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C h a p t e r  I

E x p e r i m e n t a l  d e t a i l s

§ 1. The p rin c ip le  of the method

The usual methods for thermal conductivity measurement consist
in supplying a known amount of heat at one end of the experimen­
ta l rod while i t s  other end is  maintained at a constant tempera­
ture; and then measuring the temperatures at intermediate points
on the rod. They may be broadly distinguished as those based on
a non-stationary temperature d istribu tion  and those based on a
stationary distribution. In the former method, one measures the
temperature as a function of time. This temperature varia tion
with time would depend not only on the thermal conductivity of
the specimen but also on i t s  specific  heat. Thus the quantity
determined thereby, is  the thermal d iffusiv ity  D (= X/pc, where
X is the thermal conductivity defined as the heat flow per second
across unit area of cross-section per unit temperature gradient,
p is the density and c the specific  heat) of the specimen. An
independent determination of c is  required before X can be eval­
uated there-from.

We have found i t  more convenient to follow the second method
in which a known amount of heat current Q (expressed in watts) is
sent through the experimental specimen (which in a ll our experi­
ments, is  in the form of a uniform polycrystalline rod of circu­
la r  or square cross-section), in the d irection  of the length
axis. When the temperature d istribution in the rod has attained
equilibrium, the temperature gradient is  measured by noting the
indications of two thermometers Tx end T2 fixed at points A and B
on the rod, 1 cms apart. Since equilibrium has been reached, the
temperature d istribution along the rod is  now stationary -  that
is, independent of time; hence the name ‘stationary d istribution
method*. Originally developed by Lees (1908), th is  method was
successfully adapted to low temperatures, among others, by De Haas
and his collaborators Biermasz, Capel, Gerritsen and De Nobel.

Let us set the origin of our rectangular co-ordinate system
at A (see fig. 1,1) and consider the direction of heat-flow (in
other words, the length axis of the rod) as the Y-axis. Remember­
ing that X is  temperature-dependent, i f  we consider an arbitrary
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/ / / / / /

F ig u re  1 ,1

point P between A and B, at a temperature T and of
ordinate y, we can write

dTQ -  X(T) 0

l  r T i
or, / Q d y  = ftl = OJ X(T) dT ( 1 ,1)

o  T2

where 0 is  the mean area o f cross-section  of the
rod.

We might point out here that thermal conductiv­
ity  i s  a tensor e ffe c t , the vector of density o f
heat flow being caused by the vector o f tempera­
ture gradient. These two vectors need not neces­
sarily  coincide in direction, but since our mate­
r ia l i s  homogeneous and iso trop ic , the tensor
would reduce to a mere scalar quantity.

I f  we set the mean temperature between A and B

as x = Ti +Tz
2 ■). and le t  T—x = e, we can expand X(T) as a Taylor

series, for evaluating the integral in equation ( I , 1) -  compare
Bremner (1934) and De Nobel (1954).

Thus

X(T) = X(x + e)

X(x) + e X' (x) + |j-  X"(x) + . . .

. <1 ^ ( 0 ) . . . .  (1. 2)

where X'(x) en X°(x) are respectively, the f ir s t  and second d if­
feren tia l c o e ff ic ie n ts  o f X with respect to temperature, at the

mean temperature x„ and are thus written as (^ )  and 2-) . I f
dT x  dT x

X can be considered a linear function of T, we need use only the
f ir s t  two terms in the series expansion (1 ,2). Thus

f Tl X(T) dT *
T2

I (T -  x)2 i Ti
2! t2 = Xt . ( T ! - T 2)

since the second term vanishes. Equation ( 1 ,1) can now be re­
written,

- ? / 1 X(T) dT = j  Xx .(T1.-T 2) (1.3)
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When, however, X cannot be considered a linear function of T,
we should include the th ird  term as well from the expansion in
(1,2), so that

® [V< ti - t2>
(Ti -  T2) 3 ,d2Xx

24 oT^T
(1,4)

In such a case, we f i r s t  assume a linear dependence of X on T,
evaluate XT from equation (1,3), then obtain (d2X/dT2)x and then
recalculate the correct XT, employing equation (1,4).

In the case óf the alloys studied here, there was a s lig h t
departure of X from linearity  with respect to T, at liquid Helium
temperatures. Since the heat current employed at these tempera­
tures was rather small, i t  was considered necessary to estimate
the effect of the term involving (d2VdT2).

Taking, for example, the 1798H steel, the (dX/dT) versus T and
(d2VdT2) versus T curves were drawn and i t  was found that the
largest value of (d2X/dT2), in the liquid Helium region amounted
to 0.00035. For the corresponding measured point, AT * 0.147°,
and since the form-factor 0/1 = 0.085, the correction term

q  /  *ip\ 3 j 2 ^
[-r -  ■ (— t) ] amounted to <= 0.003 ix.watt. The value of 0 ac-1 24 dT2 x
tually  used was 0.0486 m.watt, so that the correction term was
negligible. For the rest of the steels, the correction term was
even smaller in comparison with Q.

Taking the case of Ag-0. l4%Mn, similarly, (d2X/dT2) amounted to
1.3, 0/1 = 0.0183, Q = 0.930 mW and AT = 0 .19°K, in the most un­
favourable case. Thus the correction term was 2 |*W in 0.930 mW,
which was also negligibly small. For the other silver-base alloys
the correction term amounted to even less.

In our further considerations, we shall therefore invariably
employ equation (1,3) re-arranged in the form

Xt  ■= Q 1/0(T, -  T2) (1,5)

I t  is  evident from the fore-gQing discussion th a t i)  a ll  the
power supplied Q should flow along the rod or, a lte rn ativ e ly ,
stray heat losses should be taken into account, i i )  AT = Tj -  T2
should be small compared to x, in order to keep the la s t  term in
(I*4) low, in case X̂  should vary rapidly with temperature, and
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iii) AT should be measured accurately, as also ft, 1 and 0. These
requirements will be discussed at a later stage.

Since our rods are regular, having a circular or square cross-
section, the mean value of 0 is easily obtained from a number of
values measured between A and B. The distance AB (= 1) should be
rather large in comparison with the diameter of the rod, so that
end-corrections become negligible. But this may lead to long
equilibrium times, especially with the rather poorly conducting
specimens. The thermometer T 2 is so attached that its distance
from the bath is small compared to its distance from T 2. 8
condition is not satisfied, the temperature rises of both the
thermometers would be large compared to AT, which is undesirable
if only because it limits the lowest working temperature at which
measurements can be made (Howling et al 1955).

F*>r comparatively poor conductors like the stainless steel and
the high nickel-content alloy-steels, it was found better to
attach the heater (H) at the lower end-face (and not at a point
on the side of the rod) and the thermometers to points A and B
such that A and B lie on a line parallel to the length of the
specimen. If these points are not kept in view, there would be
only a very short length of specimen in which the temperature at
all points in a cross-section would be the same (Berman et al
1953),. , ,

The quantities 1 and 0 are expressed in cms and cm respec­
tively. Since ft is produced electrically, it is convenient and
conventional to express X in watts/cm-deg. We will often be using
the specific thermal resistance w (also referred to as the ther­
mal resistivity) which is the reciprocal of X and is expressed in
watt*1-cm-deg (or cm-deg/watt). This is related to the thermal
resistance W of the specimen, by the equation

w = W 0/1 (I,6)

Introducing this latter in equation (1,5). we obtain

W > (Tj - T 2)/ft , or ft = (Ti - T 2)/W (I,7)

Equation (1,7) is the analogue of the well-known Ohm's Law, ac­
cording to which the current strength in a conductor is propor­
tional directly to the potential difference across its ends, and
inversely as the resistance. There is this important distinction,
however, that whereas the electrical resistance, under normal
conditions, is independent of the potential, the thermal resist­
ance is temperature-dependent. Thus, in investigating specimens
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which have a marked variation of w with temperature, the tempera­
ture difference Tj -  T2 (in other words, the power Q put in)
should be kept reasonably small. We have mostly arranged to have
AT < 1/10 of x, where x is  the mean temperature of the portion of
the rod under investigation.

§ 2. Apparatus used

We will briefly  describe the apparatus used by previous work­
ers in th is  Laboratory, before taking up the apparatus used in
the present investigations. In the apparatus developed by De Haas
and Br emmer (1934) and adapted by De Nobel (1951, 1954) in some
of his measurements, a gas thermometer and an e le c tr ic  heater
were soldered a t one end of the specimen under investigation,
while the other end of the specimen was soldered to a brass
plate, the la t te r  being in d irect contact with the bath liquid.
The measured heat resistance evidently includes that of the sol­
der and is  therefore, too high. This is  p a rticu la rly  so at low
temperatures where the heat resistance of the solder, like  that
of other alloys, shows a marked increase.

The apparatus used by De Haas and Biermasz (1935) for material
which could hardly or not at a ll be soldered, overcame th is  de­
fect, and was also adapted by De Nobel (1951, 1954) in some of
his measurements on hard steels, Aluminum, Dural etc. Since th is
apparatus had to be finally  soldered with Wood's metal both at
the top and the bottom seams, i t  had to be improved to serve for
good conductors like Tungsten. Finally, a narrow bottom was in­
corporated for measurements in strong magnetic fie lds. Whereas

De Haas and Bremmer used a gas thermo­
meter, two lead thermometers soldered at
two points on the rod were used by the
la te r  workers. Heat energy was derived
from a small e lectric  heater soldered at
the free end of the rod.

In our investigations with the stain­
less and the nickel steels, we used the
apparatus indicated in fig . 1 ,2. The
experimental chamber comprised a brass
cylindrical vessel E f i t t in g  tig h tly
over the rim of the p la te  C, which was
of thick copper in the original appara­
tus, but was la te r  replaced by a thickF i g u r e  I ,  2
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braas plate for obtaining a better Wood’s solder joint between C
and E. A platinum-glass seal D with ten platinum leads (insulated
from one another by sheaths of glass fibre) served to convey the
various electrical connections to the outside, while the german-
silver tube A enabled the experimental space to be evacuated to
under 10'6 mm of mercury. A radiation shield B, highly polished on the
upper side, served to reflect back any radiations or hot gas mol­
ecules coming in through A. The specimen S was soft-soldered to C
with its end protruding into the bath liquid, so as to have good
thermal contact with the bath. The header Hj served to create the
required temperature gradient between the points at which are
soldered the thermometers Ti and T 2. By means of the heater H 2,
the entire rod S could be raised in temperature with respect to
the bath.

For measurements on the silver-base al­
loys, the apparatus shown in fig. 1,3, was
used, in which the important feature was
that it had a very narrow stem, enabling
measurements in very strong magnetic fields.
In fact, the outer diameter of the bottom
cap E was 15 mms, and since this was sur­
rounded by two double-walled Dewar flasks,
the outer diameter of the outer (liquid Ni­
trogen) Dewar was 40 mms. Correspondingly,
the distance between the pole-pieces of the
magnet was 42.5 mms, which gave about 1 mm
space on either side, this being necessary
in view of the pulling together of the pole-
pieces when strong fields were used. The
diameter of the pole-faces was 10 cms, so
that the rods under investigation (which had
a length of about 6 cms each and the dis­
tance between the thermometer contacts = 4
cms) could be arranged to lie in a reason­
ably uniform part of the magnetic field. A
and D, as in the apparatus for the steels,
indicate respectively the german-silver tube
for evacuation and the platinum-glass seal. Figure 1,3
The platinum-glass seal, containing the pla­
tinum leads, was made out of Normal Jena 16i n  glass, which was
fused on to a platinum ring which was, in turn, soft-soldered to
the apparatus. S is the specimen on which were mounted the heat-
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ers Hj and H2 and the thermometers Ti and T2. C represents a
thick copper block silver-so ldered  to the tube G. I t  had four
narrow guide-holes (óf about 2& mm diameter each) for the enamel­
led e lec trica l leads which were further insulated from the body
of the block by sheaths of glass fibre. These channels also serv­
ed as vents for evacuating the space surrounding the specimen
while, at the same time, they effectively prevented room tempera­
ture radiations or hot gas molecules from entering the space in
E. The shape of the tube at F served a sim ilar purpose.

To the under-side of C was soldered the sample S, so that good
thermal contact was ensured between th is  end of the sample and
the bath liquid. In the original form of the apparatus, E was of
copper so that the Wood’s metal solder jo in t at W was not quite
sa tisfac to ry . I t  was therefore replaced by a brass cup which
could be soldered better. In a ll thermal conductivity measure­
ments, the space around the specimen was kept evacuated to below
10"6 mms of mercury by an Edwards o il diffusion pump and checked
from time to time by a McLeod gauge.

At the top of the cryostat, there was a cap with four open­
ings. Through one of these openings were led out the enamelled,
double-silk covered copper leads (which had been plaited together
and then coated with cellulose lacquef) by means of a glass-and-
sealing-wax vacuum-tight seal. Another was for introducing the
bath liquid and was Glosed down there-after, with a glass plug.
The th ird  led to the pump (for reducing pressure on the bath
liquid), the manometer assembly and the regulating needle-valves.
The fourth led to the high-yacuum pump and McLeod gauge, through
a f la t glass ground-joint.

Since i t  was essential to have the space surrounding the ex­
perimental rod evacuated to a good vacuum, the Wood’s metal sol­
der jo in t W played a v ita l role. I t  was sometimes found that even
if  the jo in t gave satisfactory vacuum at liquid a ir temperatures,
i t  failed at liquid Hydrogen temperatures; and, at times, even i f
i t  served well a t liqu id  Hydrogen temperatures, i t  fa iled  a t
liquid Helium temperatures. For a perfect Wood’s jo in t, i t  was
found essen tia l th a t the f i t  of the cap C on E was tig h t. In
testing for vacuum*tightness, i t  was fe lt  desirable, before meas­
uring the pressure, to cut off the pumps (especially when they
happen to be of rather high speed) by means of a stop-cock, su it­
ably located. For making solder contacts on the experimental
rods, pure tin  was used, with a non-acid 'solfeen* flux. For
s ta in less  s tee l, a special flux ‘n ireosol’ was used with so ft
solder.
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The heater Hj was made as follows: on a thick copper wire (2%
cm long and Vk mm diameter), coated with ‘povine’ varnish and
well-baked there-after, was non-inductively wound fine enamelled
constantan wire (0 .05 mm diameter, and resis ta n ce  per meter
= 260 fi) in a s in g le  layer. A thin coating of yellow lacquer was
given on the wire ju s t  at the moment of winding so as to have
good thermal contact with the body of the heater (that i s ,  with
the thick copper wire). The winding was fa c ilita te d  by observing
under a binocular microscope at a magnification of about 15. The
heat capacity o f the heater body was thus ensured to be quite
small. The heater was soft-so ld ered  to the experimental rod at
the bottom end-face and was covered with ‘s ilv e r  paper* in order
to minimise heat lo ss  by radiation. The heater H2 was also wound
in a sim ilar manner, but since i t  had to take stronger current
for ra isin g  the temperature o f  the specimen above that o f the
bath liqu id , thicker constantan wire (diameter 0.10 mm, enamel­
led, and of resistance = 66 Q per meter) had to be used, wound in
layers.

The e le c tr ic  leads to the heaters and to the thermometers were
thin enamelled constantan wires (diameter 0.10 mm and resistance
= 10 Q) and these were soldered to the inner ends of the platinum
wires of the seal D. By th is  means, heat leak to the bath through
the leads was minimised. The outer ends o f the platinum wires
were connected to double-silk  covered enamelled copper wires o f
about two meters length, coiled round the pumping tube A, thereby
ensuring that they take up the temperature of the liq u id  in the
bath and do not bring in heat from outside the cryostat, into the
experimental space.

§ 3. The energy supply

In the stationary-flow  method, a constant heat flow should be
ensured and stray heat in flux  and out-flow  through conduction,
convection and radiation should be minimised and necessary cor­
rections applied. In our measurements, the thermal energy was
supplied (Bremmer 1934) by means o f a small e le c tr ic  heater Hj
( f ig . 1 ,4 ) , so ft-so ld ered  at the bottom of the specimen. The
e lec tr ic  current was derived from an accumulator battery C, con­
nected through a potential divider, to the heater Hj (wound from
constantan wire and of resistance « 400 £2). A precision  m illi-
ammeter A of Hartmann and Braun (having the ranges 3 and 15 ma
for a scale of 150 divisions) measured i ,  the current in the main
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Fi gure  I , 4

c irc u it . Another precision  m il l i - ammeter M of Marek (Brèmen)
having the ranges 1, 3, 10 and 30 ma for 100 scale divisions,
measured the current i , h in the shunt c ircu it, comprising N and
the precision decade resistance box B (of to ta l resistance
11000 12) of Bleeker (Zeist, Holland). Absolute calib ration  was
done for both the meters by a Diesselhorst compensator arrange­
ment, employing a ‘Zusatz* box and a standard Weston Cadmium
cell. Calibration curves were prepared and corrections applied to
the readings of the meters.

The resistance R,h in the branch c irc u it comprised, besides
the resistance set up in B, also the internal resistance of the
milli-ammeter (for the particu lar range used) and the resistance
of the leads joining P and P‘ respectively to B and M. The value
of the resistance set up in the box B was almost always so chosen
as to get as large a deflection in M as possible.

I f  ih is  the current in the heater proper and V the potential
difference between the points P and P ', we have the relations

in  - 1  -  1 *  (1,8)

V " i.h  R.h (1,9)

ih V (1 ,10)
We also calculated Rh, the resistance of the heater, from the
relation

»h M V/ih (1 ,11)
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This was to check the consistency in a series of measurements,
any mistake in reading the measured quantities showing up imme­
diately in the value of R h. The currents in the milli-ammeters
were read to an accuracy of 0.1% and R also to 0.1%, so that the
uncertainty in the value of ft was estimated to be of the order of
0.5%. The heat developed in the constantan leads of the heater
Hj was evaluated and correction applied, assuming half of this to
be led into H! and half led out to the bath. This correction
amounted to about 2-3%.

The power supplied by the heater for measurements on the sil­
ver-base alloys was of the order of a milli-watt for the liquid
Helium, 5-20 mW for liquid Hydrogen and 80-170 mW for the liquid
Oxygen/Nitrogen regions. This rate of supply had to be drastical­
ly cut down when we took up the steels, in view of their much
smaller thermal conductivities. The supply for the steels ranged
between 0.03 to 0.2 mW for the liquid Helium region. 1-4 mW for
the liquid Hydrogen and 10-60 mW for the liquid Oxygen/Nitrogen
regions, - the lower limits being for the No. 1798H steel and the
upper for the 1287D steel. The purpose of the heater H 2 at the
top of the experimental specimen was to enable the entire rod to
be heated up to temperatures above the bath temperature. By this
means, one could try to bridge the gaps between the liquid Helium
and liquid Hydrogen, and between liquid Hydrogen and liquid
Nitrogen temperatures.

§ 4. The thermometry

We did not use gas thermometry in spite of the advantages,
namely, simplicity of calibration, suitability for measurement
in the whole range upwards of 2°K even in a magnetic field, and
adaptability to differential measurement. This was because one of
the aims of this research was to develop resistance thermometry
to replace the cumber-some gas thermometry. Further we could
obtain a stronger magnetic field by using an apparatus having a
very narrow stem. This would not have been possible with gas
thermometers which need far more space around the specimen.
Lastly, we could make measurements below 2°K without sacrificing
accuracy. In designing the various thermometers used, the follow­
ing points were kept in mind: i) lightness of weight and small­
ness of size, ii) possibility of using them over and over again
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without losing reproducibility, i i i )  mounting in a manner so as
not to be easily damaged, iv) small thermal relaxation times, v)
small heat capacity and vi) su ffic ien t sen sitiv ity  in the range
meant for.

Resistance thermometers seemed to answer these requirements.
The application of resistance thermometry to thermal conductivity
measurements appears to have been f i r s t  made by Lees (1908).

