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CHAPTER I

GENERAL INTRODUCTION

The study of the transport phenomena of metals and their alloys is known to
provide valuable information about the electronic structure of these metals.
Throughout the years most attention has been given to the electrical conductivity,
since this property can be measured and calculated in a relatively simple manner.
Thermal conductivity, another important transport property, has received much less
attention. This is not surprising, in view of the complicated structure of the
thermal conductivity mechanism and of the experimental accuracy that can be
achieved, i.e., some orders of magnitude less than can be obtained in electrical
conductivity measurements. Besides, much information that can be extracted from
thermal conductivity studies is already contained in electrical conductivity data.
On the other hand a number of reasons can be put forward, which emphasize the
importance of thermal conductivity studies, such as the need of a proper knowledge
of this quantity for materials to be used in low temperature physics, and more
recently, in modern technology (space research). From a theoretical point of view
it appears that the additional information, obtained from thermal conductivity
studies can enrich the knowledge about some aspects of the theory of metals.

The interpretation of experimental data on transport properties was and still
is often hampered considerably by the occurrence of anomalies at low temperatures,
of which the ’minimum in the electrical resistivity’ is the most famous one.
Originally considered as being annoying complications, these phenomena, which are
associated with the presence of small traces of transition metal impurities in the
host metal, have attracted the attention of many experimentalists (1) and later on
also many theorists (2). The anomalies in various physical properties are now known
in literature by the name ’Kondo effect’, which formed an interesting field of
research for many metal physicists during the past decade.

Actually, the original purpose of the work presented in this thesis, was to
investigate the Kondo effect in copper dilutely alloyed with transition metal atoms
with special emphasis on its influence on the thermal conductivity, since this aspect
had been more or less neglected over the years. It soon appeared to be necessary to
study nonmagnetic alloys and the pure metal as well. This now forms the framework
of Chapter III of this thesis. A major part of this chapter deals with one of the
most intriguing subjects in metal physics:the electron-phonon interaction. This
interaction determines the coupling between the conduction electrons, which carry
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charge and heat, and the lattice. In addition, the lattice also transports heat. The
lattice thermal conductivity is affected by the same electron-phonon coupling and
can therefore provide additional information about this interaction.

A parameter, which will be used frequently in this thesis, is the Lorenz number
L defined as

where A is the thermal conductivity, o is the electrical conductivity and T is the
temperature. The physical significance of comparing both conductivities by means
of this ratio Will be discussed in Section II.2. From a practical point of view it
is important to note, that certain constants, the values of which are uncertain or
difficult to calculate,cancel (e.g., the shapefactor, a quantity which is always
difficult to determine precisely, cancels if A and a are measured on the same
specimen).

After a brief introduction to transport theory in Section 11,1 with emphasis
on its qualitative aspects, the theory of the Lorenz number is presented in Section
II.2. A more quantitative treatment of the behaviour of some transport phenomena at
low temperatures (electrical and thermal conductivity and thermoelectric power) is
found in Section II.3. We will exclude from this section the phenomena associated
with the Kondo effect (Chapter IV). Experimental details, given in Section II.4,
conclude Chapter II.

In Chapter III the experimental results on some nonmagnetic Cu-alloys and pure
Cu are presented and discussed within the context of the theory given in the
preceding chapter. Some of these results will be employed to analyse the transport
properties of dilute magnetic Cu-alloys (copper dilutely alloyed with transition
metal impurities) in Chapter IV. This chapter starts with a discussion of the
various theoretical models, developed for dilute magnetic alloys. Subsequently the
experimental results are presented, analysed and critically discussed.

It should be noted, that it was not possible to obtain a Cu specimen sufficiently
free of magnetic impurities. Consequently, some experimental results, presented in
Chapter III, exhibit small anomalies, illustrating the remarks, made above, about the
problems, which arise if one tries to discuss the properties of pure metals at low
temperatures.
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CHAPTER II

THEORETICAL CONSIDERATIONS AND EXPERIMENTAL DETAILS

11,1. Some aspects of the transport theory of metals.

In this section emphasis will be placed on the qualitative features of the
theory, with particular application to the electrical and thermal conductivity
at low temperatures. The mathematical derivation of the transport coefficients can
be found in the textbooks covering this topic (1).

The metal is considered as an array of atoms in a crystal lattice embedded in
a 'sea' of conduction electrons, which obey Fermi-Dirac statistics. The electron
distribution function is given by

fo 1
(e-p)
kBTe + 1

(II.1)

where fo through e depends on the wave-vector k. The chemical potential y is
equal to the Fermi energy at T = 0. The periodicity of the crystal corresponds
to a periodicity in wave-vector space. The most convenient unit cell of the
reciprocal lattice is called the Brillouin zone. This unit cell is the smallest
volume in k space, bounded by planes, bisecting the vectors which connect a fixed
point of the reciprocal lattice with all other lattice points. The concept of
Brillouin zones implies that physically there is no difference between states with
wave-vector k and ic + g, where g is a reciprocal lattice vector. All states can be
described by wave-vectors in the fundamental Brilluoin zone with origin k = 0.

The volume in wave-vector space, which contains the occupied electron states
at T = 0, is enclosed by a surface of constant energy e_, called the Fermi Surface
(FS). The FS is spherical, if the conduction electrons are considered to be free
electrons with energy e = h2k2/2m. This simple model, which disregards the
periodicity of the lattice potential, formed one of the crucial breakthroughs
in the understanding of the electronic structure of metals. In reality only very
few metals behave according to the free electron model.

Taking into account the periodicity of the lattice potential the FS will
become distorted from a sphere, especially in regions close to the zone boundaries.
A surprisingly good description of many real metals is provided by the so-called
nearly free electron model, which considers the lattice potential V(r) as a weak
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pertubation. The change in the E-k relation can be accounted for in terms of an
effective mass m* : e= h2k2/2m*. For the moment, the free electron model forms a
useful starting point for our discussion of the transport phenomena in metals.

The flow of charge and/or heat under the influence of external force fields
(electric field E and/or temperature gradient ^T) is disturbed by scattering
processes, which the carriers undergo. The stationary state is described by the
Boltzmann equation

3£
A f i e l d  + < ? t W l .  = 0 f11-2)

where

Afield = * VV*V CH.3)

in which vk is the group velocity of the conduction electrons and 1c = eE/h.
The first term in the right-hand side of Eq.(II.3) arises from a possible variation
in temperature: df/dr = (df/dT)^T. Eq.(II.3) can be linearized under the assumption,
that the applied electric field and temperature gradient are small and consequently
the resulting electric and heat current are linear in Ê and ^T. Eq.(II.3) then
becomes

,3f- ■+■ df., ■+ eF-e*_
A f i e l d  * "vk‘"dë*eE + f ^  (II.4)

where we have neglected the temperature dependence of y.
The problem of solving Eq.(II.2) is considerably simplified by assuming that

after removing the pertubation, the electron distribution relaxes exponentially back
to its equilibrium value fo

_ fo-f
l3tJcoll. “ t (II.5)

where T is the time characterizing this exponential decay.
It is shown in the next section, that the introduction of a relaxation time is

not always justified and other methods, such as the variational method, must be
employed to solve Eq.(II.2). This technique is based on finding the most rapid
relaxation Of f towards fo when the pertubation is removed, which is equivalent to
maximizing the relaxation rate. The concept of a relaxation time has, however, a
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clear physical meaning, since it can be shown from general considerations, that t
may be interpreted as the collision time of the conduction electrons T = Jt/v, where
i  is the mean free path and v is the velocity of the electrons.

The new electron distribution function in the steady state can now be written
as

f = f° - T |-°v.(eE ♦ (II.6)

H.l.a Hl.b

'cold' 'hot'

Fig.II.1. The energy distribution function for electronic conduction (a) and for thermal conduction
(b) as a function of energy £ for two directions of k parallel to the electric field
gradient and the temperature gradient, respectively.
------  equilibrium distribution
------  steady state distribution

The change in the distribution function is visualized in Fig. II.1. The response of
the system to an applied electric field is shown in Fig. II.1.a. The shift in f
corresponds to an electric current in the direction of the applied field. The
departure of f from its equilibrium value, resulting from a temperature gradient,
depends on the energy € (Fig.Il.l.b). At the ’hot’ side of the FS, there are now
more ’hot’ electrons, whereas at the ’cold’ side there is a surplus of ’cold’
electrons. Since there are just as many hot electrons travelling in one direction
as there are cold electrons travelling in the opposite direction only a flow of
heat is produced.

The electric current density J and the heat currect density U are given by

J - -A * f  vtf-fojd3)? (II.7)4ir

U = -A - f  v(f-fo) (e-e-jd3?. j r4n
(II.8)
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From the definition of the electrical conductivity a : J = oE in the absence of a
temperature gradient, and the thermal conductivity X : U = -X^T if J = 0, the
following expressions for the transport coefficients are obtained

a = e2K0 (II.9)

(II.10)

1 Ki
eT K0 (II.11)

(11.12)

where

K «n
n(e-e_) d3k (11.13)

and d 3k = dSde|^.c|;dS is an element of the FS. The electrical field and the
temperature gradient are taken along the x-direction. The third transport coefficient
S (Eq.(II.11)) is the thermoelectric power and results from the fact that the non­
equilibrium distribution produced by a heat current can lead to a net charge flow.

In the case of a spherical FS Eq.(11.13) reduces to:

The dependence of the transport coefficients on the transport integrals Kn
reflects one of the characteristic differences between a and X. Because of the
factor dfo/de, the integrand in Eq.(II.14) has a finite value only in a range of
order kgT about the Fermi energy. Furthermore, it can be seen that the second term
in Eqs.(II.lO) and (II.11) is in general very small, since (e-ep)(dfo/de) is an odd
function of (e-e_). In Eq.(II.9) the relaxation time is measured at energiesr
in the immediate vicinity of ep, whereas in Eq.(II.lO) T is measured at energies
slightly below and above ep (Fig.II.2). This may have important consequences, if T
is strongly energy dependent near the Fermi energy, as will be discussed in the

Kn = " J  1 v2rn(e) (e- ep)n de (11.14)

where the density of states is given by n(e) = (l/(8ir3)) ƒ dS Iv^e
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Fig.II.2. Schematic representation of the factors dfo/de and (e - e-)2 dfo/de which are contained
in the expressions of the electrical and thermal conductivity.

next section. If, however, v2xn does not vary markedly with energy, then this factor
can be replaced by its value at e„. Since /(dfo/de)de = -1 and /(dfo/de)(e-Ep)2de =
-ir2k 2T2/3, the following important relation is obtained:D

.A. = llrJL)2 (ii.i5)OT 3 ve '

This is the Wiedemann-Franz-Lorenz law (WFL law), where Lo = (it2/3) (kg/e)2 =
2.443 x 10"8 V2/K2 is known as the Sommerfeld value of the Lorenz number. The WFL law
is thus derived under the assumption that a relaxation time exists. It can be shown
that this result also holds for a non-spherical FS.

II.2. The Lorenz number

In the preceding section we have introduced the concept of a relaxation time.
It turned out that a simple relation exists between the electrical and thermal
conductivity. As was noted, the use of such a relaxation time is not always justified.
In order to show this, we will examine in more detail the collision term (3f/3t)co^j^
TVfo types of scattering processes can be distinquished:elastic scattering involving
only a change in electron momentum and inelastic scattering, in which both momentum
and energy transfer may occur. We discuss the following scattering mechanisms:
1) electron-impurity scattering, 2) electron-phonon scattering and 3) electron-
electron scattering. The latter process is generally not very important in simple
metals, but is included in this discussion because of its interesting features.
Moreover, we will again encounter this scattering process in Chapter IV.
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II.2.a. Electron-impurity scattering

Electron-impurity scattering is an elastic scattering process. If we restrict
ourselves for the moment to ordinary impurity scattering (potential scattering,
arising from a local change in the lattice potential when impurities are added to the
host metal) this process is characterized by a relaxation time which varies slowly
with energy (typically t ~ e0,5). Because only the direction of the velocity of the
electrons is changed, such a scattering event is equally effective in destroying an
electric current and a heat current. At the end of the preceding section it was
shown that in that case the WFL law holds.

When the scattering is strongly energy dependent, the WFL law breaks down. We
consider the extreme case of a resonance in the scattering crossection at e_,

F9
superimposed on the background scattering (e.g., weakly energy dependent potential
scattering with relaxation time t0) as shown in Fig.II.3.

— - r2
x“l « To"1 + A ------ ------ (11.16)

(e-ep)2 + r2

In the expression for a (Eq. (II.9)) the relaxation time is strongly weighted at
energies in the immediate vicinity of Ep, whereas the thermal conductivity reflects
T at energies slightly below and above ep (Fig.II.2). Therefore, at a fixed
temperature T, the particular shape of x (Eq.(11.16)) leads to a relatively larger
reduction of K0 from its original value, viz., (2/3)(v2x0(e_)n(e_)) than the

r r
reduction of K2 from the value (2/3) (v2t0 (Ep)n(eF)Tr2/3) (kfiT)2. Consequently, the
Lorenz number will exceed Lo. If the temperature is low enough, so that the thermal
layer of the FS becomes small compared to the width of the resonance then L decreases
towards its theoretical value Lo. It should be noted that Ki is very small again,
since T was taken to be symmetrical about the Fermi energy, but may become important

Fig.II.3. Resonance in the scattering amplitude at the Fermi energy.
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if the scattering resonance occurs at energies slightly below or above eF (’giant’
thermopower, see Chapter IV). A possible temperature dependence of T may also
influence the magnitude of the Lorenz number.

II.2.b. Electron-phonon scattering

Electron-phonon scattering arises from the interaction between the conduction
electrons and the thermal vibrations of the lattice which disturbs the periodicity
of the lattice potential. This interaction can be represented by

ïc - lc' = q + g (II.17)

where k and ïc' are the wave-vectors of the electron before and after the collision,
in which a phonon with wave-vector q is emitted or a phonon with wave-vector -q
is absorbed. Since the electronic states are periodic in k (the period being a
reciprocal lattice vector), two types of electron-phonon scattering processes -can be
distinquished. Processes in which g = 0 are called Normal processes (N-processes).
Processes with a non-zero g are called Umklapp processes (U-processes). The latter
process, where after emission or absorption of a phonon the electron undergoes a
Bragg reflection at the zone boundary, involves large momentum transfer. The
distinction between large angle scattering (large momentum transfer) and small angle
scattering (small momentum transfer) is useful in view of the inelastic nature of the
electron-phonon scattering. The momentum and energy transfer is determined by the
wave-vector and energy of the phonons involved in this scattering process. In the
Debye model the number of phonons in a interval do) is proportional to

(hio/kgT) 2

ftu/k.T
e B - 1

(11.18)

so that the dominant phonons have an energy d m :  1.6 kfiT, whereas the magnitude of
the dominant wave-vectors in this distribution is Iql = 1.6 k-T/hv, where v is the
phonon velocity. The maximum phonon energy is of the order kn0n, where 0n = Iim /vo L» D B
is the Debye temperature. The cut-off frequency is related to the interatomic
distance a : 0^ = (2nh/kg)v(3/4ira3) 1̂ 3. The scattering angle is given by the ratio
|q|/2kp ~ 1.6(4Na)  ̂T/0p for T c 0p within the free electron model. N is the
number of conduction electrons per atom and kp is the Fermi wave-vector.

In order to clarify the role of electron-phonon scattering in transport
processes, we consider a monovalent metal (N^ = 1) within the free electron model.
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/ •JrP'f-y
pUi yyfwi T  -v*~̂ 2^-

The volume of the Fermi sphere is half the volume of the Brillouin zone and the FS
closely approaches but does not touch the zone boundaries.

At low temperatures (T «  0^) the momentum transfer is very small (|q|/2kp«l), III
sas the energy transfer is of the order k T. This small angle scattering is

therefore ineffective in destroying an electric current, since it takes many
scattering events before the direction of motion of the electron is reversed. On the
other hand, this type of scattering is highly effective in destroying a heat current,
since the energy transfer is of the same order of magnitude as the thermal layer
of the FS and can therefore change a hot electron into a cold electron or vice versa
(Section 11*1).

At high temperatures (T>0D) the energy transfer (=kfieD) is smaller than the
thermal layer (~kgT) and the scattering can be treated as an elastic process, with
typical momentum transfer |q|= |k- k'| ~ kp. This large angle quasi-elastic scattering
affects both types of currents to the same extent. In the latter case a common
relaxation time can again be defined, leading to the WFL law. In the former case
( T ^ d ) the concept of a relaxation time, as introduced in Section II.1 (Eq.II.5) has
lost its meaning, since the relaxation of the electron distribution function now
depends on the nature of the pertubation. It is of course permitted to use effective
relaxation times describing the different conductivity processes, i.e., xa and x^.
In the present case these characteristic times may be written as x -1 = xo-1 *

*  (l-cos <|>) and x^- = x V  , where <p is the scattering angle (1). The weight factor
(1-cos <|>) stresses the effectiveness of large angle scattering on the electrical
conductivity. With increasing temperature this factor approaches the value 1. At
low temperatures (1- cos $) can be replaced by <f>2/2 ~ (1/2) (q/2kp)2 ~ (T/0 )2.
Hence the Lorenz number for electron-phonon scattering only is proportional to
(T/9d)2 at low temperatures and approaches its theoretical value as T increases.

II.2.c. Electron-electron scattering

An example of e-e scattering may be found in transition metals, where the
current carrying s-electrons are scattered by electrons from the d-band. The
essential difference between this type of scattering and the electron-phonon
scattering is that the weight factor (1-cos <|>) is in principle temperature
independent, so that the scattering at low temperatures is not only governed by
small angle processes. Because of the inelastic nature of the scattering, the Ij I
effective relaxation times for electrical and thermal conductivity are stil
different, This can be seen by considering the e-e scattering as a two-step
process. First, the momentum of the electron changes in an elastic collission.
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Then the energy of the electron is changed. The electrical conductivity is in
principle only affected by the former process, whereas both steps influence the
flow of heat. The Lorenz number arising from this type of scattering will have a
value somewhere between zero and Lo (typically Lo/2) depending on the relative
effectiveness of both processes.

A remark is in order concerning the mutual interaction between the conduction
“► “► ^ “►electrons represented by ki + k z kj + k'# Since the total momentum and energy

are conserved, this type of N-process will not produce resistance. The resistive
nature of these e-e scattering processes arises from the inclusion of U-processes
(Eq.(11.17)). However, in general only interactions between electrons belonging
to different bands turn out to be important in transport problems.

In this section we have qualitatively discussed the effect of various
scattering processes on the Lorenz number. It turned out that the Lorenz number
arising from a particular interaction process is a very suitable quantity for
obtaining information about the nature of the interaction. Unfortunately, because
of the simultaneous occurrence of various scattering processes, the measured Lorenz
number has a rather complicated structure. A well known example is the Lorenz
number for combined electron-impurity and electron-phonon scattering in simple
metals, shown in Fig.II.4. At high temperatures electron-phonon scattering dominates
and because of the quasi-elastic nature of the scattering the WFL law holds. As T
decreases, L is reduced below Lo, since the electrical conductivity is less affected
by the interaction between electrons and long wavelength phonons, than is the
thermal conductivity. In ideally pure metals L would approach zero at T = 0. In
reality, electron-impurity scattering becomes important at low temperatures. Conse-

Fig.II.4. The Lorenz number for combined electron-impurity and electron-phonon scattering of a
typical metal as a function of temperature.
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quently, in a certain temperature region L starts to rise and reaches its theoretical
value at T = 0. The depth of the minimum in L and the temperature at which this
minimum occurs depend on the relative importance of both scattering processes.

The structure of L becomes even more complicated in alloys. Because of the
importance of the lattice thermal conductivity compared to the electronic thermal
conductivity, the measured Lorenz number is not solely determined by electron
scattering processes anymore. This will considerably reduce the precision of the
experimental values of specific Lorenz numbers, such as L^ and Lg (Chapter IV).

II. 3. Low temperature transport properties of metals and alloys

In this section we will examine in more detail the low temperature transport
properties of metals. First, the electrical and thermal conductivity are discussed.
Subsequently the lattice thermal conductivity is considered and some remarks about
the thermoelectric power conclude this section.

11.3. a. Electronic conduction

11.3. a.l. Pure metals

Defining the resistivity as the reciprocal of the conductivity, the electrical
resistivity (p) and the electronic thermal resistivity (W ) can be written as:
p = po + pid and We = W0 + *id, where p.d and Wid are the resistivities arising
from electron-phonon scattering ('ideal' resistivity). The resistivity components
arising from electron-impurity scattering, p0 and W0, are related through the WFL

The quantitative theory of the ideal resistivity is based on the Bloch model
for the electrical resistivity, which assumes a spherical FS, N-processes and a
Debye spectrum for the phonons. The electrical and thermal resistivity due to
electron-phonon scattering can be written as (1)

law.

p _ 3Tra3C2m2
2d e2hN2k_M6a B

Ga) JsGf) (11.19)

W 27m2a3C2 ^ ~ ( J ) 2(^-JS(?) -Jj7(f))] (11.20)—  f *1
id ir3k3h(2)2/3N i,/3M02 0B a a

where a3 is the atomic volume, e is the electronic charge, M is the atomic mass, 6
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is the Debye temperature, C is the electron-phonon interaction constant with
dimension energy and

x n , ;  f -
J {z) , e_x_dx_ ' C (H . 21)
n 0 (ex-l)2

Referring to the discussion in Section II.2.b, one sees that the first term in
Eq.(11.20) arises from small angle scattering. A comparison with Eq.(11.19)
demonstrates the breakdown of the WFL law

L.d = 5.22 L.(I)2n;2/» (11.22)

The second term in W.. is due to large angle scattering and will eventually
dominate the T2-term. Comparison with Eq.(11.19) shows the validity of the WFL
law for this type of scattering. The J7-term is a correction term and results
from the fact that large momentum transfer combined with large energy transfer
should not produce resistance.

Eq.(11.20) is valid only in the limit of strong impurity scattering. For
the inverse case (Wid»Wo) Sondheimer (2) showed, employing a variational method
for solving the Boltzmann equation (Eq.(II.2)), that for T « 0  the T2-term is
reduced by a factor of 0.75. Later Klemens (3) pointed out that an exact solution
of the Bloch integral equation gives rise to a correction factor of 0.67. Ehrlich
(4) found that the T^-term is also modified, by a factor of 0.71.

In the original derivation of Eqs.(11.19) and (11.20) it was assumed that the
electron-phonon scattering occurs through N-processes;electrons interact with
longitudinally polarized phonons only. This means that the 0 in these expressions
should be the Debye temperature for the longitudinal modes 0^ and furthermore that
C = C, = 2ep/3. Comparison of Eqs.(11.19) and (11.20) with experiment shows large
discrepancies, which is not surprising in view of the various simplifying
assumptions of the Bloch theory. The major cause for the failure of the Bloch

1 theory has been known for a long time, viz., the neglect of U-processes, which,
ibecause they involve large momentum transfer, markedly affect the transport of

j JV heat and charge. We first consider the case of a monovalent metal with a spherical
FS which does not touch the zone boundaries. The Bloch theory considers only
transitions through angles < arcsin (qD/2kp) » 78°. The matrix element M(k.k')

If for electron-phonon scattering is simply a constant, independent of the scattering
angle for |ïc-ïc'|<2l/3kp and vanishes for larger values of |k-k'|. Bardeen (5)
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Fig.II.5. An electron-phonon Uaklapp process. The interaction of an electron with wave-vector k
with a phonon with wave-vector q yields a final wave-vector k*, which lies across the
zone boundary. The electron state k' is, however, equivalent to ïc" and hence the
direction of motion of the electron in state k is drastically changed.

pointed out that transitions through angles > 78° can occur through U-processes if
the phonons have wave-vectors larger than the minimum separation qo of the FS in
neighbouring zones. The geometry of such a transition is shown in Fig.II.5. In
particular at high temperatures, where phonons with large wave-vectors are
available, these processes are important. Within this simple model one sees that
in a certain temperature region U-processes will be frozen out if the wave-vector
becomes smaller than.qg. In this temperature region the resistivity decreases
rapidly towards a value given by Eqs(II.19) and (11.20) with 0 = 0,. The effect
will be more pronounced for the electrical resistivity than for the thermal
resistivity, since the former is more sensitive to the occurrence of large angle
scattering.

