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Chapter I
INTRODUCTION

1.1 Subject and plan of the thesis

This thesis deals with the thermodynamic properties of the in-
trinsic type Il superconductor niobium in the superconducting, mixed
and normal states. Specific heats of three specimens of this transition
metal with different degrees of purity have been measured in the pre-
sence of magnetic fields ranging from O to 9.4 kOe in the temperature
interval 1 £ T < 10°K, with the aim of gaining insight into the charact-
eristic features of type II superconductivity. For one of the samples
the magnetocaloric effect (connected with the field dependence of the
mixed state entropy) was also studied, together with the measurement
of the specific heat as a function of the field, at a given temperature.
The thesis consists of 6 chapters. After a short introduction (I),

type Il superconductivity is characterized and a brief survey of theory
presented together with the thermodynamic relations used in the anal-
ysis of the data (II). In Chapter III the experimental method is de-
scribed. In Chapter IV the experimental results are presented, dis-
cussed and compared with theory. In Chapter V a comparison is made
between the field dependence of the magnetocaloric effect, specific
heat and isothermal magnetization, at the same temperature. The thesis
ends with a small chapter (VI) with concluding remarks, followed by
summaries in Dutch and in Portuguese and curriculum vitae.

1.2 Possibilities and advantages of calorimetric measurements in the
study of the propersties of type II superconductors

Specific heat measurements, although a classical method, have
remained a useful research tool. For superconductivity, the pioneer
calorimetric measurements done in Leiden in the thirties (Keesom,
Van den Ende, Kok, Van Laer) laid down basic information for the
understanding of the thermodynamic properties of what are now known as
type I superconductors. Type II superconductors brought into research
a new superconductive phase - the mixed state, whose properties can
be studied calorimetrically. In this thesis it will be shown that from
specific heat results obtained with type II superconductors it is poss-
ible to extract quite an amount of information about several questions
relevant to type II superconductivity. Thus, besides the usual determin-
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ation of the parameters 7y (the Sommerfeld constant) and ® (the Debije
temperature), characteristic of the normal state, one can obtain inform-
ation on: 1) the energy gap at 0°K which exists in the energy spectrum
of the superconducting electrons of a superconductor in zero magnetic
field; 2) the nature of the transitions that take place when the phase
lines Hcl(T) and ch(T) are crossed; 3) the thermodynamic critical
field HC(T); 4) the phase diagram of the superconductor; 5) the revers-
ible magnetization M(H) near ch even in the case of hysteretic mag-
netic behaviour; 6) the Ginzburg-Landau parameter x and the temper-
ature dependence of the parameters K1 and Ko and, last but not least,
one can prove 7) that the energy gap, in the presence of a field H >
HCX(O), is ineffective in determining the behaviour of the specific
heat ("'gapless’’ superconductivity).

Calorimetric and magnetic results are correlated so that, in
principle, a comparison between them can be established or, alternat-
ively, one set of results can yield the other (case 5) mentioned above).
Thus, the two sorts of measurements appear to be equally suitable for
studying the thermodynamic properties of superconductors of both types.
However, for type Il superconductors, in practice (when there is not
completely reversible magnetic behaviour), results obtained with mag-
netic measurements can be considerably disturbed while, as shall be
shown, calorimetric results can even in such a case yield the thermo-
dynamic parameters of interest. Of course, for irreversible behaviour,
even calorimetric results obtained with measurements performed in the
presence of a magnetic field will be disturbed but, in favourable cases
(annealed samples), the effect is only apparent in a restricted temper-
ature region in the mixed state (near the phase transition line HCI(T)).

Close to the transition from the mixed to the normal state (in
fact, for H 2 HC(T) for the annealed samples Nb-2 and Nb-3) specific
heat results are hysteresis-free so that(with the help of thermodynamic
relations), magnetic results can be predicted in this region. As the
reciprocal appears to be, in general, not true, results derived from
calorimetric measurements are more reliable than the usual magnetic
data. The most striking difference between the possibilities of the
two sorts of measurements lies in the determination of the thermo-
dynamic critical field Hc of a type II superconductor not displaying
completely reversible behaviour (unfortunately, the usual situation).
The determination of Hc can be accomplished with reasonably accurate
calorimetric results obtained in zero magnetic field and in the normal
state being thus free of hysteresis disturbances. In contrast, mag-
netic measurements in such a case will be unable to yield this thermo-
dynamic parameter within acceptable accuracy. The parameter « and
its analogues «; and K, defined in Chapter II, Section 2.3 are obtained




13

from calorimetric results in the region where reversible behaviour is
obtained (or approached in the worst case) so that they correspond to
thermodynamic equilibrium situations and are therefore reliable for
comparison with the theoretical predictions. In the restricted region
near the H_ l(T) phase transition line, where the effects of irreversibil-
ity are most apparent in calorimetric measurements, no definite con-
clusion can be drawn about the nature of the transition unless the
sample is of extremely high purity and free of physical defects, which,
unfortunately, was not the case.

The cooling produced by adiabatic magnetization of a type II
superconductor in the mixed state (magnetocaloric effect) can be used
for measuring the specific heat as a function of the applied field at a
given temperature, kept constant within narrow limits. As the behav-
iour of the specific heat and the magnetocaloric effect is very sens-
itive to the shape of the magnetization curve, in the absence of a
theoretical treatment of the thermal properties derived from first princ-
iples, calorimetric results provide a means for testing the theories
that predict explicitly the magnetization.

1.3 Choice of niobium as a suitable sample

Niobium was chosen since it was the only known intrinsic type II
superconductor (even in a state of high purity this transition metal
displays type II superconductivity). Later, vanadium was also found
to be in this class. Niobium also offers the advantage of having a
relatively high Sommerfeld constant ¥ and high Debije temperature ®,
thus favouring an accurate separation of the electronic contribution
(the only one of interest in superconductivity) from the measured spec-
ific heat. Moreover, the high transition temperature TC of this super-
conductor makes it possible to reach low enough reduced temperatures
t = T/'I'C using a *He cryostat. Impure, non-annealed niobium offers
a wider range of the mixed state and therefore seems to be, in principle,
a desirable sample for studying this phase. However, it turned out
that the enhanced effects of hysteresis associated with inhomogene-
ities were very disturbing in some cases (high fields), complicating
the results and their discussion. For this reason, the greatest amount
of information was obtained with one of the high-purity annealed
samples, Nb-3. The sample characteristics will be described in Chap-
ter III, Section 3.2.
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Chapter 1l
BRIEF SURVEY OF THEORY

2.1 Introduction

In this chapter the two types of superconductors are character-
ized and a brief description is given of some fundamental aspects of
theory as far as it is pertinent to the experimental results. Simple
presentation rather than exhaustive derivation will be given, emphasis
being placed on the relations used in the analysis of the data.

The thermodynamic description of superconductors requires the
knowledge of the magnetization. For type I a set of useful thermo-
dynamic relations follow directly from perfect diamagnetism which
occurs in the whole range of superconductivity from zero field up to
HC in the case of zero demagnetizing coefficient. For type Il some
of these relations are also valid while others can be established on
basis of Abrikosov’s vortex model describing the magnetic behaviour
in the mixed state. In particular, an expression was derived for the
specific heat in the mixed state near ch, the region where the magnetiz-
ation is explicitly given by theory.

