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INTRODUCTION

The isotopes 3He and 4He are the only two stable substances which can
temain liquid down to absolute zero, in contradiction to the predictions of
classical statistics that all substances ought to be solid at absolute zero.
This is a consequence of the weakness of the interatomic attractive forces
(London-Van der Waals forces) and the large zero-point energy of the atoms
in the liquid, which is equivalent to an extra repulsive force between the
atoms. At equal distances the interatomic attractive potentials are almost
the same for 3He and 4He, but the zero-point energy varies inversely
proportional to the atomic mass. Owing to this difference in zero-point
energy pure liquid 3He has a larger molar volume V and the absolute value of
the internal energy U is smaller than in pure liquid 4He.

This thesis deals with the thermodynamic properties of liquid 3He-4He
mixtures.

The vapour pressures of 3He-4He mixtures show strong positive deviations
from an ideal liquid mixture. An analysis of the existing vapour-liquid
equilibrium data and a calculation of the excess chemical potentials from the
known boiling point measurements show that in the neighbourhood of 0.9°K
the excess Gibbs function GE can reasonably be expressed by means of the
expression GE =  A(1 — X) W,  in which W/R & 1.54°K, indicating an
almost regular behaviour of the solution. These strong deviations from an
ideal liquid mixture are not too surprising since there exists a large difference
in the molar volumes of the pure isotopes. Such a mixture becomes unstable
below a critical temperature Tcrn =  W /2R ss 0.8°K and below this tempera­
ture the mixture separates in two phases of different composition as has been
observed. At the phase separation curve the specific heat shows a discon­
tinuity, since below the phase separation curve there is an additional
contribution to the specific heat due to the large heat of mixing and to the
changes in amount and composition of both phases.

Another phenomenon which plays an important role in the thermodynamic
properties of liquid 3He-4He mixtures is the A-transition. The specific heat
of pure liquid 4He shows a sharp peak at 2.17°K, which corresponds to a
transition from the superfluid state, He II, to the normal state, He I, and is
called, on account of its shape, the A-point.
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The superfluid properties of liquid 4He have been ascribed to the peculiari­
ties of Bose-Einstein statistics, since the 4He atom contains an even number
of fundamental particles. However, the 3He atom contains an odd number of
fundamental particles and obeys Fermi-Dirac statistics. Pure liquid 3He
shows no sign of superfluidity (or A-transition) down to 0.08°K. Near absolute
zero liquid 3He has an abundance of low energy excitations in contrast to
liquid 4He. Addition of 3He to liquid 4He lowers its A-temperature and the
peak in the specific heat at its A-temperature falls rapidly with increasing
concentration.

The specific heat of dilute mixtures of 3He in liquid 4He shows below 1 °K
an almost constant contribution by the 3He of close to 3/% RX to the specific
heat. The 3He atoms can be treated as free particles which move through
the superfluid and the specific heat is that of an ideal monatomic gas.

In the specific heat measurements, described in this thesis, use has been
made of a new technique, developed during the last years, to reach tempera­
tures below 1°K. A small 3He-cryostat was built into the calorimeter, which
could be cooled to a temperature of about 0.35°K by evaporation of the 3He.
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Chapter I

THE VAPOUR-LIQUID EQUILIBRIUM OF 3He-4He
MIXTURES. A CALCULATION OF THE EXCESS

CHEMICAL POTENTIALS
Summary
The existing vapour-liquid equilibrium data on 3He—4He mixtures are analysed.

From the vapour pressure measurements of R o b erts  and S ydoriak  the change of
the excess chemical potentials with concentration has been calculated in the tempera­
ture region between 0.6°K and 2°K. Below 1°K the mixture seems to behave as a
regular solution.

1. Introduction. The first one to interpret with success the vapour-liquid
equilibrium data on 3He-4He mixtures by means of classical solution
theories was Somm ers.12) At that time, however, data were still rather
scarce.

Some years ago W ansink1) gave a calculation of the thermodynamic
quantities of 3He-4He mixtures from the vapour pressure and the osmotic
pressure at concentrations up to 7% 3He in the temperature region between
1.2 K and 2°K. At the moment vapour pressure measurements for the
complete concentration range are available from experiments by E sel’son
and B erezn iak 2) and by R oberts  and S y d o riak 3). From these new
experimental data it is possible to calculate the partial Gibbs functions for
all concentrations in the temperature region between 0.6°K and 2°K.

In this thesis the following notation is used'.
N  — number of moles
X  =  mole fraction (3He of a 3He-4He mixture)
C — molar ratio (C =  X/( 1 — X))
S  =  entropy
H  =  enthalpy
G =  Gibbs function
p =  partial chemical potential
cp =  heat capacity at constant pressure
T — absolute temperature
Tcrit =  critical temperature of mixing
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V — molar volume
p =  pressure
By  =  second virial coefficient arising from the interactions between

molecules of species i and j.

All quantities will be expressed per mole.
Subscripts 3 and 4 refer to the component 3He and 4He respectively, e.g.

pi is the partial vapour pressure of the t th component. The subscript l refers
to the liquid phase and the subscript v to the vapour phase. The superscript 0
is used to denote quantities referring to a pure substance.

The superscript E is used to denote the excess functions.
An asterisk distinguishes the partial fugacity pi* from the partial vapour

pressure pi.
A A =  A i — A n  is the difference between values of the quantity A at

both sides of the lambda-transition curve.

2. Thermodynamic formulae, a) V apour-liquid equilibrium , general.
We can define the thermodynamic properties of a liquid binary mixture by
means of the excess functions 4), the partial chemical potential being equal
to

/««< =  i“<L° +  RT  In +  //ïle (1)
where the excess chemical potential accounts for the deviation of the
mixture from the ideal solution.

It is useful to define the activity coefficient fi by means of the relation
m ^ ^ R T l n f i * ) .

From the equilibrium condition between the liquid and vapour phase

Pil, =  ^ iv
it follows that the excess chemical potential /1jE can be determined from the
chemical potential of the vapour, which is equal to

fiiy == [iiy° -f- RT  In Xiy  +  RT  In (ptot/pi0) +  (Ptot pi )Bu- (3)
We now define the partial pressure pi by

pi =  X iy  p\oX (4)
and the partial fugacities pi* by

In pi* =  In pi +  B y ptot/RT. (5)
and

In p r  =  In pi° +  By pi°fRT. - (6)
Hence equation (3) becomes:

lay  =  m °  +  R T  In {Pi*/Pi°*)- (7)
In deriving (3) we assume that

Bm ^ X y 2B33 -t-2Zv(l — Ay)£34 +  (1 — Xy)2B u =  X yB 33 + 0  — Xy)BA 4
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which implies that
2 .B 3 4  =  B 3 3  - f -  B i i -

The latter equality is justified by the theoretical calculations of K ilpa­
trick , Keller, Ham m el and M etro p o lis5) and the measurements of
K eller 6).

Substituting (1) and (7) in (2) we get
m E =  iWivE =  =  RT  In {pi*/X . (8)

Hence it is in principle possible to calculate if one knows the total
pressure as a function of the liquid concentration (boiling-curve) and the
concentration of the vapour in equilibrium with this liquid (dew-curve).

We can write the Gibbs-Duhem equation .
— S dT -f- V dp =  Xi  dHi (9)

in the following form adapting our notation to the case of a 3He-4He
mixture:

d,U3E d«4E
X-l — ----h (1 — X L) =  0 (const. T, ptot). (10)

qa l a A l
Formula (10) may be rewritten in the integral form

P X l

fi4 e = — -------— d^E  (const. T, ptot). (11)
J O I —  A  L

Even when p is not strictly constant the term V dp on the left hand side
of (9) is usually negligible compared with any one term on the right hand
side, this being true in our case. Consequently (10) and (11) are still effectively
valid.

Formula (11) enables us to compute the excess chemical potential /nE
at a concentration Xj, provided we know the excess chemical potential
H3E at all compositions intermediate between zero concentration and the
concentration Xj,.

Partial integration of (10) over the whole concentration range gives us the
following expression:

fo j“3e dWL =  f t  jXiE cLXl (const. T, pt01). (12)
Satisfaction of this equation may therefore be considered a necessary but
not sufficient test of the thermodynamic consistency of experimental data.
Extending the method of R edlich  and K is te r4)7) it is possible to write
eq. (12) in a somewhat different form:
p i n  — dX" — ^  ^3° I ^ 33 ~̂ 44 ~  ^3° — V i){pz° — p4°)

J o  CL L ~  Pi °  +  2  RT
(b 3 3 - b u ) - ( V 3°  ~ v 4°) r  _  _

----- RT ---------------J o ^ -
(p3° — f i ) fJO

VE dXL (13)
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Here we have also considered the case when p is not constant. We used (13)
as a test for the consistency of the phase diagram of 3He-4He mixtures at
different temperatures.

b) R egu lar so lu tions. We will now define the properties of a class
of mixtures, which are called regular solutions4)8). For convenience we
write down the expressions for 3He—4He mixtures:

M8b =  W(l -  * l )2 (14)

fi 4e  =  WXi? (15)

where IF is a constant independent of the temperature and the composition.
The main idea of a regular solution is that, although there exists a difference
in the interaction energy between the like and unlike pairs of atoms which
results in a heat of mixing, f7E =  XL( 1 — XL)W, there is still a complete
random mixing of the different atoms resulting in an excess entropy equal
to zero and hence a zero specific heat of mixing. Thus we have the following
equations in the case of a regular solution:

SE =  0 (16)

GE =  HE =  XL(1 -  XL)W. (17)

From (8) and (14, 15) it follows that the partial fugacities are given by:

p3* =  X L£3°* é 1~x '»WIRT (18)
Pi* =  (1 -  X i)Pi°* ex ^ WIBT. (19)

The critical point of mixing is determined by the following simultaneous
equations:

X L =  i  (20)

W/RT0lit =  2, (21)

and the phase separation curve is given by :

W ( X  \
Tp,  =  i r ( . - 2 X )  .„ (  ]-— ).

In the case of a regular solution the distribution coefficient Cy/Cl is given by

e ( W /R T )  (X -  2 X l) 122)

Cl pi
if we assume the vapour phase to be ideal, and we can obtain an osmotic
pressure between the liquid mixture and pure 4He which is equal to

Poem Vi = - R T  In (1 -  X l) -  w x L2. (23)

c) The d isco n tin u ity  in the  tem p e ra tu re  d e riv a tiv e  of the
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vapour pressure  a t the  lam bda point. We make the assumption of
a transition of the second order from the helium I phase into the helium II
phase. De Boer and G o r te r9) extended the K e e so m ^ -E h re n fe s t11)
relation to the case of a mixture and showed that the change at the lambda
point in the specific heat at constant pressure is connected to the change
in the slope of the vapour pressure curve in the following way:

J ( w L - [(1 - XÜXr - Xi" - .* »  (24)
assuming that the vapour behaves as a mixture of two ideal gases.

3. Review of the experimental data. Many boiling point measurements
have been performed by Som m ers12), at concentrations up to 13% and at
temperatures between 1.2 and 2.0°K, by E sel’son and B erezn iak 2), at
many concentrations and at temperatures between 1.4 and 2.6°K, and by
R o berts  and S ydoriak3), at many concentrations and at temperatures
between 0.6 and 2.0°K20). Dew point measurements have been performed by

T=1.70°K

o  __________XL ^  0 .5  1

Fig. 1. R e d l ic h  and K is te r  te s t a t  1.7°K cf. eq. (13).
H orizontal solid line: an  ideal m ixture.

□  S o m m e rs  and W a n s in k
O E s e l’so n  and B e r e z n ia k

Som m ers12) and by E sel’son and B erezn iak 2). Furthermore we have
measurements on very dilute mixtures by W ansink, Taconis and
S ta a s13) of the distribution coefficient Cv/Cl at temperatures between
1.2 and 2.0°K and measurements of the osmotic pressure x).
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We used the method of R edlich  and K is te r to test the phase diagram
of E sel’son and B erezn iak  by means of eq. (13). The last three terms on
the right side of eq. (13) appear to be very small compared to the first two
terms. Their data are not consistent, as we can see for example in fig. 1.

In the same figure we also see the discrepancy between the Cy/Cl determina­
tions of E se l’son and B erezniak  and those of W ansink13) and of
Somm ers at low concentrations. Moreover, there are large disagreements at
the high concentration values of the boiling point measurements with the
very accurate determinations of R o b erts  and S y d o riak 3), as one can
see in fig. 2.

-  0.8

—  0.6

Fig. 2. The boiling point measurements of R ob erts and S y d o ria k 3).
ptot/p3° versus temperature T, at different concentrations.

— — — ptot/p3° for X  =  0.734, calculated from data of F se l’son and B erezn ia k 3).

Plotting the vapour pressure points of Sommers and of R oberts  and
S ydoriak  versus the concentration we see that their data lie on a smooth
curve, whereas the measured points of E sel’son and B erezniak  are
systematically in disagreement with this curve. Furthermore the vapour
pressure measurements of R o b erts  and S ydoriak  show a discontinuity
in the temperature derivative of the vapour pressure at the lambda point
of the mixture as one should expect. From the measured discontinuity in the
temperature derivative of the vapour pressure at the lambda point, they
calculated the change in the specific heat at constant pressure with the aid
of eq. (24) (cf. fig. 3). Their results are in reasonable agreement with the
specific heat measurements of mixtures by D okoup il14) containing 21.1%
and 41.7% of 3He (cf. fig. 4).

Hence in our thermodynamic considerations we prefer to base our
calculations mainly on the measurements of Som m ers12) as analysed by
W ansink x) and of R oberts  and S y d o riak 3) and we have used the
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dew point measurements of E sel’son and B erezniak  only in a zero
approximation.

4. Calculation of the excess chemical potentials. In section 2 we have seen
that we can calculate the excess chemical potentials from the boiling- and
dew point measurements. Actually, however, this is not the case, since the
dew point measurements do not meet the requirements for a thermodynamic
calculation: at higher concentrations X \  becomes of the order of unity,
hence an error in X \  implies an error of an order of a magnitude larger in
p\. Furthermore according to eq. (8) ,«4® is determined largely by

ln(fc/(l -  XOPi°),
so the error in ^4® becomes too large.

o ______xL 0.5 1
Fig. 3. The discontinuity in the specific heat, Acp, a t the lambda point of a mixture

as a function of the liquid concentration, Xz-
O Calculated by R o b erts  and S y d o riak 3) from their measurements with eq. (24).

