n, where e is such that | « | - 1 ,

then

(20) U  6 STJp and —1^0.

So V  is a multiple of the unit matrix and the matrices U t 1...icn , i i . . . in  span
an irreducible representation of SUP.

It is interesting to remark that the functions also span an irreducible
representation of Op. I f the one-particle hamiltonian h is a real operator
(c/. [4]), we can choose the basis functions ut real and then the orthogonal
transformations among « 1 , 1*2 , . . . ,u v are represented by the group of
orthogonal matrices with p  rows and columns.

When the sets k i ... kn and t'i... in are not identical, we can define
(of. 16)

( 21)
| t a a-- 1
\ tu =  1 for i¥=a,
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so that F is a diagonal matrix. Furthermore, each matrix F*1...i>,<1...iB
commuting with all T for T  e Op is a multiple of the unit
matrix.
§ 4. One- and two-electron operators

If  2-4* is an arbitrary (linear) one-electron operator not acting on
spin *

pm + p)(j =  <^4(«+j»| j  ^ 4 t |^ (n+I,)>

(22)

then

(23)

where

(24)

p <»>« =  <̂ <»>| 2  ^*|&<»>>,
t- i

P<n+P)s=P<.n) _|_1 J V °  A ,

1 is the unit matrix and 2V° A  = 2

If  2  A(k, I) is an arbitrary (linear) two-electron operator not acting

on spin

(25)

thenê

(26)

Q(*+p)i} =  <̂ (*+3»)! 2  A(k, i)|v'/"+J,)>
k<I

G<*>« = 0<(n)| 2  *)|w<-)>.*<i

Q(*+J» = Q<»)_(»_1)<0| 2  4(M )|o> 1+C,ö>+1.»),

where o is the high spin state of the half-closed shell.
The matrix elements of Cö,+1>") are formed as follows:

(i) If  a t least two of the one-electron states of are different from
all one-electron states of y>t'̂ n\  then
(27a) 0&+1-*>=Q.

(ii) If  only one one-electron state Vik of differs from one one-electron
state V{t’ of rpt'(n\  the one-electron states being furthermore the same
and in addition in the configuration cJ,+1 the functions and u4jt'ö>+1)
(with minimal Sz) correspond with Vtk and then

»+i
(27b) C,a,+1-*> =  ( - 1  )»««*• %> 2  A ( k > i) K '(p+1)>>

k<l
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where n<(t*, i t )  is the number of indices in the open interval
(**, it)*
(iii) If  the sets of the one-electron states are identical, then

n  P + 1

(27c) C&+1-" = 2  < «fcö ’+1)l 1  A(k,l)\vtk<*+»>.
k - 1  k < l

The proof of these relations is simple, making use of the rules for matrix
elements of one- and two-electron operators between determinantal
functions [9]. In addition we can use the following relations, (c/. [4])

P + 1  P
(28a) <««fcti,+1)| j ,  A (k,l) = 2  <uikuj[A\ulk uj)

* < i  i —i

(28b) ”2  A(k,l)\vik<J>+»y = % (uiku,\A\uttui> + <o\ 2  A(k,l)\o}
»<i i- i *<I

(28c) <ol f  A(k,l)\o> = 2  /(*»?) =  2  ~  (UiUilAlutmy).
»<i *<i  i < f

Formula (26) holds also in the trivial cases n = 0  and n = l .  The matrix
CKp+i ,*») doeg not vanish because no simple correspondence exists for
two-electron operators between the high spin states of c1 and cJ,+1. The
analogy of (26) and (27) with the corresponding hole-equivalence relations
(51) and (52) of reference [4] is remarkable.

§ 5. Coulomb interaction
We choose the functions ut such that they belong to different rows of

f

the representations yt into which the representation y — 2  Yt can be
decomposed (c/. § 8, § 9 of [4]).

A ssum ption: Each irreducible representation of G occurs a t most
once in the reduction of y.

Then all off-diagonal elements of vanish.
If  .......... utli span yic, then

(29) Fcoui><,(J,+1)> = (which is independent of j)=Eyk^ +1'>,

where Eyfl+U is the Coulomb energy of the high spin state o of the half-
closed shell, to which a y* electron is added.

Each function y><(n) belongs to a subconfiguration oini ... Cr»r with
m  + . . .+nr=n,  if n) of the functions r«i......belong to yj. (Only
those combinations n\ + ... + Mr=n appear which can give maximal 8Z
states in the configuration c".)
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Then
(30) Qln+p) = Q<»> —(n —1) Eho 1 + Z>i (»i, nt......nr),

where E\o is the Coulomb energy of the high-spin state of the half-closed shell.
(31) Z>i(»l, «2, ...,nr) = m  Ey^**1̂  -(- ... -f fir Eyr(P+1K

The same relation holds if we choose a basis of maximal Sz states in c*
composed from arbitrary bases in spaces corresponding to the sub­
configurations O i* l . . .  C f"r.

In  particular for n= p
(32) Di(h, 1%, If) = l± Ey^(p +i ) + . . .  +  lr Eyf( = Eo+ (p—2) Ej,0,

where E0 is the Coulomb energy of the closed shell.
When the representation y is irreducible, which is the case in I shells,

the matrices Q<*> and Q<»+p) are equal for any choice of basis of maximal
8Z states in c*, apart from a constant diagonal energy.

That is,
(33) Qi"+v)=QW + {Eno+nb} 1,

where b is the increase in Coulomb energy if we add an electron to the
high spin state of the half-dosed shell.

Here in particular
(34) pb=E0—2 E\o-

The conclusions of this section hold also for any real two-partiole
operator not acting on spin and invariant for 6 .

(In the case of the Coulomb interaction in I shells, b reduces to (21+1) F0,
where F0 is the Slater-Condon parameter, which can be derived using
the addition theorem for spherical harmonics.)

§ 6. Remarks
(i) From the Van Vleck relation and the hole-equivalence principle, we
get a simplified calculation scheme for the high spin states for matrix
elements of one- and two-electron operators, not acting on spin. We only
have to calculate the matrix elements for the high spin states in the
configurations cn with n< p /2 if p is even and n< £  (p—1) if p is odd.
The corresponding basis functions are given by (§ 3 and § 4 of [4]).
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Maximal 8Z states in c“
Hole-
equivalence Maximal Sz states in c * -»

W<*>-|«h......Ufc>f(l)... f(*0
«1< H < ...<*»<?>

principle

x |«*M.......«£-•!» *i*t. •••»V t >

<£<(»)= 2  F  unitary ^ (<«-*> _  j  ?*<«-»>
ft

(36)

Van Same transformation
Vleck properties for STJp
relation transforms like

î(«) o with respect to Q

Same
transformation
properties for
Op in particular
for G

...<  jv-n from together with

the set of subscripts 1 , 2 , p)

Minimal S t states in o»+* Minimal SB states in &>-*

y t (*+P) — l l ^ j f ................................... U ^ .>  f f tP - » )  -  ( -  X

..... «£-4 >
2  f'wyJ.(»+J>) ----------- ------- > <f>t!»-••= J  FmIPjM
* Hole- *

equivalence
principle

All the bases in this scheme are defined uniquely (apart from a common
phase factor) by their transformation properties with respect to 0 P and
SUP (see § 3). The matrix elements P  and Q of one- and two-electron
operators not acting on spin can be obtained from those in the configuration
c» by applying the hole-equivalence relations (§ 6, § 7 and § 9 of reference
[4]) and the Van Vleck relations (§ 4 and § 5).

(ii) In  the foregoing it has been assumed that all one-electron wave
functions have the same radial part in all configurations cn.

If  n increases this assumption is not allowed because of the increasing
effective nuclear charge. However, most relevant one-electron operators
are separable, i.e . A(r, 0, <f>)=Af(r) A m(B, <f>).

If we introduce a set of parameters <a|Ar(r)|<%'>, where <x and «' can
be substituted for the different possibilities of the radial part, the
equivalences still bold, if one expresses the matrix elements in terms of
the parameters. Also if one introduces an appropriate parametrization
for the Coulomb interaction (for instance Slater-Condon parameters or
R acah  parameters [2, 9, 10] in the case of I shells or ten parameters
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a, b, j for d ions in octahedral complexes [3]), the hole-equivalence
relation and the Van Vleck relation will be satisfied in terms of the
parameters.

(iii) The treatment of the hole-equivalence principle (see [4]) can be
generalized for nuclear shells by a generalization of Wigner’s time
reversal operator K  [11] in the sense of a conjugation operator K = K 0U
[12]. However, some difficulties appear. For instance, if we consider
configurations jk where ƒ is a half odd integer together with the isotopic
spin T  [13], the group of unitary transformations commuting with K  is
not the orthogonal group O2/+1, but the symplectic group Sp2/+i, which
leaves the bilinear form 2  (— iy~m —m) invariant. The matrices

m
in the configuration c1 form a representation of type c, which in spite
of the real group characters cannot be brought into a real form [14].
In this case it is not true that the maximal Tz states of a configuration
jk span an irreducible representation of Sp2*+i, (for an example see e.g. [7]).

In nuclear shell theory, however, the deviations of spherical symmetry
are less important and the hole-equivalence relations can be expressed
in terms of reduced matrix elements of tensor operators.

§ 7. Spin-orbit coupling
In general we can write the spin-orbit coupling in the form

(36) I  <*•«*,
i - i

wherfe t* is an imaginary operator transforming with respect to G as
an axial vector. By the group replacement theorem (see e.g. [3]) each
operator S< can be replaced by <%„ (S)S if we are restricted to the states
with fixed value of S  in any configuration c“. txn (S) is independent of i,
as the spin-orbit coupling is symmetric for interchanging particles.

Thus for the high spin states of c":

(37) Sfrto — CoLn (Smax) T* S,
where
(38) T is a formal expression for T=  J  t<.