2.2 The two types of superconductors

It was known from early work that impure metals, compounds and
alloys can exhibit superconductivity up to much higher values of the
magnetic field than those usually quenching the superconductive
properties of pure metals (de Haas and Voogd” in Leiden, Mendelssohn
and his Oxford groupz), Shubnikov’s group in thxrkova)). The peculiar-
ity of such materials is that the transition from the region of complete
Meissner effect (zero magnetic induction B inside the superconductor)
to the normal state (B = H, H being the applied field) does not take
place abruptly at a well defined field HC as happens in ''soft’’ super-
conductors, e.g. tin, lead or aluminium, but extends instead, over
quite a range of high fields ("’hard’’ or "*high-field"’ superconductors).
Abrikosov has shown many years later that in the Ginzburg-L.andau
(GL) theory‘” is implicit the existence of two types of superconduc-
tors®). After this, ’soft’’ superconductors became generally known as
type I and ’hard’’- or "’high-field’’ superconductors as type II. The
persistence of superconductivity in high fields had at first been
ascribed by Mendelssohn?’ to inhomogeneities of the material resulting
in a mesh-like superconductive structure of thin filaments embedded
in the bulk normal body (sponge model).
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This simple view could not resist the impact of experimental
evidence. For instance, the results of specific heat measurements on
the '’high-field’’ superconductor VaGae) could be explained by the
sponge model only by assuming that the density of filaments was so
great that they fill most of the volume”’, Thus, contrarily to the former
expectation, high-field superconductivity behaves as a bulk property.
Further, some high-field superconductive alloys display nearly revers-
ible magnetic behaviour3'8), this being inconsistent with the irrevers-
ibility that one expects from a multiply connected filamentary structure.

In principle, a microstructure of alternating superconducting and
normal regions (layer model) can also account for the behaviour of
'"high-field'’ superconductors 9,10,11,12,12a,13) 5p the basis of a
""negative’’ surface energy a o at the boundary of the two phases. As
will be shown in Section 2.3, there are in superconductivity two
characteristic lengths - the coherence length £ and the penetration
depth A - the relative magnitude of which determines the type of behav-
iour. The coherence length measures the range of order or correlation
between the electrons responsible for superconductivity and the
penetration depth measures the distance at which the applied magnetic
field extends into the superconductor. The existence of a non-zero
range of coherence prevents the abrupt variation of the degree of
superconductive order at a normal-superconducting phase boundary.
The resulting gradient of the order parameter is accompanied by an
extra positive term to the free energy of the condensed (superconduct-
ive) phase. The penetration of the external field results, on the con-
trary, in a decrease of the magnetic energy of the diamagnetic sample.
The resulting interphase surface energy a . is given approximately“)
by: (£ — K)H:/BW. a . can be either positive or negative according
the relati ve magnitude of & and A, the general behaviour of the super-
conductor depending critically upon the sign of a A positive C
will prevent a superconductive sample submitted to an increasing
external field H from splitting into normal and superconducting regions
unless at part of its surface the local field is higher than the external
field H (then this local field prematurely reaches H_ which leads to
the formation of the intermediate state). Such a superconductor with
a > 0 is called type I. A type I superconductor, in the absence of
demagnetizing effects, resists the penetration of the external field
(Meissner effect) up to a value HC(T) such that the magnetic work
done by H on the superconductive body per unit volume equals the
condensation energy density

HC(T)

MdH

_HAT

87

=G (TH) =G (T, 0) . (2-1)
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Here M = —H/47r is the magnetic moment per unit volume of the super-
conductor (magnetization) and G the Gibbs free energy density (the
indices n and s stand for normal and superconducting respectively).
On the contrary, when a . is negative, it will, at a given value Hcl(T)
of the external field, be energetically more favourable for the super-
conductor to have a mixed composition of alternating thin normal and
superconducting regions, the normal regions being much thinner than
the superconducting ones. Upon increasing the external field H above
HCI(T) the superconductive regions also become thinner and thinner,
so that the magnetic field penetrates more and more into the super-
conductor. The magnetic moment of the sample (its absolute value)
thus decreases from HCX(T)/47T at HCI(T) to zero!?) at such a field
ch(T) that

i Z(T) 2
< HZ(T)
= f MdH = G (T.H_p) ~ G,(T.0) = —=— . (2-2)

(o}

This kind of behaviour is characteristic of type II superconductors for
which the thermodynamic critical field HC(T) does not indicate any-
more a first order phase transition|but is a simple parameter meas-
uring the condensation energy. For HCI(T) < Hi< ch(_T) the super-
conductor is said to be in the mixed state. The lower critical field,
HC , represents the limit of complete Meissner effect for an increasing
field, while the higher critical field, Hc2' represents the limit of
stability of the normal state for a decreasing field. There are materials
with ch of the order of a few hundred kOe. The two types of revers-
ible magnetic behaviour are depicted in Fig. II.1 where the isothermal
magnetization - 47M is plotted against the applied field H (Hc was
taken as the common unit).

Accordingly, the phase diagram of a type II superconductor in-
cludes (for bulk properties) two transitions lines HCI(T) and ch(T)
and three phases while for type I superconductors there is only one
line HC(T) and two phases, as shown in Fig. II.2, where the symbols
s, m and n stand for superconducting (or Meissner), mixed (or Shubnikov)
and normal states, respectively. The nature of the transitions at Hcl(T)
and ch(T) can be either studied by calorimetric or magnetic meas-
urements. Usually, calorimetric measurements are performed at con-
stant magnetic field, increasing the temperature (line 1) while magnetic
measurements are performed isothermally (line 2). The layer model of
Van Beelen and Gorter!?) yields a first order transition at HCI(T) and
a second order one at ch(T)'




Fig. II.1 The two types of reversible magnetic behaviour
of superconductors.

a. type I b. type II

Fig. I1.2 Phase diagram of a type I (a) and a type II (b)
superconductor.

Despite giving not so good an agreement with some experimental
results as compared with the more sophisticated Abrikosov's model

of the mixed state involving flux quantizationls), layer models have

the merit of showing very simply that superconductors with negative

interphase surface energy have a reversible magnetic behaviour different
to those with positive a .

s
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2.3 The Ginzburg-Landau-Abrikosov-Gor’kov theory

The Ginzburg-Landau (GL) theory‘” inspired by the Landau-
Lifshitz cnalysisls) of second-order phase transitions, accounts
explicitly for the existence of an extra term in the energy of the con-
densed superconductive state connected with the space variation of
the internal order parameter |¢,|2 at a normal-superconducting inter-
phase boundary. Y is a kind of "effective wave function’’ of the super-
conducting electrons; l\,blz is related to the concentration of super-
conducting electrons n, or to the energy gap that according to the
microscopic theory of Bardeen, Cooper and Schrieffer!”) (BCS) exists
in the energy spectrum of the superconducting electrons. Near a second-
order phase transition the order parameter becomes very small so that
the difference between the Gibbs free energy of the superconductive
phase and the normal state can be expanded in powers of !L,/J IZ plus
the extra term connected with the existence of a gradient of Y. In the
presence of a magnetic field H derived from a vector potential A,
taking 2e as the effective charge of a superconducting carrier (Cooper
pair), according to GL., we have

G,(H,T) = G(T) +a(T) [y 2 + %B(T) [y 14 +4 +d [(~ihy - 26472,
(2=3)

Here e is the electron charge, m its mass, i Planck’s constant divided
by 27, c the velocity of light while @ and 8 are temperature dependent
coefficients. @ and B are related to HC and |\/Jo |2, the zero field equil-
ibrium value of |y [?, by I\/}o |2 = — /B and Hg = 4a?/B; B is pract-
ically temperature independent near the transition. The so-called GL
equations (equilibrium equations) are obtained by minimizing (2-3)
with respect to Y and A'®)

a('I‘)¢:+,B(T)|\/J]2\,b+é—m(—iﬁV—2iA) $ =0 (2-4)