A. Making and mounting the thermometers:
a) The metal wire resistance thermometers (of platinum, phos­
phor-bronze or copper): A brass tube C (length 2& cms, outer dia­
meter 5 mms, and wall-thickness % mm) was taken and a copper wire
AB (about 1% mm thick) was soft-soldered to i t ,  the end A having
been bent round as shown in fig. 1,5, for ease in soldering to

Figure  I ,  5

the experimental rod la ter. I t  was given a thin coating of povine
varnish and subjected to the prescribed heat treatment. Two enam­
elled copper wires, K, L, each having a small length (on the side
not in contact with the brass body C) stripped of the enamel in­
sulation were wound once round, and fixed in position by a single
twist, made rig id  by a tiny drop of varnish. I f  the wire to be
used for the thermometer was platinum, i t  was f i r s t  su itab ly
annealed, whereas i f  i t  were phosphor-bronze, i t  should be used
in the springy sta te , since annealing renders i t s  resistance in
the Helium region, almost temperature-independent. One end of the
wire was then carefully and well soft-soldered, as shown, to one
of the spots, stripped of insulation. I t  was then moistened with
ju s t a trace of yellow lacquer and wound round the brass tube
uniformly in a single layer, without sh o rt-c ircu iting  adjacent
windings. The other end of the wire was again soldered sim ilarly
to the clean spot on the other copper wire. A drop of varnish at
each of these soldered jo in ts was conducive to reduction of ther­
mo-forces in the thermometer wire. At the ends of the copper
wires K and L were soldered fine constantan wires (diameter 0.10
mm and resistance «■ 10 Q) to serve as the current and potential
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leads, while at the same time minimising heat flow to the bath.
The thermometer wire should be wound tig h t without, in the

least, straining or deforming i t .  This was rather d iff icu lt with
the phosphor-bronze wire which had to be kept taut by attaching a
suitable small weight at i ts  free end, with wax.

‘Combined thermometers’ (comprising platinum for use at the
higher and phosphor-bronze at the lower temperature ranges of the
low temperature region) were also employed, with success. They
were connected as shown in fig. 1,6, for use with a Diesselhorst
compensator, so that they could be used one p a ir at a time, as

Ph.Br.Ph.B c

Fi gur e  I , 6

desired. The lead wires 1. 2. 3 , . . .  8 were enamel-insulated thin
constantan wires (diameter 0. 10 mm and resistance » 10 Q) con­
nected as shown, whilst their other extremities were soldered to
the inner ends of the platinum wires of the platinum*glass seal.
When the platinum thermometers were to be used, 1 and 5 formed
the current leads while, when the phosphor-bronze thermometers
were to be used, 3 and 7 were the current leads. In either case,
2, 4, 6 and 8 constituted the two pairs of potential leads. The
wire 9 was of th in  constantan (resistance = 10 S) and diameter
0.10 mm) which gave a conduction path to e lec tric  current while,
at the same time, minimising heat flow between the thermometers
and their consequent equalisation of temperature.

I t  was essen tia l to see tha t the varnish layer was not too
thick for th is  would, for one thing, re su lt in long relaxation
times. Further, on cooling to low temperatures and waifming up to
room temperature, such a thick layer could crack and snap the
thermometer wire. If, on the other hand, the varnish layer were
not uniform, but in patches, there was the p o ss ib ility  of the
thermometer wire getting  e le c tr ic a lly  sh o rt-c ircu ited  to the
brass body of the thermometer. In our experience, povine varnish
served better than the usual ‘glyptol’ lacquer.
b) The Allen-Bradley carbon composition resistors:

Half-watt Allen-Bradleys (of nominal room temperature resis-
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tance 56 Q) and deci-watt Allen-Bradleys (of nominal resistances
10 and 22 S3) were used by us. The plastic insulation was ground
off in order to ensure optimum heat transfer. The resistor was
then inserted into tightly fitting small copper jackets (length
s 6 mm and diameter = 4 mm) which could later be soldered to the
rod under investigation. A drop of glyptol lacquer (suitably
thinned) was dropped in at either end of the carbon resistor, for
better thermal contact with the copper jacket, and also to pre­
vent possible adsorption of Helium gas by the carbon at the very
low temperatures. The final soldering of the copper jacket to the
experimental rod had to be done carefully lest the glyptol should
melt and the thermometer should slip off the jacket.
c) Carbon film (De Vroomen) resistors *)

A piece of copper wire A (length = 3 cm, diameter lfc mm)
coated with povine varnish, was bent at the end D, as shown in
fig. 1,7. This end was stripped of its insulation and tinned so

that, after making the thermometer, it would be ready for solder­
ing to the rod under investigation. Two short pieces of bare
manganin or constantan wire were wound a few times round A at
the points C, C, as shown, these points being a few mill1-meters
apart. One end of each of these wires, B, B, was left free for
making electrical connection. The points C were coated with sil­
ver paint (of E. I. Du Pont de Nemours and Co, Inc. U. S. A.) so as
to completely cover the wire windings, and then allowed to dry
for a short while at about 80°C. The alcohol-dag mixture was next
coated in a uniform layer (the thickness of which decided the
ultimate value of its resistance) and thoroughly dried for a few

*) We acknowledge indebtedness to Drs. A.R.de Vroomen of this
laboratory for lending us some of his carbon resistors and for
enabling us make such thermometers ourselves from his alco-dag
mixture. This type of resistor was found very suitable for our
research and will be referred to as the De Vroomen resistor.
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hours in an electric oven at about 170°C, by which , time tho
resistance attained a constant value. We found 1000 a very
suitable value for the nominal room temperature resistance.

B. The calibration procedure:
For obtaining the calibration points, the temperature of the

bath was maintained constant by regulating the pressure above the
bath liquid by controlling the pumping speed with the help of a
needle-valve. To facilitate this adjustment, an oil differential
manometer was used, the constancy of level where-in was an index
of the constancy of the pressure. The pressure of the bath was
read on a mercury manometer by a cathetometer, provided with a
vernier which could read to 0.01 mm.

For temperatures above the X-point of Helium, bath tempera­
tures were always approached from above in order to avoid pos­
sible supercooling of the liquid below. Below the X-point, in
view of the high thermal conductivity of Helium II, temperature
equalisation throughout the bath takes place rapidly.

To the manometer readings, corrections were applied due to
capillary depression and due to the difference in thermal expan­
sions of the mercury and of the brass cathetometer scale. From
these corrected vapour pressures, the corresponding bath tempera­
tures were obtained by using the usual tables. For Helium temper­
atures, the 1956 vapour pressure tables (Van Dijk and Durieux
1955) were used. For liquid Hydrogen temperatures were used
tables prepared in this Laboratory on the basis of the formula
of Keesom, Bijl and Van der Horst (1931), namely

0 = -260.865 + 1.0619 log10P + 1.7233 logjoP,

where 0 is in degrees centigrade and p in cms of mercury. For
Oxygen temperatures similar tables were used, prepared by Mr.
J.M. J. Koremans of this Laboratory on the basis of the results of
Cath (1918). For Nitrogen temperatures, was used the formula,
also due to Cath,

log10P = 7.781845 - 0.0062649 T - (341.619/T),

where p is in mm of mercury and T in degrees Kelvin.

C. Behaviour of the thermometers:
As metal wire thermometers, platinum, gold, constantan,

manganin, lead, cadmium, phosphor-bronze etc. have been tried by
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various workers for re s tr ic ted  temperature regions. No single
wire material has been found capable of adequately covering the
entire low temperature range. Since the e lec trica l resistance of
pure metals becomes practically independent of temperature in the
region of liquid Helium temperatures (not taking the occurrence
of super-conductivity into account), they are unsuitable for
thermometry in that region. As regards thermo-elements, we need
only make a passing reference: they are commonly used as thermo­
meters at higher temperatures, but become less and less sensitive
as we go to lower temperatures. Alloys like  constantan and
manganin, whose resistance at higher temperatures changes l i t t l e
with temperature, show some varia tion  between 20 and 5°K. Yet
they are not suitable for thermal conductivity measurements in
view of th e ir  small dR/dT value per ohm, and th e ir  consequent
in ab ility  to measure small temperature d ifferences accurately
enough. Lead turns superconducting at 7 .2°K and is , besides, not
easy to manipulate. Some specimens of phosphor-bronze serve very
well as thermometric substance, even though i t  has the disadvan­
tages of i)  being much affected by magnetic f ie ld s , i i )  being
sensitive to the measuring current and i i i )  becoming insensitive
above 10°K.
a) Platinum thermometers

We tried  various specimens of platinum but we mention only one
as an example. Very pure platinum wire of diameter 0.03 mm was
softened in a ir  by a current of 300 mA. I t  was then wound to
serve as a thermometer in the manner already described. Using a
measuring current of about 1/4 mA, i t s  resistance was determined
by comparing the po ten tia l drop across i t ,  with that across a
standard resistance by means of a Diesselhorst compensator, using
a null method. The sensitiv ity  was such that 2 mm on the galvano­
meter scale corrseponded to 0.0001 Q. On cooling from room tem­
perature down to liquid a ir temperature, i t s  resistance fe ll by a
factor 5, while for cooling from there to liquid Hydrogen temper­
ature, the resistance fe ll by a factor 35. In the Hydrogen region
its e lf ,  the dR/dT per ohm dropped from about 0.2 to 0.1 as the
temperature fe ll from 20° to about 15°K. Yet, for reasons to be
given presently, i t  was not considered suitable for liquid Hydro­
gen temperatures.
b) Copper wire thermometers

Pine copper wire (diameter 0.03 mm and resistance 22 Q/meter)
showed a fa ll in resistance by a factor 7 when cooled from room
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temperature down to liquid air temperature. In the liquid Nitro­
gen region itself, it showed an average dR/dT of 0.0284 per ohm.
This was quite satisfactory. The fall in resistance on cooling
from liquid air to liquid Hydrogen temperature was by a factor 8,
while in the liquid Hydrogen region itself, the resistance varia­
tion was on the average 1/2 % per degree. Thus it was not suita­
ble for use at liquid Hydrogen temperatures and therefore, on the
whole, possessed no special advantage.

We would like to add a word of explanation here as to why pla­
tinum and copper were found not suitable for use at liquid Hydro­
gen temperatures. In the Diesselhorst compensator, we compare
the potential drop E across the thermometer concerned, with that
across a standard resistance. If R denotes the resistance of the
thermometer, the rate of heat development in the thermometer
during such a measurement would be E 2/R. In order to have less of
this undesirable heat production in the thermometer, it is neces­
sary to see that R does not fall too low. If we consider, for in­
stance the 0.03 mm diameter pure platinum wire, of room tempera­
ture resistance about 14 0. its resistance in the liquid Hydrogen
region would fall to 0.08 £2 (in other words, one should start
with about 175 £2 of such a wire at room temperature, in order to
have 1 £2 resistance at liquid Hydrogen temperatures).

c) Phosphor-bronze thermometers
Keesom and Van den Ende (1929) found that a particular sample

among a number of spools of phosphor-bronze wire supplied by
Messrs. Hartmann and Braun, served very well as low temperature
thermometer. Similar results for a sample of Hartmann-Braun phos­
phor-bronze were later reported by Babbitt undMendelssohn (1935).
Since the resistance-temperature curve began to show strong tem­
perature-dependence near about 7°K, Keesom (1934) suggested that
lead (whose transition temperature, in the pure condition, was
known to be 7.2°K) was the substance responsible for this behav­
iour. This was confirmed by the observation that in large fields,
the wire exhibited the more usual temperature-independent re­
sistivity.

Keesom further postulated that the super-conducting inclusion
(possibly lead or, may be, some super-conducting alloy) was in
the form of thin needles parallel to the length of the wire.
Moreover, since the needles were of random sizes, their super­
conducting transitions would be spread over a temperature range
so that, as the temperature fell, more and more needles became
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super-conducting and thus caused the fall in resistance. The ob­
servation that annealing the wire rendered its resistance inde­
pendent of temperature, was explained as being due to removal of
the super-conducting inclusions whether by allowing these to go
into homogeneous solution in the lattice, or by their evaporation
at the surface.

Rather thick phosphor-bronze wires (diameter = 100 |a) serve
well in the upper liquid Helium range but exhibit a small dR/dT
value in the lower liquid Helium range. The reverse holds for
wires drawn to about 35 |a diameter. We therefore put together two
pieces of phosphor-bronze, one of 77 |a and another of 48 |a in
series, to constitute a thermometer, so that it would show rea­
sonable resistance variation over the entire liquid Helium re­
gion. Near about 4°K, its dR/dT was 0.0668 per ohm and at 1. 5°K,
it was 0.0634 per ohm. It could not, however, be used in the
stronger magnetic fields, because it showed a temperature-inde­
pendence even at 13 k$.

For the metal wire thermometers described above, calibration
was done in the usual manner against the vapour pressure of the
bath. Assuming a rectilinear relation T = aR + b, between the
temperature T and resistance R of the thermometer, the constants
a and b were evaluated from two of such calibration points.
Knowing a and b, one could now calculate the temperature corre­
sponding to the values of R measured at the remaining calibration
points. A correction curve could now be drawn giving the correc­
tion which should be applied to any temperature indicated by this
thermometer, in order to obtain the true temperature.

For instance, for two 0.01 mm diameter platinum wire thermo­
meters A and B, we had the relations, •

Ta - 2.50974 Ra - 7.6126

and Tb = 2.03848 RB - 6.1225,

at liquid Nitrogen temperatures. In the liquid Hydrogen region,
the relations were

Ta - 15. 2970 Ra - 225. 16

and Tb = 14.1777 RB - 234. 20,

in zero magnetic field, and

and

Ta - 15.5305 Ra - 228.85

Tb - 14.2273 Rb - 235.28,
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in a magnetic f ie ld  of 25 k$, on one and the same day. For two
phosphor-bronze thermometers C and D of nominal room temperature
resistance of 7 SI (each thermometer comprising two wires, one of
77 |x thickness and another of 48 p.) we had sim ilarly  the follow­
ing re la tio n s  for the Helium temperatures, In zero magnetic
field.

Tc = 3.66371 Rc -  9.82775

Td = 4.43575 Rd -  0-25530

In a magnetic fueld of 5 k<&,
Tc = 8.81650 Rc -  37.2195

Td -  7.42444 Rd -  8.5370

In a f ie ld  of 13 k$,
Tc = 319.713 Rc -  1461.325

Td = -800.830 Rd + 1290.392

The ca lib ra tions were reproducible; but changed s lig h tly  from
day to day, requ iring  c a lib ra tio n  every time they were put to
use. Provided the varnish layer was not too th ick , the thermo­
meters could be used repeatedly between room temperature and the
lowest temperature they were meant for. I f  however the varnish
layer was too thick, there was risk  of the layer cracking (during
these temperature cycles between room temperature and the very
low temperatures), thereby s tra in in g  and even snapping the fine
wire.
d) Allen-Bradley carbon composition resisto rs

After a survey of the various commercially available composi­
tion radio resisto rs, Clement and Quinnell (1952) found the
Allen-Bradley res is to rs  to sa tisfy  best the requirements of re­
producibility and high sensitiv ity . For the liquid  Hydrogen and
Helium temperatures, they developed formulae of the type

logloR + ï ö g ^ Ü = B + T-’

where A, B, C, are determined from experiment. Brown, Zemansky
and Boorse (1951) gave forte watt Allen-Bradleys, an equation of
the form

log xo R = A + BT-1 ♦ CT-2 -  DT2
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where A, B, C, D, are empirical constants. More recently Worley,
Zemansky and Boorse (1954) suggested a relation of the type

log10R = A + |  + C logioT + DT4

for calibrating 1 watt and iz watt Allen-Bradley resistors.
For using these resistors in the liquid Oxygen, Nitrogen and

Hydrogen temperatures, the procedure was the same as with the
metal wire thermometers. A rectilinear relation was assumed be­
tween temperature and the resistance of the thermometer. Rather
than actually draw the T versus R straight line graph, we solved
for thp constants a and b of the equation T = aR + b, using two
of the calibration points. The other calibration points would,
no doubt, be slightly off this line. A correction curve of AT
against T was drawn, T being the temperature indicated by the
thermometer and AT the Correction necessary to bring it to the
value obtained from the vapour pressure of the bath.

For the Helium temperatures, we used the empirical formula
evolved by De Nobel (1954), namely,

logjoR - f = cT'1 + dT'“ ,

f, c, d being empirical constants. The inconvenience with the 56 £
Allen-Bradley resistors used in the early stages of this research
was that in the Helium region, the resistance rose from about
1300 £2 to about 146000 £2. This high resistance created the risk
of leakage by short-circuiting. Further, since we used a 2 volt
accumulator in the measuring circuit, this meant a large fall in
the measuring current. We therefore shunted a 10000 £2 resistance
across the resistor, thereby making the effective resistance
about 1100 £2 at the boiling point of Helium, rising to about
9400 £2 at the lowest Helium temperatures. The measuring currents
used in the liquid Nitrogen, Hydrogen and Helium ranges were re­
spectively 1/3 mA, 1/5 mA, and = 15 (xA. The small size 10 £2 and
22 £2 Allen-Bradleys (Type TR, deci-watt) were more convenient in
that their resistance did not reach such high values in the lower
liquid Helium region. There was therefore no need to use 10000 £2
shunts across them. With the 10 £2 resistors, for instance, in the
liquid Nitrogen, Hydrogen and Helium regions, we used measuring
currents of 2/3 mA, 1/4 mA and 50 ixA respectively, so that the
rate of heat generation in the thermometers in these temperature
ranges were of the order of 5 |xW, 1 |iW and 1/2 |iW.

In the presence of a magnetic field, their resistance showed a
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rise AR which, for a given temperature was the larger, the higher
the field: and for a given field, AR was the larger the lower the
temperature. At the highest magnetic field used by us, namely
25 k$, the value of AR/Rte0 for the 22 resistors for instance.
was about 1% at 4°K, 2% at 2.5°K and 5% at 1.2°K. Further,
AR/Rh* 0 departed cosiderably from proportionality to the square
of the field strength.
e) The de vroomen carbon film resistors

As prepared from an aqua-dag mixture, these resistors, which
were of a nominal room temperature resistance of 490 fi showed a
resistance increase of 14%, 25-35% and 200-340% respectively in
the liquid Nitrogen, Hydrogen and Helium regions. A second aqua-
dag mixture was then prepared which gave much better sensitivity
and was mainly used in our measurements. As compared to the room
temperature resistance of 1000 Q. these resistors increased in
resistance at the liquid Nitrogen, Hydrogen and Helium tempera­
tures respectively 1.25, 1.9-2.1, and 3.5-9 times. These were
used with a Wheatstone bridge, the currents sent through them
in the liquid Nitrogen, Hydrogen and Helium temperature regions
being respectively of the order of 40 |iA, 15 (J.A and 4 |aA, and the
corresponding amounts of heat generated per second in the resist­
or 2 |iW, 1/2 nW and 1/10 y.W. ■

In a magnetic field, the resistance invariably diminished so
that AR - (Rh - «h=o> was negative, whereas it was positive in
the case of the Allen-Bradleys. At the highest field strength
used by us, namely 25 kft. the numerical value of AR/RH-o was
about K %  at 1.2°K, rising steeply to about 1% near about 4 K,
diminishing gradually there-after and reaching about %% at liquid
Hydrogen temperatures.

We painted these resistors with a thin protective coating of
yellow lacquer, and then their change in nominal resistance from
day to day was insignificant even after thermal cycles between
room temperature and Helium temperatures. If however, they were
removed from a particular specimen and again soldered on to
another, they did show a rise in nominal resistance, which again
stayed reasonably constant at the new value. This rise may be due
to slight mechanical strains introduced in the process of trans­
fer from one specimen to another. Calibration of these thermo­
meters was done every measuring day at 6-8 points and separate
calibration curves prepared. Random checks at the end of the
measuring day showed no deviation from the calibrations done at
the beginning of the day. If measurements were to be done in
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magnetic fields, calibration was also done in these fields at
each of the zero-field calibration points and separate calibra­
tion curves drawn for each value of magnetic field employed.

We found the behaviour of the de Vroomen resistors with regard
to temperature as well as to magnetic fields, perfectly repro­
ducible and independent of current strength in the range of cur­
rents used by us. As with the Allen-Bradleys, a higher nominal
room temperature resistance gave at low temperatures, a higher
resistance and also a high (negative) temperature coefficient of
resistance. For this reason, in measurements at liquid Nitrogen
and liquid Oxygen temperatures, we preferred de Vroomen resistors
of a nominal room temperature resistance of about 2000 £2.

For measuring the resistance of the carbon resistors, we used
a conventional Wheatstone bridge circuit. The ratio arm comprised
two oil-immersed manganin resistances, wound non-inductively on
bakelite formers and having nominal resistances 100 £2 and 1000 £2
respectively, By means of a two-way switch, one could bring into
the bridge circuit, either of the resistors with its correspond­
ing balancing decade boxes. The voltage employed to drive current
through the bridge was arranged to be 0.3 V, 0.5 V and 1 V re­
spectively for the liquid Helium, Hydrogen and Nitrogen tempera­
ture regions. The galvanometer used was a double-coil Kipp Kc
galvanometer (of P.J. Kipp and sons, Delft, Holland), having a
voltage sensitivity of 0.2 to 2.0 £iV for 1 mm deflection on a
scale 1 meter off.

