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SURVEY

In this thesis we study, both experimentally and theoretically, the dynamical
behavior of some weakly anisotropic magnetic systems. The basic property we
investigate, is the time evolution of the average total magnetization of an
isolated electron spin system. To this extent we performed relaxation and
resonance experiments in the paramagnetic, critical and antiferromagnetic state
of three different copper compounds.Two of these compounds, CuCIz.ZH 0 and

2

LiCuCl3.2H20, are known to be magnetically high-dimensional while the third,

Cu(NH3)bSOA.H20, is one of the first known magnetic linear chain compounds.

At high temperatures we investigate the influence of antisymmetric Dzialoshinsky-
Moriya exchange interaction on relaxation and resonance. Introduction of
antisymmetric exchange in the copper compounds leads to a perfect agreement
between experiment and theory. The interaction model, which contains only one
adjustable exchange parameter, is further checked on the independent results

obtained in the critical and antiferromagnetic state.

In the critical region near the Néel temperature our measurements show an
anisotropic speeding-up of the relaxation process. Using such techniques as
Random Phase Approximation, spatial Fourier transforms and dynamical scaling,
we develop a theory on the critical relaxation and resonance in weakly aniso-
tropic magnetic systems. It is shown that the dynamical properties of the mag-
netic system are strongly influenced by the magnetic anisotropy. By transfor-
ming this magnetic anisotropy into an anisotropy in the critical slowing-down
of the spin fluctuations, we are able to derive a relatively simple expression
for the relaxation time (and the resonance linewidth) in the critical region.
The results of this theory, which is a generalization of the theory given by
Huber (2)(12), are in very good agreement with experiment in both CuC12.2H20
and LiCuC13.2H20. In the linear chain CTS the same theory yields experimental
evidence for a linear dependence of the inverse correlation length on the

temperature.

Below the Néel temperature it is shown that in the easy-axis of orthorhombic
antiferromagnets a low-frequency relaxation occurs. These relaxation measure-

ments are shown to be a valuable tool in testing theories on spin-wave relaxa-

tion.




In the linear chain CTS special attention is paid

the correlation functions. The long-time tails of

to the long-time behavior of

the relaxation memory func-

tions are computed straightforwardly from the measurements. The results are

compared with an adapted version of the theory of
most of the features are explained qualitatively,
function shows less pronounced long-time behavior

theoretically. Experimental evidence is given for

Hennessy et al.(79). Although

it is shown that the memory
than should be expected

either important inaccuracy

in the Random Phase Approximation or anisotropy in the two-spin correlation

functions.




CHAPTER |

GENERAL INTRODUCTION TO THE THEORY

1.1 Maeroscopic theory of magnetie relaxation

In this part of chapter | we will survey shortly the most important ideas of

the macroscopic relaxation theory.

In magnetic relaxation or resonance the response of a magnetic system to an
arbitrary magnetic field variation is studied. In the linear response
approximation the response of the magnetization to such an arbitrary field

variation AH(t) is described by

éme(T,ﬁ).Aﬁ<t—T)dr (1.1)
where @(t,ﬁ) is the so-called relaxation tensor which describes the system's
search for equilibrium. It is a second order tensor with elements tdﬁ(t,ﬁ).
All these elements are real while all ¢qq(t,ﬁ) are even in time. In this
equation not only the approximation of linearity but also the principle of
causality has been included. Virtual instantaneous effects from diamagnetic
origin have been neglected. In the often studied case of a negative field step

AF at time t = 0, eq. (1.1) reduces to

AM(t,H) = M(t,A) - M(0,H) = ¢(ct,H).aH (1:2)
ﬁ(t,ﬁ) and K(o,ﬁ) are the magnetizations at time t and 0 respectively. As in
this case the magnetic system is supposed to be in equilibrium for t<0,

ﬁ(o,ﬁ) is equal to the static magnetization in field H.

As all experimental field variations are continuous with continuous derivatives

one may reduce eq. (1.1) by partial integration to the more manageable form

MM(t,H) = =4 (=, H) AR (==) + ¢(0,H).AH(t) - {7600, 1) afi(t-1)dr (1.3)

> >
As ¢(t,H) is bounded for all t and AH(==) = 0 we have

MM(t,H) = 6(0,7).a0(t) - /6 (c,H) . Al (t-1)de
0




As we suppose the magnetic system to return to some sort of equilibrium for

- >
too, ¢(w,H) = limt*m¢(t,H) exists but its value needs not to be equal to zero.
As we are, at this moment, only interested in the time dependent part of

¢ (t,H), we introduce another relaxation tensor a(t,H) defined by

> -

2(t,H) = ¢(t,H) - ¢(=,H)

Substitution of eq. (1.5) in (1.4) yields

AM(t,H) = o(o,H).AR(L) - {m?(r,ﬁ).hﬁ(t-r)dT (1.6)

In our experiments the response of a system to a periodic field variation is

studied. This periodic field variation is of the form

- - int

AH(t) = AH cos wt = Re AH e (1:7)

Substituting this in eq. (1.6) and using that @(t,ﬁ) is a real tensor, one

gets
A7) = Rel(0(0,H) - iw/78(t,M)e '“Tdr).afi e 'Y (1.8)
0

1.1.1 Frequency dependent susceptibility tensor

We define the field and frequency dependent susceptibility tensor x(w,ﬁ) by
M(t,H) = Rely (uw,H).
Comparing this with eq. (1.8) one finds
> ~iwt

¥ (w,H) Q(o,ﬁ) - iwfm¢(T,H) e dt
0

The susceptibility tensor, which is a complex second order tensor, can be

split up in a real and an imaginary part.
x(w, ) = x' (w,H) = ix""(w,A) (1.11)

Substituting eq. (1.11) in (1.10) and using once again that 3(t,H) is a real

tensor, one gets

¥ ' (w,H) = o(o0,H)- wfw@(r,n) sin wtdt (1.12)
o




@0

x"(m,ﬁ) = w/f P(T,ﬁ) cos Wt drt (1.13)

0

x(0,/) = x'(0,H) = ¢(o,H) (1.14)

The fact that both the real part x'(w,H) and the imaginary part x''(w,H) can
be expressed in the same relaxation tensor ﬁ(t,ﬁ) indicates that there might
be a more direct relation between X‘(u,ﬁ) and X"(u.ﬁ). One has for the dia-

gonal elements

" _ﬁ) oy " ((‘u 'ﬁ)

o i 2 I‘UIXQG (‘“n erJ.Ot ’

X;“(U))H) - X"I"t (‘”,H) =?(‘)‘ 2 2 = dm, (]-‘5)
w, =W

[ 0 = ot u

0 (g T - - 20 Xaa (w,,H) Xaa(w'H) d (1.16)
Kag 0270 = = 75 g R e
W, = W

These are the well-known Kramers-Kronig relations. Substituting w= 0 in eq.

(1.15) one gets

4 >
! o, ) = xf (wH) =& o xwH) (1.17)
ao oo T o @

x;a(m.ﬁ) is generally called the dispersion while x:a(m.ﬁ) is related to the
energy absorption by the sample out of the alternating magnetic field, During

one period of the oscillating field, this absorption equals

27
ST AM(e,R) LdaRi(t) = 7 AR, (0, H) AR (1.18)

0

1.1.2 Memory function and memory spectrum

In most magnetic systems the relaxation tensor &(t,H) is decaying at micros-
copically very long times. By using integro-differential equality (1.19), each
of the diagonal elements ®qd(t,ﬁ) of the relaxation tensor can be transformed
into a corresponding function Gq(t,ﬁ), the so-called memory function or kernel,
which is usually decaying at microscopic times. As it will be shown in section
1.2, one finds by using this function a link between the microscopic and

macroscopic dynamical properties of the electron spin system.

a¢“u(t,ﬁ) - a5 =
—_—— = - 76 (1,H) » (t-t,H)dr (1.19)
o 10 oo

ot

- 13 -




The elements G1(t.H) are even in time.

6 (t,H) = G_(-t,H) @ =X, yor z (1.20)

Q o4

Assuming that both the Fourier transform and the Laplace transform of the

memory function exist, one has for the Fourier transform

oA PO L O S L R (1.21)
o 2m == o

A = (e 6 (w,H)du (1.22)
a o C

and for the Laplace transform

& (o, i) = o 8 G (e M)de (1.23)

a 0 o

The Fourier transform of the memory function is sometimes called the memory
spectrum. By definition both the susceptibility tensor and the memory function
have been expressed in the same relaxation tensor. The direct relation between

yuq(m,ﬁ) and Gq(t,ﬁ) is given by

- - ){'lrl(.g,ﬁ)
G (iuJ,H) = "iw - 7 S (12“)
* x. (w,H) = x_ (o,H)
oo oo
Using further Re G(iw,H) = 78(w,H) one gets
N wx" (w,H) x__(o,H)
6 (w,H) = e ae (1.25)

Gt o) = x. (0% + G (w,))?

ao an oa

Once again virtual instantaneous effects have been omitted.

1.1.3 Relaxation time and memory funetion

Suppose that the memory function G (t,H) goes to zero at times small compared
a
. . >
with the characteristic times which govern the time evolution of ¢q“(t,H).

In that case one has

> - > ” t
o _-ste (e, W) o (t-t',H)dt' ==& (t,H) J
ac ao

Gq(t:ﬁ)dt'(x.zs)
It Py a 0 0

At sufficiently large times the solution of eq. (1.26) is then given by

- 14 -




with

o () = /76 (¢!, R)de: (1.28)

0

Substituting eq. (1.27) in (1.12) and (1.13) one gets

X'i(u,ﬁ) 1

il 5o (1.29)
x. (o,H) 1 + wt(H)

oo o
Y.I;.x(“’"ﬁ) MT’I (Fl)

- = - (1.30)
x {o,A) 1+ w2el(h)

ad (s 1

which are the well-known Lorentzian expressions for single relaxation processes.
The case of a sufficiently narrow memory function G](t,ﬁ) is normally encoun-
tered in three-dimensional magnetic systems with large secular interactions.

In Tow-dimensional systems diffusivity leads to important long-time behavior

which, in most cases, impedes an approximation as shown in eq. (1.26).

1.2 Mieroseopie expression for the memory function

The time evolution of the a-th component of the average total magnetization

is given by
b i
= 't - — ¥t
T i
M(t)=e' Me D = ilty (1.31)
a o (&
B (t) = = [3M ()= iL M (t) (1.32)
oL 1 0 a

where i is the Hamiltonian of the magnetic system and L the quantum mechanical
Liouville operator. Although the above mentioned operators are all dependent

on the static field we will not state this explicitely. Furthermore one has
ik
e UM () =M (e +¢,) (1.33)
o a
For a description of the relaxation process of M (t) one should look for the
o
correlation between M (0) and Ml(t) at arbitrary times t. The magnetic system
P .
is supposed to be in equilibrium at times t< 0. To study the correlations we

introduce a correlation function (A,B(t)), which will be defined by

-]5-




B e NI e ANKE
(A,B(t)) =/" <e Ae B
0

(t) > d\ (1.34)

where R= 1/%;, T is the temperature of the bath with which the magnetic sys-
tem is supposed to be in equilibrium just before the perturbation. The
brackets denote an ensemble average defined by
- @i
- f

<A> = _r'_e__T{\_ (1.35)

~gi(
Tr e

Using the Kubo formalism (1) one obtains for the elements of the relaxation

tensor b(t,ﬁ)

& \IC -\
¢ (t,H) = a5 M (t) > dA (1.36)
af 4] o

0 B

The indices a and B denote the Cartesian coordinates x, y or z,

Using definition (1.34) one gets

o (t,H) = (M .M (¢)) (1.37)

m teelnique

The relaxation tensor 4(t,H) contains a time independent part which is not
directly involved in the time evolution of the average total magnetization,
This part, which is equal to #(=,H), can be eliminated by the Zwanzig projec-
tion operator technique. Let the projection operator PA in the operator space
be defined by

(A,B)
PAB = TAAT A (1.38)

Let further | be the identity operator and let
Ho= (1-P)IC = 3 - 96 | (1.39)
The brackets being defined by eq. (1.35). Let furthermore

u = (1-P.=P
o

| 1(‘) M, (1.40)

It can be proved that the part of Hq, which gave rise to a non-zero limit value
of 4(t,H) for t+w, is equal to (P|+P ')Mu So, by taking vy instead of Hu' one
eliminates the part which plays no direct role in the time evolution of the mag-
netic system. in fact, My is the time dependent part of the magnetization Ma,

the constant part being eliminated by the projection technique,

- 16 -




One has

-

(t,H)

¢ (Mg M (£) (1.37)

af B

0,0 (t:H) = (g, u (¢)) (1.41)

Using eq. (1.41) and the integro-differential equality one derives for the

memory function (L ) ei(]_Pu)Lt b
g5 a

6 (t,A) = (AT (1.42)

a

where P is found by substituting (1.40) in (1.38). Eq. (1.42) is the most
generalﬂmicroscopic expression for the memory function Gu(t,ﬁ). It contains
all the information relevant to the time evolution of the magnetic system.
The Hamiltonian of the magnetic electron spin system can be split up as fol-
lows

C/ + 3 (1.43)

zeeman interaction
The Zeeman term is given by eq. (2.2) of chapter 2, For the interaction part
one has

(1.4%)

X, ; =1 + ¥
interaction secular non-secular

The secular part, denoted from now on as Ksec’ is that part of the interaction

Hamiltonian that commutes with i€ while the non-secular ¥ is the non
zeeman nsec

commuting part. In analogy one has for the Liouville operator

L= LZ i LSGC ¥ Lnsec (1.AS)

Substitution of eq. (1.45) in (1.42) yields an expression which in fact is

very complicated, so one tries to introduce some simplifications. The most

widely used simplification is found in the so-called weak-coupling limit. The
basic assumption of the weak-coupling approximation is that, in a magnetic sys-

tem with large secular interactions, one can safely put in the exponent of eq.

(1.42)

(H)u)Lz + “’Pu)Lsec + (I-PU)LnseC = Lz + Lsec (1.46)

It is impossible to say exactly what kind of information is lost by this

approximation. At high temperatures, the physical consequence of the approxi-

-]7-




mation is the occurrence of only four lines in the memory spectrum which more-
over shift rigidly with the external static field.

In the weak-coupling approximation one has for the memory function

: iL t+ iL L
> ((L‘,J’) s € % S Lu )
6 (t,H) = - - (1.47)

: (u_,u )

Combination of eq. (1.47) with (1.28) yields a microscopic expression for the

relaxation time in the weak-coupling limit.




CHAPTER 2

SPIN-SPIN RELAXATION IN DIFFERENT TEMPERATURE REGIMES

2.1 Introduction

In this chapter we will derive expressions for the electron spin-spin relaxa-
tion times and resonance linewidths in the different temperature regions.

The expressions valid at high temperatures have been given by many authors.
The only new point here is that antisymmetric exchange, of which we will show
the dominant role in Cu-compounds, has been included. The derivation of the
relaxation times in the critical region (near the Néel temperature) is new
although extensive use has been made of the ideas of Huber (2) and of the
scaling arguments of Riedel (3). In the antiferromagnetic state the approach
is new in so far that the magnetic parallel-field relaxation process in the
easy-axis has been ascribed to spin-wave relaxation. A survey of the results

of the dynamical spin-wave theory is given,

Before we start the calculation in the different temperature regimes we will

specify our magnetic Hamiltonian.

2.2 A choice for the magnetiec Hamiltonian

As the characteristic times at which the electron spin system goes to its
internal equilibrium are normally much smaller than the spin-lattice relaxation
times, one is allowed to suppose the spin system to be isolated during its
search for internal equilibrium. In that case the spin-spin relaxation process
is governed by the interactions between the spins only. So our Hamiltonian

only includes magnetic spin-spin interactions terms. In general one has

J(=J(Z +1(dd +»'Kex+3(hfs+?(e‘ (2.1)

which consists of, in this order, the Zeeman, dipolar, exchange, hyperfine and
electric field part. As we only study compounds where the effective spin value
equals ¥, the electric field does not influence the energetic situation, so

H . = 0. We further neglect ¥

el hfs
thesis, both secular and non-secular hyperfine contributions are small com-

as in the copper compounds, studied in this

pared with those of the other interactions. This implies that we exclude very

narrow hyperfine contributions to the memory spectrum, This is justified by

_“9_



our measurements where no strongly field dependent relaxation times have been

found. For the remaining Hamiltonian we have

(2.2)

(2.3)

X, = iij 838 + By 3, x §j) (2.4)
where jij is a symmetric exchange tensor between spins i and j. In the case of
isotropic exchange interaction this tensor reduces to the well-known Heisenberg
scalar Jij' The second part of the exchange Hamiltonian represents the antisym-
metric Dzialoshinsky-Moriya exchange interaction, From egs. (2.2)-(2.4) it is
clear that we neglected the (supposedly small) anisotropy of the g-value in the
Zeeman and dipolar part of the Hamiltonian. The g-value anisotropy is however
implicitely included in the antisymmetric exchange where it is of extreme im-
portance.

Eij ’Bja (2.5)

o -»>
The axial vectors Dij are restricted by the symmetry elements of the crystal

structure. This restriction is easily determined by using the thumb rule

( 7Ba)ij = D7) (2.6)

where / denotes a symmetry transformation while g denotes an arbitrary Carte-
sian component of the axial vector. For example, in the case of an inversion
center halfway ions i and j one has

7D, =D

7—ij | j? } ij Rji (2.7)
Combination of eq. (2.7) with (2.5) leads then to Dﬁij = 0 for all three B.
It is clear that the symmetry elements of the whole crystal structure should
be used and not those of the magnetic ions only.

Antisymmetric exchange was first introduced by Dzialoshinsky (4) to explain
the weak ferromagnetism of a-Fe203. Moriya (5) gave a theoretical microscopic
foundation for the second order case of this exchange interaction. It was
found that antisymmetric exchange has its origin in some residual spin-orbit

coupling.




An interesting point is that antisymmetric exchange, in some cases, leads to
a canting of the electron spins in the antiferromagnetic state. The criterion

for this canting is

ED,.. # 0 (2.8)

When the sum is equal to zero for all components B, no canting will result.
Measurements of both static and dynamical phenomena in the antiferromagnetic
state normally only reveal the canting part of the antisymmetric exchange.
As we will see later, in paramagnetic relaxation or resonance all components
of the antisymmetric exchange contribute to the relaxation process, so these
measurements allow one to investigate antisymmetric exchange in all its

features.

An exact numerical calculation of the non-zero components D8 is practically
impossible. Moriya (5) estimated DBij = (Aa/é)JiJ with g =g - 2. This is an
order larger than what has to be expected for the pseudo-dipolar form of
anisotropic symmetric exchange which is contained in the first bilinear part
of eq. (2.4). We will now make a crucial assumption. The Dzialoshinsky-Moriya
interaction is due to a left over from the spin-orbit coupling, which also
manifests itself in the g-value. We assume now that the spin-orbit coupling
manifests itself in the same way in the antisymmetric components Dg as it did
in the g-values. This leads then to

g 2)Jij (2.9)

where o is a numerical constant which is independent of the direction and
which is expected to be in the order of unity. We expect this assumption to
hold in systems with effective g-values only slightly different from the free
electron value g = 2.0023. The index B denotes now the principal axes of the
effective g-tensor. As we will show in this thesis, assumption (2.9) is per-
.2H,0 and LiCuCl,.2H,0.

AN 37772
Rutten (6) applicated our assumption to the two-dimensional planar compound

fectly confirmed by our relaxation measurements on CuCl

Cu(CZHSNHB)ZC]h and also in this case a confirmation of (2.9) was found.

2.3 Spin-gpin relaxation at high temperatures

The relaxation time rz(ﬁ) is given by

-21 -



. E:z(o,'ri) (2.10)

z is the direction of both static and rf field, By using eq. (2.10) we restrict
ourselves to the case of sufficiently narrow memory functions. The linear
chain case where the memory functions are expected to show relevant long-time
behavior will be treated in chapter 7.4,
The memory function G (t.ﬁ) is given by

= ith + iLsect
(L), e Lu_)

6 (t,7) = 2
(uz,uz)

4

In the high-temperature and weak-coupling limit Gz(t,ﬁ) can be written as

6, (t,H) =5 6, (¢,H) k = +1,+2 (2.

K zk
with

ikw t
g)

<<'K2>> )
—_— ¢ sz(t,o)

sz(t'H) T %
<< >>
sec

H is the full spin Hamiltonian,"’fSec the secular part of the interaction

Hamiltonian and wy the Larmor frequency. Furthermore one has

Tr A

<<A>> =
Tre1

The factor <(W§>/<<W§ec >> has first been introduced by Tjon (7).

Terwiel and Mazur (8) have shown that this factor is related to the non-zero

limit value of the relaxation function ¢(t,H) for tow

B 2
u = (<<H H
One has (UZ"Z) ( <rsec>>/<< >>)(HZ,MZ)

Substituting eq. (2.13) in (2.10) one gets

<<'l(2>> =

TR A

<<l >> k
sec

sz ('km.)( ,0)

; 1“ e kg t

'kusz,o) = = e G . (t,o0)

zk( 21 *w zk

For sz(t,o) one has in the high-temperature and weak-coupling limit




i3 t ¥ t
S

sec il ec
2 et e h I e h >>
6 plti0) = S5 —= 2 (2.17)
< h <<S” >> >
z
where S_ =135 .. Use has been made of M_ = gu. S . The ¥, are defined by
z ; zi z Bz k
H = =ki 2.18
[s,, %] K, ( )
b = J i ¥
(nsec (_2 +H_, + W& + (2 (2.19)

For an explicit expression for the relaxation times, one has to know the shape
of the memory spectrum. The exact shape of the functions sz(t.o) or Ezk (w,0),

however, is still unknown although, for some models, much progress has been made
in recent years. Making some realistic assumption about the shape of the memory

function, one is however able to calculate explicitely the relaxation times

2 th - -
in many cases. The n -moment of the memory spectrum is given by
n

n 4o n = o=n
w?> =/ azk(m,o)duj = | (d—t-n sz(t,o))t - (2.20)

By inspection of eq. (2.17), one finds the odd moments to be equal to zero.
Furthermore one has

2 <<.T(_ 7(k>>

O et K R (2.21)
k f2 2
1 <<S ">>
z
K2 < d JONH I ]
<w >, = sec’ k''" -k’ sec (2.22)
k=8 2
<<S 5>
z

It is usually assumed now that the memory spectrum is a sum of Gaussian lines
with moments given by eqs. (2.21) and (2.22). In that case the partial memory

spectrum functions tzk(u,o) are given by

- 2
k2 g <<1(k1(_k>>3/2 52 HELNT Y
?fzk(m,o)=—-/— : ]%p-‘—
hv2 W ; ¥ o ] !
2T <<SZ>> <<[ Sec,ﬂk][{_k,ﬂsec]>> 2 <<[W;ec'uk][w-k'“;ecl>>
(2.23)
Due to the fact that Ezk(m,o) is even inw, eq, (2.15) reduces to
2
&>, =1 <<H™>>
(W) = 2n (€. (u,,0) + & . (20,,0)} (2.24)
z <d(.secz» z1 ¥ z2 2?
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Combination of eqs. (2.23) and (2.24) yields an explicit, microscopic expres-

sion for the relaxation time of the average total magnetization.