We follow another procedure in calculating the chemical potentials from
the vapour pressure. As a zero approximation we use the dew point measure-
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merits by E sel’son and B erezniak, from which we can calculate the partial
vapour pressure pa =  Xy ptot, as the total pressure pt0t is known from the
boiling point measurements made by Som m ers and by R oberts  and
Sydoriak . With the second virial coefficients calculated by K ilpa trick ,
K e lle r and H am m el15) we determine the partial fugacity pa*. Hence
^gE _  RT In (p3*IXjjp3®*) is known to a zero approximation at different
concentrations. Now it is possible to determine /T4e to a first approximation
by graphical integration of eq. (11). From /r4E we derive the partial pressure

mole °K

Fig. 4. The specific h ea t of 3H e -4H e m ix tu res14) as a  function of the tem perature T
a t  different concentrations X l-

4H e: K ra m e rs ;  K e e so m  and K ee so m .
3H e: R o b e r t s  and S y d o r ia k ;  A b ra h a m , O s b o rn e  and W e in s to c k .

X l =  21 .)%  |  D o k o u p ii.
X l =  41.7% J y

t  £ Cp calculated by R o b e r t s  and S y d o r i a k 3) from the ir m easurem ents (see fig. 3).

Pi and now we have X y  =  1 —  (pi/ptot)  in a first approximation. Once the
first approximation is calculated, the whole procedure is repeated. Since the
second and third order approximations of the excess chemical potential
differ only slightly, it was sufficient to repeat the process only three times.

10



TABLE I

The excess chemical potentials fiaE/R and f uE/R
Ha EIR (°K) /xtE/R (°K)

\ T ( ° K )

* \
0.8 0.9 1.0 1.2 1.3 1.7 6.8 0.9 1.0 1.2 1.3 1.7

q 1.597 1.651 1.77 0 0 0 0 0 0
o .o i 1.337 1.357 1.362 1.572 1.599 1.58 0.00032 0.00036 0.00007 0.000234 0.0008
0.025 1.549 1.547 1.462 0.00055 0.001079 0.00286
0.05 1.280 1.327 1.325 1.50 1.482 1.325 0.00184 0.00135 0.00232 0.003666 0.00747
0.0713 1.463 J.443 1.257 0.00487 0.00688 0.01222
0.1 1.165 1.206 1.196 1.413 1.324 1.108 0.01175 0.011505 0.00865 0.00746 0.01500 0.0207
0.2 0.880 1.022 1.076 0.789 0.75 0.06025 0.04155 0.0565 0.0711 0.0782
0.3 0.696 0.761 0.783 0.800 0.761 0.487 0.1201 0.1258 0.11385 0.134 0.1595 0.1615
0.4 0.556 0.565 0.577 0.549 0.502 0.314 0.1983 0.231 0.229 0.244 0.2817 0.251
0.5 0.392 0.394 0.385 0.332 0.280 0.193 0.3308 0.372 0.388 0.373 0.454 0.354
0.6 0.246 0.231 0.216 0.171 0.1443 0.119 0.5090 0.5745 0.597 0.562 0.639 0.468

'  0.7 0.1222 0.106 0.0999 0.089 0.0696 0.0595 0.7410 0.711 0.808 0.6885 0.784 0.595
0.8 0.0421 0.0377 0.0334 0.0366 0.0234 0.017 0.9750 1.055 1.007 0.8105 0.915 0.748

k.0 .9 0.0024 0.00658 0.0169
1.0 0 0 0 0 0 0

T = 1.70 °K

►

Fig. 5. GE/ R T  as a function of the liquid concentration, X -l , a t 1.70°K.
□ Calculated by W an sin k 1)
O Calculated in this chapter

Since we only have dew point measurements above 1,4°K we used the calcu­
lated dew points of the next higher temperature at lower temperatures
in the zero approximation. The values of fx3® and ^4® obtained in this way
are given in table I as a function of temperature and concentration. We
have also calculated the dew-point curve from the boiling point curve; the
results are shown in the figures 7 and 8.
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5. Analysis of the character of the solution. We can calculate the excess
Gibbs function GE =  WL/m3e +  (1 — X L)^4 E at different temperatures and
concentrations. (See for example fig. 5).

To analyse the character of the solution we plot /i3 EfR versus (1 — -XT)2
and fjupfR versus X j 2, as is shown in fig. 6. We see that below about 1.1 °K
all points he on one straight line, as one should expect if the mixture

o.e°K

Fig. 6. The regular solution behaviour at different temperatures.
Vertical scale: /13B/i?, □, and m B/i?, O-

The scale is shifted for the different temperatures.
Horizontal scale: ( 1  — V l)2 and V l2 for 3He and 4He respectively.

r /I3b/J? =  1.54 (1 -  X l)2
--------  I [14?JR =  1.54 X-i?

12



behaves as a regular solution in accordance with eqs. (14) and (15). From
the slope the heat of mixing, W, can be determined and is found to be W/R ss
«s* 1,54°K; which gives a critical temperature of mixing which is, according
to eq. (21),. equal to 0.77°K. This is in reasonable agreement with the
experimental value which can be derived from the phase separation diagram
(Cf. fig. 9 14) 16) 18)19)).

There exists only one heat of mixing point measured by Sommers,
K eller and D ash17). The experimental value gives W/R «s 1.1°K, which
is smaller than the calculated one in accordance with their remark that only
a lower limit of the heat of mixing was obtained in their experiment.

T=0.9°K

mm Hg

Fig. 7. Vapour-liquid equilibrium diagram at 0.9°K.
Solid lines calculated for a regular solution ( W / R  =  1.54°K) taking into account the
nonideality of the vapour phase. The broken line is the ideal solution boiling curve.

O R o b erts  and S y d o riak 3)

It is now also possible to invert the calculation, which is a more satisfying
method, and from the calculated value of W/R ph 1,54°K we can predict the
partial fugacities by means of eqs. (18) and (19). Together with the knowledge
of the second virial coefficients the partial and total vapour pressures can

13



now be computed and hence the boiling- and dew-point curve can be
calculated. The results satisfy the experimentally determined vapour
pressures (cf. figs. 7 and 8).

The rapid fall of the change of the specific heat Acp at the lambda point
with the concentration indicates that the second order transition becomes
thermodynamically of minor importance at lower temperatures. Hence the

mm Hg
mm Hg

100

'o - 4- A T =O .SO °K
mm Hgmm Hg

O XL

Fig. 8. Vapour liquid equilibrium diagrams at T  =  0.7°K,
T  =  0.8°K, T  - 1.1°K and T  =  1.7°K.

At T =  0.7, 0.8, 1.1 °K the solid lines are calculated for a regular solution
(W/R =  1.54°K). A tT  =  1.7°K the solid lines are the experimental curves.

O E sel’son and B ere zn iak 2)
□ R o b erts  and S y d o riak 3)

14



regular solution character can become more dominant at these temperatures.
It is interesting to compare our results at these temperatures with the
predictions of Prigogine, B ingen and B ellem ans18). These authors
proposed a model based on the difference in the molar volumes of the pure
isotopes, neglecting the lambda phenomenon. They found a value for W/R
between 1 and 2°K in reasonable agreement with our results.

Finally we would like to remark that in analysing the discontinuity of
dp/dT as was done by R oberts  and S y d o riak 3) (cf. fig. 3) one has also
to take into account a contribution arising from the phase separation if
the lambda transition and the phase separation coincide. This effects
the points at the higher concentrations in fig. 3.

x L . 0  2

Fig. 9. The lam bda- and phase separation tem peratures as functions
of th e  liquid concentration X j,.

O D o k o u p i l14) V E l l i o t t  and F a i r b a n k 18)
A D a s h  a n d T a y lo r21) •  P e s h k o v 16)
□  K e r r 18) ■ W a l te r s  and F a i r b a n k 18)
<■> R o b e r t s  and S y d o r ia k 18) <g) P r ig o g in e 18)
*  This publication, T crlt =  J x  1.54 =  0.77°K

From fig. 6 it is clear that from 1,2°K upwards the behaviour of the
mixture starts to differ considerably from that of a regular solution. As we
pointed out earlier this is presumably due to the lambda phenomenon. The

15



accuracy of the vapour liquid equilibrium data does not allow a further
quantitative analysis of the influence of the lambda transition.

Of course the conclusions derived from the vapour liquid equilibrium data
are only approximate and a slight temperature and concentration dependence
of W  cannot be excluded. In this respect we point to the fact that the phase
separation curve is not symmetrical as should be expected for a regular
solution.
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Ch a pt e r  II

THERMODYNAMIC PROPERTIES OF LIQUID 1 * 3He-4He
MIXTURES DERIVED FROM SPECIFIC HEAT

MEASUREMENTS BETWEEN 0.4°K AND 2°K OVER THE
COMPLETE CONCENTRATION RANGE

Sum m ary
Heat capacities of 3He-4He mixtures over the complete concentration range have

been measured using a calorimeter that can be cooled down to 0.4°K by means of
evaporation of 3He. Special attention has been given to the additional contribution
to the specific heat due to the heat of mixing which is observed when stratification
takes place below the phase separation temperature and to the discontinuity in the
specific heat at the corresponding lambda temperature. The heat of mixing can be
derived from the specific heat measurements inside and outside the phase separation
region. The excess entropy has been calculated. For dilute mixtures of 3He in liquid
4He at temperatures below 1°K the energy spectrum of P o m eran ch u k  seems to be
satisfied.

P art  I : Sp e c if ic  h ea t  o f  l iq u id  3He—4He m ix t u r e s  b e t w e e n  0.4°K
AND 2°K OVER THE COMPLETE CONCENTRATION RANGE.

1. Introduction. The first measurements of the specific heat of liquid
3He-4He mixtures by Dokoupil  4) e.a. were restricted to the temperature
region attainable in the usual 4He bath (above 1.1°K). In the experiments
described here we were able to extend the measurements to lower temper­
atures. The availability of reasonable amounts of 3He made it possible to
use 3He cryostats and since the vapour pressure of 3He is about 70 times
greater than that of 4He at 1°K and 1700 times greater at 0.6°K, it is a real
advantage to use 3He instead of 4He in obtaining low temperatures by
pumping off the vapour. Since 3He does not show superfluidity a 3He
cryostat is very favourable in comparison with a 4He cryostat, as the
superfluid helium film of 4He usually introduces appreciable heat input
into the bath and makes it difficult to obtain very low pressures by
pumping. One can find details on 3He cryostats in the review article by
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T a c o n is2). The rare isotope 3He in our experiments was supplied by
the U.S.A. Atomic Energy Commission.

In (2) the construction of the calorimeter and the way in which the
experiments are performed is described. (3) gives the results obtained and
in (4) the results are qualitatively discussed. The discussion is divided into
the following concentration regions: (A) the dilute mixtures of 3He in
liquid 4He, (B) the intermediate region (phase separation region), and (C)
the dilute mixtures of 4He in liquid 3He. In part II the heat of mixing and
the excess entropy are calculated from the specific heat measurements and
a theoretical quantitative discussion of the thermodynamic properties is
given.

2. The calorimeter (construction, method and measurements). The calori­
meter is shown in fig. 1. Enclosed in a vacuum jacket /  is a copper block
with two chambers, one for the mixture M  and the other for the cooling
3He bath. The 3He chamber is connected to a relatively wide stainless steel
tube C2 10 cm long with a 2 mm inner diameter, and a 0.1 mm thick wall.

Fig. 1. The calorimeter.

The chamber M  is connected to a stainless steel capillary C\ with a 0.2 mm
inside diameter, so that its volume is very small compared with the volume
of chamber M  of 0.535 cc. A heating coil H  (^  550 Q) is wound around the
the. copper block and a carbon thermometer T, of the DeVroomen type 3),
deposited on an insulated copper bar, is soldered to it.

After pumping the exchange gas out of the vacuum space V at 4°K the
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stopcock S2 (see fig. 2) is closed, and the 4He bath is reduced to a temperature
of about 1.2°K. Next the condensation of the 3He in its chamber starts. In
fact, the condensation takes place in the copper radiation trap Cu and the
condensed liquid drops through tube C2 into the relatively hot 3He chamber,
evaporates there, and recondenses in the radiation trap Cu and so on. In
this way after a short time the calorimeter is cooled to the 4He bath temper­
ature of 1,2°K. Subsequently the mixture is condensed in the chamber M,
and the calorimeter is cooled to a temperature of about 0.35°K by reducing
the pressure of the 3He bath with a specially sealed two stage rotary pump
of 20 L/min capacity. At certain intervals during the cooling period the
inlet valve R of the pump (see fig. 2) is closed for a short time and as soon
as pressure equilibrium above the 3He bath is reached the carbon thermo­
meter is calibrated against the vapour pressure of the 3He bath. The vapour
pressure is measured with a mercury manometer, an oil manometer filled
with octoil-S and a MacLeod gauge depending on the magnitude of the
pressure. Thermomolecular pressure corrections can be neglected, since the
German-silver tube which connects the calorimeter with the 3He pump

Fig. 2. The experimental arrangement
P — specially sealed two stage Edwards rotary pump 2 S 20
R — reducing valve
F  =  storage can for the mixture
M  =  Oil manometer (or mercury manometer)

has a 14mm inner diameter4). For the determination of the temperature
we employed the scale of S ydoriak  and R oberts  4). The resistance of the
carbon thermometer and the heater is measured in a Wheatstone bridge
circuit with an electronic D.C. voltmeter as a zero point instrument.

Now the contact with the 3He bath is broken by completely evaporating
it at the lowest temperature. The quantity of condensed 3He is chosen in
such a way that just after the lowest obtainable temperature is reached the
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3He bath is nearly empty. If not, the heater is carefully applied to empty
it completely, which may be observed from the temperature rise on the
carbon thermometer. From this moment on the heat capacity of the mixture
can be determined.

For measuring the heat capacity standard calorimetric technique was
used. First the temperature drift was measured (foredrift), then a small
amount of heat was supplied by the heater for ten seconds, and then the
drift of the temperature was again followed (afterdrift; see fig. 3). The
quantity of heat applied can be calculated from the measured current and
resistance of the heater.

The temperatures were measured with the above mentioned carbon
thermometer. The fore- and afterdrifts were determined by balancing the
resistance of the thermometer in a Wheatstone bridge circuit. In such a
way one obtains the value of the resistance of the thermometer as a fu n ction
of the time at which the bridge is balanced. The contribution to the total
heat capacity due to the copper block is about 1% (derived from the
specific heat determinations by Kok and K eesom 5)). A correction for
this is always taken into account.

The heat leak in this calorimeter is between 10 and 30 erg/s. In one run
of measurements, each time heating the mixture about 0.015°K fifty points
are measured between 0.4 and 2°K. The time for such a run is two hours.
Two runs are performed in one day’s experiment using the same liquid
3He-4He concentration.