<

For n< p  the high spin states are symmetric in the spin-dependent part.
Thus

« » (omax) =  “  =  7j”c '71 & Omax( 39)
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From the hole-equivalence relation (42) of reference [4]
(40) P<«-*)= — P<»>.

for the spin orbit coupling.
Hence for the high spin states

(41) $*o =  ±  — T • S,
a  Om ax

where + holds if the shell is less than half filled and — holds if the shell
is more than half filled.

The matrix elements of T= J  t< in the configuration c" can be evaluated
<

with the rules for matrix elements of one-electron operators between
determinantal functions. The matrices of T with respect to the four
bases in the scheme (35) are identical (c/. (23) and also (42) of reference [4]).

Analogous evalations are possible for the hyper fine structure. Here
we get a term of the form / - T- S, where T is a real one-electron operator,
transforming under operations of G as a tensor of rank two.
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CHAPTER III

ON THE THEORY OF d-IONS IN LIGAND FIELDS

§ 1) Introduction
There are two relations which can be useful in order to establish a

scheme of properties of an arbitrary electron shell.
i) The hole equivalence relation between the configuration with n

electrons in the shell and the configuration with 2p —n electrons i.e. the
closed shell (2p electrons) with n electrons missing.

ii) The van Yleck relation between the high spin states of the con­
figuration with n electrons and the high spin states of the configuration
with n+ p  electrons. The latter states can be obtained by coupling to
the high spin states of the configuration with n electrons the high spin
state of the half closed shell and antisymmetrizing.

These relations can be formulated as follows. Starting from an arbitrary
basis of n electron states, we can indicate a basis in the equivalent con­
figurations, which is closely connected in transformation properties with
respect to the symmetry group of the Hamiltonian (i.e. in the case of
the hole equivalence principle exactly the same transformation properties
and in the case of the van Yleck relation the same transformation
properties apart from the factor by which the orbital part of the high
spin state of the half closed shell, — completely antisymmetric in inter­
changing electrons — , is multiplied) and such there is a very simple
correspondence between the matrix elements of one electron operators
relative to the bases.

As distinct from the hole equivalence relation which applies generally
to all the states of equivalent configurations, the van Vleck relation is
restricted to the maximal 8  states of the configurations and the cor­
respondence for the matrix elements of one electron operators is restricted
to operators not acting on spin.

The hole equivalence principle was proved for the case of spherical
symmetry by R acah [1] and for the case of d ions in octrahedral Ligand
fields by Gruteith [2]. However a proof is possible independent of the
transformation properties of the one electron states, which determine
the shell [3]. This is also the case for the van Yleck  relation [4], originally
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established for a simple case by van Vleck [5]. The name van Vleck relation
is due to J orgenson [6]. Using these relations a simple survey of some
properties of electron shells can be established. In particular we shall
treat the problem of d ions in octahedral Ligand fields, with in addition
a small tetragonal or trigonal component.

Since we are restricted to the high spin states, the following con*
siderations are useful for paramagnetic resonance quantities, if  no spin
pairing occurs, i.e. the Ligand field is not so strong as to give the spin
in the ground state of the configurations d4, d5, d6, d7 a lower value than
the maximal S  value.

§ 2 ) d ions in octahedral Ligand fields
Let us consider a d ion in an octahedral Ligand field. Due to the covalent

bonds the one electron states can not be identified with pure d states.
We may choose linear combinations of atomic orbitals [7 — 10]. However,
since we are restricted to the lowest energy levels, it is reasonable to
assume, that the partly filled shells of the complex span the same
representations of the octahedral group Ob as pure d states [11].

As a basis of one electron orbitals we choose the functions u, v, £, rj, f ,
where u and v span the representation e of Oh and transform as (2z2—x2—y2)
and (x2—y2) |/3, and £, rj, f , span the representation ta of Oh and transform
as yz, xz, xy.

(The parity subscripts g and u of the representations have been omitted
in order to make the considerations of this section applicable to the case
of the tetrahedral symmetry Ta. In the case of d ions all the representations
have even parity and hence are representations g.)

The octahedral Ligand field acting on a d ion gives a splitting in two
levels e and t2, separated by a distance A.

Ee—Et2 =  A, E,  =  9/sA, Ets — — 2/sA.

A is positive in octahedral complexes with 6 co-ordination as can be shown
easily from electrostatic as well from molecular orbital considerations.

However, in tetrahedral complexes and also in octahedral complexes
with 8 and 12 co-ordination, A is negative [12].

The high spin states of the configuration d2 are antisymmetrical in the
orbital part and symmetrical in the spin dependant part (5=1). Omitting
for the moment the spin dependant part, we can take as a basis the 10
orbitals

|«, »>... \v> O.
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where

\u, V) =  y= {«(1) v(2) -  v(l) u(2)}.

On the other hand we can take a basis of the form

Subconfigu­
ration of d2

transformationrepresen­
tation of Oh energy basis states properties

relative to Oh

e2 Az P |e2Aa> Oz

(T i jXt2eTi)> \Yt2eT\)> \ZtzeTi) lx, ly, It
t26

I Tz h J \Xt2eT2), | Y «2cT2^> \Zt2eT2) £> y, £

tz2 Ti -P |^ « 2 2T i > , \Yt^Txy, III Iy> It•

IXt I v, Iz, are the x, y, z components of an angular momentum operator.
This basis is called the strong field representation, the basis states are
eigenstates of the Hamiltonian in the limit A —► oo, i.e. if the Coulomb
interaction can be neglected with respect to the Ligand field.

Another choice of basis is the Russell Saunders representation, the basis
states are eigenstates of the Hamiltonian in the limit A —► 0, i.e. if the
Ligand field can be neglected compared with the Coulomb interaction.

Due to the Coulomb interaction the two Ti levels in (1) will be mixed
up. If we take into account the Ligand field as well as the Coulomb inter­
action, then the states of the lowest Ti level will be given by

a\ ... tj?T\)-\-b\ ... tjfiTfy,

whereas the states of the highest Ti level will be given by

• — 6| ... fe2Ti>+a| ... heTi}, ... signifies X , Y, or Z.

If we njaaiimn the other terms in the Hamiltonian, hi particular, the
low symmetry components of the Ligand field and the spin orbit coupling
small with respect to the Coulomb interaction and the octahedral compo­
nent of the Ligand field, then we can apply a perturbation calculation.
In this way physical quantities such as for instance g factors and hyper
fine structure constants can be expressed in terms of a and b. This can
be useful, since in most cases the Coulomb interaction and the Ligand
field are of the same order of magnitude, so that neither the strong field
approximation in which the states of the strong field representation are
assumed to be the eigenstates of the Hamiltonian, nor the Russell Saunders
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approximation will give correct results. In addition, from the formulae
obtained in this way, the correctness of both approximations can be
investigated directly.

Using the van Yleck relation and the hole equivalence principle we
can construct a basis of high spin orbitals of d4, d®, d9 with the same
transformation properties as u, v, f, rj, £ (the high spin state of d5 is
invariant for rotations). In addition we can choose a basis of high spin
orbitals of d3, d7, d8 with the same transformation properties as the basis
for d2.

For an arbitrary, hermitian and traceless, one electron operator, not
acting on spin, we have the following relations for the matrix elements
relative to the bases in the equivalent configurations:

i) If the operator is real, (i.e. commutes with Wigner’s time reversal
operator K  [13]), then the matrix elements in d1 and d® resp. d2 and d7
are the same, whereas the matrices for d4 and d9 resp. d3 and d8 follow
from the matrices for d1 and d2 by multiplication with —1.

ii) If the operator is imaginary, (i.e. anticommutes with K, such as
is the case for all angular momenta), then the matrices with respect to
d1, d4, d®, d9 resp. d2, d3, d7, d8 are the same.

The most important two electron operator is the Coulomb interaction.
Although in the general case of octahedral symmetry an exact de­
scription of the Coulomb interaction involves 10 parameters c/. [2] or 5,
if we are restricted to the high spin states, we shall assume, that the
Coulomb interaction as in the case of free ions can be described by Racah
parameters [14]. This can be justified in a sense since in most cases it is
not possible to determine all the parameters uniquely.

In particular:
The Coulomb interaction in the absence of a Ligand field splits the

high spin states of d2 in two levels:
i) a “F level” with 7-fold degeneracy, the eigenstates being obtained

from the one electron states by coupling with the same coupling coefficients
as the 3F states of the pure configuration d2 from pure d states.

ii) a “P level” with 3-fold degeneracy, the eigenstates being obtained
from the one electron states by coupling with the same coupling coefficients
as the 3P states of the pure configuration d2 from pure d states.

Then the Coulomb interaction for the high spin states can be described
by one parameter Ev, i.e. the splitting between the “F level” and the
“P level”. Due to covalent bonds Ep is always smaller than in the case
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of free ions. If we choose an arbitrary basis of high spin orbitals of d2
and construct the corresponding bases of d3, d7, d8, then the matrices of
the Coulomb interaction with respect to the four bases are the same.

Now the problem of calculating matrix elements of operators has been
reduced to the problem of calculating them for d1 and d2. The work
involved in these calculations can be reduced greatly by application of
well-known methods such as for instance methods of tensor operators,
for the case of d ions in octahedral Ligand fields developed by Tanabe
and K amimura [15].

§ 3) d ions in octahedral Ligand fields (continued)
We consider the problem of a d2 ion. The Ligand field together with

the Coulomb interaction does not have non vanishing matrix elements
between the Z  states of both Ti levels and other states. Denoting those
states by \ZfêTi> and \Zt2eT\) we get the following matrix

i  J f l ig .  +  J f ’coul. \Z t t$ T \}  \% tzeT i)

(2) |  (Zt&Ti\ — + 1lsEp 2liE P
{ (.Zt2eTi\ *I*E, 1/s A + 4/s Ep.

Now from (1) and (2) we find the following energy levels

( 3)

/ E t \ '  =  l / i ( E p —3/sd ) + 2+ E p2+ 8/5 A E P)Y'
\ e A2 = *I&A
j  E t% =
( E n  = 1l2(Ep—3lsA) — 1li(A2+Ep2+t lsAEp)^.