C

i=?_ﬁ(¢'v¢—¢v¢')_i'iz YYA . (2-5)
im mc

(2—4) gives the equilibrium value of the order parameter in the pre-
sence of an external field and (2—5) gives the density of shielding
currents with which the superconductor reacts to the applied field.
If the applied field is weak (weak field limit) the ''effective wave
function’’ does not deviate much from the zero field equilibrium value
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(Y=, VY =0)and the GL equation for the current reduces to the
London-type equation!! )

2 '
j==22 | PA. (=5

In connection with the space variation of the order parameter there is
a characteristic length, the range of coherence or coherence length £(T)
that prevents rapid variations of . It measures the distance to which
extends a local perturbation of i under an external constraint and is
given (ref.18) p.178) by

EXT

j wilic (2-6)
2m|al °

For a pure material, near the temperature Tc of the transition to the

normal state in zero field the temperature dependence of & is given
(ref.18) p.178) by

- r v
£AT)= 074 & (=S i (2=7)

where g’o is the range of coherence at the absolute zero.

Equation (2—5') implies the exclusion of the external field from
the bulk of the superconductor (Meissner effect) and introduces another
characteristic length which is also temperature dependent, the '"weak
field penetration depth’’ A(T), given by

2
>\2 = mc 2—-8
M = (2-8)

as can be seen treating equation (2—5) in one dimension. For a pure
metal in the free electron approximation, according to BCS A(T), near
Tc,is given (ref.18, p.180) by

T
(]

)% (2-9)
T -T

A(T) == A (0) (

where AL(O) is the London penetration depth at absolute zero, given
by
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47rne?

where n is the number of free electrons per cm?.

Near Tc, A(T) and &(T) both diverge (\,/(J)-O) but their ratio
k = N(T)/&(T) remains finite

T-T. &(T) " X “2eh 27

c

Kk is called the GL parameter of the superconductor.
For a pure metal, from (2—7) and (2—9) one gets, approximately

ALO)

K, = 0.96 (2-12)

&

S0

Consequently, ¥ is approximately temperature independent near TC.
x measures the relative magnitude of A in terms of & and thus deter-
mines the value and the sign of the surface energy a . ata normal-
superconducting boundary. Within the approximation &= (& - K)Hz‘/877
one may say that at a critical value in the order of « = 1 lies the
division between the two groups of superconductors.

From the relations lk,bo 2 = - a/B, Hg = 4ma?/B, (2-6) and
(2—8), follows

; %o , (2-13)
2mV2 A(T) &(T)

H_(T) =

where ¢° = ch/2e = 2.067 x 10~7 G.cm? is the flux quantum.
Near Tc, from (2—11) and (2—13) we have

k = 2/2mH_(T) AA(T)/¢, . (2-13")

o

When superconductivity has been quenched by sufficiently high
field, upon decreasing the field, superconducting regions may begin to
nucleate in the bulk of the material at the value of the applied field!®

H . .=x/2H . (2—14)
c2 c

H represents the highest value of the applied field for which the

c2
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GL equation for the order parameter has non zero solutions (y # 0) in
the whole volume of the superconductive body. For superconductors
with « < 1/V2 (type 1), c2 < H is u supercooling field. For super-
conductors with x > 1//2 (type II) c2 is higher than HC and the
persistence of superconductivity above HC implies the disappearence
of the Meissner state at a field Hcl < H 15)

According to Abrikosovls), in the mixed state (H = < ch),
the partial penetration of the magnetic flux through the superconductor
occurs in the form of a vortex structure of quantized flux threads
(fluxoids), parallel to the applied field. The fluxoid consists of an
inner core (radius~ &) surrounded by a vortex of supercurrent (radius
~A). Each fluxoid carries a single quantum of magnetic flux ¢°.

In the cores of the fluxoids the energy spectrum of the electrons
is quite different from the superconducting ground state. While in the
Meissner region there is a forbidden energy gap, from which results
the exponential BCS!7) behaviour of the specific heat, in the mixed
state according Caroli et al.'?) low energy exitations are permitted
in the cores of the fluxoids. From these normal-like excitations results
a quite different kind of behaviour for the specific heat in the mixed
state.

The lower boundary of the mixed state H o1 Wwas calculated by
Abrikosov!®) for the case x >> 1 to be

V2 kH_,/H_= Ink + 0.08 (2-15)

and numerical solutions for all k¥ were obtained by Harden and Arp.zo)

Ideally, one may imagine that flux first enters the specimen at
Hcl in a rather abrupt way until the uniform density of fluxoids corres-
ponds to a spacing between next neighbours of a few A, at which
distance they begin to interact. Thus, their mutual repulsion sets a
limit to the initial penetration. Upon increasing the external field the
density of fluxoids increases until the point when the interfluxoid
distance becomes of the order of £&. Then the cores begin to overlap.
The penetration of the superconductor by the magnetic flux of the
external field is complete at ch. From (2—-13), (2—13’) and (2—-14)
we have

H ) s/ —8___ =

Thus, a ''high-field’’ superconductor has a small range of coherence.
Upon alloying a pure superconductor its range of coherence
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decreases and the penetration depth A increases (Pippard“)),the
dependence of A on the mean free path of the electrons implying a
non-local relation between current density and the vector potential
(Pippardzn). The combined effects on £ and A due to reduction of the
mean free path of the electrons lead to the enhancement of «, this
explaining why type II superconductors are mainly concentrated alloys

and dirty metals. However, since, according to the BCS theory”)

R (2-17)
B ) AR

(where Vp is the Fermi velocity and k the Boltzmann constant), one

may expect that even a pure superconductor with low Ve and high TC

might be (intrinsic) type II. So far as is known, these requirements

are fulfilled only by the two transition metals Nb and V22! which, in

fact, were found to display type II behaviour in a state of high purity.
From (2—13') and (2—14) we have

4m\3(T) HX(T)
ch( ) =¢*‘: . (2—18)
(o]
This relation provides a means for testing the validity of the GL
theory when experimental values of ch, A and H _ are known. Accord-
ing to the original two-fluid model of Gorter-Casimir?3), A (t) = A (0)(1—t4)—"%
and Hc(t) = HC(O)(I—tz) where t = T/Tc. Thus, on phenomenological

grounds, the following temperature dependence is expected for HC2

2
1t (2—19)

where H_,(0) = 477H§(O) )\2(0)/¢°. Although this relation was first
explicitly used by Tinkham?*) it is called after Ginzburg?®) who first
suggested the validity of relation (2—13’) at temperatures T << Tc in
the case A> £ (London limit), using for A(t) and Hc(t)the expressions
of the two-fluid model.

Near the transition to the normal state the Abrikosov vortex
model 1) yields explicitly the magnetic moment M of the specimen as
proportional to the first power of ch—H, H being the applied field

H,,~H

2—-20
B(2xk% —1) : :
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The coefficient B depends on the symmetry of the vortex structure
(B = 1.18 for a square lattice, B = 1.16 for a triangular lattice, the
latter being more stable in the whole mixed state 26'27)). According
to eq. (2—20) the transition at ch is of second order.