Most essential in this method was an overfilled calorimeter, to make sure
that no evaporation of the mixture takes place somewhere in the capillary
Ci inside the vacuum jacket. The length of the capillary Ci is about 80 cm
and the capillary is partially filled with liquid. The inside diameter is 0.2
mm, so that its volume is small compared with the volume of chamber M  of
0.535 cc. Also, the volumes of the other filling tubes at higher temperatures
are negligible so that the influence on the concentration inside the calorimeter
of effects due to film creep, heat flush, thermodiffusion etc. is avoided, and
for the same reason the stopcock Si (see fig. 2) in the filling tube (Ci) was
closed immediately after the known quantity of the mixture was condensed
from a storage balloon outside of the cryostat into the chamber M  (see
fig. 2). Every time before the mixture was condensed, it was cleaned in a
liquid helium cooled impurity trap.

It seems to us that this calorimeter has a much wider applicability since
the method is very convenient.

The 3He pump was a revised two stage Edwards rotary pump type 2S20.
To prevent the loss of the rather expensive gas the rotor axis was double
sealed with an oil filled space between the two seals. A small oil bath with
an oil level indicator was mounted between these two seals. All flanges were
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provided with “0 ” ring seals. The pump had almost no dead space and the
total quantity of oil in the pump was reduced to 5 cm3.

The oil which is pushed out of the outlet valve is slowly sucked back into
the pump again through a narrow channel connected to the bronze bearing
of the pump and there it takes care of the tightness of the pump and its
lubrication.

6 4 0 0

6 3 0 0

6 2 0 0

6100

Fig. 3. Overheating curve during the afterdrift for a 39% m ixture. The resistance R
of the  carbon therm om eter is p lo tted  against th e  tim e t. During the heating period
the  phase separation curve P.S. is passed a t  the 31st minute.

A fter the heating period in the  phase separation region, there was overheating
during the  afterdrift a t  the  26th minute.

A fter the  heating period in th e  H e II  region no overheating was observed during
the afterdrift a t  the 31st m inute.

3. Results. Specific heat measurements have been performed between
0.4°K and 2°K for the following concentrations: X  =  0.0466, 0.094, 0.15,
0.291, 0.39, 0.478, 0.575, 0.638, 0.70, 0.75, 0.805, 0.847, 0.894, 0.954, 1.00
(X =  mole fraction 3He of a 3He-4 *He mixture). The results are tabulated
in tables I and II and are shown in the figs. 4, 5,6, 7,8, 9 and 10. As a check
we measured the specific heat of pure liquid 3He; the results are in agreement
with the data of Brewer, D aun t and S re e d h a r6); R o berts  and
Sydoriak  8) and A braham , O sborne and W einstock  7) (see fig. 4).

4. Qualitative discussion of the results. We can divide the discussion in
terms of the phase diagram into the following concentration regions as
will be clear afterwards (see fig. 11):

A) 0 <  X  <0.15. Dilute mixtures of 3He in liquid 4He
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TABLE I

The measured values of the specific heat C
T  C

"K J/m ole °K
X  =.0.0466

0.500 0.504
0.55 0.499
0.635 0:524
0.677 0.535
0.724 0.525
0.763 0.582
0.799 0.613
0.861 0.692
0.891 0.741
0.923 0.810
0.949 0.842
0.974 0.905
0.997 0.966
1.020 1.053
1.041 1.117
1.061 1.195
1.079 1.257
1.096 1.320
1.132 1.531
1.177 1.750
1.215 2.03-
1.248 2.31
1.277 2.54
1.302 2.835
1.326 3.005
1.346 3.39
1.365 3.64
1.379 3.83
1.395 4.115
1.408 4.28
1.448 4.98
1.498 6.00
1.540 6.81
1.580 7.83
1.616 9.16
1.649 9.66
1.680 10.68
1.708 11.71
1.734 12.11
1.772 13.39
1.822 15.71
1.861 17.80
1.897 20.70
1.926 22.41
2.044 36.2
2.069 35.5
2.117 18.70
2.162 12.10
2.186 11*15
1.434 4.80
1.487 5.79

T
°K

c
J/m ole °]

1.529 6.23
1.568 7.65
1.606 8.87
1.632 9.64
1.671 10.35
1.700 11.25
1.740 12.49
1.793 14.92
1.840 16.48
1.880 18.90
1.912 20.57
1.942 22.90
1.972 24.90
1.996 28.90
2.020 31.10
2.042 32.20
2.062 38.10
2.082 37.78
2.111 17.50
2.158 12.66

r =  0.094
0.415 0.859
0.445 0.916
0.470 0.907
0.493 0.922
0.515 0.942
0.539 0.948
0.565 0.961
0.583 1.004
0.616 0.982
0.642 1.009
0.6655 1.012
0.695 1.012
0.717 1.004
0.741 1.037
0.766 1.037
0.784 1.107
0.803 1.128
0.825 1.144
0.847 1.180
0.863 1.286
0.906 1.297
0.968 1.466
1.022 1.619
1.069 1.820
1.116 2.044
1.154 2.235
1.181 2.476
1.212 2.666
1.238 2.886
1.261 3.095

T  C
"K J/m ole "K

1.283 3.418
1.314 3.70
1.353 4.23
1.388 4.76
1.419 5.26
1.458 6.01
1.500 7.02
1.536 7.82
1.572 8.83
1.602® 9.93
1.636 10.55
1.664 11.65
1.698 12.50
1.735 14.10
1.768 15.39
1.806 17.32
1.846 19.33
1.880 21.64
1.905 23.30
1.938 26.03
1.963 26.50
1.993 32.30
2.041 21.73
2.120 11.79
0.343 0.874
0.365 0.979
0.395 0.937
0.420 0.911
0.446 0.900
0.466 0.974
0.491 0.977
0.513 0.972
0.536 0.954
0.559 0.967
0.585 0.974
0.609 0.977
0.633 1.004
0.658 1.007
0.684 1.014
0.710 1.011
0.734 1.054
0.755 1.077
0.776 1.095
0.815 1.159
0.834 1.194
0.853 1.206
0.871 1.238
0.889 1.248
0.899 1.320
0.923 1.338
0.961 1.454
1.018 1.646

T  C
"K J/m ole °K

1.062 1.783
1.105 1.972
1.143 2.241
1.177 2.408
1.203 2.605
1.229 2.85
1.251® 3.063
1.275® 3.29®
1.296 3.50
1.315 3.80®
1.332 3.94®
1.360 4.35
1.392 4.81®
1.423 5.44
1.451 5.92
1.478 6.42
1.500 6.96
1.523 7.41
1.541 8.05
1.565 8.57
1.602 9.94
1.633 10.44
1.663 11.23
1.689 12.34
1.714 12.81
1.749 14.42
1.798 16.66
1.838 18.51
1.872 20.55
1.905 22.45
1.932 24.30
1.958 27.75
1.980 31.25
2.000 34.2
2.027 27.2
2.062 14.40
2.114 11.93
2.160 10.13

=  0.15
0.546 1.336
0.603 1.368
0.644 1.400
0.666 1.438
0.681 1.428
0.697 1.443
0.712 1.485
0.727 1.495
0.744 1.518
0.787 1.529
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TABLE I (continued)

T C T C T C T C
°K J/m ole °K °K J/m ole °K °K J/mole °K °K J/m ole °K

0.803 1.565 1.127 2.743 0.956 3.96 0.836 3.57
0.817 1.609 1.154 2.91 0.979 4.20 0.852 3.55
0.833 1.564 1.180 3.11 1.001 4.20 0.868 3.68s
0.866 1.698 1.236 3.715 1.037 4.35 0.882 3.75
0.914 1.784 1.314 4.57 1.077 4.55 0.897 3.86s
0.959 1.923 1.425 6.35s 1.116 4.84s 0.912 3.83
0.997 2.067 1.469 7.13 1.153 5.09 0.926 3.83
1.036 2.103 1.590 11.15 1.187 5.39 0.941 3.87s
1.070 2.366 1.642 13.20 1.219 5.81s 0.956 3.92
1.104 2.570 1.678 13.43 1.248 6.09 0.971 4.06
1.134 2.820 1.724 16.38 1.276 6.46 0.991 4.26
1.160 3.205 1.764 18.06 1.301 6.86 1.012 4.16
1.185 3.14 1.800 21.1 1.325 6.99 1.032 4.24
1.242 3.71s 1.830 22.2 1.347 7.93 1.050 4.34
1.320 4.63 1.868 26.2 1.367 8.05 1.068 4.46
1.383 5.47 1.914 31.25 1.385 8.41 1.086 4.64
1.432 6.43 1.956 17.45 1.404 8.88 1.121 4.88
1.508 8.30 2.014 10.05 1.428 9.20 1.137 5.30
1.541 9.34 2.060 10.24 1.454 10.72 1.164 5.26
1.574 10.09 2.144 9.49 1.480 11.23 1.197 5.47
1.618 12.13 0.398 1.292 1.511 12.15 1.228 5.87
1.672 14.08 0.415 1.255 1.535 12.85 1.257 6.18
1.720 16.16 0.430 1.340 1.559 13.35 1.283 6.58
1.764 18.95 0.455 1.305 1.596 15.74 1.308 7.03
1.796 20.93 0.470 1.340 1.642 17.05 1.331 7.30
1.842 24.50 1.683 19.73 1.353 7.67
1.884 29.23 X  =  0.291 1.723 17.37 1.373 8.19
1.940 26.00 0.430 3.545 1.777 12.00 1.391 8.80
0.475 1.324 0.455 3.763 1.828 9.76 1.409 8.99
0.518 1.256 0.478 3.975 1.862 9.45 1.433 9.67
0.532 1.225 0.494 3.925 1.899 8.83 1.460 10.6
0.553 1.315 0.507 3.942 1.934 8.25s 1.491 11.47
0.571 1.345 0.519 3.942 1.972 8.15 1.516 12.45
0.591 1.363 0.531s 4.18 2.013 8.05 1.540 13.00
0.607 1.373 0.546 4.07 2.053 7.97 1.564 13.69
0.646 1.394 0.559 3.99 0.506 4.07s 1.588 14.96
0.661 1.421 0.572s 4.01 0.519s 4.10 1.621 16.55
0.676 1.439 0.590 3.57 0.532s 4.12 1.663 18.97
0.692 1.442 0.604 3.05 0.545s 4.13 1.704 19.49
0.707 1.495 0.621 3.08 0.558s 3.87 1.750 13.18
0.723 1.501 0.639 3.09 0.590 3.34 1.831 9.72
0.739 1.528 0.655 3.14 0.604 3.02 1.865 9.40
0.758 1.545 0.693 3.13 0.621 3.02
0.776 1.555 0.711 3.14 0.639 3.05 X  =  0.39
0.793 1.545 0.728 3.24 0.658 3.11 0.556 5.14
0.809 1.586 0.745 3.26s 0.676 3.09s 0.524 5.25
0.824 1.608 0.760 3.33 0.695 3.12 0.591 5.48
0.857 1.661 0.781 3.41 0.714 3.11s 0.609 5.41
0.903 1.758 0.806 3.42s 0.730 3.21 0.625 5.50
0.950 1.919 0.829 3.53 0.753 3.24 0.642 5.50
0.991 1.999 0.854 3.58 0.773 3.32s 0.658 5.85
1.031 2.187 0.878 3.75 0.789 3.36s 0.675 5.69
1.096 2.539 0.932 3.88s 0.820 3.46 0.696 4.00
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TABLE I (continued)

T C T C T C T C
"K J/m ole °K °K J/m ole °K °K J/m ole °K °K J/m ole °K

0.719 4.02 0.927 5.80 0.656 7.24 0.497 5.83
0.743 4.12 0.943 6.00 0.671 7.27 0.513 6.09
0.766 4.16 0.959 6.28 0.684 7.38 0.529 6.27
0.790 4.38 0.973 6.45 0.698 7.29 0.545 6.48
0.817 4.52 0.988 6.48 0.712 7.50 0.560 6.64
0.850 4.54 1.002 6.51 0.724 7.41 0.575 6.81
0.919 5.18 1.021 6.73 0.740 6.95 0.590 6.91
1.026 6.17 1.049 6.91 0.758 6.90 0.605 6.93
1.112 7.18 1.075 7.22 0.768 6.81 0.618 7.16
1.171 7.90 1.101 7.67 0.782 6.34 0.632 7.32
1.210 8.90 L127 7.83 0.795 7.43 0.645 7.28
1.242 8.80 1.150 8.16 0.808 6.25 0.660 7.59
1.362 ’ 11.98 1.173 8.56 0.814 6.54 0.674 7.51»
1.424 12.83 1.195 8.84 0.827 6.81 0.689 7.77
1.453 13.17 1.217 9.36 0.853 6.35 0.704 7.57
1.483 14.63 1.237 10.05 0.867 6.40 0.719 7.85
1.502 15.65 1.255 9.89 0.881 6.50 0.733 7.86
1.517 16.69 1.266 10.27 0.896 6.50 0.746 7.77
1.533 17.99 1.296 10.77 0.918 6.94 0.760 7.71
1.542 17.51 1.314 11.10 0.948 7.20 0.773 7.72
1.559 16.22 1.331 11.51 0.976 7.24 0.786 8.08
1.607 12.21 1.346 12.61 1.004 7.35 0.799» 7.84»

1.367 12.44 1.031 8.44 0.813 7.58»
X  =  0.478 1.395 10.90 1.055 8.50 0.827 7.36»

0.425 3.98 1.430 9.45 1.078 8.77 0.840 7.56
0.465 4.54 1.467 8.51 1.099 8.99 0.854» 7.29
0.500 4.48 1.506 8.02 1.120 9.19 0.869 6.86
0.513 5.84 1.546 7.91 1.145 9.52 0.882 7.54
0.531 5.25» 1.592 7.42 1.160 9.50 0.896 7.36
0.548 5.49» 1.640 6.89 1.186 8.89 0.908 7.27
0.565 5.60 1.684 7.41 1.205 6.82 0.920 7.62
0.580 5.78 1.729 6.93 1.234 6.78 0.932 7.57
0.595 5.99 1.772 7.06 1.261 7.18 0.944 7.49
0.609 6.16 1.816 7.00 1.290 7.17 0.956 7.75
0.624 6.23 1.888 7.14 1.325 6.66 0.968 7.38
0.641 6.18 1.930 6.89 1.353 7.02 0.980 7.34
0.655 6.45 1.960 7.14 1.376 6.66 0.993 6.98
0.669 6.37 2.030 7.28 1.410 6.61 1.007 6.93
0.684 6.53 2.080 7.21 1.444 6.07 1.02 6.84
0.699 6.17 2.140 7.11 1.470 6.23 1.034 6.51
0.714 6.29 1.505 6.54 1.075 6.53
0.728 6.02 X  =  0.575 1.564 6.14 1.089 6.51
0.742 5.94 0.490 5.17 1.606 6.35 1.104 6.20
0.757 5.39 0.512 5.58 1.653 6.45 1.118 6.31
0.775 4.91 0.524 5.84 1.710 6.26 1.147 5.99
0.793 5.02 0.538 6.02 1.756 6.63 1.162 6.10
0.812» 5.13 0.552 6.25 1.218 5.80
0.829 5.25 0.568 6.29 X  =  0.638 1.281 5.66
0.846 5.33 0.583 6.53 0.395 4.90 1.312 5.74
0.863 5.41 0.598 6.70 0.420 4.84» 0.587 6.88
0.872 5.76 0.612 7.16 0.442 5.14» 0.602 7.04
0.894 5.64 0.627 7.02 0.461 5.67 0.616 7.22
0.910 5.75 0.642 7.27 0.479 5.61 0.629 7.28
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TABLE I (continued)