Using this result one easily finds an expression for the low-frequency
paramagnetic resonance linewidth. Verbeek et al. (19) have shown that the full

resonance linewidth at half maximum is given by

h 1 1
= ( + )
o g Mg TB(O) TY(O)
The indices o, B and y denote the three magnetic axes. So, the iow-frequency

(2.24a)

(AH]/Z)

field linewidth is given by the average value of the zero-field relaxation
times in the plane perpendicular to the static field direction. Combination
of eqs. (2.23), (2.24) and (2.2hka) yields a microscopic expression for the

resonance linewidth.

2.3.1 Note on the Gaussian assumption for the memory spectrum

In this note we restrict ourselves to three-dimensional compounds where long-
time behavior of the spin correlation functions is relatively unimportant.

It is shown in chapter 2.4 that the memory function, which is in fact a sum

of four-spin correlation functions, can be reduced, using some decoupling
scheme, to products of two-spin correlation functions. By further transfor-
ming to the wavevector space one can in a simple way describe all distance
dependent correlation functions in terms of wavevector 3. Theoretical calcula-
tions of Blume and Hubbard (9) have shown that in the Heisenberg cubic lattice the
two-spin correlation functions with small q behave diffusively, those with
intermediate q are Gaussian-like while those with large q (border of the Bril-
louin zone) have an oscillatory character.

It depends now on the part of the Brillouin zone from where the most important
contributions to the total memory function come, whether the Gaussian assump-
tion is realistic or not. It is to be expected that in directions where no
pathological preference exists for either small or large g-values, the real
shape of the memory function is very well approximated by a sum of four
Gaussians. It should be noted that the above stated is only valid for three-
dimensional compounds. In the linear chain or planar compound the memory
function normally deviates strongly from the Gaussian. We will discuss this

more amply in section 7.4.
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2.3.2 Expressions for <<Wkﬂ;k>> and <¥_ . kll ! sec]>>

Explicit calculation yields

2 2
=<H>> 1+ 2 (2.25)
a2 2
<< >> H,
sec i

H is the static field and Hi an internal field given by

2 2 2
= £ ; 3, J
Hi kBC (<<Hdd>> + <<K§x>> + 2 <<(dd(ex>>} (2.26)
C is the Curie constant and kB the Boltzman constant, For exchange interactions
much larger than the dipolar interaction, one has
2 2 2 4s(S+1) xx2 & zz
HS = <<H® >> = ==L T JT + JYY + J,, (2.27)
i  k,C ex 2 2 : b ij ij
B g ¥g J
In the expressions for EZK(M,O) one further has
<<52>> = 1 S(S+1) (2,28)
z 3 '
For a bilinear Hamiltonian, such as given by eqs. (2.1)~(2.4), one has
i o 00 e
sec = igj Cij Sz2iSzj * Cij S4iS-j (2.29)
= & 30
Kf1_ 1] Cij Sti Szj (2.30)
SO
% = I it
27 igj C17 S4i 4 (2.31)
The factors Cij are given by
00 _ .27 p (2R 2
cij = Jij + ¥g%ug i (1-3cos Oi') (2.32)
S (X YYa S S ARy 2
cij {;(Jij + Jij) lDzij g g rij(l 3cos Oij) (2.33)
10 . 32.20=1 +oi
=D .. TS o O es Do | .
Cij il 4+ |DXIJ 39 ¥y r|J sin i cosO'J e J (2.34)
++ +2i6 ..
M A & e+ SRR I s i
Cij “(Jij Jij) gaughy; sin 0,. e (2.35)

Catso O'j and ®ij are the usual spherical coordinates of ?ij in the Cartesian
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reference system (x, y, z). It has been assumed that the principal axes of
the exchange tensors coincide with the magnetic axes (x, y, z). z is the di-
rection of both static and rf field. In the case of large exchange interac-
tions and small anisotropy, C?? and C?} reduce to

€99 = ¢t = oy . (2.36)
1) 1) 1]

Bz e CPR WY g2y (2.37)
BB ij i

We see that, in that case, antisymmetric exchange is only influencing Czl(u,o)
while anisotropic symmetric exchange only influences Ezz(m,o).

The calculation of <<I ¥ , >> and <<[H JC1[H 30 ]1>> is laboreous. We have
k -k sec’ k -k’ sec

<<ka_k>>= <<HkV_k>>:o + A<<Wkﬁ_k>> (2.38)

(2]

< ¥ AN = <M, NI K 15>+ b K I K 1>

oy 5
sec sec 18 ec

(2.39)

The index Zs denotes the normalized traces for isotropic exchange interaction
and (anisotropic) dipolar interaction only. The prefix A denotes the change

in these traces when adding antisymmetric and anisotropic symmetric exchange
interaction to the interaction Hamiltonian. Explicit expressions for
<<ka_k>?s and <<[Ngec‘nkllw—k'“secl>?s will not be given here as these are
easily found elsewhere, see e.g. references (10) and (11). For large exchange
interactions (compared with the non-secular interactions) and small anisotropy,

we calculate for the spin S = % case.

A<<VAH;]>> SR D2 + 02 (2.40)

T8 i#) xij yij

£ y(p2 62. 42
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2 32 T] ] ) ) 5] 1]




- 1 I
\ : ¥ .7( = > 8
[<([usec'( ][";2 sec]>> 16 i,j,1#

YY_ XX YY_ %Xy an2.2 =3 . 2. - J
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oYYl XX VYL XX o 22 =3 2
(le le)((Jij Jij) 3g Mg rij sin a8 cos 2¢ij}
2
Ui ndin*t a5

(2.43)
D denotes the components of the antisymmetric exchange vector (see eq. 2.9).
Using these expressions and eqs. (2.23) and (2.24), one is able to calculate
numerically the field dependent high-temperature relaxation times in the three
magnetic axes. In the case of large antisymmetric or anisotropic symmetric
interactions (compared with the dipolar interactions), one may neglect the
traces denoted with Zsg. In that special case the calculation of the relaxa-
tion times is very simple.
The resonance linewidths are found by substituting the calculated relaxation

times in eq. (2.24a).

2.4 Spin-spin relaxzation near the Néel temperature

Near the Néel temperature the critical slowing down of the spin fluctuations
strongly influences the dynamical behavior of the magnetic system,

Using dynamical scaling assumptions and a factorization of the spin correla-
tion functions we will derive relatively simple expressions for the zero-field
spin-spin relaxation times in weakly anisotropic, magnetic systems. Although
we restrict ourselves to antiferromagnets, the basic ideas of the theory also
apply to ferromagnets. Our theory is an extension of the theory given by

Huber (2)(12)

In the weak-coupling and low-field limit the relaxation time t of Mz(t) is
given by (cf. eqs. (1.47) and (2.10))

o Pt I + iL_t+ iL t
T it S ! ((LMZ) y € 2 sec LMZ)dt (2.44)

where %oz is the zero-field static susceptibility in the z-direction. In (2.44)

d i = (M =
we used that at low fields X ( z’Mz) = (uz,uz).
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The Liouville operator L is defined by

= i
LMZ “ h [x’Mz] ~ h [Mhsec’Mz] (2.45)
We shall further use the notation
io( it
__o
Alt) =e " Ae " (2.46)
ﬂb - H; + Msec (2.47)

0f the possible non-secular interactions we will take into account dipolar

and antisymmetric Dzialoshinsky-Moriya interaction. Of course any other inter-
action could be included but in the copper compounds we study, dipolar and
antisymmetric interaction are the major sources of non-secular contribution.
Eq. (2.3) can also be written as

22 T I 1 cacB
Had = 297¥p 147 o,8 Yup 517 (2.48)

with a,8 = x, y, z, the coordinates in the Cartesian reference system.
i_j - 2 al > > -5
s = (rijGaB B(rij)a(rij)s)rij (2.49)

§ denotes the usual Kronecker symbol. For the antisymmetric exchange
= pllaYeZi_ oZeYy KlipaZaXi . eXaZ T reXeY _ oYeX
Eij.(§ix§j) 0, (sYs] - s7sY) + 0 J(s{s] - §787) + 0, (s7sY - s{s])  (2.50)
with the condition that D;J I Di'. The part with D;J is fully secular and
plays no role in LMZ.
Substituting eqs. (2.48) and (2.50) in (2.44) and (2.45) one finds ((LMz)f,LMz(tﬂ
as a sum of four-spin correlation functions. For an uniform description of
all these correlation functions one usually transforms to the wavevector space.

This spatial Fourier transformation will be defined by

ol a7t 2 iE.?ij >
= q e U(Q)aB (2.51)
5> >
g - Gl
o) =NT 2T (g, (2.52)
o =1 % ia-?ij o>
SJ. T e s (q) (2.53)

3 . . T I
Four-spin correlation functions, here expressed in q instead of inr,., are
extremely difficult to work with, 1




To evade much of the difficulty, we factorize the correlation functions by

using a dynamical Random Phase Approximation, defined by

(s% /5B el (p)s® () —2BPA
q] qz q3 QA
B B
R (I I SR = W R SR VT TS e (e
B ay B6 q1, q3 qz, qb ad " BY q]. ql' qzv Q3 ql q] qz qz

(2.54)

The Kronecker delta should not be confused with the index & which denotes a
Cartesian coordinate. It is impossible to say whether by this decoupling
important information is lost. We will assume that the two-spin correlation
functions still contain all information relevant to the dynamical behavior
of the magnetic system.

Using the DRPA one derives for the integrand in expression (2.44)

g6U6
+ B B )X
((LMZ) > LMz(t)) = _;E;E—— q
luxx(q)-u (@) [2(S%,s2(e)) (8Y Y (0)+
+2|U, (q)| {(s_q :(:)) + (sY sY< )21+

+|u,_(q)|? + “ﬁ—g| b (a)] 2y(sY g SH(SZ,SZ (0))+

Xz

H|u, (@)% + —n:K' b (a)]? H(SZ g Sqle)) (82 52 (1)

B (2.55)
Although the vector symbol has been omitted, q still stands for the wavevector
a. The q-sum is taken over the total Brillouin zone. In the simple case of
isotropy in the two-spin correlation functions and when omitting the contri-
bution due to antisymmetric exchange, eq. (2.55) reduces to the expression
given by Huber (2). Substitution of eq. (2.55) in (2.44) gives a formal expres-

sion for the low-field relaxation time.

The basic feature of all dynamical critical phenomena is the critical slowing
down of the spin fluctuations. This slowing down, which arises from the pro-
gressive correlation between the electron spins, makes itself mostly felt in
the two-spin correlation functions with g-values near the wavevector ao of

the ordered state. Both the time surface and the start value of each of these
correlation functions drastically increases when nearing the Néel temperature.
To determine the wavevector ao the antiferromagnetic spin structure should be

known in so far that the magnetic spins can be labeled in sublattices.
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>
The vector 9 is then the vector that maximizes (sfq,s:) with S: given by

I e
S Pl B B
q j

J

For a two-sublattice antiferromagnet this implies that for spins i and j in

(2.56)

the same sublattice aé’Fij = 0 and for spins in different sublattices

> >
qo'rij = (2n + 1)7.

The progressive correlation between the spin fluctuations can be described by
a parameter £ usually called the correlation length. This parameter £ sets the
length scale of the critical spin fluctuations. It is obvious that the relaxa-
tions rate I', which sets the time scale of the fluctuations, will be strongly
influenced by the progressive correlation between the spins. The functional
relation between length and time scale is given by the so-called scaling

function 2. In an antiferromagnet one has (3)
r(aa.x) = /2 a*) (2.57)
g (2.58)

with Aa = a = ao' Eq. (2.57) is a direct result of dynamical scaling assump-
tions by which some homogeneity conditions are forced on the scaling function.
The dynamical scaling theory for isotropic magnetic systems has been given

by Halperin and Hohenberg (13) and can be seen as an extension of the static
Widom-Kadanoff scaling theory (14)(15). Eq. (2.57) is valid in the so-called
hydrodynamic region defined by [Aang-

The scaling function @ reflects the symmetry of the magnetic system,

Riedel (3) has shown that in anisotropic magnetic systems with uniaxial sym-
metry, the anisotropy can be described by a second length which is finite at
the Néel temperature. This is in agreement with the neutron scattering data
of Schulhof et al. (16) on the uniaxial compound Man. In their experiments
it was found that only the staggered susceptibility parallel to the easy-axis
was divergent at the Néel point, the perpendicular staggered susceptibilities

remained finite.

We assume now that in anisotropic systems where the small magnetic anisotropy
is not necessarily uniaxial, the critical fluctuations can, in first order,

still satisfactorily be described by two correlation lengths.




Let V. be the inverse correlation length parallel to the easy-axis and x

|
the inverse correlation length perpendicular to the easy-axis. One has then

x//(TN) =0 sk (Te) = Ky (2.59)

The value for x, is related to the anisotropy of the magnetic system.
An analysis of the data of Schulhof et al. shows that Kl can, in good

approximation, be described by
{3 (2.60)

The anisotropy in the correlation length introduces an anisotropy in the two-
spin correlation functions of eq. (2.55). We assume now that the anisotropy in
the two-spin correlation functions wholly stems from this anisotropy in the
correlation length. This implies that the correlation functions are supposed
to be isotropic at high temperatures.

Assuming further that the long-time behavior of the correlation functions is
exponential in the hydrodynamic region, one has

'Tq(ﬂq.r)t

(80 o 5 e st s e
Ag=q " "Aq+q 89-q " Aq+q

(2.62)
where o denotes the Cartesian components. The relaxation rate T (Aq,x) of

5 a
the spin fluctuations near the wavevector 9 is given by

P (Aq,u) = K{‘l

Qa

3/2 ﬁ(Aq/K“) (2.63)

Eg. (2.63) states that the relaxation rate Fa of the spin fluctuations in

the a-direction only depends on the correlation length in that direction.
This, in fact, is an approximation as the relaxation rate may also slightly
depend on the correlation lengths in the other directions (3). Expression
(2.63) however represents in a reasonable good approximation the basic corre-

lation length dependence of the relaxation rates.

>
In general the scaling function @ is not symmetrical in the components of Aq

Expansion of the scaling function up to the second degree yields

2
A A
\ ': ') :l}‘ “q(_"q‘.l
L B Y e St 1 (2.63a)
A aAqBBAqB, Ag=o0 Ky

which by a simple linear transformation Aa»Aaf which is governed by the

crystal symmetry, can be written as




A * A %*2
2" /e ) = B (1+e~2) (2.64)
o (o} KZ
o s

an expression which is symmetrical in the components of Aq, For simplicity
the prime will henceforth be omitted, it should thus be reminded that below
Aa stands for Aaf
The scaling function (2.64) has been verified by neutron scattering experi-
ments (16) on the uniaxial compound Man. The numerical constant c depends
on the crystal symmetry and is normally in the order of unity. As our final
results will only be weakly dependent on c, we will take this constant equal
to unity.

In that case one has

r_(aq,x) = Kgfzsouﬁ—zl;) (2.65)
a
For the wavevector dependence of the staggered susceptibility we shall use
the so-called Ornstein-Zernike form,
(se ,sa )k2
(s* i B o) ——;g9——33—72 (2.66)
_Aq-qo Aq+qo Kz + Aq

The Ornstein-Zernike form is valid for the case where n, the critical expo-
nent which describes the temperature dependence of the numerator in eq. (2.66),
is equal to zero. The approximation of n = 0 is justified by the fact that
n is expected to be very small, e.g. n = 0.04 for the three-dimensional iso-
tropic Heisenberg system (17).
As we supposed the two-spin correlation functions to be isotropic at tempera-
tures for which x//>>.<A , one gets, using the fact that the small critical ex-
ponent 1 is independent of the direction, for temperatures sufficiently near

™

// _ 4
(s_q 'Sq. 511 = (S_q < & (2.67)

S//)KZ
o o
The inverse correlation length in the direction parallel to the easy-axis is,
for temperatures sufficiently near the Néel temperature, given by
T-T

//(T) = K, ¥ 3 (2.68)

K

Ko is a constant, the critical exponent v is related to the critical exponent

vy of the parallel staggered susceptibility. For n = 0 one has
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Yy = 2v (2.69)

The temperature dependence of the perpendicular inverse correlation length

is found by substituting eq. (2.68) in (2.60).

We will now turn our attentiononceagain to the relaxation time of the average
total magnetization Mz(t), given by eq. (2.44). The g-sum in eq. (2.55) can in
good approximation be split up into a critical part, which contains all the
contributions from the hydrodynamical region around ao’ and a non-critical

part which shows a much less pronounced temperature dependence.

Lo il + (a1

T ‘t'critical t'non-critical

(2.70)

Assuming that the coefficients U and D in eq. (2.55) are not singular at ao'

one has, for temperatures sufficiently near TN, in good approximation

g6u6k i
1 = BB \ ' '
(A?)crit._ th N | xx(qo) Yy qo)’ Fx +2'Ux % )l (Fxx+Fyy)
(o)
+{!U )|2+T—E|D (q I)F'
q UB
+ (U (a2 + g 10, (9 )% Fp ) (2.71)
with
. w "] I =0 B
AR Y gl G S (2.72)

The Aq-sum includes all the hydrodynamical modes. Using eqs. (2.62), (2.65),
(2.66) and (2.68) one gets
// // 2 4 572,
(S'qo ik 11 %o -gv ( )
Fi = €°F 2.73
af ZﬂzBo af

where V is a reduced volume per spin. This reduced volume is equal to the real
volume per spin multiplied by a factor which describes the deviation of the
lattice from the cubic lattice. This factor is related to the transformation

AE»AE and is normally in the order of unity. F af is given by
5/2 =
2

- 21 I /1
Pkt " (2.74)
]

2 2 2 2 - 2 2 -3, 2
(Ka+Aq )(<8+Aq )[Kai(xa+Aq )+K82(KB+AQ
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The functions F1 are only dependent on rﬂ/q// and are easily computed by

8
transforming the Aé-sum into an integral. Care should be taken to include

all hydrodynamic modes. The numerical results are given in Fig. 1. The interes-
ting point is that the values for F o are not restricted to one case but can

be applied to all antiferromagnets as long as our assumptions hold.

Full

Fig. 1 fiB Y eq K7
g RIS S LT
For large «x,/k 2 F ,, = 0.09817
e Lavge- ki 2y 2 -y
= 0.3861 (x,/x,,) '°
// L Ssyr e
F = 0.0981 (k,/x iy
i) €.l A/ //)
The critical part of the relaxation time is thus given by
-
1 TN _ 2 2 2
a5 =A —€ “{] - l F +F
(At)crit. A X t Uxx(qo) Uyy(qo)' ny+2|ny(qo)l ( XX yy)
+]u,, (a ) |2 = 0, (a ) 123F
Xz o y o T yz
g Hg
2 4 2
{ }
+‘|Uyz(qo)1 + i B 'DX(QOH FXZ' (2.75)
9 ¥g
with
6
g u k
B B (ol &/
A = (80 SR Y =1 =52
2?r2712N2 q qo) k//\/ Bo K (2.76)
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It should be noted that A is a calibration factor which is independent of the

temperature and the direction.

For an explicit calculation of the critical part of the relaxation time the
only problem left now is to determine the exact value of rA/v// at a given

temperature. We have (cf. eq. (2.68))

=t gd (2.77)

K, = kE (2.78)

The value for k,and thus for Ghdepends on the magnetic anisotropy of the sys-
tem. 3 :

Making a molecular field approach we estimate, using the fact that the aniso-
tropy finally turns the electrons spins towards the easy-axis, that in a three-

dimensional orthorhombic antiferromagnet

H + H
= A
ﬁ;AzAl—z. (2_79)
2 H
E
where HAI and HAZ are the orthorhombic anisotropy fields, HE is the exchange
field.
= = is yi € = i .
For Man, where HM = HA2 = HA’ this yields A 0.031 which should be com

pared with experimental value EA = 0.033 found by Schulhof et al. (16) (see

also ref. (3)) from their neutron scattering data., Combining eqs. (2.77)-(2.79)

one gets
K H + H vV Vv
rA = ( Al AZ) e (2.80)
Sl H

We further approximate the non-critical part of the relaxation time by

(‘) (2.81)

1
(A?)non—critical T A T

In compounds (such as RanF3) where due to symmetry reasons the critical part
of the relaxation time is equal to zero, only a very weak dependence of the
relaxation time on the temperature, even very near TN, is found (18). This

is also the case in MnF2 in the direction parallel to the easy-axis (19).
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All this supports the approximation (2.81).

Using eqs. (2.70), (2.75), (2.80) and (2.81) and the values for Fas from

Fig. 1, one is able to calculate the relaxation time T over the total tempe-
rature region above the Néel temperature. Stating this we have implicitly

used that where the theory for the critical part of the relaxation time looses
its accuracy, the deviations will not be important any more as at higher tem-
peratures the non-critical part determines nearly completely the relaxation
process. The value for A, defined by eq. (2.76), is very difficult to calcu-
late for non-cubic systems. Such drastic approximations have to be made that
comparison of a theoretical value with an experimental value cannot be con-
clusive in any way. The value for A may therefore be inferred from experiment
by adapting the theory to experiment at a given temperature in a given direc-
tion. This is a loss of generality but as A is only a calibration factor, the
temperature dependence of the relaxation times and the relative differences be-
tween the relaxation times in the different axes still allow a thorough check

on the theory.

2.4.1 Note on the value for v

The critical exponent v is related toy by eq. (2.69).