The constants a and b are given by

( a =  [“ /sU+ x2+ •/,x) -  (15/s+ 25/s*)(1 +x2+ */,*)»]-»
j b = [3/4 + ®/4 a:—5/4( 1 + a;2+ #/s *) *] °>

where
A

X ~ Ev ‘

In the limit case x  -> 0 one gets a = fëjl, b = —
For these values the basis corresponds with the Russell Saunders

representation.
If x -*■ oo, then o = l ,  6 = 0.
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For these values the basis corresponds with the strong field representa­
tion.

I f x goes from 0 to oo, then a goes monotonously from to 1
b goes monotonously from — P /s to 0.

The constants a and b are not very sensitive to x —A /Ep. A rather crude
estimation of x may lead to accurate values of a and b.

The energy levels and constants a and b for d7 are the same.
For d8 and d8 the energy levels and a and b can be found from (3)

and (4) by substituting Ep -*■ EP, A -*■ — A ,x  -*■ — x.
I f  x goes from 0 to oo, then a goes monotonously from p /s  to 0

b goes monotonously from —V̂ Jl to — 1.

§ 4) Matrix elements of the orbital angular momentum and the spin orbit
coupling

From general group theoretical considerations it can be shown, that
the matrix elements of the components 2  2  2  ° f  the orbital

<  4  <

angular momentum between two E, Ai and Aj states vanish.
If we have an arbitrary Ti or T2  level, then we can choose as basis functions

l-ï). IY > ,  IZ>
where

|X>, |F>, IZ) transform like Ix, Iy, It in the case of a Ti level
I, rj, £ in the case of a Tg level.

Abragam and P rycb [16] have observed that the effect on a T level
can be represented by

(6) J  l| =  — a l P ,
1

where lP is a fictitious angular momentum operator acting on the states
|X ), [ F>, IZy in the same way as the angular momentum on the states
x, y, z of a p electron.

It may be stressed upon, that formula (5) applies for any imaginary
tensor operator which belongs to the representation Tig of Oh or T2  of Ta.

Since the one electron states are not pure d states the matrix elements
of the orbital angular momentum in the configuration d1 must be described
with two so called orbital reduction factors: k for the matrix elements
between t2  states, k' for the matrix elements connecting a t2  state with
an e state.
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The m atrix elements can be obtained by calculating them  for a pure
d1 ion and multiplying the m atrix elements with k and the m atrix
elements <fe|/|e> with k'.

For pure d states k —k' = 1, bu t due to  covalent bonds k and k' are
always smaller than  1.

Now oc is given by
( oc = k  for the Tg levels of d1, d4, d8, and d9
\  a, = — 1]tJc for the Tg levels of da, d3, d7 and d8

^  ) oc = (a2—1/2b2)k — 2abk’ for the lowest Ti levels of d2, d3, d7, d8
\ <x = (b2—1lifi2)k+2abk' for the highest T i levels of d2, d3, d7, d8.

The spin orbit coupling can be written with two spin orbit interaction
constants:

£ for the m atrix elements between t% states
£' for the m atrix elements connecting ta and e states.

In  the free ion £= £ '  =  £o
In  an actual complex £ and £' are always smaller than  £o.
The effect of the spin orbit coupling on a  T i or T2 level can be represented

by
(7) *^jo =  T  Ip • S,

where +  holds if  the shell is less than  half filled
— holds if  the shell is more than  half filled.

y  is given by (6) w ith £ and £' in stead of k and k'.
The T level is split into levels j ' = \lp —S|, ..., lp+ S m, lp=  1, with

(8) Ey = Et T ^  {»/«(i V +1) -  S(S +1)) -  1)}.

§ 5) Influence of a tetragonal field
We now suppose th a t in addition to  the octahedral component the

Ligand field has a small tetragonal component with D4h symmetry around
the z axis.

The action of a tetragonal field on a Ti or T2 level can be represented by

( 9)

energy eigenstates

l * > .  IY>

\Z>

transformation
relative to  D411

properties
relative to Oh, if the
tetragonal field —> 0

1% j  I y \  £, rj { I%y I y ,  I z  ui the case of
1 a  T \ level

Iz\ C 1 £, jj, f  in the case of
f a  7 :  level.
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If the eigenstates are defined in this way, then the effect of the orbital
angular momentum on the T level can be represented by, cf. [10],

( 10) =
4

where a  is diagonal with ocxx= xvu=oc', aa =a..
In  addition an e level is split by the tetragonal field in an u level and

v level
/ „ .. properties
I energy eigenstates r?1̂8. -|?n relative to Oh, if the
\ relative to D4h tetragonal field -> 0

(11) ) y -  «. \U> « )I __/  < u, v.
\ V -  «, |F> v (

Just as in the case of octahedral symmetry the orbital angular momentum
does not have non vanishing matrix elements between the states | Uy
and |F>.

We nan characterize the matrix elements of the tetragonal component
by two parameters d and d'.

( < M |jf te tr . |« >  =  — (v\Jf  tetr. |«> =  l/*d'
( < f| iJT te tr.lO  ”  < * |* W |* >  =  -  V9 < C I« * W  |C> =  V»<*.

If one writes the tetragonal field in the form

(13) 7tetr. = H'(2z* -  a;2 -  y2)+ I ’{2z*-x*-y* + 12x*y* -  6x2z2 -  6y2z2),

then one can show

(14)
( d = - « / 7 ^ + 8/?/ . H  = eff'<r2>
( d '  =  — *li(H+I) ’ W 6 r e  I  =  el'(r*y

assuming, that the one electron states are pure d states, ef. [17].
The energy levels in the configurations d1 and d6 are given by

(15)

( eu = »/6ri+V2d '

j et = = — 2/sd + 1/sd
( ec = — altA —ilsd.

The energy levels in the configurations d4 and d9 can be found from (15)
by substituting A -> —A, d -> -d ,d '-* -  —d'.

In the case of d2, d8, d7, and d8 the problem involves the solution of
a cubic secular equation and the energy levels and constants <x and <x'
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can be calculated starting from a numerical estimation of the field para­
meters. This method has been described by Abragam and P ryce [17]
in their detailed analysis of Co++ (d7). More recently analyses have been
given for d2 by P ryce and R unciman [18] and Chakravarty [19].

However, one can get simple closed formulae for the constants tx and tx'
if one starts from the exact solution of the octahedral case treating the
tetragonal field as a perturbation. By means of the formulae the effect of
the Russell Saunders approximation and the strong field approximation
can be investigated. The results will be certainly better than the exact
solutions of the tetragonal field, which can be obtained in the Russell
Saunders of strong field approximation.

The results of a second order perturbation calculation are for d2 and d7

BTixy =  STi+1lid'b2+ 1ls{b2—a2)d—slu VW 2 o262(y4d, + 2/sd)2

(16)
I eT\z — ETi—^/ad'b2—2/s(62—a2)d —

E t2 — E t\ E Ti ' —E ti
4a*b2Pl4d'+*lad)*

BT2xy = E t% — 1lid ' + 1lad — 3118 W 2
E t i ’ — E t \

- * h
a2d'2

E t i’—E tsE n  — E t^
bt& = ETa+1lid '—2/ad, sa2 = Ea2.

eti'xv and eti'z follow from stixv and eyiz by substituting

a —> b, b —► —a, Et\ —► Erj', Et\ ‘ ~► Etj.

The energies for d3 and d8 follow from (16) by substituting

d -*■ —d and d' -> — d'.

tx and tx' are given by

(17a) tx = tx' = k for the T2 levels of d1, d4, d6, d9.

(17b) ( *° ^  for the Ti and Tg levels of d2, d3, d7, d8,
(tx =  « 0  — 2C7

where tx0  is the value in the octahedral case tabulated in (6) and C is
given by
for the lowest Ti level of d2

(17c) „ „ bd\ak'-i/ablc)
C = /4 — p---- p------ ahW ' + ^ d) {(a2 — b2)k'+ 3/2aM}

JJjTi '—rjTx
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and for the T2 level of d2 and d7

bd'(ak’—ifebk)
(17d) C =  -  »/4 E t\ — +  */4

ad'(bk'+^l2ak)
E n ' — Et%

C for the highest Ti level of d2 and d7 can be found from (17o) by sub­
stituting a-*-b, b -*■ —a, E n  -*■ E n ', -Eiv  -*■ Et\ in (17c).

For d8 and d8 the C values can be found from (17) by substituting
d -* - d ,  d’ -> - d \

The influence of the spin orbit coupling for a Ti or T2 level can be
written as

as)
where

— holds if the d shell is less than half filled
+  holds if the d shell is more than half filled

(19) y is diagonal and yxx =  yyy — y’> ya = y,

where y and y' follow from <x and <%' by substituting f and £' in stead of
k and k'.

§ 6) Influence of a trigonal field
We suppose that in addition to the octahedral component the Ligand

field has a small trigonal component with Cst> or D3 symmetry around
the (1, 1, 1) axis.

I t  is now convenient to choose another system of coordinates in which
the z axis coincides with (1, 1, 1) axis.

(20a) *' = -!= (2z—x —y), y' = p= (x -y ), z' =  (x+y+z).

Corresponding with this system we introduce the functions

(20b) r = -- (2f-e -n ), v’~y- ((-v). r = p= ti+n+Q

and the components of the orbital angular momentum

(20c) Lx' = (2Zfc—Lx—Ly), Ly‘ =  (Lx— Ly), Lt' =  (Lx-\-Ly-\-Lz).



68

The action of the trigonal field on a Ti or T2 levelcan be represented by

( 21)

energy

&Txf

Ê T,

eigenstates

\X'>, I F>

\Z'>

transformation
relative to C$v

properties
relative to Oh, if the

trigonal field -»■ 0
Lx-, Ly-; v\' ( Lx-, Ly-, Lt- in the ease

1 of a T\ level
Lt-; £' j f \  r\', £' in the case of

f a T: level

If  the eigenstates are defined in this way then the effect of the orbital
angular momentum on the T level can be represented by [16]

(22) 2  lt' = ~ a  lp,t
where lP is a fictitious angular momentum operator acting on the states
|X'>, 17'), \Z'y just as if these were states x ,y ,z  of a p electron.