Attempts were made to extend the validity of the GL theory to
all temperatures. In the limit T — ¥ £ Gor'kov?®) succeeded to derive
equations formally identical®?? to those of GL with a Green’s function
reformulation of the BCS theory, using a position-dependent pair wave
function A(r) in an applied magnetic field. Since A(r) goes continu-
ously to zero at a second order transition, by linearizing the Gor'kov
equations for small A(r), it became possible to obtain SOlUthﬂSH (T)
for T << T.. In this way he calculated H (O) in the pure, clean hmit
(infinite mean free path ! of the electrons) arriving at the following
interpolation polynomial for HCZ(T)ao)

H_,(t) = xH_(t) [1.77 — 0.43 t? +0.07 t*] . (2-21)

The Gor'kov expression (2—21) gives a much weaker temperature
dependence for H 2(t) than Ginzburg’s (2—-19).

Maki? extended the Gor'kov treatment to account for impurity
scattering, in the limit of small 1. He showed that the Abrikosov vor-
tex structure in the neighbourhood of ch, at arbitrary temperature, is
characterized by egs. (2—14) and (2—20) with different temperature

dependent parameters, Kl(t) in

H_,(t) = v2 «,(t) H_(t) (2—-22)

c2

and Kz(t) in

7™ =
-2 #
f‘[2»< l] (2—-23)

both converging to the GL « for t = 1. In the dirty limit (Z = O)Kl(t)/K
is predicted to increase 20% from t =1 to t =0, compared to 25%
according to Gor'kov’'s calculation (2—21) for Il = o,

For Kz(t)/K Maki predicted a decrease of 30% fromt=1tot =0
and from such a behaviour he derived the thermodynamic properties
of hypothetical type IIl syperconductors. Experimentally K, was always
found to increase upon decrease of temperature. Kz(t) was recalcul-
ated by Caroli et al.®?) in the dirty limit with the result « K (t
for all t, within 2%. For the clean limit, Maki and Tsuzuki 33) denved
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relations identical to (2—22) and (2—23) with results tor (t) rather
similar to those of Gor'kov. For Kz( t) they predicted a more rapid in-
crease upon decreasing temperature than for « (t) with a logarithmic
singularity at t = 0. Recently Eilenberger®?4) has calculated « (t) and

2(t) for arbitrary impurity concentration. He showed in parncular that
the singularity in Kz(l) at t = 0 disappears when a slight impurity is
present.

The BCS - Gor’kov model on which the calculations of Kl(t) are
based assume weak electron-phonon interaction and a spherical Fermi
surface.

For comparison of experimental and theoretical results for H 2(t)
Helfand and Werthamer®®) introduced the reduced quantity

Hc2(t)

—(dH_,/dt),_,

h*(t) = (2—24)

Theoretically, h*(t) as Kl(t)/K is not very sensitive to impurity. At
the clean limit h*(0) = 0.727, this corresponding to K](O)/K= 1.263
while at the dirty limit h*(0) = 0.693 (or KI(O)/K = 1.203). In the case
of pure Nb the strength of the electron-phonon coupling has no apparent
effect on h*(t)3%). It then follows that the discrepancies between
experiment and theory regarding ch are likely to be due only to Fermi
surface anisotropy. In fact, Hohenberg and Werthamer®”) showed that
when such an effect is taken into account h*(0) is enhanced with
respect to the value obtained on basis of a spherical Fermi surface,
although they have not yet been able to compute the new value.

In attaining the derivation of the GL theory from first principles,
Gor'kov has expressed the phenomenological constants of this theory
in terms of microscopic characteristics of the metal, such as the
electron mean free path,!, the Fermi velocity, Ve and the density of
states (for one direction of spin) at the Fermi surface, N(0). For the
GL parameter « Gor'kov2?) derived the general expression x = KO/X(p),
where gAR 0.96 >\L(O)/§o corresponds to the pure metal and x(p) is
a function of the parameter p =0.884 £ /Il. In terms of measurable
quantities, Goodman'?) has approximatgd Gor'kov’'s expression for
K as

(2-25)

k=K, +7.5x10% g y*

where P, is the normal state residual resistivity in (Q.cm and 7 the
Sommerfeld constant in erg.cm™3, K ™2,
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2.4 The thermodynamics of superconductivity

2.4.1 Type I superconductors

The thermodynamic description of the reversible behaviour of
superconductors is based on the magnetic Gibbs free energy

G(T,H) =U — TS — MH (2—26)

where U is the internal energy, T the absolute temperature, S the
entropy, M the magnetic moment of the specimen and H the applied
magnetic field. Assuming that the specimen is a very long ellipsoid
parallel to the magnetic field, the demagnetizing factor of which may
be neglected, the magnetization is uniform and the Gibbs free energy
density is everywhere the same for a given T and H all over the volume
of the superconductive body. For the sake of simplicity the specimen
volume is taken equal to unity so that M is the magnetization and G
the Gibbs ‘free energy density.
Since dU = TdS + HdM we have

G = — SdT — MdH , (2-27)
and
5 =-(2G) (2—28)
TH
and
oG
= AoAS] 2-29
(BH)T ( )

= T(98y . = _ 723G ~30
C = T2y = = T(EFy - (2-30)

Upon isothermal magnetization the Gibbs free energy of the super-
conductor increases with the applied field H

H
G,(T,H) = G_(T,0) —JMdH : (2-31)

For a type I superconductor M = — H/47 and therefore
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G(T.H) = G(T,00 +Z . (2-32)

At the transition to the normal state GS(T,HC) - Gn(T,HC). H_ is the
thermodynamic critical field at the temperature T, related to the con-
densation energy density Gn(T,HC) —GS(T,O) by eq. (2—1). Experiment-
ally, Hc was found to have, approximately, a parabolic temperature
dependence Hc(t)ch(O) (1-t?) (see Fig. IV.16). Neglecting the
small normal state magnetic susceptibility, Gn, Sn and C_ are field
independent quantities.

From (2—28) and (2—32) one gets
S(T,H) =8_(T,0),
and from (2—30) and (2—33) we have
C.(T,H) = C_(T,0) . (2—34)

Therefore, complete diamagnetism implies field independent specific
heat and entropy.

From (2—1) and (2—28) the entropy difference between the super-
conducting and the normal state is obtained as

(2-35)

At T =T, the transition to the normal state is second order in Ehrenfest’s
sense >®! since HC(TC) =0 and therefore AS(T_) = 0. At T =0 the third
law of thermodynamics implies dHC/dT =0, For T #0 and T, the
transition is first order with a latent heat T A S.

From (2—30) and (2—35) the difference between the specific
heat in the superconducting and normal state is derived as

dH d%H
AC(T) = C.(T.0) —C.(T) =L [(=9)2 +H_. —=
(T) = C(T,0) = C(T) = T [(=9% + H, —

§ s

At T = T_ we have the Rutgers’ relation

AC(TC) 1 dHc 2

o 2 ; (2-37)
T_ 4m dT T,

relating the magnitude of the specific heat jump at the transition to
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the normal state in zero field to the slope of the thermodynamic critical
field at T = Tc.

The quantities AC(T) and AS(T) can be calculated from the
temperature dependence of Hc (derived from magnetization measure-
ments). Reciprocally the thermodynamic critical field can be obtained
from calorimetric results by two integrations, as follows

f [& o 14T = AS(T) (2—38)
Fans T

and

H2(T)

87

AS dT = G_(T) — G(T,0) = (2-39)

2.4.2 Type II superconductors

Adopting for type II superconductors the concept of thermo-
dynamic critical field H as given by relation (2-2), egs. (2—35),
(2—36) and (2—37) hold mdependently of the type of the superconductor.
Obviously, relation (2—33) and (2—34) are also valid for type II super-
conductors but restricted to fields H < H

However, since in the mixed stcxte the entropy is a function of
the applied field, as shall be discussed in Chapter V, relation (2—35)
says nothing about the nature of the transition to the normal state
except in the cases H =0 and T = 0. On basis of Maki’s extension of
Abrikosov’'s prediction for the magnetization near H o2 (ea. (2-23)),
the transition to the normal state should be second order for all T,
which is confirmed by experiment, down to the lowest attained temper-
ature.