For a three-dimensional isotropic Heisenberg system high-temperature series
expansions (20) have shown that Y = 1.43, The critical exponents have been
found (21) to be independent of the lattice anisotropy (different strength

of interaction in different directions). Only in extreme cases where a large
lattice anisotropy implies a change in dimensionality the critical exponents
are influenced by the lattice anisotropy. For a magnetic anisotropy in the
interaction parameters the case is completely different. It is believed (22)
(23) that the introduction of a very small magnetic anisotropy in the isotro-
pic three-dimensional Heisenberg system changes the exponent y discontinueos=
ly from the Heisenberg to the lsing or XY value, dependent on the kind of aniso-
tropy one introduces. Although the dependence on the anisotropy may turn out
not to be singular at the isotropic Heisenberg case, the critical exponenty

certainly is very sensitive to small anisotropy variations.This point is demon-

strated by the experimental fact that for the highly isotropic RanF3 one has

v = 0.72 (24), while for the weakly anisotropic MnF, (1.5% anisotropy) one

has v = 0.63 (16), a value which is very near the Ising value.
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The absolute magnitude of the shift in y due to magnetic anisotropy is how-
ever small and the relaxation process will be much more influenced by the
cut-of f effect in the correlation length than by the dependence of y (and

thus of v) on the magnetic anisotropy.

2.4.2 Some final remarke

In studying the critical temperature dependence of an arbitrary property
there is a strong tendency to look for a critical exponent, Also the tempe-
rature dependence of dynamical phenomena, such as relaxation and resonance,
are normally rather well described by a power-law dependence although, in
most cases, near the Néel temperature some deviation occurs. This deviation
is usually attributed to an inaccuracy in the measurements.

For the critical exponents derived from relaxation and resonance experiments
very different values are found. Even the exponent is sometimes found to be
dependent on the direction. All this seems to be in contradiction with the
so-called universality principle which states that the critical point expo-
nents should only be dependent on drastic changes in dimensionality and range
of interaction and not on the specific lattice and interaction parameters of
the compound studied.

The generalization of the theory of Huber (2)(12) presented in this chapter
gives a full explanation of this apparent contradiction. It is shown that

the magnetic anisotropy strongly influences the dynamical critical behavior.
It depends now on a combination of crystal symmetry and anisotropy in the
critical slowing-down of the spin fluctuations which critical temperature de-
pendence will be found. It is shown that in the anisotropic system the total
critical temperature dependence cannot be described by a single critical ex-
ponent, although in some temperature region some power-law dependence may
exist.

In this thesis it will be shown that the results of this theory are in perfect

agreement with experiment in three different magnetic compounds.

2.5 Relaxation in the antiferromagnetic state

In studying antiferromagnetic relaxation one has to differentiate between the

temperature region near the Néel temperature where critical fluctuations are
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important and the temperature region far below T, where the relaxation process

N
is governed by the regular spin-wave fluctuations. The relaxation process in
antiferromagnets can be complicated by the simultaneous occurrence of diffe-
rent spin-wave scattering processes. Before going into detail on the theore-
tical results we will discuss and compare shortly the different experimental
ways of measuring antiferromagnetic relaxation. We will restrict ourselves to
the easy-axis case where the static field is parallel to the easy-axis. The
most important experimental methods are antiferromagnetic resonance, neutron

scattering, parallel pumping and direct relaxation measurements,

2.5.1 Antiferromagnetic resonance

The wavevector dependent spin-wave spectrum of an orthorhombic antiferromagnet,

at T = 0 and with the static field H parallel to the easy-axis, is given by

w
P A 20 _ \2
(—Y— ) = (HE + HA])(HE + HAZ) + H (HE(k)

)2 )23

(2.82)
H. is the exchange field, H,. and H,, are the orthorhombic anisotropy fields.

E Al A2 i
Wik are the spin-wave frequencies at wavevector k.

2 2 2
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and Doy

Y= g;;Bh-1 (283)

Y = exp (ii.?nn) (2.84)

where ?nn is the vector which points to one of the nearest neighbors.

The orthorhombic anisotropy introduces an energy gap in the spin-wave spectrum
which persists at zero field. The wavevector and field dependence of the spin-
wave spectrum is given in Fig. 2. At non-zero temperature the whole spectrum

is shifted to lower frequencies. For low temperatures the spin-wave gap re-
mains unchanged but as T»TN the spin-wave gap is believed to approach zero with
a certain power of the correlation length.

The usual resonance situation is now that at a fixed frequency (k=0) one in-
creases the static field till the resonance conditions are satisfied. By vary-
ing the static field around the resonance field one measures the field line-

width of the antiferromagnetic resonance lines. See Fig. 2.
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Fig. 2 The spin—wave resonance frequencies of an orthorhombic anti-
ferromagnet at T = 0. The static field is parallel to the

easy-axis. The broken lines give the temperature dependence

of the low branch at inereasing temperatures.
There are several reasons why AFMR is not always a good method to determine
the relaxation rate of the magnetic system. From Fig. 2 it is easy to see that
with increasing temperature the low-branch resonance field at fixed frequen-
cy decreases (HSF is only weakly temperature dependent). When comparing the
experimental temperature dependence of the resonance linewidth with theore-
tical results, one has to eliminate first the intrinsic field dependence of
the relaxation process. This is very difficult and therefore omitted more
than once.
Suppose further that the relaxation process is due to several decay processes
with different decay times. In direct relaxation measurements this is easily
detected but in the resonance field-linewidth these processes broaden simul-
taneously and thus are difficult to distinguish, especially in the case of
asymmetrical lines. Furthermore it is an important experimental fact that the
relaxation of the uniform precession is very sensitive to crystal imperfections,
such as cracks, which give rise to a temperature independent residual line-
width. This broadening effect is difficultly accounted for theoretically, one

has to measure at sufficiently low temperatures to determine this residual

linewidth,
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2.5.2 Neutron scattering

Neutron scattering is usually one of the best experimental methods to probe
spin dynamics. In the antiferromagnetic case however the decay rates turn

out to be very small at low temperature and long wave lengths. For this rea-
son the k = 0 antiferromagnetic relaxation cannot be accurately observed by

neutron scattering experiments,

2.5.3 Parallel pumping

Parallel pumping is based on a non-linear parametric excitation of spin-waves.
The static and rf field are both parallel to the easy-axis. Under certain
conditions a large rf field excites so many spin-waves of a certain wavevector
k that the growth rate exceeds the decay rate. In that case instability of

the particular spin-waves occurs which manifests itself as a sudden increase
of the rf field absorption by the sample. This spin-wave instability was first
observed by Schldmann et al. (25) in a ferromagnetic compound in 1960. There
is more than one way to create spin-wave instability but in an orthorhombic
antiferromagnet, at frequencies lower than the zero-field low-branch spin-
wave frequency, only one process is important, In that process a photon of

the rf field creates two magnons in the low spin-wave branch. Due to energy
and wavevector conservation and the symmetry of the spin-wave spectrum, these
two magnons have opposite wavevectors and equal energy. This implies that

Wi = w/2 (2.85)

O is the k-dependent frequency of the low-branch,w is the frequency of the
rf field. The excitation process leads to instability above a rf threshold

field L given (26) by

2 2

w w - w
Kieoll) amaik v r(k) (2.86)
Ehb e H(H, .=H, . ) (2H_+H . +H )
Y A2 A1 £ AT A2

h

r(k) is the decay rate of the spin-waves with wavevector k. The low and high-

branch frequencies, w, and w,, , are given by eq. (2.82). This equation is

only valid for sufficiently low temperatures. At higher temperatures a more

general expression for Wik and Yo should be used.




The usual situation is that at H = 0 the condition w = w/2 is not satisfied.

If however one increases the static field H, the IowIEranch is shifted to lower
frequencies and at a certain field the condition Wy = w/2 is satisfied for
k = 0. So, if one increases the static field the first spin-waves to become
unstable are the k = 0 waves. When still increasing H the condition will be

satisfied for k # 0. The situation is visualized in Fig. 3.

/H:O
\ w ,,H*O
/ \ w

2

Fig. 3 Creation of two spin-waves of half measuring frequency at non-

zero static field. The dotted lines represent the low branch

at two values of the external static field.

So by merely changing the static field one can select spin-waves of a certain
wavevector k. By measuring the threshold rf field the relaxation rate of the

particular spin-waves can be determined.

A negative aspect of this most promising method is that, if the rf field is
applied for some time, the sample will heat up considerably. Furthermore it
is difficult to measure at low static fields where very high frequencies or
very high rf powers are necessary to create spin-wave instability. Finally

it should be noted that the accuracy for the relaxation rates depends on the

accuracy with which the molecular fields HE’ HAI and HAZ are known.

2.5.4 Direct relaxation measurements

It has been reported by some authors that when one orients both static and

rf field parallel to the easy-axis, apart from spin-wave instabilities at large
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rf powers, no absorption will be detected. As it has already been pointed out
by Verbeek (19a), the non-zero value for the static susceptibility in the easy-
axis implies that somewhere in the frequency region a decay process should
occur which relaxates the susceptibility towards zero. In this thesis it will
be shown that, in at least two antiferromagnets of different structure, an ab-
sorption corresponding to a single relaxation process is found in the case

where both static and rf field are parallel to the easy-axis. Such an absorp-

tion was also detected by Verbeek (19a) in Man.

The discrepancy between both results can be explained by the fact that the
earlier experiments have been performed at frequencies much higher than the
typical relaxation frequencies. The relaxation times we find are in excellent

agreement with those derived from parallel pumping experiments for k = 0.

In our opinion regular relaxation times measurements in antiferromagnets be-

low TN are most promising as there experiments determine directly the k= 0 de-
cay process of the spin-waves at arbitrary temperatures and fields. In contrast
to the other experimental methods the temperature and field region are not 1i-

mited.

for the k=0 decay process

J

2.5.5 Theoretical results

At temperatures well below the ordering temperature the dynamical properties

of antiferromagnets can be described in terms of spin-wave excitations. The
validity of such a description depends upon the product of the spin-wave fre-
quency and the spin-wave lifetime being much greater than one. In the compounds
we study this will be the case at nearly all temperatures and static fields
outside the critical regions near TN and the spin-flop field. At intermediate
temperatures, outside the linear spin-wave regime, the decay process arises
mainly from scattering of spin-waves by thermally excited spin fluctuations.
Many authors have derived expressions for the k-dependent spin-wave decay rates
in the different temperature regimes. Apart from the fact that some of these
results do not apply to our k = 0 case, it has been shown by Harris et al. (27)
that some of the results are in mathematical error. In nearly all studies the
possible field dependence of the decay rates is not taken into account, so
these results only apply to vanishingly small fields.

Apart from the two-magnon imperfection scattering which is especially impor-
tant to the relaxation of the uniform precession (i.e. uniform resonance) the

relaxation process is governed by multiple-magnon and magnon-phonon processes.
=1




The various theoretical results for the k = 0 relaxation rate T'(Z 1/t) are

given in table 1. For the symbols in table 1 we have

Se L
wy = g.leh HA
e o Gk He = 2zgs ]
Np 25 HpRi el &
Tye = hko (2w0.)?
AE 1 oh S ARE
z = number of nearest neighbors table i
author |ref. r (k = 0) region
Genkin (28) | 6w 2k n™! T expl=T,./T) T<<T
AYE “B AE AE
Urushadze | (29) | 2020 %k.n "'t Ts>T
rushaaze mAmE B AE
Kawasaki [ (30) | 8.5 10722572 w2k b1 exp(-T _/T) TeeT
2 A B AE AE
=4 2 -2 } -3/2 2 -2.2
8.5 10 'z°s WAYE th T T>>TAE
§ =2 3/2 =5/2 -2.2 »
Harris (31) 2.919 S wp" “we ké\ T° exp( TAE/T) T<<TAE
1.548 S_Zu)Aw£3k;h-3T3 T>>TAE

All the results given in table 1 are valid for antiferromagnets with axial
anisotropy at infinitely small static fields andT<<TN.

Harris et al. (27) recently published more detailed results but these contain
unknown numerical constants. Their results (31) in table 1 are from an investi-
gation of the damping in the lowest Born approximation using the Dyson-Maleev
formalism, which for small S they believe to be a better formalism than the

Holstein-Primakoff one.

In the critical region below TN the relaxation process is complicated and, apart
from the results of dynamical scaling, relatively little is known theoretically.
The transverse fluctuations of the magnetization show well-defined spin-wave
excitations while the longitudinal fluctuations are diffusive. As the tempera-
ture dependences of the damping constants of the spin-wave excitations and of
the longitudinal diffusion constant are still unknown, no comparison of our
experimental results with numerical calculations could be made. On the other
hand the situation is too complex to derive these temperature dependences from

our measurements.
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CHAPTER 3
EXPERIMENTAL TECHNIQUE

Equipment

For the relaxation and resonance experiments described and discussed in this
thesis we used a calorimetric method.

The sample is placed inside a quartz sample holder which is connected, by a
quartz capillary, with a pressure transducer outside the cryostat. See Fig. 4.
The sample holder and capillary are filled to a certain pressure with helium
gas.

The static field is supplied by a water-cooled Newport (4 inch type A) magnet
outside the cryostat while the rf field is supplied by a coaxial Lecher system
inside the cryostat. The Lecher system has been described by Van der Molen (10).
The static field magnet and the sample can be rotated independently about the
same axis over more than 2700. In that way, both relaxation (static field parallel
to the rf field) and resonance (static field perpendicular to the rf field)
measurements can be performed in nearly all directions of the crystal plane

perpendicular to the rotation axis.

capillary~__

“pressure
transducer

reference
volume

Fig. b  Calorimetric system

Due to the rf energy absorption by the sample the temperature of the sample
and sample holder increases, which reflects itself in a pressure increase of the
helium gas inside the closed calorimetric system. The pressure increase is

detected by a pressure transducer (S.E. 150/20'") and converted into an electronic

signal which is written on a recordezs




During the measurements the sample is isolated from the bath. The static field
is measured using a Hall probe (Siemens FC 34) just outside the cryostat while
the rf power is detected by measuring the rf voltage at a given point of the
Lecher system. The rf power is supplied by a high-power oscillator (Airmec type
304), push-pull amplifier and (for the highest frequencies) a tripler. The
frequency and static field ranges are given by v = 4 - 540 MHz and H = 0 - 8 kOe

respectively.

3.2 Calorimetric system

The calorimetric system can be represented by a volume V2 at low temperature

T, and a volume V

0 h , see Fig. 5.

at room temperature Th

Fig. 5 Schematic representation of the calorimetric system.

In equilibrium the pressure of the helium gas is the same throughout the system.
At the start of each measurement contact helium gas is let in between the sample
holder and the bath. The sample cooles off to bath temperature T0 and the pres-
sure in the system will be Po- When the bath temperature has been reached the
sample is isolated from the bath by pumping the contact helium gas out.

Due to a small heat input from outside the cryostat the temperature begins to
rise slowly. When the rf power is turned on the energy absorption by the sample
gives a steeper temperature increase. When the rf power is turned off the tem-

perature increase returns to its former value. A typical run is given in Fig. 6.

For the schematic model of Fig. 5, the relation between the pressure increase

Ap and the temperature increase AT of the volume Vp is given by

.Q(To)




with

HT) o =t (3.2)

T, and T, are given in Fig. 6, T

of the calorimeter gas at bath temperature.

is the bath temperature and Po is the pressure
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By checking eq. (3.1) in different situations,we found that the schematic model
given in Fig. 5 was appropriate for the real calorimetric system.

AT = T2 - T] (3.3)

The temperature increase dT due to rf absorption (see eq. (1.18)) is given by
= TV x"! -
C(T)dT = mvh_ g x"(T)dt (3.4)

C(T) is the total heat capacity of the sample, sample holder and helium gas in

volume V,. v is the rf frequency, ho the rf field in the sample and 9, the

"

weight of the sample. x'' is given per unit weight.

When T2 = Tl is sufficiently small one has
2 =
2 N (T) TO Ap
x''(T) = c(T) — (3.5)
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T = (T, + T,)/2 while further C(T) is given by

¢(M =c (M +c (T +vc, @) (3.6)

Csh(T) is the heat capacity of the sample holder, CS(T) of the sample and

CHe(T) of the helium gas.

Che(T) = vy (3.7)

y is a correction factor for the work performed by the gas which is transported

from V, to Vh when the pressure increases.

(ZQ(T°)+ 1) (3.8)

i
3

Y =

In nearly all situations Y can be taken equal to unity.

33 Calibration

The static field has been calibrated by using proton resonance while at the
lowest fields also a rotating coil Gauss meter has been used. The magnet showed
a remanent field of about 100 Oe which could easily be compensated for by a
small reverse current. The Hall probe showed itself to be sufficiently linear
in our field region up to 8 kOe. The rest voltage at zero field was about

0.20 mV (at 200 mA current) and corresponded to a fictitious field of about 7 Oe. |
This rest voltage was easily compensated for.

The rf field hO has been calibrated by using the magnetic properties of a
wel1-known compound (powdered CuC|2.2H20). Verstelle (32) has found that the
frequency dependance of x'' at zero field for the powdered sample was very well
described by a Lorentzian. Using this we could calibrate our rf field ho as a
function of frequency and rf power. In our measurements on the single crystal of
CuClz.ZHZO we found the frequency dependence of x'' to be Lorentzian in all mag-
netic axes.

We then recalibrated the rf field on the single crystal. This calibration should
be a few percent better than the calibration on the powdered sample as there the

frequency dependence of x'' cannot be exactly Lorentzian.




3.4 Accuracy of the temperature measurement

The accuracy of our temperature measurement depends strongly on the ideality of
the helium gas in the calorimetric system and on the validity of the model given
in Fig. 5. We found the real system to be very well described by the schematic
model of two volumes.

The ideality of the helium gas only plays a role at low temperatures below 5 K.
The pressure Po within the system was always taken much smaller than the helium
bath pressure at the given temperature. The accuracy was checked by measuring
the value of the Néel temperature of CuClZ.ZHZO starting from different initial
bath temperatures TO. The Néel temperature presented itself as a sharp kink in
the temperature increase. The same value was found in every case. We estimate
the relative temperature accuracy to be better than 0.005 K at He temperatures.
The calorimetric method, used for the experiments of this thesis, allows measu-

ring at accurately predetermined temperatures.
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CHAPTER 4
INTRODUCTION TO CuCIz.ZHZO

4.1 General introduction

CuClz.ZHZO was for a long time one of the most thoroughly investigated anti-
ferromagnets. Nuclear magnetic resonance experiments by Poulis and Hardeman (34)
as early as 1952 showed that this compound exhibited an antiferromagnetic phase
transition just above He-temperatures. The easy-axis of the antiferromagnetic

arangement was found to be the a-axis. Further investigations by the Leiden

group, using the nmr technique, revealed many of the now well-known antiferro-
magnetic features, such as the occurrence of a threshold field. It was found
that these features could be explained by the molecular field model initially
proposed by Néel (35) and extended by Gorter and Haantjes (35a). In later years
also much attention was paid to antiferromagnetic resonance as it was believed
that this would yield additional information. In general the static resonance
behavior, e.g. the dependence of the resonance fields on frequency and tempe-
rature, could be rather well explained by sophisticated molecular field theo-
ries such as introduced by Ubbink (36), Nagamiya (37) and Yosida (38). Later
experiments showed the occurrence of some unexplained new resonance lines which
are probably related to the degree of collinearity of the electron spins in the
antiferromagnetic state.

Specific heat measurements by Friedberg (39) showed a sharp A-like maximum at

a transition temperature which within experimental error was the same as that

found from resonance experiments. The entropy change in passing from the totally

ordered to the totally disordered state was found to be in good agreement with

an effective spin value S = %, the same value also derived from susceptibility

measurements by Van den Handel et al. (40). As about one third of the total

entropy change occurred above T, it was clear that a considerable degree of short

N
range order existed above the transition. This relatively large short range

order was confirmed by the susceptibility measurements by Van der Marel (41) et

al. who found a broad maximum in the uniform susceptibility above the Néel point.

Of the investigations on the dynamical behavior of the magnetic system are worth

mentioning the relaxation experiments in antiferromagnetic resonance by Yamazaki

and Date (42), the parallel pumping experiments by Yamazaki (26) and the EPR
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linewidth measurements in the critical region by Zimmermann et al. (43), expe-

riments to which we shall direct our attention later.

In spite of all these experiments still relatively little is known about the real
dynamical behavior of the electron spin system.

As CuC12.2H20 might be an important test case to the dynamical theories at

both high and low temperatures, we performed relaxation and resonance experi-

ments in the paramagnetic, critical and antiferromagnetic state.

k.2 Crystal structure

2.2H20 is well known and found to be orthorhombic

. The lattice parameters are a = 7.38, b = 8.04 and ¢ = 3.72

The crystal structure of CuCl
with spacegroup Pbmn
A. There are two copper ions in the chemical unit cell at positions (0,0,0)

and (4,%,0). Each copper ion is surrounded by four chlorine ions and two water
molecules together forming an octahedron. The copper ions are subject to an
orthorhombic crystalline field which has different orientations for the corner
and base-center ions. The principle axes of the field coincide with the body
diagonals of the surrounding octahedron. One of the principal axes is parallel
to the b-axis while the other two are rotated about the b-axis away from the

a and c axes respectively by an angle of -38° for the corner ions and + 38° for

the base-center ions. The crystal structure is shown in Fig. 7.

372A bg'O(,A (<]
a 738A

Fig. 7 The erystal structure of CuCZZ.ZHZO




The single crystals used in our experiments were grown from a solution of
CuClZ.ZHZO in water to which some alcohol was added (43a). Single crystals

of up to two grams were obtained in this way. Determination of the crystal axes
is very simple by observing the crystal angles while the exhibition of pleochro-
ism (blue-green) allows one to check on the .orientation found. The direction

of maximum growth is the c-axis. For the experiments we used several single
crystals of different shape and weight while special attention was paid to

assure the absence of macroscopic imperfections such as cracks and inclusions.

4.3 Magnetic interactions in CuCl,.2H,0
£ L_) 2

As most magnetic interactions can be at least qualitatively determined by stu-
dying the static spin structure near or in the antiferromagnetic state, we will
discuss the antiferromagnetic spin configuration and the magnetic interactions

together.

By examining their nuclear magnetic resonance data, Poulis and Hardeman (34)
found that below T = 4.33 K CuCl2.2H20 behaved as an orthorhombic antiferromag-

net with the a-axis as the first easy direction. To explain their data they pro-
posed a spin configuration, shown in Fig. 8, where the electron spins within

an a-b plane were parallel to each other but antiparallel to the spins in adja-

cent a-b planes. This configuration, which was the most simple but not the

only possible , was later confirmed by the neutron diffraction experiments of

Shirane et al. (44).