Since the matrix element M(k,k') contains a polarization factor (k-k').e,
where e is the polarization vector, the transverse modes take part in the
interaction through U-processes. Hence C ^ 0.

As yet we have considered the oversimplified case of a spherical FS. It is
obvious that distortions of the FS near the zone boundaries greatly enhance the
effect of U-processes. Finally, when the FS touches the zone boundaries, the
distinction between N- and U-processes becomes entirely artificial and large
momentum transitions occur down to the lowest temperatures.

An adequate theory, which correctly describes the transport properties of
metals, demands a precise knowledge of the shape of the FS in order to properly
include U-processes. Moreover, a realistic phonon spectrum must be employed.
Because of the anisotropy of the crystal, the phonons are purely longitudinally 1 I
and transversally polarized only in a few directions of high symmetry.

The present state of affairs tells us that only for potassium satisfactory
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agreement between theory and experiment has been achieved. The calculations (6)
for this alkali metal are based on a spherical FS and on a realistic phonon
spectrum, obtained from neutron scattering data. In the case of the noble metals,
the FS of which is known to touch the zone boundaries, simplifying assumptions
with respect to the FS geometry must be made in order to keep the calculations
tractable.

An appropriate method to demonstrate the shortcomings of the Bloch theory is
to intercompare Eqs.(11.19) and (11.20), thereby eliminating C. This can be done in
several ways, such as a comparision of the low temperature expressions of and
HLj (Eq. (11.22)) or by comparing the low and high temperature form of (7):

63.6

The Sondheimer-Klemens correction, viz., (W.^»Wo) = 0.67 W., (W,.«Wo), has been
taken into account in Eq.(11.23). The same correction must be applied to Eq.(11.22),
where the numerical factor now becomes 7.79. Although there is some ambiguity in the
choice of 0, the discrepancy between these two expressions and experiment turns out
to be significant.

Klemens and Jackson (8) treated the scattering of the electrons by phonons at
low temperatures as a diffusion process on the FS. The Boltzmann equation is then
reduced to a diffusion equation. Employing a FS model, which is applicable to the
noble metals, they pointed out that U-processes are responsible for an enhancement
of the coefficient of the T-term of by a factor of 3 (9 is now some average
Debye temperature), thereby reducing the discrepancy between the observed and
calculated L.^ by approximately the same factor. Extension of this theory (9) by
including impurity scattering showed that the temperature dependence of p.. also
changes. Similar results were obtained for aluminium (10), which of all polyvalent
metals is the most free electron like.

II.3.a.2. Alloys

A discussion of the electrical and thermal resistivity of alloys should start
with an examination of Matthiessen’s Rule (MR), which can be expressed in the
following form: The total resistivity of an alloy is the sum of the resistivity of
the pure metal and a temperature independent resistivity term arising from the
scattering of the electrons by the added impurities (We consider only nonmagnetic
impurities; for a discussion of the validity of MR in dilute magnetic alloys we
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refer to Chapter IV). It has been known for a long time that this rule is seldom
obeyed. An example of a deviation from MR (DMR) was already discussed in Section
II.3.a.l, namely the Sondheimer-Klemens correction term to the thermal resistivity.
In the limit W o » W ^  this term has the same temperature dependence as HL
W = Wo + W.^ + AW, where AW = 0.49 W ^  (The corresponding term in p, which result
from the superposition of two scattering mechanisms, when solving the Boltzmann
equation is very small).

DMR have been mainly studied in the electrical resistivity. An extensive
review on this subject has been given by Bass (11). We will give a brief outline of
this phenomenon, with emphasis on those aspects which are thought to be important
for the electronic thermal resistivity of alloys.

The principal mechanisms, which have been proposed to explain the DMR are:
a) changes in the electronic structure and in the phonon spectrum upon alloying,
b) different anisotropies in electron-impurity and electron-phonon scattering,
c) additional scattering processes, associated with the added impurities.

One of the most difficult problems, which arise when examining the phenomenon
of DMR is how to determine the relative magnitude of the contributions resulting
from the sources listed above. In relation to the electrical resistivity of dilute
alloys (solute concentration less than a few percent), it is generally assumed that
the contributions from source a) are negligible compared to those associated with
the other mechanisms. In most metals category b) is thought to be the most important
source for the occurrence of DMR. The anisotropy in the low temperature electron
scattering probability results from a strong orientational dependence of the elec­
tron-phonon scattering. The sources for this directional dependence are: b.1)
anisotropy of the FS, b.2) anisotropy in the phonon spectrum, b.3) U-processes.

It turns out that elastic (nearly) isotropic electron-impurity scattering can
produce a significant change in P^j, simply by reducing the anisotropy of the
scattering time. This effect of 'washing out’ the anisotropy of the electron-phonon
scattering through the addition of impurities has received much attention recently
(12).

The most simple way to deal with anisotropic scattering is by means of the
so-called 'two-band' model (13), originally introduced to describe the transport
properties of a metal containing two conduction electron bands. The same formalism
can, however, be applied to a conduction band containing different groups of
electrons, which can be treated independently from each other. In this case, the
total conductivity equals the sum of the conductivities of the different bands or
groups of electrons. The total resistivity is larger than the sum of the resistivi-
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ties of each group or band (in each band MR is assumed to hold). The deviation A
turns out to be proportional to if Po>:>P^j- DMR in noble metals have been
frequently discussed in terms of this model (14), where electrons in regions of the
FS near the zone boundaries ('neck’ electrons) and electrons on the other parts of
the FS ('belly' electrons) are treated independently.

The correct way to treat DMR arising from sources mentioned in category b) is
to include the anisotropy in the electron distribution function and to solve the
Boltzmann equation with a variational method using an anisotropic trial function. This
has been done for potassium (15) where the spherical geometry of the FS considerably
facilitates the calculations. The more simple relaxation time approximation (12),
where an anisotropic electron-phonon scattering time is combined with an isotropic
impurity scattering time shows DMR which are in good agreement with those obtained
from a variational solution of the Boltzmann equation (15).

There have been several attempts to explain DMR in terms of additional scattering
mechanisms associated with the added impurities (category c)). We mention inelastic
impurity scattering (16) and momentum-non-conservation scattering processes (17).
Both mechanisms lack a sound theoretical basis and are subject to criticism. The
former process (Koshino effect) arises from the scattering of the electrons by the
impurity lattice potential, which is deformed by the lattice vibrations. Damon etal.
(18) claimed to have observed a resistivity component - T1* caused by this effect in
Au-alloys. The latter mechanism results from the fact that in the presence of strong
impurity scattering ('dirty' limit) the uncertainty in the electron momentum has
become so large, that phonons of any wave-vector q can scatter electrons through large
angles. The resulting resistivity term differs from the ideal resistivity in that the
large angle factor (1-cos (f))~T2 is replaced by 1, leading to a T 3-behaviour.

Turning now to the thermal resistivity (W), it must be mentioned that experi­
mental information about DMR in W is strongly limited and not very reliable. Conditions
necessary to observe DMR are: a) a small lattice conductivity and b) a relatively
large ideal thermal resistivity. Some of the polyvalent metals, notably Al, In, Sn and
Pb appear to be the best candidates. The observed DMR in these metals are usually
described in terms of an increase of the coefficient of the T2-term. Possible changes
of the temperature dependence of ( W ^ ) h a v e  not been observed due to the poor
accuracy of the thermal conductivity measurements.

At first sight one expects the DMR in W arising from anisotropy in the electron
scattering to be less pronounced than in p, because of the dominant contribution of
N-processes to the low temperature thermal resistivity. The anisotropy in N-processes
can only result from an anisotropic phonon spectrum and FS and is not expected to be
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very large. Hence, the combination of two nearly isotropic processes should not
produce large DMR (apart from the Sondheimer-Klemens term (Section II.3.a.l)). However,
it has been shown by Schotte and Schotte (19) that the anisotropy due to U-processes,
in which transverse phonons take part also, can account for a significant enhancement
of (a factor of 2 in Al).

Explanations of observed DMR in the thermal resistivity in terms of additional
scattering mechanisms (category c)) have also been put forward, but are not very
convincing. Campbell (20) suggests that momentum-non-conservation processes give
rise to a deviation AW = Ap/(0.161LoT). Since Ap~T3, AW has the same temperature
dependence as W^

II.3.b. Lattice thermal conductivity

As was already mentioned in the preceding section, knowledge of the lattice
thermal conductivity X^ of metals and alloys is essential to obtain information
about the DMR in the electronic thermal resistivity. Moreover, it turns out that
a study of the phonon conductivity provides additional information about the
nature of the electron-phonon interaction. The lattice component of the thermal
conductivity can be written as:

k^T31 V ej/T
ƒ Ti x-e*

2ir2h 3 j  0 vj (ex-l)2
(11.24)

where the summation is over the three phonon modes, x = hw/kgT, to is the phonon
frequency, v is the phonon velocity and kg, h and 6. are defined as usual. The
total relaxation time x, is for different scattering processes (i) given by:

j f « •
It should be emphasized that a separation of X in X^ and X^ can only be made

in isotropic media, where the phonons are either purely longitudinal or purely
transverse. However, the complications which arise by taking into account anisotropy
usually do not alter the general features of the phonon conductivity.

II.3.b.l, Phonon-phonon processes

An essential point in the discussion of X is the coupling between phonons of
different polarization modes. This coupling can be described in terms of phonon-
phonon scattering processes, in which two phonons are destroyed, creating a new
phonon. As in the electron-phonon interaction, it is-convenient to distinquish
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between N and U-processes. The former processes do not produce resistance because
of momentum conservation, but must be taken into account for their influence in
establishing equilibrium. The latter processes can be treated as one of the many
phonon scattering processes, that limit X^.

From general considerations it can be shown that the only types of 3-phonon
processes allowed are: (1) t ♦ t + I and (2) t + t X I, where I represents a
longitudinal phonon and t a transverse phonon. In anisotropic media other types
of processes may occur, such as t + t- J t^ where t and t^ are slow and fast
transverse phonons, respectively.

Following Callaway (21) and Holland (22) we may account for the effect of N-
processes on X^ in the following way, writing

X i + X2 (11.25)

where Xi is Eq.(11.24) with xT1 = Ex t J + T7^. The relaxation time of N-processes
is t ... and x.. is the relaxation time of those processes which do not conserveJN 31
momentum. The correction term X 2 results from the non-resistive nature of N-pro­
cesses and is given by:

X2
k* T 3 ^  { v31 kB j 0 s

6j/T 1 xT,1 if xx e
j Tj-i (ex - l)2

2*2*3 y T 1 TiN<Tr- t?w} x v
£ / v 5 _-l

0 vj Tj (eX -  1)

(11.26)

The relaxation times x,T for transverse and longitudinal phonons at low tempera-N
tures are (23):

60 Y 2k„T“
t“* ̂  s s  —

tN Mv2e3

B (11.27)

tIn 3
10 Y2k_a3T

Mv 2v|
(O" (11.28)

where Y is the Griineisen constant, M is the atomic mass, a3 is the atomic volume,
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v^ is the longitudinal phonon velocity, 0 is the Debye temperature and v is some
average phonon velocity.

For anisotropic media Herring (24) derived a more general form of for all
low frequency modes: xJJ1 ~ a>nTS”n .

Three-phonon U-processes turn out to be the dominant mechanism in limiting
Xg at high temperatures (T £ 0p) and give X ■* T"1. At low temperatures, the thermal
resistivity due to U-processes decreases exponentially with temperature as the
number of phonons needed for these processes fall off exponentially.

II.3.b.2. Electron-phonon scattering

The most important phonon scattering mechanism, which limits X at low tempe­
ratures is the electron-phonon scattering. This interaction is responsible for the
fact that the lattice conductivity of metals and alloys is considerably smaller
than the conductivity of insulators. The first extensive treatment of the influence

this interaction on X was given by Makinson in 1938 (25). Within the framework
of the free electron model he obtained the following expression for the relaxation
time

CVa3
x7l * -) —  u)
J 2irMh3v .J

(11.29)

where is a parameter of dimension energy, characterizing the strength of the
electron-phonon interaction. The lattice conductivity at low temperatures (T «  0j)
can then be written as

. 1 kB*r2ft . ,0, -
i C i

(11.30)

where J 3(0/T) is given by Eq.(11.21).
Within the free electron approximation electrons interact only with longitudinal

phonons, the interaction constant being Cg = 2ep/3. If however « 0,thenX would be­
come comparable to the phonon conductivity of insulators, in contrast to what has been
observed. Makinson therefore assumed Ct = Cg in real metals. A justification for this
assumption was later given by Klemens (26), who pointed out that the coupling between
the transverse and longitudinal phonons (Section II.3.b.l) would tend to make the
effective relaxation time of both branches equal. Furthermore, electrons also inter-



act directly with transverse waves, making non-zero (Section II.3.a.l).
Calculations of the coupling constant C become highly complicated in real metals,

because they require the knowledge of the geometry of the FS and the inclusion of
real phonons. Klemens (7) therefore compared the low temperature expressions of X
and (Eq.(11.20)) with each other, in order to eliminate C. Taking into account
the polarization of the lattice waves one obtains for isotropic media from Eqs.
(11.30) and (11.20)

V i d = 35(cl + 2 cln-i♦ v %/* (n -31>
CA Ct

where the characteristic temperature 0 depends on the relative magnitude of C»
and Ct> If C «  then 0 » 0., the Debye temperature of the longitudinal phonons;
if than 0 = 0^ and Eq. (11.31) becomes:

V u  ■ ( « • ? * >

Comparison of the experimentally determined X and with Eqs.(11.31) and (11.32)
can therefore provide information about the nature of the coupling between the
conduction electrons and the phonons.

Since X cannot be measured in pure metals, because of the large electronic
contribution to the thermal conductivity, values of the lattice conductivity must
be extracted from thermal conductivity data on dilute alloys. Unfortunately, it
has been observed that X is strongly dependent on impurity content in the dilute
regime. Although the cause of this variation has been controversial for quite some
time, it has been gradually accepted that this phenomenon was related with the
fact that the introduction of impurities affects the electron-phonon interaction,
resulting in a correlation between the strength of the electron-phonon interaction,
j and the residual resistivity or the electron mean free path. This aspect of the
electron-phonon interaction was already contained in a theory of ultrasonic

i attenuation of sound waves in metals developed by Pippard in 1955 (27). He showed
that the attenuation of sound waves due to the interaction with the conduction

■
electrons depends on a parameter q£, where q is the wave-vector of the sound wave
and I is the mean free path of the electrons. His results for the case of a free
electron metal can be summarized in the following expressions for the attenuation
coefficients a of the longitudinal and transverse waves:

28
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dv0T0 (11.33)

where

F(qt) = tan"1(^ -)
q£ - tan”1 (qJ.)

-1 F(qA) * -^(qfc)2 q*«l (II.34.a)

F(qA) = ? q t  qi»l (II.34.b)

a .  =  -=-------t dvtT0 ï qi«l (II.35.a)

1 + (q«)
q«.»l (II.35.b)

where N is the number of free electrons per unit volume, d is the density of the
metal, To = Jl/Vp (Vp is the Fermi velocity of the electrons) and 6 is the
characteristic length of the anomalous skin effect (6 ~ q~ly/3).

An important aspect of this theory is that two regions can be distinquished,
separated by the condition qt ; 1, in which the attenuation coefficients have a
different character. In the region where qi. »  1 it is interesting to note that,
if is interpreted as the reciprocal of the mean free path of the longitudinal
phonons, this attenuation coefficient is exactly the same as the one derived from
the quantum mechanical treatment of the electron-phonon interaction. This is

(11.29), where C = 2ep/3. In the region q£«l the adiabatic principle breaks down
(28). that is, the interaction between electrons and sound waves cannot be given
in terms of well defined quantum states anymore.

phonon mean free path are rather interesting for the thermal conductivity as first
pointed out by Pippard (29). The thermal waves in a metal may be considered as a
collection of sound waves travelling in all directions and having a wide band of
frequencies. In applying Pippard’s theory for ultrasonic waves to thermal phonon
frequencies, it should be noted that, whilst in ultrasonic experiments the region
q6 »  1 has not been reached, in alloys the condition qó »  1 usually holds. This
has important consequences for the attenuation of the transverse waves. The relaxation
time for scattering of transverse phonons by conduction electrons when qi. »  1 is
obtained from Hq. (II.35.b):

(a{V{,) ”1 with the Makinson expression Eqillustrated by comparing t = A , /v

The consequences of the above mentioned interpretation of a in terms of a
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(II.36)

leading to a cubic dependence on temperature of X^ (Eq.(11.24))

4ir2 Bkï dI

^  h 3v Nmv_t F
(11.37)

This shows that even within the free electron model there is an interaction between
transverse phonons and electrons, a result, which is not contained in the quantum
mechanical treatment of the electron-phonon interaction.

For a non spherical FS it can be shown that the attenuation coefficients for
both polarization modes are very similar (30). In the limit qi «  1 a still varies
as q2fc, whereas in the region where qJt »  1 a is proportional to q and independent
of I for both longitudinal and transverse waves. The dependence of a on the
electron mean free path in the free electron model in the latter limit (Eq.(11.35.
b)) does not exist in the non-ideal case. Because of the sensitivity of the electron
phonon interaction to the detailed shape of the FS, in particular for the trans­
verse phonons, theory can so far only give a qualitative description of X . The
lattice conductivity will probably vary as T2 in the dilute regime (qfl, »  1) at low
temperatures. However, the correct magnitude cannot be predicted yet.

Another phenomenon which usually complicates transport calculations is the
anisotropy of the phonon spectrum. It has been shown, however, that the use of a
realistic phonon spectrum in the calculations does not produce a significant modifi­
cation in both the temperature dependence and magnitude of X^ (31) .

II.3.b.3. Other phonon scattering processes

Although the phonon-electron scattering, discussed in the preceding section,
dominates in alloys at low temperatures, other phonon scattering processes must be
taken into account in a complete analysis of X^. The theory of these mechanisms has
been developed in connection with the thermal conductivity of insulators, but can
also be applied to metals (26).

Scattering by sample boundaries is in principle important only in nonmetals and
superconductors. In normal metals boundary scattering becomes dominant only at
extremely low temperatures (T «  IK). If the phonon mean free path equals the
shortest linear dimension of the crystal (L), the lattice conductivity exhibits a



31

cubic dependence on temperature (32), provided that the effect of other scattering
processes is negligible

. V*
X 16ir B LT3 (11.38)
8 15 h 3v2

In polycrystalline samples A^ is reduced below the value given by Eq.(11.38) due to
phonon scattering.by grain boundaries.

The scattering of phonons by point defects has been discussed extensively by
Klemens. For isotropic media he derived the following expression for x (26,33):

3a 3n (J_ (AM,:
l12 '•MJ t^- (̂ r) " 3-4Y (11.39)

where n is the defect concentration, Y is the Griineisen constant, F is the force
constant of a linkage, R is the interatomic distance and AM, AF and AR are the
changes in M, F and R at the site of the defect. Point defect scattering can
affect the lattice conductivity down to very low temperatures, because, in parti­
cular, high frequency waves are strongly scattered by point defects. The only
well known quantity in Eq.(11.39) is AM. The other factors AF and AR cannot be
obtained from first principles. Furthermore, the numerical factors in Eq(II.39) are
not very well established. AR is usually taken from the difference between the atomic
radii of the foreign and host atoms. The change in force constants can in some cases
be deduced from elastic constants data.

Dislocation scattering is described by a relaxation time given by:

x"l= 3 x 10"2 Njb2Y2w (11.40)

where N, is the number of dislocation lines per unit area, b is the Burgers vector
and Y is the Griineisen constant. It is interesting to note that the strong dependence
of the magnitude of A on the presence of solute atoms (Section II.3.b.2) was ori­
ginally attributed to this scattering mechanism. The extremely high dislocation densities
(Nj a lO'Vcm2), necessary to account for the variation of T2/A in dilute alloys,
were explained by assuming that dislocations are locked in by impurities. However,
thermal conductivity measurements on superconducting alloys have shown that dis­
location scattering is unimportant in well annealed alloys.

Additional electron-phonon scattering associated with solute atoms, which is
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thought to give rise to DMR in the electronic thermal resistivity (Koshino effect,
Section II.3.a.2) may also affect the phonon conductivity. The enhanced scattering
of phonons by electrons is according to Klemens (16) described by a relaxation time
Tj. such that

where x0 is the electron relaxation time corresponding to the residual resistivity
and A is a constant whose magnitude depends on the model used.

A final remark regarding the phonon scattering mechanisms discussed above is in
order. Equations (11.38) - (11.41) are obtained under sometimes extremely simplified
conditions. Although it is not to be expected that correct calculations of the
different relaxation times would change the qualitative aspects of the theory, it
must be noted that the numerical factors in these expressions are not very reliable.
Hence, any conclusion drawn from a comparison of the theory with experimental
data must be regarded as rather tentative.

I I . 3 . c. T h e r m o p o w e r

The main contribution to the thermopower of a metal at low temperatures comes
from the conduction electrons. This ’diffusion thermopower’ may be written as

where Wo and are the impurity and ideal thermal resistivity, respectively and

To Mv2e,
(11.41)

c _ Wo
e " Wo + W. ,id

S + u c
imp Wo + Wid id

W. ,id (11.42)

S. and S. , are the contributions to S from electron-impurity and electron-phononimp id e i- / r
scattering. If the alloy contains more than one type of impurity, we may write S.
as:

S. - ^  Z WÏ S*imp Wo ^ imp (11.43)

where Wo = 2 Wo
i

Within the free electron model S . , is given by (Eqs.(II.ll) and (11.14)):

Sid = --- -  T (T «  0)*2kB

Because of the sign of e, S., is negative.

(11.44)
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The thermopower arising from electron-impurity scattering may be written as

ir*k*T° . . ;  \
s  ,  ___B_ r_ï__  dP(e),
■̂mP 3e a(e) de e * Ep

(11.45)

where

a(e) _2el f l(£Lvlds
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(11.46)

The thermopower depends much more sensitively on the details of the electron
scattering processes than do the electrical and thermal resistivity. This is
because S. depends on the energy derivative of the impurity relaxation time. In
the case of ordinary impurity scattering T(e) is a slowly varying function of
energy and S. is of the same order of magnitude as S. .. If, however, x(e) variesimp id
strongly with energy in the vicinity of Ep, S may become anomalously large (see
also Section II.2.a. and Chapter IV).

II. 4. Experimental details

11.4. a. Alloy preparation

The alloys were prepared from master alloys of Cu containing 0.1 at.% Ge, Sn,
Fe, Cr or Mn and were melted in an Edwards radiation furnace in high vacuum
(< 10 5 Torr) during 15 minutes. Rods were obtained by pressing the melt into
a quartz tube of 3 mm diameter using argon gas. Two strips, 1 mm thick and of the
same material as the rod were welded to the rod, about 6 cm apart. After etching
and annealing in vacuo at 700° C for three hours, the specimens were slowly cooled
to room temperature. Some sample characteristics are given in Table II.1. The
electrical resistivity values are those at the lowest temperatures of the measure­
ments (T = 1.3K) and are equal to p(T = 0) for the Cu-Ge and Cu-Sn alloys only. The
concentration of some alloys was determined spectrographically. Two Cu-Mn alloys
were analysed chemically.