2  /(' is defined with respect to the new system of coordinates the
i

components 2  • etc. can be expressed in the components 2  *̂m etc*
< <

with the formula (20c).
The tensor a  is diagonal with

OCxx =  OCyy ~  OC(22b)
tX tt =  «

The trigonal field does not split an E level.
If we introduce states |CT> and |F> transforming in the same way as

u and v, the orbital angular momentum has a non vanishing matrix-
element between \Uy and |F>.

We can put in a general way:

(23) <^l 2 ,<, lF > =  P»•i
The trigonal field can be represented by two parameters t and V defined by :

< f'|^trlg .|r>  = W \ j r t r t $ . \ V» <C'|^triK.|C'> = t
and
(24) < « |^ r  trig. | r >  =  trig.\v’> =

If one writes the trigonal field m the form [17]
F trig . = H'(yz+zx+xy)+I' {yz( -  6x2+y2 -f z2) + cycl.}

then it can be shown that for pure d orbitals
eH'(r2y

tl'(r*y. where
t’ = - i 7[H+I] I
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The choice of the parameters t and V is consistent with the choice of
the parameters K  and K ' by S ttgano  et al. [20]. However the observation
that K  = K ', if  the fourth degree part of the trigonal field is neglected,
seems to be incorrect, cf. also S ttgano  and Peter [21] and K am im u k a  [22],

The problem for the configurations d1, d4, d®, d® can be solved exactly.
For d1 and d« the energy levels are given by

( =  Vio^l +  Va* +  {(‘M  - V a O ^ Z * '2} *
(26) U t w  =  'h o A + 'l2 t-{(} l2 A -W + 2 t'* }*

( ET2Z =  — a/ f i ^  — 2 t.

For the T2 level the constants oc and a! are given by

( « =  a2k  +  2gak' 1̂ 2
(27a) (* •  = o k -Q k ') /2 .

ft for the E level is given by

(27b) P* = Pv = 0, pt =  Q2k -2 g a k '

with q and or equal to:

( q =  t ' l/2  p /2(A - t)2 +  4<'2 + (A-t){(y2A -  V2*)2 +  2<'2} * ]" M
(27c) ] _______ i / 2(J  - 1)+ { (V a  A  - 1 / 2 t)2 +  21'2} *

( °  [i/2(d - 1)2 + 4t'2 + (A- «KOM - y 2<)2 +  2i'2}^]^.

euv, stzxv, £T2z, «, *' and p for d4 and d® can be found from (26) and (27)
by substituting A -*■ —A, t ~> —t'.

Contrarely to the case of a tetragonal field the intermixing of E and
T2 states can give rise to a large anisotropy between <x and In particular
the anisotropy between « and <x' is mainly due to the parameter t',whereas
the energy splitting (26) is mainly determined by t. Unfortunately A ,
t and t' can not be determined simultaneously from the energy splittings
(26). For the case of d2, d8, d7, d8 the problem involves the solution of
a cubic secular equation, cf. [17—19], but simple closed formulae for the
energy levels and constants « and <*' can be obtained by perturbation
calculation.
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The results are for d2 and d7:

v  I . . U U U . . U »  CJtbt-eU')* P/zabt+ (a2 — b2)t')2
s t 1xv =  E t x — (a2 + 1/262) t+ 2a ii -  ----- —  -  v ' v „— —

— " T i  JjjT i ' —-^Ti

(28)

etiz =  +  2(a2+ 1/ 2 62)<—4a&('

ETixy — E t2~ 1!i,t —

( 2 W f  4(i/2aé< +  (a2- è 2)i')2
Eaz—E ti

Plibt-afp  (2/2<rf+6<')2
»Ti* ■-■®ri

E t i—E tz ‘T\ - E j>2
ST2f =  E r ^ + t

(26(')2 (2cU')2
E t \ — E a% ETi ' — E az

bti’xv and ei>i'* follow from erliCV and en* by substituting a -*■ b, b -*■ —a,
E t \ ~ ► E t i ' j  E t i ’ —*• E r x.

The energies for d8 and d8 follow from (28) by substituting t -*■ —t,
V ->

For the Ti and T2 levels of d2, d8, d7 and d8 we have

(29a) (X =  oto “I- C
a  =  ao — 2(7

where ao is given by (6)
and where for the lowest Ti level of d2 and d7

(29b) C =  (ah' - i/a6*) - V2^  +  («8- 6 2)* {(a2_ 62)jfc/+ B/2aèjfe}
Etz—E t i

and for the T2 level of d2 and d7

E t \ '—E ti

(29c) (7 =  y *  (ak'—1lzbk) -  (&jfe'+i/2a/fc).
E Tl- E Ti Et\‘ — E  n

C for the highest Ti level can be found by substituting a  -> 6, ft ->■ —a.
E t\ —̂ E t i '> E t i ' —̂ E ti in (29b).

The C values for d8 and d8 can be found from (29) by substituting
- t ' .

The effect of the spin orbit coupling on a Ti and T2 level can be written as

where y is diagonal, yxx= yw = y', ya= y  and y and y' follow from oc and
« ' by substituting £ and £' in stead of k and k'.

The spin orbit coupling can now have a first order effect on a E level.
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The E level of d1 and d9 is split into two Kramers doublets with separation
qK - 2 q<tC'\^, cf. (23) and (27b).

The E level of d4 and d9 is split into five equidistant levels all double
degenerate, with separation ^ (g 2̂ —2gflrf'(/2).

The second order perturbation due to the T2 states can greatly disturb
this pattern.

R em ark : If the Ea2 and EtX' levels nearly coincide, such as can be
the case for d2 and d7, then the formulae for Ea2, Et\' and C for the
highest Ti level break down. The other formulae are correct within the
order of approximation

a 2 ---------P
Ti' f  --------- q

trigonal field

If we neglect the off diagonal elements with
states of the lowest Ti level, then we find
for the energy levels p  and q

. ( £j>, q — V2 [Ea2+ Et\ • +  (a2 + 262)<+ iabt' ±
(3 ' (  ±  {(ETl- +  (a2 +  2bz)t+ 4abt' -  EAif  +  16a2<'2}W].

The second order contribution due to the lowest Ti level can be written
in the form:

(30b) _  {4abt' +  (Ea2—ep,q) (abt+2(a2 — b2)t')}2
{(2 of')2 +  [E a2 — ep, a)2} {1/2(Ea2+ En-)—E n ) ’

It does not make much sense to attribute one of the two levels p  and q
to the A2 level and the other to the Ti' level. Hence in that case «' for
the highest Ti level is not well defined.

This complication can not occur in the tetragonal case since the
tetragonal field does not give an intermixing between the Ti states and
the A2 state.

§ 7) The problem for Ti and T2 levels
If a Ti or T2 level is the ground state in an octahedral field, then we

have to take into account the states | X ,m gy, |F , m*>, \Z, ms)  where
m ,= —8, and 8  is the maximal spin value.

From now on we shall drop all the primes in the trigonal case, bearing
in mind that all the quantities are defined relative to the coordinate
system (x', y', z'), in which the z axis coincides with the trigonal axis.

In stead of |X>, |F>, \Z) it is convenient to introduce the linear
combinations

Il> = |0> = |Z>, |-1 >  =(31)
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By the action of the trigonal or tetragonal field the T level is split in
a i r  level with energy exv and a singlet Z  with energy ez .

The splitting is denoted by:

(32) Bxy— £Z “  <3o, 2̂ — BXy —  $ ,  <5o =  <5.

The matrix elements of the trigonal or tetragonal field together with
the spin orbit coupling can now be written in the form:

(33) (inis'|^ er. 4- 3^to I j  — <9m«' mt^ij <5<o $ ~F ^  ‘ ( m> |S|wi* .̂

The energy levels and eigenstates can be solved in an exact way for
= V2 , S =  1, whereas for S — a/2 and S —2, they can be expressed in terms

of a parameter x, cf. Abragam and P ryce [17], which can be found from
a cubic equation starting from numerical estimations. The energy levels
can be divided into groups of levels such that the interspacing of the
levels belonging to the same group is small (of order of some tens of
cm-1). In general we can take as such a group a set of states which are
degenerate with respect to the spin orbit coupling within first order.

The states of each group can be associated with states —S',...
..., S ’, and a fictitious spin operator S' can be introduced acting on the
states in the same way as a spin angular momentum S on pure states |ms).

Then the remaining terms of the Hamiltonian can be replaced by
operators in S', Abragam and P ryce [16].

The second order effect of the spin orbit coupling can cause a small
energy splitting between the- states belonging to a group. This can be
represented in many cases by a term DSZ'2.

(An exception is the case of V+++, d2, in an octahedral field, where
the 5 fold degenerated ground level in second order is split in a triplet
and a doublet.)

I f  the lowest group is a Kramers doublet, then there is no splitting
in the absence of a magnetic field and the term DSZ2 can be omitted.
In addition the spin spin coupling [10], [16] can give a contribution
to DS, '2.

The Zeeman term in the Hamiltonian
(33a) ^  =  0 H - ( 2 h  +  2S)

i

can be replaced by /3H • g • S'. In the case of tetragonal or trigonal symmetry
this reduces to
(33b) z =  P{g±(HxSx + H yS y' )+ g li HZSZ},

P being the Bohr magneton.



73

The g values can be calculated using the methods of Abragam and
Pryce [16]. I f we are restricted to the lowest T level, using the correct
values of y and / ,  then we shall find the g values in a first order approxima­
tion of the spin orbit coupling.

This sort of calculations has been treated in many analyses, to some
of which we shall refer in the following section.

We shall merely state the results in the notation of the preceding sections.
The intermixing effect between different orbital levels by the spin orbit

coupling gives a contribution to the g factors which is small, but certainly
not negligible. An exact calculation of this second order contribution in
terms of the coefficients of wave functions leads to formulae which can
be extremely complicated.