Imperfectly soldered joints and switches making imperfect con­
tacts could give rise to annoying thermo*forces. By using soft
easy-flowing solder with a non-acid "solfeen” flux, by carefully
choosing our switches and by employing an enclosed-mercury double
commutator, we successfully minimised these thermo-forces.

Since the major part of our investigation was done using the
sensitive de Vroomen resistors, it may not be out of place to
give an idea of the attainable accuracy of these. We take as
example a 1500 £2 resistor.

i) Liquid Nitrogen temperatures: Usung a current of 40 (iA, a
variation in resistance of 0.05 £2 would give rise to a difference
of potential of 2 |aV. which was well within the range of sensi­
tivity of our galvanometer. Since in this temperature region, the
resistor had a resistance variation of 7.5 £2 per degree, we
could, by measuring the resistance to five-hundredths of an ohm,
obtain temperatures correct to better than 0.01°K. Since AT was
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chosen to be about 2°K at these temperatures, this could give an
accuracy of 1/2 %  in AT.

ii) Liquid Hydrogen temperatures: The temperature coefficient
of resistance in this range was between 50 Q/degree (at 20°K) and
100 SVdegree (at 14.5°K) so that by measuring the resistance to
a tenth of an ohm, one could read temperature differences to an
accuracy of about 2 milli-degrees. Since AT was of the order of
0.5°K in this region, one could reach an accuracy of about 1/2 %.

iii) Liquid Helium temperatures: The temperature coefficient
of the resistors in this region was about 1000 (Vdegree (at 4°K
rising rapidly to about 10000 (Vdegree at 1.5°K) so that measur­
ing resistance to the nearest ohm gave AT to the nearest milli-
degree. Since AT was chosen to be 0.2°K, the accuracy in AT was
Vi %, improving considerably in the liquid Helium II region.

§ 5. Sources of error

Since the heat resistance is given by AT/ft, we should consider
the sources of error in the measurement of AT and ft. Errors in
the measurement of the power supplied ft could be due to the fol­
lowing sources:

i) Heat developed in the thermometers: As explained already in
subsection ‘e* of the section on thermometry, the rate of heat
generation in the thermometers was of the order of. 1/10 |J.W at the
lowest temperatures, whereas the power supplied ft was at least a
fraction of a milli-watt for the silver-base alloys and at least
30 (iW for the steels. Thus the effect of this heat development in
the thermometers, on the value of ft, was negligibly small at the
Helium temperatures, and formed an even smaller fraction at the
higher temperatures, in view of larger values of ft at those tem­
peratures. The heat led out from the thermometers to the bath
was likewise small since the heat resistance between the thermo­
meters and the bath via the constantan leads amounted to much
more than 107 cm. deg/watt.

ii) Heat developed in the lead wires of the heater Hj: We
always used thin constantan leads of about 10 £2 resistance, for
this purpose. The amount of heat developed in these leads and the
amount led away to the bath along these leads are not precisely
known. Their thermal resistance, however, amounted to more than
107 cm. deg/watt, whereas the experimental rod had a thermal re­
sistance, orders of magnitude smaller - the worst case being the
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1798H steel rod at the lowest l i q u id  Helium temperatures, where
the heat resistance amounted to 9000 cm-deg/watt. I t  was there­
fore permissible to assume that half the heat developed in these
constantan leads was led away to the bath, the other half being
led to the heater. A correction was accordingly applied which
amounted at most to 2-3% of the value of Q.

i i i )  Room temperature radiations and 'hot gas* molecules en­
tering from the upper part of the cryostat: We have already dis­
cussed how th is was minimised in our apparatus.

iv) The heat lo s t through the residual gas molecules in the
vacuum space surrounding the specimen: As was done by Schott
(1916) and e a r lie r  by Meissner (1914), we always evacuated the
space to less than 10"6 mm of mercury, so that heat transmission
by conduction and convection would be negligibly small. Radia­
tions from the heater to the walls of the surrounding vessel
would arise  i f  there is  a large thermal resistance between the
heater wire and the metal body on which i t  is  wound, resulting in
the heater wire being considerably heated up. We took the further
precaution of covering the heater with 'silver' paper.

The heat-loss by radiation from the experimental rod i ts e lf ,
to the surrounding walls was also estimated, assuming the rod to
be a perfectly  black body. Even in th is  lim it, the correction
needed to Q at liqu id  Nitrogen temperatures, piounted to le ss
than 0.1% in the case of the silver-base alloys and about 0.8%
for the worst conducting no. 3754 steel. At lower temperatures,
these corrections became negligible.

v) The determination of Q i ts e lf  was done from the readings of
two carefu lly-calibrated  sensitive milli-ammeters, and the re­
sistance of the heater evaluated each time, as an indirect check
against inciden tal ‘s l ip s ’ in observation and tran scrip tio n .

Sources of error in the measurement of AT were as follows:
i) Heat developed in the thermometers themselves on account of

the measuring current flowing through them: As already explained,
the effect of th is was negligibly small.

i i i )  The possible accuracy in the measurement of AT, using the
de Vroomen re s is to rs  has already been discussed. In p ractice ,
such high accuracy could not be attained since there seemed no
sufficiently accurate method of converting the resistance changes
into temperature differences. At liqu id  Nitrogen and Hydrogen
temperatures, a plot of log R of each of the thermometers against
T, on a large graph sheet, gave a reasonably good method. The
inaccuracy in reading temperatures therefrom, could amount to as
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much as 0.01°K in the liquid Nitrogen and 0.005°K in the liquid
Hydrogen temperature region. For the liquid Helium temperatures,
this method could be elaborated by dividing the region into two
sub-regions (with a small overlap for counter-check) and drawing
separate log R versus T calibration curves for the two thermo­
meters.

It was however felt that the use of two independent calibra­
tion curves was not conducive to an accurate determination of
AT. The following method was therefore developed, which was also
useful for obtaining AT at intermediate temperatures, meaning
those lying between liquid Helium and liquid Hydrogen, or between
liquid Hydrogen and liquid Nitrogen temperatures.

This method was based on the fact that for any two de Vroomen
thermometers chosen at random from a crop, the resistance varia­
tion with temperature was similar. We accordingly plotted R a/Rb
against RB, from the calibration points of that day. A smooth
curve generally resulted, but any slight deviation of one or more
of the calibration points was automatically corrected by the
smoothening. When thermal energy was supplied, resulting in a
temperature gradient along the rod, the temperature of the
A-thermometer (denoted by TA) was directly read from a calibra­
tion graph of log R A against T. The measured resistance of the
B-Thermometer was referred to the Ra/Rb versus RB graph, where­
from one obtained the value RA which was the resistance the
A-thermometer would register if it were at the same temperature
as the B-thermometer. The value of the temperature corresponding
to this R* was again read from the calibration curve, log RA
versus T. In this manner, we obtained AT using the calibration
curve of one thermometer (here, the A-thermometer), while the
calibration of the other thermometer gave us the auxiliary curve
of Ra/Rb versus RB.

§ 6. The Diesselhorst compensator

We used a five-decade Otto Wolffe compensator. Figs. 1.8 and
1.9 show how the thermometers were connected for measurement of
their resistance. We might add here that the compensator was used
only for measurements with the metal wire thermometers and the
small Allen-Bradleys, whereas the Wheatstone bridge was employed
with the de Vroomen resistors. The figures are self-explanatory
and the principle of the Diesselhorst compensator too well-known
to need much comment.
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“c” was a piece of thin constantan wire (0.10 mm diameter,
= 10 £2 resistance), enamelled and double-silk covered, which
brought the two thermometers into the same measuring circuit
while at the same time, preventing them from equalising in tem­
perature, This was possible since the thermal resistance of such
a piece of constantan wire amounted to more than 107 cm-degrees
per watt. The oil-immersed standard resistance N (of 10 £2, 1 £2,
or 0.1 £2, as necessary) and the thermometers A and B were con­
nected, in series, in the same measuring circuit. By means of a
selector switch, one could connect the potential terminals of N
(or A or B, at will), to the terminals on the compensator, marked
X. The decade contacts of the compensator were adjusted until the
galvanometer gave zero deflection. The reading on the decades was
at once seen to be a measure of the resistance, whose terminal
potential difference was applied at X. This was because the ad­
justment of the knobs of the decades no way affected the current
in the compensation circuit.

We used the Diesselhorst compensator, also for measuring the
electrical resistances of our rod specimens whose thermal con­
ductivity was under investigation. The straight-forward method
would be to measure the electrical resistance simultaneously with
the thermal resistance measurement, thereby ensuring the same
form-factor. However, since for the latter measurement, the rod
had to be in the vacuum space, the following considerations ren­
dered electrical resistance measurement under the same circum­
stances, inconvenient:
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i) Since the rods were rather thick and were of very low elec­
trica l resistance, fa irly  strong elec tric  currents (= Yi Amp) had
to be used. These currents heated up the constantan leads, in­
creasing their resistance, which again resulted in a gradual fa ll
of the measuring current.

i i)  Accuracy of measurement was impaired by the fact that such
large currents heated up the solder jo in ts, giving rise  to large
thermo-forces.

i i i )  The heat developed in the constantan leads passed on to
the experimental rod, raising i t s  temperature. This rendered i t
d ifficu lt to judge the actual temperature of the rod.

In view of these considerations, the rods were mounted direct­
ly immersed in the bath liquid, and the constantan leads dispens­
ed with. In th is manner, thermo-forces were eliminated entirely.
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C h a p t e r  II

The or etic al considerations

§ 1. General survey of the theories of metals

The Drude-Lorentz electron-gas theory:
Wiedemann and Franz, in 1853, postulated on purely empirical

grounds, that the electrical and thermal resistivities at a given
temperature, should bear a constant ratio for all metals. Lorenz
went further, in 1872, indicating that this ratio should be pro­
portional to the Absolute temperature. Attempts to investigate
the mechanism of metallic conduction came only after J.J.Thomson’s
discovery (1897) of the electron. Drude (1900) started with the
assumption that the electrons in a metal were not bound to speci­
fied positions but were free to move subject only to resistive
forces. With this ‘electron gas’ conception of a metal, he suc­
ceeded in giving a theoretical basis to the formulations of
Wiedemann, Franz, and Lorenz. He obtained for the Lorenz parame­
ter, defined as X/oT, the value 3(fc/e)2. Considering the crude­
ness of the model, this value is in excellent conformity with
experiment. H.A.Lorentz, in 1905, improved the theory employing
the Maxwell-Boltzmann statistics and scrutinizing the collision-
dynamics. The Drude-Lorentz theory enabled a simple derivation of
the well-known Ohm’s law and threw light on the high-frequency
optical properties of metals, which latter was vindicated by the
infra-red optical studies of thin metal films by Hagen and Rubens.
This simple theory, however, led ito a specific heat contribution
of 3k/2 per electron, whereas experiments on specific heats of
metals showed no such contribution.

Fermi-Dirac statistics:
Pauli, in 1925, enunciated the famous Exclusion Principle

which required that only one electron could occupy a quantum
state specified by four quantum numbers, three spatial and one of
spin. In 1926, Fermi and Dirac independently worked out the sta­
tistical behaviour of independently moving particles subject to
the Pauli principle. The classical Maxwell-Boltzmann statistics
served for the low particle densities obtaining in gases under
ordinary conditions, and when applied to electrons in a metal,
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permitted of any number of them having id en tica l energy and
momentum. In the Fermi-Dirac quantum s ta t is t ic s ,  which reduces to
the Maxwell-Boltzmann type for low p a rtic le  densities, the proba­
b ility  for a quantum s ta te  of energy e to be occupied is  given by
the function f,

f =* [exp * l ] ' 1 < n .D

where ^ is  a parameter which equals the maximum energy of the
Fermi surface. I t  is  seen from the form of equation ( I I , 1) that
the Fermi energy £ has the significance of a cut-off energy at
the Absolute zero of temperature, a ll states with a lower energy
being completely f i l le d  and those with a higher energy lying
vacant. The Fermi energy, therefore, indicates the top of the
filled  energy levels, being fixed by the condition that the
f i l le d  levels contain ju s t  as many electrons as are actually
known to be present. When the temperature is  raised above 0°K,
some of the s ta te s  s lig h tly  below the Fermi level w ill be de­
populated and the electrons from them raised to levels s ligh tly
above the Fermi level.

The Sommerƒe ld  ‘free electron’ theory:
The incorporation of the Pauli principle and the Fermi-Dirac

s ta t is t ic s  into the discussion of transport phenomena in metals
was achieved by Sommerfeld in 1928. In th is  model, the electrons
are considered free (that is, without mutual interaction) within
the boundaries of the specimen, and the e ffec t of the crystal
la ttice  is  ignored. To put i t  more precisely, the positive charge
is  assumed distributed uniformly throughout the crystal, so that
the e lec trica l potential is  constant in the metal, increasing to
another constant value at the boundary. Whilst the electronic
specific heat, in classical s ta t is tic s , should be constant, Som-
merfeld  showed, with the aid of Fermi-Dirac s ta t is tic s , that for
a degenerate electron gas, i t  should be proportional to T and
have a value much less than the classical value. This removed one
of the main lacunae in the Drude-Lorentz theory; but probably the
most important contribution of the Sommerfeld theory is  that i t
showed a free electron to be not necessarily a conduction elec­
tron.

For the e lec trica l and thermal conductivities a  and X, Sommer-
fe ld  obtained the equations,

<y * (871/3)1/3 (e2l/h ) n2/3 (11,2)
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and X = (8ti/3)1/3 (7i2fe2Tl/3h) n 2/3 (II. 3)

where 1 stands for the electronic mean free path and n for the
number of free electrons per unit volume. One of the main short­
comings of the theory was that it offered no a priori basis for
evaluating or even estimating the value of 1. Thus the absolute
values of a and X could not be obtained. However, by taking their
ratio, one obtained

V o T  = —  (-V (11,4)o e
= 2.7 x 10'13 e. s.u./deg2
= 2.45 x 10*8 watt-ohm/deg2

This value agreed with experimental results and, being independ­
ent of the metal, vindicated the Wiedemann-Franz-Lorenz law.

In the later theories of electronic conduction in metals, the
statistical properties of free electrons were combined with the
motion appropriate to an electron moving in an electric field
having a periodic potential.

Localised, Molecular and Crystal orbitals:
Soon after the introduction of wave mechanics, attempts were

made to set up self-consistent fields for atomic systems. Hartree
(1928) framed equations, where-in the potential function was the
Coulomb potential due to the fixed ion cores together with that
of the rest of the electrons in the system. There were two dis­
tinct approaches to solving such equations. In the Heitler-London
(1927) scheme of 'localised orbitals’, each electron wave func­
tion was localised and was large near to only one ion core in the
crystal. In the other approach, the electron wave function was
assumed to extend over the entire system, so as to have equal
probability density at equivalent atoms. The latter approach was
used by Hund, Mulliken and Lennard-Jones in the elucidation of
the structure of di-atomic and poly-atomic molecules (- the
method of ‘molecular orbitals'), and by Bloch (in his work on
‘crystal orbitals'), Peierls, Bethe, Sommerfeld, Wilson, Bril-
louin, Wigner and Seitz among others, in the discussion of the
solid state.

In the application of wave mechanics to the discussion of
molecule formation, it was soon realised that an electron in a
wave function shared by two atoms (- the so-called symmetric wave
function) could result in their binding together, whereas an
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electron in an anti*symmetric type of wave function gave rise to
repulsion. Such wave functions came to be referred to as ‘molecu­
lar orbitals', the former as the ‘bonding orbital’ and the latter
as the ‘anti-bonding orbital’. When one considered two isolated
atoms gradually brought nearer to each other to form a diatomic
molecule, each energy level of the individual atoms was split in­
to two levels. The lower level corresponded to a bonding orbital
having the charge distribution concentrated between the atoms
while the upper corresponded to an anti-bonding orbital, the
electrons avoiding the mid-points between the atoms.

The problem of an array of atoms in a crystal lattice was just
an extension of this picture. Energy levels were now more or less
continuously distributed between the lower and the upper energy
limits. In other words, each energy level of a free atom gave
rise to a continuous band of energies, the so-called ‘energy
band’. The major contribution to the energy band picture was that
of Bloch and it was further developed by Brillouin, Kronig,
Penney and numerous other investigators, incorporating the con­
cept of Brillouin zones in momentum space.

For the computation of wave functions in metals, the ‘cellu­
lar’ method introduced by Wigner and Seitz, and extended by
Slater and by Bardeen, has also come to the fore-front. In this
model, the lattice is divided up into space-filling poly-hedra,
the so-called ‘cells’, each of which is centred round an atom of
the metal.

Bloch’s work:
Bloch (1928) showed with complete generality, that in a per­

fect crystal lattice, wherein the potential is exactly repeated
at intervals of the lattice constant, the crystal orbital solu­
tion (the Bloch function) to the one-electron Schrodinger equa­
tion, leads to the electron waves behaving as progressive or
stationary waves whose amplitude has the same periodicity as the
lattice potential. One important deduction from this is that
these ‘Bloch waves’ traverse a perfect crystal without diminution
in energy. Secondly, each electron in the crystal is character­
ised by a velocity vector, for certain values of which correspond
regions of forbidden energy. If the permitted vectors are plotted
in three-dimensional space (the k space), the end point of each
vector indicates a possible electronic state for the system.

The first deduction throws new light on the aspect of elec­
trical resistance. Whereas in the classical electron theories,
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collisions between electrons and atoms led to a finite free path
and a consequent resistance to the electron stream, wave mechan­
ics requires that a perfect single crystal of a pure metallic
element, at the absolute zero of temperature, should exhibit no
electrical resistance, unless the electron wave happened to have
the correct wave-length and direction for a Bragg reflection.
Resistance is caused, firstly, by interaction with the elastic
Debye waves representing thermal vibrations (see § 2), that is,
by the scattering of electrons by the atoms which are displaced
from their equilibrium positions in the lattice during their
thermal motion. This comprises the 'ideal temperature-dependent
part of the resistance. Secondly, resistance is also caused by
chemical impurities in the form of foreign atoms, and by physical
lattice defects, both of which act as scattering centres and give
rise to the temperature-independent (the so-called 'residual')
part of the resistance. The empirical Matthiessen rule (1864)
thus obtains theoretical support.

In considering how the periodicity of the lattice potential
affects the energy distribution of the electron gas, two ap­
proaches are possible. In the ‘tight-binding’ (or ‘nearly bound’
electron) approximation, the electron energies and wave functions
are taken the same as when associated with a free atom, and the
lattice periodic potential is brought in as a perturbation to
treat the ions constituted into a crystal. In other words, the
electron wave functions are built up out of the atomic wave func­
tions surrounding the ions of the lattice. When the wave func­
tions of adjacent ions overlap, the discrete atomic levels spread
out into energy bands in the crystal, the width of the band de­
pending on the extent of overlap.

In the 'weak-binding’ (or 'nearly free’ electron) approxima­
tion, the energy of a free electron is taken over from the elec­
tron gas model, and the periodic lattice potential applied as a
small perturbation. Here also the energy gaps appear at certain
critical values of the electronic wave numbers, and these values
correspond to electron waves which suffer selective reflection
from the crystal planes in accordance with the Bragg condition
for X-ray reflection. Prom a general consideration of electron
propagation in periodic structures, Brillouin showed that the
energy bands comprise all levels for which the wave vectors lie
within certain definite polyhedra in k space, the energy cut-off
values forming the edge of a so-called Brillouin Zone in k space.
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The concept of allowed and forbidden bands, in other words, the
functioning of the lattice as a low-pass filter on the electron
waves bears analogy to lines of electric filters displaying pass-
band and cut-off properties, or to acoustic systems filtering
high-frequency waves.

Electron interaction theories:
The theories discussed .so far are basically one-electron (or

the ‘independent electron') theories which ignore interactions
between the electrons. In developing the collective description
of electron interactions, analogy has been drawn between the
electrons in a metal and the free ions in an ionised gas (the
so-called ‘plasma’) by Kronig and Korringa (1943, 1949) and work­
ed out in detail by Bohm and Pines (1951, 1952, 1953, 1954). A
plasma could also be looked upon as an electron gas in a uniform
back-ground of positive charge, except that typical plasma den­
sities are of the order of 1012/cc, whilst metallic electron
densities are of the order 1023/cc.