>

Fig. 8 A antiferromagnetic spin structure introduced by Poulis and
Hardeman (34).

B spin canting in the a-c plane due to antisymmetric exchange
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The most simple interaction model which leads to such a spin structure includes
an antiferromagnetic Heisenberg interaction along the c-axis between nearest
neighbors and a ferromagnetic Heisenberg interaction between next-nearest
neighbors in the a-b plane. Calculations by Van Dalen (45) of the overlap of
orbitals using the MO-LCAO approach proved this model to be realistic from a
theoretical point of view. While these isotropic Heisenberg interactions deter-
mine the relative orientation of the spins, it is the anisotropic part of the
total interaction which determines the favoring of a certain direction as the
easy-axis.

Moriya and Yosida (46) showed that dipolar interaction alone could not explain
the experimentally determined orthorhombic anisotropy constants. Further cal-
culation in which also anisotropic symmetric exchange was included in the way
suggested by Van Vleck (47)(48) did not significantly improve the results.

One of the previous authors, Moriya (5), suggested in 1960 CuCl,.2H,0 as an
example in which antisymmetric exchange interaction could occur. One of the
important features of this interaction is that, if allowed by crystal symmetry,
it cants the electron spins in the antiferromagnetic state. In CuC12.2H20 this
canting should be in the a-c plane, see Fig. 8. Application of egs. (2.6), (2.8)
and (2.9) to CuCl,

change contributes to the spin canting, so this canting will be small (about 10)

.2H20 shows that only a small part of the antisymmetric ex-

and difficult to detect experimentally. The neutron diffraction experiments by
Umebayashi (49) on CuC|2.2020 revealed some canting but no exclusive proof could
be given that antisymmetric exchange was at the origin.

We will now give a more detailed discussion of the magnetic interactions in
CuC12.2H20. We assume that the effective Hamiltonian of the isolated spin system
is given by eqs. (2.2)-(2.4). For a description of static phenomena such as
uniform susceptibility and specific heat small anisotropic contributions to the
spin Hamiltonian can be neglected. Several authors tried, using different methodsj
to determine the two isotropic Heisenberg exchanges J and J' in CuCIZ.ZHZO.

J denotes the antiferromagnetic exchange along the c-axis between nearest neigh-
bors while J' denotes the ferromagnetic exchange with the four next-nearest neighs
bors in the a-b plane. Oguchi (50), Marshall (51), Nagai (52) and Hewson et al.
(53) started from both the observed broad maximum in the uniform susceptibility
just above the Néel temperature and the value for the Néel temperature itself
while Friedberg (39) and Clay and Stavely (54) evaluated the magnetic contribu-
tion to the specific heat. Van Dalen (45) gave a theoretical calculation of the
exchange constants while De Jongh (55) estimated the constants from the satura-

tion field below the Néel temperature.
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There is not much agreement between the various results. The value for J/kB
varies from 3.5 to 11 K while the ratio J'/J varies from 0.05 to 0.5.

For further calculation we selected the J-value of Clay and Stavely (54) as
we believe that magnetic specific heat calculations are more reliable than
molecular field approximations and theoretical calculations of the orbital
overlap. Of the values for the ratio J'/J the value 0.131 found by Hewson et al.

(53) seems to be the most reliable. Using this value for the ratio, one finds

-16 -16
e

J = =545 10 erg, J' = 0.71 10 rg (4.1)

It should be stressed that a different choice for the exchange parameters does
not qualitatively alter the conclusions to be made in the discussion of the

relaxation and resonance process in CuCl .2H20.

2
As we study dynamical phenomena even relatively small anisotropic exchange
contributions can be extremely important. In our spin Hamiltonian we include
both anisotropic symmetric exchange and antisymmetric exchange. Van Vleck (47)
suggested a way to calculate the anisotropic symmetric exchange which is of a
pseudo-dipolar form. The calculation is difficult and crude assumptions have to
be made to get a numerical result. Ryabchenko and Shul'man (56) tried to deter-
mine a symmetric anisotropy from the moments of the EPR lines in CuCIz.ZHZO.
They found two sets of values which were in bad agreement with each other. As
was shown by Buluggiu (57) the usual method of determining the moments is some-
times inaccurate and may lead to remarkable errors.

The antisymmetric exchange Hamiltonian is given by the second part of eq. (2.4).
We shall evaluate the symmetry restrictions on the axial vector Bij'

The symmetry elements of CuC12.2H20 are given in Fig. 9.

Cu

® 0
O cl

o Inversion center

o two-fold
rotation axis

Fig. 9 The symmetry elements of Cuclg.ﬂﬁgo. The figures which denote

the copper ions are used in the text.
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There are inversion centers halfway all crystal axes. The inversion center
halfway the c-axis eliminates an antisymmetric component in J while the two-fold
rotation axis halfway the corner and base-center ions restricts the antisymmetric

component of J' to the a-b plane. After applying all symmetry elements one gets

nearest neighbors i and j b
along the c-axis

next-nearest neighbors i and j Daij
in the a-b plane 0

bij 4

D .
cij
Da12 2

Bpvoi™ Bprs = Dusk ™ Phis

The meaning of the numerical indices 1-5 are given in Fig. 9.

D and D will be denoted from now on as D_ and D,_. The exact calculation
al2 b12 a b

of the numerical values for Da and Db is extremely difficult. No experimental
values are known. Joenk (58) estimated D, after comparing the theoretical ex-
pressions for both the g-tensor and the D-vector and found after several

quantitative approximations
= (gb -2)J (4.2)

The result (4.2) is consistent with eq. (2.9). Comparing (4.2) with (2.9) one

finds the numerical constant o to be equal to about 1.

In the discussion of the relaxation times and resonance linewidths it will be
shown that in CuC]Z.ZHZO antisymmetric exchange is dominant over anisotropic
symmetric exchange. A perfect agreement between theory and experiment will be

found using a value for a which is very near the theoretical estimate of a =

Using O = 2.189 and g = 2.045 (43) one gets

Da = 0.189 a J', Db = 0.045 o J!




CHAPTER 5

RELAXATION AND RESONANCE EXPERIMENTS ON CuCIZ.ZHZO

Paramagnetic relaxation at high temperatures

In this part of chapter 5 we present and discuss our experimental high-tempe-
rature relaxation data on CuC\z.ZHZO. For these relaxation data we measured

the rf absorption while the static and rf field were oriented mutually parallel.
This in contrast with the resonance experiments where static and rf field are
perpendicular to each other. The relaxation experiments were performed in the
temperature region from T = 2 K up to 77 K. At all temperatures we found the
relaxation process to be very well described by a single relaxation time.

As these relaxation times are temperature independent from about 6 K upwards,

we suppose this region to coincide with the so-called high-temperature region.
When studying relaxation or resonance processes in this temperature region
appropriate simplifications of the dynamical theory can be made.

At hydrogen temperatures the experiments were performed on two single crystals
of different shape and weight (0.1 and 0.5 gram). We could not detect any dif-
ference in x”/xo, at the same temperature and static field, outside the experi-
mental error of a few percent. In Fig. 10 the frequency dependence of the norma-
lized zero-field absorption x"/x0 is plotted. The Lorentzian forms with maxima

of 0.5 indicate a process which is governed by a single relaxation time.
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Fig. 10 The frequency dependence of the normalized, zero-field absorption

in the three magnetic axes of Cu612.2H20 at T = 20.4 K.
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the three magnetic axes of CuCl,.2H,0 at T = 20.4 K.

In Fig. 11 the parallel-field absorption (static and rf field mutually parallel)
9

is plotted for the three magnetic axes of CuCIZ.ZHZO. Only the a-axis shows
some dependence on the static field. By plotting the normalized absorption, at a
given static field, versus the frequency one gets Lorentzian curves such as

given in Fig. 10. The corresponding relaxation times can be determined by using
sty

wtop'

tion process is weakly speeding up with increasing static field while in the b

T = The relaxation times are given in Fig. 12. In the a-axis the relaxa-

and ¢ axes the process is field independent up to 8 koe.
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5.1.1 Discussion

In this discussion we shall, by comparing the experimental high-temperature
results with theoretical calculations, try to extract information about the
magnetic interactions in CuClz.ZHZO. We shall investigate three interaction
models. It will be assumed that, apart from the Zeeman and dipolar contribu-

tion, the spin Hamiltonian contains
model 1 isotropic Heisenberg exchanges J and J'.

model 2 Heisenberg exchanges J and J' with an anisotropic

symmetric exchange contribution.

model 3 Heisenberg exchanges J and J' with an antisymmetric

exchange contribution.

The calculation of the high-temperature relaxation times is outlined in chapter
2.3. For this calculation we will make the usual assumption that the memory
spectrum is a sum of Gaussian-like lines centered at w = 0 at zero static field.

It will be shown in the discussion of the field effect in the a-axis that this
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Gaussian shape assumption is realistic in the b and c axes while in the a-axis
some finestructure has to be expected which gives us an explanation of the weak

field dependence.

Using the exchange values given in expression (4.1), one finds after a labo-
reous calculation that the relaxation times for model 1 are given by (see egs.
(2.23) and (2.24))

(1 + H2/2295) (2.928 exp (-H2/UB76) + 32.455 exp (~H2/1775))107 sec™’

(1 + H2/2295) (2.951 exp (-H2/4938) + 32.140 exp (-H2/1766))107 sec”

= (1 + H2/2295) (1.158 exp (-H2/6893) + 12.183 exp (-H%/982 ))107 sec™

where H is the static field expressed in kOe.

The field dependences are negligibly small in the field region of up to 8 koe.

Omitting the small field dependence, one gets for the low-field relaxation times

c, = 2.83 1072 gec; x, = 2.85 1072 sec, 7.50 102 ‘sec

which should be compared with the experimental values of

9

T, = 2.6 102 sec, r, = 1.23 107 sec, T =1.69 1077 sec

One notes a rather large discrepancy between the theoretical and experimental
values. It should be stressed now that another choice for the isotropic Heisen-
berg exchanges (see chapter 4.3) does not significantly reduce this discrepancy
as a change in the isotropic exchange only shifts all relaxation times with the
same factor. It can further be shown that a different value for the ratio J'/J
does not significantly reduce the discrepancy either. This leads us to the con-
clusion that the results of an interaction model which contains only dipolar
and isotropic exchange interactions are in disagreement with experiment in
CuCIZ.ZHZO.

We will now start a calculation of the relaxation times using the interaction
model 2 which contains anisotropic symmetric exchange. The influence of aniso-
tropic symmetric exchange on the relaxation process can be calculated by using
eqs. (2.37), (2.42) and (2.43). As the ratio J'/J is rather small one may rule
out the possibility of an important contribution to the relaxation process from

a symmetric anisotropy in the next-nearest neighbor exchange Sl
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A symmetric anisotropy in the nearest neighbor exchange J yields two adjustable

parameters as the third is determined by eq. (2.37). The two adjustable para-

meters can be derived from the experimental values for the relaxation times in two

different directions. At that moment the theoretical result for the relaxation
time in the third direction is fixed. So by comparing the theoretical value for
the relaxation time in the third direction with the experimental value, one gets
information about the consistency of the interaction model 2.

A laboreous calculation yields that whatever adjustment one makes there always
remains a discrepancy of more than a factor two in the third direction.

So our conclusion is that the results of an interaction model which contains

anisotropic symmetric exchange interaction are in disagreement with experiment.

We will finally turn our attention to the interaction model 3 of which the
antisymmetric exchange is the most remarkable feature. The influence of the
antisymmetric exchange can be calculated by using eqs. (2.9), (2.40) and (2.41).
There is only one adjustable parameter « which, as we saw in chapter 4.3, is
theoretically expected to be nearly equal to unity.

Using the values for J and J' given by (4.1) and the D-values given by (4.3),
one finds a perfect agreement with experiment for the value o = 0.90.

One has theoretically for the low-field relaxation times (the field dependen-
ces being negligibly small in our field region).

T - 2.65 1072 sec, T, = 1.25 1072 sec, Tk 1.66 1072 sec

These should be compared with the experimental values.

T, = 2.6 107 sec, 7, = 1.23 1072 sec, T = 1.69 1072 sec

The experimental value a = 0.90 is very near the theoretical estimate a = 1.0
by Joenk (58). In the light of this very good agreement between theory and
experiment we conclude that antisymmetric exchange and dipolar interaction
2.2H20.

Strong additional proof will be found in the dynamical critical behavior of

are the most dominant sources of anisotropy in CuCl

CuC12.2H20. Further, in the next section it will be shown that the weak field
dependence in the c-axis is consistent with the occurence of antisymmetric

exchange in CuCl .ZHZO.
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5.1.2 Disecussion of the field dependence in the a-axis

Because of the large secular interaction in CuClz.ZHZO the field dependence

of the relaxation process in fields up to 8 kOe should be negligibly small as
long as the Gaussian shape assumption for the memory spectrum holds. The weak
field dependence indicates that in the a-axis this assumption is not justified
in detail. Using the important weak-coupling and high-temperature feature that
the four lines of the memory spectrum shift rigidly with the static field, it
can be shown that the field effect in the a-axis implies, whatever the partition

of the effect over the four lines, a negative undershoot in the memory function

Ga(t). As an illustration we calculated, using egs. (1.22) and (2.24), the me-

mory functions from our experimental relaxation times assuming the field effect
to occur in the first Larmor lines (k = + 1 in eq. (2.13)) of the a-axis. Fur-
ther it has been assumed that the four lines of the memory spectrum are Gaussian
for large w. This last assumption is in agreement with the theoretical notion
that all wavevector dependent two-spin correlation functions are Gaussian for

short times (9). The memory functions are plotted in Fig. 13.

—
CuCl,.2H,0

— Q-QXis

— b-and c-axis

The experimentally determined memory funetions G_(t) in the

three magnetie axes at ze tatie field. The memory func—
tions are normalized by value at t = 0. The reduced time
7
J

t* 75 defined by t* = it




To explain the negative undershoot in the memory function in the a-axis we will
take a close look at the full expression (see eqs. (2.44) and (2.55)) for the
memory function, Gz(t) is a linear combination of four-spin correlation func-
tions. Using a dynamical Random Phase Approximation and a transformation to

the wavevector space we found eq. (2.55) which is a linear combination of wave-
vector dependent two-spin correlation functions. When all two=spin correlation
functions are isotropic, Gz(t) is semi-definite positive. So the negative
undershoot in the a-axis necessarily indicates an inaccuracy in the Random
Phase Approximation or an anisotropy in the two-spin correlation functions or
both. As RPA and isotropy of the correlation functions are frequently used in
theories on the dynamical properties of weakly anisotropic magnetic systems,

this is an important experimental result.

Assuming the RPA to be sufficiently accurate one may wonder why the anisotropy
of the two-spin correlation functions only manifests itself in the a-axis.

The explanation can be found in the different sampling over the Brillouin zone.
Restricting ourselves to the antisymmetric contribution to the q-dependent
weight coefficients in eq. (2.55), we have

2 2 .32 ok
|Da(q)] =16 D] sin“iq_a sin 3q,b (5.1)

2 2 2, 2,
|Db(q)| 16 Db cos”4q_a cos qub (5.2)

Using eqs. (2.55), (5.1) and (5.2) and the fact that D§>>D§ (see eq. (4.3)) one
easily calculates that in the b and c axes most contributions to the memory
function come from intermediate g-values. In the a-axis however most contribu-
tions to the memory function come from 1ow q-values (a = 0) and high g-values (bor-
der of the Brillouin zone).

So the occurrence of the field effect in only the a-axis is consistent with an
anisotropy in the two-spin correlation functions at low or high g-values. It

should be noted that by the relaxation experiments described in this thesis,

one measures directly (S? s SZ(t))q 0 which is proportional to the relaxation

function & (t,H).
aa




Our measurements indicate that these relaxation functions are slightly aniso-
tropic but certainly not negative at relatively small times. So the field ef-
fect in the a-axis most probably indicates an anisotropy in the two-spin corre-
lation functions at high g-values.

The fact that the Gaussian assumption for the memory functions in the b and ¢
axes worked so well is not amazing as theoretical calculations by Blume and
Hubbard (9) on the isotropic simple cubic lattice have shown that the two-spin
correlation functions at intermediate q-values are Gaussian-like (see also sec-

tion 2.3.1).

Recapitulating one has two possibilities:

If the two-spin correlation functions are isotropic at all a then our experi-
ments give evidence that in CuC12.2H20 the RPA erroneously eliminates important
contributions which lead to negative values of the memory functions (four-spin

correlation functions) at relatively short times.

If the RPA is sufficiently accurate then our experiments give evidence for im=

portant anisotropy in the two-spin correlation functions, even at high tempera-
tures. This anisotropy is attached to the correlation functions at low q-values
(q = 0) and/or high g-values (border of the Brillouin zone), of which the aniso-

tropy at low g-values is less probable.

5.2 Paramagnetic resonance at high temperatures in CuC12.2H20

Recently Tjon and Verbeek (59) derived a general expression for the field depen-
dence of the paramagnetic resonance absorption. They started from a low-field
expansion in the Laplace transform of the memory function and found that, at
low frequencies and small static fields, even in the exchange narrowed case
the paramagnetic resonance lines were not exactly Lorentzian. The Lorentzian
form is approached at increasing frequencies. To check on these theoretical re-
sults we performed some resonance experiments at hydrogen temperatures in the
three magnetic axes of CuClZ.ZHZO. Assuming that the relaxation processes in the
three magnetic axes can be described by single relaxation times, Verbeek derived
for the resonance abso;ption TY
X H) or, T M8 w(iwld)
2 1 T
[né—-—-—-Tv2 2-1]+[—+r12—————Y 1

2. 2
1+w Ty o B w(l4+u 1)

SNEE e

(5.3)
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Fig. 1% 7The paramagnetic resonance absorption in the three magnetic
axes of Cu012.2H20 at T = 20.4 K. The soltd lines are the
theoretical curves calculated by using eq. (5.3) and our
experimental zero—field relaxation times.

n, = g,u fl-l H (5.[_.)
g BB
where a, B8 and Y denote the three magnetic axes. The index a denotes the direc-

tion of the rf field, B the direction of the static field and y the third direc-

tion perpendicular to « and 8. T is the zero-field relaxation time.
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In Fig. 14 the resonance absorptions at different frequencies are given for

the three magnetic axes of CuClZ.ZHZO. The fully drawn lines correspond to the
absorption values calculated by using eq. (5.3) and the experimental zero-field
relaxation times given in section 5.1. A very good agreement between theory and

experiment is found.

For sufficiently high frequencies (w>>T;]) eq. (5.3) takes a Lorentzian form

with
h

B - 9,

(aHy ) (5.5)
AH, is the full linewidth at half maximum. From eq. (5.5) it is clear that the
li;ewidth is given by the average of the relaxation times in the plane perpen-
dicular to the static field direction. It should be noted that eq. (5.5) is
only valid for frequencies much smaller than the exchange frequency.

In table 2 we compare the experimental linewidths at relatively high frequencies
with the theoretical linewidths. In calculating the theoretical linewidths we
used eq. (5.5) and the theoretical values for the relaxation times derived,

using antisymmetric exchange, in chapter 5.1.

table 2

(AH%)a

I toh 33 57
Ryabchenko 9.3 71
Zimmerman 9.6 72.5
Our exp. 0.3 72
theory 73

GHz

Once again the agreement is good.




5.3 Relaxation in the critical region of Cu022.2H20

We performed relaxation measurements on both the paramagnetic and the antiferro-
magnetic side of the Néel temperature. In this section we will restrict ourselves
to the paramagnetic side.

Three single crystals were selected for the experiments. We could not detect

any non-linear effects in the rf absorption. Near the Néel temperature the re-
laxation of the magnetization Mz(t) shows a strong speeding-up. At all tempe-
ratures, even very near TN’ the relaxation process is very well described by

a temperature dependent single relaxation time. To illustrate this we plot in

Fig. 16 the zero-field absorption versus the frequency at different temperatures

near the Néel point. Lorentzian curves with maxima of 0.5 X, are found which

are characteristic for single relaxation processes. This single relaxation cha-
racter is preserved at non-zero static fields. The zero-field relaxation times

in the three magnetic axes of CuClz.ZHZO are given in Fig. 15.

T

CuCl,.2H,0

relaxation time T10°

Aot aiaaal

005 M
T-Ty ——

Fig. 15 The temperature dependence of the zero-field relaxation
time in the three magnetic axes of CuCZZ.ZHZO.
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The relaxation process remains independent of the static field in the b and ¢
axes. The field dependence in the a-axis (see Figs. 11 and 12) appears to
decrease at approaching the transition temperature, but has not vanished com-
pletely at as near as 0.05 K from TN.

The field dependence of the relaxation time in the a-axis is given in Figs.17

and 18.

secr - + —

[

| o-axis CuCl;.2H,0

Fig. 17 The field dependence of the relaxation time in the a-axis

at different temperatures.

It should be noted here that the Néel temperature itself is slightly field

dependent which explains why in Fig. 18 some field effect is persisting at

temperatures very near TN’ while in Fig. 17 it appears to vanish altogether.
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Fig. 18 The temperature dependence of the relaxation time in the a-axis
at different static fields parallel to the a—axis, The 116 kOe

measurements are from Van Noort (61).




The Néel temperature itself is easily observed with the calorimetric method.

As the heat capacity of CuClZ.ZHZO decreases drastically just above the Néel
temperature, the temperature increase of the calorimetric system, due to a
certain constant heat input, will change sharply at the transition temperature.
It is clear that the Néel temperature determined in that way is the transition
temperature of the heat capacity. Within experimental error this temperature

is found to coincide with the magnetic Néel temperature as determined from our
measurements.

At zero static field the Néel temperature is found to be TN(O) = 4.35° K while
at a static field of H = 6 kOe parallel to the a-axis we found TN(6) = 4,34 K,
This field dependence of the transition temperature is the same as found by
Poulis and Hardeman (62) although our absolute values are somewhat higher.

To normalize the absorption x'" and for the theoretical calculation of the
critical relaxation times in section 5.3.1, we used values for Xo interpolated
between the results of Van der Marel et al. (41) at He temperatures and those

of Van den Handel et al. (40) at hydrogen temperatures.

5.3.1 Discussion

In section 2.4 we derived an expression for the relaxation time of the average
total magnetization Mz(t) in the critical region. The general idea is that be-
low a certain temperature, which is determined by the anisotropy of the magne-
tic system, the critical slowing-down of the spin fluctuations is restricted to
the easy-axis. Such a restriction has been measured directly by Schulhof et al.
(16) in MnF, using the neutron scattering method.