11.4. b. Sample mounting

The measurements of the electrical and thermal conductivity and the thermopower
of the specimens were performed in a brass vacuum can. The rods were screwed into
a teflon holder, which was placed on an Electrovac metal-glass seal, soldered with
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Table II. 1

Sample characteristics

Alloy nominal analysed p(T=l.3K) p/c
concentration concentration

(ppm) (ppm) (nflcm) (yQcm/at.%)

Cu-I - 0.5 ppm Fe 1.02
Cu-I I 0.5 ppm Fe

^*2 ppm Mn
1.20

60 30 11.7 3.9
50 - 15.1 3.0
80 - 27.4 3.4

Cu-Ge 100 - 39.8 4.0
150 150 54.3 3.6
300 - 101 3.4
1000 - 349 3.5

500 430 98.3 2.3
Cu-Sn 1000 - 275 2.8

20 12 15.1 12.6
20 15 18.5 12.3

Cu-Fe 30 20 23.1 11.6
75 - 81.5 10.9
100 110 11.0

10 16.2 16.2
Cu-Cr 30 - 56.3 18.8

30 26 12.5 4.8
60 - 25.1 4.2

Cu-Mn 300 270 113 3.8
1000 330 3.3

The metals used were pure Asarco copper (99.999 + at.%), Ge from Johson and Matthey
(no. 4066 and S 8614), Sn (Billiton 99.99995 at.%), Fe (J.M. no. 2262 and 27967),
Cr (J.M. no. 4898), Mn (J.M. no. S 6759). The resistivity values given in the last
two columns are obtained by subtracting the resistivity of Cu-I from the measured
resistivity.
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Wood’s metal to the bottom of the vacuum can. In this way electrical insulation
was ensured. Two home-made carbon resistance thermometers (34) and two potential
leads for the electrical resistivity measurements were soldered to the strips. At
both ends of the rod a current lead was fixed and also a heater, consisting of a
30 micron constantan wire of approximately 800(2, wound on an insulated copper wire
of 1 mm diameter. All leads were niobium wires, except for one copper current wire
which served as a heat leak to the bath. Thin platinum wires were spot welded to
the niobium wires in order to allow soldering of the leads to the strips, rod and
feed-throughs.

II.4.c. Experimental set-up and measuring procedure

The experimental aspects of the measurements of the electrical and thermal
conductivity and the thermopower at low temperatures have been extensively discussed
in previous publications (35, 36). We mention briefly some features relevant to the
present measurements.

The temperature differences were applied with the heater at the top of the
rod. The lower heater was used to raise the average temperature of the sample with
respect to that of the bath. The thermometer resistances were measured in a double
Wheatstone bridge described elsewhere (35). The calibration procedure of the thermo­
meters has also been discussed previously (34).

The resistance of the samples was small (10“7(2 for Cu, 10"s(2 for Cu-Fe 100
ppm). In order to attain a precision of 0.1 % in the electrical resistivity measure­
ments, it was necessary to detect voltages of the order of 10"11 V. Therefore, a
superconducting modulator, as discussed by de Vroomen and van Baarle (36) was
used. The apparatus served as a null-detector by introducing a compensation re­
sistor (Cu-Zn 1 at.%, po = 1.879 x 10”5f2) in the circuit, the value of which
changed by less than 0.1% over a period of 4 years. Selective amplification of
the a.c. signal was achieved in a lock-in amplifier (PAR model HR 8). The current
values used did not exceed 50 mA with an exception for Cu: 200 mA. The current
supply was built by the ’Laboratorium voor Instrumentele Electronica’, Amsterdam.
Its stability was better than 10 ppm.

The measuring current causes a temperature gradient to occur along the sample
rod, due to Joule heating and to the Peltier effect. This results in a thermo­
electric voltage, for which the total voltage in the resistivity measurements should
be corrected. The effect of Joule heating was negligible for the present samples.
The correction for the Peltier effect in the electrical resistivity is Ap/p = S2/L
(L is the Lorenz number (Eq.(I.l)) and S = ir/T, where ir is the Peltier coefficient
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and S is the thermoelectric power), which for Cu-Fe is of the order of 1% at 9K.
The thermopower of all other alloys is so small that the Peltier correction can be
neglected. Values for the thermopower of the alloys are of the order of 10 V/K
except for Cu-Fe and Cu-Mn where S is an order of magnitude larger. Therefore,
with a typical value of AT = 0.1K the same technique as in the resistivity measure­
ments was employed to detect the voltages.

The precision of the thermal conductivity data is mainly determined by the
calibration of the thermometers and is estimated to be about 0.5 %. The largest
errors in the absolute values of the electrical and thermal conductivity are
caused by the error in the determination of the geometrical shape factor, which
is about 3 %. However, this does not affect the Lorenz number since the electrical
as well as the thermal conductivities are measured on the same specimen. In view
of the error in the electrical conductivity measurements (0.1%), we, therefore,
estimate the error in the determination of the Lorenz number to be about 0.5%.
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CHAPTER III
LOW TEMPERATURE TRANSPORT PROPERTIES OF COPPER AND SOME DILUTE NONMAGNETIC

COPPER ALLOYS

Abstract

The electrical and thermal conductivity and the thermopower of two copper
samples and some dilute Cu-Ge and Cu-Sn alloys (c < 0.1 at.%) have been measured from
1.3 to 30 K. The first part of this chapter deals with the low temperature transport
properties of Cu. The two samples examined, contained small traces of Fe and Mn
impurities, responsible for the occurrence of weak anomalies in the transport pro­
perties. Combining the electrical resistivity and thermopower data the effect of Fe
and Mn could be eliminated. The temperature dependence and the magnitude of the
ideal thermal resistivity depart from the predictions of the Bloch theory. These
deviations can be accounted for by Deviations from Matthiessen’s Rule (DMR), in the
sense as have been discussed by Sondheimer and Klemens, and the participation of
transverse phonons in the electron-phonon interaction as a consequence of the fact
that Cu cannot be described with the free electron model.

The second part of this chapter deals with the thermal conductivity of dilute
Cu-Ge and Cu-Sn alloys. A careful analysis of the experimental results permits a
separation of the thermal conductivity into an electronic and lattice component. The
present results yield for the first time reliable estimates of DMR in the electronic
thermal resistivity of noble metal alloys. These DMR appear to be comparable in mag­
nitude to those observed in polyvalent metals. The lattice conductivity at the lowest
temperatures of our measurements is discussed in the light of Pippard’s theory of
ultrasonic attenuation in metals. The present results extend the knowledge about the
influence of the electron-phonon interaction on the behaviour of the lattice thermal
conductivity to alloys with c < 0.1 at. % and indicate that heat is mainly carried
by the transverse phonons. The data at higher temperatures are analysed in terms of
point defect scattering and show a large contribution from lattice distortion
scattering.

III. 1. Copper

Ill.l.a. Introduction

The low temperature transport properties of copper are not expected to behave
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according to the predictions of the Bloch theory, because of the intrinsic short­
comings of this theory and because of the fact that copper is far from being a free
electron metal. Nevertheless, this theory forms a useful guide for a qualitative
discussion of the experimental results and will therefore be employed frequently in
the following sections.

We have measured the electrical and thermal conductivity and the thermopower of
two copper samples between 1.3 and 12 K. Unfortunately, a straightforward comparison
between theory and experiment is not possible, since both specimens show weak anom­
alies in their transport properties. These anomalies arise from conduction electron
scattering by transition metal impurities (Kondo effect). A chemical analysis
indicate the presence of about 0.5 ppm Fe in Cu-I and about 2 ppm Mn in addition
to 0.5 ppm Fe in Cu-II (the latter specimen resulted from an unsuccesful attempt
to prepare a Cu-Mn alloy (Chapter IV)).

Before proceeding with a discussion of the ordinary (nonmagnetic) behaviour of
the various transport properties of Cu, it is therefore necessary to account for
these anomalies. Hence, it is inevitable to use some experimental results obtained
for the Cu-Fe and Cu-Mn alloy systems. For a detailed discussion of the experimen­
tal and theoretical features of the Kondo effect in these alloys we refer to Chap­
ter IV. For our present purpose we briefly outline those aspects, which are im­
portant for the analysis of the experimental results of the Cu samples.

The strongly energy dependent scattering of the electrons by magnetic
impurities manifests itself in the transport quantities through a temperature
dependent component in the electrical and thermal resistivity, a large thermopower
and a Lorenz number, L which exceeds the theoretical value L0. The last twomag
quantities have been briefly discussed in a qualitative way in Section II.2.a.
The Kondo effect is most clearly visible in the electrical resistivity and the
thermopower. In the thermal resistivity it is sometimes overshadowed by a
relatively large electron-phonon resistivity.

The observed differences of the anomalies in the two alloy systems under
consideration reflect the different nature of the Fe and Mn impurities in the
Cu host. Within a specific alloy system the following aspects may be noted. To
a good approcimation S, Lm , p(Ti)/p(Tz) and W(Tj)/W(Tz) are concentration
independent in the very dilute regime. This important result can be used to sepa­
rate the magnetic terms in the different transport properties from the nonmagnetic
components, the procedure for which we now present.

If we write the electrical resistivity as a sum of a temperature dependent
term Pmag and a temperature independent term Pp0t> arising from scattering by
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nonmagnetic impurities and structural lattice defects, the following equality
should hold in the temperature range where p. . is negligibly small:

P̂meas " Pp o p T  = T t _ p(T = Tt) (m  ^

P̂meas ' Ppot^T = T2 P T̂ =

('pure' copper) (Cu-Fe or Cu-Mn)

With Eq.(III.l), p _ and hence p (=p - p of Cu-I and Cu-II mayn pot mag meas pot
be obtained. From the relation Lo = p ^/W .T and the characteristic concentrationpot pot
independent L (= p /W T) the impurity term of the thermal resistivity W. =

r  mag mag mag * ' 1 imp
W . + Ŵ _ is obtained, which enables us to determine the ideal thermal resistivity,pot Aiag
A second method to determine the impurity thermal resistivity is the application of
Eqs.(11.42) and (11.43) to the thermopower data. As the characteristic thermopower
of Fe and Mn in Cu is some orders of magnitude larger than the thermopower resul­
ting from nonmagnetic impurities or from scattering by phonons, the reduced form
of Eq.(11.42), viz., W S = W S should yield a reliable estimate ofn mag mag meas meas
Wmag

Ill.l.b. Electrical resistivity, thermopower and Lorenz number of Cu

The electrical resistivity as a function of temperature of the Cu-I and Cu-II
rods is shown in Fig. III.l. Due to some experimental problems p (Cu-II) was mea­
sured only up to T : 5K. Note the strong temperature dependence of p (Cu-II) due
to Mn impurities. The small impurity resistivity causes the ideal electrical
resistivity to become important already at T : 6K. In order to obtain reliable
values for p.., the electrical resistivity of a wire, drawn from the same materialid
from which the Cu-I rod was obtained, was measured up to T : 40K (Fig. III.2). The
differences in magnitude of the electrical resistivity of the Cu-I rod and Cu-I
wire at low temperatures can be attributed to size effects. It is believed that
size effects do not significantly affect the magnitude of p^^ (1). Between 15 and
35 K the ideal electrical resistivity may be represented by: p. , = 8.0 x 10 16
T9’ 65£lcm.

Having subtracted the phonon induced resistivity, the electrical resistivity of
Cu-I is now easily separated into the two terms PpQt and Pfflag using Eq.(III.l) and
the electrical resistivity data of Cu-Fe,to be found in Chapter IV. We obtain
0 = fO 48 + 0.03) x 10"9£2cm). From the characteristic incremental resistivity ofpot
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cu-n

Cu-1

Fig.III.1. The electrical resistivity of the Cu rods versus T.

Fig.III.2. The electrical resistivity of a Cu-I wire as a function of temperature.

Fe in Cu: (Ap/c)T Q ^ llyft cm/at.% (Chapter IV) the Fe concentration in Cu-I is
estimated to be 0.4 ppm in fair agreement with the estimate from chemical analysis.

The thermopower data (Fig.III.3) should be compared with the characteristic
thermopower of Fe and Mn in Cu (Fig. IV.5 and IV.6). The second procedure, out­
lined in the preceding section, to determine the magnetic contribution to the
resistivity from thermopower measurements is consistent with the first method. This
is demonstrated for Cu-I by calculating Wmag from Wmag = ( Pmeas - Ppot ^ LmagT where
L is the characteristic Lorenz number of the Cu-Fe system (Chapter IV). Fig.III.3
mag
shows that the calculated thermopower S = W„S(Cu-Fe)/W is in good agreementmag me as
with the measured S.

The situation is somewhat more complicated in Cu-II, since both Fe and Mn are
present in the Cu host. Nevertheless, the same procedure may be followed with
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o Cu-I
a cu-n

^  Cu-I \Cu-II/from resistivity data

Fig.III.3. The theimopower of the Cu specimens versus T. The thermopower calculated from the
resistivity data is represented by bands, which reflect the uncertainty in the
determination of the resistivity contributions from the Fe and Mn impurities.

W S = Wc S(Cu-Fe) + W,. S(Cu-Mn) and p = p . +p „ + p,. . The two methodsmeas meas Fe Mn v K pot Fe Mn
can be made consistent with each other if p ^ * 0.45 ± 0.03, Ppe = (0.25t0.05)f(T)
and p„ = 0.50(± 0.05) - 0.085(± 0.020)log T in units of 10”9ftcm (T is expressed in
K). The function f(T) = (p(T)/p(0))„ p describes the temperature variation of the
electrical resistivity of Cu-Fe.

• Cu-I
•Cu -n

Fig.III.4. The Lorenz number of Cu as a function of temperature. The symbols represent the
measured Lorenz numbers of Cu-I and Cu-II. The Lorenz number of Cu-I arising from
ordinary (nonmagnetic) impurity scattering (PpQt = 0.48 x 10"9ftcm) and electron-
phonon scattering is indicated by the dashed curve.
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The measured Lorenz number (L = p /W T) of Cu-I and Cu-II is shown inmeas meas
Fig.III.4. One can see that at low temperatures L exceeds L0 due to the scattering
of the electrons by the Fe and Mn impurities. The rapid decrease of L, as the tempe­
rature increases, is due to electron-phonon scattering as discussed in Section II.2
(Fig.II.4). Fig.III.4 also shows the Lorenz number corrected for the magnetic
resistivity terms. The fact that L approaches Lj at T = 0 is caused by residual
nonmagnetic impurities. For.ideally pure copper without boundary scattering L should
go to zero as T +  0.

III.l.c. The ideal thermal resistivity of copper

III.l.c.1. Bloch theory

The ideal thermal resistivity of the two Cu samples, which is caused by
inelastic electron-phonon N-processes (Section II.2.b) and is responsible for
the rapid decrease of L at low temperatures (Fig.III.4) is obtained by subtracting
the impurity term W. (= W . + W ) from the measured resistivity. It should ber imp pot mag
noted that the values obtained for , are not very sensitive to the precise
relative values of W and W (both are not known very accurately). Thispot mag v *  ■ •
results from the fact that, whereas W . = p ./LoT, W departs only up to a’ pot pot mag
few percent from Pmag/LoT in the present temperature range (Chapter IV).

In Fig.III.S and III.6 divided by T2 has been plotted against T. In the
latter figure our results are compared with data on Cu of comparable purity taken

Cu-I3.65 cmKWatt

O T 2 10 K 12
Fig.III.5. The coefficient of the T2 term of the ideal thermal resistivity as a function of

temperature for Cu-I and Cu-II.
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KWatt

“  %  •

/• •

/  o

30 K

Fig.III.6. W^/T2 versus T up to 40K for some Cu specimens.
• Cu-I; 0 Cu-II; A Schriempf (3), po = 0.579 x 10'9ncm;x Schriempf (3),
Po * 1.12 x 10'9ncm; □ Powell et ml. (4), po * 1.01 x K T ’flcm; ---- White (2),
Po = 5 x 10~9ftcm.
The short dashed line indicates the value of Wjd/T2 obtained by subtracting
Pid/^oT9 from W^/T2 (see text). The solid lines represent W^,/T2 + A/T9
(Cu-I: curve 1; Cu-II: curve 2), where A corresponds to DMR in WT as calculated
by Ehrlich (31).

from various sources (2,3,4). According to the Bloch theory the quantity W. ./T2
is approximately independent of temperature at T «  0 (Eq. 11.20). In order to
account for the observed departures from a T2 behaviour of W . , we examine some ofid
the quantitative aspects of the Bloch model. As has been pointed out in Section
II.3.a.l, the 0 in Eq.(11.20) should be the Debye temperature of the longitudinal
modes. The Debye temperature was already defined in Section II.2.b:
0£= (2Trh/kg)v^(3/ (4ira3))1 3, where v^ is the longitudinal phonon velocity and may be
calculated from elastic constants data. The longitudinal phonon velocity can be
expressed in terms of elastic moduli. We have adopted a simple averaging scheme, due
to Anderson (5) of the single crystal elastic constants c.. in order to obtain valuesij
for the mean phonon velocities v^ and v^ (v^ is the transverse phonon velocity).

V* = ((KH * 4GH/3)/d)l/2 (HI.2)

vt " ( V d)l/z (III.3)
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where GH - (Gy + GR)/2 and ^  = (Ky ♦ KR)/2. Ky and KR are the Voigt bulk modulus
and the Reuss bulk modulus, respectively; Gy and GR are the Voigt shear modulus and
Reuss shear modulus. These moduli can be expressed in terms of* single crystal con­
stants by:

9 Ky ' ( C n  + C22 + C33) ♦ 2 (0 » 2 ♦ C23 ♦\C3i) (III.4)

15 Gy * (cn + C22 + C33) - (C12 + C23 + C31) ♦ 3(.Chh * Css + c 6s) (III.5)

1/Kj. * (s»i + S22 + S33) + 2(s»2 * S23 + S3») (III.6)

15/G_ = 4(s»i ♦ S22 + Ss3) - 4(s »2 + s23 * S31) + 3(si(it + sss + S6s) (III.7)R

where c.. and s.. are the elastic stiffness and compliance, respectively. For
13 13cubic systems Eqs.(III.4) - (III.7) reduce to:

Ky * 1^ - (cn + 2c»2)/3 (III.8)

Gy = (c»» - c»2 ♦ 3ci,),)/5 (III.9)

g m 5citit(cl» - c»2) (III.10)
^ 4c** + 3(c»» - C12)

In table III.l the elastic constants of a number of metals are listed, together
with the calculated mean phonon velocities and 0^. Values of some physical quanti­
ties relevant to the calculation of (Eq. (11.20)) are also given. Values for
(W. ./T2) are obtained from the low temperature form of Eq.(11.20) with 0 = 0^.
la CalC

The Sondheimer-Klemens correction term (Section II.3.a.l) is included in this
quantity. The last two columns of Table III.l give the experimental values of the
T2 coefficient of W., taken from literature and the ratio between the experimental

id
and calculated values of W.,/T2.

1 ( * MThe normal component of W^. (WV^) of Cu given in table III.l was obtained from
Fig. III.5 and III.6. One sees that after an initial decrease WitJ/T2 starts to rise
with increasing temperature. The latter aspect of the behaviour of is not
contained in the Bloch theory. The coefficient of the T1* term in Eq. (11.20) is
negative up to T ~ 0/6. The explanation of this discrepancy has already been put
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Table III.l

The observed and calculated WŶ /T2 and some parameters used in the calculations for various metals

Cu Cl 2 c*% S d vt Yt i1 8t W?, calc,id obs.id W", obs.id
T2 T2 T*

references10s 10s 10 2* 10‘8 10" 8
W?. calc,id10“ dyne

cm
_8
cm <m  s’1 cm s"1 0 s K

cm cm
K Watt K Watt T2

Cu 176.2 124.9 81.8 142.0 51.2 9.02 4.83 2.38 11.70 630 0.55 1.8 3 present
measure-
merits

Ag 131.5 97.3 51.8 108.7 32.8 10.64 3.79 1.76 16.84 440 1.2 3.0 2.5 14,15,16
Au 201.6 169.7 45.3 180.3 29.8 19.49 3.36 1.24 16.78 390 1.1 16 =15 17,18,19
K 4.16 3.41 2.86 3.66 1.27 0.91 2.42 1.18 71.3 170 92 150 1.5 20
Na 8.7 7.3 6.2 7.8 2.7 1.01 3.36 1.6 37.75 300 20 35 1.5 21
Rb 3.42 2.88 2.21 3.06 0.95 1.62 1.64 0.77 87.63 110 220 930 4 21
Cs 2.57 2.13 1.65 2.28 0.74 2.028 1.28 0.60 108.8 80 480 3000 6 21
Li 15.5 lS.l 11.0 13.9 4.7 0.546 6.05 2.93 21.09 650 3.7 16 5 21
Pb 55.5 45.4 19.4 48.8 11.3 11.6 2.35 0.99 29.65 230 7.0 200 >10 22
M 114.3 61.9 31.6 79.4 29.3 2.733 6.58 3.27 16.39 770 0.52 2 4 23
In 46.3 7.3 7.47 2.74 0.99 25.5 280 6.0 100 >10 24
Sn 57.9 24.4 7.3 3.50 1.82 26.6 350 2.3 40 >10 25
Mg 36.9 19.8 1.76 5.99 3.35 22.9 630 1.2 80 >10 26

The elastic constants data have been taken from Kittel (6): Cu, Ag, Au, K, Pb, Al; Diederich
(7): Na; Gutman (8): Rb; Nash (9): Li; Kollarits (10): Cs.
The moduli of the non-cubic metals Sn, In, Mg were calculated by means of Equations (III.4) -
(III.7). The six elastic constants for these metals are not listed but can be found in Rayne
(11): Sn; Chandrasekhar (12): In; Slutsky (13): Mg.

forward in Section II.3.a.l, viz., the neglect of U-processes. These processes are
particularly important in the electrical resistivity. Since the JsT1* term in Eq.
(11.20) arises from the same scattering mechanism as p.,, it may be argued that
U-processes enhance this term to the same extent as p. , is increased above its Bloch
value. Because U-processes are large angle scattering processes, the WFL law holds.
If we then substract p^/LoT3 (= wV^/T2) from the measured W ^ / T 2, we find that
Wv./T2 is approximately constant between 15 and 40 K. Here we have used the experi­
mentally determined p^, of Cu-I (Section Ill.l.b), which is in reasonable agreement
with other data found in literature (27). The value obtained for WV^/T2, viz.,
1.8 x 10”5 cm/K Watt., is larger than the value predicted by the Bloch expression
by a factor of about 3. Taking into account phonon dispersion, which effectively
lowers O^, this factor is slightly reduced. The observed discrepancy can be accoun­
ted for by a significant contribution to W^, from the interaction between the elec-
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trons and transverse phonons, because of elastic anisotropy and a nonspherical FS.
The values given in the last column of Table III.l show that in the case of
monovalent metals the discrepancy between experiment and theory is never larger
than about a factor of 4 with a rather puzzling exception for Au. In the most free
electron like metals Na and K the discrepancy has the smallest value (~ 1.5). Up
to now calculations of W. . including a realistic phonon spectrum and a wave-
vector dependent electron-phonon interaction have been performed only for K (28).
For all model potentials employed, good agreement is achieved with experimental
data.

In the case of multivalent metals the discrepancy is a factor of order 10
(except for Al, which is more or less free electron like), illustrating the failure
of the Bloch theory.

It should be noted that the experimental values of the T2 term of Wj. are
often not very reliable, either because of insufficiently experimental accuracy or
because they are obtained from insufficiently pure samples (for example Au (17,18,19),
where W. . was measured on samples with po ~ 5 x 10~9ftcm), so that DMR can give too
large values for HL.. Hence, the numbers given in the last column of Table III.l
have only some qualitative meaning, in the sense that the Bloch theory gives an
increasingly poorer description of the real situation, when the metal behaves less
free electron like, which is after all not surprising.

III.l.c.2. Deviations from Matthiessen’s Rule

The low temperature behaviour of UL ,/T2 of Cu is characterized by an increase
of this quantity as T decreases below T « 15 K (Fig.III.5 and III.6). At these
temperatures ~ kh , so that DMR as have been discussed by Sondheimer (29) and
Klemens (30) are expected to occur. Ehrlich (31) has extended the treatment of DMR
by calculating the thermal resistivity for any ratio of phonon to impurity scatte­
ring. At high temperatures (WT/(WT)o> 10, where WT is the experimentally determined
thermal resistivity times temperature and (WT)0 = lim(WT) as T +  0) the deviation
from Matthiessen’s Rule in WT (A = WT - (WT)0 - (W.T) , where the latterid Po= 0
quantity is the ideal thermal resistivity times temperature in the absence of impu­
rity scattering) becomes A = 0.47 (WT)0. At low temperatures (0 < (WT - (WT)0)/
(WT)o < 0.3), A a 0.3 (WT - (WT)0), which gives A » 0.42 (W..T) n. Thus A/Tid po= 0
exhibits the same temperature dependence (~T2) as W . , in the absence of impurity
scattering. The latter result agrees within 5 % with that of Klemens (30).