§ 2. Thermal conduction in non-metallie substances:

Lattice vibrations and Normal modes
In the simple approach of Boltzmann to the aspect of internal

energy of solid bodies, every atom in the body had a position of
rest, about which it executed thermo-kinetic oscillations. As a
first approximation, the force binding the atom to its equilib­
rium position was assumed ‘elastic’ (that is, proportional to the
displacement of the atom) which caused the atom to execute har­
monic vibrations at constant frequency. In reality, the atoms
constituting a crystal are rather bound to one another forming a
coupled system. In such a case, as shown by more advanced mechan­
ics, ‘normal co-ordinates’ could be introduced which are linear
combinations of the co-ordinates of the atoms comprising the
system. For a crystal containing N atoms, there are in all 3N
co-ordinates, each of the normal co-ordinates being a linear com­
bination of all these 3N co-ordinates; and the total number of
the normal co-ordinates is also 3N.

Each of the normal co-ordinates can vibrate independently of
the others, with its own frequency, giving rise to a normal mode
of vibration. If atoms of equal mass be present in the lattice,
this normal vibration is an ordinary sound wave which may be con­
sidered as a stationary wave or as a progressive wave, according
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to convenience. There are in a ll ,  3N normal modes, and in the
general type of motion, a ll  these modes are superposed, each
having i t s  own frequency, amplitude and phase. The to ta l vibra­
tional energy of the la ttic e  is  the sum of the energies of these
normal modes, each of which according to the Quantum theory,
amounts to % hv +----- — -------- .  Hie f i r s t  term in th is  expres-exp(hv/jfeT) -  1
sion is  the zero-point energy (that is , the energy retained by
the o sc illa to r at Absolute zero of temperature) and the second,
the temperature»dependent component of energy which tends to zero
as T tends to 0°K. As the temperature is  gradually raised s ta r t­
ing from 0°K, i t  can be seen that the energy is  associated mainly
with the lowest frequencies in the beginning, while at higher
temperatures, the higher frequencies are excited and contribute
to the thermal energy.

The above conceptions are due to Debye who looked upon a solid
as an e lastic  continuum, whose frequency spectrum is  cut off a t a
limiting frequency vD (the Debye frequency). The quantity defined
by 0D » hvjj/fe, is  called the Debye temperature of the substance.
The low frequency normal modes can be assigned a wave vector, for
each value of which three independent normal modes are possible,
corresponding to the three directions of polarisation,

Peierls applied Quantum mechanics to the aspect of the energy
content of a normal mode. Instead of saying that an o sc illa to r
(of wave vector q and of polarisation s) is  excited to i t s  n’th
state, we now say there are n quanta of vibration of wave vector
q and of polarisation  s. Such quanta which bear to sound waves
the same re la tion  as do photons to lig h t waves, are referred to
as ‘phonons'. I t  is  seen that an assembly of phonons obeys Bose-
Einstein s ta tis tic s .

Anharmonicity and Umklapp processes:
In non»metallic substances or d i-e lec tric  solids, heat trans­

port is  through the la tt ic e  waves, -  the phonons. For a perfect
crystal with harmonic inter-atomic forces (the potential energy
is  a quadratic function of re la tive  displacements), the normal
modes are progressive plane e la s tic  waves, each la t t ic e  wave
being independent of the others, leading to an in fin ite  free path
and in fin ite  thermal conductivity. In actual crystals, deviations
of the la tt ic e  from perfect periodicity and harmonicity obtain,
the e lastic  potential energy contains also terms of higher power
of the amplitudes, and plane waves are no longer the normal
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inodes. Thus results mutual scattering and attenuation of the
waves and consequently, a heat resistance. This was first recog­
nised by Debye (1914) but the modern theory of heat conduction
in di-electric solids may be said to originate from the rigorous
mathematical formulation by Peierls (1929), who treated the solid
as a lattice. Considering the solid as elastically isotropic,
further extensions of Peierls* picture have been attempted, but
the treatment by Klemens (1951) is probably one of the most sat­
isfactory.

In the presence of a constant temperature gradient, the total
momentum of the 'phonon gas* down the temperature gradient con­
tinuously increases, whilst processes which scatter the phonons
try to efface the excess momentum. The resultant heat current is
determined by the phonon distribution, which is obtainable by
solving the Boltzmann integro-differential equation.

In a large crystal without impurities, structural defects,
strains etc., anharmonicity of interatomic forces causes inter­
phonon collisions, and is the only scattering agency. For tem­
peratures rather smaller than 0D, Pomeranchuk (1941a, b, 1942)
showed that there are very few collisions which alter simulta­
neously the occupation numbers of four or more normal modes.
Peierls (1929, 1935) showed further that only three-phonon col­
lisions are of importance, wherein two phonons coalesce to form
a third, or vice versa. The 'ordinary' or ‘momentum*conserving’
three-phonon processes satisfy the equations

(Oj + (Uj a (1)3 (11* 5)

and 51 + «2 = «3 (II. 6)

corresponding to the laws of energy and momentum conservation.
Since the energy carried by the phonons is unaltered by the col­
lision (equation 11,5), and the direction of energy flow is also
unchanged (equation 11,6), these ordinary three-phonon collisions
do not explicitly find a place in the expression for thermal
resistivity. Yet they do have an indirect influence in that they
can change the polarisation of the phonons, rendering them more
susceptible to other scattering processes.

Peierls also showed that for a discrete lattice, there are
'Umklapp* processes which obey the equations

(*>i + u>2 = (O3 (II. 5)
Qi + Q2 = Q3 + 27tb (11,7)
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where b is a reciprocal lattice vector. Though energy is conserv­
ed in these processes and there is some degree of correlation
between the initial and final directions of energy flow (as indi­
cated by equation II,7) in as much as b can have any one of six
directions parallel to the crystal axes (for simplicity, Peierls
treats a cubic lattice), the result is much the same as if the
phonons are randomly scattered. Thus they contribute to heat
resistance.

It was shown further by Peierls (1929) that for temperatures
above 0D, the umklapp resistivity (also called the intrinsic
thermal resistivity) is proportional to T, whilst at low tempera­
tures, Mu'*: T*2. exp(-0D/2T).

Boundary scattering:
In real crystals, thermal conductivity is limited not only by

U*processes but by all phonon-scattering processes which do not
conserve momentum. These other processes are i) scattering at
external boundaries, grain boundaries and by mosaic structure
and ii) elastic and inelastic scattering by static impurities and
inperfections such as strains, faults in periodicity and disloca­
tions.

In deriving the normal modes of a crystal, it is assumed that
the displacements at the crystal boundaries are periodic, whereas
the actual boundary is far more complex. This gives rise to scat­
tering which has been extensively studied by De Haas and Biermasz
(1935, 1937). Since this is one of the scattering processes for
which the absolute value could be reasonably estimated, Casimir
(1938) worked out the consequences of Peierls’ suggestion that
crystal boundary scattering should become important at low tem­
peratures. Casimir took the analogy of the flow of radiation down
a cylindrical tube having diffusely reflecting walls. Ignoring
phonon interactions except at the external boundary, where the
phonons are assumed to be absorbed and re-emitted isotropically,
he showed that the thermal conductivity becomes size-dependent
and is no longer an intrinsic property of the material.

Casimir*s result is XB - 2. 31 x 103 RpA2/3T 3 watts/cm-deg,
where the dimensionless quantity p has the value 1.4 for most
crystals, R is the radius, A is the constant in the expression
c»= AT for the specific heat per unit volume at low temperatures
on the Debye theory. For a crystal of square cross-section having
side *a*, 8» 0.56 a. We will express the thermal resitivity due
to boundary scattering as
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(II. 9)* wB = B/T3

B being the phonon*boundary scattering coefficient. Berman, Simon
and Ziman (1953) made detailed study of boundary scattering and
showed that ‘specular’ (in contrast with ‘diffuse’) reflections
at the external boundary increase the phonon mean free path.
They also calculated the reduction in mean free path for a rod of
finite length.

Expressing XB in the Debye form

XB = 1 cv u/3 «1.10)
where c v is the specific heat per unit volume, 1 the mean free
path and u the phonon group velocity (• velocity of sound),, it
can be shown that 1 is of the order of the shortest linear dimen­
sion of the crystal. Pomeranchuk (1942) had indicated that the
scattering at a small*angle grain boundary should be as the
square of the frequency, so that the thermal resistivity should
be proportional to T"1: (this can be easily derived from equation
II,10, remembering that u can be regarded nearly independent of
T, and that for temperatures T < 0/10, cv can be taken to be pro­
portional to-T3). Klemens (1955) has shown, however, that at low
frequencies (< 1/6 of the limiting frequency vD), the Pomeranchuk
type of scattering which arises from the disordered region imme­
diately adjoining the grain boundary contributes only a fraction
of the total scattering probability, the major part being due to
the strain field at large distances. Thus (Klemens, 1956) there
exists no difference in principle, between scattering at a small-
angle grain or mosaic boundary in a crystal and that at a crys­
tallite boundary in a polycrystalline solid, - except that the
scattering probability of the former is smaller.

Defect scattering:
Pomeranchuk (1942) showed that inelastic scattering by defects

can be neglected. Klemens (1951) has worked out the Quantum Me­
chanical theory of elastic scattering of phonons by static im­
perfections of atomic dimensions. An impurity can be expected to
perturb the lattice potential on account of i) the difference
between the masses of the solvent and the solute atoms and ii)
the difference between the elastic properties of the solvent-
solvent and solvent*solute atomic linkages. At low temperatures,
where only small wave numbers are present, Klemens neglects dis­
persion and calculates the scattering probability using the terms
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in the perturbation energy which are quadratic in the phonon
amplitudes (th is  is  because only these terms describe e la s tic
scattering). He then finds that the sca tte rin g  probability  is
proportional to (frequency)4, so that the heat re s is tiv ity  a ris­
ing on th is account, is  given by

wD - DT (II. ID

The coefficient D on the right hand side of th is  equation is  the
phonon»defect scattering coefficient. Klemens finds also no es­
sential difference between the scattering powers of vacancies and
substitu tional impurities. For single dislocations, in view of
their long-range stra in  field, he obtains a scattering probabili­
ty proportional to frequency, so that

wd * d/T2 (II. 12)

where d is  the phonon-dislocation scattering coefficient.
Ftor the over-all la t t ic e  thermal re s is tiv ity  of a d ie lec tric

solid, we can write
I A ,  * wg * wB + wD + wd + w„ (II . 13)

to a satisfactory  approximation. (The use of the sub-script ‘g*
for la tt ic e  conductivity has i ts  origin in the German word ‘Git-
ter*). Actually, i f  t be the effective relaxation time and Ta the
relaxation time for the individual scattering process indicated
by the index a, than 1/x * 2 l/*cw th is additivity relation being

a
applicable to each individual frequency. Klemens (1951) has shown
that under conditions when two of these scattering  terms are of
comparable magnitudes, the to tal wg is  larger than given by equa­
tion (II. 13).

§ 3. E lectron ic  thermal conduction in  m etals and a l lo y s

The Boltzmann equation:
In m etallic substances, heat can be transported not only by

the phonons but also by the conduction electrons, the l a t t e r
process being dominant in pure metals. Even for specimens con­
taining upto 0,1% impurity (see for instance, Halm, 1950), Xg «
Xe, where Xe is  the electronic thermal conductivity. We will now
consider Xe, Xg being taken up in § 4. We confine ourselves to
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polycrystalline metals, assuming them to behave lik e  isotropic
media.

The evaluation of X e involves, as does also the evaluation of
a, the determination of the distribution function of the conduc­
tion electrons in the presence of an external fie ld . Since the
heat flow due to a constant temperature gradient is  defined under
conditions when there is  no e lec tr ic  current, a s ligh t re-d is­
tribution of the electrons is  necessary, for creating an appro­
priate electric fie ld  which would counteract the electronic drift
caused by the temperature gradient. The evaluation of the veloci­
ty distribution function is  then based on the Boltzmann integral
equation,

Bf ( eX Bf
* Bx 1i Bk

[Bf/Bt] con

in which the direction of temperature gradient is  chosen as the
x-axis, X is  the x-component of the e lectr ic  fie ld  referred to
above, -e  is  the electronic charge, v is  the electronic velocity
and f the distribution function. The terms on the le f t  hand side
of the equation are proportional to the change in distribution
caused respectively by the electronic motion with velocity  vx,
and by the fie ld  X acting on the charge. The term on the right
hand side gives the change in distribution  due to the various
scattering (collision) mechanisms.

The solution of this equation has so far been carried out only
for quasi-free electrons, for which e = H2k2/2m. For certain

types of scattering mechanisms, i t  turns out that [Bf/Bt]con  can
be written in the form

< n ’ 1 5 )

where f„ and f are the distribution functions, under equilibrium
and in the presence of the temperature gradient. In other words,
when a non-equilibrium distribution function f i s  set up by a
system of external forces and these forces are suddenly removed,
the rate of approach to equilibrium distribution f D, under the
influence of these co llis io n s  is  given by equation I I , 15. The
problem is  then comparatively sim plified but, in general, the
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solution is complicated. Assuming a relaxation time, the Boltz­
mann equation can be written thus:

3f 3t  eX 3f _ f ~ fo
Vx BT Bx li 3 k "  x (II, 16)

As evaluated from this equation, the expressions for electrical
and thermal conductivities a and X involve integrals containing
f„ which can be evaluated to any desired order, for temperatures
T «  "Cjk. The first term in the expansion turns out to be the
only important one in the case of <r, whereas in the case of X,
this term vanishes identically and second order terms are to be
used. For this reason, thermal conductivity is referred to as a
‘second order’ effect.

For cubic and isotropic metals, the conductivities are:

ƒ
and

x v 2 dS
12 7i3 | grad^l

k 2 T ƒ x v 2 dS
36 7t | grad^El

(II. 17)

(II. 18)

I dewhere v is the electron velocity (= -----), k is the Boltzmann
II dk

constant and dS an element of the Fermi surface. The integrations
are over the Fermi surface ( e * Q .  If in these two equations, the
x’s are the same (that is, x is independent of the deviation of
the distribution from equilibrium), we obtain the electronic
Lorenz parameter L e to be

L e = X/oT = 7i2'fe2/3e2 (11,19)

which becomes independent of relaxation time and of the band
structure. This value of L e is due to the assumption of degener­
acy of the electron gas.

Electronic thermal resistivity, w e:
Wilson showed (Theory of Metals, 1936) that the electronic

thermal resistivity of metals can be expressed as the sum of two
components (in analogy with Matthiessen’s rule for electrical
resistivity) caused by the scattering of the conduction electrons
reqjectively by the impurities (or static imperfections such as
strains, displaced atoms etc.) and by phonons. Thus

we » w0 + w 4 (11,20)
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w 0 is the ‘impurity’ or ‘residual* thermal resistivity and is
connected with the “residual' electrical resistivity p„ by the
relation

P„/WoT = L 0 = n*k>/3e2 (II, 21)

L being the ‘ordinary’ (.or ‘normal’) Lorenz parameter. is
characteristic of the metal and is called the ‘ideal’ thermal
resistivity (sometimes referred to as the ‘intrinsic’ thermal
resistivity). .

In order to obtain Wj, the electron-phonon interactions are
regarded as processes in which an electron and a phonon of wave
vectors respectively kj and ^interact resulting in an electron
wave vector k 2 (compare the three-phonon processes of §2), or

vice versa, satisfying the energy conservation condition

Bj + flco = e2 (11,22)

and kj + q = k 2 (II, 23a)

or ki + q = k 2 + 27tb (II,23b)

the last refers to Umklapp processes, wherein an electron suffers
simultaneously a favourable phonon collision (that is, absorption
of an energy Quantum), which elevates it to the Brillouin zone
boundary, where it then incurs momentum reversal by Bragg re­
flection (by being strongly diffracted by the lattice).

The theory of Bloch (1928, 1930) for the case of electrical
resistance, starts with a spherical Fermi surface, ignores Um­
klapp processes and assumes the phonons to have a distribution
characteristic of true thermal equilibrium despite deviations of
the electron distribution from equilibrium. Wilson (1937) and
Makinson (1938) took over Bloch's picture (including the assump­
tion that only longitudinal phonons can directly interact with
the electrons) and discussed the case of thermal resistance. They
obtained for w* at low temperatures, the equation

wi * a T2 (II, 24)
where a ■ — — j - N ^ 3 (11,25)

\x> 9
N a is the number of conduction electrons per atom, Xoo the limit­
ing thermal conductivity at high temperatures, and A is a dimen­
sionless constant. Bremmer (1934) obtained A 3 27, whereas Wilson,
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employing a variational method due to Kroll (1933) and Kohler
(1948, 1949), obtained at a first approximation, the value 95.3
for A. Sondheimer’s (1950) third approximation gave A 3 71.6,
while Klemens (1954a), solving numerically the appropriate trans­
port equation for low temperatures, obtained A 3 64.0.

If N a be evaluated from equation (11,25), it is found (Hulm,
1950) that N a is about 0.02 even for metals for which one would
normally expect N a to be about 1. Similarly for Tungsten single
crystals, De Nobel (1954) found N a about 0.2. Further the addi­
tivity of w„ and w 4 expressed by equation (11,20) has been shown
by Sondheimer’s (1950) third approximation to be not strictly
valid. The measurements of White (1953 a,b,c) on copper, silver
and gold also seem to indicate this departure from strict addi­
tivity of wa and »£. The correction terms are however not large
and for all practical purposes, the following equation for elec­
tronic thermal resistivity is taken as valid:

w e 3 w 0 + Wi 3 p T'1 + a T 2 (11,26)

where p 3 P</Lo (11,27)

In a pure metal, lattice thermal conduction is negligible
compared to electronic thermal conduction, so that the behaviour
of the thermal conductivity of a metal will be as given by equa­
tion (11,26). The impurity term p/T obtains only at the lowest
temperatures, so that as the temperature rises, we falls in
inverse proportion. A minimum of w e is reached at a temperature T
of the order 9/10 or lower, and then the ideal resistivity term
takes hold and w e begins to increase (rather sharply in the case
of pure metals, especially those having a low Debye 9). This in­
crease becomes less steep at higher temperatures. In the presence
of even a small impurity, w e is increased and the w0 term becomes
dominant over a wider temperature range, so that the w e versus T
curve, instead of presenting a minimum, continues to be inversely
proportional to T, for a considerable temperature range, in an
alloy (wherein we have several per cent of solute atoms), we is
very much increased and X e diminished until it is of the same
order as Xg. The behaviour of the total thermal conductivity of
an alloy is therefore much different from that of a pure metal.

The law of Wiedemann-Franz-Lorenz:
In discussing thermal and electrical conductivity data, we are

often confronted with the question as to the validity of the
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W-F-L law. Since th is law connects e lec trica l and thermal resis­
t iv i t ie s ,  i t  can evidently be expected to hold as long as the
mechanism causing these re s itiv itie s  is one and the same.

Looking at the Quantum Mechanical view of the e lec trica l re­
sistance mechanism, when the e lec tric  fie ld  is  applied, the
momenta of the electrons in the partia lly  f il led  Brillouin zones
begin to grow with time. After a short while, there will be an
excess of electron momentum down the fie ld  direction. In other
words, there is  an e le c tr ic  current, and th is  process should
continue and the current keep growing unless there is  some mech­
anism which tends to o b lite ra te  the excess electronic momentum
in the direction of the field. Phonons: and impurities (or irregu­
la ritie s )  afford the scattering mechanisms whereby the electrons
can make quantum transitions to other: vacant states, so that the
electron wave vector sh ifts  into a different direction. In momen­
tum space, th is  would correspond to a movement of the electrons
from one side of the Fermi surface to the opposite side (— the
so-called ‘horizontal’ movement: see Klemens 1954c, 1956; Fröh-
lich  1936). At low temperatures, the electron scattering angle is
small being of the order T/0, so that the resistance mechanism
consists in a slow diffusion of the electrons along the Fermi
surface. We might add here tha t the e lec tr ic a l resistance, on
th is  account, would depend on the actual configuration of the
Fermi surface, -  that is , whether the surface is  spherical,
whether i t  touches a zone boundary, etc.

The thermal r e s is t iv i ty , on the other hand, can be due to
i) e la s tic  co llisional processes (which change the direction of
the electron wave vector, keeping the electron energy unchanged)
which are due to co llisions with imperfections and impurity
atoms, and cause the ‘horizontal’ movement (referred to in the
previous paragraph): along the Fermi surface, and i i )  in e lastic
co llisional processes (which change the energy by an amount of
the order feT) which are due to electron-phonon co llis ions, and
cause the so-called *vertical’ movement on the Fermi surface. In
the la t te r  process, as distinguished from the former, the elec­
tron movement is  from a point ju s t above the Fermi surface to a
point ju s t below, or vice versa. The scattering corresponding to
th is  would evidently be independent of the shape of the Fermi
surface.