The area under the isothermal reversible magnetization curve
yields Hc (eq. (2-2)). In practice, such a calculation is inevitably
affected by hysteresis and is therefore not free from error. Calori-
metrically, HC can be calculated freely of disturbances by hysteresis
even in the case of the most irreversible magnetic behaviour. By using
relations (2—38) and (2—39), HC is derived from zero field and normal
state specific heat results which are independent of the degree of
reversibility of the magnetic behaviour.

It remains yet to be established on microscopic grounds the
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analytical treatment of the behaviour of the specific heat of intrinsic,
low k, type Il superconductors in the mixed state. However, on basis
of Abrikosov’s vortex model that yields explicitly linear magnetization
M e (H—ch) (eq. (2—23)) near the transition to the normal state, it is
possible to derive expressions for the entropy and therefore the spec-
ific heat in that region. These expressions provide a means for a
rather severe test of Abrikosov’s prediction for M(H) near H_, since
the calorimetric quantities are very sensitive to the exact shape of
the magnetization curve.

Assuming that ch(t) is a second (or higher) order phase trans-
ition line, the electronic Gibbs free energy density in the mixed state
at temperature T and applied field H is given by

G_(H,T) =G_(T) — MdH , (2—-40)

c2

where G (T)=-%yT? (2—-41)
n

is the normal state, field independent, electronic Gibbs free energy
density (¥ being the Sommerfeld constant).

In the immediate neighbourhood of the transition to the normal
state, according to Abrikosov - Maki (eq. (2—23)) we have, for all T
in the mixed state

M =y, (H—H_,) (2-42)

where  y = (3M/9H) = 1/4mB[2k(T) — 1] (2-43)

is the field independent differential magnetic susceptibility in the
mixed state, for ch — H <« ch. ch, M and X, Gre temperature
dependent quantities.

From (2—40), (2—41) and (2—42) we have

G, (HT) =-% yT2 - % x,(H,, - H)?. (2—44)

The entropy in the mixed state near ch per unit volume is then given
by

dx, . dH_,
Sp(H,T) = YT ¢ %h—= (H , —H)® + x (H, —H) —<2 . (2-45)

This expression yields in fact a transition of second or higher order
when the applied field H reaches the upper threshold field H_,. Thus,
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for T =T, HeH (T,) we have Sm(ch,TS) =y T, =8 (T ). At T=0
the third law of thermodynamics implies: dch/dT = dxm/dT =0 and
consequently from (2—22) and (2—43), dKZ/dT = dxl/dT =0, for T =0.

The specific heat in the mixed state in the immediate vicinity of

ch is given (per unit volume) by

C HD =T deXmH 02 e Xmgy ) Pez
Blen R Es S RS RS So (LR ) e
dH d’H
= ey 2
& o e Lk P ]. (2—46)
At the transition to the normal state we have the Ehrenfest!29:39)
type relation
C (T)) - T dH
m(;y_s =y c2y2 (2—-47)
T AT

relating the discontinuity in the specific heat AC(TS) = Cm(Ts)—Cn(Ts)
to the temperature of the transition Ts, the differential magnetic sus-
ceptibility in the mixed state at ch and the slope of the phase trans-
ition line. This relation makes it possible to derive from specific heat
results the values of y = (9M/9H), for H = H_, and, therefore, the
parameter Kz(t) through relation (2—23). Expression (2—46) holds for
all T and in the limit T —=0 it yields an interesting result. Defining
v'(H) ='%‘imo(Cm(H,T)/T), one has

0 d%H
+’L"L)[HC2(0)—HJ(—MT°§)T=O-

(2—48)

Experimentally it was found (Section 4.2.7.4) that Xm(T) is at the
lowest temperatures a non vanishing, slow decreasing function upon
decreasing temperature so that the term in dzx /dT? for T =0 is
negligible, at least for H_,(0) —H << H_,(0). crinzxm/de at T=0
will be even zero if, as a first approximation (which experiment appears
to confirmw)), we take near the absolute zero

H_,(t) = H_,(0) (1 — at?) . (2—49)

G2 pT (2—50)
dT

Then we have




d?H
and dng =p (2-51)

where p = —20Hc2(0)/T2 ‘ (2-52)

Experimentally it was found (Section 4.2.7.1) that, for T not too close
to TC, the magnitude of the specific heat jump at the transition to the
normal state varies as

AC(T) = €T2
T

where € is a numerical coefficient.
From (2—47), (2-51) and (2—52) it is therefore concluded that near
the absolute zero, Xe is temperature independent and non zero

Xm(0) =:—2 - (2—54)

If the expression for the temperature dependence of H_, includes
terms of power greater than the second then (d?y /dTZ)T:O?’ 0 but
remains small. Neglecting in (2—48) the term in nzdzxm/de

have

v'(H) "
Y

2

0 d2H
1 +X;—”[HC ) — H) (), -

By means of relations (2—51), (2—52) and (2—54) expression (2—55) be-
comes

y'(H) 1 —a.+a}__i_
Y Hc2

eTg

2ay §

(i (2-56)

where q = (2-57)

The behaviour of the mixed state specific heat in the neighbourhood
of the absolute zero and at high fields (ch(o) — H << ch(o) is there-
fore expected to be quite different from the zero field specific heat
which vanishes exponentially at absolute zero due to the existence
of a forbidden gap in the excitation spectrum of the superconducting
electrons (BCS'7)). On basis of the sole assumption that near ch
the magnetization is given by eq. (2—42) with X field independent,
the specific heat for T =0 and H = ch(O) is expected to contain a
term linear both in the temperature and the applied field.
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This linear term was first predicted by Gorter et al.41:42) 5
thermodynamic grounds. Assuming that the transition at H (T) is
always of second order and that dch/dT vanishes at the absolute
zero, the entropy at all temperatures and the specific heat divided by
the absolute temperature, C/T, in the limit H— ch(o)' cannot vary
discontinuously. Thus, %irg [Cm(H,T)/T] is of the order of 7 for
H=H_,(0).

The linear term owes its origin to the low energy excitations

which the energy spectrum of the superconducting electrons contains
in the cores of the Abrikosov vortices (Caroli et al.!9)).
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Chapter III

EXPERIMENTAL METHOD

3.1 Introduction

In this chapter a description is given of the method and apparatus
used for the measurements of the specific heat of niobium. The specif-
ic heat C of a specimen is defined as

L AQ
G T=lim: =2 (3—-1)
AT-0 AT

and thus can be obtained directly by determining the increase AT in
the temperature T of the sample to which a known quantity of heat
AQ has been supplied.

In general, the same AQ produces different AT's on the same
sample at the same temperature, according to the conditions under
which the energy is supplied. Throughout this thesis the condition
is that of constant applied magnetic field. In terms of the magnetic
Gibbs function, G, Cy is given by Cy=— T(BZG/BTZ)H (Section
2.4.1). Defining a magnenc enthalpy E cxs

E =U—- HM (3-2)

where U is the internal energy, H the applied magnetic field and M
the magnetic moment of the sample, it can also be shown that

_oE
Cy = (ﬁ)H : (3-3)

Although the index H in CH has been dropped everywhere, the mean-
ing of C in the text is that of CH

The heat capacity, Ct, of the calorimeter plus sample plus
addenda (heater and thermometer) is directly measured. The (molar)
specific heat of the sample is calculated by subtracting from C the

heat capacity of the calorimeter plus addenda as measured in sepamte
runs.