In Fig.III.6 these DMR are accounted for by adding A/T3 to W?,/T2 using (WT)o=
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0.040 for Cu-I and (WT)o= 0.046 for Cu-II in units of cm K2/Watt and Wv^/T2»
1.8 x 10~scm/K Watt. The solid lines in Fig.III.6 represent the quantity (WV.+A/T)/T2.

An increase of W. ./T2 similar to the present case has been observed in Ag by van
Baarle et al. (15). Kos (32) attributed this to the occurrence of an additional scat­
tering mechanism, namely phonon assisted impurity scattering (Section II.3.a.2), but
his arguments are not very convincing. The additional resistivity should be approxi­
mately independent of temperature contrary to the theoretical predictions. Moreover,
even in the electrical resistivity a contribution from this mechanism is not very
well established. Our results show that the Sondheimer-Klemens correction in the
sense as has been calculated by Ehrlich must be taken into account in order to explain
the observed behaviour of W ^ / T 2 as a function of temperature and gives apparently
the largest contribution to the DMR in the thermal resistivity of pure metals at low
temperatures.

III.2. Cu-Ge and Cu-Sn

III.2.a. Introduction

The problems encountered when analyzing the thermal conductivity data of
very dilute nonmagnetic alloys (c < 0.1 at.%) arise from the fact that even at
low temperatures the electronic contribution A to the total thermal conductivity
of these alloys is not simply related to the residual electrical resistivity
Po by means of the WFL law: A = LoT/po. The presence of a non-negligible phonon
induced term in the electronic thermal resistivity can account for this aspect. This
contribution is expected to be enhanced due to the occurrence of positive DMR
similar to the electrical resistivity case.

We have measured the electrical and thermal conductivity and the thermopower
of seven Cu-Ge alloys with Ge concentrations ranging from 30 to 1000 ppm and two
Cu-Sn alloys (c = 500 and 1000 ppm) from 1.3 to 9 K. The thermal conductivity
measurements on Cu-Ge (80, 300 and 1000 ppm) and Cu-Sn (1000 ppm) were extended
up to T : 30 K.

The electrical resistivity was measured in order to test the validity of the
WFL law at low temperatures and in order to obtain an accurate value for the
impurity term W ^ ^  of the electronic thermal resistivity.

The thermopower was measured primarily for experimental reasons, as discussed
in Section II.4. The magnitude of the thermopower'of the alloys turns out to be an
order of magnitude smaller than the thermopower of the ’pure’ Cu samples. The
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contribution of the magnetic impurities as discussed in the preceding section is
now quenched by the nonmagnetic solutes.

The main emphasis was placed on the thermal conductivity measurements, not in
the last place because some of the experimental results of the nonmagnetic Cu alloys
are needed to analyse the transport properties of the Kondo alloys in Chapter IV.
As was noted before, the analysis of the low temperature thermal conductivity
offers specific problems due to the occurrence of an extra conductivity term Ag
arising from the transport of heat by the lattice, which competes with a
decrease of A caused by an enhanced ideal thermal resistivity.

III.2.b. Electrical resistivity and Lorenz number

The results of the electrical resistivity measurements are shown in Fig.III.7,
where Palloy - PCu is plotted against the concentration of the Ge and Sn impurities.
In the temperature range of our measurements the electrical resistivity is constant
within the experimental accuracy (= 0.1%), apart from a small upturn (= 0.2%) in
the most dilute alloys, which must be attributed to the presence of Fe. The charac­
teristic incremental resistivity for Ge in Cu is 3.6p flcm/at.% and 2.7 pfl/at.% for
Sn in Cu in agreement with other reported values (33, 34, 35).

o Cu-Gc
° Cu-Sn

“  ^ Cu-Ge (Ref. 34)
—  Cu - Ge and Cu-Sn(Ref. 33)

ppm 1000

Fig.III.7. The residual resistivity versus impurity concentration for Cu-Ge and Cu-Sn alloys.

In Fig.III.8 the Lorenz number L = poA/T of the Cu-Ge and Cu-Sn alloys is
plotted as a function of temperature. It should be noted that the plotted L re­
presents the Lorenz number as defined in Eq.(I.l) only up to T ~ 10 K. At higher
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• Cu.Ge 30 ppm
• Cu.Ge 50 ppm
• Cu.Ge 80 ppm
° Cu.Ge 100 ppm
• Cu.Ge 150 ppm
•C u.G e 300 ppm
• Cu.G e 1000 ppm
• Cu _ Sn 430 ppm
■ Cu .  Sn 1000 ppm

Fig.III.8. The Lorenz number of the Cu-Ge and Cu-Sn alloys as a function of temperature. The
data are plotted as L = PoA/T versus T. The dashed curves indicate the Lorenz
number as defined in Eq.(1.1), L = (po ♦ Pf,)A/T, where p^^ is determined from
electrical resistivity measurements on some Cu-Ge wires and from ref. 33.

temperatures the ideal electrical resistivity is no longer negligible. The elec­
trical resistivity measurements on the rods have not been extended to these tempe­
ratures. However, for reasons to be discussed below we measured the electrical
resistivity of some Cu-Ge wires up to T ~  40 K in addition to a Cu-I wire mentioned
in the preceding section. Combining these experimental results with data of Dugdale
and Basinski (33) on the same alloy systems, we estimated the ideal electrical
resistivity of the various rods and obtained in this way the Lorenz numbers accor­
ding to Eq.(I.l), which are represented by broken lines in Fig.III.8.

The reason why we plotted our data as p0A/T versus T is that Fig.III.8 reflects
the behaviour of the thermal conductivity as a function of temperature. One can see
that at the lowest temperatures of our measurements L closely approaches Lo. For
the very dilute alloys (c £ 50 ppm) L remains approximately constant and close to
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Lo at liquid He-temperatures, indicating that the dominant contribution to A comes
from the electrons. The downward trend in L as T increases for these alloys may be
attributed to the appearance of the ideal thermal resistivity..

As more impurities are added to the Cu host, the electronic component of the
thermal conductivity is reduced by a factor proportional to po. The ideal thermal
resistivity is overshadowed by the impurity term since, as was discussed in Section
II. 3.a.2, W^j is not strongly affected by the addition of impurities, that is, the
DMR vary less than linearly with po. Simultaneously the Lorenz number of the more
concentrated alloys exceeds Lo, indicating that the lattice conductivity is less
reduced than Ag when Po increases. The downward trend in L of these alloys at higher
temperatures is a result of several competing factors, such as the reduction of A

g
through phonon scattering processes, which are apparently unimportant at low tempe­
ratures, and the reduction of A caused by scattering of electrons by phonons.

III. 2.C. Lattice conductivity

III.2.C.1. Introduction

In order to extract the lattice conductivity from the measured thermal conduc­
tivity, Ae (= 1) must be known. W . ^  can determined from po by means of
the WFL law. The data plotted in Fig.III.8 nicely demonstrate the validity of this
law for electron-impurity scattering. A straightforward determination of W., is not

id
possible,however. Therefore, we assume for the moment that the resistivity arising
from Normal electron-phonon scattering W?d of the alloys equals W^CCu-I, II). Since

Wimp >=> Wid we take ("id5alloy = 3,2 x 10'5T2<:m K/Watt (Fig.III.5). The Umklapp
resistivity (W^d) is related to p^d - The ideal electrical resistivity of three Cu-Ge
alloys with impurity concentration 50, 100 and 150 ppm turns out to be larger than
Pidfeu-!) (Section Ill.l.b). In Fig.III.9, A(= p - po - Pid(Cu)) divided by po

o Cu-Ge 5 0  ppm
* Cu-Ge 100 ppm
»C u-G e150 ppm

K 40

Fig.III.9. A/po. versus T for three Cu-Ge wires, where A * p - po - p^.(Cu).
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(residual resistivity) is plotted against T. The results are in reasonable agreement
with data from Dugdale and Basinski (33), that is, as good as can be expected,
since A very sensitive to the magnitude of p^(Cu). Below T ~  25 K A exhibits
approximately the same temperature variation as , (Cu), supporting on explanation
of the observed DMR in terms of a two-band model (Section II.3.a.2).

Using the results from Fig.III.9 and data on more concentrated alloys (33),
= wV<j(Cu) + A/LoT can be determined. Finally, values for the lattice

conductivity are obtained by subtracting Xe = (po/LoT + W^(Cu) + A/LoT) 1 from the
measured thermal conductivity.

III.2.c.2. Some general remarks on the behaviour of the lattice thermal conductivity

Since the low temperature lattice conductivity of metallic alloys is dominated
by the electron-phonon interaction, it is convenient to compare our results with the
predictions of Pippard’s theory (36) of the electron-phonon interaction (Section
II.3.b.2). This theory suggests that, within the free electron approximation, the
phonon mean free path and hence A is a function of the parameter qJL or T/po, where
q is the phonon wave-vector and St, is the electron mean free path. We have therefore
plotted in Fig.III.10 the quantity Ag/Tpo against T/p0 for those alloys, for which
the lattice conductivity could be determined with reasonable accuracy. Curve 1 and 2
are obtained from Eqs.(11.37) and (11.33) substituted in Eq.(11.24), respectively,
with po& = 6.5 x 10~12 flcm2 (37). For the present measurements the parameter qJ. ranges
from about about 30 to 6000 for transverse phonons and from about 15 to 3000 for
longitudinal phonons. Here q has been taken to be the wave-vector of the dominant
phonons: q = 1.6 kT/ftv (Section II.2.b). To our knowledge the measurements,
presented here, provide the first thermal conductivity data in the range where
qi, > 102.

As was noted before, the thermal conductivity of the transverse modes (Â .)
should exhibit a cubic dependence on T for these values of q£ (curve 1 in Fig. III.
10), whereas A^ ~ T2 (curve 2 of Fig.III.10). In this region the heat is almost
entirely transported by the transverse phonons. As the electron mean free path
decreases A^ and A^ become comparable in magnitude.

The present measurements confirm that most of the heat is carried by the trans­
verse phonons. However, the data plotted in Fig.III.10 demonstrate large discre­
pancies both in magnitude and temperature variation with the predictions of the free
electron theory (curve 1), which become progressively larger as T/po increases. At
high temperatures additional phonon scattering processes (Section II.3.b.3) become
important, giving rise to a complicated temperature variation of A as will be

I
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* Cu _ Ge 8 0  ppm
100 ppm
150 ppm
300 ppm /

1000 ppm /
430 ppm /

1000 ppm

oCu .  Ge
Cu _ Ge

4  Cu -  Ge
o Cu -  Ge
? Cu .  Sn
* Cu _

K)e 1 ___ 10:

Fig.III.10. Values for X /Tpo versus T for some Cu-Ge and Cu-Sn alloys. The data of Cu-Ge
30 and 50 ppm are not shown. The free electron curves for the transverse and
longitudinal modes as given by the Pippard theory are indicated by the solid
lines denoted by 1 and 2, respectively. The lattice thermal conductivity (X )
was obtained by subtracting the electronic thermal conductivity (X ) from the
measured thermal conductivity, where Xg = (p»/L0T + W..(Cu) ♦ A/L»T)‘‘.

discussed below. At lower temperatures electron-phonon scattering should be dominant.
At first sight it can therefore be argued that the observed discrepancies are
accounted for by the fact that Cu is not a free electron metal. In that case trans­
verse waves can take part in the electron-phonon interaction both through N and 11-
processes. However, before examining this point in more detail, other possible
reasons for the observed departures should be considered.

A likely candidate is boundary scattering (Section II.S.b.3), which should be­
come important if the mean free path of the transverse waves becomes large with
increasing I. Taking t^1 = 2.1 x lO'^po, obtained from Eq.(11.36) with
N = 8.5 x 1022cm 3, d = 9 g/cm3 and vp = 1.57 x 108cm/s and the relaxation rate for
boundary scattering Tg1 = vt/L where L is the shortest linear dimension of the sample,
the lattice conductivity of the transverse modes divided by Tp0 becomes (Eq.(11.24)):
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boundary scattering ƒ  /
"P0= 2.84x10-8 Qcm  / - ^ Q3 cm

ƒ  / —L=003cm /y

.point defect
scattering
p=3.49x10"7Qcm

S2-1

Fig.III.il. Schematic representation of the influence of some phonon scattering mechanisms
on the lattice conductivity. The solid lines 1 and 2 are the theoretical
^g/Tpo vs T/po curves for the transverse and longitudinal inodes, respectively.
The dashed line is X^/Tpo = 9.2 x 10"®(T/po)1,3 and represents a fit to the
low temperature lattice thermal conductivity data of Cu-Ge and Cu-Sn as
described in the text. The solid line 3 is obtained with the assumption that
the interaction between the electrons and the transverse phonons, arising from
the departures from the free electron model, is described by = 107Tx,
where x * hui/kgT.

&  ■ 5-7 *
poL

In the present case L = 0.3 cm. In the most dilute alloys (po s 2 x 10“8ncm)
external boundary scattering gives rise to a reduction of by only » 20% (Fig.III.11)
In polycrystalline samples it is often observed (38) that L or the mean free path of
the phonons is smaller than the size of the specimen, indicating the presence of
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grain boundary scattering. A value of 0.03 cm, which seems not unreasonable, would
reduce A /Tp0 only by a factor of 2 in the most dilute alloys, whereas the observed
discrepancy is of the order 50. In the more concentrated alloys the effect is even
smaller. Furthermore, the T 3 dependence of A (Eq.(III.11)) is not observed.

With respect to phonon-phonon processes (Section II.3.b.l) it can readily be
shown that N-processes do not affect the thermal conductivity if the resistive phonon
scattering processes are described by a frequency independent relaxation time, such
as boundary scattering and scattering of transverse phonons by electrons in the free
electron model (Eq.(11.36)). This is demonstrated by substituting t "1 = a and
T-i _ BTsx (see Eq.(11.27), where x = hu/kgT) into Eq.(11.25). One obtains
A = CT3Ji,(x)/a where C = k£/(3ir2h 2vt). This result is independent of the nature or

magnitude of x...
Scattering processes associated with impurities, such as point defect scatte­

ring (Section II.3.b.3) are neither capable of removing the observed discrepancy
between theory and experiment at low temperatures. Moreover, since these types of
processes are described by a relaxation time, which is proportional to the concen­
tration of impurities and hence to p0, the reduction of Ag/Tpo is independent of
Po contrary to the observed departures which range from a factor of 5 in the 0.1%
alloys to about 50 in the 80 ppm alloy. The effect of point defect scattering on Ag
is shown in Fig.III.11 for the 0.1% alloy. Values for Ag have been calculated from
Eq. (11.24) with x"1 = 2.1 x 10ll*Po and X"1 given by Eq. (11.39). The term in braces
is given the large value of 1, in order to demonstrate once more that these types
of scattering mechanisms cannot account for the departures from the theoretical

curve.
For the sake of completeness we mention three other effects. As the temperature

increases, the mean free path I of the conduction electrons is shortened through
scattering by the phonons. Hence, in Eqs.(11.33) - (11.37) I should be taken to be
temperature dependent. However, in the temperature range of the measurements and
considering the electrical resistivity of the present alloys one can see that this
effect is not very important.

The neglect of DMR in the electronic thermal resistivity introduces an error
in the determination of Ag only at the highest temperatures of our measurements.
One can see, by comparing the values of Wo(= po/LoT) and W^fCu), that, even if the
ideal thermal resistivity of the alloys is larger than the pure Cu resistivity by
a factor of 3, our results will not be measurably affected at the lowest tempera­

tures (T 5 5K) .
Finally, it has been shown (39) that the inclusion of an anisotropic phonon
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spectrum has a minor effect on the lattice conductivity as described by curve 1 in
Fig. III.11.

III.2.c.3. The lattice thermal conductivity at low temperatures. Electron-phonon
interaction

In the light of the discussion given in the preceding section we are led to the
conclusion that the inadequacy of the free electron model as applied to Cu must
account for the discrepancies shown in Fig. III.10. Unfortunately, we have now also
reached the point, at which a quantitative comparison between experiment and theory
has become impossible, since as yet no proper calculation of X of a non-free
electron metal has been presented.

We can account in a qualitative way for the interaction of the transverse
phonons with the electrons by adding the reciprocal of a relaxation time of the form
( T p -1 = ATx to the reciprocal of the free electron relaxation time Eq. (11.36). The
similarity of x' and the longitudinal phonon relaxation time (Eq.(11.29)) has
already been mentioned in Section II.3.b.2.

Curve 3 in Fig.III.11 is computed from:

^  = 2.2 x 10"11 (— )z ƒ ----------- -------------------- (III.12)Tpo Po _ T
(e - 1)2(1 + 4.8 x 10'*(— )x)Po

Eq.(III.12) can be obtained from Eq.(11.24) by substituting the appropriate values
for the physical constants and by taking x"1 - 2.1 x lO'^po s* and (x^)- =
107Tx s -1. This latter value should be compared with xj1 = 2 x 108Tx s-1 obtained
from Eq.(11.29) or from Eqs.(11.33) and (II.34.b) with v^ = 4.8 x 105cm/s. In view
of the fact that the experimental results on the ideal thermal resistivity (Section
III.l.c.1) suggest Ct * 0.1 (see also Eq.(11.20)) the value of (x^)-1 seems not
unreasonable.

Because of the sensitivity of the electron-phonon interaction to the detailed
shape of the FS, in particular for the transverse modes, departures from the free
electron predictions can be expected to occur in most metals. TTiis is shown in
Fig.III.12, where a number of lattice thermal conductivity data of alloys with
different solvents, collected from various sources, has been plotted using a scaling
procedure first employed by Lindenfeld and Pennebaker (34). The scaling factors are
N2/3/M0 for the variable X /Tpo and (N2/3N 1/,30)-1 for T/po, which follows from thea g a
fact that in the Pippard theory the phonon mean free path is a universal function of
q£, where I ~ (poN1*^3)-1.
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• Ag

Fig.III.12. Values for X /Tpo versus T/po for a number of alloys with different solvents,
scaled as described in the text. The lattice conductivity has been taken at
T • 3 K except for K, where the values at T * 0.6 K were used. The solutes
are not mentioned. Data are obtained from various sources. Cu alloys:
Lindenfeld (34), Tainsh (40); Ag alloys: van Baarle (41), Tainsh (40), Klemens
(42); Au alloys: Garbarino (19), Birch (43); Sn alloys: Gueths (44); In alloys:
Lindenfeld (45), Sladek (46); K-Cs: Archibald (47). The solid line 1 is the
theoretical curve for X_/Tp« vs T/po of the transverse modes in the free
electron model.

Although the different data show appreciable scatter, one sees that the de­
partures from theory- follow the same pattern for all types of alloys except for the
data on potassium alloys (47), which seem to be in better agreement with the Pippard
theory. This confirms our remark that the observed discrepancies are due to FS
effects. On the other hand, the striking similarity of these departures for a wide
variety of alloys seems to contradict this statement. However, the small range of
values of q*. (or T/po) and the large scatter of the points in Fig.III.12 can easily
mask the differences of the scaled X^/Tpo vs. T/po curves of the various alloy
systems. In fact, it is likely that lattice conductivity measurements on more dilute
alloys, such as present Cu-alloys, will reveal differences between the various
curves, since in this region FS effects become increasingly important.
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10e _L

Fig.III.13. The lattice conductivity divided by Tp, as a function of T/p0 for a number of
Cu alloys collected from literature.
Tainsh (40): • Cu-Zn 2 at.% (po - 0.56 plica), T Cu-Zn S at.% (po ■ 1.20

plica), ■  Cu-Zn 10 at.% (po = 1.94 pflcn), A Cu-Pt 0.5 at.%
(Po * 1.07 plica), A Cu-Pt 0.9 at.% (po - 2.04 plica).
The values of A^ at T * 3 K have been used.

Lindenfeld (34):-----Cu-Ge 0.06 at.% (p0 = 0.301 plica),------ Cu-Ge 0.125
at.% (po - 0.600 plica), ..... Cu-Ge 0.25 at.% (po ■ 1.08 plica).

White (48): --- Cu-Fe 0.056 at.% (po =0.53 plica).
Included are the low temperature data of Cu-Ge 0.1 at.% (0)> po = 0.349 pllcm and
Cu-Sn 0.1 at.% (x), Po = 0.276 pUcm. The theoretical A /Tpo vs T/po curve for the
transverse modes is denoted by 1.

We will now discuss in more detail the experimental results shown in Fig.III.10. I
Firstly, we note the excellent agreement between the experimental data of our Cu-Ge
0.1 at.% alloy and the most dilute one (c z 600 ppm) of Lindenfeld and Pennebaker
(34) (Fig.III.13). This emphasizes the unimportance of dislocation scattering
(Section II.3.b.3) because these alloys received rather different heat treatments.
Since dislocation scattering has more or less the same frequency dependence as
phonon-electron scattering, it is always difficult to separate their contribution to
the lattice resistivity.

I
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The fact that the data of Cu-Sn 0.1 at.% fall close to the Xg/Tpo vs. T/p0
curve of the two Cu-Ge alloys with comparable po, demonstrates that the magnitude of
X is mainly determined by the magnitude of Po.

Older data (40, 48) on alloys with slightly larger residual resistivities
(Po s 0.5 yftcm) give Xg values close to the present ones (Fig.III.13). A notable
exception is a Cu-Fe alloy (po = 0.5 yQcm) examined by White and Woods (48), which
exhibits a rather large lattice conductivity. We mention these measurements because
the properties of this alloy (both at low and high temperatures) are often considered
to be close to the properties of the pure metal. In the light of the present measure­
ments this conclusion must be regarded as unwarranted. Moreover, a more serious pro­
blem in this alloy is the fact that the influence of Fe on the transport properties
has not been properly taken into account, which makes the determination of X at lowg
temperatures unreliable.

Whereas the dependence of X^ on po is well established (the present measurements
show that in the very dilute regime, c < 0.1 at.%, this correlation between X and p0
is still present), the precise temperature variation of X is still open for discus­
sion. Most authors analyse their data in terms of a quadratic temperature dependence
of Xg . Our results on the 0.1 at.% alloys combined with the data of Lindenfeld and
Pennebaker (34) seem to favour a somewhat stronger temperature variation. In the
more dilute alloys Xg has become too small, so that a possible variation stronger
than quadratic in T cannot be extracted from the data.

Until a more complete theory of the electron-phonon interaction is available,
which correctly takes FS effects into account, both the expressions X /Tp0 =
C(T/po) and X^/Tpo = C'T/(po)n, where n > 1, may be used to describe the tempera­
ture dependence and magnitude of X of well annealed dilute alloys at low tempera­
tures .

The present results as shown in Fig.III.10 and III.13 can be very well represen­
ted in the low temperature range by means of a universal curve of the form:

= 9.2 x 10"6(— )*-3TPo '•po'' (III.13)

in units of Watt/K cm ft. The alternative description of the experimental results can
be put in the form:

X = 6.6 x 10-s T2
(Po)0-35

(III.14)

in units of Watt/Kcm.
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A remark concerning Eq.(III.14) is in order. A T2 behaviour of A^ is often
related with the electronic thermal resistivity by means of Eqs.(11.31) and (11.32).
In particular, the application of Eq. (11.32), derived under the assumption *= C,,
to the experimentally determined of the pure metal and A^ of its most dilute
alloy available, seems to give consistent results in many cases (38). The data
presented here, together with theoretical objections discussed previously, show that
the observed agreement is fortuitous.

III.2.c.4. The lattice thermal conductivity at higher temperatures (T > 10 K)

As the temperature is increased,phonon scattering processes other than the
mechanism discussed in the previous section will become important and eventually
dominate phonon-electron scattering. Their effect on A is enhanced through the
presence of N-processes (Section II.3.b.l). These phonon-phonon processes do not
produce resistance by themselves, but transfer energy and momentum from the low
frequency modes, not scattered very strongly, to higher frequency modes, where the
scattering is more effective.

The scattering process, which is most likely responsible for the fact that
Ag departs from its initial T 2 or T 2'3 behaviour as T increases, is point defect
scattering. It has been observed that A^ goes through a maximum at T ~ 0.20.
Above this temperature region the lattice conductivity is thought to be mainly
governed by phonon U-processes leading to A ~ T-1 at r > 0. These U-processes
disappear exponentially with falling temperature in the vicinity of the maximum of
A . Because of the lack of a good quantitative theory, it is difficult to decide
if these processes are still important in the temperature range of our measure­
ments (T < 0.10).