We thus see that the e lec trica l resistance mechanism (which,
as has been shown above, is  characterised by ‘horizontal’ move-
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ment) and the 'horizontal’ thermal resistance mechanism are pro­
cesses giving identical relaxation times, and therefore the
W-F-L law should hold good under these circumstances. In other
words, as long as the thermal resistivity is dictated by impurity
scattering, this law should be valid for all temperatures. This
enables us to determine Xe from the constant electrical residual
resistance p0, using the W-F-L law thus:

Po /wcT = L 0 , or w0 = Po/LoT (11,28)
we = w0 + wi Si w0 (II, 29)

since «i «  w0, when the resistance is purely residual. Thus,

X* ■ J/we 2* 1/wo = L0T/p0 (11,30)
Even when the electron scattering is inelastic (when, for in­
stance, the electrons are scattered by the phonons), we see that
if T »  6 , the change in electron energy due to impact with a
phonon will be k9, which is small compared to kj. Thus, for such
temperatures, the electron-phonon collisions may be considered
roughlj elastic, and the W-F-L law can be expected to be obeyed.

Wilson (1937), Sondheimer (1950) and Makinson (1938) have dis­
cussed the theoretical behaviour of the electronic Lorenz para-
meter*Le = Xe/oT, with respect to temperature and the purity of
the metal. For monovalent metals at high and low temperatures,
L e should approach the ‘ordinary* value L e, whilst for an ideally
pure metal, L e should tend to zero as T tends to 0°K. For inter­
mediate temperatures, L e should fall below the ‘ordinary’ value,
this fall being less for greater impurity. For metals containing
small number of free electrons (like bismuth), the behaviour at
high and at low temperatures would not be much different, but at
intermediate temperatures, L e should rise to a maximum above L0,
and with lowering of temperature, fall to a minimum below L„.

§ 4. Lattice thermal conduction in metals and alloys

The lattice thermal resistivity, wg:
The presence of conduction electrons in metallic substances,

while constituting a medium for heat conduction, forms also an
extra scattering mechanism for the momentum transfer of the pho­
nons. This brings down the lattice thermal conductivity. Yet, in
the case of metals or alloys which have a small X e, the Xg may
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be comparable to X e. It was first pointed out by Koningsberger
(1907) that the heat transport by electrons and by the lattice
could be taken as independent processes wherefore one could ex­
press the total thermal conductivity X as

X = Xe + Xg (II, 31)

For obtaining the lattice thermal resistivity w g, we can extend
the theory of thermal conduction in dielectric solids (discussed
in § 2) to the present case, considering the phonon-electron
interaction as an additional scattering mechanism causing a re­
sistivity wE. Vie can thus write, for the over-all lattice thermal
resistivity w gt

* g - *B + "e ♦ w d + "d + wu (11,32)

The scattering of phonons by electrons can be treated as has
been done for scattering of electrons by phonons (see § 3) assum­
ing i) a spherical Fermi surface, ii) the electron distribution
function to have the equilibrium value, iii) U-processes to.be
negligible and, of course, iv) the possibility of direct inter­
action between the phonons and the conduction electrons. Be the
(1933) worked out the. relaxation time for this scattering process
assuming, like Bloch, that transverse phonons cannot dirtectly
interact with conduction electrons. On the other hand, assuming
phonons of all three polarisations to interact equally with the
conduction electrons, Makinson (1938) has shown that where elec­
tron interactions play a dominant role in limiting the phonon
free paths, the lattice thermal conductivity XE is given by

8 7t2 P 62 k3 1H
h 3 a3 CI 0 2 (r?r)2 (n,33)k dk

where 0 is the Debye temperature, M the atomic mass, ‘a' the
lattice constant, e and k are the energy and wave number of an
electron state, CL (which has the dimensions of energy) is the
constant of interaction between the conduction electrons and the
longitudinal phonons. The constant P has a value of about 7.18
for temperatures T «  0. We will write, for short,

wE = E/T2 or E = w eT2 (11,34)

E  being the phonon-electron scattering coefficient. But we have
seen that the component of lattice thermal resistivity (wa)
caused by the scattering of phonons by single dislocations has
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also  the 3ame tem perature dependence as wE (Klemens 1955), and
we know no way of separating  the e ffe c ts  o f these two processes,
by purely  thermal conductiv ity  measurements. We w ill henceforth
write, for the o v er-a ll l a t t i c e  thermal r e s i s t iv i ty  wg,

bearing in  mind th a t the term wE and the corresponding sc a tte r in g
c o e ffic ien t E include the e ffe c t of d islo ca tio n s  as well.

Klemens* work:
Makinson assumed th a t  a l l  modes o f p o la r is a t io n  in te ra c t

equally with the conduction e lec tro n s . The constan t CL in  equa­
tion  (11,33) i s  th e re fo re  re la te d  to  the in te ra c t io n  constan t C
in the fu ll  expression fo r e lec tro n ic  thermal conductiv ity  Xe, by
the equation, CE ■ |  C2. Since, however, the ac tua l value o f CL
i s  not known, Makinson (1938) expressed XE fo r a f re e -e le c tro n
gas in  terms of X^co), the ideal e le c tro n ic  thermal conductiv ity
a t high temperatures. Thus

where N, i s  the  number o f conduction e lec trons per atom. Of
course, X^o,) re fe rs  not to  the measured e le c tro n ic  thermal con­
duc tiv ity  but to  the 'id e a l ' value obtained a f te r  taking account
of the residual thermal r e s is t iv i ty .

Since the  o r ig in a l  Bloch theory  does not take  Umklapp p ro ­
cesses nor the d ispersion  of phonons ( in  o ther words, the d isper­
sion o f the  v e lo c ity  of sound) in to  account, and these  do in ­
fluence Xi(oo), Klemens (1954c) has shown th a t  i t  would be more
appropriate to  compare XE with the ideal e le c tro n ic  thermal con­
d u c tiv ity  a t  low tem peratures, Xt . In th is  manner, one would be
conparing two q u a n titie s  which are governed by the same mechan­
isms, thus e lim inating  the e ffe c t  of any v a ria tio n  o f the in te r ­
action constant C with the phonon frequency. Assuming the Makin­
son coupling scheme ( th a t  phonons o f a l l  p o la r is a tio n s  in te r a c t
equally with the conduction e le c tro n s ), he ob tains fo r a spheri­
cal Fermi surface, a t  temperatures T «  8,

wg = wB + wE + wD + w„ (11,35)

4 7i N

T X (11,36)

XE = l/wE » 313 Xj (-Ï-)4 n;4 /3
ÖD

(11 ,37 )
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This equation is  easily  obtained by su b stitu tin g  in equation
(11,36), the value of Xi(00) (given in terms of Xit by equation
(11,25)) using Klemens’ value of 64.0 for the numerical constant.
In equation (11,37) i t  is  appropriate to use && the Debye tem­
perature obtained from low temperature specific  heat measure­
ments, because i t  is  the average over a ll polarisations.

On the other hand, i f  one assumes the Bloch coupling scheme
(namely, that only longitudinal waves can directly in teract with
the electrons), the equation takes the form

XE = 1/wE = 105 Xi (-f-)4 N;4/3 (11.38)
ÖL

Here we use the value of 9 appropriate for longitudinal la tt ic e
waves, namely 0L (Blackmann, 1951). Estimation of 0L in relation
to 0D is  not easy for real metals. Monovalent metals like copper
and sodium are e la s tic a lly  very anisotropic, so that averaging
has to be done over the d iffe ren t d irec tions re la tiv e  to the
crystal axes. Such a calculation has been made by Blackman
(1951), and usually 0L is  taken to be ^  1.5 0D. The numerical
constant 105 comes in equation (11,38) in place of 313, because
CE = C2/3 . Further, i f  wE in the equations (11,36, 37 and 38)
refers to an alloy, Xj and X j^^ also re fer to the same alloy,
and not to the pure solvent metal.

Na has sometimes been regarded more or less as an adjustable
parameter (see, for instance, Sondheimer 1952) and taken to mean
the 'e ffec tiv e ' number of electrons per atom, defined by the
current induced in the band due to an e lec tric  field . I t  seems
more reasonable, however, to regard Na as representing the number
of free electrons per atom in the conduction band (see, for
instance, Klemens 1954c, 1956).

Choice of formula for XE:
We have obtained equations ( I I , 37) and ( I I , 38) respectively

for the Makinson and Bloch coupling schemes of phonon-electron
interactions. I f  one assumes Na * 1 for pure silver, say, and cal­
culates X_ (= l/w_ = T2/E) from these equations, i t  is  found that

E  E
the Makinson scheme gives a value about 15 to 20 times that given
by the Bloch scheme. I t  appears therefore that the la ttic e
thermal conductivity XE (when only phonon-electron sca tte ring
processes exist) depends sensitively upon whether the electrons
interact with phonons of a ll polarisations (Makinson scheme) or
only with longitudinal phonons (Bloch scheme). Direct determina-
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tion of XE of a pure metal being not possible, the following
method is  employed for testing  which of these schemes holds
better.

Considering a series of alloys having one and the same solvent
metal, the experimental values of la ttic e  thermal re s is tiv ity  in
the temperature region where i t  shows a T '2 temperature depend­
ence, give E for each of the alloys. We plot E against the solute
concentration (Klemens 1954a, 1956; Kemp et al 1954, 1956). The
value (E0) of E for the pure solvent metal is  obtained by extra­
polation to zero solute concentration. Since we know the expected
values of E“akinson and E5loch. for Na = 1, th is  constitu tes an
immediate check as to which of these coupling schemes describes
the position better. I t  is  quite possible that the value of E0
lie s  somewhere between E“akinaon and E®loch (but closer to the
former, say); then we infer that th is is  an intermediate coupling
wherein the transverse phonons do not in te rac t so strongly with
conduction electrons as do the longitudinal phonons. Incidentally
one can estim ate the value of Na for the pure solvent metal,
using the appropriate equation (here, equation (11,37)).

Coming now to equation (11,36), we already mentioned that i t
compares two quantities XE and ^i(oo) which pertain to d ifferen t
temperature regions. I t  would be instructive to use th is formula
to see how far i t  deviates from the resu lts  obtainable from the
formulae (11,37) and (11,38), which compare XE and Xit both of
which refer to low temperatures. Combining equations ( I I ,36) and
(11,34), we obtain

1/E = l/wET2 = Xi(00) (11, 39)
® Na

Considering again a se ries  of alloys having one and the same
solvent metal, E is  obtained for each alloy (as mentioned in the
preceding paragraph) from the experimental values of l a t t ic e
thermal re s is tiv ity  in the temperature region where i t  shows a
T’2 temperature dependence. Since X^co) re fers to the ‘ideal*
thermal conductivity, i t  appears, at f i r s t  sight, that equation
(11,39) can be used to calculate the electron concentration Na
in each of the alloys, holding Xi(co) constant. That would not be
correct, because alloying changes, besides Na, the Xi(00) (and X4)
also. Xi(00j for each alloy is  evaluated by measuring the e lec tri­
cal res is tiv ity  at the ice-point and the steam-point, and obtain­
ing dp/dT. Assuming the va lid ity  of theHiedemann-Franz-Lorenz
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law (which i s  ju s t i f ie d  a t high temperatures, irre sp e c tiv e  of any
assum ptions reg ard in g  band s t r u c tu re  and the  phonon-electron
in te rac tio n )  and a l in e a r  temperature*-dependence o f p*, a t high
temperatures, Wj/^) is  calcu la ted  thus:

S ubstitu ting  th is  value of Xi(oo) in  equation (11,39), Na fo r the
p a r t ic u la r  a llo y  i s  obtained (Sladek  1955). P lo tt in g  Na aga inst
so lu te  concentration and ex trapo la ting  to  zero so lu te  concentra­
tion , N fo r the pure solvent metal can be estim ated. We wish to
emphasize here th a t , fo r reasons given in  eonnection with equa­
tion  (11,36), we cannot a ttach  much weight to the value obtained
for Na, from th a t  equation. Our only in te r e s t  i s  to see how fa r
th is  value of Na dev ia tes from th a t  obtained as ind ica ted  in  the
previous paragraph, employing equation (11,37).

Pco = Po + Pi(oo) = Po + GT

where G i s  a constant of p ro p o rtio n a lity .

Now P i ( C o / L e T

i(0O) d r ®
<11,40)
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C h a p t e r  III

The  S i l v e r - b a s e  a l l o y  s

§ 1. Introduction

Norbury (1921) enunciated the rule known a fte r him: “the in ­
crease in resistance caused by a certain  impurity (expressed in
atoms per cent) increases both with the distance in the series of
the periodic system and the distance in the columns, in which the
metal and ad-mixture l i e ”. Stated otherwise, th is  rule requires
that for alloys consisting of elements of d ifferen t valencies,
the atomic (e lec tr ica l) re s is t iv ity  increase should be propor­
tional to the square of the valency difference between the so l­
vent and solute metals. The measurements by Borelius a t room
temperature and at solid carbon-di-oxide temperature, on binary
alloys containing a small amount of transitional metal as solute,
showed that the behaviour of these alloys was not in conformity
with Norbury*s rule. The in teresting series of investigations;by
Gerritsen and Linde (1951 a, b, 1952, 1953) on these alloys a t
lower temperatures resulted in revealing their anomalous residual
elec trica l resistance and negative (e lec trica l) magneto-resist­
ance effects. To explain these resu lts , Korringa and Gerritsen
(1951, 1953) postulated a new theory incorporating a "hither-to
unknown feature of the interaction between the conduction elec­
trons” which shows out in the presence of an impurity.

The present measurements on Ag*Mn alloys (containing 0. 55,
0.32 and 0.14 atoms per cent of Manganese) constitute essentially
an extension of the above-mentioned investigations to the aspect
of thermal conductivity. A preliminary report on the behaviour of
Ag-0. 55%Mn has already been presented (De-Nobel and Chari, 1955)
at the International Conference on Low temperature Physics', Paris
1955. An alloy of Ag-In (containing 0. 24 atoms per cent of Indium)
was also included in th is series so as to distinguish between the
behaviour of the noble metal alloys containing a magnetic and a
non-magnetic solute.
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§ 2. Preparation o f  the a l lo y s  and determ ination o f  the so lu te
concentration

The alloys *) were prepared a few years back by Dr.J.O.Linde
from pure s ilv e r (analysis not available) and from high purity
Manganese and Indium, containing less than 5 x 10 parts of im­
purity. The metals were melted in evacuated s i l ic a  tubes in a
high-frequency furnace, rolled and cut into rods of cross-section
about 2.5 mm square.

The e lec trica l resistance of these rods was determined as de­
scribed in chapter I, § 6, by keeping them directly  immersed in
the bath liquids. Further, the ir resistances at the temperature
of melting ice and at steam temperature were also measured. The
determination of solute concentration in the alloys was as fo l­
lows (Linde  1939, Gerr i t sen  and Linde 1951a):

Representing the e lec trica l re s is tiv itie s  of the alloy and of
pure s ilver, at a given temperature, by p“lloy and pAg, we can
denote the re s is tiv ity  increase on alloying, by Ap, where

Ap = p .U ay _ pAg ( I I I ,  1)

If  c is  the concentration of solute metal expressed in atoms per
cent, and 6p the atomic re s is t iv ity  increase (that is , the re­
s is tiv ity  increase due to one. atom per cent of solute metal), i t
is  well-known that for small values of c, one could consider Ap
as being equal tc c5p. This relation was experimentally verified
by Linde at room and at other temperatures, for Silver-Manganese
and Silver-Indium alloys, among others. Linde (1939, 1948) also
showed that the value of 5p for Ag-Mn alloys (containing small
amounts of Manganese) was 1.60 p.S3-cm. Fr'om his other data, we
derived also

P*873°k = 1.465 (iQ-cm ; P*g30K = 2.084 |UÏ-cm ;

and 8p for Ag-In alloys containing small amounts of Indium
= 1.765 (iQ-cm. Connecting the e lec trica l resistance R and the
electrical re s is tiv ity  p by a proportionality factor ‘a’ , we can
write
*) We th a n k  D r . J . O . L i n d e  ( o f  th e  I n s t i t u t e  f o r  P h y s i c s ,  Royal

T echnical High School, Stockholm, Sweden) and Dr. A . N . G e r r i t s e n
( fo rm er ly  o f  th e  Kamerlingh Onnes L ab o ra to ry ,  Leiden; now As­
s o c i a t e  P r o f e s s o r  o f  P h y s ic s  a t  th e  U n iv e r s i ty  o f  L a f a y e t t e ,
In d ian a ,  U .S .A .) fo r  making th e se  rods a v a i l a b l e  to  us fo r  the
i n v e s t i g a t i o n s  d e sc r ib e d  in  t h i s  t h e s i s .
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®373°K = a’P373°K “ a (P373°K + C>®P)

Eliminating V ,  we obtain,
«alloy „Ag _ «alloy QAg
**273°K ' ^373°K i4373°K * r 2730K

c * ----------n------n--------  (lil, 3)
6p (» ;“ SJ -  » ;“ S{)

Of course, in determining the Manganese or Indium content in the
alloy, the corresponding value of 6p has to be used.

Following this procedure, we obtained for the three Ag*Mn
rods. Manganese concentrations of 0.55, 0.32 and 0.14 respective­
ly, while in the Ag-In rod, the Indium concentration was found
to be 0. 24. atoms per cent.

®273°X = a*P273°K = a ^P273°K + C>®P)

§3. The residual electrical resistivity, p0

Fig. Ill,1 gives the1 variation of the electrical resistivities
of the four rods with temperature. It can be seen that they all
attain a nearly constant value at liquid Hydrogen temperatures;
but whereas the the Ag*0. 24%In rod maintains this value even at
the liquid Helium temperatures, the other rods show an anomalous
fall of resistance in the liquid Helium region itself. Further,
in the case of the Ag-0.55%Mn rod, the value obtained for pot the
residual electrical resistivity, by extrapolating the electrical
resistivity versus temperature curve, to the absolute zero of
temperature, led to the difficult situation of the measured ther­
mal conductivity being somewhat less than the estimated elec­
tronic thermal conductivity Xe (= L 0l/p0), where L 0 is the ordi­
nary Lorenz parameter: see equation 11,30). We adopted the only
course left, namely, to consider the constant value attained at
liquid Hydrogen temperatures, as the residual resistivity pot
looking upon the further fall of p as an anomaly. For the sake
of uniformity, the same convention was applied to the rest of the
rods as well.

In fig. Ill,2 where X/T is plotted against T, the horizontal
lines through the points marked L 0/ p 0 on the Y-axis, give the
estimated value of Xe/T. In order to obtain the lattice thermal
conductivity X g at any temperature, one has to measure the length
of the corresponding ordinate intercepted between the X/T versus
T curve and the horizontal line (drawn through the point marked
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Figure 111,1
Silver-base alloys: Electrical resistivity p

in u,Qcm, versus Temperature.
V Ag-O. 55%Mn. A Ag-O. 24%In.
a Ag-O. 32%Mn. 0 Ag-O. 14%Mn.

Figure III,2
Silver-base alloys: X/T in watts/cm-deg

O Ag-O. 55%Mn. Q Ag-O. 24%In.
A Ag-O. 32%Mn. V Ag-O. 14%Mn. 

The curve marked —.—. — is for Cu-0.056»Pe
(White and Woods).
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Lo/Po)* This portion of the ordinate gives Xg/T. Since theory
requires Xg to vanish at 0°K, i t  is  seen by extrapolation of the
X/T vs T curve to 0°K, that our choice of p„ was proper. I t  will
be seen from the figure that in the case of Ag-0.55%Mn, the
extrapolated curve meets the X/T axis a t a point about 10% lower
than the experimental value of L0/p 0. This d ifference is  not
serious. For th is  rod, we have throughout used th is  value ob­
tained by extrapolation, as the proper one.