Basic to accurate low temperature calorimetry are the following
requirements: 1) good thermal insulation of the calorimeter from the
surroundings, achieved by means of high vacuum and by minimizing
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the thermal conductance of the suspension threads and electrical
leads; 2) heater and thermometer in good thermal contact with the
sample and mounted in such a way that heat flows from the heater to
the thermometer mainly through the bulk of the sample; 3) low thermal
relaxation time 7 (7 measures the rate at which the sample approaches
a homogeneous temperature distribution after heat has been supplied
locally). In particular, 7 should be kept smaller than the response
time of the apparatus with which temperature variations of the sample
are recorded., Otherwise the interpretation of the heating curves is not
straightforward.

The order of magnitude of 7 is given” by 7= C/kL where C is
the heat capacity of the sample, « its thermal conductivity and L a
linear dimension of the sample. For superconductors, 7 may vary
considerably with the magnetic field and temperature through C and «
For a type Il superconductor near HCI(T) both C and « display anomal-
ies in the direction of increasing 7. In the extreme case of Nb-3, near
Hcl(T) 7 was calculated to increase by a factor in the order of 100
with respect to the normal state values. In the normal state, at 4.2 %K,
7 was in the order 10~° seconds. Even so, the calculated value of 7
did not reach the response time of the recording apparatus (in the
order of a few seconds) although relaxation effects were apparent at
HCI(T).

For reducing the error produced by the heat leak to the surround-
ings during the heating time it is required that the heat lost during
the time 7 be much less than the energy AQ supplied to the sample:
7Q << AQ (Q is the heat leak per seco.nd). This condition was certain-
ly fulfilled since typical values of 7Q/AQ were in the order of 10—4
for a temperature difference between sample and bath of one degree.

3.2 Samples

Nb-1 was a bundle of 2200 impure unannealed thin niobium wires
with a total mass of 0.0745 gram-moles closely packed in a calori-
meter (1 gram-mole = 92.91). Each wire has a diameter of 0.1 mm and
a length of 44.1 mm. Since hysteretic behaviour was expected, thin
wires were chosen in order to reduce the effects of irreversibility.
The wires were cut from a coil supplied by Fansteel Metallurgical
Corporation.

The annealed samples each consisted of 8 wires of diameter
0.76 mm and length 42.5 mm (Nb-2) and 45 mm (Nb-3). The masses
were 0.0138 (Nb-2) and 0.0145 (Nb-3) gram-moles. The wires making
up samples Nb-2 and Nb-3 were cut from two refined annealed niobium
wires received from the General Electric Research Laboratory,
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Schenectady, New York, through the kindness of Dr. W. de Sorbo who
carried out the heat treatment. The origin of this material is the same
as that mentioned in ref.2), where it was referred to as Stauffer Temes-
cal - an electron-beam melted (one-pass) ingot of Nb. The two wires
have been heated separately by passing an electrical current of about
24 A through each of them in a vacuum of approximately 5 x 10~ "mm Hg.
Total heating time was 8% hours for Nb-2 and 7% hours for Nb-3. The
annealing temperature, measured with optical pyrometer was 1830 °C
for Nb-2 and 1800 °C for Nb-3.

The result of annealing and outgassing appears to depend critic-
ally on the annealing temperature, time and vacuum. Notwithstanding
the similarity of the thermal treatment undergone by the two samples,
the slightly different annealing times and temperatures may account
for the different characteristics of the two specimens. In an attempt
to remove strains introduced by the cutting procedure, each end of the
wire segments constituting samples Nb-2 and Nb-3 was etched by
dipping it for a few seconds in a 50-50 volume mixture of concentrated
HNO3 and 48% solution of HF. The resistance ratio R(273 °K)/R(4.2 °K)
of the three samples measured potentiometrically after the measure-
ments were performed, were 7, 47 and 145 respectively for Nb-1, Nb-2
and Nb-3.

The chemical analysis of the samples gave the results shown in
Table 1.

Table 1
Results of the chemical analysis of the three Nb samples
stamett 1o N iC sk e “Fe. Co Mg NUCAL g M s
sampl®
Nb-1 (wt %) 0.16 <0.005 0.05 0.01 0.12 0.008 0.02 0.001 0,01 0.003 0.001 0.03 <0.002
Nb-Z(rmd Nb;3 £30 ~30 ~300 ~60 <10 < § 10 <10 < 5 <50 < 5
pepom.

Ag was not found in Nb-2 and Nb-3 and the C concentration could not
be calculated because the mass available for analysis was too small.
All samples were polycrystalline.

3.3 Apparatus and cooling procedure

For many years it was usual in Leiden to cool the calorimeter
by using gaseous helium to establish thermal contact with the surround-
ing bath of the cryogenic liquid (exchange gas method). The measure-
ments on the first sample (Nb-1) were performed in this way. It was,
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however, soon learned that when the cooling was brought into the
neighbourhood of 1°%K it was not possible to remove the residual traces
of the contact gas no matter what the pumping time. Thus, satisfactory
thermal insulation of the calorimeter from the surroundings could not
be achieved at the lowest temperatures. Moreover, the desorption of
the exchange gas in the course of the run affected the results.

Although the difficulties associated with the use of contact
gas were reasonably well overcome by pumping it out at a somewhat
higher temperature and by removing its residual traces from the calori-
meter surface, suspension threads and electrical leads by a cryopump
effect, an alternative means of establishing and breaking thermal
contact between sample and bath (a thermomechanical switch) was
devised for the measurements with samples Nb-2 and Nb-3. This last
cooling procedure introduces no disturbances and allows the immediate
starting of the measurements after the cooling to the lowest temper-
ature.

For both cooling procedures, before each measurements, the
vacuum jacket surrounding the calorimeter was pumped at room temper-
ature with a '"Speedivac’’ oil vapour diffusion pump model 203B. The
highest vacuum that could be reached with this pump was in the order
of 10~7 mm Hg, measured with a Philips Special Ionization Vacuum
Gauge type PW 7902. When exchange gas (“He) was used it was intro-
duced into the vacuum system at room temperature and at a pressure
low enough to prevent condensation at the lowest temperature to be
reached.

The temperature of the bath was reduced by pumping its vapour
with the central pump of the laboratory to 1.4°K and below that by
means of a 'Speedivac’’ vapour booster pump model 9B3 with which a
temperature of about 0.9 °K could be reached.

Next, a description is given of the apparatus used with each
cooling procedure, reference being made only to the parts that vary
between one method and the other.

3.3.1 Apparatus using exchange gas (A)

Apparatus A is shown in Fig.IIL.1 at the level of sample location.
The thin niobium wires constituting sample Nb-1 were packed in a
calorimeter ¢ having the heater h at one end and the thermometer th at
the other end. The calorimeter was suspended by means of four silk
threads s from four stainless steel vertical rods p attached to the top
of the vacuum jacket j. These silk threads were maintained under
tension by means of two phosphor-bronze springs sp. The electrical
leads of the thermometer (constantan) and those of the heater (Nb-20% Zr)
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passed through the Pt-glass seal g on the top of the vacuum jacket.
‘He exchange gas could be introduced or high vacuum established
inside the jacket through the pumping line p! made of German silver,
in which some copper radiation shields r were placed. Through the
small Pt-glass seal f a small amount of helium contact gas was intro-
duced into the calorimeter in an attempt to improve the thermal con-
tact between the wires.
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Fig. III.1 Apparatus 4 using the exchange gas method.