For reasons discussed below, we will consider only phonon-electron scattering,
point defect scattering and N-processes. Noting that most of the heat is carried
by the transverse modes, the lattice conductivity may be written, using Eqs. (11.25),
(11.26), (11.27) and (11.39), as:

x = 2 kBT * j /_ x V _______ dx_________
g 3 2ir2h 3vt (eX - l)2 AT"x" + BT^x* + CTsx

( ƒ x hex CTsxdx_________j 2

---- (eX r l)2 A T V  + B T V  + CT5x  } (in.15)

x V  (ACT5*nx 5*n + BCT9x 5)dx
(eX - l)2 AT"x" ♦ BT^x1* + CTsx
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where B = (3a3kgripS2)/(iTv’h1*). The scattering parameter S2 in this expression is
the term in braces in Eq.(11.39), C is given by Eq.(11.27) and the reciprocal of
the relaxation time for phonon-electron scattering t "1 = ATnxn-is obtained from
Eq.(11.13) or Eq.(III.14). In the free electron case n = 0 and xll is given by
Eq.(11.36). The results presented above show that T"1 is frequency dependent,
although the precise value of n cannot be determined. This uncertainty in the
relaxation time for phonon-electron scattering is reflected in the scatter of the
values of B and therefore of S2 obtained by fitting Eq.(III.15) to the data, as
will be shown below. Moreover, the form of t "1 (Eq.(11.27)) can be questioned. In
nonmetals it has been observed (49) in some cases that a relaxation time of the
form = C'T^x can just as well account for the behaviour of X^. A further
complication, which is typical for metallic alloys, is the lack of a precise
knowledge of Xe at elevated temperatures. As was noted before, the values of X
plotted in Fig.III.10 are obtained under the assumption that WV.(Cu) remains un­
changed when impurities are added to the Cu host. At low temperatures the neglect
of DMR has little effect. However, a possible change in WV^ could significantly alter
the temperature dependence and magnitude of X^ at higher temperatures.

We have attempted to account for DMR in the electronic thermal resistivity in
the following way. From Eq.(III.13)the scattering rate for phonon-electron scatte­
ring in Cu-Ge 0.1 at.% is calculated to be x^1 = 5.7 x 107T°"7x#’7 s"1. The experi­
mentally determined X^ as shown in Fig.III.10 (obtained with ( W v ^ ) ^ ^  = (V-^)^ =
3.2 x 10 sT2cm K/Watt) was fitted to Eq.(III.15) using the following parameters:
B * 2.5 x 105n S2 in units of lC^s-1 (Eq. (11.39), where a3 = 11.7 x 10~2l,cm3 and
v = 2.38 x 10 cm s-1), n = 10“3 and C ranging from 0 to 20 K”5s"1. In this wayi P
a rough estimate of the point defect scattering parameter S2 was obtained. These
values together with n^ = 3 x 10”1* and x"1 = 2.7 x 107T°-7x0,7 s-1 (obtained from
Eq.(III.13) with po = 1.016 x 10"7flcm) were substituted in Eq.(III.lS) in order to
calculate X (Cu-Ge 300 ppm). The calculated lattice conductivity was then com­
pared with the X values plotted in Fig.III.10 for the 300 ppm alloy. The observed
discrepancies were attributed to an incorrect choice of the electronic component
of the thermal conductivity in the date plotted in Fig.III.10, and W^,(Cu-Ge 300
ppm) was determined. This value was now used to fix Xe (Cu-Ge 0.1 at.%). Here the
assumption has been made that WV. of the two alloys under consideration are not very
much different, which is a very reasonable assumption in view of the fact that DMR
in p and W in other metals are observed to depend rather weakly on po.

The values of X obtained in this way (X = X - X ) yielded new values forg g meas e 7
S7 of the 0.1 at.% alloy. This procedure was repeated several times until consistent
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results for the two alloys were obtained. The sane method of analysis was also
applied to the alloys using a phonon-electron relaxation time derived from Eq.(III.14),
The values obtained for S2 and C, which gave the best fits to the data of the 300
and 1000 ppm alloys were used to determine the DMR in Cu-Ge 80 ppm, since the small
size of X in this alloy made it impossible to determine S2 and C directly.

The results for both types of phonon-electron scattering rates are listed in
Table III.2 and shown in Fig.III.14. One can see that (Wv.) is similar for bothid alloy
relaxation times, but the values of S2 are rather sensitive to the form assumed for

• It should also be noted that consistent results could only be obtained with
C < 10 K 5s l. The value of C calculated from Eq.(11.27) is approximately 15 K"ss"1.
This value is subject to considerable uncertainty, however, since Eq.(11.27) was
derived with several oversimplified assumptions. Also, as was noted before, the
frequency dependence of might be different from that given m Eq.(11.27).

The analysis described above may of course be questioned. In the first place it
should be noted that the values obtained for S2 are quite large. Usually, point
defect scattering is interpreted in a first approximation as mass defect scattering

■— S* 02

A-S!*0.25
s -cm

4 Cu-Gc 3 0 0 ppm
«Cu-Gg IOOO " j

■Cu-Sn lOOO

3 0  K

Fig.III.14. The lattice conductivity divided by T as a function of temperature for Cu-Ge
300 and 1000 ppm and Cu-Sn 1000 ppm between 2 and 35 K. The data are obtained
with Wv^/T2 = 6 x 10"5 cm/K Watt for Cu-Ge 300 ppm, W^j/T2 * 8 x 10”5 cm/K Watt
for Cu-Ge 1000 ppm and Wv^/T2 = 7 x 10~5 cm/K Watt for Cu-Sn 1000 ppm. The solid
lines are calculated from Eq.(III.15) with C = 0, n = 0.7 and values of S2 as
given in the figure. The dashed curves are obtained with non-vanishing N-
scattering. The curves denoted by a are calculated assuming - T2 at low
temperatures (Eq.(III.14)).
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Table III.2

Analysis of the lattice conductivity of some Cu Alloys by means of Eq.(III.lS) as shown in
Fig.III.14.

T'^s"1) "?d/Tl C S2

alloy phonon-electron
scattering

(10~5cm/K Watt) (s-»K-5)

Cu-Ge 300 ppm
3.9 x 107T°* V -7

1.9 x 107Tx
5.5 - 6.5 < 10

0.20 - 0.25

3 0.10

Cu-Ge 1000 ppm
5.7 x 107T(>7x 0,7

2.7 x 107Tx
6 - 1 0 < 10

0.20 - 0.25

3 0.10

Cu-Sn 1000 ppm
5.3 x 107T,,•7x,•7

2.7 x 107Tx
6 - 9 < 10

0.55 - 0.65

» 0.4

Cu-Ge' 80 ppm 4.5 - 5.5

with Sy - (AM/M) /12, which is 1.6 x 10 3 for Cu-Ge. However, it has been observed in
many cases that lattice strain scattering dominates mass defect effects (38), and
this is apparently also the case in the present alloys. In order to check this, we
measured the lattice thermal conductivity of a Cu-Sn 0.1 at.% alloy. The mass defect
parameter is larger than S^(Cu-Ge) namely 0.063, but still much too small to account
for the observed behaviour of X . We find that S2 = 0.6 gives a reasonable fit to the
data (see Fig.III.14), indicating a larger lattice distortion scattering. As was
mentioned in Section II.3.b.3, it is difficult to obtain an accurate theoretical
estimate of the magnitude of this scattering mechanism. It is, however, directly
related to the relative change in the atomic volume.

Klemens (50) calculated the distortion term using a model, in which the impurity
atom was taken to be a sphere forced into a spherical hole of slightly different size
in an elastic medium. He obtained S2 = 3Y2(AR/R)2, where AR/R is the fractional change
of the atomic radius. If we identify AR/R with Aa/a, the fractional change in the
lattice parameter, we obtain S2(Cu-Ge) » 0.1 and S2(Cu-Sn) » 0.6, where the values of
Aa/a have been taken from Pearson (51).

The agreement between these calculated values and the values listed in Table
III.2 must be considered as fortuitous, in view of the simplicity of the model used
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and also, because the introduction of Ge and Sn in Cu causes electronic changes in
the lattice. Nevertheless, the experimental results are not inconsistent with the
theory of point defect scattering.

A more serious objection against the method of analysis employed above, namely
the neglect of phonon scattering processes, different from those discussed above, can
now also be removed. The different behaviour of X of Cu-Ge and Cu-Sn at elevated8
temperatures indicates that X is governed by scattering processes which depend
critically on the type of impurities. This implies that, to a large extent, scatte­
ring processes such as phonon assisted impurity scattering, whose magnitude is
determined by the electron mean free path and hence by po, and U-processes may be
excluded from a discussion of the behaviour of X^ at these temperatures.

Another result, obtained, which gives us confidence in the procedure employed
is the magnitude of the DMR in the electronic thermal resistivity as shown in Fig.
III.15. The enhancement of the coefficient of the T2 term of If. . by a factor of 2-3
in Cu-Ge 0.1 at.% relative to the pure Cu value is very similar to what has been
observed in other metals, notably Al, In, Sn.

10
1 1 T 1

10"5 cmw  KWat t co
___________

---------------------------

" i fT* I
1 1 1

io~9 q i c f ® i c r ?  Qcm to'6

Fig.III.15. Ŵ j/T2 as a function of Po.

III,2.c.5. Concluding remarks

To our knowledge the present results are the first more or less reliable
estimates of DMR in the thermal resistivity of noble metal alloys. The fact, that
White (2) observed DMR in Cu has only some qualitative meaning, since no corrections
for the lattice conductivity were made. Moreover, his samples contained Fe, which was
not corrected for. The same objections can be put forward with regard to the measure­
ments of Wj. in deformed Cu by Holzhauser (52), who determined the correlation between
the coefficient of the T2 term of IL ̂  and po of the deformed specimens.

The values of the point defect scattering parameter S2 listed in Tabel III.2 are
sensitive to the form assumed for t"1 (Eqs.(III.13) and (III.14)). Hence, until a
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more complete theory of electron-phonon scattering is available, which takes into
account the nonspherical shape of the FS and real phonons, the behaviour of the lattice
conductivity of metallic alloys at elevated temperatures can only be discussed in a
very qualitative way. For the present alloy systems we have shown that lattice
distortion scattering dominates mass defect scattering. The fact that S2(Cu-Sn) > S
(Cu-Ge) is not inconsistent with what is to be expected from the difference in atomic
volume and solubility of Ge and Sn in Cu.

Finally, in Fig.III.16 we have plotted X /Tpo against T/po for the measured
alloys. The lattice thermal conductivity data of the 300 and 1000 ppm alloys are the
same as those plotted in Fig.III.14. The values for the other alloys are obtained by
taking into account the DMR in the electronic thermal resistivity (Fig.III.15) and
using the appropriate values of S2 listed in Table III.2. Fig.III.16 should be com­
pared with Fig.IlT.10, the points of which have not been corrected for by changes

of upon alloying.

Fig.III.16. Values of X /Tpo vs T/po for the measured Cu alloys. The values of Xg have been
corrected for DMR in the electronic thermal resistivity and are obtained by
subtracting X from the measured thermal conductivity where the electronic thermal
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conductivity Xfi ■ (po/LoT ♦ ( % P alloy ♦' wVjCCu) + A/LoT)"1. The following values
of (**i<]/T2)a2jQy in units of cm/K Watt have been used:
Cu-Ge 30 ppm (■), 4.2 x 10's; Cu-Ge 50 ppm (7), 4.5 x 10'5: Cu-Ge 80 ppm (♦),
4.8 x 10‘5; Cu-Ge 100 ppm (□), 5.5 x 10's;Cu-Ge 150 ppm (•), 5.5 x 10*5; Cu-Ge 300
ppm (A), 6.0 x 10'5; Cu-Ge 1000 ppm (0), 8 x 10"5; Cu-Sn 430 ppm (T), 6 x 10'5;
Cu-Sn 1000 ppm (x), 7 x 10"5. This figure should be compared with Fig.III.10 where
the values of Xg/Tpo were obtained with (Wid)alloy * W?d (Cu) • 3.2 x 10'sT2cm K/
Watt. The solid lines 1 and 2 are the theoretical curves of the transverse and
longitudinal modes, respectively, in the free electron model. The dashed curve is
Eq.(III.13). The curves 3 - 1 0  have been obtained by taking into account point
defect scattering but neglecting phonon N-processes (Eq.(III.IS)). Curve 3 refers
to Cu-Ge 80 ppm with S2 * 0.2. Curve 4 and 5 represent the calculated values for
X /TPo of Cu-Ge 100 and 150 ppm with S2 = 0.2. Curve 6 and 7 apply to Cu-Ge 300
ppm with S2 * 0.20 and 0.25, respectively (see also Fig.III.14). Curve 8 indicates
the calculated Xg/Tpo values for Cu-Sn 430 ppm with S2 = 0.6 whereas curve 9 and
10 are for the Cu-Ge 1000 ppm and Cu-Sn 1000 ppm alloy with S2 ■ 0.25 and 0.6,
respectively.

References

1. J. Bass, Adv. in Phys. 21 (1972) 431.
2. G.K. White, Aust. J. Phys. 6 (1953) 397.
3. J.T. Schriempf, Proc. 7th Conf. on Thermal Conductivity (Maryland, 1968), p. 249.
4. R.L. Powell, H.M. Roder and W.J. Hall, Phys. Rev. 115 (1959) 314.
5. O.L. Anderson, J. Phys. Chem. Sol. 24 (1963) 909.
6. C. Kittel, Introduction to Solid State Physics, 4th edition (John Wiley, 1971),

p. 149.
7. M.E. Diederich and J. Trivisonno, J. Phys. Chem. Sol. 27 (1966) 637.
8. E.J. Gutman and J. Trivisonno, J. Phys. Chem. Sol. 28 (1967) 805.
9. H.C. Nash and C.M. Smith, J. Phys. Chem. Sol. 9 (1959) 113.
10. F.J. Kollarits and J. Trivisonno, J. Phys. Chem. Sol. 29 (1968) 2133.
11. J.A. Rayne and B.S. Chandrasekhar, Phys. Rev. 120 (1960) 1658.
12. B.S. Chandrasekhar and J.A. Rayne, Phys. Rev. 124 (1961) 1011.
13. L.J. Slutsky and C.W. Garland, Phys. Rev. 107 (1957) 972.
14. E.W. Fenton, J.S. Rogers and S.B. Woods, Can. J. Phys. 41 (1963) 2026.
15. C. van Baarle, G.J. Roest, M.K. Roest-Young and F.W. Gorter, Physica 32 (1966)

1700 (Commun. Kamerlingh Onnes Lab., Leiden, No. 350 a).
16. A.C. Ehrlich and J.T. Schriempf, Solid State Comm. 14 (1974) 469.
17. H.M. Rosenberg, Phil. Trans. Roy. Soc. London, A 247 (1955) 441.



67

18. G.K. White, Proc. Phys. Soc. (London) A 66 (1953) 559.
19. P.L. Garbarino andC.A. Reynolds, Phys. Rev. B 4 (1971) 167.
20. R.S. Newrock and B.W. Maxfield, Phys. Rev. B 7 (1973) 1283'.
21. D.K.C. MacDonald, G.K. White and S.B. Woods, Proc. Roy. Soc. (London) A 235

(1956) 358.
22. H.M. Rosenberg, Phil. Trans. Roy. Soc. London, A 247 (1955) 441.
23. P. Seeberg and T. Olsen. Phys. Norv. 2 (1967) 197.
24. I.A. Campbell, Solid State Comm. 9 (1971) 1513.
25. J.E. Gueths, N.N. Clark, D. Markowitz, F.V. Burckbuchler and C.A. Reynolds, Phys.

Rev. 163 (1967) 364.
26. G.K. White, Proc. Roy. Soc. (London) A 66 (1953) 1077.
27. G.K. White and S.B. Woods, Phil. Trans. Roy. Soc. A 251 (1959) 273.
28. J.W. Ekin, Phys. Rev. B 6 (1972) 371.
29. E.H. Sondheimer, Proc. Roy. Soc. (London) A 203 (1950) 75.
30. P.G. Klemens, Aust. J. Phys. 7 (1954) 64.
31. A.C. Ehrlich, Phys. Rev. B 8 (1973) 3610.
32. J.F. Kos, Phys. Rev. Lett. 31 (1973) 1314.
33. J.S. Dugdale and Z.S. Basinski, Phys. Rev. 157 (1967) 552.
34. P. Lindenfeld and W.B. Pennebaker, Phys. Rev. 127 (1962) 1881.
35. B. Knook, Thesis, University of Leiden, 1962.
36. A.B. Pippard, Phil. Mag. 46 (1955) 1104.
37. R.G. Chambers, Proc. Roy. Soc. (London) A 215 (1952) 481.
38. P.G. Klemens, Solid State Physics, ed. F. Seitz and D. Turnbull (Academic Press,

New York), Vol. 7 (1958) 1.
39. C. Feldmann, Phys. Rev. 139 A (1965) 211.
40. R.J. Tainsh and G.K. White, J. Phys. Chem. Sol. 23 (1962) 1329.
41. C. van Baarle, F.W. Gorter and P. Winsemius, Physica 35 (1967) 223 (Commun.

Kamerlingh Onnes‘Lab., Leiden, No. 350 c).
42. P.G. Klemens, G,K. White and R.J. Tainsh, Phil. Mag. 7 (1962) 1323.
43. J.A. Birch, W.R.G. Kemp, P.G. Klemens and R.J. Tainsh, Aust. J. Phys. 12 (1959)

455.
44. J.E. Gueths, P.L. Garbarino, M.A. Mitchell, P.G. Klemens and C.A. Reynolds, Phys.

Rev. 178 (1969) 1009.
45. P.L. Lindenfeld and H. Rohrer, Phys. Rev. 139 (1965) A 206.

46. R.J. Sladek, Phys. Rev. 91 (1953) 1280.
47. M.A. Archibald, J.E. Dunick and M.H. Jericho, Phys. Rev. 153 (1967) 786.



68

48. G.K. White and S.B. Woods, Can. J. Phys. 33 (1955) 58.
49. See for example:

R. Berman, C.L. Bounds and S.J. Rogers, Proc. Roy. Soc. A 289 (1965) 46, 66.
C.C. Ackerman and R.A. Guyer, Ann. Phys. 50 (1968) 128.

50. P.G. Klemens, Phys. Rev. 169 (1968) 229.
See also: P. Carruthers, Rev. Mod. Phys. 33 (1961) 92.

51. W.B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys
(Pergamon Press, 1958).

52. W. Holzhauser, Cryogenics 7 (1967) 18.



69

CHAPTER IV

LOW TEMPERATURE TRANSPORT PROPERTIES OF DILUTE CU-FE, CU-CR AND CU-MN ALLOYS

Abstraat

This chapter deals with the transport properties of dilute magnetic alloys,
notably, Cu-Fe, Cu-Cr and Cu-Mn. The electrical and thermal conductivity and thermo­
power of these alloy systems have been measured from 1.3 to 9 K. The alloys have
been chosen such that the measurements cover the temperature range from T < TR
(Cu-Fe) via T = TR (Cu-Cr) to T »  TR (Cu-Mn) where T^ is the Kondo temperature.
The Lorenz number for impurity scattering is determined from the measured electrical
and thermal conductivity. Values for the lattice thermal conductivity and the ideal
thermal resistivity are obtained from data on nonmagnetic alloys as discussed in
Chapter III. The present Lorenz number data yield the first experimental observation
of the theoretically predicted maximum in the Lorenz number for electron-impurity
scattering in dilute magnetic alloys at T = T^. The Lorenz number of Cu-Mn is a few
percent higher than Lo in the present temperature region (T »  T„) and is comparable
to that of dilute Au-Fe and Ag-Mn alloys. The magnitude of L (Cu-Mn) decreases with
increasing manganese concentration due to the quenching of the Kondo effect by
impurity interactions. The Lorenz number data of Cu-Fe and Cu-Cr, which, for the
first time give an impression of the behaviour of L as a function of temperature for
T S Tj£, can be interpreted in terms of a resonance in the scattering amplitude for
electron-impurity scattering at the Fermi energy. An alternative interpretation
within the framework of the localized spin fluctuation model results in a Lorenz
number for electron-electron scattering of (0.32 - 0.05) Lo for Cu-Fe at the lowest
temperature of our measurements. This result should be compared with the value
obtained for Pd-Ni: L ~  0.45 Lo.e-e

IV. 1. Theoretical aspects of the dilute magnetic alloy problem

IV.1.a. Virtual bound state; Anderson model

The problem of transition metal impurities dissolved in a simple host metal has
traditionally been considered as having two distinct aspects, viz., the question of
magnetic moment formation on the impurity, which in fact should be viewed as the
problem of moment survival (1), and the influence of a local moment on the physical
properties of the alloy. The latter aspect is the subject of the present chapter.
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The problem of moment formation has been treated in a phenomenological way by
Friedel and co-workers (2) in terms of a description of the impurity state or virtual
bound state (vbs) by resonance scattering theory. The vbs is a non-localized state
with energy width A, built up by resonance between the energy levels of the impurity
and the conduction electron states. The magnitude of the intra-atomic exchange
interaction and A determine the conditions for which the vbs is magnetized. These
conditions are more quantitatively treated in the Anderson model (3), which describes
the transition metal impurity as an extra d-orbital placed in the conduction band
of the host metal, having energy e.. The interaction between the conduction
electron states and the impurity d-states leads to a broadening of the impurity level
corresponding to the vbs in the Friedel picture. The Hartree-Fock (HF) approximation
of the Anderson model provides a criterion for the occurrence of a localized moment.
It leads to a sharp boundary between two regimes, the nonmagnetic regime (spin up
and spin down vbs having the same energy) and the magnetic regime (two vbs split in

energy). The condition for the occurrence of magnetism in the non-degenerate case is
UPd (0) =1,  where U is the Coulomb interaction between two electrons with opposite
spin and p .(0) is the d-electron density of states at the Fermi level:

Pd«> - ? _______A
(w - e^)2 + A2

(IV.1)

where A is the half width of the vbs, u = £ - Ep and e , is measured relative to the
Fermi energy. In the orbitally degenerate case this condition is relaxed due to the
exchange interaction I: (U + 4I)p.(0) = 1. The neglect of d-d correlations in the
HF treatment leads to difficulties in the magnetic regime (U »  A). It appears that
orbital degeneracy must be taken into account, since correlation effects reduce the
Coulomb interaction. This reduction severely restricts the condition for the
occurence of magnetism. In fact, in the non-degenerate case the renormalization of U
implies that the magnetic regime is never reached at T = 0 (4). Attemps to improve
the HF treatment have only been partly succesful and a proper treatment of correlations
in the degenerate Anderson model has yet to be given.

The historical meaning of the HF theory was the distinction between two classes
of alloy systems, nonmagnetic and magnetic, separated by the condition Up,(0) = 1. Thed
latter class of systems can be treated within the context of a model of somewhat older
age than the Anderson model, the s-d exchange model (5). This model assumes the
existence of a well-defined impurity spin and has become very popular since the
appearance of Kondo’s paper (6) in 1964 (see below). The link between the s-d model



71

and the Anderson model in the strongly magnetic limit was established some years later
(7). The understanding of the so-called ’border-line’ cases (Up^CO) ~ 1) waited for
further developments and is still subject to discussion.

IV.l.b. The s-d model - Kondo effect

The s-d model has played an important role in clarifying the second aspect of the
problem of transition metal atoms in a simple metal. It assumes a Heisenberg type of
interaction between the conduction electrons and the impurity

H = - Js.S (IV.2)

where J is the s-d exchange integral, s is the conduction electron spin and S is the
impurity spin. After numerous fruitless attempts, it was Kondo (6) who explained in
principle, on the basis of the s-d exchange interaction, the ’minimum in the electrical
resistivity’, a phenomenon known for more than 30 years (8). This minimum occurs as a
consequence of a decreasing term in the electrical resistivity with increasing tempe­
rature combined with the phonon induced resistivity (~ T5). Kondo calculated the
scattering of the conduction electrons by the impurity in second B o m  approximation
(up to order J 3) and found a logaritmic term in the electrical resistivity, which for
antiferromagnetic coupling (J < 0) leads to a divergence at T=0. It is this logarithmic
dependence on T, which also occurs in other physical properties, that is usually
called the Kondo effect. In the years following 1964 the main emphasis was placed on
attempts to remove the divergence. It turned out that inclusion of higher order terms
in the pertubation calculations (9) led for J < 0 to a shift of the divergence of the
scattering amplitude at ep from T = 0 to a characteristic temperature, which is now
called the Kondo temperature T„. This temperature has turned out to be the key para­
meter in the dilute magnetic alloy problem.