§ 4. E lectronic thermal r e s is t iv i ty ,  we

We have seen in chapter II that

Rather than use the theoretical expression for w* given by equa­
tion (11,24), we have preferred the experimental value of White
(1953b) for annealed pure silver, namely,

Of course, wD * p/T * p0 being the residual e lec trica l
re s is tiv ity . From our experimental values of p0, i t  was found
that for the Ag*0.55%Mn, the w4 term amounted to < 1% of wD at
20°K becoming negligible at lower temperatures. For the alloy of
smallest manganese content, namely Ag*0.14%Mn, Wj was about 4% of
wQ at 20°K, and 1.5% at 15°K, fa lling  rapidly to insignificance
at lower temperatures. In fig. I l l , 3, of X vs T, of these alloys,
the curves marked Xe are thus the function

The values used for p0 for the four alloys in order of decreasing
solute content are 1.17, 0.54, 0.45 and 0.27 nficm.

Table I I I , 1 gives X of the four silver-base alloys as a func­
tion of T.

§ 5. Discussion

The X versus T curves (fig . I I I .  3):
The change in shape at about 30°K in the curves for these

alloys is , of course, due to the la t t ic e  thermal conductivity

*e = Wj + w0 ( 11, 20)

w* ■ 1.06 x 10*5 T2,5 cm-deg/watt (III, 4)

+ 1.06 x 10*s T2' 5)*1 (III, 5)
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Table I I I . l
Silver-base alloys: X (in  watts/cm-deg) against T°K.

Ag-0. 55%Mn Ag-0.32%Mn Ag-0. 24%In Ag-0.14%Mn

T X T X T X T X

3. 806
3.077
2. 273
1.963
1. 471

3.916
3.426
2. 858
2. 277
1. 554

4. 122
3. 742
3. 262
2.906
2.605
2. 308
1.983

19.95®
19. 37 8
18. 96°
18.027
17.47®
16. 97 8
16.04®
15. 30 6
14. 823

75.48
70. 98
67. 46

86.51
81. 58
77. 39
73. 98

0. 1012
0.0783
0.0584
0.0528
0.034°

0. 1064
0.088°
0.0697
0.0597
0.035®

0 .1168
0.099°
0.0827
0.0734
0.0657
0.0598
0.0541

0. 704
0.689
0.668
0.643
0.620
0.599
0. 573
0.544
0 .  532

1. 348
1. 285
1. 260

1.406
1, 361
1. 328
1. 286

4.081
3.512
3.194
2.906
2.723
2. 572
2. 330
2.119
1.925
1.782
1.512

4.077
2.852
1.562

4.048
3.796
3.695
3. 596
3.549
3. 497
3. 395
3.312
3.034

19.704
18. 774
17. 73 8
16. 674
15.70°
14.843

76. 24
73. 34
70.86
67.96
65. 35
65. 33

0.234
0. 190
0. 171
0. 148
0.141
0.138
0. 132
0.119
0. 104
0.0943
0.075s

0. 225
0.149
0.080s

0. 228
0.208
0.197
0. 189
0.187
0.186
0. 183
0 .  179
0.162

1.343
1. 251
1. 173
1.112
1.046
1.025

2. 333
2. 274
2. 262
2.227
2.192
2. 190

3.930
3. 392
2.800
2. 446
2. 328
2.000
1.585

19.734
18. 328

19.884
17. 89 7
16.874
15. 88s
14. 69°

75. 47
72.72
67. 27
64. 46

0.236
0. 196
0.162
0.142
0.137
0.123
0 . 091

1. 385
1.237

1. 395
1. 228
1.158
1. 114
1.035

2. 236
2. 304
2. 232
2. 242

4.045
3.760
3.466
3. 185
2.944
2. 747
2.536
2. 337
2. 108
1.916

4.028
3. 737
3.443
3.155
2.948
2.727
2. 439
2.141
1.835

2. 886
2.419
1.899
1.563

19. 859
18. 89®
17.95®
17.07°
15.96 7

19. 974
19.771
19.02®
18.082
17.10 3
16.04°
14.86s

73. 84
70. 32

0.422
0.367
0.335
0.303
0.277
0.263
0.246
0.225
0.215
0. 189

0.402
0. 363
0. 329
0.304
0. 278
0. 258
0.244
0.210
0. 178

0. 277
0. 238
0.190
0. 152

2.082
1.922
1. 842
1. 847
1.704

2. 148
2. 121
1.981
1.845
1.765
1.688
1. 648

2. 618
2.616
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Figure III,3
Silver-base alloys: X and Xe both In watts/cm-deg,

versus Temperature.
A Ag-;0. 55%Mn (curve D); ?Ag-0. 24%In (curve B).
© Ag-0.32%Mn (curve C); eAg-O.14%Mn (curve A).

The curves marked A', B', c' and D' (and drawn
are the Xe curves corresponding respectively to the X

curves marked A, B, C and D.

attaining its maximum value near about this temperature. The main
point of interest, however, is in the liquid Helium region where,
with fall of temperature, X ceases to fall but remains nearly
constant over a small temperature region. Taking, for instance,
the case of Ag-O. 32%Mn, this region lies between about 2.7 and
2.4°K. (The X/T versus T curves show this as a hump and the X g
versus T curves of fig. Ill,4, also show it in a marked way). The
effect of this small region of nearly témperature*independent X
is to shift the curve more or less parallel to itself, toahigher
X«-value than would otherwise result if the X versus T curve were
simply extended to the lower temperatures. Measurements at low
temperatures on dilute copper alloys by White and Woods (1954,

63



Q04

0.0 2

0.04

Figure  I I I , 4
Silver-base alloys: X g in watts/cm-deg,

versus Temperature.
A Ag-O. 55%Mn. V Ag-O. 24%In.
© Ag-O. 32%Mn. E Ag-O. 14%Mn.

1955), on silver alloys by Kemp et al (1954, 1956) and on Indium-
Thallium alloys by Sladek (1955) do not show this feature. We had
therefore to test its genuineness.

For the Ag-O. 55%Mn rod, which was the first of this series of
alloys to be investigated by us, our original measurements em­
ployed Allen-Bradley carbon composition resistors. The measure­
ments were repeated using phosphor-bronze thermometers and since
the agreement was excellent, we made bold to make a preliminary
announcement of our results at the International Conference on
Low Temperature Physics, Paris (De Nobel and Chari, 1955). Later,
we repeated the measurements using the De Vroomen carbon-film
resistors and there was perfect agreement, as can be seen from
the three sets of points marked on the X versus T curve for
Ag-O.55%Mn, at liquid Helium temperatures - (vide -fig. Ill,3 and
III, 5).
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Originally, we had used the 1948 Helium vapour pressure scale,
for which considerable deviations are known to occur just at this
part of thë low temperature region. We therefore corrected our
results in accordance with the 1956 Helium scale of Van Dijk and
Durieux (1955). This made no essential difference; it only shift­
ed the hump, a fraction of a degree to the lower temperature side.

Thus we are convinced that the new feature noticed by us in
the region between 2 and 3°K for these silver-base alloys (and
also for the steels: vide chapter IV) is genuine. The question
immediately arises as to what could be the source of this extra
contribution to X. Since an anomaly in the residual electrical
resistance and the electrical magneto-resistance of Ag-Mn alloys
had been observed hy Gerritsen and Linde (1951) and discussed
theoretically by Korringa and Gerritsen (1953), the first im­
pression was that the new feature was the,thermal counterpart of
the anomaly in the residual el'ectrical resistance, and that it
should be attributed to the presence of the transitional metal
ion in the alloy. This accounts for the interpretation of this
effect by Gerritsen (.1955), based on the Korringa-Gerritsen
theory, at the time of the international Conference on Low Tem^
perature Physics at Paris. The same effect being observed in the,
Ag-In alloy and later with the steels, hcrwever, entirely altered
the picture.

Our preliminary communication to the International Conference
on Low Temperature Physics, Paris, 1955, contained a fallacy, in
that the fig. 1, therein, depicted a flattening of the hump of
the X/T versus T curve on the application of increasingly strong
magnetic fields. That was based on insufficient data. We have now
made a few series of measurements in magnetic fields and fig.
Ill,5 represents the results. It can be seen that the shape of
the \ versus T curve persists, without any significant change,
even in the strongest fields used, and should therefore be a
feature of the lattice thermal conductivity. Further, since it
is found in solids of such a different nature as dilute silver
alloys and complex alloys like the steels (where we have a prima­
ry substitutional solid solution of Fe and Ni or Mn, forming an
interstitial solid solution of carbon), it is evidently of a
rather general nature.

Measurements on dielectric solids by De Haas and Biermasz
(1935, 1937) and Berman (1953), among others, do not show this
effect, whereas the measurements on quartz glass by Wilkinson and
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Figure I I I , 5
Silver-base alloys: X in watts/cm-deg,

versus Temperature.
©. <t>, •: H = 0; V: H = 12 K$

A, A: H = 19 K$; ■. a: H - 25.5 K$.
The set of four curves at the top are
for Ag-0.14%Mn. The set of three curves
at the middle are for Ag-0.32%Mn. Theset of four curves at the bottom are
for Ag-0.55%Mn. Data for Ag-0. 24%In are
not plotted since the effect of magne­tic field us not measurable.

Wilks (1949) and by Berman (1951a) show something akin to this,
in having a narrow region of temperature-independent X. In pure
metals, lattice thermal conduction is masked by the electronic
thermal conduction, and plays such an insignificant role that we
do not except this feature in lattice thermal conduction to be
noticeable. In very impure metals and in alloys containing a
fairly large amount of solute metal, impurity scattering of the
phonons begins to take effect at temperatures probably as low as
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liquid Helium temperatures, so that the effect would not be quite
marked. This leaves ‘suitably1 dilute alloys to be the material
wherein one should look for this effect. Further discussion of
this topic will be taken up undèr “the interaction between pho­
nons and electrons".

The VT versus T curves:
In fig. Ill, 2 is plotted V T  versus T for the silver-base

alloys measured by us. For purposes of comparison, a few of the
measured points of White and Woods (1955) on Cu-0.056%Fe (as read
off the graph in fig. 5, of their paper), are also plotted. It
was evident to us at the very outset, that the anomaly in the
thermal conductivity at the liquid Helium temperatures would make
it rather a difficult matter for the analysis of our measure­
ments. The theoretical prediction of Makinson (1938) and the ex­
perimental results - of Hulm (1951) and Estermann and Zimmermann
(1952) on Copper-Nickel alloys, of Berman (1951b) on industrial
alloys, of White and Woods (1954, 1955) on very dilute Copper-
Iron alloys, of Sladek (1955) on Indium-Thallium alloys, and of
Kemp et al (1954, 1956) on Silver-Palladium and Silver-Cadmium
alloys - have shown that at sufficiently low temperatures, lat­
tice thermal conduction is limited mainly by the phonons being
scattered by the conduction electrons (the E/T2 term in the
equations 11,32 and 11,34). We have, therefore, as a first ap­
proximation, ignored the anomaly in the liquid Helium region. In
other words, we considered it rather as a spread of points, and
boldly drew a straight line through the point marked Lo/p0
(= l/w0T) on the Y-axis. The correspondence with White and Woods’
curve for Cu-0.056%Fe, lends support to this step. The gradient
of this line equals 1/E, whence the phonon-electron scattering
coefficient E for each of the alloys is obtained. Boundary scat­
tering of the phonons is also probably present but we neglected
it, considering that Berman (1951b) has shown this to be at most
about 1/2% of the total thermal resistivity, for a grain size of
the order of 0.02 mm; and our alloy specimens have certainly much
larger grain sizes.

The values of E thus obtained for the Silver-base alloys are
respectively 570, 400, 540 and 400 cm-deg3/watt, in the order of
decreasing solute concentration. Remembering that this estimate
includes dislocation scattering of the phonons, and that we do
not expect the addition of such small percentages of solute atoms
to significantly affect E, we take 400 as a reasonable value for
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E of pure Silver. The comparatively higher value of E in the case
of Ag-0.55%Mn and Ag-0. 24%In should be attributed to disloca­
tions. The value of E = 400 is in keeping with the estimate of
E = 430 for pure Silver (assuming N a = 1) on the Makinson scheme
(see Kemp et al 1956), whereas it should be 8300 on the Bloch
coupling scheme. Thus our measurements show that in the case of
Silver, the conduction electrons interact more or less equally
strongly with longitudinal and transverse phonons. Prom a discus­
sion of the various conduction properties of monovalent metals,
Klemens (1954c) was led to expect this behaviour, and this has
already been confirmed for Silver by Kemp et al (1954, 1956), and
for Copper by Klemens (1954a) and b y White and Woods (1954, 1955).

Using the value a = 5 x 10'5 (Rosenberg 1954a) and of E = 400
we can estimate N a for pure silver thus:

X g - T2/400 ;• Xi = 1/aT2 ;

and 0 = 215°K. But, from equation (11,37),

Xg/Xj = 313 (T/0)4.n;4/3
Therefore, N a ̂  1.1 .

Going back to the X/T versus T curves, we find that they
deviate from rectilinearity (as does also the curve of White and
Woods) above about 6-7°K. the lowering of the curves below the
straight lines indicates the setting-in of phonon-impurity scat­
tering, and this is in agreement with the requirements of Makin-
son’s theory. It appears, a priori, from the relative depressions
of the curves below rectilinearity, that the first small addi­
tions of impurity (or solute atoms) are much more effective ir
scattering phonons than are further additions. It would however
need more detailed study over a whole series of impurity concen­
trations, before definite conclusions can be drawn.

Though we do not have measurements at temperatures intermedi­
ate to liquid Hydrogen and liquid Helium temperatures, the trend
of the X/T versus T curve in these two regions, points to the
existence of a maximum in the intermediate temperature region.
This could be explained. For, at these intermediate temperatures,
where mutual scattering of phonons can be neglected, we have

X g =

(from equations 11,9, 11,

l/wg

34,

1JL A +T3 + ™2 +
35), so that

DT
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1 (III,6)V t B E
— s + —  +
T 2 T

DT2

For Xg/T to be maximum, we should have the minimum value for
(B/T2 + E/T + DT2), which would be the case if 2DT4 = ET + 2B.
As mentioned above, the boundary scattering term is likely to
amount to only a few per cent, so that we can write the condition
as

2 DT2„  = E (III,7)

To test this conclusion, we took up the measured points at liquid
Hydrogen temperatures and tried to split the lattice thermal
resistivity into that due to scattering by electrons and due to
scattering by impurities and defects. Then

w * = ^  + DT or w gT 2 = e  + ®T3 (III, 8)

Plotting w gT 2 against T 3 should give a straight line from which
E and D could be found out. Actually, the plotted points are
rather scattered: the spread being ±5% for Ag-0.55%Mn and
Ag*0.32%Mn and as much as 20% and 35% respectively for Ag-0. 24%In
and Ag-0.14%Mn.

Since we cannot expect two resistance mechanisms with such
diversity in temperature-dependence (especially when they are of
comparable magnitudes) to be strictly additive, and since we only
wished to have a rough idea of the relative magnitudes of the two
resistance components, we made estimates of the values of E and D
from the straight lines drawn symmetrically through the rather
scattered points. Table III,2, gives the values of E and D ob­
tained in this manner, compared with the value of E obtained from
the Helium temperature data.

The values for E in the last column are obtained thus: In
double logarithmic plots of w g versus T, there are short tempera­
ture regions just above the liquid Helium temperatures, where the
extrapolated curves indicate a proportionality of w g with T"?
suggesting that phonon-electron scattering is dominant in these
short intervals. Prom the values of X at these temperatures, a
rough estimate of E could be made.

Using the values of E and D, we have employed equation 111,7,
for estimating the temperature (Tmax) at which X g/T would attain
its maximum value, and also the corresponding (maximum) value of
Xg/T. Table III, 3 gives the values thus obtained for Tmax and
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Table III, 2

Specimen D
in

cm/watt

E iii cm*deg3/watt

From wgT2 vs T3
curves at liquid

Hydrogen
temperatures

From X/T vs T
curves at
liquid
Helium

temperatures

From w vs T
curves
covering
liquid

Hydrogen and
Helium

temperatures

Ag-0. 55%Mn 0.082 750 . 570 720
Ag-0. 32%Mn 0.066 460 400 400
Ag-0. 24%In 0.092 560 540 4.25
Ag-0.14%Mn | 0.147 40Q 400 510

Table III,3

Specimen T1 max
(Xg/T)max in
W/cm-deg2

calc. obs. calc. obs.

Ag-0. 55%Mn 16. 5°K 13.0°K 0.015 0.015
Ag-0. 32%Mn 15. 5°K 12. 5°K 0.022 0.024
Ag-0. 24%In 14. 5°K 12.5°K 0.017 ■0.0176
Ag-0.14?ÊMn 11. 1°K • 11. 5°K 0.018 0.022

(X^T)B1X, against their experimental values... We consider the
agreement good. We find, on the whole, 'such- a method of estimat­
ing the approximate values of Tmax snd (Xg/T)Bax to be very in­
structive.

Interaction between phonons and electrons, and coupling between
longitudinal and transverse phonons:

For the discussion of the interaction between conduction elec­
trons and the phonons, three possibilities arise.

Case 1: The electrons interact equally strongly with the lon­
gitudinal as well as with the transverse phonons: (Makinson
coupling scheme), so that c£ = Cj.

Case? 2: The electrons interact directly with the longitudinal
phonons but less strongly (or even not at all) with the trans­
verse phonons, the latter being closely coupled to the longi-
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tudinal phonons, by means of ordinary (non-umklapp) three-phonon
processes. Thus c£ »  C| and c | might even be zero.

We wish to make the following comments as regards case 2:
i) The assumption of a spherical Fermi surface and of spherical
symnetry of the crystal la ttic e  potential lead to CT = 0, whilst
Cl ^  i i)  Since the transverse phonons do not strongly in teract
with the conduction electrons, one might jump to the conclusion
that the la ttic e  thermal conductivity would be nearly as large as
in an equivalent d ielectric  solid. The close coupling between the
longitudinal and transverse phonons, however, tends to equalise
the effective mean free paths of phonons having the same frequen­
cy but d ifferent polarisation: and th is  effective mean free path
would be governed by the scattering of the longitudinal phonons.

Now, le t  us go back to equation ( I I ,33). The la tt ic e  thermal
conductivity XE is  there expressed in terms of C*, and is  indep­
endent of 6. Thus cases 1 and 2 would both lead to the same value
of X_, provded i t  is  expressed in terms of c£.

Case 3: The transverse phonons in teract less strongly,, i f  at
all, with the conduction electrons and are, fu rth er,, only loosely
coupled to the longitudinal phonons. The transverse phonons could
therefore contribute to la tt ic e  conduction without being consid­
erably influenced by electron interactions. This would resu lt in
an additional contribution to the la t t ic e  thermal conductivity
(Klemens 1954a, 1956)» We think th is  might be the cause for the
anomaly in. thermal conductivity in .the  liqu id  Helium region*- ob­
served by us.

The reasons why we have been able to detect th is  feature are
i)  carbon resistance thermometry at the liqu id  Helium tempera­
tures becomes more sensitive and dependable than the gas thermo­
metry employed by most other investigators; i i )  th is  effect seems
more marked in 'suitably* dilute alloys. We say ‘suitably* dilute,
since neither the very d ilu te  copper alloys of White and Woods,
nor the very high solute-content alloys (like the Ag*Pd and Ag-Cd
alloys of Kemp et al, the In-Tl alloys of S ladek , the Cu-Ni a l­
loys of Hulm. and of Estermarm and Zimmermann, and the industrial
alloys studied by Berman) show it .  In fact, in the higher Nickel-
content s tee ls  measured by us (nos. 12871, 1798H and 3754) the
effect is  quite small. I t  will be shown in the next chapter that
the measurements of some of the other investigato rs also show
indications of th is  effect in th e ir  specimens, though not to a
marked extent.

Analogy can be drawn between th is  additional transverse phonon
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contribution to the lattice thermal conductivity and the so-
called ‘longitudinal' conductivity in quartz glass (see Berman
1951a, Klemens 1954a, 1956).

The applicability of the Korringa^Gerritsen model to the present
case:

Since the Korringa-Gerritsen model could account for the
anomalous features in the residual electrical resistance and
electrical magneto-*resistance of dilute Ag-Mn alloys (and other
alloys of a transitional metal in a noble metal), one wonders to
what extent it can explain the anomalous behaviour of the thermal
conductivity. The increase in thermal conductivity of these al­
loys on application of strong magnetic fields at liquid Helium
temperatures can be qualitatively explained by the Korringa-
Gerritsen model as being due to the fact that the anomalous
scattering for electrons with spins anti*parallel to the oriented
magnetic ions (see Gerritsen, 1955) is cut off. We have not yet
made a detailed analysis of the thermal conductivity measurements
in magnetic fields, so as to test whether the model could quanti­
tatively account for the variation of the thermal magneto-*resist­
ance with temperature, field strength and manganese content.