T C T C T C T C

°K J/mole °K °K J/mole °K "K J/mole ° K  j °K J/mole °K
0.643 7.25 0.652 7.90 0.690 7.61 1.063 4.92
0.657 7.43 0.666 8.00 0.707 7.31 1.081 4.87
0.671 7.50 0.680 8.11 0.741 6.91 1.100 4.76
0.684 7.55 0.695 8.04 0.760 5.82 1.119 5.14
0.701 7.48 0.708 7.99 0.780 5.78 1.156 4.90
0.715 7.60 0.721 8.18 0.799 5.69 1.174 5.05
0.730 7.63 0.735 7.99 0.819 5.44 1.192 4.98
0.743 7.54 0.748 8.04 0.885 5.34 1.210 5.03
0.756 7.59 0.759 8.08 0.910 5.24 1.227 5.00
0.768 7.59 0.771 7.81 0.934 5.20 1.244 4.95
0.781 7.63 0.785 8.16 0.959 5.17 1.262 4.92»
0.792 7.74 0.798 8.76 0.988 4.82 1.280 5.01
0.805 7.51 0.809 8.06 1.063 4.88 1.297 4.73
0.817 7.41 0.823 7.75 1.081 4.79 1.324 4.93
0.831 6.89 0.835 7.80 1.101 4.76 1.361 5.2f5
0.843 6.99 0.849 7.77 1.119 4.87 1.395 5.28
0.855 6.97 0.863 7.57 1.300 5.20 1.427 5.34
0.868 6.91 0.877 7.55 1.336 5.07
0.880 7.04 0.891 7.30 _ 1.371 5.16 X  =  0.805
0.893 7.03 0.905 7.09 1.439 5.30 0.410 4.68
0.905 7.33 0.927 6.92 1.471 5.40» 0.433 4.40
0.917 7.51 0.959 6.65 0.445 5.64 0.449 5.28
0.928 7.58 0.992 6.33 0.470 5.79 0.465 5.63
0.940 7.52 1.024 6.42 0.484 5.95 0.480 5.99
0.952 7.47 1.058 6.43 0.501 6.205 0.497 6.24
0.963 7.44 1.093 5.90 0.517 6.44 0.516 6.50
0.976 7.23 1.128 5.78 0.533 6.60® 0.530 6.57
0.989 7.02 1.162 5.44 0.548 7.07 0.543 6.89
1.002 6.82 1.185 5.67 0.564 7.02 0.557 7.23
1.015 6.92 1.22 5.73 0.579 7.09 0.571 7.38
1.042 6.53 1.29 5.55 0.594 7.47 0.586 7.60
1.055 6.52 1.34 5.53 0.608 7.62 0.600 7.76
1.068 6.49 1.37 5.65 0.623 7.73 0.613 8.31
1.220 5.75 1.40 5.58 0.652 7.89 0.626 8.29
1.253 5.81 1.44 5.54 0.667 7.97 0.642 8.43
1.316 5.56 1.47 5.73 0.683 7.56 0.658 5.88
1.348 5.73 1.50 5.72 0.698 7.99 0.685 5.24

1.55 5.83 0.714 7.57 0.711 5.02
X  - 0.70 1.59 5.79 0.729 7.64 0.731 5.12

0.437 4.93 1.63 5.63 0.746 6.31 0.752 5.04
0.455 5.27 1.66 5.90 0.764 5.94 0.774 4.97
0.474 5.58 1.71 5.93 0.783» 5.86 0.795 4.93
0.500 5.55 1.77 6.10 0.802 5.73 0.887 4.88
0.508 5.92 1.83 6.13 0.819 5.58 0.908 4.74
0.523 6.14 1.87 6.33 0.837 5.39» 0.932 4.72
0.538 6.44 1.95 6.47 0.856 5.27 0.955 4.76
0.550 6.67 0.875 5.15 0.977 4.82
0.566 6.80 0.896 5.00 1.000 4.84
0.580 6.92 X  =  0.75 0.916 4.99 1.037 4.67
0.593 7.16 0.626 7.68 0.937 4.80 1.083 4.735
0.607 7.43 0.642 7.63 0.959 4.78 1.132 4.56
0.621 7.56 0.658 7.80» 0.980 4.87» 1.178 4.66
0.637 7.67 0.674 7.87 1.045 5.24 1.225 4.72
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TABLE I (continued)

T C T C T C T C
°K J/mole °K °K J/mole °K °K J/mole °K °K J/mole °K

1.454 5.13 0.528 7.155 1.042 4.16 0.879 4.20
1.493 5.20 0.545 7.35 1.067 4.07 0.903 4.36
1.530 5.33 0.563 7.68 1.089 4.29 0.927 4.29
1.566 5.40 0.582 7.71 1.111 4.29 0.951 4.30
1.599 5.48 0.601 6.33 1.133 4.39 0.975 4.17
1.632 5.66 0.623 4.98 1.154 4.51 0.997 4.03
1.663 5.84 0.650 4.77 1.175 4.58 1.020 4.38
1.696 5.90- 0.682 4.59 1.196 4.49 1.042 4.29
1.728 5.99 0.715 4.38 1.216 4.58 1.062 4.33
1.760 6.13 0.747 4.38 1.236 4.71 1.083 4.31
1.793 6.08 0.777 4.41 1.256 4.58 1.104 4.39
1.825 6.25 0.806 4.53 1.275 4.78 1.125 4.46
1.855 6.26 0.835 4.46 1.293 4.75 1.145 4.46
1.886 6.65 0.863 4.43 1.312 4.85 1.165 4.36

0.891 4.475 1.330 4.81 1.186 4.52
0.921 4.41 1.343 5.09 1.206 4.63

X  =  0^47 0.952 4.47 1.360 4.98 1.238 4.60
0.430 5.77 0.981 4.63 1.376 5.13 1.280 4.79
0.450 6.23 1.013 4.58 1.393 5.14 1.322 4.88
0.469 6.33 1.043 4.57 1.411 5.08 1.361 4.91
0.488 6.72 1.075 4.50 1.431 5.25 1.398 5.14
0.505 6.92 1.102 4.45 1.455 5.34 1.433 5.20

, 0.520 7.23 1.129 4.42 1.565 5.52 1.467 5.41
0.536 7.30» 1.157 4.55 1.604 5.62 1.506 5.49
0.553 7.57 1.219 4.89 1.719 5.91 1.545 5.52
0.571 7.37 1.299 5.03 1.755 5.94 1.579 5.58
0.587 7.27 1.369 5.23 1.793 6.16 1.619 5.72
0.605 5.116 1.444 5.42 1.830 6.10 1.656 5.95
0.631 4.85 1.512 5.67 1.865 6.24 1.687 5.87
0.660 4.86 1.583 6.03' 0.37 4.85 1.730 5.97
0.693 4.48 0.39 5.20 1.765 6.19
0.727 4.31 0.410 5.24 1.805 6.17
0.758 4.43 X  =  0.894 0.427 5.60 1.839 6.28
0.786 4.43 0.495 4.13 0.445 5.63 1.882 6.46
0.815 4.47 0.520 4.14 0.460 5.96 0.380 5.21
0.844 4.33 0.541 3.94 0.473 6.31 0.400 5.40
0.872 4.46 0.567 3.93 0.488 6.46 0.415 5.70
0.902 4.32 0.592 3.85 0.502 6.86 0.435 6.17
0.931 4.43 0.649 3.78 0.518 4.25 0.455 6.50
0.962 4.51 0.680 3.84 0.539 3.99 0.466 6.44
0.993 4.64 0.710 3.86 0.562 4.00 0.482 6.61
1.055 4.62 0.736 4.15 0.586 3.88 0.499 4.91»
1.085 4.62 0.761 4.03 0.609 4.10 0.519» 3.81
1.116 4.61 0.785 4.10 0.635 3.94 0.543 3.95
1.123 4.97 0.810 4.18 0.660 3.97 0.567 3.97
1.171 4.955 0.834 4.08 0.686 3.93 0.592 3.99
1.207 4.91 0.859 4.09 0.712 3.97 0.619 3.85
1.276 4.91 0.885 4.13 0.737 4.13 0.644 3.76
1.351 5.125 0.911 4.12 0.761 4.09 0.672 3.93
1.426 5.35 0.936 4.18 0.785 4.13 0.70Ó 3.89
0.473 6.51 0.963 4.29 0.808 4.17 0.727 3.92
0.492 6.70 0.988 4.22 0.832 4.17 0.752 3.98
0.510» 7.00 1.016 4.12 0.856 4.18 0.776 4.02
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TABLE I (continued)

T C T C T C T C
°K J/m ole °K °K J/m ole °K °K J/m ole °K "K J/m ole "K

0.847 4.15 1.067 4.24 0.832 3.89 0.780 3.75
0.872 4.22 1.091 4.31 0.862 3.94 0.809 3.96
0.909 4.12 1.115 4.45 0.895 4.03 0.836 3.90
0.922 4.27 1.139 4.47 0.923 4.14 0.890 3.99
0.947 4.33 1.157 4.52 0.960 4.15 0.918 4.05
0.972 4.06 1.180 4.49 0.991 4.23 0.944 4.10
0.995 4.06 1.201 4.73 1.021 4.27 0.994 4.26
1.018 4.19 1.222 4.63 1.050 4.13 1.020 4.36
1.042 4.16 1.242 4.63 1.075 4.10 1.092 4.52
1.063 4.38 1.262 4.78 1.101 4.02 1.114 4.61
1.084 4.33 1.282 4.92 1.124 4.41 1.138 4.48
1.105 4.28 1.300 4.79 1.147 4.24 1.183 4.63
1.127 4.41 1.320 4.95 1.169 4.41 1.236 4.85
1.147 4.53 1.338 5.08 1.189 4.46 1.400 5.30
1.167 4.50 1.356 4.93 1.211 4.44 1.491 5.60
1.187 4.50 1.374 5.07 1.232 4.45 1.563 5.96
1.207 4.53 1.392 5.06 1.252 4.65 1.638 6.11
1.226 4 .5 6 ' 1.410 5.07 1.272 4.69 1.762 6.65
1.236 4.67 1.428 5.08 1.292 4.65 1.820 6.92
1.280 4.62 1.456 5.05 1.312 4.79 1.878 7.14
1.293 4.84 1.523 5.29 1.330 4.88 0.410 3.14
1.314 4.68 1.532 5.32 1.360 4.90 0.440 3.11

1.570 5.79 1.402 5.04 0.467 3.21
X  =  0.954 1.609 5.95 1.442 5.19 0.523 3.34

0.397 3.97 1.647 5.90 1.481 5.37 0.555 3.37
0.410 3.47 1.686 6.01 1.517 5.51 0.586 3.45
0.425 3.40s 1.724 6.01 1.555 5.51 0.614 3.54
0.437s 3.33s 1.761 6.34 1.595 5.81 0.644 3.54
0.449 3.40 1.801 6.08 1.635 5.75 0.674 3.56
0.461 3.37 1.838 6.49 1.674 5.83 0.704 3.59
0.474 3.37 1.874 6.45 1.713 6.07 0.738 3.69
0.487 3.40 1.907 6.58 1.750 6.13 0.768 3.75
0.501 3.43 1.941 6.78 1.787 6.32 0.798 3.81
0.514 3.38 0.457 3.34 1.828 6.05 0.825 3.86
0.528 3.49s 0.497 3.39s 1.864 6.49 0.854 3.92
0.540 3.57 0.509 3.41 1.898 6.45 0.882 3.99
0.563 3.54 0.523 3.35 1.931 6.62 0.912 4.01
0.598 3.60 0.536 3.42 1.964 6.59 0.938 4.01
0.634 3.61 0.552 3.48 1.998 6.59 0.962 4.15
0.668 3.63 0.565 3.39 2.042 7.06 0.990 4.20
0.712 3.66® 0.580 3.58 1.014 4.30
0.748 3.75 0.595 3.54 X  =  1.00 1.038 4.35
0.777 3.81 0.611 3.48 0.425 3.25 1.063 4.34
0.805 3.90 0.628 3.55 0.460 3.21 1.088 4.30
0.834 3.97s 0.642 3.55 0.512 3.38 1.144 4.40
0.876 4.03 0.656 3.53 0.573 3.46 1.233 4.84
0.922 4.10 0.670 3.59 0.629 3.60 1.320 5. 08
0.955 4.16 0.695 3.66 0.659 3.61 1.398 5.25
0.984 4.27 0.731 3.68 0.689 3.65 1.475 5.57
1.014 4.23 0.766 3.74 0.720 3.66 1.547 5.85
1.042 4.20 0.801 3.82 0.751 3.72
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TABLE II

The lambda- and phase separation-temperatures
T x  =  lambda temperature, TP.S =  phase separation
temperature, N-l  =  amount of liquid condensed in the

calorimeter
A l T a ( ° K ) T p .g ( 0 K ) iVL(mole)

0.0466 2.105 19.26 ■ 1 0 - s

0.094 2.03 19.00 . 1 0 - 8
0.15 1.94 (0.398) 18.73 . 1 0 - 8

0.291 1.715 0.590 18.03 . 1 0 - 8
0.39 1.535 0.695 17.52 . 1 0 - 8

0.47s 1.35 0.775 17.00 . 1 0 - 8
0.57s 1.15 0.84 16.49 . 1 0 - 8

0.63s 0.95s 0.87 16.3 . 1 0 - 8
0.70 0.84 0.825 15.97 . 1 0 - 8
0.75 0.76 15.73 . 1 0 - 8
0.80s 0.67 15.45 . 1 0 - 8
0.847 0.60 15.23 . 1 0 - »
0.894 0.50 15.0 • 1 0 r *
0.954 0.385 14.48 . 1 0 - 8
1 . 0 0 14.38 . 1 0 - 8

Fig. 4. The specific heat C of 3He-4He mixtures as a function of the temperature T
at different concentrations: X  =  1.00, ^= 0.15, X  =  0.094, X  =  0.0466. The smoothed
line drawn through the experimental 3He points is taken from the values of Brew er,
D au n t and S reed h ar 6); A braham , O sborne and W e in s to c k 7); and R o b erts
and S y d o r ia k 8). 4He: K ra m e rs 14), Keesom  and K eesom  15).