Subsequent theoretical efforts, based on nonpertubative approaches to the Kondo
problem (10) led to the removal of the unphysical divergences and revealed that some
kind of bound state was formed below T„. The decrease of the moment of the impurity
system as T + 0 was thought to arise from correlations in the electron gas, building
up a negative polarization which compensates the impurity spin, leading to a nonmag­
netic state at T = 0. This interpretation was given in view of the fact that in the
s-d model the impurity moment cannot disappear.

Experimentalists (see, e.g., (11)) noticed, however, that these theories were
incapable of describing correctly the observed behaviour of the various physical
properties at T < T„. The idea was gradually put forward that the properties of
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magnetic alloys exhibit Fermi gas characteristics at T «  T„, that is, the tempera­
ture dependences are of the ’simple power law’ type (12). The discrepancies between
theory and experiment were attributed to the insufficiency of the approximations,
employed. This has generated new methods (13, 14) of handling the Kondo problem
(path integral methods, renormalization group theory). The question whether the
theoretical low temperature behaviour is totally non-singular or whether there are
still traces of singular behaviour at low temperatures remained controversial for
some time. The final answer seems to be given by Wilson (15) who showed, using
renormalization group considerations, that the Kondo impurity looks like a nonmag­
netic scattering resonance at T * 0, as was already suggested by Anderson (13). This
paper should provide a link to a different approach of the dilute alloy problem, the
localized spin fluctuation model, which has become very popular especially among
experimentalists. We, therefore, return to the years around 1968.

IV.l.c. Back to the Andersom model - localized spin fluctuations

The unsatisfactory situation with repect to the s-d model and the theoretical
low temperature behaviour (T < T^) of dilute magnetic alloys induced some authors
to return to the more fundamental Anderson model. The fact that, around that time
a weak resistance minimum was observed in Al-Mn (16), a system which was thought
to belong to the nonmagnetic regime of the Anderson model, stimulated this approach.

The HF solution of the Anderson model leads to an unphysically sharp transition
between the magnetic and nonmagnetic regime. Furthermore, it cannot explain, why a
particular alloy looks ’magnetic’ at high temperatures and ’nonmagnetic’ at low
temperatures. The neglect of correlation effects in the HF approximation is rather
unimportant if U «  A. However, if U > A lifetime arguments become important. The
Coulomb repulsion U tries to prevent the simultaneous occupation of the d-state by
two electrons of opposite spin (in the non-degenerate case) or, equivalently, it
tries to couple an electron and hole of opposite spin and preserve the memory of
the spin for a longer time than the lifetime of the vbs h/A. This electron-hole
coupling is called a localized spin fluctuation (lsf).

The lsf were first treated by Lederer and Mills (17) employing the linearized
time dependent HF approximation (RPA). Rivier and co-workers (18, 19) proposed the
idea that the appearance of magnetism is simply a competition between the thermal
fluctuations and the fluctuations of the moment, the lifetime of which is given by

irpd(0)
sf 1 - Upd (0)

(IV.3)



73

At T < T - = h/kDx „ the alloy looks nonmagnetic with additional spin fluctuationst B sr
effects, whereas at T > T f the alloy looks magnetic, that is, the spin fluctuations
become slower than the thermal fluctuations of the moment that- they describe. This
attractive picture raises mathematical problems, however, in that the RPA description
of the lsf breaks down at the HF instability point where T - diverges. Although a
fully renormalized theory has yet to be written, it is generally believed that the
gross features sketched above will not be significantly modified in a complete theory.

IV.l.d. Some concluding remarks

The problem of magnetic impurities in a nonmagnetic host has been tackled from
two, at first sight, contradictory points of view, the s-d model and the lsf picture.
At present we should establish the fact that both models have their merits in a
limited range of Anderson parameters (e^, U, A) and temperature (the most recent
approaches to the Kondo problem within the context of the s-d model (13 - 15) have in
principle provided a solution, but as yet no numerical results have been produced for
verification). Experimental evidence suggests that these models form two aspects of
an unified theory with one key parameter T^ or T .. In this respect we note the
similarity in the behaviour of the physical properties of alloys such as Al-Mn and
Cu-Fe as a function of T/T £ or T/Tj,, respectively.

From the discussion presented above it has become obvious that a comparison
between experiment and theory should only be made, while keeping in mind the limita­
tions of the various models proposed. Even when working within a particular model, the
approximations employed give such a comparison at present only some qualitative
meaning.

IV. 2. Transport properties of dilute magnetic alloys

IV.2.a. Introduction

This section deals with the second aspect of the dilute magnetic alloy problem,
namely the effect of a local moment on the physical properties of the alloy. We will
discuss the behaviour of the electrical and thermal resistivity and the thermopower
as predicted by the models mentioned in the preceding section.

The electrical resistivity (p) has played a dominant role in the history of the
dilute magnetic alloy problem. Friedel (2) compared his model with the experimentally
determined high temperature electrical resistivity. The structure of the vbs and its
location relative to e_ are reflected in the behaviour of the scattering amplitude
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and, therefore, of the electrical resistivity as a function of the parameters U,
A and e ,. Spinflip scattering was treated within the s-d model by Kondo (6) to
explain the minimum in the electrical resistivity at low temperatures, whereas the
behaviour of p as T 0 (- T2) induced the conception of the lsf model.

The thermopower (S) is also drastically affected by the presence of magnetic
impurities. The extreme sensitivity of the thermopower to the type of solute and
to the presence of spurious impurities makes this quantity more difficult to handle.

The thermal resistivity (W) is usually considered in connection with the Lorenz
number and can provide information regarding inelastic scattering processes.

IV.2.b. The s-d model

IV.2.b.l. Electrical resistivity

The calculation of the scattering of electrons by magnetic impurities via the
s-d exchange interaction (Eq.(IV.2)) in second B o m  approximation results in the
following expression for the spin dependent term of the electrical resistivity (6):

k T
PK = cpm ^  + 4 Jpsln T ) (IV.4)

where

= -Ifo—  (Jp )2ir2S(S + 1) (IV.5)
m N e2k„ sa F

Na is the number of conduction electrons per atom, S is the impurity spin, pg is the
host density of states and D is the half width of the conduction band. One-third of
the temperature independent resistivity term pm is contributed by non-spin flip
scattering and two-thirds by spin flip scattering. When Eq.(IV.4) is combined with the I
phonon resistivity a minimum in the resistivity results for J < 0. Nowadays, it is
known that the validity of Eq.(IV.4) is rather restricted, but the essential feature
emerging from this expression, viz., the logaritmic behaviour, is characteristic for the)
problem under discussion. Extension of this calculation by summing up the most divergent;
terms results for antiferromagnetic coupling in a removal of the divergence of the scat-j
tering amplitude at Ep from T = 0 (Eq.(IV.4)) to T = T„ = (D/kg)e1'2Jps. The expression I
for the electrical resistivity obtained by Abrokosov (9) reads:

p = cpm (i - 2Jpsm  ^ ) ‘2 (IV.6)
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The nonpertubative treatments of the Kondo problem removed the divergence and
produced the logaritmic terms (Eqs.(IV.4) and (IV.6)) at T »  T.,.Suhl and Wong (20)
employed S-matrix theory and calculated numerically the transport properties taking
both exchange (J) and potential scattering (V) into account. At this point the
importance of potential scattering, in discussing transport phenomena in connection
with the Kondo effect, should be emphasized. Apart from its straightforward relevance
to the thermopower, potential scattering markedly affects the temperature dependent
electrical and thermal resistivity component. The combination of a strongly energy
dependent relaxation time and a relaxation time which varies weakly with energy leads
to significant DMR. We will examine this point in more detail, when discussing our
experimental results. For the moment it is sufficient to note that, in comparing
theory with experiment, potential scattering should always be taken into account and
a simple subtraction procedure: = p - p is only allowed when p » pmag meas pot ' mag Kpotor p «  p .mag 'pot

The calculations by Suhl and Wong show a smoothly increasing electrical resis­
tivity with decreasing temperature and a flattening off as a function of logT as
T 0. At T = 0, p has attained the unitarity limit value. The manner in which this
limit is approached depends on the magnitude of the screened Coulomb potential V.

A different nonpertubative approach, i.e., the equation of motion method
(21, 22, 23) yielded equivalent results. An analytical expresseion for the electrical
resistivity was obtained by Hamann (22):

P =
ln(T/TK)

[(ln(T/TK))2 + ir2S(S + l)]j/2
(IV.7)

where Pu is the unitarity limit value (pu = 4tA c/(N e2kp)). Inclusion of potential
scattering gives (24):

P
P cos 26 ln(T/T„)= f [1---- 7--- ------- ]

[(ln(T/TK))2 + ir2S(S + l)]1/2
(IV.8)

where 6y is the phase shift due to potential scattering and T„ = (D/k„)e with
J = Jcos 6y . The general features emerging from Eqs.(IV.7) and (IV.8) turn out to be
correct, but the precise shape of p as given by these expressions disagrees with
experiment at T < TR. For sufficiently high temperatures (In(T/T^) »  ir[S(S t 1) ] */2),
it can be readily shown that Eq.(IV.7) returns to the Kondo form (Eq.(IV.4)), indi­
cating that the original Kondo calculation applies only to extremely high temperatures.
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IV.2.b.2. Thennopower

Calculations within the s-d model show a broad peak in the thermopower around
the Kondo temperature, the general features of which are in agreement with experiment.
However, as in the case of the electrical resisitivitym detailed agreement is lacking.
In particular, the model is incapable of producing the experimentally observed pro­
portionality to T at low temperatures.

IV.2.b.3. The Lorenz number

Calculations of the thermal resistivity of Kondo alloy are scarce. The thermal
resistivity is mostly considered by means of the Lorenz number. The deviations from
the WFL law demonstrate the presence of a strongly energy dependent (near Ep) relaxatioi
time, as was discussed qualitatively in Section II.2.a. The numerical computations by
Suhl arid Wong (20) show a broad peak of L on a logarithmic temperature scale around
Tjj, the height and shape of which strongly depend on the magnitude of the poten­
tial scattering. An analytical expression for the Lorenz number for combined exchange
and potential scattering in the Hamann theory has been given by Fischer (24) and Nam
and Fullenbaum (25) for large values of | In(T/T„) I:

L Lo(l l/u3l5p
ir2S(S + 1)

ln(T/TK)[(ln(T/TK))2+ ir2S(S + 1)]
(IV.9)

where p is given by Eq.(IV.8). In the limit T

cos26
Lg (1 +

1 + cos26.

ir2S(S + 1)

ln(T/TK) 13
) (IV.10)

At high temperatures, where the Kondo term p„ (Eq.(IV.4)) is dominant, L is approxima-
tely temperature indepenc
rule holds, one obtains:
tely temperature independent. If the potential term p ^ >:> and if Matthiessen’s

L - L o d - f i -------- ^ -------) ( IV .11)
J p d(ln(kBT/D))

IV.2.b.4. Some comments

As has been mentioned several times before, calculations on the basis of the s-d
model cannot describe the observed behaviour of transport properties correctly at
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T < T„. However, problems arise also at higher temperatures. The expressions given in
the preceding sections suggest a dependence of the transport properties on the spin
value S, which is not in agreement with experimental observations. Furthermore, the
neglect of non-logaritmic terms in the calculations could lead to serious errors, in
particular for the transport properties.

The logaritmic terms which govern the temperature dependence of the transport
properties severely restrict the value of a quantitative comparison between theory and
experiment in a limited temperature interval. The presence of nonmagnetic terms in the
resistivity and thermopower hampers the examination of the Kondo effect within a
particular alloy system in a temperature region, which extends over several decades.
An extension of the measuring range is sometimes obtained by studying several alloy
systems having different values of T„. The similar behaviour of the transport properties
as a function of T/T„ for different alloy systems is then utilized to construct 'universalIv
curves'. However, the value of this procedure for the resistivity may be questioned in
view of the fact that the presence of different nonmagnetic contributions in the alloy
systems under consideration leads to different DMR.

I V .2.c . Localized spin fluctuations

IV.2.C.1. Introduction

The essential quantity in the lsf approach is the lifetime of the moment, A
smooth transition between a nonmagnetic behaviour and the appearance of a well defined
moment with increasing temperature occurs as a result of the competition between the
intrinsic fluctuations of the moment and the thermal fluctuations. These lifetime
arguments lead in a natural way to the experimentally observed non-singular behaviour
as a function of temperature of the physical properties at low temperatures. Although
the mathematics of the lsf approach can be questioned, there is a general feeling that
a renormalized theory will not significantly modify its predictions.

The lsf theory was originally applied to systems belonging to the nonmagnetic
regime of the Anderson model. The similar behaviour as a function of temperature of
the transport properties of alloys belonging to the magnetic and nonmagnetic regime
suggests that a correct lsf theory should provide a meaningful description of both
classes of systems.

IV.2.C.2. Electrical resistivity

The main features of the temperature dependence of the electrical resistivity
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have been discussed by Rivier and Zlatic (26). They considered a vbs undergoing spin
fluctuations. The conduction electrons scatter into the extra d-orbital state before
seeing the lsf. Since the electrons at the vbs are at the unitarity limit, the
scattering by the lsf leads to a decrease of the resistivity (this is opposite to
what happens in iso-electronic alloys, which do not have a vbs near e„). The electricalF'
resistivity decreases as T at very low temperatures (T << T ^). The temperature
dependence becomes linear at T £ T ^/6 and gradually approaches a log T behaviour at
T > Ts£. The calculations seem to be consistent with the experimental results on
Al-Mn, the most thoroughly investigated system from the nonmagnetic regime. Rivier
and Zlatic (27) suggest that the electrical resistivity of alloys such as Al-Mn is in
fact the mirror image of the electrical resistivity of iso-electronic alloys like
Pd-Ni and Rh-Fe, viz., p(Pd-Ni) = 1 - p(Al-Mn), where p(Al-Mn) is the resisitivity
normalized to its value at T = 0 and p(Pd-Ni) is the resistivity normalized to its
value at T °° .

IV.2.C.3, The Lorenz number

A maximum in L is expected to occur at T ~ T^, if both resonance scattering and
scattering by the lsf are taken into account (28). Following the suggestion of Rivier
and Zlatic (27) concerning the relation between the electrical resistivity of alloys,
described by the Anderson model, and iso-electronic alloys, a similar ’mirror equation’
may be set up for the thermal resistivity, based on the observation that the dynamics of
the scattering (lsf) is the same in both cases. Hence, the quantity (p(T = 0) - p(T))/
(WT(T = 0) - W(T)T) for Al-Mn types of alloys should be equal to the Lorenz number
arising from spin fluctuation scattering in Pd-Ni types of alloys. This Lorenz number,
Le e  (where e-e stands for electron-electron scattering) has been subject to some
interest in recent years with regard to the iso-electronic alloys (29-32). We have
already introduced such a Lorenz number in Section II.2.c. and discussed its features
in a qualitative way. Delaying a discussion of L^ ^ with respect to our experimental
results to a later stage, we note that within the framework of the lsf model a compa­
rison between the temperature dependent terms of p and of WT by means of a Lorenz
number, which we call Le , analogously to the nomenclature in the iso- electronic alloys
may contribute to the knowledge of the nature of the lsf in alloys described by the
Anderson model.

IV.2.d. Concluding remarks

The discussion of the lsf model in connection with the transport properties in
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the preceding section has been restricted to Al-Mn types of alloys as a consequence
of the fact that lsf theories have as yet not been properly extended to more magnetic
systems. A quantitative comparison of our experimental results on Cu-Fe, Cu-Cr and
Cu-Mn with calculations from the lsf model is therefore out of the question. Similar
remarks have been made with respect to the s-d model. Consequently, we have arrived
at the unsatisfactory situation (from an experimental point of view) that the inter­
pretation of our data will be rather phenomenological. We note in this respect that
our results are consistent with the general opinion that the lsf and s-d model are
two aspects of a single model, which seems to be on the verge of being conceived
(15, 35).

In the preceding sections two parameters, characterizing the nonmagnetic-
magnetic transition, have been introduced, namely the Kondo temperature Tj., deter­
mined by s-d correlations and the spin fluctuation temperature T determined by
d-d correlations. The relation between these parameters is as yet unclear, but
should be established by an universal theory. In what follows we will mainly use
the notation 'Kondo temperature’ (partly for historical reasons).

The three alloy'systems, which have been studied, display a large variation in
the value of TR (Cu-Fe, T* * 10^; Cu-Cr, T^ » 10°K; Cu-Mn, T^ # 1(T*K). If we take
for granted the statement that T^ is the key parameter in the dilute magnetic alloy
problem then, from an experimental point of view, a combined study of these alloys
is a promising method to replace a study of a specific alloy system in the tempera­
ture range T «  TR to T »  TR, which, in practice, is impossible to perform. However,
constructions of universal curves should be performed with caution (Section IV.2.b.4).

IV. 3. Previous experimental results

Since the experimental results on the electrical resistivity and thermopower
have been extensively reviewed by various authors (8, 34, 35) we will restrict our­
selves by summing up the previous experiments on the Lorenz number of Kondo alloys.
Lorenz number data are scarce due to the limited experimental accuracy of thermal
conductivity measurements and because of the complicated structure of A, which
hampers the interpretation of the data.

The experimental results, published so far, were mainly restricted to alloys
with a very low T^ ( «  IK). The only exceptions are a preliminary report on our
measurements on some Cu-Fe alloys (36), which will be discussed in the next sections
and recently published data on Cu-Fe and Cu-Cr (37, 38). The latter results do not
permit a meaningful discussion, however, in view of the poor experimental accuracy
of the measurements and an incorrect procedure for eliminating the ideal thermal
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resistivity and the lattice thermal conductivity. Older data on Mg alloys (39) and
on Ag-Mn (40, 41) suffer from the same shortcomings. The remaining data are those
on Au-Fe (42) and Ag-Mn (43). Both systems have been studied below T = 4K. The
electrical resistivity of the most dilute alloys of these systems can be adequately
fitted to Eq.(IV.4). The Lorenz number is temperature independent and approximately
3% higher than Lo (see Section IV.4.C.4).

IV. 4. Experimental results on Cu-Fe, Cu-Cr and Cu-Mn alloys

In this section we present our measurements on the electrical and thermal
conductivity and the thermopower of some dilute Cu-Fe, Cu-Cr and Cu-Mn alloys. The
electrical resistivity of these alloy systems has been frequently discussed in the
literature (34, 35) in connection with sometimes extremely accurate measurements,
in particular on Cu-Fe (44, 45), the key system in the history of the Kondo effect.
The limited accuracy (0.1%) of the present electrical resistivity measurements on
the rods does not permit a detailed quantitative discussion as has been done before.
In fact, this remark also applies to the thermal resistivity. However, in this case
the present measurements fill a gap, since the thermal conductivity and the Lorenz
number of Kondo alloys have not received much attention in the past (Section IV.3).
In the present section we restrict ourselves to some comments on the observed
behaviour of the three transport properties and postpone a more quantitative dis­
cussion of the Lorenz number, which involves the electrical resistivity and the
thermopower as well, to a subsequent section.

We have studied five Cu-Fe alloys with concentrations 12, 15, 20, 75 and 100
ppm, two Cu-Cr alloys (10 and 30 ppm) and four Cu-Mn alloys (26, 60, 270 and 1000
ppm) between 1.3 and 9K. The latter two Cu-Mn alloys will be discussed separately,
since in these alloys the Kondo effect is quenched by impurity-impurity inter­
actions.

IV.4.a. Electrical resistivity

IV.4.a.1. Cu-Fe

The electrical resistivity of two Cu-Fe alloys, corrected for the pure copper
resistivity is plotted in Fig.IV.1. The resistivity of each of the alloys could be
scaled to the others within 0.2%, indicating that the Kondo effect is not significantly
influenced by impurity-impurity interactions in the present concentration range. The
average value for the incremental resistivity of Fe in Cu at T = 1.3 K is 11.7pflcm/
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Fig.IV.1. The electrical resistivity as a function of temperature for two Cu-Fe alloys.

The pure Cu resistivity has been subtracted.

at.%. A detailed analysis of the electrical resistivity of Cu-Fe, performed by Star
(44, 45), revealed a quadratic temperature dependence of p below T = 1.5K (which is
outside our measuring range);

P » Po(l - (J)2) (IV.12)

where the characteristic temperature © (=s 20K) is usually defined as the Kondo tempe­
rature. An inflection point is observed around T = 6K. In this temperature region the
resistivity varies approximately linearly with T, which is sometimes identified
(46) with the linear behaviour of the impurity resistivity as predicted by
spin fluctuation theories (Section IV.2.C.2). The behaviour as a function of
temperature of the electrical resistivity of the Cu-Fe alloys is similar to
what has been observed in Al-Mn types of alloys, if the temperature is scaled
according to the characteristic temperature 9. We note that a detailed compa­
rison is not possible due to the different contributions from potential scatte­
ring. It turns out that DMR can be significant especially at T ~  9 (Section
lV.5). The T2 term is not affected, however (see also (44)), so that a simple
subtraction procedure in order to obtain the magnetic term (p = p - P )6 mag meas pot
can only be applied at T «  9.

IV.4.a.2. Cu-Cr

The incremental electrical resistivity as a function of temperature of
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30 ppm

10 ppm

Fig.IV.2. The electrical resistivity of Cu-Cr 10 and 30 ppm as a function of temperature.
Hie pure Cu resistivity has been subtracted. The solid line represents the elec­
trical resistivity of a Cu-Cr 30 ppm wire. The resistivity data of the wire were
shifted by 0.20 x 10~8ftcm in order to match with the results on the 30 ppm rod
at T = 1.5K.

10"®Qcm

Fig.IV.3. The electrical resistivity of Cu-Cr 30 ppm (wire) between 0.06 and 9K. The
electrical resistivity of Cu has been subtracted.
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Cu-Cr 10 and 30 ppm for 1.3 < T < 9K is shown in Fig.IV.2. As in the case of
Cu-Fe, the two resistivity curves can be very well scaled to a single curve. We
find that p(T = 1.3K)/p(T = 8K) is 1.26 and 1.24 for the 10 and 30 ppm alloy,
respectively. For reasons to be discussed below, we have extended the electrical
resistivity measurements on the 30 ppm alloy, by examining the resistivity of a
Cu-Cr 30 ppm wire, drawn from the same material from which the rod was obtained,
down to T =0.06K. The data are plotted as a function of log T in Fig.IV.3. The
absolute values of the electrical resistivity of the wire are somewhat smaller
(» 4%) than those of the rod (probably due to different handling of the samples),
but the functional dependence on temperature is not essentially changed (Fig.IV.2).
Our results are in qualitative agreement with data of Daybell and Steyert (47) and
display a much larger ’stepheight’ (p(T = 0)- p(T -*■ «>)) than the resistivity of
Cu-Fe.

An attempt to interpret the data within the framework of the s-d model leads
to a comparison with the Hamann expression (Eq.(IV.8)). Taking the potential
scattering contribution, the spin value and the Kondo temperature as adjustable
parameters, we can fit our results quite well for T > IK, using S = 0.5, cos 26y =
0.39 and T„ = 2.5K. These values are in good agreement with those obtained for a

IV

15 and 30 ppm alloy (48). If the measured value of the high temperature spin is
3  ,used (S = ■=■), the r.m.s. of the fit increases by an order of magnitude, lllus-4 2.

trating the fact that the Hamann theory applies only to S » *■. Upon decreasing the
temperature below IK the disagreement between the experimental and calculated
values of p becomes increasingly larger, demonstrating the shortcomings of the pre­
sent theories, based on the s-d model, at T < T„.