We have suggested in chapter III that the anomaly in the
thermal conductivity seems to be a feature of the lattice con­
ductivity. It would not therefore, come within the scope of the
Korringa-Gerritsen model.
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C h a p t e r  IV

The  S t e e l s

§ 1. Introduction

Steels are iron*carbon alloys, the ir characteristic properties
depending on the fac t that carbon forms an in te r s t i t i a l  so lid
solution in Y’ iron (austenite) but not appreciably in  owiron.
Other metallic or non-metallic elements are also present, whether
occurring as im purities or introduced on purpose, during the
smelting process. The terms *plain carbon s tee ls ' and ‘stra igh t
carbon steels* are employed when th is  additional element content
is  small, and the material can be considered a pure iron-carbon
alloy. ‘Special s te e ls ’ or ‘alloy s te e ls ’ are those wherein a
fin ite  amount of a specific element has been added deliberately
so as to give certain desired properties to the resulting steel.
Thus we have Cobalt s tee ls , Nickel s tee ls , Vanadium s tee ls  and
so on. In general, the carbon content in steels  is  small, mostly
lying in the range 0.15 to 1.5 per cent by weight. Heating the
plain carbon steels to a high temperature for a sufficiently  long
time makes them single-phase au sten itic  (face-centred cubic)
alloys. Such an ‘austenisation’ followed by air-cooling gives a
‘normalised’ steel. In order to ensure a more uniform structure,
the cooling process is  sometimes slowed down by le ttin g  the ma­
teria l cool in the furnace its e lf . Such a steel is  referred to as
an ‘annealed’ s tee l. The four Nickel s tee ls  (nos. 1287D, 3703,
12871 and 1798H) investigated by us, come under th is  category!
The s ta in less  s tee l (no. 3754) was water-quenched a f te r  being
heated to the austenitic region.

Studies on the mechanical properties of steels  a t low tempera­
tures were pioneered by H a d f i e l d ( 1904, 1921, 1933), in collabo­
ration with Dewar, Kamerlingh Onnes and De Haas. A large number
of steels was also placed by H adfield  at the disposal of the Ka­
merlingh Onnes Laboratorium, Leiden. Low temperature thermal con­
ductivity measurements (down to liquid Hydrogen temperatures) c i
a good number of these have been made by De Nobel (1951) using
gas and lead resistance thermometry. The present investigation is
an extension of De N obel's extensive measurements on steels, to
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liquid Helium temperatures. Such studies on s tee ls  and other low-
conductivity alloys supply information which would be of use in
the design of cryogenic equipment (vide Wilkinson and Wilks 1949,
Wexler 1951, Berman 1951b). They also furnish data for te s tin g
theoretical predictions on the temperature varia tion  of the elec­
tronic and la t t ic e  components of thermal conductivity in  diverse
types of solids. v

E a rlie r  s tu d ie s  in  th is  d ire c tio n  were made by Jaeger  and
Diesselhorst (1900) on Carbon and S ilicon  s te e ls , and by Griin-
eisen  (1900) and Lees  (1908) on Carbon s te e ls .  There has been
more recent work on Carbon s tee ls  by De Nobel (1951) and by
Povers, Ziegler  and Johnston (1951). C orrosion*resisting s te e ls
were investigated  by Karveil and Schafer  (1939), Z lunitzin  and
Saveljev  (1939), Saveljev  (1941), Wilkinson and Wilks (1949),
Schmeissner and Meissner (1950), Berman (1951b), De Nobel (1951),
Powers, Ziegler  and Johnston (1951), Estermann and Zimmermann
(1952) and Tyler and Wilson (quoted in N.B.S. Circular, No. 556).
Preliminary measurement on a s ta in le ss  s tee l (No. 3754) was re­
ported by De Nobel and Chari (1955).

Table IV, 1 gives the compositional and o ther d e ta ils  of the
various s tee l rods discussed in  th is  chapter.

Table TV, 1
The stee ls : Compositional and other d e ta ils .

S tee l
type

Diameter Heat B rin e ll P ercen tua l com position
o f rod trea tm en t hardness C Si Mn Cr Ni P S

1287D 554 mm Heated to
800 °C and
cooled in
furnace.

153 0.14 0.21 0.72 1.92

3703 754 mm Ibidem. 157 0.11 0.16 0.34 5.10 0.041 0 .04

12871 5% mm Ibidem. 277 0.18 0.22 0.93 11. 39

1798H Tk mm Ibidem. 179 0. 43 1.09 19.64

3754 754 mm Heated to
1150° and
quenched

in  water.

172 0 .12 0.43 0.24 18.80 8.10
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§ 2. The e l e c t r i c a l  and therm al r e s i s t i v i t i e s

The residua l e le c tr ic a l  r e s is t iv i ty ,  pe:
The e le c tr ic a l  r e s i s t iv i ty  curves fo r the s te e ls  are given in

fig . IV, 1. I t  i s  seen th a t  the r e s i s t i v i t i e s  o f the s te e l s  no.
1287D, 3703, and 3754 are constant in  the l iq u id  Hydrogen region
and s tay  constan t to  w ith in  1%, in  the l iq u id  Helium region as
well. In these cases, there  i s  no d if f ic u l ty  in  choosing a value

lift cm

100*K

Figure IV,  1
Hie s te e ls :  E le c tric a l r e s i s t iv i ty  p

in |iQcm, versus Temperature.

f° r  P0. the residual e le c tr ic a l  r e s is t iv i ty .  For the 1798H s te e l ,
there i s  a s lig h t r is e  in  r e s i s t iv i ty  a t the lowest temperatures,
We have taken  fo r  p0, the  va lue  o f  p a t  th e  minimum o f th e  p
versus T curve. In any case the d ifference  amounts to  ~  1% and i s
not serious. For the 12871 s te e l, there  i s  a considerable f a l l  in
r e s i s t iv i ty  with tem perature, a t the lowest tem peratures, having
stayed  approxim ately  c o n s ta n t in  the  l iq u id  Hydrogen reg ion .
There was a s im ila r  s i tu a tio n  in  the case o f the s ilv e r-b ase  a l­
loys (see chap te r I I I ,  § 3) and we had to use fo r  p„, the  con­
s ta n t  va lue  a tta in e d  a t  l iq u id  Hydrogen tem pera tu res, looking
upon the fu rth e r  f a l l  o f  p as an anomaly. The a lte rn a tiv e  proce­
dure of using fo r p0, the value ex trapo la ted  to  0°K, led  to  the
d i f f ic u l t  s i tu a tio n  o f the measured thermal conductiv ity  in  the
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case of the Ag-O. 55%Mn rod, being considerably le ss  than the
estimated electronic thermal conductivity Xe (= L0T/p0). We thus
chose as a uniform policy, the constant value attained at liquid
Hydrogen temperatures, as the appropriate value for p0.

In fig. IV, 2, where VT is  plotted against T, the horizontal
lines through the points marked L„/p0 on the Y-axis give the
estimated value of 'K^/T (« L o/pJ. I t  can be seen by extrapola­
tion of the curves to 0°K, that our choice of p0 is  proper.

t i g u r e  1 r , /
The s t e e l s :  X/T in  mW/cm-deg2. v e rsu s  Temperature.
0 1287D, V 3703, ©12871, O 1798H, A 3754, ■ Kar-
w e i l  and S c h a f e r ,  f> W i lk in s o n  and W ilk s ,  a  Berman,

A Es termann  and Zimmermann,  •  Hulm (CUgoNi2o)>

The thermal re s is tiv ity :
We have seen in chapter II that for temperatures below about

e/io, M a k i n s o n ’ s theoretical expression for electronic thermal
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resistivity can be written, to a good approximation, in the form

we = »i + w„ = <xT2 + p/T (11,26)

where the first term on the right hand side is the 'ideal' ther­
mal resistivity (caused by the scattering of the electrons by the

i thermal vibrations of the ionic lattice) and the second is the
‘impurity* or ‘residual* thermal resistivity (caused by the scat­
tering of the conduction electrons by the impurity atoms and
small*scale lattice defects), a is known to be reasonably con­
stant for a given metal and p « po/Lc, in the usual notation.
Rather than obtain a theoretical value for a, we used the experi­
mental value of 18 x 10'5 cm/watt-deg for pure iron, obtained hy
Mendelssohn and Rosenberg (1952).

Prom our experimental values of the residual electrical re­
sistances of the steels, it was found that the aT2 (= Wj) term
amounted to less than 1% of p/T (= p0/L0T * w0) near about 25°K,
but rose to about 16% of w c at about 70°K, for the 1287D steel.
At lower temperatures, it rapidly became negligible compared to
w0. For the no. 3754 stainless steel, w £ was ~  18% of w0 at 70°K,
falling to less than 1% at about 4d°K and becoming negligibly
small at lower temperatures.

In the fig. IV, 3, of X versus T, of the steels, the curves
marked Xe are thus the function

Xe = l/we - (P/T + oT2)*1 = (p0/L0T + 18 x ÏO'5!12)'1 (IV, 1)

The values used for p0 for the steel rods no. 1287D, 3703, 12871,
1797H and 3754 were respectively 9.3, 12.9, 27.7, 41.5, and 47.8
Ii Qcm.

Assuming that the electronic and lattice thermal conductivi­
ties add up together to give the total thermal conductivity, we
can write, as we did in chapter II (equation 11,31)

X = X. + Xg
Knowing X experimentally, and Xe as indicated above, we obtained
the values of Xg at various temperatures.

Using the values of X read off the X versus T graphs, and the
electrical resistivity p from the p versus T graphs, the Wiede-
mann*Franz*‘Lorenz parameter L (■ p/wrT * Xp/T) is calculated at
different temperatures and plotted in fig. IV, 4.
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Figure I V , 3
The s te e ls :  X and Xe, both In watts/cm*deg, versus Temperature.
0 1287D (curve A). A 3703 (curve B), ^  12871 (curve C), V 1798H
(curve D), Q 3754 (curve E). A, B, C, D, and E are the X»curves,
and A', b ' ,  C ', D' and E' are the Xe*curves. (The data  fo r the
no. 3754 s ta in le s s  s te e l , In the liq u id  Oxygen region, are taken

from De Nobel, 1951.)

O — L - ^ .2 0  4 0  6 0  SOK

Figure IV,U
The s te e ls :  L In (V o lt/deg )2, versus Temperature.

A 1287D, 0 3703, ^ 12871, ❖  1798H, S 3754.
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Table IV , 2
The s te e ls :  X (in  mW/cm^deg) against T°K.

No. 1287D No. 3703 No. 12871 No. 1798H No. 3754

T X T X T X T X T X

4.116 12. 76 4.044 10. 26 4.080 4.72 3.888 3.17 4.004 3.11
3.595 10.27 3. 626 8. 43 3. 648 4.06 3. 446 2. 68 3.702 2. 64
3.055 8.90 3.070 6. 89 3.503 3. 85 2.952 2.29 3. 350 2.41
2. 568 7.43 2.616 5.80 3.046 3. 36 2. 519 1.93 2.930 2.17
2.116 6.35 2.062 4.81 2. 590 2. 79 2.126 1.60 2. 535 1. 82
1.860 5.41 1. 663 3.81 2. 209 2. 36 1.750 1.32
1. 614 4. 53 2.045 2. 22 3.884 2.80

20.60° 63.8 1. 690 1. 85 3.937 3. 34 3.434 2.35
19.98 2 77.9 19. 14 3 58.6 2.516 1.91 3.026 1.99
19. 393 74.5 18. 15° 52. 5 19.833 26.7 1.989 1.58 2. 500 1.75
18. 573 71.5 18. 13® 48.1 18. 34® 25.1 1.718 1.30 1.843 1.25
17. 52 8 63.8 16 .16 s 45.9 16. 12° 21.8
16.17 s 60. 3 15.042 42.2 15.084 20.9 19. 68 8 20.6 19.83s 20.1
15.16 8 56.1 18. 312 19.1 17.10 6 16.8

87. 64 227 76. 13 102.3 16.841 17.2 16. 29 4 16.0
87.70 286 82.92 211 73. 62 96.9 15.19° 15.9 15. 16® 14.6
80.36 289 80. 05 195 70. 39 93.9
75.34 263 79.80 199 68.04 91.8 76. 34 77.0 19. 82° 20.8
71.49 232 73. 76 175 65. 93 86. 1 73.52 74.9 18.68 s 19. 2

71.12 73.5 17.08° 16.4
16.41° 16.3

71.18 73.7 15. 314 15.9
68.32 74.6

92.8* 81.4*
76.3* 71.4*

Data a t  l i q u i d  Oxygen t e m p e r a tu r e s  f o r  th e  s t a i n l e s s  s t e e l  No.
3754 (marked *), a re  from De Nobel  (1951).

§ 3. D iscussion

The X versus T curves:
The ra th e r  slow f a l l  in  X on cooling c e r ta in  m e ta llic  a llo y s

to  liq u id  Nitrogen temperatures, and a steeper f a l l  a t lower tem­
pera tu res, f i r s t  no ticed  in  the measurements of L ees  (1908) and
o f Br emmer and De Haas (1932, 1936) were found a lso  in  a wide

79



range of alloys by la te r  experimenters in the fie ld  of low tem­
perature thermal conductivities. We wish to draw attention to the
behaviour of our X versus T curves at liquid Helium temperatures,
brought out more vividly in fig. IV,2, where X/T is  plotted
against T. There is  a marked hump in these curves for the steels
no. 1287D and 3703, as in the case of the silver-base alloys. For
the remaining three s tee ls , the hump is  not so well marked. I t
has been suggested in chapter I I I  that th is  hump is  associated
probably with the la ttic e  thermal conductivity.

The X for the steel (containing 0. 50+0. 70%Mn, 0.4%C, 0. 3%Si,
0 .3$P and 0.03%S) reported by Karweil and Schafer (1939) is  close
to that for our 1287D steel, at liqu id  Helium temperatures. At
3°K, they found X = 7. 5 mW/cm+deg, whereas we obtain 8.7 mW/cm-
deg.

The values of X given by Wilkinson and Wilks (1949) for a
stainless steel specimen between 10 and 20°K are about 3/4 of the
values obtained by us for the 3754 s ta in less  steel specimen at
the same temperatures.

For the steel Ae Ju2 (containing 16.05 Cr, 9.89 Ni, 0.66 Mn,
0.88 Si and 0.26 C), Z lu n itz in  and Saveljev  (1939) reported X =
18.9 mW/cm-deg at 18°K, which corresponds closely with the value
18.8 mW/cm+deg a t 18°K, obtained by us for the 1798H Nickel-
stee l, whereas our s ta in less  stee l specimen No. 3754 gave 17.8
mW/cm-deg at 18°K.

Our re su lts  at Helium temperatures for the 1798H and 3754
steels correspond to those of Schmeissner and Meissner (1950) on
Chroman B2Mo (an alloy containing, by weight, 61.4 Ni, 18.5 Cr,
14.5 Fe, 3 Mn, 2 Mo, and 0.6 Si). These authors give X at 3. 9°K
as 2.6 mW/cm+deg, and th e ir e lec trica l re s is tiv ity  at liquid He­
lium temperatures is  more than twice that of our steels no. 1798H
and 3754. The type 303 s ta in le ss  steel (18 Cr, 9 Ni, 0. 15 C)
studied'by Estermann and Zimmermann (1952) has at liqu id  Helium
temperatures, a thermal re s is tiv ity  1. 5 times as large as these,
but at liqu id  Hydrogen tenperatures, i t s  thermal re s is tiv ity  is
similar to our no. 3754.

The values o f the over-all thermal conductivity, as also of
the la tt ic e  component reported by Berman (1951b) for a stain less
steel specimen (18.9 Cr, 7.9 Ni, 1 Ti, 0.7 Si, 0.1 C) are close
to the corresponding values obtained by us for the nos. 1798H and
3754 steels.

80



The lattice thermal conductivity:
Reference was made in chapter II to the various scattering

mechanisms contributing to the lattice thermal resistivity and
functioning as thermal resistances in series. Amongst them, the
one dominating would be that with the highest contribution to the
total resistivity; or, in other words, the one that tends to
limit the conductivity to the lowest value. The w g versus T
curves for the steels measured by us show that no single simple
power law is obeyed throughout the temperature regions. There
are, however, narrow temperature regions between about 4 and 6°K
where the lattice thermal resistivity seems closely proportional
to T'2. Pnom these, one could make a rough estimate of the corre­
sponding scattering coefficient. In chapter II, we had expressed
w g as

when the dominant scattering mechanism is afforded by the con­
duction electrons. It appears therefore, that the scattering co­
efficient derived in this manner is E. The estimated values of E
are 9850, 7000, 15000, 16200 and 16200 cm-deg3/watt, respectively
for the five steel specimens, in the order of increasing foreign
metal content. We wish to make it clear here, that our measure­
ments do not cover the intervening region between the liquid
Helium and liquid Hydrogen temperatures. By interpolation between
the measured points, the values of X at intermediate temperatures
are obtained (fig. IV, 3) from which w g is derived in the usual
manner. The values thus obtained for E serve a useful purpose in
giving us a rough idea of their magnitude. However, unless these
are corroborated by some other method, we cannot give them much
weight.

One could express the lattice thermal conductivity of the
steels between 6 and 25°K, by a relation of the form

In the order of increasing foreign metal content, these relations
are,

wE = E/T2 (11,34)

Xg = constant x T" (IV. 2)

iii)
ii)

i) Xg = 5. 5 x 10-4 x T 1'26
Xg = 5.6 x 10‘4 x T 1'24
Xg = 2.6 x 10"4 x T 1* 21
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iv) Xg ■ 2. 5 x KT4 x T1, 21 ,

v) Xg = 2. 2 x 10'4 x T1* 26 ,

where Xg is  in watts/cm-deg. The power of T being less  than 2 in
these equations, suggests that in addition to the scattering by
electrons, the phonons are scattered also by impurities, rather
than by the mutual scattering of phonons, since the last-mention­
ed varies too rapidly with T to give a resultant Xg of the type
actually observed.

De Nobel (1951) concluded from his resu lts at liquid Hydrogen
temperatures th a t the over-all thermal conductivity for the
steels  i s  proportional to Tn were n l ie s  between 1.07 and 1.47.
Our resu lts  for X give for n, the values 1.06, 1.04, 1.05, 1.09
and 1. 11 respectively for the s tee ls  1287D, 3703, 12871, 1798H
and 3754.

We add here, for purposes of comparison, the resu lts obtained
for cupro*nickel alloys. Es termann and Zimmermann (1952) found
for a Cu90Niio alloy specimen, between 5 and 15°K, Xg = 0.39 T2
mW/cm-deg; while, using the thermal conductivity data of Wilkin­
son and Wilks (1949) and the e lec tr ic a l re s is t iv ity  data from
Landolt and Bornsteins’ Physikalisch*Chemische Tabellen, (Verlag
Julius Wringer, Berlin, 1923, Hw, p.1054), they derived for the
alloy Cu7oNi3o, the approximate relation Xg = 0. 11 T2 mW/cm-deg,
correct near about 12°K. Hulm (1951) has reported for an annealed
CugoNi20 specimen, Xg * 0.22 T2,0 mW/ron-deg, while theoretically
for scattering of phonons by electrons, he expected Xg = 0.11 T2
mW/cm-deg. For the specimens measured by Karweil and Schafer
(1939), the following empirical relations were derived:

German-silver (Cu64 Nii6 Zn2o): = 0-38 T2,0 mWcm-deg.
Silver-bronze (Cu4 6Nii3 Zn41) : Xg = 0.47 T1,s mW/cmtdeg.
Contracid (Ni6oCr1 5Fe16Mo7): Xg = 0.20 T1 ,4  mW/cm-deg.

The Wiedemann-Franz-Lorenz parameter:
Fig. IV, 4 gives a plot of L against T, for the various steels

measured by us. The values of L for the 1287D steel at the lowest
temperatures closely correspond to those reported by Karweil and
Schafer (1939) for h is stee l specimen containing le ss  than 1%
impurity. At 3, 10, and 20°K, they obtain L = 2.5, 3.3 and 5.0
respectively, while we find for the 1287D steel, the values 2.6,
3.2s and 3.6 at the same temperatures.

The values obtained for the no. 3754 stain less steel are very

82



similar to those obtained by Estermarm and Zinnermann (1952) for
their stainless steel type 303. Both have a broad maximum with a
nearly constant value of L, between 20 and 70°K. with ju s t th is
difference that whereas L ranges between 4. 8 and 5. 1 in our no.
3754 stain less steel specimen (in that tanperature in terval), i t
is  between 5.4 and 5.9 in their specimen.