The horizontal lines at low temperatures just above the curves for X  = 0.0466,
X  =  0.094 and X  =  0.15 are the theoretical values according to the theory of
P om eranchuk  16) (Cs =  ZI%RX).
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B) 0.15 <  X  <  0.954. The intermediate region (phase separation region)
Bl) 0.15 < X  <0.51
B2) 0.51 <  X  <  0.73
B3) 0.73 <  X  <  0.954

C) 0.954 <  X  <  1. Dilute mixtures of 4He in liquid 3He.
A) 0 <  X  <0.15 (dilute mixtures of 3He in liquid 4He, X  =  0.0466,

0.094, 0.15, see the figs. 4 and 10).
Here we have a discontinuity in the specific heat AC\ at the corresponding

lambda temperature Tx. Below 1°K the specific heat measurements show
the 3He to give an almost constant contribution of very nearly fR X  to the
specific heat. This behaviour can be explained by means of the theory of
Pom eranchuk  16) (see later II, 4A). In this concentration region we do
not reach the phase separation curve PS. The lambda temperatures can be
determined rather accurately from our measurements.

Joule

Fig. 5. The specific heat C as a function of the temperature T  at different concentra­
tions: X  =  0.291, X  =  0.39, X  =  0.70. The smoothed curves in the phase separation
region are drawn according to the leverage rule.

B) 0.15 <  X  <0.954. The intermediate region (phase separation region,
see the figs. 5, 6, 7, 8 and 9).

Below the phase separation temperature we have an additional contri­
bution to the specific heat due to the heat of mixing which is the result of the
mixing of the isotopic liquids when the temperature rises.

Bl) 0.15 <  X  <  0.51 {X =  0.291, 0.39, 0.478, see the figs. 5 and 6).
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A discontinuity in the specific heat ACPS is found at the phase separation
curve, since it is only below the phase separation curve that there is an
additional contribution due to the heat of mixing, and a discontinuity in
the specific heat AC\ is found at the corresponding lambda temperature. The
temperatures at which the discontinuity ACpg and AC\ occur can be de­
termined with a reasonable accuracy. The values of the lambda temperatures
are in agreement with the lambda line of R oberts  and Sydoriak  9) 19)
(see fig. 11). The magnitudes of the discontinuities in the specific heat AC\

Ï T Ï

0.847

0.478

Fig. 6. The specific hea t C as a function of the  tem perature T  a t  different concentra­
tions: X  =  0.478; X  =  0.847.

The smoothed curves in the phase separation region are draw n according to  the
leverage rule.

3H e: B re w e r, D a u n t ,  S r e e d h a r 6), A b ra h a m , O s b o rn e  and W e in s to c k  ’>),
R o b e r t s  and S y d o r ia k  8).

at the lambda points are in reasonable agreement with those calculated by
R oberts  and S ydoriak  9) by means of the relation 20):

A
d In P  ^

dP /x L (Xy
' R T2 dXL ( 1 )

from the measured change in the slope of the vapour pressure curves
measured by them and are drawn in the figs. 7 and 10. It is remarkable that
the magnitude of the discontinuity in the specific heat at the lambda point
ACX falls rapidly with the increasing concentration A20). There is no short
range ordering observed just above the phase separation curve.

In the He I and in the phase separation region there was overheating
during the afterdrift, but not in the He II region. See, for example, fig. 3 in
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which the afterdrift for a tem perature just below and just above the phase
separation curve is shown for a 39% mixture. During the heating period at
the 31st minute the phase separation curve PS was passed. After the heating
period at the 26th minute in the phase separation region there was over­
heating during the afterdrift. After the heating period at the 31st minute
in the He II  region no overheating was observed during the afterdrift,
showing the entry into the superfluid region.

0.575

0.805

Joule
mole°K

p-sU

Fig. 7. The specific heat C as a function of the temperature T  at different concentra­
tions: X  =  0.575, X  =  0.805.

The smoothed curves in the phase separation region are drawn according to the
leverage rule.
T: JCp calculated by R ob erts and S yd oriak  from their vapour pressure measure­
ments 9).

B2) 0.51 <  X  <  0.73 (A =  0.575, 0.638, 0.70, see the figs. 5, 7 and 8).
We see th a t the discontinuity J C ps in the neighbourhood of the top of the
phase separation curve and the discontinuity AC\ a t the corresponding
lam bda tem perature becomes less pronounced. Hence from our measurements
the location of the phase separation and lambda curve cannot be determined
very accurately.

At A* (see fig. 11), the lambda line A meets the phase separation curve
PS *). Above this tem perature the upper 3He rich phase is superfluid,
while below this tem perature it is normal, as found by Z in o v 'e v a
and P e s h k o v 10) by visual observation, while the lower 4He rich phase
always remains superfluid. A very small discontinuity in the specific
heat was found for the concentrations: X  =  0.575, 0.638, 0.70 (see

*) See chap. III .
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figs. 5, 7 and 8), at the same temperature Tx* & 0.8°K and X* & 0.73
(in the concentration range 0.51 <  X  <  0.73), indicating a lambda tran­
sition in the upper phase. The values of Z inov’eva and Peshkov 10) are
T\* =  0.67 K and X * =  0.82 and were found for a 63.1 % mixture by
visually observing that the upper phase was vigorously boiling around a
small heating coil at temperatures below T while the lower phase re­
mained immobile. As the temperature was raised, there came a moment
(T >  Tx*) at which the boiling of the upper phase ceased instantaneously,

0.638
Q  OOq ,

0 .9 5 4

Fig. 8. The specific heat C as a function of the temperature T  at different concen­
trations: X  =  0.638, X  — 0.954.

The smoothed curves in the phase separation region are drawn according to the
leverage rule.

3He: Brew er, D aun t, S reed h ar «), A braham , O sborne and W e in s to c k ? ) ,
R o b erts  and S ydoriak  8).Z: theoretical value according to the theory of Z harkov
and S ilin  17) for X  — 0.954.

becoming just as quiet as the lower phase. Here we like to remark that the
Zinov’eva and Peshkov experiment is in first place a qualitative one,
giving direct evidence of superfluidity. However it may be that the heat
input used for making the vapour bubbles, disturbs the absolute deter­
mination of the lambda temperature and concentration.

B3) 0.73 <  X  <0.954 (A =  0.75, 0.805, 0.847, 0.894, see the figs. 6, 7
and 9).

Here we have no lambda point contribution. At the phase separation
temperature there is a discontinuity dCps. Here again the phase separation
curve can be reasonably localised. The increase in the specific heat just
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above the phase separation curve is presumably due to a short range
ordering occurring above the lambda transition, although this transition
has now disappeared because of the phase separation.

At higher concentrations this short range ordering becomes less pronounced
because the extrapolated lambda line is then most probably further away
from the phase separation curve.

Finally we remark that in the whole phase separation region the total

Joule

0.894

Fig. 9. The specific hea t C as a  function of the tem perature T  a t  different concen­
tra tions: X  =  0.75 X  — 0.894.

The smoothed curves in the  phase separation region are drawn according to  the
leverage rule.

3 H e :  B re w e r , D a u n t ,  S re e d h a r® ), A b ra h a m , O s b o rn e  and W e i n s t o c k 7),
R o b e r t s  and S y d o r i a k 8).

molar enthalpy H  is, according to the leverage rule, equal to :

H = —  ----—  H\(T, Xi) +  -y------y  Hu(T, X n) (2)

(see fig. 11). The subscripts u and 1 refer to the upper 3He rich phase and
the lower 4He rich phase. Hence the specific heat C, according to the leverage
rule, must be equal to:

( - )  -\d 7 7 x
d {XuHijT.XQ-XxHujT.Xu)

V X n - X !  )  + d T \  X u - X i
(3)
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and is found to be linearly proportional to the average concentration X  of
the condensed mixture. In fig. 12 the specific heat C in the phase separation
region is plotted against the total condensed concentration for different
temperatures. The lines drawn through the measured specific heat points
in the phase separation region in the figs. 5, 6, 7, 8 and 9 are smoothed
according to the leverage rule.

0.0466Joule

0.094

0 .470 ,

Fig. 10. The specific heat C as a function of the temperature T  between 0.4°K and
2°K at different concentrations:

□ X  =  0.0466
< X  =  0.094
V X  =  0.15
0 X  =  0.291
o X  =  0.39
A X  =  0.478

_j_dCp calculated by R o b erts  and S ydoriak  from their vapour pressure measure­
ments 9).
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It is perhaps interesting to remark that a regular solution, where the
heat of mixing HE is equal to X(1 — X)W%Q) (as will be explained in part II)
would give the following expression for the specific heat in the phase
separation region:

C =  XC3° +  (1 -  X) C4° +  W[\ -  2Xrs) ( ~ ) pg ■ (4)

Thus, although a regular solution has no excess specific heat CE, it has

x  0 4

Fig. 11. The lam bda and phase separation tem peratures as functions of the liquid
concentration. The smoothed line denotes the values of R o b e r t s  and S y d o r ia k  9)19).

A D o k o u p i l*)
O Z in o v ’e v a  a n d  P e s h k o v  10)
□ K e r r n )
V E l l i o t  and F a i r b a n k 12)
® E s e l’son , B e rp z n ia k  and K a g a n o v  13)
0  O ur expsrim ents

P. Theoretical value theory  P o m e r a n c h u k
X u =  concentration of the  3He rich upper phase
X i  =  concentration of the 4He rich lower phase
X  =  average concentration of the condensed m ixture.
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of course just as well an extra contribution in the phase separation region
due to the heat of mixing (see II, section 2).

C) 0.954 <  X  <  1 (Dilute mixtures of 4He in liquid 3He X  =  0.954,
X  — 1, see the figs. 4, 8). No lambda and phase separation points.

We can compare the results for X  =  0.954 with the theory of Z harkov
and Silin 17) (see later II, 4C). There are no indications that the nuclear
magnetic properties of the 3He show up in the thermodynamic properties
in this temperature range.

Joule

I I 0.575 0.70 0.847
i" 'p c / I I 0.478

I Q39
0.291

Fig. 12. The leverage rule. The specific heat C in the phase separation region as a
function of the condensed concentration X  at different temperatures.

The phase separation temperatures T ps, as determined from our experiment
(see table II and fig. 11), are in agreement with the results of R oberts
and S ydoriak  9) and Z inov’eva and Peshkov 10). The lambda temper­
atures for concentrations smaller than about 70% are in agreement with the
results of D o k o u p il1), R oberts  and S y d o r ia k 9), E llio t and Fair-
b a n k 12), and there remain only discrepancies with the results of
Zinov’eva and Peshkov 10), especially for the high concentration values,
for which they give the large value 0.82 for X* and the low value 0.67°K
for Tx*, and with the lambda values of R oberts  and Sydoriak  9)18)
for concentrations larger than about 70% derived from their thermal
conductivity measurements.

The spread of the experimental points with respect to the smoothed
values derived from the leverage rule gives an idea of the overall non-
systematic errors of the measurements. Systematic errors can be present in
the temperature determination, in the amount of liquid condensed, in the
amount of heat supplied and in the determination of the concentration.
The largest uncertainty arises from the temperature determination, for
the other quantities are more accurately known. The highest accuracy is
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reached in the neighbourhood of 1°K. On the whole the accuracy is of the
order of 5%, decreasing at lower temperatures and lower concentrations.

P a r t  I I : t h e r m o d y n a m ic  p r o p e r t ie s  o f  l iq u id  2 3He-4 * * * *He m ix t u r e s

DERIVED FROM SPECIFIC HEAT MEASUREMENTS BETWEEN 0.4°K AND 2°K
OVER THE COMPLETE CONCENTRATION RANGE.

1. Introduction. In chap. I we 20) analysed the existing vapour-liquid
equilibrium data and calculated the excess chemical potentials from the
vapour pressure measurements of R oberts  and S y d o r ia k 9). At tempera­
tures below 1 °K the excess Gibbs function GE could be expressed reasonably
well by means of the formula:

GE =  X ( l - X ) W  (1)

indicating an almost regular behaviour of the solution. However, it is known
that the vapour-liquid equilibrium data are only moderately sensitive to
deviations from regularity. Hence the fact that the experimental data
conform to the criterion for regular solution does not exclude a more compli­
cated behaviour in which SE =£ 0. Furthermore, as we pointed out in
chap. I 20) a regular solution would have a symmetric phase separation
curve in disagreement with the existing data. Only direct caloric measure­
ments can give us a picture of the real behaviour of the mixture.

In (2) we will derive the heat of mixing from our specific heat measure­
ments and with this in combination with the vapour pressure data the
excess entropy will be calculated in (3).

A theoretical discussion of the thermodynamic properties is given in (4).
The discussion is divided into the same three sections A, B and C as in
section (4) of part I.

The thermodynamic properties can be compared with the Pom eranchuk
model16) for dilute mixtures of 3He in liquid 4He (see section 4A) and with
Z harkov’s model17) for dilute mixtures of 4He in liquid 3He (see section
4C).

For the definitions of the thermodynamic excess quantities we refer also
to chap. I 20).

2. The heat of mixing. The heat of mixing H E(X, T) is defined as the heat
required to keep the temperature T  constant when X  mole of pure liquid
3He is added to (1 — X)  mole of pure liquid 4He.

Since variations in the enthalpy are independent of the path described
in a phase equilibrium diagram (see fig. 11), it is possible to derive the heat
of mixing HE from the specific heat measurements inside and outside the
phase separation region by integrating the specific heat along different
paths. When we cool one mole of a mixture of concentration A (0.15 <  X  <
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<  0.954) to a tem perature of 0.39°K, the mixture separates into two phases
with concentrations X\ — 0.15 and X u =  0.954 containing respectively

(and (  V ° ' 5 JV 0 .9 5 4 -  0 .1 5 / \  0.954 — 0 .1 5 /
moles according to  the leverage rule. The difference between the integration
from 0.39°K to for example 0.9°K of the measured specific heat with average
concentration X  condensed in the calorimeter and the sum of the integrations
from 0.39°K to 0.9°K outside the phase separation curve of the specific
heat of

(  0.954 -  X  \
V 0.954 -  0.15 /

moles a t X\ — 0.15 and of the specific heat of
(  X  — 0.15 \
V 0.954 — 0.15 /

moles a t X u =  0.954 gives the heat of mixing HE* a t 0.9°K of two liquids
with starting concentrations of X  — 0.15 and X  =  0.954 and final concen­
tration X, since it is only in the first integration th a t the heat of mixing is

mole
Joule I

0 .954,10

Fig. 13. H B*, H B, GE and TSE as a function of the concentration X  at 0.9°K
GB =  X ( l  -  X) W ; W/R  =  1.54°K 20)

included and not in the integrations outside the phase separation curve PS.
Thus the heat of mixing i / E* is given by the following equation.