In the derivation of the expression for the relaxation time we assumed that,
although the anisotropy may not be uniaxial, the critical slowing-down is still
satisfactorily described by only two competing correlation lengths k/, and»cl .
For the relaxation time T at an arbitrary temperature T above the Néel tempe-
rature we derived (cf. egs. (2.70), (2.75) and (2.81))

e I 10w a0
(1) t(=) T'crit.
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For the meaning of all the symbols, see section 2.4. In CuCI2.2H20 the a-axis

is the easy-axis so we get,

Faa = F//

Fab Fac Fba

Fob = Fec Feb = Fiy
These F - functions are given by eq. (2.74) of section 2.4. We will use the

values calculated in chapter 2.4 and given in Fig. 1 of that chapter.

In the derivation of the above-mentioned equations we assumed that in the

hydrodynamical region, apart from the cut-off effect by Kpo
correlation functions are isotropic and that the dynamical Random Phase Ap-

the two-spin

proximation is sufficiently accurate,
X X y y z z

ST 5 (ed) = (S) o BhuE)) = (8T, ST a(z)) for x, >, (5.10)

( S pAG ) -q’ °q =9~ °g /1A
As we know from our analysis of the high-temperature field effect in the a-axis,
this is probably not true for all g-values and all times t. One can only hope
now that near the Néel temperature the important contributions to the g-sum come
from parts of the Brillouin zone where the two-spin correlation functions are
sufficiently isotropic or where the anisotropy is not significantly temperature

dependent. In the neighborhood of T, the most important contributions to the

N
q-sum come from the 30 region where 30 is the wavevector for the staggered

state. For CuClZ.ZHZO this vector is easily determined as (see section 2.4)




4 =+ (0,0,7/c) (5.11)

In table 3 the calculation values for the g-dependent U and D coefficients of

CuCl,.2H.0 i for q = q
uCl,.2H,0 are given for q = -

table 3

U =4
XX Yy

132.8 E 21
133.6 E 21

0.821 E 21

The values for the coefficients are given in c.g.s. units and per ion.

The dipolar sums are extremely slowly converging and special care has to be
taken to exclude important errors. The summation was directly performed over
about 50.000 ions while the remainder was calculated by transforming the sum

into an integral. Using eq. (5.7) and the Db-value given by (4.3), one gets
5
-=v
.mez(
o

N

42
= A 17630 A 3340 F//l)lo (5.12)
5
Sy
(17840 F
(o]
5
N, 27
i—-c (0.674 F//

(o)

0h2

B (5.13)

//1

42

)10 (5.14)

g 3340 ﬂl

From eq. (5.14) it is clear that in the c-axis the critical effect is nearly
completely determined by the Fli term which is originating from antisymmetric
exchange. The coefficient of the F//J term is so small that if there were no
antisymmetric exchange the c-axis would not show any relevant critical behavior.
So the experimental critical behavior in the c-axis is a direct and independent
support for the occurrence of antisymmetric exchange in CuCIZ.ZHZO.
To get the values for the F-functions we transform the temperature into
K,/x

NS
In section 2.4 we estimated (cf. eq. (2.80))

HAZ)v e~V




where HE is the exchange field and HAI and HA2 the orthorhombic anisotropy

fields in the molecular field model. For the exchange field one has

gughe = 22J8 (5.16)

Using for J the value derived from the heat capacity measurements of Clay and
Staveley (54) (see eq. (4.1)), one finds He = 54.6 KOe. From antiferromagnetic
resonance it is known that in CuCIz.ZHZO HAI & 3HA2 while the spin-flop field
at T =0 is found to be HSF = 6500 Oe. Using now that for small anisotropy one

(5.17)

one gets, using the above-mentioned value for HE'

HA1 = 387 Oe, A2 = 1160 Oe, HE = 54,6 Koe.

Substituting these values in eq. (5.15) one gets

A

&7

where v is the critical exponent of the correlation length parallel to the

= (0.0283)%™Y (5.19)

easy-axis. Besides the restriction of the critical slowing-down to the easy-axis
below a certain temperature, the magnetic anisotropy also changes the critical
point exponents such as v. In section 2.4.1 we showed however that this change
is expected to be rather small. For the theoretical calculations on weakly

anisotropic CuClz.ZHZO we will use the average value
v = 0.67 (5.20)

This value for v is about 6 percent differing from the isotropic Heisenberg
value. It should be stressed here that our final results for CuC12.2H20 are not
very sensitive to a small variation in v. It will turn out that the cut-off
effect in the critical slowing-down is much more drastically influencing the
critical relaxation process than the small change of a few percent in v. Using

the above-mentioned value for v one gets

K
L _0.092 €

1/
The only problem left now is to find the value for A, given by eq. (5.8).

0.67 (5.21)

We will infer it from experiment. Using the relaxation time in the b-axis at
€ = 0.025 we find

..73_




A= 5,72 10-65 C.g.S.u. (5.22)

This adaption is a loss of generality. As however A is only a calibration factor,
the temperature dependences and the relative differences between the three axes
still allow a thorough confrontation with the theory. Using the values for F given
in Fig. 1 and the theoretical relaxation times at high temperatures, we are able
to calculate the temperature dependent relaxation times in the three different
axes. In the a-axis however some complication arises. At high temperatures we
found the relaxation time to be weakly field dependent which implied a small
negative undershoot in the memory function Ga(t). When calculating the zero-
field relaxation times at lower temperatures one has to count with this effect.
As the field dependence is persisting at low temperatures we tentatively suppose
now that although: the surface under Ga(t) is strongly temperature dependent, the
shape itself will be much less so. This may seem a rough approximation but it is
justified by the experimental fact (see Fig. 18) that the temperature dependence
of the relaxation time is much stronger than the temperature dependence of the
relative field effect. Under the above-mentioned assumption one finds the real
zero-field relaxation times in the a-axis by multiplying the theoretical zero-
field relaxation times by a temperature independent factor. This factor is deter-

mined by the relative importance of the negative undershoot in the memory func-

tion Ga(t). From our high-temperature measurements in the a-axis we find this
factor to be equal to 1.3h4.
In Fig. 19 the theoretical values for the zero-field relaxation times are plot-

ted together with the experimental results.

In spite of the simplifications in the theory a very good agreement between theorY
and experiment is found.

Using eq. (2.24ka) and the theoretical values for the relaxation times one can

also calculate the theoretical values for the full linewidth of the critical

EPR line.

Our theoretical results and the experimental results of Zimmerman et al. (43)

are plotted together in Fig. 20. Once again a good agreement is found between

experiment and theory.
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Conelusion

It has been shown that the critical relaxation process is strongly influenced
by the anisotropy of the magnetic system. By transforming the magnetic anisotropy’
into an anisotropy in the critical slowing-down of the spin fluctuations, we
were able to derive a relatively simple expression for the relaxation times in the
critical region. The results of this theory are in perfect agreement with ex-
periment in CuCIz.ZHZO.

5.4 Relaxation measurements in the antiferromagnetic state of CuCZ9.2H20

Experimentally it has been found by many authors that if one orients both
static and rf field parallel to the easy-axis of an antiferromagnet no absorp-
tion will be detected. From our measurements on two copper compounds and those
of Verbeek (19) on MnF, it is however evident that in the easy-axis a relaxa-
tion process takes place at frequencies much smaller than the usual antiferro-
magnetic resonance frequencies. As most measurements of the past were perfor-
med at frequencies comparable with the AFMR frequencies it is clear why no
absorption was detected.

Our antiferromagnetic relaxation measurements were performed on several crystals
of CuCIz.ZHZO in arbitrary directions in the a-b and a-c plane. The absorption
showed itself to be perfectly linear in the rf field while it was further inde-
pendent of the shape of the single crystal. In only one direction a pure relaxa-
tion character, described by one single relaxation time, was found. This direc-
tion was temperature independentand coincided within experimental error with

the direction of the spin alignment.
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5.4.1 Pield and frequency dependence of the absorption in the easy-axis

The rf absorption in the easy-axis of CuClZ.ZHZO was found to be strongly
field dependent below the Néel temperature. In Fig. 21 some of our absorption
measurements at three different temperatures are plotted. At all fields the
absorptions are normalized by the temperature dependent zero-field static
susceptibility as determined by Van den Handel et al. (40). At low tempera-
tures an anomalous behavior of the absorption at large static fields is found.
The large increase of the absorption at static fields just below 7 kOe

(T = 2.31 K) is due to the spin-flop transition where the static susceptibili-
ty is increasing drastically. The anomalous decrease at slightly lower fields
has probably its origin in a small misorientation of the single crystal. As we
will see below, the angular dependence of the absorption sharpens around the
easy-axis at increasing static field. At fields just below the spin-flop field
this angular dependence is so strong that a small misorientation of less than
0.5° explains the anomalous decrease in the absorption.

At higher temperatures the spin-flop field chainges to higher fields while the
angular dependence becomes broader, so at these temperatures the small mis-
orientation will not be important any more. We found some indication that the
relaxation time itself is much less dependent on the direction than the absorp-
tion, so our values for the relaxation times can be trusted in fields up to
about 6.3 kOe at low temperatures.

In Fig. 22 the normalized absorption is plotted versus the frequency at several

values for the static field and temperature.

The Lorentzian frequency dependence of the normalized absorption indicates a
relaxation process with one single relaxation time. At the lowest temperature
the absorption shows some anomalous behavior at low frequencies. This effect,
which appears to be field independent, may be due to a second relaxation process
at lower frequencies while further the possibility of non-magnetic absorption
should not be excluded. If one assumes the anomalous behavior to originate from

a low-frequency relaxation process the matched relaxation time would be in the

order of 1 = T AT 2.31 K.

The field dependence of the relaxation time in the a-axis at different temperatures

is given in Fig. 23.
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Fig. 22 The frequency dependence of the normalized absorption in the
easy-axts of CuCl,.2H,0 at different values for the static
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field and temperature.
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The field dependence of the relaxation time in the easy-axis

of CuCZO.Qﬁg 0 at different temperatures.

At sufficiently low temperatures the relaxation process is slowing down at
increasing static field. Near the Néel temperature the field dependence becomes

more complicated as it is influenced by the critical spin fluctuations.

In Fig. 24 we finally plot the temperature dependence of the relaxation time
at different values for the static field. For the relaxation times below

T = 2 K we used some preliminary results from Rutten (63).

The relaxation process is slowing down at decreasing temperature which is in
agreement with the notion that the scattering of spin-waves by thermally
excited spin fluctuations decreases at lowering the temperature. Near the Néel
temperature a critical speeding up of the relaxation process is seen to occur
while the temperature region in which the relaxation process behaves criti-

cally, appears to be field dependent.
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Fig. 24 The temperature dependence of the relaxation time in the easy-

axis of Cu012.2H 0 at different values for the static field.
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5.4.2 Angular dependence of the absorption

For an investigation of the angular dependence of the absorption the crystal
was rotated about an axis which was perpendicular to both rf and static field.
The rf and static field were mutually parallel. In Fig. 25 the angular depen-
dence of the absorption in the a-b plane at T = 3.50 K is given.

As the static field increases the angular dependence sharpens around the a-axis.
Because of this effect, relaxation measurements at or near the spin-flop field
should be regarded with some reserve as a small misorientation completely
changes the absorption pattern at those fields. The same sharp angular depen-

0 has been found by Van Noort (64). The small absorption in

dence in CuClz.ZH

2
the b-axis is the low-frequency tail of an antiferromagnetic resonance line.




The absorption shows, as expected, a tensorial character at zero field.

Lowering the temperature at a fixed value for the static field one observes the
angular dependence to sharpen, a fact which may partly be due to the decrease

of the spin-flop field. In our later experiments we used the sharp angular depen-

dence to orient the static and rf field exactly along the easy-axis.

Cl, 2H,0 V=90Mgs T=350K ’*

The angular dependence of the absorption in the a-b plane of
g :

.2H_0 at different values for the static field. The static

and rf fteld are mutually parallel.

5.4.3 Discugsion
I 5 " oy 4.7 FOPL it P Kk
Comparison with other experimental work

Yamazaki and Date (42) observed in CuCl .2H20 the decay of the easy-axis mag-

2
netization induced by the low-line antiferromagnetic resonance. In the tempera-

ture region from T = 1.4 to 2 K two characteristic times were found, one in the

order of 10-8 sec and the other of about 10-“ sec, the latter being attributed

to the lattice-bath energy transfer. These relaxation times were observed at

the slightly temperature dependent low-line resonance field of about 5 kOe.

The short-time results are plotted as (1) in Fig. 26 and should be compared

with the solid line (2) which represents the smoothed values of our relaxation
times at the same static field. Although the temperature dependences look simi-~
lar one still notes an important difference between the two experimental results.

An interesting point is that the difference is very near a factor of 2m.




One of the previous authors, Yamazaki (26), determined more recently the k-de-
pendent spin-wave relaxation time by using the parallel pumping technique des-
cribed in section 2.5.3. His uniform (k = 0) results, measured at static fields
of about 6200 Oe, are plotted as (3) in Fig. 26 and should be compared with our
extrapolated experimental values (4) at the corresponding field. (For the extra-
polation we used the H2 field dependence of the relaxation time at lower tempera-

tures while the resulting values for t were cross-checked by an extrapolation

based on the T-3 temperature dependence of the relaxation times. Good agreement

was found between both extrapolations). The experimental results (3) and (4) are

in excellent agreement with each other,

——"

CuClt;.2H,0

Fig. 26 Comparison of our experimental low-temperature relaxation times
in the easy-axie of CuCZZ.ﬂHZO with other experimental results.
(1) The experimental results of ref. (42) at H = 5 kOe
(2) Our results at H = 5 kOe
(3) The experimental results of ref. (26) at H = 6.2 kOe
(4) Our extrapolated experimental results for H = 6.2 kOe

The drawn lines are the smoothed values for the relaxation times.




Naiman and Lawrence (65) determined a characteristic time at the spin-flop field
in CuC)z.ZHZO. This relaxation time was found to be temperature independent from
2.3 to 2.5 Kwith a value of 71 = 0.7 10-7 sec (H = 7365 0e). We cannot compare
this value with one of ours as we did not perform measurements at the spin-flop
field. As was remarked before, these kind of experiments should be regarded with
some reserve in view of the enormous anisotropy in the absorption near the spin-
flop field. Their value is about 20 times larger than our relaxation time at

H =26 kOe and T = 2.4 K.
theory

The theoretical expressions for the k = 0 zero-field relaxation rates, given in
table 1 of section 2.5.5, are all valid for systems with uniaxial anisotropy.
In CuClz.ZHZO however the anisotropy is orthorhombic. As no theoretical expres-
sions have yet been found for such a case, we will use those of table 1 while

taking some average value for the anisotropy parameter wp -
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Fig. 27 Comparison of the theoretical results for the k = 0 spin-wave
decay times with our experimental zero-field relaxation times in

the easy-axis of CuCig.ZHFO.
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For CuCl,..2H.0 one has, see section 5.3.1.,

ity

Hyy = 387 Oe, Hy, = 1160 Oe,

Using the average value

(H )/2

+
A Y

one gets

= 1 3
AE = 9VgKg (2H H)* = 1.35 K. (5.25)

-
The theoretical expressions given in table 1 are either valid for T<<TAE<<TN

or for TAE<<T<<TN. For a theoretical estimate in the region T :TAE we interpola-
ted between the theoretical results for high and low temperatures. For this
interpolation we assumed the relaxation time to increase monotonically with

decreasing temperature.

In Fig. 27 both the theoretical and experimental values for the zero-field re-
laxation times are given. The results of Harris et al. (31) are in much better
agreement with our experimental values than the results of any of the other
authors. The discrepancy of about a factor 2 may partly be due to the approxi-
mation made by using (5.24). More measurements at lower temperatures should be
necessary to determine whether the theoretical expressions of Harris et al.
also give a better description at temperatures well below TAE'
We will now turn our attention towards the field dependence of the relaxation
time. In Fig. 28 we replot the relaxation times, normalized by the correspon-
ding zero-field values, versus the square of the static field.

Outside the critical region the field dependence of the relaxation time is very

well described by

(T,H) = ©(T,0) + £(T) H2 (5.26)

where f(T) is some temperature dependent factor. As all theoretical investigations
are restricted to infinitely small static fields, no explanation for this field
effect can be given at this moment. At low temperatures f(T) « T-3.

The temperature dependence of the relaxation time in the critical region is gi-
ven in Fig. 29. The temperature region where the antiferromagnetic relaxation

process shows a critical speeding up becomes larger at increasing static field
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along the easy-axis, an effect which does not occur above TN.The origin of this

effect may be found in a field dependent enhancement of the longitudinal cross

section of the fluctuations in the staggered magnetization.

CuCl;. 2H,0

a-axis

Fig. 28 The relaration times in the easy-axis of CuCl,.2H,0 plotted

&

versus the square of the static field.
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Fig. 29 The temperature dependence of the relaxation time in the easy-

axis of CuCl,.2H 0 near the Néel point.
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CHAPTER 6

THE DYNAMICAL MAGNETIC BEHAVIOR OF LiCuCI3.2H20

6.1 Introduetion

The static magnetic behavior of LiCuCl3.2H20 is less well known than that of

CuClZ.ZHZO. The experimental results reported by different authors differ both

in fact and in interpretation. The main problem centers on the fact whether the
effective spin value is equal to unity or to %. As the copper ions are distribu-
ted as pairs in the chemical unit cell one expects in first instance S = 1. It
depends however on the interpair interaction whether the magnetic behavior can

be described by an effective spin value of 1 or }%.

The heat capacity of LiCuCIB.ZHZO in the temperature range T = 2 - 9 K has been
measured by Forstat and McNeely (66). A A-like anomaly was found at a transition

temperature T, = 4.40 K. The magnetic entropy change associated with the transi-

N
tion agreed within 2% with the theoretical value for the S = } case. In contrast
to this result, heat capacity measurements by Clay and Stavely (54) showed the
magnetic entropy change to be very close to the theoretical value for the spin

S =1 case.

Vossos et al. (67) reported a preliminary X-ray and susceptibility study on
LiCuCl3.2H20. The static susceptibility was measured in a temperature range of
2-290 K and was found to be in agreement with a ground state triplet which implies
S = 1. An extensive neutron diffraction and susceptibility study by Abrahams

and Williams (68) showed however that the neutron scattering amplitudes and the

susceptibility results were well fitted by an effective spin value of }.

Although the case is not completely settled, it is our opinion that more credit
should be given to the S = % case. When S = 1 one expects, due to the singlet at
higher energy levels, a significant temperature and field dependence of the relaxa-
tion time or resonance linewidth at sufficiently high temperatures.

Furthermore a complicated angular dependence of the relaxation or resonance
absorption can be expected. None of these have been found experimentally.

Date and Nagata (69) and Zimmerman et al. (70) found the EPR linewidth to be
independent of the temperature from T = 15 K up to 300 K. No anomalous angular

dependence of the resonance absorption has been found.
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Furthermore our relaxation experiments reveal neither field nor temperature
dependence of the relaxation time outside the critical region. All this is
compatible with S = 1 if one assumes an interaction strength of more than 100 K
in the Cu2+ pair. This large value for J/kB is however unrealistic for a
Cu-C1-Cu bond (4.61 A) which is expected to be the exchange path within the

pair. So the most probable value for S equals %.

6.2 Crystal structure

The crystal structure of LiCuCI3.2H20 is monoclinic with lattice parameters
a=6.078, b=11.145, ¢ = 9.145 A and g = 108°50'. There are four Cu ions in

the chemical unit cell. These Cu ions are distributed as pairs, the centers of

1

the pairs being at positions (0,0,0) and (0,%,%). The internuclear dimeric Cu-Cu

line lies in good approximation in the a-c plane at 35°30' from ¢ and 144°18"

from a. In Fig. 30 an over-all view of LiCuCl3.2H20 along the a-axis is given,

Cu@® Ccl %
Li® H .
0@

Fig. 30 Over—all view of LiCuCZS.ZHZO structure along the a—axis.

There are stacks of CuClsL' dimers along the a-axis. The space group of the

129
crystal structure is found to be P2]/c.

The orienting of the single crystal from crystal angles alone is difficult as
different combinations of crystal planes lead to nearly the same intersection

angles.
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This might be the reason why there is so much confusion about the direction of
the antiferromagnetic spin alignment. We determined the crystal axes by mea-
suring the intersection angles as accurately as possible while the orientation

found was magnetically checked on the g-values given by other authors.
The very deliquescent nature made it necessary to submerse the single crystals
in paraffin to avoid surface contamination.
6.3 Magnetic interactions in LiCuCu,.2H,0
o o

The magnetic Hamiltonian of LiCuCl3.2H20 is in good approximation given by

=2 H C .
=3 + 3, +H (6.1)
Nz is the Zeeman, Kad the dipolar and Méx the exchange part of the spin
Hamiltonian. For the exchange Hamiltonian we will assume that, besides an

isotropic Heisenberg part, only antisymmetric exchange is important.

- B r
X, = Hj%j®r§)+my6ix§) (6.2)
Clay and Stavely (54) determined the magnetic contribution to the heat capacity

of LiCuCl,.2H,0. Using their data, one finds

3 2
p (3, /ky)% = 35.7 K (6.3)
% ij” B
J
Metselaar (71) investigated the static antiferromagnetic behavior of LiCuCl3.2H20.

Several first and second order phase transitions were found of which some could
be ascribed to the occurrence of antisymmetric exchange in this compound.

The introduction of antisymmetric exchange was partially based on some of our
preliminary calculations on the spin-spin relaxation process in LiCuCl3.2H20.
Metselaar investigated extensively the exchange model which could lead to the
supposed antiferromagnetic spin structure. Four different isotropic exchange
parameters J‘ = Jh were introduced. The distribution of these exchange interac-

tions over the chemical unit cell is given in Fig. 31.

Metselaar estimated the exchange parameters from the values for the transition

fields and the Néel temperature. It was found that

Ji/kg =22 K, Jp/kg = =22 K, Ja/kg = -16 K, Jy/kg =11 K (6.4)
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It is interesting to compare these exchange values with the results from the

heat capacity measurements. Using the exchange values of (6.4) one finds

2 2
> (Jij/kB) = 1722 K (6.5)

Comparing (6.3) with (6.5) one notes a very large difference between both
experimental results. In first instance we shalluse the exchange model of Metse-

laar while, when necessary, weshall discuss the consequences of smaller exchange

parameters.