The heater was a constantan wire wound anti-inductively with a
room temperature resistance of 120€), The parts of the calorimeter
in connection with the heater and the thermometer were made from
electrolytic copper while the middle part was made from stainless
steel. In that way the flow of heat through the calorimeter wall was
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decreased so that overshoots in the recording of the temperature of
the sample were avoided.

In spite of the conventional design of apparatus A the disturb-
ances caused by the use of contact gas were removed by the following
cooling procedure: as soon as the calorimeter was cooled to about
1.6 °K by the 4He exchange gas, the jacket j was evacuated and the
temperature of the liquid helium bath was reduced to about 0.9%K in
order to restrict the subsequent cooling to that due to parasitic heat
leaks. This procedure required several hours of waiting in order to
reach 1.3°%K but it was thus possible to suppress desorption effects
of the *He exchange gas at the lowest temperatures. Such effects can
be very disturbing if the heat capacity to be measured is very small.
The required magnetic field was established at 1.6 °K just before
pumping out the exchange gas. After each measuring run contact gas
was again admitted into the vacuum jacket for the calibration of the

thermometer.

3.3.2 Apparatus using a thermomechanical switch (B)

The modified apparatus B used in the measurements on samples
Nb-2 and Nb-3 is shown in Fig.IIl.2. The caleorimeter ¢, made of electro-
lytic copper, was kept in position by means of six silk threads s. In
order to avoid over-shoots in the recording of the sample temperature,
the thermometer th was attached to a separate sheet of copper placed
near one end of the sample w. The thermal contact between the wires
of the sample and between the sample and the heater h and thermo-
meter was requlated by means of four small brass screws b. Surround-
ing and concentric with the upper (cylindrical) part t of the calorimeter,
there were two copper pieces cp thermally connected to the wall of
the vacuum jacket j by means of 4 copper braids cb. The inner surfaces
of these pieces cp were covered with a layer of indium to improve
thermal contact. The pieces cp were attached to rotatory teflon seg-
ments rp in such a way that rotation of rp resulted in horizontal lin-
ear pincer movement of the pieces cp. A phosphor-bronze spring sp and
a tungsten wire tw were attached to each of the two rotatory segments
rp at the same point P. A stainless steel wire ! was passed through
the pumping line pl and attached at the cryostat cap to a bellows m,
the other end being connected with the movable segments rp, via the
wire tw. Radiation shields are indicated by r; g is a platinum-glass
seal through which pass the electrical leads to the thermometer and
heater.

Pulling on the bellows brings the pieces cp into strong contact
with the upper part of the calorimeter, thus thermally connecting it
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with the bath. Upon releasing the pulling force on the bellows, (which
is then pressed down by the atmospheric pressure) the springs sp,
being under tension recall the contacts cp, thus insulating the calori-
meter from the surroundings. Because of friction, the temperature of
the sample rose somewhat when opening the contacts, this effect
being most apparent in zero magnetic field at the lowest temperatures
where the heat capacity of the sample is the smallest, Even so, the
warming up of the calorimeter amounted only to 0.36 °K, corresponding
to an energy development of 280 ergs at about 1°K. With the sample
in the normal state, this warming-up at the same temperature did not
even reach 0.1 °K because of the higher value of the heat capacity.

Fiqg, II1.2 Apparatus B using a thermomechanical switch.
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With the thermal switch closed, the temperature of the calori-
meter was reduced to about 0.9°K by pumping on the vapour of the
helium bath and then the required magnetic field was established.
Upon opening the thermomechanical contact the sample became therm-
ally insulated from the surroundings and the measurement could thus
be immediately started. In the course of each measuring run the temper-
ature of the bath was periodically adjusted (up to 4.2 °K) in order to
minimize the parasitic heat exchange between sample and environment.
The whole temperature range of interest (maximum 1 %K to about 10 °K)
was thus passed at constant magnetic field in a single run, the temper-
ature being increased by the very process of measuring. Once the
normal state was reached (for fields crossing the mixed state) the
thermomechanical contact was closed and the calibration of the thermo-
meter in the liquid “He region performed while again cooling the
sample (with the magnetic field on) to the lowest attainable temper-
ature. Then, in the great majority of cases, a second measuring run
was performed after the sample had been cooled in the presence of
the magnetic field. For zero magnetic field and normal state measure-
ments the calibration of the thermometer was performed during the
cooling of the sample prior to measurement.

3.4 Heater and thermometer circuits

The energy input AQ was calculated by measuring the time t
during which a constant current i passed through the heater at a con-
stant voltage V : AQ = Vit. The duration of the heat pulse (heating
time) was measured by means of a Jaquet clock type 309d, C,operated
simultaneously with the heating circuit by means of a relay R, via
switch k, as shown in Fig.lll.3. Switch k; was used for continuous
heating of the sample or for regulation of the heating current with the
dummy resistance D and the variable resistance Rv (the dummy resist-
ance can be included in or excluded from the circuit by means of the
switch k2). The voltage V over the heater was measured by means of
a 5-digit Solartron millivoltmeter (Type LM 1010), D.V. The heating
current i was measured by switching the millivoltmeter over a standard
resistance NR in series with the heater. Typical heating times ranged
from 5 to 25 seconds and the power supplied varies from 0.3uW at 1°K
to 140uW at 10 °K.

The temperature rise AT produced by the heat pulse AQ was
derived from the heating curves displayed on a Philips recorder R(type
PR 2200 A/21) receiving the amplified signal from the unbalanced
Wheatstone bridge containing the resistor th used as thermometer. The
thermometer circuit is presented in Fig.Ill.4. During the calibration
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of the thermometer the amplifier A (Leeds and Northrup stabilized d-c
microvolt amplifier No. 9835-B) was used as a null-detector. AT values
ranged from a few millidegrees at 1°K up to few tenths of a degree
at 10°K. The voltage input to the bridge remained constant within
1% from 1°%K to 10°K with the result that the power dissipated in the
thermometer was smallest at the lowest temperature, where the resist-
ance was largest. This power dissipation amounted to 3.8nW at 1°K

and was four times larger at 10 °K.

LaLs p
2500 R
| UM ey —
heater 13V
Fig. II1.3 Heating circuit. Fig, 1I1.4 Thermometer circuit,

3.5 Thermometry

Two carbon resistors were used as thermometers, one for the
measurements on Nb-1 and the other for the measurements on Nb-2 and
Nb-3. This kind of thermometer is suitable for low temperature calori-
metry since it has a high sensitivity and a low heat capacity. Both
thermometers were prepared by the F.O.M. group for research on metals
at the Kamerlingh Onnes Laboratory. They were found to be reproduc-
ible while kept at low temperatures but the reproducibility was lost
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once they had been warmed up to room temperature. Magnetoresistance
effects were also observed. Thus, calibration of the thermometer was
required for each measurement. The secondary standards used for
calibration of the carbon thermometers were the vapour pressure of
liquid hydrogen (using the L-60 scale of temperaturesa)) helium-4
(using the 1958 ‘He scale of temperatures?) and helium-3 (using the
1962 3He scale of temperaturess)). The pressure of the bath vapour
was read on a Hg manometer by means of a cathetometer. For 1.4 < T
< 2.2°%K the vapour pressure of the 4He bath was measured with an oil
manometer. Below 1.4°K the calibration was performed against the
vapour pressure of the 3He condensed in a little vessel attached to
the vacuum jacket and connected to another oil manometer through a
stainless steel capillary. Standard temperature and gravity corrections
were applied as well as a hydrostatic correction when required. For
T < 1°K, a thermomolecular correction®) was also applied.