A bragam and Pryce [17] have obtained numerical values of the
second order contributions for d7. Later on Rei has calculated the- second
order contributions for d2 and d7, taking also into account the effect
of covalent bondings [23], [24].

Simple formulae for the second order contributions can be obtained if
we neglect the intermixing effect due to the trigonal or tetragonal field,
i.e. the eigenstates of the orbital levels are approximated by the eigen­
states in the lim it case of vanishing trigonal or tetragonal field. I f the
a.Tifl.1 field is not very large, the approximation will give good results,
since the second order contribution itself is very small.

The hyper fine structure can be written in the form

<«*) f [ z ±  i  (z >-“]
cf. [10], [11], where P=2/9/3»y»<r-8>, U is the unit tensor and x arises
from the contact term.

Thin term gives a contribution of the spin hamiltonian of the form

(34b) h.r.s. =  AlzSg' +  B[Ix8x +  IySv'] .

Following Abragam and Pryce we can write

( A  =  P[gm -  V* *0*11] +
( ) ( B  =  P[gLL-  V2 *<7.J +  B,d,

where gL is the part of g, which arises from the orbital angular momentum
and gs arises from the spin angular momentum.

In the formulae for the g values (see § 8) gL corresponds with the linear
term in <x and <%'.
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Asd and Bsd are due to the term

^  3r<r<-r<*U
T  r,«

The exact calculation of Asd and Bsd is tedious [17], but since Asd
and Bsd only give a small contribution to A  and B, a reasonable
approximation can be obtained, if the intermixing effect of the trigonal
or tetragonal field is neglected.

An exact parametrization of the matrix elements of

y  3r<r<—r<2U
r  r?

taking into account the effect of covalent bonds involves in the octahedral
case the introduction of four additional parameters. Since it is impossible
to give an unique determination of these parameters from the experi­
ments, we shall assume, that all the matrix elements can be obtained
from the matrix elements in the free ion case by multiplication with a
factor p  with 0<p<  1.

In a simple L.C.A.O. description [10], where the one electron orbitals
are written in the form of linear combinations of pure d orbitals and'
orbitals of the surrounding Ligands with the same transformation
properties with respect to the octahedral group, we can assume that
the hyper fine structure and the spin orbit coupling, compared with
the free ion case, are reduced to the same extent, i.e. the probability
that the electron in such an orbital is at the nucleus of the d ion. This
follows from the fact that the hyper fine structure and the spin orbit
coupling mainly are determined by the wave function in the neighbourhood
of the nucleus.

The quadrupole coupling can be written in the form

(35) - 27(27̂ ï) ? V~v-------v—r
If  the lowest group is a Kramers doublet, then it is possible to represent
the quadrupole coupling by a term QIZ2 in the spin hamiltonian. In
other cases the matrices of 34?q between the states of the lowest level
are in general not multiples of the unit matrix and the quadrupole coupling
can not be represented by an operator independent of the effective spin.
In the case that the lowest level in the crystal field is an orbital singlet,
well separated from the other levels, the quadrupole coupling can be
represented by QIZ2 as follows from the theory of the spin hamiltonian
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for a level without orbital degeneracy, Abragam and Pryce [16].
The constant Q can be evaluated neglecting the intermixing effect of
the axial field. The matrix elements of

^  3r<r«-r«2U
r  n2

are described with the same reduction factor p.
If the surrounding Ligands "have a nuclear spin, then they can give

an important contribution to the hyper fine structure and the quadrupole
coupling, Tinkham [25]. We shall however not deal with this effect.

In the following section we shall give the results of the calculations
which are straight forward, using the methods of Abragam and Pryce
[16], [17].

§ 8) The problem  Ti and  T2 levels (continued)

i) 8 = 1/a, d1 ground state in octahedral field T2.
Analyses have been given by Abragam and Pryce [16], Bleaney [26],

Bleaney et al. [27], Bose et al. [28], Re! [29], [30].
In this case there are three different possibilities,

i) If So is sufficiently negative, then a spin hamiltonian can be used
for the lowest Kramers doublet, the g factors are given by, cf. [16]

(36) 9n =  2(1—a), g± = 0.

ii) If (9o is very small, then a spin hamiltonian can be set up for the
lowest quartet ƒ*.

The g value is given by

(37) 0 =  2/» ( l -« ) .

iii) I f  <5o is sufficiently positive, then a spin hamiltonian can be used
for the lowest Kramers doublet, the g factors are given by, cf. [26]

011 =  ~<* +  ]g (a  +  2) (^o+Vsy)

0i  = 1 +  ̂  (^o+ll* y -  2 <%y)

where
(38) 8  = {(^o+1/ay)2+2y'2}v4.
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Since in actual situations case iii) occurs, we shall restrict ourselves to
that case.

The second corrections to the g factors are given by
i) in the case of tetragonal symmetry

(39a)
Cl*

C1C2 ]/2

ii)

(39b)

in the case of trigonal symmetry

L „ (2) =  -  * £ £  [dcaj^+ca2]

) 0±(2) =  -  [2ci2+ ciC2 j/2],

where

(39c) ci =  { ^ ( /S  +  óo+Vay)] » C2 =  | ^  ('S -^ o -1/2)')] •

The hyper fine structure constants and quadrupole coupling are given by
i) in the case of tetragonal symmetry

a = p  [-(« + » /7 P )+ (* -V 7 i> -« ) ( aB+ 1/«y) _ » / 7L j

(40a) < B  =  P  [ ( - ' l i x + ' b p )  j 1 + <3° +p --} +  ^  <*hP ~  2«')]

<2 =  3/z8
e%qp <r-8> 1 + 3(óo+V2y)j

7(27-1) v  v  I" ’ 8

ii) in the case of trigonal symmetry

A  =  p j j —<x+ahp) + (<*+1h P —*) +

B =  P  [ - V2* -* /» !» -1/** ( d0+s 2r- ) + l S {~ l h p ~  2ot)](40b)

<2 3/ 28 e2?p (r-«) [ l  I 3(0°~^1/ay)} -
17(27-1 ) v  v  r  ‘ £

The formulae (40a) reduce in the absence of covalent bonds, i.e.
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m = oi'=p=  1, y = y '  = Co = ̂ > to the formulae given by Abbaoam and
P ryce [16]. The formulae for the trigonal case however are different.

The rhombic case for V4+ has been dealt with by R sf [30].
i) S = 1  d2, groundstate in octahedral field Ti.
Analyses have been given by Abbaoam and P ryoe [16], Chakravabty

[19], R sf [23], [31].
In  this case there are three possibilities.

i) I f  do is sufficiently negative, then we can set up a spin hamiltonian
for the lowest doublet.

The g values are given by

( o,, =  4 — 2«
(  9l  =  0 .

ii) In  the octahedral case a spin hamiltonian with S ' = 2 must be
used for the five lowest states.

The g factor is given by

(42) g =  ( l - V 2 «).

The second order influence of the spin orbit coupling splits the quintet
in a doublet and a triplet. This splitting can not be represented by a
term of the form DSt '2.

iii) I f  <5o is sufficiently positive ahd this is the situation which is met
in actual cases, then a spin hamiltonian must be set up for the three
lowest states.

The g factors are given by, cf. [19].

(43a)
( = 2c42 —«C32

( g± =  2( Ci C8 +  C2C4) — <x'(C2C3 +  ClC4 )

where

(43b)
L  =  {

r cs =  (

1 1 1 »  .  . 1  ,1 ^
^ (S o -ó o -V z y )}  . C2 = { ^ ( ^ o  +  ̂ o+Vay))

1 1 Vi ( 1 \V*
^ ( S i - * , ) )  >‘4 = ( ^ ( *  +  6o)J

and

(43c) So =  {(*>+7 2  y)2 +  2/ 8}*, <Si = {<3o2+ / 2}*.

The second order contribution of the spin orbit coupling splits the triplet
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in a singlet, energy Eo and a doublet, energy E\. This splitting can be
represented by D8g'2, where D  is given by, neglecting spin spin interactions.

(44) D — E i—E0 =  x/a [S o -S ! —1/s y] •

The formulae (43). reduce to the formulae given by Abragam and Pryce
[16] in the absence of covalent bonds, t.e., if y =  2«A, y' =  2<x'A.

The second order corrections to the g factors are given by

i) in the case of tetragonal symmetry

/ Jn<2) =  3(o£'—x/a bQ(ak' —x/2 bk)(ET2 —E ^ ) -1  CsC4 —
I — {(o2—b2)£' ab£}{(a2—b2)k' -\-2faabk) (Et\ ‘—En)~l C3C4

. . .  . ) gL&) — — 3(a£'—1fi b£)(ak' —x/a bk)(Ex2—Eti)“x •
J • (C2C4 +  1/aCiC8 +  1/8ClC4)—
I _  {(«2 - è 2)C '+s/2 abt} {(u2 -  b2)k'+ */2 abk) •
\  • (Eti' — E n )  (C2C4 +  1liCiC3 — 1 faCiCi).

ii) in the case of trigonal symmetry

/  ^n(2) =  — («£'—x/a b£)(ak' — V2 bk)(ET2—En)~l (4c42+CaC4) —
I -  {(a2- 62)C'+ ®/2a6C}{(a2 - &2)fc'+ abk} (ETl-- E n ) ’ 1 c3c4

UKM 5 ?±(2> =  - « - 1W )(fli' - 1/2tó) f c - ^ ) - 1 •
'  '  1 •(C2C4 +  8/2ClCs-1/2ClC4) -

/  _  {(a2 _  &2)f'+ s/2 06C} {(a2 -  ft2)* '+ ®/a aft*} •
\  • (Et i ' —E t i) -1  (C2C4+ x/z C1C3—x/a C1C4).