The distribution of the exchange interactions, introduced
by Metselaar (71), over the chemical unit cell of
LiCuClg.ZHZO

(A) view along the a-axis, (B) view along the b-axis

gm: glide mirror plane,sy: two-fold rotation axis.

In his further investigations, Metselaar found in LiCuC13.2H20 the flop state-
paramagnetic state transition to be rather broad. From this and the occurrence
of some additional transitions at lower fields, he concluded that antisymmetric
exchange was an important contribution to the spin Hamiltonian in LiCuCI3.ZH20.
It was estimated that |D/J| was in the order of 0.1 which is a very realistic

value for such an interaction. At the same time Metselaar performed his expe-

riments on the static properties of LiCuClB.ZHZO, we started our investigation

on the dynamical phenomena. It was known from the measurements of Zimmerman
et al. (70) that the EPR linewidths were anomalously broad, a fact which could
indicate a large contribution from anisotropic interactions.Some preliminary

calculations we performed, showed that antisymmetric exchange interaction was

-90_




probably at the origin. A detailed discussion of this interaction in LiCuCl,.2H,0

i

will be given in the discussion of the high-temperature relaxation times.

6.4 Relaxation at high temperatures in LiCuCl,.2H.0

We started the experiments at high temperatures by determining the principal
magnetic axes. This is possible by measuring the angular dependence of the rf
absorption at zero static field. The zero-field rf absorption x'" has a tensorial
angular dependence with as principal axes, by definition, the magnetic axes.

In Fig. 32 the absorption in the a-c plane is given.

T — = — —

5+ =i "
LICUCly . 2H;0

107%| cgsu OO,

N

50° 100° 150° @— 200° 250°

Fig. 32 The angular dependence of the zero-field rf absorption
in the a-c plane of LiCuCZS.2HQO at T = 20.4 K.
&

X and 7 denote the two magnetic ares in the a—c plane.

The three magnetic axes will, conformable to the notation of other authors, be

denoted as X, Y and Z. The X and Z axes lie in the a-c plane while the Y-axis
coincides with the crystallographic b-axis. Furthermore the X-axis was found to
coincide, within experimental error, with the internuclear Cu-Cu line of the
"'pairs' centered around positions (0,0,0) and (0,%,%). The orientation of the
magnetic axes, visualized in Fig. 33, is in agreement with the results of Zim-
merman et al. (70), who determined the magnetic axes from their g-value measure-

ments.



The high-temperature rf absorption in the three magnetic axes of LiCuCl

was found to be independent of the static field in fields up to 8 kOe.

The frequency dependence was found to be perfectly Lorentzian with maxima of
0.5 p which indicates a relaxation process with a single characteristic time.
For the normalization of the absorption we used the susceptibility measurements

of Abrahams and Williams (68) corrected for the anisotropy in the g-value.

Fig. 33 The orientation of the magnetic axes in LiCuCl,.2H,

View along the b-axis.
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Fig. 34 The frequency dependence of the zero—field absorption

in the three magnetic axes of LiCuCl,.2H,0 at T = 20.4 K.




6.4.1 Discussion

In analogy to the approach to CuCl2.2H20, we will compare the theoretical results
of different interaction models with the experimental high-temperature relaxation

times. We restrict ourselves to two interaction models.

model 1 The spin Hamiltonian contains only dipolar and isotropic Heisen-

berg exchange interactions.

model 2 The spin Hamiltonian contains dipolar, isotropic Heisenberg

exchange and antisymmetric exchange interactions.

The calculation of the high-temperature spin-spin relaxation times is outlined
- - : ¥ : VI K

in section 2.3. The normalized traces << k(_k>> and <<[u;ec’ k][ -’ ael >
have been calculated by De Vries (72). Using the isotropic exchange values of
Metselaar, given by (6.4), and assuming the memory function to be Gaussian, one
finds after a laboreous calculation for model 1

- 2 2 2 6

Ty = (1+H"/125000) (2.02 exp(-H"/720000) + 10.39 exp(-H“/185000))10° sec

=1
Y
=
Tz

= (1+H2/125000) (0.64 exp(-H2/653000) + 35.10 exp(-H2/159000))10° sec
= (1+42/125000) (2.15 exp(-H2/800000) + 22.91 exp(-H2/182000))10° sec

H is the static field expressed in kOe.

Omitting the negligibly small field dependence at fields up to 8 kOe, one gets

for the low-field relaxation times

8 8

iy = 8.06 107" sec, Ty = 2.80 10_8 sec, T, = 3.99 10" sec

These theoretical relaxation times should be compared with the experimental

values

10 10

T, = 3.32 10 '° sec, Ty - L .68 10-10 sec, T, = 9.95 107 '" sec

X

One notes a very large discrepancy between the experimental and theoretical
results. At first sight, there are several possibilities to explain this large
difference. First, the exchange values of (6.4) may be too large. Secondly, the
Gaussian assumption for the memory spectrum may be wrong. And finally, the

spin Hamiltonian may contain another interaction part which, when included in
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the Hamiltonian, is speeding up the relaxation process.

The first possibility can be ruled out immediately as an adaption of the exchange
values to the experimental relaxation times would lead to unrealistically small
exchange parameters. These small exchange values would give rise to a significant
field dependence of the relaxation times at small static fields, a fact which is
in contradiction to experiment. Moreover, the relative differences of the relaxa-
tion times in the three magnetic axes would not be explained in that way.

The second possibility of a non-Gaussian memory spectrum is somewhat more diffi-
cult to rule out. As however in the magnetically high-dimensional LiCuC13.2H20
the contributions to the memory functions come from all parts of the Brillouin
zone, large deviations from the Gaussian shape are not to be expected.

This leaves us with the third possibility. It will be shown now that the intro-
duction of antisymmetric exchange (model 2) leads to a perfect agreement between

theory and experiment.

The inversion centers halfway the Cu ions which are coupled by J1 and JZ’ elimi-
nate antisymmetric components in J] and J2. Using further the two-fold rotation
axes, the glide-mirror planes and translational invariance (see Fig. 31), one

finally gets

8,,=0,.,0,=0

13 25° 14 _26’ 31 =0 8 =D

7 82 "9 11 12 10

D D

x13 = Px142 Py13 = Cyqyr D743 = Ogyy

%17 = %9 117 Py17 = Pyg 117 Pz17 = P29 11

The indices are taken from Fig. 31 of section 6.3. The indices X, Y and Z denote

the three magnetic axes (see Fig. 33).

Both J3 and Jq can have an antisymmetric component. Using eq. (2.8) one finds

that only the antisymmetric contribution in J3 leads to a canting of the electron
spins in the antiferromagnetic state. We will assume now that the antisymmetric

contribution to J, is dominant over the contribution in Jy,- The justification

3
of this assumption will be given below. Using eqs. (2.9), (2.23), (2.24), (2.40)
and (2.41) and the g-values of Zimmerman et al. (70)

9y = 2.050, gy = 2.136, g9; = 2.224 (6.7)

one calculates, for a = 0.211




10 0 10

Ty = 3.50 10 '" sec, Ty = 4.67 10-] sec, T, = 9.65 10 '" sec

These theoretical low-field relaxation times should be compared with the experi-

mental values

10 10 10

Ty = 3.32 10 ' sec, vy = 4.68 107" sec, 1, = 9.95 100" sec

The agreement between theory and experiment is very good. It should be noted
that the antisymmetric exchange shifts the relaxation times over about a factor
100 while it also rearranges the relative values.

The value a = 0,211 implies |3|/J3 = 0.056 which is in agreement with the inde-
pendent estimate 0.055|3|/J350.1 by Metselaar (71) from the spin canting in the

antiferromagnetic state.

The fact that the antisymmetric exchange in J3 alone explains both the values
for the relaxation times and the spin canting leads us to the conclusion that

the antisymmetric contribution in J3 is dominant over the contribution in Jb'

There still is an interesting point to be made. One should not interpret the
perfect agreement between theory and experiment as absolute credit for the
exchange values given by (6.4). Taking for example all exchange values a factor
2 smaller, one gets nearly the same perfect agreement with experiment using the
value a = 0.298. This value for o leads to |3|/J3 = 0.079 which still is in
agreement with the independently determined value from Metselaar. So although
it is clear that antisymmetric exchange is the mechanism which is speeding up
the relaxation process, no absolute information about the isotropic exchange
values can be derived for LlCuCl3.2H20.

Using eq. (2.24a) and the theoretical relaxation times, derived with antisymmetric
exchange included in the spin Hamiltonian, one gets for the field linewidth

= 260 Oe

(AHs)X = 176 Oe, (AHi)Y

= 212 Oe, (AHB)Z

These theoretical low-frequency EPR linewidths can be compared with the experi-

mental results of Zimmerman et al. (70).
(AH%)X = 186 Oe, (AH&)Y = 234 Oe, (AHi)Z = 308 Oe

Once again the agreement, although less perfect than in the relaxation case,
is good.
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Our final conclusion of this section is that antisymmetric exchange is the most

dominant source of magnetic anisotropy in LiCuCI3.2H20.

6.5 Relaration in the eritical region of Li0u013.2H20

LiCuCl3.2H20 has been found to be antiferromagnetic below a Néel temperature of
L.4Y4 K at zero static field. Zimmerman et al. (70) performed some resonance ex-
periments in the critical region and found a critical broadening of the reso-
nance linewidths. EPR linewidth measurements only give information on the ave-
rage dynamical behavior in the plane perpendicular to the static field.

As in fact critical processes can be strongly anisotropic, it is clear why im=
portant information can be masked in the EPR results. Relaxation measurements
however yield direct information on the dynamical behavior of the magnetization
in one direction. An additional advantage is that relaxation measurements allow

one to determine the intrinsic field dependence of this dynamical behavior.

6.5.1 The direction of the easy-axis

Much disagreement exists between the easy-axis directions given by different
authors. Although the direction of the spin alignment is always found within

the a-c plane, the direction reported varies wildly over this plane. In Fig. 35
the relative positions of some of the results are given.

The difference in the results may be due to the difficult orienting of the single
crystals. Although at first sight the crystal planes are easily determined, a
closer look shows that several combinations of crystal planes lead to nearly the
same intersection angles. We determined the easy-axis by measuring the rf ab-
sorption below the Néel temperature while rotating the crystal.

As we know already from CuClZ.ZHZO, only in the easy-axis a low-frequency relaxa-
tion process occurs. So at low frequencies the easy-axis is easily determined

as the direction in which the absorption reaches its maximum. The easy-axis de-
termined in this way coincides with the direction found by Zimmerman et al. (70)
and Metselaar (71).

The easy diraction does not coincide with a magnetic axis. The angle of the
easy-axis with the Z-axis is about 16°. As one expects, when nearing the Néel
temperature, some transition in the angular dependence of the zero-field absorp-
tion from the magnetic axes to the easy direction, we also performed rotational

absorption measurements just above the Néel temperature.
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The results, together with the absorption measurements below TN, are given in
Fig. 36.
From these measurements it is clear that at T - TN = 0.450 K (€ = 0.1) the

high-temperature magnetic axes still act as principal axes for the magnetic rf

absorption.

T~ e-Zimmerman (70)
Metselaar(71)

Fig. 35 The relative orientation of the easy-axis in LiCuCl,.2H,0 as

5

found by different authors. View along the b-axis.
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Fig. 36 The angular dependence of the rf (v = 180 MHz) relaxa
absorption in the a-c.plane, above and below the Néel tempe-

rature. © is the angle between the Z-axis and the rf field.
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6.5.2 Temperature and field deperndence of the relaxation process

Near the Néel temperature a critical speeding-up of the relaxation process is

found. This speeding-up is much weaker than in CuCIz.ZHZO. At temperatures

where the relaxation frequencies lie well within our frequency region, we find
the relaxation process to be very well described by a temperature dependent sing-
le relaxation time. As an illustration the frequency dependence of the zero-
field absorption in the Z-axis is given in Fig. 37. The Néel temperature at zero-
field equals 4.440 K.

T LS. TP VL |

LiCuCl3.2H,0

!

Lol TR (1
500 1000 Mcs

Fig. 37 The frequency dependence of the normalized zero-field

absorption in the Z-axis of LiCuCl,.2H,0

At temperatures where the relaxation frequencies exceed our highest measuring
frequency, we determined the relaxation time by assuming the frequency depen-
dence of the absorption to be Lorentzian with maxima of 0.5 X

Near the Néel temperature, the relaxation process is found to be weakly field
dependent in the Y and Z axes. The X-axis shows no field dependence outside the
experimental error of a few percent. The frequency dependence of the relaxation
process at non-zero static fields is equally well described by a single relaxa-
tion time as it is at zero field. The relaxation times at a parallel field of

6 kOe are plotted together with the zero-field results in Fig. 38. In the Y and
Z axes the relaxation process is speeding-up in increasing static field Very

near the Néel temperature the field dependence appears to decrease somewhat.
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Comparison of Fig. 38 with Fig. 16 shows that the critical speeding up is weaker
in LiCuC|3.2H20 than ir CuClz.ZHZO. As it will be shown in the discussion of the

critical relaxation process, this difference is in complete agreement with the

theory outlined in section 2.4 of this thesis.

6.5.3 Discussion of the eritical relaxation process

In this discussion we will compare our experimental zero-field relaxation times

with the results of the theory outlined in section 2.4 of this thesis.

LiCuCl3.2H20 is a complicated magnetic system. In order to calculate the cri-

tical part of the relaxation time, we introduce some simplifying approximations

for the magnetic properties of LiCuCl3.2H20.

Due to the spin canting by the antisymmetric exchange interaction the anti-
ferromagnetic spin structure consists of four sublattices. As however the
canting angle is small (about 6°), we assume that in the critical region above
TN the antiferromagnetic spin structure is well approximated by a two-sublattice
model. Furthermore, the easy direction of the antiferromagnetic spins does not
coincide with one of the high-temperature magnetic axes. In Fig. 36 it was shown
that these magnetic axes still act as principal axes for the rf absorption

just above the Néel temperature. We assume now that the magnetic Z-axis coincides

with the direction of the spin alignment. Due to the small angle of about 16°

between the Z-axis and the easy-axis, this should not be an unrealistic approxi-

mation. Using these approximations, one gets for the F-functions of eg. (2.75)

Faz = For s

Fyz = Fxz =

Fyy = Fxx =




o
The U and D coefficients at the wavevector 9 which characterizes the staggered
state, are given in table 4. For the calculation of these coefficients we used

the antiferromagnetic spin structure given by Metselaar (71).

tabel 4
axis Uxx = Uyy ny sz Uyz Dx DX
X L8.6 E 21 0 3.65 E 21 0 1.92302+0.SSIDX 0
Y 27.5 E 21 3.65 E 21 0 0 1.92302+0.551DX 1.9230X+0.55102
Z 76.1 E 21 0 3.65 E 21 0 1.9230X+0.SSIDZ 0

The values for the coefficients are given in c.g.s units and per magnetic ion.
The dipolar summation was directly performed over more than 100,000 ions.

Using the antisymmetric D-values found in section 6.4.1, one gets

5
1 v T DY L
(A?)crit.x—A-X—o-E (11790 F/“+o.133 F“) 10
2y
1 _aIN_ 2 L
(A?)crit.Y =A X c (0.267 F// /0t 11780 F//L + 2700 FLL)lo (6.9)
1 L L
(A?)crit.z“AX_o'e (2700 F//1+57.9 FH)m

For an explicit calculation of the F-functions we transform the temperature

into KA/K//. In section 2.4 we estimated (cf. eq. (2.80))
(3 H + H
KA = ( Al AZ)\)G-\) (6.]0)
// He

From the T = 0 antiferromagnetic saturation field, measured by Metselaar (71),

we estimate that H. is about 10% higher than in CuC]Z.ZHZO. This yields

E
He = 60 KOe
Using the spin-flop field (HSF = 10.53 kOe at T = 0) measured by Zimmerman et
: 2
al. (70) one finds from Hep = 2 Hy He
Hpp = 920 Oe

The orthorhombic anisotropy field HA2 can be derived in different ways.

= J01 =




Zimmerman (73) measured the temperature gap between the temperature where the

low-branch resonance field is zero and the temperature where the high-branch

resonance field is zero. From this temperature gap we derive HAZ/HA1 = 3.0.

This value is in reasonable agreement with the value 3.4 derived from the angular
dependence of the resonance fields. We suppose the value HAZ/HAI = 1.65, found

by Zimmerman (73) from the resonance field at v = 9.80 GHz and T = 0, to be in
error as the accuracy of such a derivation is very small. A few percent devia-
tion in the value for the resonance field would lead to the values quoted above.

Using HAZ/HA1 = 3.2 one gets

—— = (0.0644) %™ (6.11)
//

As the magnetic anisotropy in LiCuCl .2H20 is relatively large and as the critical

3

exponent v is very sensitive to a small anisotropy (see section 2.4.1) we will

take for v the three-dimensional Ising value v = 0.63. It should be noted that

the final results are only weakly dependent on the choice for v.

One thus gets
K

A
<1/

« 0.180 e 0-63

Using the F-values given in Fig. 1 of section 2.4 and

A=1.69 1078 c.g.s.u
inferred from the experimental relaxation time in the Z-axis at € = 0.025, one
finally gets the theoretical results plotted in Fig. 40.
It should be noted that the values for A in CuCIz.ZHZO and LiCuCl,.2H,0 are of

a2
the same order. This gives additional credit to the theory.

In view of the drastic simplifications in the theory and of the complicated

nature of magnetic LiCuCI3.2H20, it can be said that a very good agreement is
found between experiment and theory. Just as in CuClz.ZHZO, it has been found

that two correlation lengths, connected to each other by the anisotropy of the
magnetic system, do sufficiently well explain the critical behavior of the relaxa-

tion process of the total magnetization Mz(t).
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Fig. 40 The theoretical and experimental critical

parts of the relaxation times in the

three magnetic axes of LiCuCl,.2H 0.

9

Use of the theoretical high-temperature relaxation times, derived in section
6.4.1, in eq. (2.70)(see also eq. (2.81)) yields the theoretical relaxation
times in the whole temperature region above the Néel point.

Both theoretical and experimental results are given in Fig. 41.
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Fig. 41 The experimental and theoretical zero-field relaxation

times in the three magnetic axes of LiCuCl,.2H 0.

0

Using the temperature dependent theoretical relaxation times in eq. (2.24a) one
calculates the low-frequency resonance linewidths. The theoretical values to-
gether with the experimental results of Zimmerman et al. (70) are plotted in

Fig. 42.

LiCuCly 2H,0

Fig. 42 Comparison of the theoretical resonance linewidths with the

experimental results of Zimmerman et al. (70).




In the resonance case apparently less perfect agreement between experiment and
theory is found than in the relaxation case. This is partly due to the averaging
of the discrepancy in the relaxation times in the X and Y axes over all three
directions by using eq. (2.24a). Furthermore, as shown in Fig. 39, the relaxation
process of Mz(t) is weakly field dependent near the Néel temperature. The origin
of this field effect is unknown to us but possibly indicates either an intrinsic
field dependence of the correlation functions or an anisotropy in the two-spin
correlation functions at zero field. Such a field dependence at relatively small
fields or an ansiotropy may also influence the resonant absorption and, as it is
not accounted for in the theory, may give rise to deviations from the theoretical
predictions. In view of all this we consider the agreement between experiment and

theory in the EPR case to be satisfactorily.

Our final conclusion is that, as in CuClz.ZHZO, the critical dynamical phenomena

of LiCuCl3.2H20 are very well described by the relatively simple theory outlined

in section 2.4 of this thesis.

6.6 Antiferromagnetic relaxation in LiCuCLS.BHOO
&

In CuC|2.2H20 we saw that in the easy-axis (both rf and static field parallel

to this axis) a low-frequency relaxation process occurs. In LiCuCl3.2H20 es-
sentially the same phenomenon is found.

In Fig. 43 the rf absorptions in the easy-axis are plotted at three different
temperatures. The absorptions are normalized by the zero-field uniform suscep-
tibility as determined by Metselaar (71). The maxima at certain fields indicate
the shifting of the top of the absorption curves through our frequency region.

At low temperatures the field dependence of the absorption and thus of the re-
laxation process, is much stronger than at temperatures nearer the Néel tempe-
rature (but outside the critical region). This has also been found in CuCl,.2H,0.
The frequency dependence of the absorption is given in Fig. 44. Lorentzian curves
with maxima of 0.5 are found at all static fields parallel to the easy-axis.
These frequency dependences indicate that the relaxation process can be described
by a single relaxation time. At low temperatures the relaxation process is slo-
wing down at increasing static field. Near the Néel temperature a strongly field
dependent critical speeding-up is found. All this is analog to the dynamical
behavior of CuC12.2H20. The angular dependence of the absorption is given in

Fig. 36 of section 6.5.1.
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Fig. 43 The field deperdence of the normalized rf absorption
in the easy-axis of LiCuCls.:?HZO. Both rf and static

field are parallel to the easy—axis.
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Fig. 44 The frequency dependence of the rf absorption in the easy-

axis of LiCuCl,,.2H

2

to the easy-axis.

0. Both rf and static field are parallel

We performed some relaxation time measurements below the A-transition of the

He-bath (T = 2.172 K). These measurements are difficult to perform with our

calorimetric method as the small pressure of the calorimeter He-gas, necessary

to get a reasonably ideal gas, limits both the sensitivity and the accuracy.

From Fig. 45 it is clear however that, if special care is taken, these measure-

ments can be sufficiently accurate.

107 -



LiCuCly. 2H,0
easy-axis

1l AllAliln11(1AA1]|AA|L||1

2 3 L K 5

Fig. 45 The temperature dependence of the relaxation time in the
easy-axis of LiCuCZS.ZHZO. The static field is parallel

to the easy-axis.

At low temperatures the relaxation time is proportional to T-3. This temperature

dependence is in agreement with the theory of Harris (31). The same temperature
dependence was found in CuCIZ.ZHZO. The relaxation times in LiCuC13.2H20 are

smaller than in CuCl .2H20. As it will be shown in the discussion, this experi-

mental result is conzistent with the larger magnetic anisotropy in the Li
compound .