■^0.9“K  ( X )  —

Ic x  d T  -
0.39

'  X  — 0.15
_ 0.954 — 0.15

/*  0.9

I ^ 0 .9 5 4  d J  +
J  0.39

0.954 — X
0.954 — 0.15 • (2)
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Following this procedure we have calculated the heat of mixing H E* at
0.9°K for the 10 concentrations X  between X\ =  0.15 and X u =  0.954 at
which specific heat measurements were made (see fig. 13). By extrapolating
H E* to X  =  0 and X  =  1 the total heat of mixing HE at 0.9°K is obtained
(see figs. 13 and 14). The same procedure was also followed for 0.8°K and

Joule

Fig. 14. The heat of mixing f ï E as a function of the concentration X  at different
temperatures T

O directly determined values at 0.9°K
V „  „  „ „ 1.0°K
A „  „  „ „ 0.8°K

□ Somm ers, K e lle r and D ash 21). Direct experimental
point a t X  =  0.086 and T  =  1.02°K.

1°K and the extrapolated values of HE obtained at these temperatures are
plotted in fig. 14. If we now define the excess specific heat CE(T, X) by
means of the following relation:

C(T, X) =  XCa° (T) +  (1 — X) C4° {T) +  CE(T, X)

it is possible to obtain the heat of mixing HE at every other temperature
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between 0.4°K and 2°K by integration of the excess specific heat using the
relation

HXE (T) = HXE(0.9°K) +  f 0T9 CXE dT  (3)

The results obtained in this way are shown in fig. 14 and table III. In fig. 14
we see that there is reasonable agreement with the directly determined
values of HE at 0.8°K and 1 °K. The correction for the pressure term appears
to be negligible for the excess quantities.

TABLE III

H eat of mixing H E(joule/mole)
\ A l

0.046» 0.094 0.15 0.291 0.39 0.47s 0.57» 0.63s 0.70 0.75 0.80» 0.847 0.89» 0.95»
T ( ° K ) \

0.4 --- - — 0.472 — — — — — — _ _ — 0.364»
0 .5 ' 0.129 0.299 0.551 ■ — — — — — — 4- — 0.635 0.394
0.6 0.165 0.362 0.631 1.04 — — - — , — — 1.085 0.734 0.413»
0.7 0.199 0.425 0.715 1.24 1.53 — — — — — 1.584 1.265 0.815 0.433»
0.8 0.234 0.489 0.805 1.45 1.80 2.01 — — — 2.13 1.79 1.39 0.885 0.452
0.9 0.270 0.560 0.90 1.68 2.10 2.35 2.52 2.60 2.68 2.37 1.95 1.50 0.94 0.47
1.0 0.309 0.636 1.01 1.94 2.47' 2.74» 3.00 3.06 3.06 2.56 2.09 1.59 0.98 0.472
1.1 0.350 0.716 1.12 2.22 2.91 3.20 3.55 3.42 3.34 2.71 2.20 1.67 1.01» 0.472s
1.2 0.394 0.807 1.26 2.52» 3.437 3.74» 4.14 3.70 3.56» 2.82 2.27 s 1.74 1.03» 0.472s
1.3 0.444 0.913 1.43 2.88 4.061 4.41» 4.50 3.90 3.73 2.91 2.31» 1.79 1.05» 0.471»
1.4 0.512 1.051 1.64 3.32 4.79 5.21» 4.75 — 3.85 2.97 2.33s 1.82 1.06s 0.470
1.5 0.618 1.236 1.91 3.91 5.70 5.67 4.90 — 3.90 2.98s 2.32» 1.84 1.04» 0.467
1.6 0.777 1.51 2.31 4.70 6.71s 5.87 , — — 3.90 — 2.27 1.83 1.01 0.463
1.7 0.994 1.87 2.89 5:65 - 5.88

For this last procedure we have chosen as the starting temperature 0.9°K
just above the phase separation curve because the rapid fall of the change
of the specific heat AC\ at the lambda point with the concentration indicates
that the second order transition becomes thermodynamically of minor
importance.

Sommers, K eller and D ash 21) have measured the heat of mixing
directly. Two adjacent, thermally isolated chambers containing pure liquid
3He and liquid 4He were mixed together to give an 8.6% solution by ruptur­
ing the membrane dividing them. During this procedure the temperature
fell from 1.05°K to 0.78°K. The measured heat of mixing was estimated
to be 0.71 joule/mole at 1.05°K which is in satisfactory agreement with our
values determined from the specific heat measurements (see fig. 14 and
fig. 17).

3. The excess entropy. The excess entropy SE is defined by means of the
relation:
S(T, X) = X S 3°(T) +  (1 -  X) S4°[T) -

-  R[X In X  +  (1 -  X) In (1 -  X)] +  SE{T, X).
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As we have already calculated the excess Gibbs function GE 20) in this
temperature region from the vapour pressure measurements by R oberts
and S ydoriak  9), using the relation GE =  H E — TSE we can now calculate
the excess entropy at 0.9°K and the excess entropy at other temperatures
by means of the relation:

CT C rESxE(r) =  SxE(0.9°K) +  —  d r . (4)
J 0.9 1

The results obtained are shown in table IV and fig. 15.

TABLE IV

Excess E ntropy S B (joule/mole °K)

\ X l

0 .046» 0.094 0.15 0.291 0.39 0.478 0.575 0.638 0.70 0.75 0.805 0.847 0.894 0.954
r ( ° K ) \

0.4 — — — 1.48
0.5 -0 .4 7 -0 .9 3 — 1.31
0.6 -0 .4 1 -0 .8 4 -1 .1 6 -1 .9 0
0.7 — 0.36 -0 .7 2 -1 .0 3 -1 .5 7 -1 .7 3 — — — . -  ' - — -0 .2 9 4 -0 .1 5 9 -0 .0 4 6
0.8 -0 .3 1 -0 .6 3 -0 .9 1 -1 .3 0 -1 .3 7 -1 .3 1 — — — -0 .3 0 -0 .2 0 -0 .1 2 7 -0 .0 6 5 -0 .021
0.9 -0 .2 7 -0 .5 5 -0 ;8 0 -1 .0 2 -1 .0 2 -0 .9 1 -0 .6 5 -0 .3 9 -0 .1 4 5^0 f t̂s 0 f&O ^ 0
1.0 -0 .2 3 -0 .4 7 —  0.69 -0 .7 5 -0 .6 4 -0 .5 0 -0 .1 6 +0.10 +  0.26 +  0.20 +  0.15 +  0.097 +0.048 0.016
1.1 — 0.19 -0 .3 9 -0 .5 8 -0 .4 9 -0 .2 2 -0 .0 6 +0.37 +  0.45 +  0.53 +  0.34 +  0.25 +  0.169 +  0.080 0.023
1.2 -0 .1 5 -0 .3 1 -0 .4 7 -0 .2 2 +  0.24 +  0.41 +  0.88 +0.70 +  0.73 +0.44 +0.32 +  0.222 +0.102 0.024
1.3 -0 .1 1 -0 .2 2 -0 .3 3 +0.06 +0.74 +  0.95 +  1.77 +  0.87 +  0.86 +0.51 +  0.36
1.4 -0 .0 6 -0 .1 3 -0 .1 8 +0.38 +  1.28 +  1.54 +  1.35 — +  0.95 +  0.55 +  0.38
1.5 +  0.01 0.00 +0.01 +  0.79 +  1.90 +  1.86 +  1.46 - +  ÓÏ99 +  0.56
1.6 +0.11 +0.18 +  0.26 +  1.30 +  2.56 +  1.99 — — +  0.90
1.7 +0.24 +  0.39 +  0.62 +  1.94 — ' +  2.06

Joule

Fig. 15. The excess entropy SE as a function of the concentration X  at different
temperatures T.
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Thus all the thermodynamic excess functions have been determined.
We prefer to base our calculations on the excess Gibbs function GE at

0.9°K and to use the integration of the specific heat to obtain the values
at higher temperatures as we consider the values for GE at 0.9°K the most
reliable and for the very simple form GE =  X(1 — X)W  that is found at
that temperature.

It is also possible to determine the excess entropy SE directly from our
specific heat measurements without using the excess Gibbs function derived
from vapour pressure measurements. One can determine the entropy of
mixing AS* at 0.9°K for two liquids with starting concentrations of X  =
=  0.15 and X  =  0.954 and final concentration X,  by the same technique
used in calculating the heat of mixing in section 2, using the formula:
zis;9.K (I) =

f°-9c 5  _  r  X —o.i5 r°-9c 0 954 0.954- x  r°-9c 0 i5 1=  _ X d r -  —  ---------  _ ^ d r d --------------- — d r  . 5
J 0.3 9 T LO.954—0.15J 0.39 T 0.954-OA5Jo.39 T  J w

The excess entropy SE* is determined by subtracting the ideal entropy of
mixing from dS*. By extrapolating SE* to X  =  0 and X  =  1 the total
excess entropy SE is obtained. The results obtained in this way are given
in fig. 16.

Joule

Fig. 16. The direct determination of the excess entropy at 0.9°K. dS*, dS*id and SE*
as a function of the concentration X.

This method has some serious drawbacks. First the low temperature
contribution to the integral is of more importance than in the case of the
heat of mixing because of the factor 1 /T . This seriously affects the accuracy
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of the final results of the integration. Furthermore, one does not obtain the
excess entropy directly, but the result also contains the contribution from
ideal mixing, which is of the same order of magnitude. This is especially
so at the end of the concentration interval where this contribution makes the
extrapolation to X  =  0 and X  =  1 rather difficult as can be seen from fig. 16.
The extrapolation was performed in such a way as to obtain the best possible
agreement with the calculations starting from GE and HE.

4. Theoretical discussion of the thermodynamic properties. For convenience
we divide the theoretical discussion into three concentration regions:

A) dilute mixtures of 3He in liquid 4He: Experimental confirmation of
the energy spectrum of Pom eranchuk  16) at temperatures below 1°K.

B) the intermediate region (phase separation region)
C) dilute mixtures of 4He in liquid 3He: the theory of Z harkov  and

Silin 17).
A) Dilute mixtures of 3He in liquid ^He. Experimental confirmation of the

energy spectrum of Pom eranchuk at temperatures below 1 °K.
a) Introduction. Measurements on the specific heat of 3He-4He mixtures

at concentrations of 4.66, 9.4 and 15% of 3He in liquid 4He show, between
0.4°K and 1°K, an almost constant contribution of the 3He to the specific
heat which is close to %RX (see fig. 4 and table V).

table v

X

* l2 R X
jo u le

Cexp
jo u le

m ole  °K m o le  °K

0.0466 0.582 0.51
0.094 1.172 0.95
0.1S 1.871 a * 1.3

This behaviour can be explained by means of the theory of Pom eran­
chuk 16) 22)23) 24^  jn  which he considers dilute solutions and assumes that
the 3He atoms do not interact with one another and that the assembly of
3He atoms is non-degenerate. The 3He atoms can be treated as practically
free particles which move through the fluid with an effective mass m3*.
Hence the specific heat will be that of an ideal monatomic gas. To describe
the properties in more detail the energy spectrum associated with the 3He-
atom is taken to be:

^)2
E =  £ 0 3  +  — r 62 m 3

where £ 0 3  is the effective potential and p2/2 m3* is the kinetic energy
associated with the translational motion through the superfluid of the 3He
atom which has an effective mass m3*. The statistical mechanics of the 3He
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atoms is nearly the same as for an ideal gas 25) and the internal energy U,
the entropy S, the specific heat C and the partial chemical potentials m,
are equal to:

U =  (1 -  X) UAo +  X [N E os +  | RT]

$  =  (1 -  X) S4° +  XR
j  g 3 ^ 4 °  /  m ' k T  y j  5

11 1 X N  \  2nh2 /  J +  2_

C =  (1 -  X) C4° +  X fR

H4 =  [ao +  RT  In (1 -  X)

H3 =  N E03 +  RT  In
" X N f 2nh2 y
L gsVi0 I  m3*kT )  J

(7)

(8)

(9)

( 10)

(11)

A ll quantities are expressed per mole; g is the statistical weight (degree of
degeneracy). As the contribution of the 4He to the specific heat is practically
negligible at these temperatures, the experimental value of the specific heat
should bë equal to f RX. From table V and fig. 4 one sees that the experi­
mental data approach this value in  the lim it of low concentrations and one
concludes that it  is only for dilute mixtures that Pomeranchuk’s theory
is satisfied.

b) Analysis of the vapour-liquid equilibrium data. I t  is clear (see eq. (9))
that it  is not possible to derive the constants £ 0 3  and m3* of the energy
spectrum from the specific heat data. For this purpose we reanalysed the
vapour-liquid equilibrium data. The equilibrium condition between the
liquid and vapour phase m l =  gives the following equation:

X N  /  2n%2 Y1
L g s V \  m3*kT ) Jp3L =  NEoa +  RT  In

Pa f  2n%2 \
L g3{kT)* \  m3 /

RT  In

NE  os =  RT  In
F4° /  m3* \ n

L X RT \  m3 )  _

♦1
(12)

(13)

if  we assume the vapour phase to be ideal. From the smoothed vapour
pressure measurements of Roberts and S y d o r ia k 9) we calculated the
partial vapour pressure P3 which at temperatures below 1 °K is nearly equal
to the tota l pressure P tot 20). W ith formula (13) we calculated the potential
energy NEo3 per mole and found its value between 0.6°K and 1°K to be
independent of temperature. For the effective mass m3* we used the ex­
perimentally determined value m3* — 2.7 m3 26_3i) (gee later: second
sound and the normal density). The values of NE03 obtained in this way
are given in table V I as a function of temperature and concentration.
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TABLE VI

T he p o ten tia l energy  N E o s  (joule/m ole) as a fun ction  of
tem p era tu re  T  an d  con cen tration  X .