The hyper fine structure constants are given by

i) in the case of tetragonal symmetry

I A,d =  V?i>p[3caC4(o2+ V2&2 +  2o6) +  2c42(a2 — 2b2)]
(46a) ] -  1/7 Pp [ci6a(i/a o2 + u /4 6a +  3ab) -

( — caC4(o2 — 262)—*/a CiC4(o2+ x/2 ft2+ 2o6)].

ii) in the case of trigonal symmetry

I A,d =  1 /7P p [2csC4(*/4b2 + ab~  1/2 ®2) - 2c42(o2+ x/a62 +  2o6)]
(46b) < JJ,,j = x/7 Pp [ciCa(x/a o2 4- xx/4 6® +  3o6) +

( + c 2C4(a2+ 1/a62 +  2o6) —cjC4(#/4&2+®6 —V*®2)]-
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If  A/0o is small, then

i) in the case of tetragonal symmetry

( A =  P [ - *  + 2/7p(a8-2&2)]
(47a) \ b  = P [ - x - 1Ii p(a* -  262)]

( Q = * h  / (a j^ i)  <r~8> (2 2̂~«2)-

(ii) in the case of trigonal symmetry

( A =  P [ —x —tltp(a2-\-1l2ba+2db)']
(47b) | P  =  P [ - x + 1/73>(aa+ 1/aft2+ 2a6)]

( Q = *h / (^ 1} <*-*> (a2 + V262 + 2ai).

The formulae given by Abragam and P ryoe [16] apply to the trigonal
case in the weak field limit. However in the strong field limit the quadrupole
coupling and the hyper fine structure apart from the contact term with
x are 10 times as large. The formulae for the tetragonal case are different,
here the quadrupole coupling and the hyper fine structure apart from the
contact term are 2,6 times as large in the strong field limit. The hyper
fine structure and quadrupole coupling depend strongly on x=A jEp and
the assumption of the weak resp. strong field limit does not lead to
correct results.

iii) S = 312, d7, ground state in octahedral field Ti.
Analyses have been given by Abragam and P ryce [17] and R e! [24].

For all values of d, negative as well as positive, a Kramers doublet is
lowest. Since the other levels are some hundreds of cm-1 higher, we can
set up a spin hamiltonian for the lowest Kramers doublet.

The g factors are given by

i 17" ~ 2 + 4 ( a + 2 )  ( S  - J ï h p }  { p + 7 5  +  (^T 2 js)

a  )  ( y i  2ya> 12 ] f6 ya 8 r1
(01 + y'(x + 2) + (x+2)x] \x2 + y'2 + (x + 2)2) ’

where x  is the largest root of the equation

(48b) a = 4/’ ^  + ë - « (* +3)-



80

These formulae have been given in a slightly different form by Rei and
reduce in the absence of covalent bondings, with y=  —8/2«A, y '=  —S/2<%'A
to the formulae given by Abragam and P ryce  [17].

In  the octahedral case we have

(49) x  =  2, g =  10/a+ 2/s «•

The second order corrections to the g factors are given by

i) in the case of tetragonal symmetry

I !7ii<2) =  —V* b£)(ok' — 1/a bk)(ETa—E t i)~x •
I ■ (6ci2 + 2ciCa —4c2c3 + 2c$®) +
I +  {(a2 -  62)£'+ s/2 ab£} {(a® - b 2)k' +®/2 abk] {ETl ■ -  ETl) -1 •
J • (2ci2 -  2/3 cica Ye+ V8C2C3 Y2 -  2/3 c32)

(5°a) ] f ^ 2» =  (a ? - 'la b n ia k '-'■labk){ETi - E Tl)-' •
I • (2CxC31/3 +  4C22+C2C3^ )  +

+  {(O2 - 4 2)C ' +  8/ 2 o6C } { (o 2 -  ft2) * '  +  8/2 oö/fc}.

\  • { £ 7.1' - ^ 7 ’1} - 1 (4/a  C22 -  */* C2C3 ) /2  +  2/ s  ClC3 ^ + 4/ s  C82) .

ii) in the case of trigonal symmetry

/ 0||(2) =  (aC’—V* b£)(ak' — 1/z bk)(ETz—-®ri)-1 •
I • (2ci2—2/3 C1C2 / 6 f  4/s C2C31/2 -)- 8/a C22—2/s c32) -f-
l +  {(02 _  &2)£'+ s/2 oèf} {(»2 -  b2)k'+8/2 aftjfc} .
I • {Et \ ‘—E t i}*1 (2ci2 — 2 ja C1C2 |/6 + 4/3 C2C3 )/2—2/3 C32)

(5°b) ] ”  (aZ '-'hK H ak'-ilabkH E Ta-E T!)-1 •
I • (4/s C22+ 10/a cic3 )/3 -  Vs C2C3 /2  -  4/3 cS) +

+ {(a2—62)C'+8/2 a&£} {(a2 -  &2)fc'+ 2/2 abk} •
\  • { E t i '  — E t i } - 1  (4/ s C22 — 1/ 2 C2C3 ) /2  +  2/sC lC 3 | / 3  +  4/ 3 C32) j

where

(50c)

Cl =

C2 =

C3 =

I 8 V *
a: V*2 V 2 (* +  2)2/

» _ y *
/  V*2 / 2 (z +  2)2/
V» /  6 1 r 2 , 8 y *

(* +  2) \a;2 y '2 (x +  2)8/

and x is defined by (48b).
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In the octahedral lim it these results reduce to

( _ l9,  2 « - V a &£)(<**'—Vs M) ,
\ v  TP TP ■
1 & T2 & T \

(51) ) , in/ {(«2- 62)C'+ */2abH){(a2- 62)F + »/,abk}
i / 9  TP TP ̂ HjT\ —

to a small amount depending on A /E P.
The hyper fine structure constants and quadrupole coupling are given by
i) in the case o f tetragonal symmetry

A ld =  4/2i Pp{(Vs ®2 -  62)(3ci2 -  2C2* -  c32) +
"l" j/ö — 2C2Csl̂ 2)}

B ,d =  4/21 P p{(«2 -  2&2)(C22 - 1/2 C1C8 V̂ ) +
+  ®/4 C2C31/2 (a2+ 1/2 62 +  2a6) -  3c82(«/4 62+a6)}

Q =  8/l4 <r“8> (a2- 262)(c12 +  c82 -2 c 22))

ii) in the case o f trigonal symmetry

<4* = 4/n Pp{ -  (V« ̂ + V* a2+ o6)(3ci2- 2c22-c s 2) +
+ (2/4 62+ 0 6 —x/2 o2)(ciC2 1̂ 6—2C2C31/2)}

P.«t =  4/21 Pp{ -  (V2 62+ a2 +  2a6)(c22 -1/2  C1C3|/S) +
+  V2 (9I* 62+ a6 - 1/2 O2) C2C3 V2 -  Cs2(362 +  4o6 +  a2)}

Q = ®/i4 <r-*> (!/2 62+ a2 + 2a6)(2c22—Cl2 -  cs2).

In the case of pure octahedral symmetry these results reduce to

(53) Aid =  Bid =  — 4/si Pp(V« ®2+ 11 /12 62+ 06).

The contribution of Aed is small, so that

(54) A =  P [2/sa — 5/sx]

is a good approximation, [32],

iv) 8 = 2 , dfl, ground state in octahedral field T2.
For all values of <S, positive as well as negative, a spin hamiltonian

can be used for the three lowest states. I f 6 is sufficiently large and
positive, then a spin hamiltonian may be set up alternatively for the
lowest doublet. This has been done by Griffith [33], We shall however
state the results for the triplet hamiltonian which is correct for all values
of d.
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The g factors are given by

(55a)
gr, | = 4ci2 + 2c22+ a(ci2—C32)
gx  = 2 1/3 [C2C5 + C3C4] + 2 )/2 C1C4 —a'(c2C4 + C3C5),

where

(55b)

|/6 ( 6 y2 9

6 y2 9

a; I*2 ' y

(*+«)•)
-V4

68 =  ï T 3 l ^  +  4/375  +  (iT 3 j5 |

and a; is the largest root of the equation

(55c) <5=8/8̂{!+dh) + 6 (x+3>-

In addition

where
(55e) -S =  {(<5+ 1/4y)a+ 8/2/ 2}H.

The zero field splitting is given by DS't2, where

(56) D  =  E 1 — E 0  =  (x + 3)+*/a ( S + ^ / t y — d ) .

In the octahedral case we have x = 3lz

(57) C i —  f ë j l ,  C2 =  — f ë j ï ó ,  C3 =  1̂ /ïö, C4 =  ] / * J w , C5 =  —

and g = 3 + 1/2«.
The second order corrections to the g factors are given by

i) in the case of tetragonal symmetry

?1 |( 2 ) = ^ [ - C l C 2 )/ 2  +  C22]

S,l <2) =  [C1C4 +  ®/4 C3C4 j /3  — 1/4  C2C4 ]

(58a)
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ii) in the case of trigonal symmetry

( 0,| <2> = [2cia + C1C2 /2  — C2C3 )/3]

(58b) 1 v r
I 0± (2) =  — j— P / a  C1C4 |/2  +  1/a  C1C5 ]/3 +  1/z C3C41/3 — 1/2  C2C4].

In the octahedral case all these corrections reduce to
le't'

(58c) 9™ = 9lw - j - -

The hyper fine structure constants are given by
i) in the case of tetragonal symmetry

( A,d = V14 Pp [ -  2(ci2 -  C22) -  3cica /2  + 3C2C3 fë]
I B ,d  =  x/ i 4  P p P /a  C 1C 4/2  +  V 2 C3C41 / 3 — C2C5 j/ 3  — 3 / 2  C2C4],

ii) in the case of trigonal symmetry

S A ’ d  =  V i*  [2(C12 -  C22) +  ClC2 ^  -  C2C3 »/3]

(  Bsd =  Pp[ — 1/2ClC4 + 1/2  C3C4 ) /3 +  C2C5 +  */2 C2C4].

In the octahedral case
(60a) A,a — B,a = 8/i4o Pp.

This contribution is small, so that
(60b) A — PP/2«—*/2«]
is a good approximation in that case.