The interpolation between the boiling point of 4He and the triple
point of H, for the thermometer used with the measurements on Nb-1
was made usmq de Vroomen’s method’’). With a restricted number of
calibration points (R,T) in the liquid H2 and the *He temperature
region, a reduced plot log (RO/R) versus log R was made, (RO,T) being
the tabulated values of the calibration curve of a similar thermometer
once calibrated in the whole temperature region 1.2°K - 30 °K. From
such a plot the calibration curve R(T) in the interval 1.3°K - 10°K and
its derivative dR/dT in the interval 1.6°%K - 10°K were constructed;
dR/dT was calculated by means of the relation’) dR/dT = R/7y where
= g (1+s) and s = (d/d log R) log (R /R) The values (¥ _,T) are
also tabulcted The maximum value of s found with this thermometer
was 4%.

Later on, the calibration procedure described by Moody and
Rhodes®) was adapted for the whole temperature interval (1 - 20 °K)
using an Electrologica X-1 electronic computer. With five experimental
calibration points in the liquid H, temperature region and twelve in
the liquid 4He region an mterpolotxon was made by fitting the cali-
bration data to a polynomial of the form®’

9y (InR)” , (3—4)

n
<
2.
=0

|-

v

where the a, are constants and v is an integer. The method of least
N

squares was used, the minimized quantity being f [(I/Ti— l/Tf)Tf]Z,

i
where Ti is the value given by relation (3—4) for the experimentally
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found R(Ti) while N is the number of experimental calibration points.
The calibration programme included an adjustable rejection criterion
so that every experimental point deviating more than 3 mdeg in the
liguid iHe region and more than 10 mdeg in the liquid HZ region from
the value given for T by relation (3—4) is excluded from the minimiz-
ation process. In general, a value of n =3 in relation (3—4) was
sufficient to include all deviations within this criterion.

For the temperature, the two calibration procedures agreed within
0.1%. For dR/dT it was found that they agreed within 0.2% for 3.6 <
T < 9.3% but larger differences appeared at lower temperatures, as
is shown in Fig.Ill.5 where A(dR/dT)/(dR/dT) = [(dR/dT)MR — (dR/
dT)de\,]/(dR/dT)MR is plotted versus T. As it is well known that
below 1.6°K the values of Y, in the de Vroomen tables are affected
by an error larger than 1%, the calculation of dR/dT by means of this
method at the lowest temperatures was avoided from the beginning
and instead a numerical method was used.
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Fig. 111.5 Difference between the values of dR/dT calculated
by means of Moody-Rhodes’ (MR) and de Vroomen's
(de V) methods in % of (dR/dT)MH, plotted versus T.

The two types of points refer to calibrations of the
thermometer used with the measurements on Nb-1 in
two different runs.



44

For the thermometer used with the measurements on Nb-2 and
Nb-3 the experimental calibration data were also fitted by a third
degree polynomial of the form (3—4) using a minimization procedure
and computer programme similar to that described above and with
equally satisfactory results. Recently, the calibration data of similar
carbon thermometers in the whole temperature region 1.2 - 77.5K have
been fitted by a different polynomialg) T =% aj (In R)!, the a be-

j=0

ing constants and j an integer. In the range 0.9 < T < 20°K such a
relation does not yield values for T and dR/dT much different from
those obtained with the Moody-Rhodes polynomial. With m =6 and n = 3
the maximum difference found in T was 0.2% (for 7.5< T < 10°K), while
the maximum difference in dR/dT was 0.5% (for 6 < T < 8°%K).

3.6 The calculation of AT

The sample temperature was recorded by means of the apparatus
described in Section 3.4. The drift T(t), due to the heat leak, of the
sample temperature towards that of the bath has an exponential char-
acter!?) with a time constant given by C/1, ! being the heat leak per
second and unit temperature difference between sample and bath and
C the heat capacity of the sample. With good thermal insulation and
a not-too-small heat capacity, the time constant becomes so large
that the recorded line appears straight in relatively large time inter-
vals. In the present case C/l was of the order of a few hours at 1°%K.
Heating the sample at a rate of p watts the temperature rise produced
by the heating is given as a function of the time t bym)

t
AT =Tp(1 —e ) W (3-5)

OlL

For small 1/C values this expression becomes AT =p t/C, so that
if p and C remain constant during the heating time, AT(t) has a linear
character. When heating is stopped at t =t,, the energy AQ = pt,
supplied tothe sample has produced a temperature increase AT: = AQ/C.
For t > t, (after-period) the temperature of the sample drifts again to-
wards that of the bath with about the same value of the time constant
(for not-too-large AT) as in the fore-period (t < 0). In the present case,
with the exception of the regions where the specific heat displayed
anomalies, the recorded lines T(t) were straight and their extrapol-
ations in the fore- and after-period parallel to within a few tenths of
a percent over the heating interval. The use of the Keesom and Kok
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method!?) for the calculation of AT was thus reduced to a simple and
accurate procedure - the determination of the distance Au between
the fore- and after-period straight lines, at the middle of the heating
period and perpendicular to the time axis.

The increase AT in the temperature of the sample due to the
supplied heat AQ produces a decrease AR = (dR/dT)AT in the resist-
ance R of the thermometer; this decrease appears as a shift Au in the
output of the recorder. Au is related to AR through the sensitivity s
of the system Wheatstone bridge-amplifier-recorder, defined as s=Au/AR.
For a given bridge nearly in balance s depends upon the thermometer
resistance R and the amplification factor of the system amplifier-
recorder. The relation s(R) (actually s~ 1(R)) normalized to a given
range of amplification was determined from data taken in the course
of the measuring run. In the interval 5 < R(k{2) < 21 corresponding to

the temperature region 1 — 10°K, it was always found that s~ ! = cR,
c being a constant.
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Fig. I111.6 The recorder output and the extrapolation procedure
used in the calculation of AT.

The recorder output and the interpretation of the heating curves
are shown in Fig.lIl.6. The measuring sequence was as follows: First-
ly, the null-point line np corresponding to balance of the Wheatstone
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bridge was recorded for a short time (by switching off the voltage over
the bridge). Secondly, the variable branch R, of the bridge was ad-
justed to a value Rk somewhat less than that corresponding to balance
and the fore-period line was recorded for a few seconds. A heat pulse
of known power was then fired during a measured time t, the thermo-
meter responding to the heating without notable relaxation. When the
after-period line was recorded during a time interval allowing an
accurate extrapolation to the middle of the heating period, Rv was
decreased to a value R, ,,, thus reversing the out-of-balance situation,
Ay’ being the shift produced in the recorder output. The value of R
that brings the bridge into balance is (Rk k+1)/2 for heating curves
symmetrical with respect to the np line, so that the value (R, — Rk+1)/
nAu’ of s~} corresponds to the thermometerresistanceR = (R k+l)/2n
(n = 10 is the bridge factor). The whole cycle fore-heating- cmd after-
period and decrease of R is repeated thereafter a number of times
depending upon the width of the temperature region to be covered and
the required degree of resolution of the experimental curve.

The specific heat, being a function of temperature, varies in the
course of the heating period and so the:-measured mean value corres-
ponds to the sample temperature at the middle of the heating period.
If the heating curve was perfectly symmetric with respect to the np
line, the sample temperature at the middle point M of the heating curve
would correspond to the following value of 