In Fig. 46 the field dependent relaxation time is plotted versus the square of
the static field. As in CuClZ.ZHZO, the low-temperature relaxation times are
well described by

<(T,H) = ©(T,0) + £(T) H? (6.13)

where f(T) is some temperature dependent factor.
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LiCuCly.2H;0

The field dependence of the relaxation time in the easy-

axis of LtCuCl,.2H,0. The static field is parallel to the

3
easy-axis. The zero-field values for the relaxation times

can be inferred from Fig. 45.

6.6.1 Discussion

In this section we compare our experimental zero-field relaxation times with
the theoretical results for the k = 0 spin-wave relaxation.

Using the orthorhombic anisotropy values HAl = 920 Oe and H g . 2950 Oe and

A
Hy = (HAI & HAZ)/Z’ one gets

_ 10 ~ 10 _
wy = 3.75 10" Hz, g =117 107 Hz, Tpe = 2:26 K

The symbols Wpr WE and TAE are defined in section 2.5.5. The theoretical
expressions for the relaxation rates, given in table 1, are either valid for

T <<TAE or for T >>TAE. For the theoretical relaxation rates near TAE we inter-
polate between both limit situations. As the expressions for high and low tem-
peratures lead, around TAE' to relaxation rates of about the same absolute

magnitude, we do not believe that this interpolation introduces important errors.

=189~




The experimental and theoretical k = 0 relaxation times are given in Fig. 47.
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Fig. 47 Comparison of the experimental zero-field relaxation times

with the theoretical k = 0 spin-wave relaxation results.

Both absolute magnitude and temperature dependence of the zero-field relaxation
time are in near perfect agreement with the theory of Harris (31).

As in CuC|2.2H20, the relaxation measurements show that at zero field the
spin-wave approach is valid for temperatures below about 0.5 TN'

Further theoretical investigation is necessary to explain the dynamical behavior
at non-zero static fields. An interesting experimental result is that, apart
from the simple H2 field dependence, the temperature dependence of the relaxa-
tion times appears to be independent of the static field at sufficiently low
temperatures (see Fig. 45). This implies that at low temperatures, as in
CuCl,.2H,0, f(T)eT 3,

= 1390 =




CHAPTER 7
DYNAMICAL ASPECTS OF THE LINEAR CHAIN CU(NH3)bsoh'H20

71 Introduction

In recent years the magnetic linear chain system has been the subject of many
theoretical and experimental investigations. Formerly of academic interest only,
the magnetic linear chain model has recently been found to describe satisfacto-
rily the (mostly static) properties of several compounds.

Copper tetrammine sulfate monohydrate, denoted from now on as CTS, was one of the
first known magnetic linear chain compounds. The specific heat has been measured
by Haseda and Miedema (74). A broad Schottky type maximum near T = 3 K and a
sharp maximum of small intensity at about T = 0.40 K were found. The broad
maximum pointed to a linear chain behavior while the sharp peak at lower tempe-
ratures indicated the occurrence of three-dimensional long-range order. As an
ideal linear chain does not exhibit such a three~-dimensional transition, the
sharp peak at about 0.40 K implies a certain amount of interchain coupling.
Using a two-time temperature dependent Green function technique, Oguchi (75)
estimated from the value for the Néel temperature the ratio of interchain and
intrachain interaction. Denoting the (supposedly isotropic) interchain and
intrachain interactions as J' and J respectively, Oguchi found J'/J = 0.01.
Watanabe and Haseda (76) measured the static susceptibility in the principal
magnetic axes of CTS. Here also broad maxima at about T = 3 K were found. Using
the exact computer calculations of Bonner and Fisher (77), Griffiths (78) showed
that the broad maxima in both specific heat and magnetic susceptibility could be

explained by an isotropic antiferromagnetic exchange interaction between neigh-

boring spins in a linear chain of Cu ions. The intrachain exchange, IJ]/kB.

~as found to be equal to 3.15 K.

From these experiments it is evident that although the small interchain exchange
J' has a significant effect in ultimately producing three-dimensional order,
it does not alter the static magnetic behavior at temperatures well above TN.

The same holds for a small anlsotropic component in the intrachain exchange J.

The dynamical behavior of nearly perfect linear chain systems is governed by

the long-time persistence of the spin correlations. This persistence, which

is due to the slow rate of diffusion in one-dimensional systems, implies a long-
= 111~




time tail to the memory function as defined by eq. (1.19) of section 1.1.2.

Such a long-time tail corresponds to a strong anomaly (divergency) at w = 0

in the memory spectrum. Hennessy et al. (79) have shown that, in contrast to

the static properties, the long-time behavior of the spin correlation functions
is drastically influenced by a relatively small interchain interaction. As a
consequence, interchain coupling can be very effective in limiting the one-dimen-
sional divergencies at w = 0 in the memory spectrum. A short survey of the

theory will be given in the discussion of the high-temperature relaxation times.

The exact long-time behavior of the correlation functions is usually difficultly
visualized from experiment. In practice, one assumes a certain long-time beha-
vior for the correlation functions and calculates its influence on the dynamical
phenomena. One might however look for a possibility to extract the real long-time
behavior straightforwardly from some relatively transparant experiments. Para-
magnetic resonance has been shown (80)(81) to be a valuable tool in testing theo-
ries on the long-time persistence of the correlations. The disadvantage however
is that in resonance experiments important information may be masked, as in fact
the resonance line shape stems from the average dynamical behavior in the plane
perpendicular to the static field. A better approach«may be found in paramagne-
tic relaxation time measurements. In these experiments, where static and rf field
are mutually parallel, the long-time behavior of the memory function is relative-
ly easily determined from the field dependence of the relaxation times or the

frequency dependence of the rf absorption.

At high temperatures weshall use the relaxation time measurements of Van der
Molen (10) and Lieffering (82). We remeasured some of their results and found an
agreement within the experimental error of a few percent. At low temperatures,
down to about T = 2 K, we performed both relaxation and resonance experiments.
At these temperatures an anisotropic speeding-up of the relaxation process has

been found.

7.2 Crystal structure of Cu(NH

3)4504.H20

The crystal structure of CTS has been determined by Mazzi (83). The crystal is

found to be orthorhombic with a tetramolecular unit cell of dimensions
a=17.08A, b=12.14 A, c = 10.68 A

S




The space group is Pmcn' The crystal is composed of CU(NH3)h’Soh and HZO elements.

The Cu(NH3)u group is planar and square with the distance Cu-N equal to 2.05 A,

Each copper ion has two water neighbors at different distances, 2.59 and 3.37 A.

The crystal structure is visualized in Fig. 48.
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Fig. 48 (4) Projection of the unit cell of CTS on its b-c plane.

(B) Atomie configuration surrounding a Cu ion in CTS.

From the crystal structure it is probable that the intrachain exchange path is

through the -Cu-HZO-Cu- bonds. The chains of Cu ions are parallel to the c-axis.

For our experiments we used several single crystals of about 0.5 gram. The dark
violet crystals were oriented by measuring the intersection angles of the diffe-
rent crystal planes. To prevent decomposition, the single crystals were submer-
sed in paraffin (hexadecane). It was found that a thin film of paraffin on the

crystal surface was already sufficient to prevent such a decomposition.

7.3 Relaxation and resonance experiments in Cu(NH3)4SO4.HZO

For a single relaxation process the memory spectrum should be reasonably constant
over a sufficiently large frequency region around w = 0. This is easily seen

from section 1.1.2 as such a constant part implies a narrow memory function.

As in near-perfect linear chain compounds the memory spectrum shows a strong
anomaly around w = 0, the relaxation process of the total magnetization Mz(t)

is not expected to be described by a single relaxation time. In CTS however, the
frequency dependence of the relaxation absorption is very well Lorentzian, even

at frequencies far beyond the top frequency (see Fig. 49).
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This experimental result indicates a relatively large interchain coupling as such
a coupling removes the divergency at w = 0 in the memory spectrum. This is in
agreement with the resonance experiments of Hennessy et al. (79) who found the
EPR lines to be Lorentzian, even at fields far from the resonance field. Conse-
quently, the description of the dynamical behavior of CTS is simplified by the
fact that the time evolution of Mz(t) is, in good approximation, characterized

by a single temperature and field dependent relaxation time.

7.3.1 Temperature dependence of the zero-field relaxation times

In Fig. 49 the frequency dependence of the zero-field relaxation absorption in
the three magnetic axes of CTS is given at the temperature T = 20.4 K. The c-axis
is the chain direction. The frequency dependence is very well described by the

Lorentzian form

i wT

T (7.1)
(o} 14w T

<

>

For the normalization of x'' we used the static susceptibility results of Wata-

nabe and Haseda (76).

S P

i T A |

Fig. 49 The frequency dependence of the normalized zero-field

absorption in the three magnetic axes of CIS at 20.4 X

Our zero-field relaxation times at T = 20.4 K.

= 2.15, =2.72, i 8.25 10 ~ sec

b
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are in good agreement with the experimental results of Van der Molen (10) at

the same temperature

- e = =3
L 2.12, = 2.78, ST 7.90 10 © sec

b
We performed absorption measurements, such as given in Fig. 49, at temperatures
from 2 K upwards to 77 K. In all three directions and at every temperature the
frequency dependence of the zero-field absorption x'' was found to be Lorentzian
within our frequency range up to 540 MHz. When normalized by the static suscep-
tibility, the top value of the Lorentzian curves was in every case equal to 0.5.
This indicates that, at all temperatures down to 2 K, the long-time decay of the
total magnetization is characterized by a single relaxation time. As an illustra-
tion the normalized absorptions in the a-axis are plotted in Fig. 50 at three
different temperatures. The zero-field relaxation process in the a=axis is spee-

ding up when lowering the temperature.

T 1T T

g-axis H=10

N Z AN\

- SO
v N
4150 K
2360 K

4l 1 = I E S WA

S 10 V——=50 100 Mcs

The frequency dependence of the normalized absorption

in the a—axis of CTS at three different temperatures.

The speeding-up of the relaxation process at lower temperatures is found to be
anisotropic. The relaxation times in the a and b axes show nearly the same
temperature dependence while in the c-axis (the chain axis) no relevant tempe-
rature dependence was detected at all. In Fig. 51 the temperature dependence of
the relaxation times in the three magnetic axes of CTS is given. The measure-
ments at temperatures between 4 and 15 K were performed by heating the sample

adiabatically using its own rf absorption.
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Every relaxation time given in Fig. 51 has been determined by fitting eq. (7.1)
to the frequency dependence of the absorption at the given temperature. As one
sees from Fig. 50, very good fits are obtained with only a few percent scatter.
Some confusion may exist about the definition of the magnetic axes a, b and c

as the crystallographic axes have been defined by some authors in different ways.
We used the definition of Mazzi (83) throughout. For further information, the
a-axis is the magnetic axis with the smallest g-value (g_ = 2.050) while the

values in the b and c axes are equal to 2.123 and 2.184 respectively.
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Fig. 51 The temperature dependence of the zero-field relaxation

times in the three magnetie axes of CIS.

7.3.2 Field dependence of the relaxation process

The field dependence of the relaxation times at H2 temperatures (15-20 K) has
been measured by Van der Molen (10). We remeasured some of his results and

found a good agreement within the experimental error of a few percent. The
field dependence of the relaxation times gives us very important information as
in fact it reflects the low-frequency dependence of the memory spectrum. As al-
ready stated before, it is exactly in this low-frequency region that the typical
linear chain anomalies occur. It should once again be stressed that in a near-
perfect linear chain it cannot be expected that the relaxation process can be

described by a single relaxation time.
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Even in that case, however, the frequency dependence of the absorption x''

would give us all the relevant information on the long-time persistence of the
spin correlations. In CTS the problem is simplified by the relatively large inter-
chain coupling.

The field dependences of the relaxation times at T = 20.4 K are given in Fig. 52.

Fig. 52 The field dependence of the relaxation time in the three

magnetic axes of CTS. The open points are from Van der Molen

(10). The black points represent our own measurements.

At lower temperatures down to 2 K the field dependences remain roughly the same,
although at small fields some minor changes occur. In the c-axis the maximum

at small fields becomes less pronounced while in the a and b axes the field
dependences become slightly stronger. These changes are however small and not

too much attention should be paid to it.

Careful inspection of the field dependence of the relaxation times shows now
why the frequency dependence of the rf absorption ' was so well described by
a Lorentzian. In field ranges of about 200 Oe around every, arbitrary value
for the static field, the relaxation times are nearly field independent. Assu-

ming the well-known weak-coupling feature of rigid line shape for the memory
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spectrum to hold (the four lines of the memory spectrum shift rigidly with the
static field) one finds that the memory spectrum is nearly constant from v = 0
up to at least v = 600 MHz. This, on its turn, implies that the frequency de-

pendence of x'' should be Lorentzian up to at least 600 MHz, a value far above

the relaxation frequencies.

71.3.3.Resonance experiments in CTS

Most resonance experiments (84)(85) in CTS have been performed at relatively
high frequencies. As in a linear chain compound it has to be expected (86) that
the linewidth is strongly frequency (field) dependent, we performed extensive
measurements of the low-frequency (low-field) resonance linewidth in the three
magnetic axes of CTS. The measurements were performed at a measuring frequency
of v = 300 Mcs which implies a resonance field of about 100 Oe. As already poin-
ted out by Hennessy et al. (79), due to the relatively large interchain coup-
ling the resonance lines are expected to be Lorentzian, even at fields far from

the resonance field.

' ) . - —
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Fig. 53 The paramagnetic resonance lines in the three magnetic
axeg of CTS. For clarity the line in the b-axis has been
shifted over 30 Oe to the right. The solid lines represent
least-square fits of eq. (7.2). In the a-axis the rf field
18 parallel to the b—axis, in the b—axis parallel to the

c-axts and in the c-axis parallel to the a-axis.
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At zero static field the resonance absorption is determined by the relaxation
rate in the direction of the rf field. At increasing static field the relaxation
rate of the third direction (perpendicular to both rf and static field) will also
play a role. The resulting lineshape has been given by Verbeek et al. (19)

(cf. eq. (5.3)) 1 2 T
st —i

7 M+t )
(é—) = ) - (7.2)
o o 2 2 1 2 2
(nf—g 0 w1 nd —yo
1+ Ty Wt w( 14w Ty)

At higher frequencies (7.2) reduces to a Lorentzian with a field linewidth given

by

(aH,) , (= + =D (7.3)

AH% is the full linewidth at half maximum height. o is the direction of the
rf field, B the direction of the static field and y the third direction perpen-

dicular to the other two. t is the zero-field relaxation time.
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Fig. 55 The temperature dependence of the resonance linewidths in the
three magnetic axes of CTS. AH% denotes the full linewidth
at half maximum. The linewidths were measured at v = 300 MHz.
The solid lines are derived from our experimental relaration

times, see Fig. 51, using eq. (7.3).
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In Fig. 53 the resonance lines in the three magnetic axes of CTS are plotted at
a temperature T = 20.4 K. The solid lines are least-square fits of eq. (7.2) to
the data. The parameters T, and TY are found to be equal, within experimental
error, to the zero-field relaxation times given in section 7.3.1.

Eq. (7.2) has been found to fit the resonance data very well at fields up to

about 8 AH,. Beyond this field the accuracy is too small to allow any conclusion.
:

We performed the same measurements as given in Fig. 53 at temperatures from 2 K
upwards to 77 K. At lower temperatures a broadening of the linewidth was found
in all directions. This temperature dependence is illustrated in Fig. 5k.

The solid lines are once again least-square fits to the absorption data.

Substituting the parameters Ty and TY thus found into eq. (7.3) we were able to

calculate the full linewidth AH%, which is in fact the linewidth at slightly
higher frequencies where the line shape is fully Lorentzian. The temperature
dependence of this resonance linewidth is given in Fig. 55. The solid lines
represent the linewidths calculated using eq. (7.3) and the experimental relaxa-
tion times from section 7.3.1. A very good agreement between both relaxation

and resonance experiment is found.

The broadening of the resonance linewidth is found to be more or less isotropic.

Comparison of Fig, 55 with Fig. 51 demonstrates how important information can

be masked in the resonance linewidth. Due to the averaging of the dynamical pro-
cess in the plane perpendicular to the static field the broadening of the line-

widths is more or less isotropic. In contrast, the speeding-up of the relaxation

process is strongly anisotropic.

7.4  Confrontation of the experimental results at high temperatures with

theory

As already mentioned several times before, the interesting dynamical property of
magnetic linear chain systems is the long-time persistence of the spin corre-
lations. It has been shown by many authors, see e.g. refs. (87) and (88), that
in the ideal linear Heisenberg chain these long-time tails lead to divergencies
at w =0 in the Fourier transforms of the correlation functions. Such anomalies
were clearly demonstrated by the computer calculations of Carboni and Richards
(86). In their basic work these authors calculated straightforwardly the time
evolution of the two-spin correlation functions in closed and open Heisenberg
linear chains of up to 10 spins. Using the same extrapolation procedure as Bon-
ner and Fisher (77) they were able to give reliable estimates for infinite
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linear chains.
In this discussion we will compare our experimental high-temperature results

with an adapted version of the theory of Hennessy et al. (79) for CTS.

In the DRPA, defined by eq. (2.54), the zero-field high-temperature memory func-
tion of the relaxation process of Mz(t) is given by (cf. eq. (2.55))

4 4
g u
6,(t) = —2— 1 |Cq)|? <<s__5 (t)>>7 (7.4)
hes(S+1)N q a9

C(q) is a wavevector dependent weight factor which arises from dipolar and other
non-secular interactions. This factor is taken per magnetic ion. In (7.4) use

has been made of the high temperature approximation

o Tr 8% s%(t) e
a SRRl R (R y
<80 sq(r)>> = kg (s_q, sq(:)) (7.5)

while further it has been assumed that the two-spin correlation functions are

isotropic

X X - y y - z
(s__, Sq(t)) = (s_q, sq(t)) (s-

z >
g - Sq(t)) s

<<S__q Sq(t)>> (7.6)

q k. T

B
From eq. (7.4) it is evident that, if all assumptions about DRPA and isotropy

are correct, the memory function 1is positive semi-definite for all times.

Assuming now, in the spirit of the theory of Hecnnessy et al., that the two-spin
correlation functions can be approximated by a simple product of the unperturbed
linear chain correlation function and a function ¢ (t) which depends on the in-

terchain coupling, one gets for sufficiently long times

* 2
(¢) Bty & S ey (7.7)
<<s_g Sq()>> = 35(s41) e AC 7.7

0* is the diffusion constant along the chain axis, the symbol %* being intro-
duced to eliminate any possible confusion with the antisymmetric exchange D. In
eq. (7.7) it has been supposed that the time evolution of the unperturbed linear
chain correlation function is completely governed by the isotropic intrachain
Heisenberg exchange only. In ref. (79) it has been shown that in the case of

Heisenberg interchain coupling, ¢q(t) is given by

94 (t) t
—A— = -7 y (r) ¢ (t-1)dr (7.8)
t 5 q q

2




with

i Jgf_qlz (7.9)

n : > ° .
where J"¢ denotes the interchain exchange interaction.

For the explicit calculation of the q'-sum we will take a look at the crystal
structure of CTS.
Each copper ion in CTS has, within the a-b plane, six neighbors at approximative

the same distance. See Fig. 56.

° eCu

®

Fig. 56 (A) Positions of the nearest neighbors in the a-b plane.
(B) The first magnetic Brillouin zone of CTS. For symmetry

v

reasons the contributions from the rectangle are the

same as from the real Brillouin zone.

For symmetry reasons the exchange interactions between corner and base-center

ions are equal. Although the exchange interactions along the a-axis may be

nc nc
)

different we suppose the coupling to be equally strong (Jij = J in all six

directions. Using

FUN
nc 2 = N ¢ e
=, J.. e i (7.10
Jq S L 2 ; ;
one then gets
nc _ nc y
Jq =2 J (cos 9,3 + 2 cos iq_a cos kqbb) (7.11)
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Substituting eq. (7.11) in (7.9) and transforming the q'-sum into an integral,

one finds for sufficiently long times
2

1 nc
S(s+1) (—= Y& i—i (3-cos q.a - 2 cosiq_a cos %q b) (7.12)
BnD*t h Ao B b

w| oo

wq(t) =

At times which are short compared with the characteristic decay time(s) of

@q(t), the integro-differential equality (7.8) may be approximated by

- f/tw (t)dr dt -ft(t-T)w (1)dt
bg(t) =e o 9 =e’ d (7.13)
Substituting (7.12) in eq. (7.13) one finds
-(_[__)3/2 F(q)
4oft) = e ©0 (7.184)
with
3 2/3 8w0* 173 J"° -u/3
= (—— ) 5 ) (—) (7.15)
325(S+1) z h
F(q) = 3 - cos q,a - 2cosiq_a cosiqbb (7.16)

Expression (7.14) is only valid for times at which Oét) has not decayed signi-
ficantly. To get the behavior at larger times, we solved the integro-differential

equality (7.8) numerically. A typical result is shown in Fig. 57.

— S —_— o
1 B
F(q): 4
¢q(f]
05 1
N L eqi714)
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0 05 11—t 15 2

Fig. 57 The solution ¢ (t) of integro-differential equality (7.8) using
kernel (7.12) limited at very short times by comvolution with a
Gaussian. ¢q(t) 18 given for the set of gq—values for which

F(q) = 4.




From these computer calculations we found that, at times of interest, ¢q(t)

is very well described by

-(593/%k (q)

b(t) = ° (1 - F@) 2773 (7.17)
(e}
Use of eq. (7.7) in (7.4) leads to the memory function
g“ug s(s+1) ; —zo*qzt .
Galt) & =gt 5 |c(q)|“ e ¢ (t) (7.18)
= 3h“N q q

By further transforming the gq-sum into an integral one gets, under the assumption

that C(q) shows no singularity at or near q = 0, the long-time expression

4 4
gug S(s+1) - 2 & o o 2 .2
Gz(t) = R (BﬂD*t) Lo Log |c(x,y,0)| ¢xy(t)dx dy (7.19)

with x = 9,2 and y = qbb.

The coefficient C(x,y,0) depends on the non-secular interactions in the magne-
tic system. There are several reasons why there should be, apart from dipolar
interaction, another important non-secular interaction in CTS.