The r is e  of the W-F-L parameter above the Sommerfeld value
(2.45 x 10*8 v o lt2/deg2) is  considered, in theory, to be an indi­
cation o f appreciable la ttic e  thermal conduction.

Variation of X  with foreign metal content:
Fig. IV. 5, shows the variation  of thermal conductivity with

percentage of foreign metal content. In the sta in less steel no.
3754, since there are 18.80 atoms of Chromium and 8.10 of Nickel,
we consider i t  roughly as having 27 atoms of foreign metal, in

Figure IV,  5
The s t e e l s :  A in  w atts /cm -deg ,

v e rsu s  p e rc e n ta g e  o f  fo re ig n
m etal c o n te n t  “c".

A 70°K, © 20 °K, V4°K.

Q100

Q075

0050

0025

30atX

Figure IV,  6
The s t e e l s :  Xg in  w atts /cm -deg ,

v e rsu s  p e rc e n ta g e  o f  fo re ig n
metal c o n te n t ,  **c*.

A 70°K, © 20°K, V 4°K.

the 1287D stee l, there are 0.72 atoms of Manganese to 1.92 of
Nickel, and we consider i t  as having 2.6 atoms of foreign metal.
For the remaining three steels, the Manganese content is  ignored.
In the graphs of figs. IV, 5, IV, 6, and elsewhere, the portions of
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the curves leading to 27% foreign metal content are shown dashed,
indicating that we added up the number of Chromium and of Nickel
atoms, irrespective of whether i t  i s  ju stified . With th is  reser­
vation, we shall trea t all the five as ‘Nickel* steel s’ .

Three curves are shown in fig. IV,5, representative of the
three low temperature regions, -  liquid  Nitrogen, Hydrogen and
Helium. I t  is  seen from these curves that the thermal conductivi­
ty fa lls  with increasing impurity metal content, th is fa ll being
steeper, the higher the temperature. With fu rther increase of
impurity metal content, the thermal conductivity would probably
rise  again, as was found by De Nobel (1951). The extensive meas­
urements of De Nobel on Nickel*steels containing 0 to 99.4 per
cent of Nickel, showed that for the liquid a ir and liquid Hydro­
gen temperatures, the thermal conductivity diminishes with in­
creasing Nickel content, reaching a minimum at about 26% Ni and
rising thereafter.

The fa ll in  thermal conductivity of the ‘Nickel s te e ls ’
studied by us could be attributed mainly to the increase in
Nickel content because, for one thing, they a ll had a sim ilar
heat*treatment. Of course the difference in amounts of the other
constituents could also have some influence. S a ve lje v  (1941), for
instance, found from his measurements on Chrome-Nickel s tee ls
(containing upto 1% Cr and 5% Ni) at liquid Hydrogen, liquid a ir
and at room temperatures, that the thermal conductivity decreased
with increase of Carbon content. De N obel’ s  (1951) measurements
on the Manganese s tee ls  no. 1010 (containing 12.69% Mn, 1.27% C,
and 0. 12% Si) and no. 1379E (containing 12.95%Mn, 0.09% C, 0. 12%
Si, 0.103% S, and 0.05% P) also agreed with th is  conclusion. But
in our case, the ‘Nickel’ content was in an overwhelmingly large
amount in comparison with the other impurities, so that we are
ju s tified  in attributing the observed change in X, to the ‘Nick­
el’ content.

Even though the fa ll in X with increase in “Nickel’ content is
more marked in the 70°K curve, the percentual decrease in thermal
conductivity, in passing from 2% Ni to 27% (Ni+Cr) is  nearly the
same whichever part of the low temperature region we might con­
sider. The percentages referred to, are actually 72, 74 and 75
respectively at 70, 20 and 4°K.

The la t t ic e  thermal conductivity against impurity metal con­
tent, plotted in fig. IV, 6, has the same general characteristics
as the curves of Fig. IV, 5. Both the se ries  of curves show a
linear fa ll in conductivity on increasing the Nickel content from
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2 to 12%, and then they flatten  out somewhat, exhibiting a mini­
mum at about the same Nickel concentration. The percentage fa ll
in Xg in passing from 2 to 27% foreign metal content amounts to
60, 58, and 37 at the temperatures 70, 20 and 4°K respectively,
while the corresponding fa ll in Xe i s  about 80% whichever part
of the low temperature region be considered. Thus the addition of
the impurity has affected X. more than Xg. This is  understandable
because at these temperatures, Xe i s  lim ited  considerably by
impurity scattering, whereas in the case o f Xg, there are also
other scattering mechanisms (besides impurity scattering) which
are not much affected by the addition o f impurity. Further the
effect o f impurity on Xg is  noticeable more at liquid Hydrogen
temperatures and above rather than at liquid Helium temperatures.
This is  also understandable because at these higher ranges of the
low temperature region, impurity scattering i s  very effective in
limiting la ttice  thermal conduction.

Esternann and Zimmermann (1952) conclude from a comparison of
their measurements on a Cupro*Nickel alloy Cu90Niio, with those
by Hulm (1951) on Cu80Ni2o» and those by Wilkinson and Wilks
(1949) on Cu70Ni3o, that the la t t ic e  thermal conductivity Xg,
when limited mainly by phonon-electron scattering, varied in a
roughly inverse proportion to the Nickel content. Hiis i s  also
roughly true in the case o f the stee ls  measured by us, but only
in the concentration range 2-12% Ni, -  whichever part of the low
temperature region be considered.

Using the values o f thermal r e s is t iv ity  o f pure Iron, namely
1.72 and 0.52 cm*deg/watt, at 4 and 20°K respectively, reported
by Mendelssohn and Rosenberg (1952), we obtained 5w (which we

Awwill call the atomic thermal res is tiv ity  increase -  —) for the

steels at these temperatures. At 70°K, the thermal res istiv ity  of
pure iron was neglected in comparison with that of the alloys.
Fig. IV,7 gives a plot of Bw against the amount o f foreign metal,
expressed in atomic percentage ‘c’ .
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Figure I V , 7
The s t e e l s :  Atomic thermal r e s i s t i v i t y

Inc rease  8w, in  cm*deg/watt, versus
percentage of foreign metal content,  ‘c.’

The X/T versus T curves:
Pig. IV, 2 gives the p lo ts  of X/T (expressed in mW/cm*deg2)

versus T, of the s te e ls  measured by us. For purposes o f com­
parison, we have also p lo tted  measurements on s tee ls  by Berman
(1951b), Estermann and Zimmermann (1952), Karweil and Scha fer
(1939) and by W ilkinson  and Wilks (1949). Berman has not given
the actual values of X in his paper: we have therefore read o ff
the values of X from the plotted points in the National Bureau of
Standards circular 556, fig. 23. The rest of the above+mentioned
investigators have given the values of X a t specified tempera­
tures, which we have directly  plotted. The measurements of Wil­
kinson  and Wilks do not extend to liqu id  Helium temperatures.
Those of Karweil and Schilfer and of Estermann and Zimmermann are
rather scattered, so that a straight line had to be drawn for the
entire region plotted. The measurements of Berman are very sa tis ­
factory: they show that the curve at liquid Helium temperatures
is  a stra ight line  (indicating that the scattering of phonons by
electrons is  the dominant mechanism limiting la ttic e  thermal con­
ductivity) and the curve bends away from re c tilin e a r ity  above
about 6°K, indicating the onset of phonon*impurity scattering and
a consequent reduction in la ttic e  thermal conduction. This behav­
iour shown by Berman’s curve, and by the curve of White and Woods
(in fig. I l l , 2) is  completely in accordance with theory and lends
support to our method of analysis of the X/T versus T curves,
already described.

The phonon*impurity scattering in the steels can be seen to be
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effective  even at such low temperatures as 6°K. This, and the
anomaly obtaining at liquid  Helium temperatures proper, could
possibly account for the fact that the proportionality of wg with
the inverse square of T (already referred to) was noticeable only
in a very restr icted  temperature in terval. The procedure for
analysis o f the X/T versus T curves i s  ju st the same as for the
Silver*base alloys. The values o f X j T  and L ,/p 0 here, f i t  nice­
ly, and the anomaly is  not very marked in the stee ls  12871, 1798H
and 3754. We draw attention to Hulm’s (1951) measurements on
Cug0Ni2o, also plottéd in fig. IV, 2. There seems to be an indica­
tion o f an anomaly between 3 and 3. 5°K. As a matter of fact, the
two measured points o f Estermann and Zimmermann in the liqu id
Helium region suggest that detailed measurements would probably
have given a slight anomaly as in the case of our stain less steel
no. 3754. The points of Berman at about 4.5 and 5. 2°K are also
suggestive. I t appears therefore that in our discussion o f the
anomaly in chapter III, we over-sim plified the picture, laying
emphasis on ‘suitably' diluted a lloys. The actual causes are
probably more complex and the phenomenon more general. I t would
need very careful and more measurements at liquid Helium tempera­
tures in order to be able to discuss th is anomaly more defin ite­
ly.

The values of the phonon-electron scattering coefficient E for

1OO0O

Figure IV, 8
The steels: Phonon-Electron scattering
coefficient E, in cm*deg3/watt, versus
percentage of foreign metal content, ‘c.’

the steels, obtained from the X/T versus T curves are 9620, 7000,
14300, 15900 and 15400, in the order o f increasing foreign metal
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content. Pig. IV,8 gives a p lo t of E (in cm*deg3/watt) against
percentage ‘c’ of the foreign metal content. Extrapolation of the
curve to c * 0, gives E ~ 11000 for pure Iron. As we did in the
case of pure Silver, we can evaluate Na for pure Iron, assuming
the Makinson coupling scheme and the value of a = 1. 8 x 10"4
(Mendelssohn and Rosenberg, 1952). We. also take 0^ = 460°K
(Keesom and Kurrelmeyer 1939) for pure Iron. We have then
Xg = T2/ 11000, and Xi ■ 1/aT2, so that

Xg/Xi = 313 (1/0)4 n; 4/3 .

We thus obtain N ~ 0. 5.
As suggested in equation (11,40), ve can use the (dp/dT)®of

the alloys, for a sim ilar calculation. We have the e lec trica l
re s is tiv itie s  of the steels at the ice*point and the steam*point,
from which (dp/dT)® is  obtained. Using the formula

u2 _ 4.93 E L
8 02 ' (dp/dT)® *

we can calculate N for the various s tee ls  (see Table IV, 3). Wea
can then estimate Na for pure Iron to be of the order of 0. 3.
This value and the value obtained above for pure Iron, are not
quite equal, because in th is  case we are comparing low tempera-

j  Table IV, 3
The steels: Debye temperatures 0D (estimated from

the data of Keesom en Kurrelmeyer, 1940), and
Electron concentrations, Na.

Steel type D (dp/dT)® in p.S2cm N,

1287D 450 0.0612 0. 31
3703 435 0.0598 0.27
12871 415 0.0786 0.36
1798H 390 0.0678 0.43
3754 380 0.0870 0. 38

ture la t t ic e  thermal conductivity with X£ at high temperatures.
Yet, the order of the value derived, is  quite satisfactory.
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L i s t  o f  i m p o r t a n t  s y m b o l s  u s e d

a Lattice constant.
b  Fundamental vector of reciprocal la ttice .
cr Specific heat per unit volume.
C Constant of interaction between electrons and phonons.
CL Constant of interaction between electrons and longitudinal

phonons
»e Charge of the electron.
e Ehergy of electron. (In chapter I, § 1, e = T -  t ).
E Coefficient of phonon scattering by electrons.
C, Fermi energy.
0 ,0D, Debye characteristic temperature,
f Distribution function.
fD Distribution function at equilibrium,
h  Planck’s constant.
If b/2n.
H Magnetic field-strength,
k  Wave vector of electronic wave function,
k  Wave number.
k Boltanann constant.
°K Degrees Kelvin.
1 Mean free path.
L The Wiedemann-Franz-Lorenz parameter.
L e Electronic Lorenz parameter.
L„ ‘Drdinary" or “Normal" Lorenz parameter.
X Thermal conductivity.

^ i d e a l *
X H X in magnetic field,
m Mass of the electron.
M Mass of the atom.
n Number of free electrons per unit volume.
Na Number of free electrons per atom,
v Frequency,
a) Angular frequency 3 27tv.
q Wave vector of la ttic e  vibrations,
p Electrical resistiv ity .
P i  P i d e a l *

Po  P r e a i d u a l *

89



a Electrical conductivity = 1/p
T Temperature.
t Time of relaxation. -  [in chapter I, x = % (Tj + T2)] •
u Velocity of sound,
v Velocity of the electron.
W Heat resistance.
w Heat re s is tiv ity  = 1/X = W x form factor.

^ i d e a l *
W0 ^ r e s i d u a l *
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S a m e n v a t t i n g
(Summary in Dutch)

Warmtegeleiding in metallieke stoffen vindt, zoals bekend is,
plaats zowel door middel van electronen als door ro o s te rtr illin -
gen (de zogenaamde Debye*golven of phononen). De electronengelei-
ding wordt beperkt door de verstrooiing van electronen door
1) thermische roostertrillingen  en 2) onzuiverheden (öf van che­
mische èf van natuurkundige aard). Roostergeleiding wordt beperkt
door de verstrooiing van phononen door 1) k r is ta l-  en korrel-
begrenzingen, 2) v r ije  electronen, 3) onzuiverheden en kleine
roosterdefecten ( ‘in te r s t i t ia ls ’ , vacatures, d islocaties, enz.)
en 4) de andere phononen.

De theorie heeft in algemene zin de temperatuurafhankelijkheid
van de weerstand, veroorzaakt door deze verschillende verstrooi-
ingsmechanismen, kunnen voorspellen, maar veel experimentele ge­
gevens zullen nog nodig zijn, voordat men verdere vooruitgang op
d it gebied zal kunnen maken. De belangrijkheid van dergelijk on­
derzoek bij lage temperatuur wordt duidelijk, wanneer men over­
weegt, dat bij gewone temperaturen de invloed van de thermische
trillin g en  die van a lle  andere verstrooiingsprocessen overscha­
duwt.

Het streven is  steeds geweest om metingen te doen aan zuivere
metalen (waarin warmtegeleiding door electronen overweegt) of aan
dielectrische vaste stoffen (waarin alleen roostergeleiding op­
treedt). De weinige metingen aan legeringen to t nu toe gedaan,
hadden betrekking op ‘geconcentreerde’ legeringen (d. w. z. die een
hoog percentage van opgeloste atomen bevatten). Metingen van
warmtegeleiding in verdunde legeringen (waaraan n ie t veel aan­
dacht is  besteed) en in staalsoorten vormen het onderwerp van
d it proefschrift.

Wij beginnen in hoofdstuk I met een beschrijving van het prin­
cipe van de gebruikte methode en van de toestellen. Details over
de vervaardiging van weerstandthermometers, de wijze van calibra­
t e  en hun gedrag, worden beschreven. Een overzicht van de fou­
tenbronnen en de bereikte nauwkeurigheid is  ook gegeven.

Hoofdstuk II bevat de theoretische achtergrond, beginnend met
een algemeen overzicht van de theorieën van de vaste toestand, in
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het bijzonder in verband met metalen. Slechts terloops worden
theorieën over de wisselwerking van electronen vermeld. Warmte-
geleiding in dielectrische vaste stoffen wordt besproken in § 2.
Daarin vindt men een overzicht van het Debye (continuum) model en
van de bijdragen van Peierls, Pomeranchuk, Casimir en Klemens aan
de beschouwingen over de verschillende mechanismen van phononen-
verstrooiing  en hun theoretische temperatuurafhankelijkheid.
Wanntegeleiding in metalen en legeringen wordt besproken in §3 en
§ 4, -  het aandeel van de electronen in de wanntegeleiding in § 3
en dat van het rooster in § 4.

In hoofdstuk I I I  delen wij uitkomsten van de metingen van
electrische en warmteweerstanden van verdunde zilverlegeringen
mede. Drie van deze legeringen bevatten mangaan a ls opgelost
metaal en de vierde bevatte indium. In de krommen van X/T tegen T
werd een maximum bij ongeveer 12°K voor deze reeks legeringen
gevonden. Aandacht wordt besteed aan de anomalie in de warmte-
geleiding bij temperaturen van vloeibaar helium, zoals in de X-T
krommen is  te zien en meer to t u iting  is  gebracht in de X/T-T en
de Xg -  T krommen. Omdat sterke magnetische velden de algemene
vorm van de krommen niet belangrijk schijnen te wijzigen, is  ver­
ondersteld, dat deze anomalie waarschijnlijk afkomstig is  van de
wanntegeleiding door het rooster.

De resultaten aan staalsoorten in hoofdstuk IV gegeven tonen
een dergelijke anomalie bij de temperaturen van vloeibaar helium.
Het sch ijn t daarom, dat deze anomale roostergeleiding bij lage
temperaturen een zeker algemeen verschijnsel is. Verder le id t de
vorm van de X -  T krommen ertoe deze anomalie toe te schrijven
aan een extra bijdrage to t de roostergeleiding. Men kan een ana­
logie trekken tussen d it  geval en de zogenaamde 'longitudinale'
geleiding in kwartsglas, door Wilkinson en Wilks en door Berman
waargenomen en theoretisch beschouwd door Klemens. De experimen­
te le  resultaten bij temperaturen van vloeibaar helium zijn , on­
danks de aanwezigheid van de anomalie, zo goed mogelijk geanaly­
seerd. Daaruit kan men een waarde van de coëffic iën t E van de
phonon*electronverstrooiing berekenen.
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S t e l l i n g e n

1. Van de verschillende modellen voor intermoleculaire potentia­
len, die kunnen worden aangepast aan de metingen van de tweede
viriaalcoëfficient in de toestandsvergelijking van eenvoudige
(niet polaire) moleculen, is  bekend dat de potentiaalputten
min of meer gelijke oppervlakken hebben. Het is  mogelijk d it
gedrag af te  leiden van de wiskundige uitdrukking voor de
(tweede) v iriaal»coëfficient (rekening houdende met de s te i l ­
heid van de kanten van de potentiaalput).

2. Metingen over de anisotropie van gammastraling van gerichte
kernen zouden van nut z ijn  voor het onderzoek betreffende de
verdeling van de temperatuur in adiabatiseh gedemagnetiseerde
zouten.

3. Metingen over het warmtegeleidingsvermogen, waarbij gebruik
wordt gemaakt van koolweerstanden als thermometers en de gehe­
le staaf wordt opgewarmd ten opzichte van het bad, moeten n iet
volkomen betrouwbaar worden geacht.

4. Dat leken in dezelfde mate zullen kunnen bijdragen to t de ont­
wikkeling van de natuurwetenschappen (en van natuurkunde in
het bijzonder), zoals in het.verleden het geval is  geweest, is
aan tw ijfel onderhevig.

5. Het zou aanbeveling verdienen de Gregoriaanse kalender, die
thans in gebruik is , te  vervangen door een vaste, uniforme
kalender voor de gehele wereld.

6. Het is  van belang het warmtegeleidingsvermogen bij lage tempe­
raturen te bepalen van verschillende staven van een d ië lec tri-
sche vaste stof, die een verschillende mozaikstructuur bezit­
ten.

7. Indigo werd (door Newton) ingevoegd in de reeks van kleuren in
het spectrum om een betrekking te  vinden tussen het spectrum
en de toonschaal. Aangezien de poging is  mislukt, heeft het
geen zin indigo te handhaven als een fundamentele kleur tussen
violet en blauw.

(Zie b.v. ‘Light and Colour’ van R.A.Houston, LongmansGreen Co, London, 1923.)



8. Teneinde het aantal verkeersongevallen te verminderen dient
men bij het maken van plannen voor stedebouw langzaam en snel­
verkeer streng gescheiden te houden.

9. Om het talent voor tafeltennis in een land te ontwikkelen zou
men het systeem moeten volgen van competities in verschillende
klassen tussen de clubs, zoals dat b.v. in Nederland gebeurt.

10. Bij de metingen van het warmtegeleidingsvermogen van stóffen,
die geen zeer goede geleiders zijh, is het noodzakelijk dat in
de meetruimte om de staaf een vacuum wordt gehandhaafd van
minstens 10*6 mm kwikdruk.

(Zie b.v., W.R.G.Kerap et al, 1956, Proc. Roy. Soc.
London, A *33, 450.)
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