For the ferrous ion in zinc fluorine another interpretation of the data
is necessary, cf. Gr if fit h  [33], Txnkham [25]. Here the Ligand field
has a component of lower symmetry, t.e. orthorhombic symmetry. The
lowest level has no orbital degeneracy and the system can be described
by a spin hamiltonian 8' = 2, in which S' is the true spin S. In addition
the fluorine ions have a nuclear magnetic moment and give an important
contribution to the hyper fine structure [25].

§ 9. The configurations d3 and d3
The ground state in an octahedral field is an A2 state with no orbital

degeneracy. In that case the theory of the spin hamiltonian for the case
of no orbital degeneracy, cf. [16], can be applied, the fictitious spin being
identical with the true spin.

The zero field splitting due to the high spin states can be represented
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by DS'z2 for the case of a tetragonal or a trigonal field.
D  is given by
i) in the case of tetragonal symmetry

(61a) S 2 (ET2- E A2)2

ii) in the case of trigonal symmetry

, D  =  -  3/2 C'2<

(61b)
S*{ET2- E Mf ■ +

8 2( E n —E a2)(Et 2—E a2)
6at'C'(H’+ 1haC)+ S 2(Et i ' —E A2)(ET2—E a2) ’

where S  is the spin, i.e. 8 — 1 in the case of d8 and S = zj2 in the case of d3.
The g factors are given by
i) in the case of tetragonal symmetry

(62a)
2 T

2 T

4 lc't'
S(Et2—E a2)

S{Et2—E a2)

(i+Y ^ )\  J!jT2 — ̂ A2 /
W - y 3d \

\  E t2—E a2 )

ii) in the case o f trigonal symmetry
4 k ' r

g» = 2 T 8(E T2- E Ai) ~ 2fl
_ 4 V ?

91 2 T 8(ETs- E A i ) + ,X,
where

( _  2k'yt 4bt'{y(ak'-il2bk) + lc '(ay-i/2bt)} _
^  S(E t2—E A2)2 S  {Et2—E a2) ( E n —E a2 )

(62b) ) 4ea'{?(bk'+^2ak)+k'(bC + VaO}
\  S ( E t 2—E a2)(Et i ' —E a2)

In the formula (62) all the upper signs apply to d3, the lower signs to d8.

R em a rk s:
i) In the case of trigonal symmetry the contributions which arise

from the admixture of Ti states in the A2 ground state can be important
and it is not correct to neglect these contributions. However the results
(61) and (62) are not very sensitive to a correct choice of x = A /E p. Assuming
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f=£ '  and k = k' the results in the weak field and strong field limit are the
same. In intermediate cases slightly different results will be found.

ii) I t has to be stressed upon thatthe lowspin states can give an important
contribution to the zero field splitting. This contribution can be parti-
cularily large in the case of d8, where a low lying XE level (10.000 cm-1)
can be expected, c f . Griffith [33]. In that case the formulae (61) give
a bad approximation. The contribution of the low spin states can not be
represented by a simple formula independent of the assumption of the
weak or strong field limit. In that case a laborious analysis starting from
numerical estimations for the crystal field and Bacah parameters is
necessary in order to fit correctly the experimental data. On the contrary
the lower spin states can not give a contribution to the g factors.

iii) I t  can be noted that the case of Cr+++ in ruby has been the subject
of many investigations. From the spectrum a negative value of t (K )
was found [20]. At first sight this seems to contradict the negative value
of D and positive value of Q]_—Q\\ found by Zverev and Prokhorov [35].
An elaborated analysis taking into account the influence of all t23 and
t22e states has been given by P eter and Sugano [21]. However the
agreement with the experiments can be improved, if an additional
anisotropy in f, £', k and k' is introduced. This idea due to Sugano and
Tsujikawa [20] was worked out in more detail by Kamjmura [22].
At the other hand it must be observed that the symmetry in ruby is
only C3, c f . [20]. An exact description of the trigonal field involves the
introduction of three parameters, whereas in the case of C3V or D3 symmetry
two parameters t and t' are sufficient. In addition, if the fourth degree
part of the trigonal field is neglected, which is the case for the analyses
mentioned above, then one parameter K  will be sufficient.

iv) In the case of d4 and d® the ground state in an octahedral field
with 6-co-ordination is an E level. From the J ahnTeller effect [35], [36],
we can expect that the crystal field has a large tetragonal component
[37], [38]. We shall not deal with this case, since the correct formulae
are simple and well-known, see for instance, [2], [10], [16].

§ 10) A remark about the Jahn Teller effect
Another application is the calculation of the constants A  and B, for

a Ti and T2 level such as have been introduced by Öp ik  and P ryce [38]
in their treatment of the static Jahn Teller effect. These constants are
related to the constants a and b of van Vleck  [37], by A=a]/2, B=b.
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Van Vleck has calculated these constants assuming an electrostatic
model (point charge or dipole model) and Russell Saunders coupling.

For a Ti or T2 level however the contributions of the second degree
and fourth degree part of the perturbing field largely cancel out. (For
the E levels of d4 and d9, where this is not the case, the Jahn Teller effect
is very large [37], [38].) This is the reason why the constants A and B
are extremely dependent on a correct choice of x=A/Ep.

Although the electrostatic model may be very insufficient, we shall
give here the results without the restriction of the weak or strong field
limit.

For the T2 levels of d1, d4, d6, d9

( A  =  ± )/2 {8/7e i - 26/«sea}
' } I B  = ±{-*l-lQl + 10lilQ2).

For the lowest Ti levels of d2, d8, d7, d8.

( ,  r  I ol , 0 /  100a 2 — 2562\1
(63b )  262 ) )

(  5  =  ±  { -  «/7 g i ( 2 a 6 + 1 /2  62 +  a 2) +8/21 g2(3a6 — 2 a 2 — 62)}.

The formulae for the highest Tj level can be found from (63b) by sub­
stituting a -y b, b -y —a.

For the T2 level of d2, d8, d7, d8

(63c) U = ± 2S/sae2|/2

In (63) all the + signs apply if the d shell is less than half filled, the
— signs apply if the d shell is more than half filled.

In the point charge model

V (?2p.C. /5

(63d) ] i?2<r2>
r gip.c.----^r4)-  ^2p c-’

R  being the distance of the 3d ion to the surrounding ions.
In the dipole model

(63e )  £2 dip. =  ®/5£2p.c.. £1 dip. =  4/ s £ i  p.c.

In the weak field limit these results reduce to the results of van Vleck
[37]. The criterion of Öpik and Pbyce [38] for the stability of the tetra-
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gonal or trigonal distortions can be expressed in a convenient way by
observing that the stable distortions give rise to the greatest splitting.
In addition positive values of A lead to elongated tetragonal structures,
positive values of B  to a driving away of the ligands from the trigonal axis.

Starting from reasonable numerical estimations one should expect for
d2 that in the weak field limit A<0, B>0, the trigonal distortions being
stable, whereas in the strong field limit and probably also for a reasonable
value of x=AIEP, one should expect A)>0, B(0, the tetragonal distortions
being stable.
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SAM ENVATTING

In dit proefschrift zullen we een behandeling geven van het Hole Equivalence
Principle en de van Vleck relatie en hun toepassingen in de theorie van d-ionen
in kristal (Ligand) velden. De configuratie met de laagste energie van een gegeven
ion bestaat uit een aantal gesloten schillen en een niet geheel gevulde schil. De
electronen schillen worden gedefinieerd met behulp van een zelf consistente één
electron hamiltoniaan h. Het Hole Equivalence Principle en de van Vleck relatie
zijn van toepassing op de niet geheel gevulde schil en we zullen in een inleidend
hoofdstuk behandelen in hoeverre de invloed van gesloten schillen kan worden
verwaarloosd. De één electron toestanden, die de niet geheel gevulde schil be­
palen, kunnen we kiezen van de vorm ui(r) f , u,( r) l  , i  — 1, 2 , . . . ,  p, waarbij
de u, orthonormaal zijn en een basis vormen van de lineaire ruimte bestaande
uit eigentoestanden van h voor één of meer eigenwaarden. De u, vormen ook de
basis van een aantal irreducibele representaties van de groep G van transfor­
maties, die h invariant laten, f en l  zijn de spintoestanden sz =  / 2 en sz =  —]/2.

Het Hole Equivalence Principle kan nu als volgt worden geformuleerd:
Uitgaande van een willekeurige basis in de configuratie L  met n electronen in de
niet geheel gevulde schil kunnen we een basis kiezen in de configuratie R  met
2p-n electronen in de niet geheel gevulde schil zodanig dat
i) beide bases dezelfde transformatie eigenschappen hebben ten opzichte van de
groep Op van orthogonale transformaties in de ruimte van ux, us, . . . ,  up en in
het bijzonder ten opzichte van de groep G,
ii) er eenvoudige relaties zijn tussen de matrix elementen van één- en twee-electron
operatoren ten opzichte van beide bases.

De van Vleck relatie kan als volgt worden geformuleerd: Uitgaande van een
basis <p(n) van de toestanden met maximale Sz in de configuratie met n electronen
in de niet geheel gevulde schil kunnen we door deze basis toestanden te koppelen
met de toestand met minimale Sz van de half gesloten schil en het verkregen
resultaat te antisymmetrizeren een basis <p(n+p) verkrijgen van de toestanden met
minimale Sz in de configuratie met n + p  electronen. Beide bases hebben dezelfde
transformatie eigenschappen ten opzichte van de groep SUp van unitaire trans­
formaties met determinant 1 in de ruimte van ult u2....... up en in het bijzonder
transformeert <p(n+p) ten opzichte van de groep G op dezelfde wijze als q>(n)o.
o is de maximale spintoestand van de half gesloten schil en vormt de basis van een
ééndimensionale representatie van de groep G. Voorts zijn er eenvoudige relaties
voor de matrix elementen van één en twee electron operatoren, die niet op de
spin inwerken ten opzichte van beide bases. In de hoofdstukken I en II geven we
een algemeen bewijs van het Hole Equivalence Principle en de van Vleck
relatie, onafhankelijk van de groep G en de keuze van één electron toestanden.
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In hoofdstuk III passen we het Hole Equivalence Principle en de van Vleck
relatie toe op de theorie van d-ionen in Ligand velden. Het is bekend dat een
kristalveld van kubische symmetrie de toestanden van een d1 ion splitst in een
ta niveau en een e niveau, e en ta zijn bepaalde representaties van de kubische
groep. We kunnen nu als maximale Sz toestanden van een d1 ion kiezen een basis
van het ta niveau en een basis van het e niveau.