In the weak-coupling limit one has (see eqs. (2.21) and (2.24))

<<H H _>> + 2<<H I _>> gu <<J(2 >> 1
=] 2 =2 ) S P S dH (7.20)
h <<S§>> T 0 <<.'K2>> (H)

The double brackets denote normalized traces. As all factors are positive, the
left-hand side should be larger than the right-hand side when the integral is
only extented from zero field to a finite maximum field. Theoretical calculation
of the normalized traces, taking only non-secular dipolar contributions into
account, yields in the a-axis for the left-hand side 9.46 1018 c.g.s.u. From the
relaxation time measurements, given in Fig. 52, we find for fields up to 7 kOe
for the right-hand side 13.4 1018 c.g.s.u. The right-hand side being larger than
the left-hand side implies that in CTS another non-secular interaction occurs
which increases the surface of the memory spectrum. As it has been shown in

this thesis that several copper compounds exhibit antisymmetric exchange, we
suppose this interaction, as it is allowed by crystal symmetry, to be at

the origin of the surface increase in CTS.

Additional credit for this assumption is that the antisymmetric exchange in CTS
leads to a small canting of the electron spins in the antiferromagnetic state,
which may be in agreement with the susceptibility data reported by Saito (89).

To be of any importance here the antisymmetric contribution should be found in
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the intrachain exchange J. Assuming that the memory spectrum is Gaussian for
large w(which is equivalent with a Gaussian behavior of the memory function at
short times) we can estimate the antisymmetric exchange parameter from our re-
laxation measurements. Using eqs. (2.9), (2.40), (2.41) and the symmetry ele-
ments of CTS we find a = 0.1.

This value is small but not unrealistic. It can be shown now that the antisym-
metric contribution to the normalized traces in eq. (7.20) is an order larger
than that of the dipolar interaction. We will adopt now an interaction model
for CTS which contains, besides the intrachain and interchain exchange inter-
actions, an antisymmetric contribution in the intrachain exchange J.

As the antisymmetric exchange occurs between copper ions along the c-axis, one

has
c(x,y,0) = c(0,0,0) (7.21)

Substitution of eq. (7.21) in (7.19) yields

L 4
9 Vg S(s+1) c2 - z mk W 2N Z
G (t) = — I ) e £ 70 Lppe,,(t) dx dy (7.22)

From eq. (7.22) it follows that the functional time dependence of the memory
function is the same in all directions while the intensity of the long-time
tail is proportional to |C(0)|2. These theoretical predictions, embodied in
eq. (7.22), will be confronted with the memory functions as derived from our

relaxation experiments. One has

o v \

Gz(t) =4 é {Gzl(w) + Gzz(w)} cos w t dw (7.23)

Our model with only antisymmetric interaction as non-secular contribution, im-

plies that the memory spectrum is completely dominated by %Z](w) (see section
2:3)

For that case one has
2

N " " 1 <<K >>
G, (w) + G () =G . (a) = { L
21 22°% z1 27t (H) <<K2>> H = %%~ (7.24)
B

Using the experimental relaxation times in eq. (7.24) and substituting the re-
sult in (7.23), one easily calculates the memory function in the corresponding
direction. Pathological frequency dependences of the memory spectrum at high

frequencies are excluded by the Gaussian cut-off assumed above.

- 126 -




4Lt a-axis CTS

10" 2
cgsu

»

Fig. 58 The experimental and theoretical long-time behavior of the
memory funetion in the three magnetic axzes of CTS

The solid lines represent the theoretical rec

different values for j = JC/I. The open pointg are caleculated

from our experimental relaration times.
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For the calculation of the theoretical Gz(t) from eq. (7.22) we use the diffusion

constant (90)
2

* £ 3
D" = 1.38 — [S(S+1)]° (7.25)
Lh
For the antisymmetric exchange coefficients we found
16
2 25 D 2 A _
lc,(0)]% = po,  |c (0)|% =pDl,  [c (0)]% = p(DJ4D}), p = EE (7.26)
B

The value for j = Jnc/J can be inferred from the Néel temperature which has been
found (91) to be equal to 0.43 K. It should be noted that although we included

6 next-nearest neighbors, the result is the same as for a 4 next-nearest neigh-
bors orthorhombic unit cell. The value for j varies, dependent on the decoupling

method in the static correlation functions, between 0.007 and 0.015 (79).
The experimental and theoretical memory functions are plotted together in Fig.58.

Comparing theory with experiment one notes two important facts.

First, the long-time behavior of the experimental memory functions is much less
pronounced than should be expected from the interchain coupling derived from the
Néel temperature. We tentatively tried to describe the long-time behavior with
another value for j = J"€/J. It was found that the value 0.04 fitted the long-
time behavior reasonably well. Using the Tahir-Kheli (92) decoupling method, this
value yields Ty =0.75 K (experimental value 0.43 K).

Secondly, the memory function in the c-axis is negative at intermediate times
(the minimum lies at about 10 h/J). This is an important result as it implies
that at those times either the dynamical Random Phase Approximation is inaccu-
rate or that the two-spin correlation functions are anisotropic, even at high
temperatures. Both, DRPA and isotropy, are frequently used in theories on the

high-temperature dynamical behavior of weakly anisotropic magnetic systems,

In CuC12.2H20 the memory function in the a-axis also showed a negative under-
shoot at intermediate times (see section 5.1.2). It was found that in the direc-
tions where the memory functions were positive at all times, most contributions
to the g-sum in the theoretical expression of Gz(t) (cf. eq. (2.55)) came from
the center (intermediate g-values) of the Brillouin zone. In contrast, in the
a-axis the contributions from the center were small and most contributions came
from small gq-values and from the border of the Brillouin zone. In the case

of anisotropy of the two-spin correlation functions at certain g-values, this

different sampling could very well explain why only the a-axis showed the anoma-
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lous behavior at intermediate times. We will now investigate if the same diffe-
rence in sampling also occurs in CTS.
Due to the fact that the antisymmetric exchange occurs between copper ions along

the c-axis, the coefficients C(q) are independent of q, and q,.
= o
¢(q,,q,,9.) = €(0,0,q.) (7.27)

In Fig. 59 the qc-dependence of |C(qc)|2 is given

Fig..59 The qc—dependence of the coefficient ]C(qc)lz. It has

been assumed that of the non-secular interactions in
CTS only antisymmetric exchange ie important. The coeffi-

etent 18 given in c.g.s8., units.

Just as in CuClz.ZHZO, one notes that the direction (c-axis) in which the
negative shoulder in the memory function occurs, shows a strong tendency for
contributions from large and small g-values. Again, in contrast, in the other
two directions most contributions come from intermediate g-values. All this
gives credit for anisotropy in the two-spin correlation functions at either
large or small g-values. The origin of the anisotropy is not clear but may
probably be found in the antisymmetric exchange (and to a lesser extent in
dipolar interaction) itself.

However, in spite of all this the possibility of inaccuracy in the DRPA should
not be ruled out.
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It may very well be possible that, due to the peculiar character of antisymme-
tric exchange, cross correlations such as (qu, S:(t)) are unequal to zero
(and negative) at intermediate times. As both DRPA and isotropy have been used
in the theory exposed in this chapter, deviations from it may very well occur.
One can only hope that, due to the time dependent sampling over the Brillouin
zone, anisotropy and inaccuracy in the DRPA only play a minor role at really

long times.

Some final remarks

In theoretical investigations on the dynamical phenomena in low-dimensional

weakly anisotropic Heisenberg systems, usually three basic assumptions are made.

First, it is assumed that the time evolution of the wavevector dependent two-spin
correlation functions is, at all times, predominantly governed by the
secular interactions within the magnetic system. An analog assumption is found

in the weak-coupling approximation as used in this thesis.

Secondly, it is assumed that four-spin correlation functions can be decoupled,
using the so-called dynamical Random Phase Approximation, into products of two-

spin correlation functions without loss of relevant information.

Thirdly, it is assumed that at high temperatures the two-spin correlation func-

tions are isotropic at all values for q and t.

Confrontation of experiment with the theory of Hennessy et al. (79) in which these
three basic assumptions are embodied, shows that the experimental memory func-
tions decay to zero in unexpectedly short times. Although the relative 'inten=
sities' of the long-time tails of the memory functions in the different direc-
tions are in good agreement with the theory, a description of the behavior at
really long times requires a ratio interchain-intrachain coupling which is near-
ly a factor 3 larger than the largest estimate for this ratio from the Néel
temperature.

This important discrepancy between experiment and theory can be due to a brake

down of the validity of each of the assumptions mentioned abcve.

In the case that the first assumption does not hold, not only the theoretical
predictions but also our derivation of the memory functions from experi-

ment may be in error as, in that case, the lines in the memory spectrum cannot
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be expected to shift rigidly with the static field

If the weak-coupling approximation is sufficiently accurate, we find strong
indication for either anisotropy in the two-spin correlation functions or gross
inaccuracy in the dynamical Random Phase Approximation at intermediate times.
Whether these facts, anisotropy and inaccuracy in the DRPA, fully explain the
deviation from the expected theoretical time behavior at really long times is

unknown.

7.5 Discussion of the dynamical behavior at low temperatures

When lowering the temperature, short-range order will progressively develop

between spins along the chain axis. This one-dimensional short-range order leads

to an enhancement of the contributions to the q-sum of eq. (2.55 from g-values

near and at the staggered plane a = (qa, Qs 2n/c).

At still lower temperatures the interchain coupling produces three-dimensional
short-range order and ultimately long-range order at a temperature unequal to
zero. It depends on the antiferromagnetic spin structure which part of the

staggered plane plays the dominant role in this process.

In first instance, the effects of three-dimensional short-range order are ex-
pected to be only important very near the Néel temperature (€ < 1). As the expe-
rimental speeding-up of the relaxation process in CTS starts at about

T =10 K (€ = 20), one should expect that this speeding-up arises from the

development of one-dimensional short-range order along the chain.

In CTS the memory functions decay to zero at times sufficiently short to describe
the relaxation process of Mz(t) by a single relaxation time. In that case, we may
use an approach similar to that in section 2.4 with some adaptions to the linear
chain case. The anisotropy of the magnetic interactions will be neglected as it
is small and probably only plays a role very near the Néel temperature.

For the near-perfect linear chain compound one gets for the region of one-dimen-

sional short rage order

FLOMCTE: SR T (7.28)

T o(T) (=) X

where k is the inverse correlation length along the chain axis. For the linear
chain it has been found (93) that, at sufficiently low temperatures, k is pro-

portional to the temperature
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Substitution of eq. (7.29) in (7.28) yields

70 (ply & 75 (7.30)

-

In Fig. 60 the experimental values for the left-hand side of (7.30) have been

plotted versus the temperature,
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theoretical results
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One notes that the experimental temperature dependence does not support, as far
as the dynamical properties are concerned, a purely one-dimensional short-range
ordering along the chain, even at temperatures reasonably far from the Néel

temperature. A possible explanation of this unexpected result will be given be-

low.



At high temperatures we found the experimental memory functions to decay to zero
in unexpectedly short times. This discrepancy between theoretical and experimental
time dependence of the memory function may indicate that in the theory, in which
several approximations are embodied (see the final remarks of section 7.4),

the interchain coupling, secular and non-secular, is not properly taken into
account. In fact, the experimental results possibly indicate a more important

role of this interchain coupling. There is no reason now why this should not
equally hold at lower temperatures. As, due to the critical slowing-down of the
spin fluctuations, the relevant correlation functions are extending to longer
times, one expects the interchain coupling to be even more important at lower
temperatures. This then leads to a decay rate of the correlation functions (see
eq. (2.57)) which is not only dependent on q.» as it is in an ideal linear chain
compound, but also on q, and - It should be stressed that the dependence on

q, and q, does not automatically imply a regular three-dimensional short-range
ordering. The static and equal-time staggered susceptibility (see eq. (2.66))

may even, in very good approximation, show the normal ideal linear chain beha-
vior. The only point made here is that the time evolution of the spin correlations

is strongly influenced by the interchain coupling.

A calculation analog to that of section 2.4 leads then to

== — (7.31)

Substitution of (7.29) in (7.31) yields

X =
2 (ah) « 7723 (7.32)
=

As is shown in Fig. 60, this result is in very good agreement with experiment.

In spite of this agreement the explanation above is only tentative as in the
derivation (7.31) some of the approximations have been used of which we questio-
ned the validity at higher temperatures. In the critical region, however, other
parts of the Brillouin zone play the dominant role in the dynamical process, so
these approximations may be better at lower than at higher temperatures.

For further investigations on the dynamical properties of non-ideal linear chain
compounds, more experiments should be performed in CTS at lower temperatures.
Especially, neutron scattering experiments should be performed to reveal the
possible q, and a dependence of the relaxation rates of the wavevector depen-

dent two-spin correlation functions.
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Samenvatting

In dit proefschrift is, zowel experimenteel als theoretisch, het dynamische
gedrag van enkele zwak anisotrope magnetische systemen onderzocht. Het onderzoek
was in het bijzonder gericht op de tijdsevolutie van de totale magnetisatie van
het geTsoleerde elektron spin systeem. Hiervoor werden relaxatie en resonantie
metingen verricht in de paramagnetische, kritische en antiferromagnetische toe-
stand van drie verschillende koper verbindingen. Van twee van de verbindingen
CuC12.2H20 en LiCuC13.2H20 is bekend dat ze magnetisch drie-dimensionaal zijn
terwijl de derde, Cu(NH3LSOA.H20, één van de eerst bekende magnetische lineaire

keten systemen is.

In de hoge temperatuur limiet is de invloed van antisymmetrische Dzialoshinsky-
Moriya exchange interactie op relaxatie en resonantie onderzocht, Introductie

van deze antisymmetrische interactie in de koperverbindingen leidde tot een per-
fecte overeenkomst tussen experiment en theorie. Het interactie model, dat slechts
één aanpasbare exchange parameter bevat, is getest op de onafhankelijke experi-
mentele resultaten verkregen in de kritische en antiferromagnetische toestand.

Het model bleek volledig consistent te zijn.

In het kritische gebied dichtbij de Néel temperatuur werd een anisotrope spee-
ding-up van het relaxatie proces gevonden. Gebruik makend van Random Phase
Approximation, ruimtelijk Fourier transforms en dynamical scaling is een theorie
ontwikkeld over kritische relaxatie en resonantie in zwak anisotrope magnetische
systemen. Hierin werd aangetoond dat de dynamische kritische verschijnselen van
een magnetisch systeem sterk kunnen worden beTnvloed door de magnetische aniso-
tropie. Door deze anisotropie te transformeren in een anisotropie in de kriti-
sche slowing-down van de spin fluctuaties, werd een relatief eenvoudige uitdruk-
king voor de relaxatie tijden (en dus ook voor de resonantie lijnbreedten) ge-
vonden. De resultaten van dezetheorie die een generalisatie is van de theorie
van Huber (2)(12), zijn in goede overeenstemming met het experiment in zowel
CuC12.2H20 als LiCuCl3.2H20. Dezelfde theorie op de lineaire keten Cu(NH3LSOA.H20
toegepast, geeft als experimenteel resultaat dat de correlatie lengte omgekeerd

evenredig is met de temperatuur.

Beneden de Néel temperatuur is in de easy-axis van de orthorhombische antiferro=
magneten een laag-frequente relaxatie gevonden. Er is aangetoond dat deze relaxa-

tie metingen een bruikbare test vormen voor spin-golf verstrooiings theorieén.
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Goede overeenkomst is gevonden met de theoretische voorspellingen van Harris (31).

In de lineaire keten CTS is speciale aandacht besteed aan het lange-tijd gedrag
van de tijdsafhankelijke correlatie functies. De lange-tijd staarten van de re-
laxatie geheugen functies zijn direct berekend uit de relaxatie metingen. De
resultaten van deze berekeningen zijn vergeleken met een aangepaste versie van
de theorie van Hennessy et al. (79). Alhoewel de meeste verschijnselen kwalita-
tief konden worden verklaard, werd gevonden dat de geheugen functies minder uit-
gesproken lange-tijd gedrag vertonen dan theoretisch kon worden verwacht. Uit
de metingen volgt een indicatie voor &f belangrijke onnauwkeurigheid in de Ran-
dom Phase Approximation &f een anisotropie in de golfvector afhankelijke twee-

spin correlatie functies.
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Op verzoek van de faculteit der Wiskunde en Natuurwetenschappen volgt hier een

overzicht van mijn studie.

Na de middelbare schoolopleiding aan het Johannes Calvijn Lyceum te Rotterdam,
waar mijn interesse voor de exacte vakken werd vergroot door de zeer persoon-
lijke wijze van lesgeven van de heer W. Kors, en na de militaire diensttijd be-
gon ik eind 1962 mijn studie in Leiden. Interesse voor niet-natuurkundige acti-
viteiten bracht met zich mee dat ik, naast de voorbereiding van de natuurkunde

tentamens, een groot gedeelte van mijn tijd doorbracht in het land van Marianne.

In 1967 legde ik het kandidaatsexamen (D') af, waarna ik mij in april 1967 bij
de relaxatiegroep van Dr. J.C. Verstelle voegde. In het eerste half jaar assi-
steerde ik Dr. K. van der Molen en Dr. J.J. Eggermont waarbij de experimentele
feeling en nauwkeurigheid waarmee eerstgenoemde werkte op mij een diepe indruk
heeft achtergelaten. Na deze eerste maanden van initiatie begon ik mijn eigen
metingen waarbij ik na zekere tijd geassisteerd werd door Drs. E. de Vries en
later de heer A.J. Bijlsma. Vanaf 1968 assisteerde ik op het elektronisch prak-

tikum.

In november 1971 legde ik het doktoraal examen natuurkunde af waarna ik, eind

1972, werd benoemd tot wetenschappelijk medewerker.

De goede sfeer in de werkgroep werd voor mij bepaald door de zeer goede samen-
werking met, naast bovengenoemden, Dr. P.W. Verbeek en Drs. H.L. van Noort ter-
wijl Dr. J.G.A. Hillaert voor een vrolijke noot zorgde door af en toe guitig
een zwaar metalen voorwerp door de lucht te laten vliegen. De hechte samenwer-
king met Dr. P.W. Verbeek culmineerde in 1972 in de ontdekking van een nieuw

effect, het zgn. Kvanndal effect.

De heer L.J. de Haas assisteerde mij bij het verrichten van enige numerieke

berekeningen vermeld in dit proefschrift.

De tekeningen in dit proefschrift werden op vlotte wijze vervaardigd door de

heer W. Rijnsburger. Het technische gedeelte van het onderzoek werd op sympa-=

thieke wijze verzorgd door de heer J. Turenhout en zijn medewerkers. De heren
C.J. van Klink en L. van As fabriceerden met veel deskundigheid de kwarts ca-

pillairen.
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Ae
De bewering van Joshua dat hij op groepentheoretische gronden heeft aangetoond

dat CuC\Z.ZHZO een gekantelde spinstructuur heeft, is onjuist.
s.J. Joshua, Phys.Stat.Sol. 38(1970)643
2%

Bij de confrontatie van de experimentele temperatuurafhankelijkheid van AFMR
lijnbreedtes met theoretische verwachtingen wordt vaak ten onrechte geen

rekening gehouden met de intrinsieke veldafhankel i jkheid van deze 1ijnbreedtes.
J.P. Kotthaus en V.J. Jaccarino, Phys.Lett. 42A(1973)361
3.

De wijze waarop Hennessy en Richards bij hun analyse van de temperatuurafhankeli jk-
heid van de paramagnetische resonantielijnbreedte in Cu(NH3)h50h.H20 gebruik

maken van de lineaire-keten berekeningen van Carboni en Richards, is aanvechtbaar.

M.J. Hennessy en P.M. Richards, Phys.Rev.B 7(1973) 4086
F.Carboni en P.M.Richards, Phys.Rev. 177(1969)889

b,

De bij ministerigel besluit geregelde promotie van het Franse wijnkasteel
Mouton Rothschild'' tot premier cru du Médoc is, zelfs uit propagandistisch

oogpunt, zinloos.
Arréte du Ministre de 1'Agriculture - juin 1973 - France
5.

Voor meer inzicht in het dynamische gedrag van niet-ideale lineaire-keten

systemen bij lage temperatuur, dient met neutronenverstrooiing de afhankelijkheid

te worden onderzocht van (Sq, S_q(t)) van de golfvektor loodrecht op de keten-

richting.
Dit proefschrift, sectie 7.5
6.

Bij de interpretatie van de meetresultaten verkregen met de door Rollins et al.
voorgestelde nieuwe methode voor het bepalen van de fluxdichtheidsgradiént
in irreversibele type Il supergeleiders, wordt onvoldoende rekening gehouden

met de beweeglijkheid van de fluxdraden in de pincentra.

R.W. Rollins, H. Kiipfer en W.Gey, J.Appl.Phys. 45(1974)5392




7.

Bij de voor de bergsport gebruikelijke indeling van bergpassages in moeilijkheids=
graden, dient men te bedenken dat de moeilijkheidsgraad van sommige van deze

passages een functie is van de afmetingen van de bergbeklimmer.
Guide du Massif des Ecrins - Arthaud - Paris
8.

De bewering van MgnSQn en Sjdlander dat boven het overgangspunt Random Phase
Approximation in Heisenberg systemen geen zinvolle resul taten geeft voor de dyna-

mische verschijnselen, is in zijn algemeenheid onjuist.
M. M3nson en A. Sj8lander, Phys.Rev.B 11(1975)4639

9.

Uit de in het temperatuurgebied van 14 tot 20 K geconstateerde discrepantie
tussen de IPTS -~ 68 temperatuurschaal en de magnetische temperatuurschalen
volgt dat de IPTS - 68 schaal niet voldoende nauwkeurig is en gecorrigeerd dient

te:worden: " The International Practical Temperature Scale of 1968 ',

Metrologica 5(1969)35
10.
De grafische voorstelling van een Chebyshev polynoom is een Lissajous figuur.

"' Theory and problems of numerical analyses ', Francis Scheid,

McGraw=-Hill Book Company, New York
A4l

Recente onderzoekingen waarbij gebleken is dat voor de mens carcinogene stoffen
in bepaalde bacteriestammen (Salmonella typhimurium) over het algemeen veel meer
mutaties veroorzaken dan niet-carcinogene stoffen, moeten ook in Nederland aan-
leiding zijn, mede gezien het feit dat een stof in twee dagen kan worden onder-
zocht, het wettelijk te verplichten elke in ons milieu kunstmatig geTntroduceer-
de stof op mutagene eigenschappen te laten onderzoeken en de lozing en het ver-

werken in voedsel van sterk mutagene stoffen te verbieden.

B. Commoner, Report to the Environmental Protection Agency
(UsA), juli 1975

Zie ook de publikaties van de ter gelegenheid van het

400-jarig bestaan van de Leidse universiteit tot eredoctor

bevorderde Dr. Charlotte Auerbach.