Regarding the functional dependence on T at these temperatures, we note that
the T2 term of p is apparently outside the range of our measurements (T < 0.06K).
Between 0.06 and 0.25K the resistivity is approximately a linear function of T:
p = a(l - T/0i) with-a = 6.92 x 10‘8ficm and 0i = 3.6K. The characteristic tempe­
rature 0i is, according to calculations, within the lsf model, by Rivier and
Zlatic (26), roughly twice 0(Eq.(IV.12)). Hence, neglecting the effect of potential
scattering and assuming that these calculations may also be applied to alloys from
the magnetic regime of the Anderson model (in this case, the relation between 0,
0i and the Anderson parameters is as yet unknown and should be obtained from a
renormalized lsf theory), the quadratic temperature dependence of the electrical
resistivity of Cu-Cr is determined by 0 s 1.8K which turns out to be close to
the Kondo temperature.
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IV.4.a.3. Cu-Mn
The electrical resistivity of Cu-Mn 26 and 60 ppm, plotted in Fig.IV.4, can

be adequately fitted to an expression of the form:

p = A - BlnT (IV.13)

in the temperature interval T = 1.3 - 9K. The values of A, B and B/A are listed
in Table IV.1. The different values of B/A for the slopes of the resistivity

K)'8 Q c m
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2.20
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-60 ppm

1.25
lO^öcm
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1.10
IP

T—  2 4 6 8 K
Fig.IV.4. The electrical resistivity as a function of the temperature for the two most

dilute Cu-Mn alloys. The resistivity of Cu has been subtracted.

I
Table IV.1

Resistivity parameters of Cu-Mn

concentrat ion
(ppm)

A

(10"8flcm)

B

(10"8flcm)

c
ƒ cm
lWattJ

D
rcm K*
lWattJ

A

(10-*2)
K2

B
D

(10**-2)
K2

B
A

D
C

26 1.268 0.092 0.484 0.030 2.62 5.1 0.073 0.062

60 2.542 0.161 0.964 0.056 2.64 3.5 0.063 0.058

270 11.77 0.65 4.59 0.24 2.56 2.7 0.055 0.052

The coefficients A, B, C and D are obtained by filting the resitivity data to Eqs .(IV.13) and

(IV.14). The coefficients for the 270 ppm alloy have been obtained fromi a fit to the high

temperature data, in view of the onset of a maximum in p (Fig.IV.18).
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curves indicate the occurrence of impurity-impurity interactions. We refer, in
this respect, to Fig.IV.18 where dp/dlnT of Cu-Mn 270 ppm decreases with decrea­
sing temperature. At the higher temperatures of the measurements the resistivity
may be described by Eq.(IV.13). The value of B/A (Table IV.1) is again reduced
with respect to the dilute alloy values.

Expressions such as Eq.(IV.13) can be derived from a pertubative approach
to the s-d model if p is calculated in second Bora approximation (ref.(6),
Eq.(IV.4)). If the exchange coupling constant J is calculated from the coeffi­
cient B of the logarithmic term, one obtains, using Eq.(IV.4), J = -0.60 and
-0.55 eV for the 26 and 60 ppm alloy, respectively. These values are not very
reliable, however, for the following reasons:
1. The neglect óf DMR in the electrical resistivity. A straightforward calcu­
lation starting from Eq.(IV.8) shows that the presence of potential scattering
leads to a modification of the coefficient of the ln(kgT/D) term in Eq.(IV.4)
by a factor cos 26 cos66 (49).v v
2. Eq. (IV.4) is valid only at ln(T/T„)»l. Since T„ is of the order of 10~2K
(50), the resistivity should, in fact, be compared to expressions obtained from
non-pertubative treatments of the s-d model (Eq.(IV.8)). However, the limited
experimental accuracy and the limited temperature range of our measurements
exclude such a comparison.
3. The different slopes of the resistivity curves indicate that impurity-impurity
interactions are still important in these dilute alloys.

IV.4.b. Thermopower of Cu-Fe, Cu-Cr and Cu-Mn

The thermopower data for the three alloy systems have been plotted in Fig.
IV.5 - IV.7. The thermopower of Cu-Fe and Cu-Mn is larger than the thermopower of
nonmagnetic Cu alloys by an order of magnitude. The thermopower of Cu-Cr is
comparable to that of nonmagnetic alloys.

The thermopower of'Cu-Fe can be represented at the lowest temperatures of
our measurements by S = -3.0 T yV/K, suggesting that simple power laws also
govern the thermopower at T «  T... We observe that in the present concentration
range (c < 100 ppm) the thermopower is essentially concentration independent.
Again, as for the electrical resistivity, we note the similarity between the
thermopower of Cu-Fe and Al-Mn. By matching the initial slopes of S for the two
alloy systems, the thermopower can be scaled to a single curve as a function of
T/0 (51), where 0 is obtained from Eq.(IV.12), and displays a peak at T ~  0.
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Fig.IV.S. The theraopower of five Cu-Fe alloys as a function of temperature.

Fig.IV.6. The theraopower of Cu-Mn 26 and 60 ppm versus temperature.

Fig.IV.7. The theraopower of Cu-Cr 10 ppn versus T. The thermopower of Cu-Ge 30 ppn
(Po * 1.17 x 10 e!)cm) is shown for comparison. The solid line represents the
thermopower of 0.4 ppm Fe in this Cu-Ge alloy calculated with Eq.(11.43).

The thermopower of Cu-Mn is concentration and temperature independent in
the present range. A correction for the presence of small traces of Fe, which
strongly affects the observed thermopower of ’pure’ Cu (Section Ill.l.b) may
slightly modify the values of the thermopower plotted in Fig.IV.6.

The effect of traces of Fe seems to be more pronounced in Cu-Cr. The
observed thermopower of Cu-Cr 10 ppm (Fig.IV.7) is an order of magnitude smaller
than the thermopower of Cu-Fe and comparable to that of nonmagnetic alloys. For
comparison we have plotted in Fig.IV.7 the data of a Cu-Ge 30 ppm alloy which
has approximately the same electrical resistivity as Cu-Cr 10 ppm. When we
analyse the Cu-Ge 30 ppm data in the same way as has been done for the Cu
specimens (Section Ill.l.b) we observe that the magnitude of the measured thermo­
power can almost entirely be accounted for by the presence of 0.4 ppm Fe in the
Cu host (Fig.IV.7). This impedes a determination of the thermopower of Ge in Cu.
It also implies that an accurate determination of the thermopower of Cr in Cu
is out of the question, except for the observation that S- is not anomalously
large. A Fe concentration somewhat higher than 0.4 ppm would even make S
positive. This was in fact reported by Read and Guenault (52) who attributed
the small thermopower of Cu-Cr alloys to the fact that a negative contribution
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of the Fe impurities is almost balanced by a positive thermopower from the Cr
solute. However, their conclusions have been criticized by Templeton (53), who
suggests that the data should be re-evaluated in terms of a much lower concen­
tration of iron impurities, thereby making S~r smaller in magnitude or even
changing sign, in better agreement with our data.

IV.4.c. The Lorenz number

IV.4.C.1. Introduction

In order to obtain values for the Lorenz number due to electron-impurity
scattering (both magnetic and nonmagnetic), the impurity contribution to the
electronic thermal resistivity must be extracted from the measured thermal
conductivity. This is done by subtracting the lattice thermal conductivity (X )
from the measured thermal conductivity, inverting the result and subtracting
the ideal thermal resistivity (W^) from the electronic thermal resistivity.
Values of Xg and for the magnetic alloys are obtained from the experimental
results on nonmagnetic alloys as discussed in Chapter III and they are listed
in Table IV.2. We implicitely assume in applying this procedure that the magni­
tude of X and is determined by one parameter, that is, the electrical

Table IV.2

Alloy concentration ’impCT ' »•*) "id/T*
(ppm) (10'*flcm) (10'5 C“ )1 K Watt'

12 1.51 4.4
15 1.85 4.5

Cu-Fe 20 2.31 4.7
75 8.15 5.5
100 11.0 6

10 1.62 4.4
Cu-Cr 30 5.63 5.2

26 1.25 6.3

Cu-Mn 60 2.51 4.7
270 11.3 6
1000 33.0 8

The lattice conductivity was calculated from Eq.(III.13) . The weak variation of
W.. and X onid g p. causes the effect ofimp the temperature dependence of to
be unimportant for T < 10K.
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resistivity and that the functional dependence of A and on p and T is the
same for both nonmagnetic and magnetic alloys. The latter assumption may be
questioned in view of the presence of a strongly energy dependent impurity
scattering contribution in the magnetic alloys. This aspect has recently been
discussed in the literature (54, 55), but the situation is still unclear (56).
For the moment we will work with these assumptions and hope for the best.

IV.4.C.2. Cu-Fe

The impurity Lorenz number of the Cu-Fe alloys is shown in Fig.IV.8. The
accuracy of L. at the lowest temperatures is mainly determined by the experi­
mental accuracy in the thermal conductivity measurements whereas at higher tempe­
ratures the error introduced by the subtraction procedures dominates.

The low temperature data suggest that attains the value Lo at T = 0.
The breakdown of the WFL law as T increases can be attributed to the presence of
an energy dependent scattering mechanism (see also Section II.2.a). The magnitude
of L. for the five Cu-Fe alloys indicates that in the present concentrationimp
range, just as in the electrical resistivity, impurity-impurity interactions are
unimportant in the thermal resistivity.

An analysis of the Lorenz number on the basis of calculations from the s-d
model is at present rather meaningless for T < T„. This is demonstrated by consi­
dering the behaviour of L^ in the limit T + 0 as given by Eq.(IV.lO). The low
temperature slope of the calculated Lorenz number differs drastically from the
experimentally determined L^ , viz., dL^^/dT -*• 00 versus dL^p/dT 0 (Section

IV.6).

■ 12 ppm
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* 20 ppm
•  75 ppm
•  100 ppm
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1.02

t ̂~*mP
|l L0
1.00

Fig.IV.8. The impurity Lorenz number as a function of temperature for five Cu-Fe alloys.
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IV.4.C.3. Cu-Cr

The Lorenz number for electron-impurity scattering of the two Cu-Cr alloys
in the temperature range from 1.3 to 9K is shown in Fig.IV.9. The concentration
independence of indicates the unimportance of impurity-impurity interactions
in the present temperature range. Since the Kondo temperature of Cu-Cr is of the
order of IK (in section IV.4.a.2 we obtained T^ = 2.5K from resistivity data) it
is likely that the value of L. at the lowest temperatures of our measurements

' imp r
(1.10 Lo) is close to the maximum value. The decrease of L^ with increasing
temperatures for T < T„ (Fig.IV.9) is consistent with the theoretical predictions
(Section IV.2.b.3). A comparison with the impurity Lorenz number of Cu-Fe, which
was determined in Section IV.4.c;2 for T < 0.5 T^, is hampered by the fact that the
magnitude of , depends on the magnitude of the resistivity due to potential
scattering relative to the term due to exchange scattering. The term due to
potential scattering pushes L^ towards Lo. Since the ’stepheight’ in the elec­
trical resistivity of Cu-Cr is larger than that of Cu-Fe, we expect the impurity
Lorenz number of Cu-
also Section IV.5).
Lorenz number of Cu-Cr to be larger than L^ (Cu-Fe) in the vicinity of T^ (see

e 10 ppm
•30 ppm

no

108

fLüa
106°

Fig.IV.9. The inpurity Lorenz number versus T for Cu-Cr 10 and 30 ppm.

IV.4.C.4. Cu-Mn

The thermal conductivity of the two most dilute alloys with manganese concen­
tration 26 and 60 ppm was measured up to T = 13K. Fig. IV. 10 is a plot of T
against the logarithm of the temperature (the pure Cu resistivity has been sub­
tracted) . Apart from departures at the highest temperatures of our measurements,
WjuipT can very well represented by

W. T = C - DlnTimp (IV.14)
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Fig.IV.10. versus InT for Cu-Mn 26 and 60 ppm.

The departures from this functional dependence on T may be attributed to the use
of incorrect values for the ideal thermal resistivity (Table IV.2). This may
become important at higher temperatures, since at T > 10 K the electron-phónon
scattering can account for more than 10% of the total electronic thermal resistivity.
At lower temperatures, however, the ideal thermal resistivity is only a small
fraction of the total resistivity. Comparison with Eq.(IV.13) and Fig.IV.4 shows
that the thermal resistivity behaves in very much the same way as the electrical
resitivity. The values of C and D are listed in Tabel IV.1 along with the values
of Cu-Mn 270 ppm. The ratio A/C is the impurity Lorenz number at T = IK. The
systematic decrease in the magnitude of the ratios B/A and D/C demonstrates the
presence of impurity-impurity interactions. The values of these ratios for each
sample are very similar, indicating that spin flip scattering is almost equally
effective iri both-p and W. The same conclusion was obtained for the Au-Fe system
(42), although one must be cautious in comparing both systems since the Kondo
temperature of Cu-Mn is an order of magnitude smaller than that of Au-Fe.

The Lorenz numbers of Cu-Mn 26 and 60 ppm are shown as a function of tempe­
rature in Fig.IV.11. The values obtained for both alloys are higher than Lo and
L^ decreases slowly with increasing temperature. The peculiar behaviour of L. ^
at the highest temperatures of the measurements is due to the importance of the
ideal thermal resistivity (Fig.IV.10). The impurity Lorenz number at lower tempe­
ratures can be represented by

L . A - BlnT (IV.15)
C - DlnT
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Fig.IV.11. The Lorenz number for impurity scattering of Cu-Mn 26 and 60 ppm as a function
of temperature. The solid lines are obtained from Eq.(IV.lS) using the coefficients
from Table IV.1. The Lorenz number data at T > 8.5K are calculated under the
assumption that at these temperatures the electrical resistivity is represented
by Eq.(IV.13) with the constants as listed in Table IV.1.

where A, B, C and D are listed in Table IV.1. The differences in magnitude of
Limp f°r Cu-Mn 26 and 60 PPm are never larger than 1.5% and are a result of several
factors such as impurity-impurity interactions, the experimental error and the
error introduced by the method of analysis (Section IV.4.C.1).

An impurity Lorenz number which exceeds L0 was observed in dilute Au-Fe
(42) and Ag-Mn (43) alloys. Both systems have a low Kondo temperature (T„ < IK)
and have been investigated below T = 4K. The Lorenz number at these temperatures
is reported to be approximately constant and about 3-4% higher than L0, which is
about half the effect we observe in Cu-Mn (Fig.IV.11). This may be accounted for
by the fact that the temperature dependence of the electrical resistivity of
Cu-Mn is stronger than that of Au-Fe and Ag-Mn. The ration B/A is 0.044 and 0.04
for the most dilute Au-Fe (42) and Ag-Mn (43) alloy, respectively, whereas B/A =
0.073 for Cu-Mn 26 ppm. The enhancement of the Lorenz number for these systems can
be calculated from Eq.(IV.ll). One obtains L/L0 ~ 1.07, 1.03 and 1.03 for Cu-Mn,
Au-Fe and Ag-Mn, respectively. The agreement with the experimental data must be
considered as accidental, howeVer, in view of the restricted validity of Eq.(IV.ll).
We mention once again the neglect of DMR and the condition In(T/T^)>> 1, which
in particular for Au-Fe (T^ ~ 10 1K) does not hold at liquid He-temperatures.

i
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TV. 5. A 1 universal3 curve of L as a function of

In the preceding section we have presented the Lorenz number data of some
dilute Cu-Fe, Cu-Cr and Cu-Mn alloys. The measurements cover the temperature range
from T < to T »  T^. The measured impurity Lorenz number for the three alloy
systems as a function of ln(T/T„) is plotted in Fig.IV.12. We have used the
following values for the Kondo temperature, viz., T„ = 20, 1 and 0.05K for Cu-Fe
Cu-Cr and Cu-Mn, respectively. Although the general character of L ^ ^  is obtained
(a maximum of L. at T * T^) it can be seen that Fig.IV.12 displays apparent
discontinuities between the Lorenz numbers of the three systems under consideration.
These discontinuities are most probably due to the different contributions to the
resistivity from ordinary potential scattering for each of the systems. The most
simple way to account for the effect of potential scattering in the resistivity
is to subtract a temperature independent term from the total impurity resistivity.
This term may be obtained from the high temperature value of resistivity or
from resistivity data on concentrated alloys. In Fig.IV.13 we have plotted the
Lorenz number for exchange scattering, defined as L ^ ^  = Pexc}j/ (WT) . , where
p , = p. - p and (WT) , = (WT). - (WT) as a function of ln(T/T„),exch Kimp pot •'exch v •'imp v pot K
using p (Cu-Fe) = 8pftcm/at.%, p (Cu-Cr) = 5pftcm/at.%, PpQt(Cu-Mn) = 2yf2cm/at.%
and (WT) t = p ot/^o. This subtraction procedure neglects, however, the effect
of DMR due to the interference of a strongly and weakly energy dependent scattering
process. In order to get some insight into the error introduced by this subtraction
procedure we have calculated the DMR in the electrical and thermal resistivity and

Cu-Cr

•**• - Cu.Mn

Cu-Fe
I L0^ 1.00

1000

Fig.IV.12. The impurity Lorenz number of Cu-Fe (Tg * 20K), Cu-Cr (Tg = IK) and Cu-Mn (Tg *
0.05K) as a function of InT/Tg. The data plotted are those of Cu-Fe 15 ppm, Cu-Cr
10 ppm and Cu-Mn 26 ppm and are characteristic for the behaviour of L. in the
three alloy systems.
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Fig.IV.13. Schematic representation of the Lorenz number due to exchange scattering as a
function of T/T^ for Cu-Fe, Cu-Cr and Cu-Mn. L is calculated by subtracting
the resistivity term due to ordinary potential scattering from the impurity
resistivity.

their effect on the Lorenz number for the case of a resonance in the scattering
amplitude at Cp (See also Section II.2.a). We use a relaxation time of the form:

exch t-1(0) (1 ♦ a r2 )
exch ur ♦ T2

(IV.16)

where w = e - Gp. The potential scattering is accounted for by adding the
reciprocal of an energy independent relaxation time to

T7limp Tlexch + t '1 (IV.17)

Although we do not expect that this simple form of gives a correct description
of the behaviour of the resistivity in the entire temperature range, we note that
substitution of Eq.(IV.17) into the transport-integrals (Eqs.(II.9) and (II.10))
yields the general features of the observed behaviour of the impurity resistivities
of dilute magnetic alloys, viz., and (WT)^mp decrease as T2 from their zero
temperature values, the resistivity curves show an inflection point at a tempe­
rature of the order r/kg, if r/k„ is identified with the Kondo temperature, and
a slow decrease with increasing temperature towards a high temperature plateau.
Fig.IV.14 shows that the interference between exchange and potential scattering
significantly affects the behaviour of the resistivity. The DMR, A=

(Pexch * ppot} and A ' “ ^ i m p  - ((WT)exch + ^ p o t 5* Vary aS T* at ^  F/kB’
reach a maximum at T * r/k_ and gradually decrease with increasing temperature.D
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Fig.IV.14. The effect of DMR on the temperature dependence of and The numbers
have the following meaning:

l !  pexch’ 2:L»(WT)exch; 3:pexch + Texch<°>/TPot * 4; 4:Pexch * A- Texch ̂ /Tpot "
2/3; 5: L.OfT)^ ♦ L.A', T ^ W / T ^  - 4; 6: L.(irr)exch ♦ L.A', 1 ^ ( 0 ) / ^  -
2/3; 7: A, Tgxch(0)/Tpot - 4; 8: A, ^ ( O ) / ^  - 2/3; 9:L.A-, 1 ^ ( 0 ) / ^  - 4;
1°: UA', T^xch(0)/tpot - 2/3.

Fig.IV.15. The Lorenz number due to exchange scattering. The solid curve is obtained from
Eq.(IV.18). The dashed curves are calculated from Eq.(IV.19).

For the numerical computations we have used a = 5 and Texc),(0)/i ot = ^ and 2/3.
The total impurity resistivities P^mp and (WT)^ have been calculated from
Eqs.(II.9) and (II.10) with

Timp
Texch

Texch

A similar calculation has been performed by Smith and Wilkins (57) for the
electrical resistivity. They included the energy independent part of t ”^ ^ into
the potential scattering and obtained a maximum of about 20% in A/p ^(T = 0)
at T = r/kD for t  ,/t  , = 0.2.B pot exch

The effect of DMR on L is shown in Fig.IV.15. The Lorenz number for exchange
scattering is obtained by substituting the relaxation time Eq.(IV.15) into Eq.
(11.12) (we note that Eq.(IV.16) leads to a vanishing thermopower).
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Lexch

x x 2(k2T 2x 2 + r2)ƒ ____ c D

3 (eX + l)2 (k2T 2x 2 + (1 + a)T2)

** ^ ex (k2T 2x2 + r 2)
(eX + l)2 (k2T2x 2 + (1 + a)T2)

(IV.18)

The Lorenz number for exchange scattering in the presence of potential scattering
is obtained from

p. - p
L ’ a imp Kpot

6XCh " ^ i m p  - W pot
Up to first order in A and 4', L^xch may be written as:

Lexch Le x c h ^  +
A

*exch

A'
(WT) Jexch

(IV. 19)

(IV.20)

where Lgxch is given by Eq.(IV.18). Fig.IV.15 shows that the neglect of DMR has
a pronounced effect on the magnitude of Lexch at T > r/kR , which can be under­
stood by considering the magnitude of A/pexch and A ’/(WT)exch as shown in
Fig.IV.14.-For T «  T/kg and T »  r/kB DMR have become small so that L' is
close to L u . exchexch

Hence, returning to Fig.IV.13, we remark that the ’universal’ curve of L
(which in fact is L;xch(Eq.(IV.19)))vs. lnd/T^) must be considered with some
caution. Although the correct relaxation time, which describes the spin dependent
scattering in dilute magnetic alloys, will be different from that given in Eq.
(IV.16) (it should contain logarithmic terms) we expect that the general features
as displayed in Fig.IV.14 and IV.15 will not be altered. This implies that the
effect of neglecting DMR will affect the calculated values of Lexch as shown in
Fig.IV.13 especially at T 2 T^, which applies to Cu-Cr. The lack of a precise
knowledge of the functional dependence of Texch on u and T prevents the determi­
nation of the magnitude of this effect, however. It should furthermore be noted
that the uncertainty in is also caused by the fact that both p and T
are not accurately known for the three alloy systems. Nevertheless, we may K
conclude that the general feature of Lexch is expressed in Fig.IV.13, viz., an
asymmetric peak in at T ~ T^, the magnitude of which exceeds Lo by about
15%.
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IV.6. Discussion of the Lorenz number data

In this section we will discuss our experimental results on Cu-Fe and Cu-Cr
on the basis of a simple scattering resonance model. For this purpose we have
extended the electrical resistivity measurements on Cu-Cr down to T = 0.06K.
Both the lsf model (33) and the s-d model (13, 14, 15) suggest a many body peak
in the scattering amplitude with half width T (=kgT„ or kgT^) which, in order
to account for the nonsingular behaviour of the transport properties at low
temperatures, should have a Lorentzian form at low energies. For our analysis
we use the following expression for :

A ----- ——  ♦ T i1
ia2 + r2

(IV.21}

where t #1 accounts for the potential scattering. Although we realize that the
form of the relaxation time given in Eq.(IV.21) is too simple to account for
the real situation at all temperatures, it is likely that Eq.(IV.21) is valid
at T «  r/k„. A complete expression of the scattering amplitude should account
for the temperature dependence of T, a proper inclusion of the potential
scattering and must display a logarithmic behaviour at high energies.

The behaviour of the Lorenz number due to resonance scattering can be
found by substituting Eq.(IV.21) into Eq.(11.12). For T «  r/k_ one obtains

L"<1- f  -s' <IV-22>
Neglecting the second term in the right-hand side of Eq.(IV.22) (S is of the
order of 10"6 V/K at these temperatures), the Lorenz number for impurity
scattering can be written as:

L = Lo (1 ♦ ( J ) 2) , (IV.23)

where 0 is obtained from Eq.(IV.12). This is a general result which depends
only on the assumption of a Lorentzian form of the resonance and on the assumption
T0 = T^. The latter assumption will be used throughout this section and implies
that the scattering is elastic.