Voor de m axim ale Sz toestanden van een d* ion zijn er verschillende mogelijk­
heden, in het bijzonder:
i) De zwakveld representatie, waarin de Coulomb wisselwerking diagonaal is.
ii) De sterkveld representatie, waarin de kubische component van het Ligand
veld diagonaal is.
iii) De intermediaire representatie, waarin de Hamiltoniaan bestaande uit de
Coulomb wisselwerking en de kubische component van het Ligand veld dia­
gonaal is.

In de configuraties d4, d*, d» en d», d7, d8 kunnen we bases vinden, die corre­
sponderen met de bases in d1 en d* in overeenstemming met het Hole Equivalence
Principle en de van Vleck relatie. De matrix elementen van één en twee electron
operatoren ten opzichte van deze bases kunnen gemakkelijk worden berekend
uit de matrix elementen voor d1 en d*. Hoewel in principe alles op exacte wijze
berekend kan worden met behulp van computors, is er behoefte aan gesloten
formules, die redelijke benaderingen vormen. Verschillende benaderingen zijn
nauw gekoppeld aan de keuze van basis in de configuratie d*, de zwakveld
benadering, de sterkveld benadering en de intermediaire benadering, waarbij de
Hamiltoniaan bestaande uit de Coulomb wisselwerking en de kubische
component van het Ligand veld op exacte wrïjze behandeld wordt en de overige
termen van de Hamiltoniaan met behulp van storingsrekening. Hoewel de beide
eerstgenoemde benaderingen veelal gebruikt worden, zal toch de intermediaire
benadering in veel gevallen beter zijn en we zullen daarom een aantal resultaten
geven, die gebaseerd zijn op deze benadering. Uit deze resultaten kan men de
invloed van de zwakveld en de sterkveld benadering nagaan. We zijn in het
bijzonder geïnteresseerd in:
1) het splitsingspatroon ten gevolge van de trigonale of tetragonale component
van het Ligand veld en de spinbaankoppeling,
2) enige grootheden, die optreden in de spin hamiltoniaan zoals bijvoorbeeld de
g factoren g en g , en de hyperfijnstructuur constanten A en B. Eenvoudige
benaderingen voor de zogenaamde tweede orde bijdragen tot de g factoren en de
dipool gedeelten van de hyperfijnstructuur constanten kunnen worden verkregen
door het mengsel van aangeslagen toestanden in de toestanden van het grond­
niveau van £#„ ten gevolge van het trigonale of tetragonale veld te verwaarlozen.

In het algemeen zullen de zwak en sterk veld benaderingen geen goede resul-
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taten geven voor de grootheden genoemd onder 1) en 2). Dit is ook het geval
voor de constanten die de tetragonale en trigonale distorties in het statische
Jahn Teller effect beschrijven.

In hoofdstuk I behandelen we het Hole Equivalence Principle, in hoofdstuk II
de van Vleck relatie en in hoofdstuk III de toepassingen op de theorie van
d-ionen in Ligand velden. De physische achtergronden worden meer en detail
besproken in een inleidend hoofdstuk.
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STELLINGEN

I

Een algemene formulering van het "H ole Equivalence P rin c ip le"
onafhankelijk van de symm etrie-eigenschappen van de êén-deeltjes
Hamiltoniaan is  mogelijk op grond van het feit, dat men correspon­
derende basistoestanden van aan elkaar toegevoegde configuraties
L en R zodanig kan definiëren, dat beide bases  dezelfde, transfor-
m atieeigenschappen hebben ten opzichte van de groep van orthogonale
transform aties in de ruimte van één-electron-banen.

H o o fd s tu k  I v a n  d i t  p roefschrif t*

II

De formules, die Abragam en Pryce geven voor de hyperfijnstructuur-
constanten van een dM on, zijn alleen ju is t indien het kristalveld
tetragonale symmetrie heeft. De overeenkomstige formules voor een
d2-ion zijn alleen ju is t in velden van trigonale symmetrie en in de
benadering van een zwak veld, die in dit geval n iet tot nauwkeurige
resu ltaten  zal leiden.

H o o fd s tu k  III van  d i t  p ro e f sc h r i f t .
A bragam  A. e n  M .H .L . P r y c e ,  P ro c .  R o y .  S oc .  A 205  135 (1951).

Ill

Tegen de afleiding, die P o tts  en Ward geven voor de partitiefunctie
behorend bij het Ising-modei met periodieke randvoorwaarden in 2
dim ensies zijn bezwaren aan te voeren. Door twee onnauwkeurigheden,
die elkaar opheffen, wordt toch het ju is te  resu ltaa t gevonden.

P o t t s  R .B .  e n  J*C. Ward, P ro g r .  T h e o r .  P h y s .  13 38 (1955)*



IV

Bij het bepalen van de.basistoestanden  van Tg-kwartetten voor ionen
van zeldzame aarden door Lea, L eask  en Wolf is geen rekening ge­
houden met een bepaalde representatie  volgens welke de basistoestan ­
den getransformeerd moeten worden. De matrix-elementen van de opera­
tor van het m agnetisch moment ten opzichte van deze bases worden
dan ook n iet zonder meer voorgesteld door de m atrices van Ayant,
Bêlorizky en R osset.

L e a  K .R . ,  M.J.M. L e a s k  en  W .P. Wolf, J .  P h y s .  Chem. S o l id s  23 1381
(1962)
A y a n t  Y ij. E .  B ê lo r iz k y  en  J .  R o s s e t ,  J .  P h y s .  R ad .  23 201 (1962).

V

Voor ionen-roosters in zeer sterke magneetvelden kan een analogon
van het Jahn-T eller effect optreden. Het is  n iet uitgesloten, dat de
uit dit effect voortkomende deformaties van het rooster aanleiding
kunnen geven tot een zwak ferromagnetisme.

J a h n  H .A . en  E .  T e l l e r ,  P ro c .  R o y .  S o c .  A 161 220 (1937).
J a h n  H .A .  P r o c .  R o y .  S oc .  A 164 117 (1938).

VI

In een Ising-model voor triplet-ionen met nulveld-splitsing kan in een
m oleculaire-veldbenadering onder bepaalde omstandigheden een mag­
netische  ordening onstaan via een eerste-orde-fase-overgang.

VII

De Bloch-vergelijkingen met één relaxatietijd  (in de theorie van para-
m agnetische relaxatie) kunnen gemotiveerd worden met behulp van
een "strong  collision m odel". Tevens kan men gebruik makend hier­
van de Bloch-vergelijkingen voor willekeurige tijd gemakkelijk op­
lossen  door directe integratie.

A bragam  A .,  T h e  P r i n c ip l e s  o f  N u c le a r  M a g n e t ism ,  C h .  I l l  (1961).
O xford  U n iv e r s i ty  P r e s s .



VIII

Tegen de afleiding, die Ginzburg geeft voor de afhankelijkheid van
de frequentie van de d ielectric ite itsconstan te  van een plasma, zijn
bezwaren aan te voeren.

G in zb u rg  V .L .,  P ro p a g a tio n  o f E le c tro m a g n e tic  W aves in  P la s m a !  C h . II
(1961 ), G ordon an d  B re a c h , N ew  Y ork.

IX

In het geval van ionen van zeldzame aarden kunnen experimenten in
sterke magneetvelden informatie opleveren over de coëfficiënten van
de kristalveldontwikkeling. Voor de beschrijving van experimentele
resu ltaten  kan het nuttig zijn de matrix-elementen van het magnetisch
moment tussen  toestanden behorend bij verschillende energie-niveaux
voor te stellen  door gegeneraliseerde g-factoren.

C a p e l H.W., On th e  re p r e s e n ta t io n  of m a trix  e le m e n ts  o f th e  m a g n e tic
m om ent o p e ra to r  b e tw e e n  s t a t e s  b e lo n g in g  to  d if fe re n t
e n e rg y  le v e ls  by m e a n s  of g e n e ra l iz e d  g f a c to rs .
P ro c . K on. N ed . A k ad . v a n  W e te n sc h ., in  p u b lik a tie .

X

Door gebruik te maken van de symmetrie-eigenschappen van de ruim-
tegroep van een rooster kunnen m oleculaire-veld-behandelingen voor
m agnetische ordeningsverschijnselen ook in zeer gecompliceerde
systemen tot eenvoudige resu ltaten  leiden.

C a p e l H .W ., R ap p o rt C o m m issa r ia t a  l 'E n e r g ie  A tom ique R 2705 (1964)*
, a a n g e b o d e n  voo r p u b lik a t ie  in P h y s ic a .

XI

De ontwikkeling van momenten in termen van cumulanten (semi-in-
varianten) en de ontwikkeling 'van cumulanten in termen van momenten
kunnen op eenvoudige wijze met behulp van diagrammen worden voor­
gesteld.

M eeron J . ,  J .  C hem . P h y s . 27 1238 (1957 ).



XII

Uit de theorie van Öpik en Pryce kan ook gemakkelijk op quantita-
tieve wijze worden afgeleid aan welke voorwaarden de spin-baan-
koppeling moet voldoen, opdat er geen Jahn-Teller effect optreedt.

Ö p ik  V . en  M .H .L . P r y c e ,  P r o c .  R o y .  S oc .  A 238 425 (1957).

XIII

Voor een T -kwartet kan een effectieve (spin)-hamil toni aan worden
opgesteld in termen van Dirac-matrices.

XIV

De ontbinding van de d ire c t-p ro d u c t-rep re sen ta tie x  x...D* *
voor een willekeurig aantal factoren in irreducibele representaties
van de rotatiegroep is equivalent met een "random walk-problem.
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