\ T ( °  K)

x  \

0.6 0 .7 0.8 0.9 1.0

0 .02 - 2 1 . 5 - 2 1 . 9 - 2 2 .1 - 2 2 . 0 - 2 1 . 6
0 .04 - 2 2 .1 - 2 2 . 6 - 2 2 . 7 - 2 2 . 7 - 2 2 . 5
0.06 - 2 2 . 6 - 2 3 . 0 - 2 3 .1 - 2 2 . 9 - 2 2 . 9
0 .08 - 2 3 .1 - 2 3 . 3 - 2 3 . 3 - 2 3 . 3 - 2 3 . 3
0 .10 - 2 3 . 5 - 2 3 . 6 — 23.6 - 2 3 . 6 - 2 3 . 5

Hence, below 1°K equation (13) is consistent with the experimental results,
but at higher temperatures and concentrations N E 0 3  changes slightly.
Comparing this value with the corresponding value for pure 3He of —21.2
joule/mole 32) we see that the potential well of 3He in a 4He surrounding
is only slightly larger, as one should expect in a cell model taking into
account the zero point energy of the 3He and the large compressibility of
4 He.

NE 03, Uo3° =  — L03, Uo4° =  — Loi as functions of the molar volume
are plotted in fig. 18 (see later e)). V3 is the partial molar volume for a
dilute solution of 3He in liquid 4He derived from the molar volume experi­
ments by K e r r 11).

c) The thermodynamic excess functions. Our aim is now to calculate all the
thermodynamic excess functions for a dilute mixture, as defined in
chap. I 20), and to compare them with the experimental results. The heat of
mixing HE of a dilute solution is equal to:

HE = H — Hideal =  X[H3 -  t f 3°] =  X[NE03 +  $RT -  H3<>(T)] (14)

if we assume that for temperatures lower than 1°K, H is nearly equal to U.
The excess Gibbs function GE is equal to:

GE =  X[i3 +  (1 — X) — [̂ /M3° +  (1 — X) ^ 4 ° +
+  RT{X  In X  +  (1 — X) In (1 — X)}] (15)

in which /u3l° is determined by the following equation:

i«3L0 =  3V° RT  In [ P3°
gs{kT)* \  m3

2nh* \*1
■)'] (16)

Inserting eqs. (16), (10), (11), (12) into eq. (15) gives the following result for
the excess Gibbs function:

GE f  f RT (  m3 V X R T  In
V x p 3° )

(17)

The excess entropy SE can now be determined by means of the relation
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GE =  HE — TSE from eq. (14) and (17).

SE =  X
P3°F4o ^3°(P)1

RT  \ w 3 / J  +  ï  T  J
=  X - P i n P 3

X P 3 o
NE03

T
P 30( r ) l

r  _
( 18)

In  the case of phase separation of two dilute mixtures (a 3He rich upper
phase u and 4He rich lower phase I) one has in general th a t the concentration
ratios of the upper phase X u (if -Xu -► 0  and the lower phase X\ (if X\ 0)
are directly connected to the partial chemical excess potentials iE since

i«3i =  /M3° +  RT In X\ +  jM3ie if Xi -*■ 0, and (19)

^  =  /*3° +  RT  In X u if X i  4 1. (20)

We have now the following equilibrium condition:

i«3l =  ^3u- (21)

The insertion of the eqs (19) and (20) into the equilibrium condition (21)
gives the following result:

G ® X. P
^  w3ie =  RT  In —  =  RT  In-  - 3 ,  . (22)

Xi ^  X i Xi Pz° V

Inserting of eq. (17) into eq. (22) gives the following result:

Xi_
Xu

~ R3°P4° /  f»3* V 1 - W
_ RT  \  w 3 /  _

(23)

In  the same way, using the equilibrium condition fi41 =  Ju4u, one gets the
following result:

GuE
(1 -  ^u)

(1 -  Xi)
*  i“4ue =  RT  In —-------

(1 A u)
(24)

As we have seen th a t the vapour-liquid equilibrium data for dilute
solutions can be explained rather well by the P o m e r a n c h u k  model it
seems advisable in this range of concentration to follow another procedure
than was discussed in the previous section where we based our calculations
on a regular excess Gibbs function. Especially at the lower concentrations
the vapour-liquid equilibrium data agree better with the P o m e r a n c h u k
model than with a regular solution model. Hence in comparing data  with the
P o m e r a n c h u k  model we will derive the excess entropy from our heat of
mixing data and from the P o m e r a n c h u k  excess Gibbs function.

d) The excess Gibbs function GE. W ith formula (17) we have calculated
GE/X  between 0.6°K and 1,2°K and with formula (22) we have calculated
GE/X  for 0.3°K (see fig. 17).
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e) The heat of mixing. The energy i/o3° of liquid 3He at 0°K is equal in
magnitude to the latent heat Z,o3 at 0°K, so that i/o3° =  —7-03 =  — 21.2
joule/mole 32). H3°{T) can now be calculated by means of the following
equation:

H3°{T) = - L 03+ JS  C3° d r . (25)

Hence it is now possible to calculate HEIX by means of eq. (14). The
result is shown by the hatched curve in fig. 17. We see that there is reasonable
agreement with the experimental values of the heat of mixing for X  =
=  0.0466, 0.094 and 0.15 derived from the specific heat measurements in
the phase separation region, and with the direct measurement of the heat
of mixing by Sommers, K eller and D ash 21) at 1.05°K for a 8.6% mixture.

x' x ' x

i

Fig. 17. G^/X,  H E/X,  TS^/ X  as a  function of the  tem perature T  for dilute m ixtures
in the P o m e r a n c h u k  region.
□ GR/ X  derived from th e  vapour pressure m easurem ents of R o b e r t s  and S y d o r ia k

for a 10% m ixture w ith form ula (17)
0  GEj X  derived from th e  phase separation curve w ith formula (22)
® H^ / X  direct experim ental point of S o m m e rs , K e l le r  and D a s h  al)

A ^  _  q |  Experim ental values of H B/ X  and S^/X,  for the determ ination
_  o is  J of S B is used GE as derived by means of formula (17).

A X  =  0.0466 i
•  X  =  0.094 j, E xperim ental values of S^/ X  if we use a  regular Gibbs function 20).
▼ ^ = 0 . 1 5  J
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Thus we see that the linear behaviour of HE as a function of the con­
centration X  as shown in fig. 14 and fig. 17 is in agreement with the pre­
dictions of eq. (14). The increase of the slope nearly proportional to the
temperature is also in agreement with eq. (14).

f) The excess entropy SE. Using formula (18) we have calculated the
excess entropy SE/X  using eq. (25) for H 30. The result is shown by the
hatched curve in fig. 17. We see that there is reasonable agreement with
our values for X  =  0.0466, 0.094 and 0.15. To show the influence of the
choice of the Gibbs function we also plotted our results obtained from the
regular solution Gibbs function (see table IV).

cm3
mole

V3 V°

Joule

Fig. 18. [7®03 = —L°03, U°04 =  —L ° o4, NE03 as a function of the molar volume V.
F3 =  partialmolar volume for a dilute mixture of 3He in liquid 4He derived from the
molar volume experiments by Kerr 1]-).

g) The phase separation curve. The concentration ratio Xi/Xu of the
phase separation at low temperatures can be calculated by means of eq. (23).
Calculations at T =  0.30°K (Vi «a 0.097, Xu «a 0.97) and at T =  0.40°K
(Vi ess 0.147, Xu «a 0.955) give X \/X u =  0.104 and 0.143 for the con­
centration ratio, while the extrapolated experimental values give the
following ratios respectively [Xi/Xu)exv. =  0.100 and 0.154 (See fig. 11(P)).

h) The effective mass m3*, second sound and the normal density pn in dilute
3He-iHe mixtures. Since the dissolved 3He atoms can readily collide with
rotons and phonons, they always participate in > the motion of the normal
component and the density of the normal component pn is equal to

m3*
Pn =  p n , i  H----------- p X -  (26)

W 4

Below 1°K one has pn,4 m ^pXjm \ since the phonons and rotons make
a negligible contribution, so that the normal fraction x is almost equal to
x =  pn/p =  (m,3*\m/i)X, and is determined by the constant density of the
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3He atoms. P e l l a m 29), B e re z n ia k  and E s e l’s o n 30) and D a sh  and
T a y l o r 31) made extensive measurements of pn in oscillating disk ex­
periments by the A n d r o n ik a s h v i l l i  method and found an almost constant
value for the effective mass, m^\m% =  2.7.

The velocity of second sound in a dilute solution of 3He in liquid 4He
has been measured by L y n to n  and F a i r b a n k 27) and by K in g  and
F a i r  b a n k 28) between 0.2°K and the lambda temperature. From the
therm ohydrodynamical equations P o m e r a n c h u k 16) and Khalatnikov 33)
have derived the following expression for the velocity of second sound

M22 ( s 4° +
kX  Y  kTX  1
mu )  m± J

which reduces in the case of very low tem peratures to
5 kT

“ 2 ~ ~ 3  m 3* '

(27)

(28)

The experimental results of K in g  and F a i r b a n k 28) below 0.6°K are in
agreement with this equation and give m3*jin3 =  2.8 for the effective mass
which is consistent with the oscillating disk experiments. At these low
tem peratures it is difficult to separate first and second sound. One may
interpret equation (28) as being the sound velocity of an ideal monatomic
gas of 3He atoms with an effective mass m3*, which is given by

' Cy 8p  ' 3 m 3 *
(29)

Recently S a n d ifo rd  and F a i r b a n k  34) have found two “sound” velocities
for very low tem peratures T  <  0.2°K and small concentrations X  0.005:
the normal phonon velocity which is also observed in pure liquid 4He and
a velocity which is caused by the 3He gas which moves through the super­
fluid according to eq. (29) as has to be expected if the interaction between
the 3He and the phonon is small.

In  F  e y  n m a n ’s theory 23) the motion of a 3He atom through the super­
fluid is treated as a microscopic hydrodynamical problem and the effective
mass m3* is the sum of the true mass of the 3He atom and one-half of the
mass of the displaced fluid. Thus m3* — m3 +  \(V 3/F4) m4 which gives
w 3*/w3 «a 1.9. In  this model the backflow of the 4He around the 3He atom
gives rise to the large effective mass m3*.

B. The intermediate region (phase separation region). The thermodynamic
properties are far more complicated in the intermediate region, as all types
of interactions (i.e. 3H e-3He, 3H e-4He, 4H e-4He) become of importance.
Furthermore, a t higher temperatures the lambda phenomenon also plays
an im portant role. Hence no simple description may be expected. At low
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enough temperatures one may perhaps neglect the lambda phenomenon
and try to describe the properties by means of the model of Prigogine,
Bingen, Bellem ans and Simon 36)37)38).

They explained a positive excess Gibbs function by pointing out that,
neglecting the collective motions, the difference between the pure isotopes
is only due to the zero point energy, which gives rise to large differences
in the molar volumes. In this picture the mixing becomes ideal if one has
first brought the pure isotopes to the same molar volume as they have in
the mixture. The excess Gibbs function is in this case equal to the work done
by compressing the lightest isotope and by expanding the heavier one.
These results for GE give the right order of magnitude. However, as they
pointed out themselves, this is all one may expect from such a model.

C). Dilute mixtures of 4He in liquid 3He: The theory of Zharkov and Silin .
Z harkov and Silin 17) considered a dilute solution of 4He in liquid

3He as a Boltzmann gas of impurity excitations in a Fermi liquid. A small
admixture of 4He will cause excitations with the spectrum:

£  =  £ „ 4 + -—  (30)
2mc

or:
(P — M 2£  =  £(,4 +  312m4*

where p is the momentum of the impurity excitation, po and w4* are para­
meters that have to be determined experimentally. Eqs. (30) and (31) may
be supported by the same line of reasoning that was used by Pom eran-
chuk 16) for the spectrum of impurities in liquid He II and the statistical
mechanics of these two energy spectra are almost the same as those used in
section A. For spectra (30) and (31) we have the following contributions
to the specific heat:

C =  XC3° +  (1 - A ) C 4;C4 =  f £  (32)
C =  ZC3° +  (1 -  X) C4; C4 =  ££. (33)

Spectrum (31) with a specific heat given by eq. (33) seems to satisfy
reasonably the experimental specific heat data for the concentration of
95.4% of 3He as one can see in fig. 8.

The heat of mixing HE is now equal to:

HE =  (1 _  x ) [Hi -  H4°] =  (1 -  X) [NE0i +  4RT -  H4«] (34)
in which

Hi°(T) =  -  £o4 +  fo ^4° dT =  -59.62 +  / 0T C4« dT -59.62
joule/mole 35). (35)
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We have used eq. (34) to calculate the potential energy NE 0 4  for a 95.4%
mixture from the experimental heat of mixing HE =  0.47 joule/mole at
1°K, and i7E =  0.38 joule/mole at 0.5°K. We find a temperature in­
dependent value of —53.6 joule/mole for NE 0 4 . Comparing this value with
the corresponding value for pure 4He of —59.62 joule/mole 35), we see that
the potential well of 4He ill a 3He surrounding is only slightly less and we
get a similar situation as for a dilute mixture of 3He in liquid 4He (see fig. 18).
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Chapter  III

SOME THERMODYNAMIC CONSIDERATIONS
ON THE PROPERTIES

OF LIQUID 3He-4He MIXTURES

Sum m ary

The stratification curve for liquid 3He—4He mixtures shows a singularity at the
junction with the lambda curve as can be seen on the basis of pure thermodynamic
considerations. If the lambda curve and the stratification curve meet each other under
a finite angle, there is a discontinuity in the slope of the stratification curve and in the
specific heat a t this point. Furthermore, the entropy of dilute mixtures is discussed
with respect to N e rn s t’s theorem.

1. Introduction. In the previous chapters1)2) where we discussed the
thermodynamic properties of liquid 3He-4He mixtures, we found a singu­
larity in the specific heat at the point where the lambda curve meets the
stratification curve. In this chapter we will derive the thermodynamic
relations that are valid at this point. The general procedure will be to
combine the equations for the first order stratification transition with the
K eesom -E hren fest4)5) type relations for the second order lambda
transition. The accuracy of the specific heat data around the lambda-
transition does not allow a choice between a second order transition and the
logarithmic singularity proposed by B uckingham  and F a ir bank 25).
We prefer to continue to regard the transition as a second order one,
instead of using the analogous relations valid for a transition with a
logarithmic behaviour. From our considerations we obtain a discontinuity
in the slope of the stratification curve and in the specific heat if the
lambda curve and the stratification curve meet each other under a finite
angle.

Furthermore, we would like to discuss two other aspects of the thermo­
dynamic properties of these mixtures: one regarding N ern st’s theorem,
the other concerning the “short range ordering” above the lambda temper­
ature.