We have analysed the data of two Cu-Fe alloys (15 and 100 ppm) and Cu-Cr 30
ppm in the following way. First, the electrical resistivity data were fitted to
the expression
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p = p(T * 0) -------------------------------------
---------- x2 + (r/kDT)2 jA

(e* * l)2 x2 + (1 ♦ ATo)(r/kBT)2
(IV.24)

where T and Ato were treated as adjustable parameters. Eq.(IV.24) is obtained by
substituting Eq.(IV.21) into Eq.(II.9). The values obtained for these parameters
were then used to compute the Lorenz number for impurity scattering from the
expression

L + S2 «

eX x2 ♦ (r/k.T)2
I— --------------- 5_______

k , (® + !)2 x2 + (1 ♦ Ato) (r/kBT)2
6 ex x2 + (r/kBT)2

(eX + l)2 x2 + (1 + Ato) (IVkgT)2

(IV.25)

where S is the measured thermopower and may account for terms containing odd
functions of to in Eq.(IV.21), which are unimportant in the expressions for the
electrical and thermal conductivity.

The electrical resistivity data of Cu-Fe could be fitted to Eq.(IV.24) in
the entire temperature range of our measurements, whereas the electrical
resistivity of Cu-Cr could be described by Eq.(IV.24) only up to T * 0.8K. Due
to the limited experimental accuracy of the electrical resistivity measurements
(0.1%) the values obtained for T and At 0 are not uniquely determined. Some
values of these parameters are listed in Table IV.3. The characteristic tempera­
ture 0 (Eq.(IV.12)) is calculated from

r fl * Arp. 1/2
1 At0 j (IV.26)

Eq. (IV.26) is obtained by applying the Sommerfeld expansion to the transport
integral K0. The Lorenz number values computed from Eq.(IV.25) with the para­
meters listed in Table IV.3 have been plotted in Fig.IV.16. The factor S2 where
S is the measured thermopower (Fig.IV.5) has been subtracted from L^ (Cu-Fe).
The thermopower of Cu-Cr is an order of magnitude smaller (Fig.IV.7)"and can be
neglected. One can see from Fig.IV.16 that the agreement between the measured
and calculated Limp of Cu-Fe is very good for T < 4K. At higher temperatures the
agreement is less satisfactory, which is not surprising in view of the simplicity
of the model, but the differences are not larger than about 2%. Furthermore, we
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Cu-Cr

Cu.Fe

Fig.IV.16. Some numerical results for the impurity Lorenz number of Cu-Fe and Cu-Cr. The
shaded regions represent the Lorenz number data of the two systems (Fig.IV.8 and
IV.9) taking into account the experimental error. The solid curves are obtained
from the relaxation time Eq.(IV.27). The broken curves are computed from Eq.(IV.25).
The numbers refer to the parameters from the electrical resistivity fits, as listed
in Table IV.3 and IV.4.

Table IV.3

Parameters of a computer fit of the electrical resistivity data to Eq.(IV.24)

Alloy P(T - 0)

(10" *0a0

r/kg At»

09
e
(•9

Computed Lorenz
number curve
(Fig.IV.16)

15 ppm 1.859 15.0 0.20 20.2 1
Cu-Fe 15 ppm 1.859 18.5 0.25 22.8 2

100 ppm 11.09 15.6 0.218 20.3 3

Cu-Cr 30 ppm 6.82 0.75 0.37 0.80 4
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note that the accuracy of the experimental Lorenz number at these temperatures is
determined by the analysis employed in order to extract the lattice conductivity
and the ideal thermal resistivity from the measured thermal conductivity (Section
IV.c.1).

A straightforward comparison between the measured and calculated Lorenz
number of Cu-Cr is not possible, since the electrical resistivity could be fitted
to Eq.(IV.24) only for T S r/kg * 0.8K. The discrepancies appear to be similar
to those for the Cu-Fe alloys.

In order to obtain a better approximation of the actual scattering resonance
than that given in Eq.(IV.21), one may think of expressing the relaxation time in
a power series of u). Such an expansion should then approximately account for the
temperature dependence and the logarithmic terms of the actual scattering amplitude.
This was done by Star (44, 45) in order to describe his electrical resistivity
data on Cu-Fe. He used a relaxation time which is slightly different from Eq.
(IV.21), i.e.,

in 2n
T = T{(D = 0)(1 + Z c(n) --------- ) (IV.27)

n»l ut2n + r2n

The coefficients c(n) can be determined by fitting the experimental values of
the electrical resistivity to Eq.(II.9) with t  given by Eq.(IV.27). The Lorenz
number is calculated in the same way as described above with the coefficients

Table IV.4

Parameters of a computer fit of the electrical resistivity data to Eq.(II.9) with x given
by Eq.(IV.27) and m = 4.

Alloy p(T -01

(10"9S2cm)

r/kB
(K)

c(l) I c(n)
n=l

(- £ M _  -i)
P(T «>)

e
(«

Computed Lorenz
number curve
(Fig.IV.16)

15 ppm 1.861 15.0 0.278 0.187 15.7 5
Cu-Fe 200 ppm 11.09 18.0 0.333 0.231 17.2 6

Cu-Cr 30 ppm 6.82 1.90 1.77 0.650 0.79 7
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c(n) and T obtained from the electrical resistivity fit. Some typical numerical
results for Cu-Fe 15 and 100 ppm and Cu-Cr 30 ppm are listed in Table IV.4. The
characteristic temperature 6 (Eq.(IV.12)) is obtained from k 0*r(3/(1r2c(l)))1/2.

D

The computed Lorenz number values are plotted in Fig.IV.16. One can observe that
the results are not essentially different from those obtained from Eq.(IV.25).
We mention once again that this may be attributed to the limited experimental
accuracy of the electrical resistivity measurements, which makes the values of
the adjustable parameters somewhat ambiguous.

Although a detailed agreement between the experimental and calculated Lorenz

number is lacking, the features shown in Fig.IV.16 suggest that a description
of the Kondo state at low temperatures can be given in terms of a scattering
resonance, which is Lorentzian in form at low energies.

TV. 7. Spin fluctuation effects in the Lorenz number

The essence of the present section is based on some remarks made in Section
IV.2.C.2 and IV.2.C.3 regarding the temperature dependence of the transport
properties of alloys having a vbs compared to that of the iso-electronic alloys.
The scattering of the conduction electrons by the spin density fluctuations,
enhanced at the impurity site, in the latter type of alloys can be calculated
analogously to the electron-phonon scattering (Section II.3.a.l). The low energy
form of the spectral density of the spin fluctuations A(q.w) (~ w where to = - e^,)
and the fact that the q values (q = k - k ') of the excited spin fluctuations do
not change with temperature give rise to a T2 and T term in the electrical and
thermal resistivity, respectively. The Lorenz number is a very suitable quantity
to study the nature of this scattering process as was discussed in Section II.2.c.
If the scattering angle is temperature independent (at least at low temperatures)
then the Lorenz number for scattering of the conduction electrons by the spin
fluctuations, which is in fact an effective electron-electron scattering process,
should reach a value somewhere between 0 and Lo at T = 0, in contrast to the
electron-phonon scattering where L. , -*■ 0 due to the temperature dependence of the
scattering angle.

The spectral density A(q,to) has a peak at to = k^T^/h, where Ts£ is the spin
fluctuation temperature (58). This implies that for T »  T » the scattering is
quasi-elastic, as the spinfluctuations. have insufficient energy to scatter the
electrons through the thermal layer of the FS. With decreasing temperature, inelas­
tic scattering becomes important. The consequences of these scattering processes
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for the Lorenz number Le_e are that at T »  Tsf Le_# is close to Lo. With
decreasing temperature Lfi_e is gradually reduced below Lo until it reaches a finite
value at T = 0. The zero temperature value is determined by the angular distri­
bution of the scattering. A simple variational calculation of p and W leads to
the following expression of the Lorenz number at T = 0 (31, 32):

Le-e “ Lo 3 + 12a (IV.28)

where
2k„J_ ,F

k 2 _/ q IF(q) |2 A(q,u)dq
F o

a =  -----------------------  (IV.29)
“7  r  q3|F(q)|2 A(q,U )dq
kl /F 0

F(q) is the form factor of the impurity d-orbital. For uniform angular scattering
we neglect the q-dependence of the form factor and of the spectral density and
Eq.(IV.29) then gives a =0.5, which results in Lg = 5Lo/9 = 1.36 x 10"*V2/K2.
This value was first obtained by Herring (59) on the basis of Fermi liquid
theory using a simple relaxation time of the form t'1 - (irkgT)2 + u2 where 10 =
e - ep . Any aspect of the scattering which peaks the forward scattering would
consequently reduce Le_# from the value 5L«/9. (we mentioned already the extreme
case of electron-phonon scattering).

Rivier and Zlatic (27) have argued that the functional dependence of the
electrical resistivity of iso-electronic alloys on the temperature is the mirror
image of that of alloys described by the Anderson model. A Lorenz number given by
the expression:

* TV »  ,-p(T = 0) - p(T)
®'e WT(T = 0) - W(T)T (IV.30)

may then be defined (Section IV.2.C.3) analogously to the Lorenz number arising
from electron-electron scattering in iso-electronic alloys, the features of which
have been discussed above.

We have plotted the Lorenz number given by Eq.(IV.30) in Fig.IV.17 for Cu-Fe,
Cu-Cr and Cu-Mn. This figure demonstrates the difference in the nature of the
scattering in the three alloy systems. Elastic scattering dominates in Cu-Mn
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Fig.IV.17. The Lorenz number for ’electron-electron* scattering (Eq.IV.30) of Cu-Fe, Cu-Cr
and Cu-Mn as a function of temperature between 2 and 9K.

(p(T = 0) = 17.3liI2cm/at.% (60)), whereas inelastic scattering dominates in Cu-Fe
in the present temperature range. Cu-Cr represents an intermediate case. Fig.IV.17,
therefore, gives an indication of the magnitude of Ts£ and, hence, of the position
of the peak of A(q,w) on the energy scale. The value of L at T «  Tg£ can only
be obtained-for the Cu-Fe system and is (0.32 - 0.05)Lo. The low temperature value
of L is determined by the q-dependence of the scattering. The values obtained
for Cu-Fe are smaller than the value for uniform angular scattering. A similar
feature was observed for the Lorenz number of Pd-Ni alloys (31), where Lg e =
0.45 Lo. Schriempf et al. (31) concluded from their measurements that A(q,io) is
a slowly varying function of q (Eq.(IV.29)). Although a straightforward comparison
of the zero temperature value of Lg obtained for Cu-Fe with Eq.(IV.29) is
possibly not justified (we note that Kaiser (32) and Kaiser and Doniach (58)
employed a two-band model, current carrying s-electrons and d-band spin fluctua­
tions, in calculating the transport properties in the Born approximation; this
pertubation theory breaks down at T = Tsf)» we argue that the value of Le (T ■ 0)
for Cu-Fe is also determined by the q-dependence of the spectral density of the
spin fluctuations, as in the case of Pd-Ni, and may therefore provide information
about the extension in space of the vbs.

With respect to the temperature dependence of Le (Fig.IV.17) we note that
a quantitative comparison with the calculations of Kaiser (32) is not justified
either, although the features of the three alloy systems are not inconsistent
with conclusions drawn in previous sections, viz., the spin fluctuations tempe­
rature of Cu-Mn is apparently far below our measuring range in contrast to the
spin fluctuation temperatures of Cu-Fe and Cu-Cr.
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TV. 8. Impurity interaction effects in Cu-Mn

The effect of impurity-impurity interactions, already mentioned in Section IV.
4.a.3. is clearly visible in the transport properties of Cu-Mn’270 and 1000 ppm.
The interaction between the Mn impurities makes the conduction electron-impurity
scattering inelastic, since the degeneracy of the impurity states is now removed.
Consequently, the Kondo effect (logarithmic behaviour of the transport properties
as a function of temperature) is quenched. The occurrence of a maximum in the
electrical resistivity vs temperature curve is a typical result of this suppression
of elastic spin flip scattering.

The electrical resistivity as a function of temperature of the two concentra­
ted Cu-Mn alloys has been plotted in Fig.IV.18 and IV.19. The data on the 270 ppm
alloy show only the onset of the resistivity maximum. From electrical resistivity
data (61) at T < IK on alloys with Mn concentrations comparable to the present
ones, a relation between the temperature at which the maximum occurs (T ) andm
the concentration is obtained

T
= 33 K/at.% (IV.31)

This suggests that Tffl(Cu-Mn 270 ppm) * 1.2K. The observed maximum in the electrical
resistivity of Cu-Mn 1000 ppm (Fig.IV.19) is consistent with Eq.(IV.31).

10'8

11.2

10.8

10.4

tP

Q c m

Fig.IV.18. The electrical resistivity p and the impurity thermal resistivity times temperature
as a function of temperature for Cu-Mn 270 ppm (The pure Cu values have been sub­
tracted) . Note the departures from a logaritmic dependence on T of the electrical
resistivity at low temperatures.
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Fig.IV.19. The electrical resistivity of Cu-Mn 1000 ppm versus T. The electrical resistivity

of Cu has been subtracted.

The inelastic nature of the spin flip scattering in concentrated magnetic
alloys should have a pronounced effect on the Lorenz number, in that the magni­
tude of L^ is reduced below the values for alloys exhibiting the Kondo effect.
Limp ma^ even become smaller than Lo. The inelastic spin flip scattering is frozen
out at sufficiently high concentrations or sufficiently low temperatures and
L^ should approach Lo.

The impurity Lorenz number as a function of temperature of the 270 and
1000 ppm alloys have been plotted in Fig.IV.20. A comparison with Fig.IV.11
shows at the lowest temperatures of the measurements the expected behaviour of
Lf , viz., a reduction below the Kondo values. The Lorenz number of Cu-Mn
1000 ppm is still somewhat larger than Lo, although the behaviour at the lowest

SÏ •*

• 270 ppm
4 1000 ppm

Fig.IV.20. The Lorenz number for impurity scattering of Cu-Mn 270 and 1000 ppm as a function
of temperature.
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temperatures suggests a reduction of below Lo. It must be noted, however,
that the temperature dependence of L. as displayed in Fig.IV.20 should be
considered with caution, in particular for the 1000 ppm alloy,-due to the fact
that the lattice thermal conductivity forms a large fraction of the total ther­
mal conductivity (at 4K « 6%, at 8K already * 15%). The features of L. of
_ . imp
Cu-Mn as a function of temperature and concentration are similar to those
observed in Au-Fe (42) and Ag-to (43). At c * 0.1 at.%, 1^ is close to L0
for T< 4K. A reduction of L. below Lo (5% in Ag-Mn and 15% in Au-Fe) is
observed for higher concentrations. However, it should be mentioned once again
that the thermal conductivity data and, hence, the Lorenz number values of more
concentrated alloys become unreliable which precludes any quantitative compa­
rison.
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SAMENVATTING

In dit proefschrift worden de resultaten van het onderzoek naar het gedrag
van de elektrische- en warmtegeleiding en de thermospanning van verdunde koper-
legeringen bij lage temperaturen beschreven. Het onderzoek werd enkele jaren
geleden aangevangen met het doel inzicht te verkrijgen in het gedrag van het
Lorenz getal van verdunde magnetische koperlegeringen. Het Lorenz getal is de
verhouding tussen de elektrische weerstand en het produkt van de warmteweerstand
en de temperatuur. De transporteigenschappen van verdunde magnetische legeringen
wijken af van die van niet-magnetische legeringen tengevolge van de verstrooiing
van de geleidingselektronen aan de magnetische onzuiverheden (Kondo effect). Het
meest bekende verschijnsel is het minimum in de elektrische weerstand. De warmte
weerstand (en dus het Lorenz getal) was een van de fysische grootheden waarin het
effect van het bovengenoemde verstrooiingsproces lange tijd onduidelijk was, voor­
namelijk vanwege de experimentele problemen. Het optreden van een extra component
in de warmtegeleiding, n.1. de rooster warmtegeleiding, bemoeilijkt de interpretatie
van warmtegeleidingsmetingen. Bovendien geeft de gevoeligheid van het warmtegelei-
dingsvermogen voor inelastische verstrooiingsprocessen aanleiding tot het optreden
van een relatief grotere weerstand t.g.v. de elektron-fonon verstrooiing dan de
analoge term in de elektrische weerstand. Dit had tot gevolg, dat het gedrag van
de warmtegeleiding van normale (niet-magnetische) verdunde koper legeringen nauw­
keurig onderzocht moest worden, alvorens over te gaan tot een analyse van het
Lorenz getal van verdunde magnetische koperlegeringen. De resultaten van dit
onderzoek zijn beschreven in hoofdstuk III.

De warmteweerstand t.g.v. de elektron-fonon wisselwerking ('ideale’ warmte­
weerstand) van koper kan niet beschreven worden met de uitdrukking afgeleid voor
het vrije-elektronen model. Dit wordt veroorzaakt door de wisselwerking tussen de
geleidingselektronen en de transversale fononen en door het optreden van afwij­
kingen van de regel van Matthiessen. De wisselwerking tussen de geleidingselek­
tronen en de transversale fononen leidt tevens tot een gecompliceerd gedrag van
de roosterwarmtegeleiding bij lage temperaturen. De resultaten van metingen van
de roosterwarmtegeleiding aan zeer verdunde Cu-Ge en Cu-Sn legeringen zijn verge­
leken met de theorie van Pippard voor de absorptie van geluidsgolven in metalen.
De correlatie tussen de grootte van de roosterwarmtegeleiding en de vrije weg-
lengte van de elektronen zoals die reeds waargenomen was in meer geconcentreerde
legeringen blijkt ook in zeer verdunde legeringen te bestaan.
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Een interpretatie van het gedrag van de roosterwarmtegeleiding bij hogere
temperaturen wordt bemoeilijkt door het feit dat bij deze temperaturen de elek-
tronenwarmtegeleiding niet nauwkeurig bekend is. De onzekerheid in de waarde van
de elektronenwarmtegeleiding ontstaat door het optreden van afwijkingen van de
regel van Matthiessen. Een nauwkeurige analyse van de meetresultaten bracht aan
het licht dat deze afwijkingen van dezelfde orde van grootte zijn als die welke
gevonden zijn in meerwaardige metalen. De voornaamste oorzaak voor de beperking
van de roosterwarmtegeleiding bij hogere temperaturen (10K < T < 30K) bleek de
verstrooiing van de fononen aan puntfouten (in dit geval Ge en Sn atomen) te zijn.

De resultaten voor de niet-magnetische legeringen zoals die beschreven zijn
in hoofdstuk III, zijn in hoofdstuk IV gebruikt om de warmteweerstand, t.g.v.
de verstrooiing van de geleidingselektronen aan de magnetische gast-atomen, van
verdunde Cu-Fe, Cu-Cr en Cu-Mn legeringen te bepalen. Deze weerstandsterm werd
gecombineerd met de gemeten elektrische weerstand (de ’ideale’ elektrische weer­
stand is voor T < 10K te verwaarlozen) om het Lorenz getal voor onzuiverheids-
verstrooiing te verkrijgen. De drie bovengenoemde systemen zijn gekozen om hun
verschillende waarden van een karakteristieke temperatuur (Kondo temperatuur).
Dit maakt het mogelijk om het gedrag van transporteigenschappen (i.h.b. het
Lorenz getal) te bestuderen in het gebied T < (Cu-Fe), T * T_ (Cu-Cr) en
T »  (Cu-Mn). Een van de belangrijkste resultaten van de metingen is het op­
treden van een maximum in het Lorenz getal voor T * T~, zoals theoretisch reeds
voorspeld was. De bestaande theorieën geven evenwel nog geen bevredigende be­
schrijving van het experimenteel gevonden gedrag van de transport eigenschappen
voor T < Tj.. Een analyse van de Lorenz getal metingen aan Cu-Fe en Cu-Cr sugge­
reert dat de elektrische- en warmteweerstand beschreven kunnen worden met een­
zelfde relaxatietijd die de verstrooiing van de geleidingselektronen aan de
onzuiverheidsatomen karakteriseert.

Een interpretatie van de metingen op basis van het lokale spin fluctuatie
model leidt tot het definiëren van een Lorenz getal voor elektron-elektron ver­
strooiing. Dit Lorenz getal, waarvoor de waarde 0.32 Lo (Lo is de Sommerfeld
waarde van het Lorenz getal) voor Cu-Fe bij lage temperaturen gevonden wordt,
kan mogelijk informatie verschaffen omtrent de vorm van het spin fluctuatie
spectrum in deze legeringen.
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STELLINGEN

Simons geeft een verklaring voor het bestaan van een universeel verband
tussen het gereduceerde warmtegeleidingsvermogen X* ( = X/X ) van niet-max
metallische vaste stoffen en de gereduceerde temperatuur T*(=T/T ).max
Dit kan tot een onjuiste interpretatie van het gedrag van de warmte-
geleiding bij temperaturen in de buurt van T leiden.max

S. Simons, J.Phys. C 6 (1973) 29U7

De betekenis van het vraagteken, dat Kao c.s. plaatsen in de titel
van hun artikel, "PdV: A System with a High Spin-Fluctuation or Kondo
Temperature?", is om verschillende redenen onduidelijk.

F.C.C. Kao, M.E. Colp en G. Williams,
Phys.Rev. B 8 (1973) 1228

Het verband tussen de anisotrope polariseerbaarheid van symmetrische
tol-moleculen en de depolarisatie-verhouding voor het verstrooide licht,
zoals gegeven door Rowell c.s., is onjuist.

R.L. Rowell, G.M. Aval en J.J. Barrett,
J.Chem.Phys. 5** (1971) I960

De invloed van elektron-elektron verstrooiing op het warmtegeleidings­
vermogen van wolfraam bij lage temperaturen wordt door Wagner c.s.
overschat.

D .K . Wagner, J .C. Garland en R . Bowers,
Phys.Rev. B 3 (1971) 31^1

De theoretische kromme, die Abkowitz en Honig geven voor de tempera­
tuurafhankelijkheid van het antiferromagnetische resonantieveld in
MnCl2.l+H20 bij een resonantiefrequentie van 9.2 GHz voor het
magneetveld in de ordeningsrichting, is niet correct.

M. Abkowitz en A. Honig, Phys.Rev. 136 (196U) A 1003

De overeenkomst tussen de door Klein en Brout berekende en de expe­
rimenteel bepaalde waarde van de soortelijke warmte van een "spin glass"
bij lage temperaturen berust in een aantal gevallen op toeval.

M.W, Klein en R. Brout, Phys.Rev. 132 (1963) 2U12



7. Uit Mössbauer-effect metingen aan Cu-Fe hebben Steiner c.s. het bestaan2
van een T term in de lokale susceptibiliteit aangetoond. De vergelijking
die zij maken van deze term met het Curie-Weiss gedrag van dit systeem,
zoals gevonden door Tholence en Tournier, is inconsequent.

P. Steiner, W. v. Zdrojewski, D. Gumprecht en
S. Hüfner, Phys.Rev.Lett. 31 (1973) 355.
J.L. Tholence en R. Tournier, Phys.Rev.Lett. 25
(1970) 867

8. Wanneer in 1976 een nieuwe He-temperatuurschaal zal worden vastgesteld,
is het gewenst deze in de vorm van één of meer analytische vergelijkingen
te geven. Deze vergelijkingen zouden bij het X-punt en het kritisch punt
van helium een thermodynamisch consistente vorm moeten hebben.

H. Montgomery, Cryogenics 5 (1965) 229.
G.L. Jones, Physica 76 (197U) 181

9. De overeenkomst tussen de experimenteel bepaalde roosterwarmteweerstand
(1/X ) van een zeer verdunde legering en de berekende 1/X van het» §
zuivere metaal door middel van een door Klemens afgeleid verband tussen
1/X en de ideale warmteweerstand is toevallig.

10. Een onderzoek naar het gedrag van het Lorenz getal van Al-Mn legeringen
als functie van de temperatuur kan informatie verschaffen omtrent de
vorm van het spin-fluctuatie spectrum en.is daarom van groot belang
voor een waardebepaling van de huidige spin-fluctuatie theorieën.

11. Het optreden van de door Watanabê c.s. waargenomen rosetvormige dislo-
katie patronen in verdunde Cu—Al eenkristallen kan worden verklaard door
de aanwezigheid van Al^C clusters.

J. Watanabê, Y. Imashimizu, H. Nagumo en
K. Tsukamoto, J.Cryst .Growth 2h (197U) 1»1U

12. Het veelal ontbreken van gambieten in het openingsrepertoire van schakers
kan worden toegeschreven aan onjuiste opvattingen omtrent de waarde van
de gambietopening.

11 december 197̂ J.J. de Jong