In this chapter the same notation is used as in chapter I and II x)2).

54



I. T hermodynamic considerations on the junction  of the lambda

curve and th e  stratification  curve of liquid  3He-4He-m ix tu res .

2) The thermodynamic relations, a) The s tra tif ic a tio n  curve. By
differentiating the equilibrium condition

Ha(Xx, T) =  nUXu, T) (1)

along both sides of the stratification curve (P.S.) one can derive the following
expressions for the slope of this curve:

8Ha Hu — Hi
/ c L X u \  __  dX-a X u X\
\  dT /  p . s  82GU

8XU2
dHi Ha — Hi '

(d X x \  T  X u - X i
V d T  / p . s “  & G i

8X i 3

while the relation between the two slopes is given by :

82Ga /d X u\  8{fi3 -  /Xi)a 82Gi fd X A  8 {^  -  ^4)i .
8 X j  V dT / p .s +  8T 8X? \  dT / p .s +  8T

The subscripts u and I refer to the upper 3He rich phase and the lower 4He
rich phase. For a complete derivation of eq. (2) and (3) see R o w lin so n 3).
According to the leverage rule the specific heat in the phase separation
region is equal to 2) :

Cx =

+

+

X - X i  V8HU 8HU dXu
X u -  AÏ LU T  +  8Xu dT
X u -  X  p 8Hi t 8Hi dAi
Xu -  X Ï  L 8T +  8Xi 8T
X - X i  T8Hu 8*Gu (
X u - X i L  8T + 1 8Xu2 \
X u - X  rSHi  82Gi /
Xu -  Xi L 8T + 8Xi2 \

H u - H i
X u - X i
H u - H i
Xu — Xi

dXi y
"d r”/  _ ‘

d X u l
dT  J

d x n
dT  J

+

(5)

b) The lam bda curve (assuming a second order transition line).
S to u t6), De Boer and G o r te r7) and E se l’son, Lazarev, K aganov
and L if s h i tz 8)9) have developed relations between the thermodynamic
properties at the lambda transition point by extending the Keesom 4)-
E h re n fe s t5) relations to the case of a mixture. The entropy S, the chemical
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potentials f i the enthalpy H and the molar volume V are continuous along
both sides of the lambda curve (A), but their derivatives with respect to the
temperature T  and the concentration X  show discontinuities at the lambda
curve which are related to the slope of the lambda curve 7)10) in the following
way:

A (  8^ 3 ~  ^  \
\ __ e x  )  T

A  (  g (i“ 3 ~~ j“4) AV e r  )x

(6)

in which A A — A(Tx +  0) — A(T >. — 0) indicates the difference between
values of the quantity A at both sides of the transition curve. From this
equation one obtains the following relations:

ê(/u3 — /u)

e ( f i  3  —  / i a ) d r \ 2

(7)

(8)

(9)

c) The junc t ion  A* of the  lambda  curve and the  s t ra t i f ica t ion
curve. Suppose at T a* we have a second order transition in the 3He-rich
upper phase. From eq. (2) one sees immediately that there is a discontinuity
in the slope of the stratification curve of the 3He-rich upper phase at TV,
since there is a discontinuity in (eHu/8Xu)T and (82GU/8XU2)T. From the
equations (2), (8) and (9), after some calculation it follows that the discon­
tinuity in the slope of the stratification curve at the junction A*, is equal to:

A ( £ )\  d i / p.s*

/«0 (il) _ilVdT/p.s \ d X / A* J
dr \2

From eq. (3) it is clear that we have no discontinuity in the slope of the
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stratification curve of the 4He-rich lower phase at Tx* since there are no
discontinuities in any of the thermodynamic quantities in the right hand
side of eq. (3). However, from eq. (3) we see that there is a discontinuity in
the derivative of the slope of the stratification curve of the lower phase at
T because of the discontinuity in d[(i/u — H\)j(Xn — X i)]/dT ; hence we
have at Tx*.

0, A #  0. ( 11 )

It is perhaps interesting to remark that eq. (10) can immediately be derived
from eq. (4) using the relations (7) and (8) and the fact that there are no
discontinuities in the right hand side of eq. (4), since:

I" d2Gu /d-Xu\ 8 ( / i 3  — [h ) u

I d X j  \ d T  ) p . s  H  8T _
=  0. ( 12)

One can now derive from eq. (5) the discontinuity in the specific heat
ACx* using the relations (9) and (10). ACx* appears to be equal to:

>[(£L(£l-]
d r \ 2

(Xu -  Xi)
„  d2Gu d X a
T ------ A ------ .

8XU2 d T
(13)

If the lambda curve (2) is tangent to the stratification curve (P.S.) one has:

(d#)\ d T  / p.s*
d X \
d r A * '

(14)

Hence, we see from eq. (10) and (13) that in this case both the discontinuity
A (dXu/d7')p.s* in the slope of the stratification curve of the 3He-rich upper
phase and the discontinuity ACx* in the specific heat are equal to zero:

A =  0, ACx* — 0. (15)

3) Comparison with experiment. The difficulty in discussing the singu­
larity at Tx* from the experimental point of view is that the existing data
for the location of the curves are not accurate enough to allow an unambi­
guous conclusion to the question of whether or not the stratification curve
and lambda line meet each other under a finite angle. There is, however,
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an indication that the slope of the stratification curve changes rapidly or
discontinuously at A*. For this purpose we like to recall that the stratifi­
cation curves, in general, obey a law of the rectilinear diameter 3). This
appears also to he the case for the 3He-4He stratification curve. However,
the slope of this rectilinear diameter changes abruptly at 7V as can be
seen from fig. 1. If one assumes this change to be discontinuous one obtains
A(dXuldT) 0.23 deg-1. The calculation of this quantity using relation
(10) is rather arbitrary as neither [(dXu/dT)ps (dTjdX)x — 1] nor A (dHu/8T)

Fig. 1. The lam bda and stratification  tem peratures as functions of the liquid con­
centration. The smoothed line denotes the  values of R o b e r t s  and S y d o r ia k  11).

A D o k o u p i l 12)
O Z in o v 'e v a  and P e s h k o v  13)
Q  Our experim ents 2)
R  Curve of the rectilinear diameter.

nor SHr /̂dX* can be obtained with accuracy from experimental data. The
value of A(8Hu/dT) lies between —1 and —0.1 joule/mole°K, 82GU/8X*
between 8 and 5 joule/mole, hence from the change in the rectilinear
diameter one should then obtain for [(dXu/dT)rs (dT/dX)n — 1] a value
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between 0.15 and 0.5, while the experimental data allow a maximum
value of 0.5.

The other experimental indication is the measured discontinuity in the
specific heat at this temperature. The difficulty here is that this singularity
can be easily influenced by instrumental errors. In passing from the He I
to the He II region all existing small temperature gradients in the upper
phase disappear abruptly. The caloric effect might be comparable to the
discontinuity as found experimentally 2). As in eq. (13) the square of the angle
between the stratification curve and the lambda curve occurs, it is impossible
to make a quantitative guess.

One should hope to obtain further information from aC y  versus X  plot 2)
below and above TV. However, also in this case, the relations one can
obtain from eq. (5) do not allow any quantitative comparison, although the
experimental fact that the slope of these curves changes abruptly is in
qualitative agreement.

II. The behaviour of the excess entropy at very low temperatures.

In the foregoing chapter 2) we calculated the excess entropies at differ­
ent concentrations and temperatures. The general trend is that this
quantity becomes negative at low temperatures.

mole °K

Big. 2. The excess entropy SE as a function of the temperature T for a dilute mixture
of 3He in liquid 4He.

□ SE calculated from our experiments a) (X =  0.1)
O Lim SE — -f- In X  +  (1 — X) In (1 — AT)] (N ernst’s theorem).

T -*0
X = 0 . 1
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For a dilute mixture of 3He in liquid 4He we like to point out that although
this is in agreement with the model of Pom eranchuk  it is a general
property irrespective of the model.

N ern st’s theorem states that the entropy at absolute zero should be
equal to zero (third law of thermodynamics). In classical thermodynamics
this is not the case for an ideal mixture, where there remains an entropy
of mixing of — R[X In X  +  (1 — X) In (1 — X)] (positive). In quantum
statistics this difficulty does not arise as here this term goes to zero with
decreasing temperature (because of the degeneracy) 14)15). Hence, if one
describes the thermodynamic properties of a mixture in terms of classical
excess functions one will obtain iri the case where there is no phase separation
the value of In X  +  (1 —X)ln( l  — X)] (negative) for SE at
T — 0°K. For comparison with experiment we have plotted in fig. 2 the
excess entropy SE versus the temperature for a mixture of 10% 3He 2), where
the phase separation occurs at a low enough temperature (0.31°K) that it
does not confuse the situation too much. We see that the total entropy
of mixing goes to zero with decreasing temperature, in agreement with what
N ern st’s heat theorem suggests.

III. The “short range ordering” above the lambda temperature.
During the 1960 conference of the I.I.R.16) Gor ter  remarked that the

shape of the specific heat curve at the lambda transition in the mixtures
indicated the possibility that the increase in entropy immediately above
the lambda transition should be independent of the concentration 17)18).
To investigate this possibility we integrated the surface under the extra
specific heat curve immediately above the lambda transition (see fig. 3).

0478

Fig. 3. The specific heat C as a function of the temperature T  for the concentrations:
X  =  0.478, X  =  0.70. The shaded area arises from the “short range ordering”.
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It is clear that such a procedure depends very much on the way in
which one extrapolates the “ideal” specific heat curve. The data so
obtained are given in table I. The remark of Gorter  seems to be in
agreement with the experimental data; however, one should treat these
values with some caution.

TABLE I

The extra  entropy due to
“ short range ordering”

for different concentrations
T > T x
J ^e x tra  1T

X J  T
joule

mole °K
0 0.40-0.44
0.29 0.38
0.478 0.39
0.575 0.32-0.38
0.638 0.35
0.70 0.37
0.75 0.25-0.32
0.805 0.28-0.37

- 2 0 -

x t

Fig. 4. The enthalpy IT as a function of the concentration X  a t  different
tem peratures T.
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B uckingham  and F a irb a n k 25) write for the specific heat of 4He
around the lambda point:

^observed  =  Cphonon T" ^ex c ita tio n  "t" C singuiarjty

where the Csinguiarity is a contribution to the specific heat that goes
to infinity at the lambda point in such a way that the surface under
the singularity remains finite. This results in an increase of the entropy
already above the lambda point, which corresponds to the “short range
ordering” we mentioned earlier. Our results for the mixtures do not
allow an accurate analysis of the possible singularity in mixtures.
However, the values for the “short range ordering” show that one cannot

joule
m ole °K

Fig. 5. The entropy S as a function of the concentration X  at different
temperatures T.

in this case separate off a similar CsjngUiarity arising only from the 4He. In
fact, our results have the tendency to be completely independent of the 4He
concentration.
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IV. T h e  e n t h a l p y  a n d  e n t r o p y  d ia g r a m .

Finally, we like to add an enthalpy and an entropy diagram for the
mixtures as calculated from our experimental excess data 2) by means of
the relations:

H(T, X) =  X H 3°{T) +  (1 -  X) t f4° (T) +  H*(T, X), (16)

#1° (T) =  -Loi° + / c ip dr, (17)
o

S(T,X) =
=  X S s°(T) +  (1 - X ) S a°{D ~ R [ X InX +  (1 - X )  In (1 - X ) ] +S*(T, X). (18)

In the calculation we have used the experimentally determined values for
the pure components 19-24). The results are shown in figs. 4 and 5. From
fig. 4 it is clear that the excess enthalpy is always small compared to the
linear combination of the values of the pure components.
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SAMENVATTING

In dit proefschrift worden de thermodynamische eigenschappen van
vloeibaar 3He-4He mengsels over het gehele concentratie gebied besproken.

Soortelijke warmte metingen zijn uitgevoerd met een calorimeter, welke
door middel van een 3He cryostaat werd afgekoeld tot 0.35°K.

Het eerste hoofdstuk geeft een overzicht en analyse van de bestaande
metingen van thermodynamische grootheden bij de aanvang van de onder­
zoekingen, welke in dit proefschrift beschreven zijn. Het fase-evenwicht
tussen damp en vloeistof van 3He-4He mengsels over het gehele concentratie
gebied wordt geanalyseerd. Uit de kookpuntsbepalingen van R o b erts  en
Sydoriak  zijn de exces chemische potentialen berekend. In het temperatuur
gebied rondom 1°K vertoont de exces Gibbsfunctie een bijna regulier
karakter.

In het eerste gedeelte van het tweede hoofdstuk worden de soortelijke
warmte metingen van vloeibaar 3He-4He mengsels beschreven. Speciale
aandacht wordt besteed aan de extra bijdrage tot de soortelijke warmte in
het fasescheidingsgebied, welke een gevolg is van de menging van de beide
fasen bij stijgende temperatuur. De resultaten van de soortelijke warmte
experimenten worden uiteengezet en qualitatief gediscussieerd aan de hand
van het fasediagram. De hoogte van de soortelijke warmte piek in het lambda
punt blijkt zeer snel bij toenemende concentratie af te nemen.

In het tweede gedeelte van het tweede hoofdstuk worden uit de soortelijke
warmte metingen in het fasescheidingsgebied de mengwarmte en de exces-
entropie berekend. Hierna wordt voor de verschillende concentratie gebieden
een quantitatieve analyse gegeven van de thermodynamische excesfuncties.
Voor de verdunde mengsels, waarbij een weinig 3He is opgelost in het super-
fluide 4He, schijnt voor temperaturen beneden ongeveer 1°K aan de theorie
van Pomeranchuk te zijn voldaan. De 3He atomen bewegen zich als vrije
deeltjes met een bepaalde effectieve massa door het superfluidum. De extra
bijdrage van het 3He tot de soortelijke warmte is onafhankelijk van de
temperatuur en gelijk aan de waarde, die voor éénatomig gas geldt. De
3He atomen, welke opgelost zijn in het superfluidum bevinden zich in een
effectieve potentiaal put, welke slechts weinig dieper is dan die van de 3He
atomen in zuiver vloeibaar 3He.
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In het derde hoofdstuk worden de thermodynamische relaties besproken,
die geldig zijn in het punt waar de lambdalijn de phasescheidingslijn ont­
moet. In dit punt vertoont de phasescheidingslijn een knik, indien de lambda­
lijn en de phasescheidingslijn elkaar met een eindige hoek snijden. Verder
wordt aangetoond, dat de excesentropie van verdunde mengsels aan de wet
van Nernst voldoet.
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