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STELLINGEN

I

Vant-Hull, Simpkins en Harding hebben de magnetische ruis van een
staaf normaal metaal gemeten door de staaf in de holte van een
dubbelpuntcontact te schuiven. Bij de interpretatie van de uitkomsten
van deze meting dient de invloed van dit normale metaal op de werking
van het dubbelpuntcontact te worden betrokken.

L. Vant-Hull, R.A. Simpkins and J.T. Harding
Phys. Lett. 2̂4, 736 (1967)
Dit proefschrift §4.6.

II

De alternatieve verklaring die Gubankov, Likharev en Margolin
geven voor de gemeten ï als functie van B± , die wordt beschreven
in figuur 16 van dit proefschrift, leidt niet tot bevredigende
overeenstemming tussen de gemeten en de berekende waarden. De zelf—
inductie van het omsloten oppervlak van het dubbelpuntcontact mag
derhalve niet worden verwaarloosd.

V.N. Gubankov, K.K. Likharev and N.M. Margolin,
Sov. Phys.-Solid State 14, 819 (1972).

III

Het gebrek aan overeenstemming tussen de theorie, die Mercereau
Voor een dubbele Dayem—brug heeft ontwikkeld, en het experiment, is
het gevolg van een foutieve beschrijving van het systeem en niet van
het feit dat in de theorie thermische ruis buiten beschouwing werd
gelaten.

J.E. Mercereau, Rev. de Phys. Appl. (Paris) 5_, 13 (1970).



IV

De verklaring van het verdwijnen van het „patch-effect" bij
vloeibaar-helium temperaturen wordt gezocht in de invloed die een
geadsorbeerd laagje kan hebben op de uittreepotentiaal van verschil­
lende kristaloppervlakken van een metaal. Deze verklaring kan worden
getoetst door gebruik te maken van experimentele technieken die in
deel II van dit proefschrift zijn beschreven.

F.C. Witteborn and W.M. Fairbank, Nature 220, 436 (1968).

V

In verband met de mogelijkheid om op eenvoudige wijze lage tem­
peraturen te bereiken, is het van belang de thermische effecten te
bestuderen die gepaard gaan met veldemissie van electronen.

VI

In verband met de theorie van Misner dat de gravitatiestraling
die door Weber is waargenomen het gevolg is van gravitatie-
synchrotron straling, verdient het aanbeveling ook de polarisatie
van de gravitatiestraling te meten.

C.W. Misner, Phys. Rev. Lett. 28, 994 (1972).

VII

Het argument waarmee Einstein de algemene geldigheid van de
door hem ontwikkelde theorie over gravitatiestraling in twijfel
trekt is niet steekhoudend.

A. Einstein, Sitzungsberichte der Freussischen Akademie
der Wissenschaften, Berlin, 154 (1918).



VIII

De druk in de damp juist buiten een heliumfilm, waarin de
superfluïde component al dan niet beweegt, is in een stationaire
toestand gelijk aan de verzadigde dampdruk.

V.M. Kontorovich, Sov. Phys. JETP 3, 770 (1956).
D.L. Goodstein and P.G. Saffman, Proc. R. Soc. A 325,
447 (1971).

IX

Voor het meten van de spontane magnetisatie en van de gemiddelde
domeingrootte in de transmissierichting van een ferromagneet met
behulp van neutronen-depolarisatie, zijn bij gegeven reactorflux en
gelet op de beschikbare polariseertechnieken, koude neutronen (met
een golflengte van ongeveer 4 A) te prefereren boven thermische (1 X).

X

Het besturen van een land als Nederland kan slechts door een
multidisciplinair team van deskundigen worden overzien en uitgevoerd.
Dit leidt voor de niet-gespecialiseerde buitenstaander (de overgrote
meerderheid van de bevolking) tot een onduidelijkheid in de politiek
die maar zeer ten dele door vereenvoudiging van de partijverhoudingen
kan worden verbeterd.

A.Th.A.M. de Waele 21 december 1972
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GENERAL INTRODUCTION

The work described in this thesis deals with the macroscopic quantum
effects in superconducting point contacts weakly connecting two super­
conductors and with the electrostatic effects in superconductors due to
temperature gradients.

When two superconductors are completely isolated from each other it
is possible to apply a voltage difference between both superconductors,
while there is no current flowing between them (V = any value, i = 0).
On the other hand, when two superconductors are tightly pressed against
each other a supercurrent can flow through the contact region while the
voltage is zero (V = 0, i = any value below the (bulk) critical current).
From these considerations one can understand that there should be ways
of connecting two superconductors that lead to current-voltage dependen­
ces that are in some way in between these two extreme (and trivial)
cases. In order to find this intermediate region one must "weakly" con­
nect the two superconductors. In 1962 and 1963 Josephson and Anderson
predicted that weakly coupled superconductors should show a macroscopic
quantum behaviour.

There are many ways to realize a weak coupling. One can separate the
two superconductors by a thin insulation layer (tunnel junction), a layer
of a normal metal (S-N-S junction) or by a narrow constriction of super­
conducting material (Dayem bridge) with a width of the order of one micro­
meter. The types of weak links that we deal with in part I of this thesis
(il - §5) are the so-called superconducting point contacts. They con­
sist of one or more points of one superconducting block that touch another
superconducting block.

Although the detailed behaviour of the various types of weak links
is different, they have many important features in common. One of them
is that up to a certain critical value a current can flow through the
weak link while the voltage across the link is zero, even in an oxide or
an S—N—S junction. Another common feature is that weak links radiate
electro-magnetic waves, obeying the relation 2eV = hv. These effects were
predicted by Josephson in 1962.

P^rt I of this thesis deals with the dc and ac current—voltage-
magnetic field dependences of several different point contact arrange­
ments. It is shown (§2) that in a device with a single superconducting
point contact, ac super and normal currents, and ac and dc voltages are
generated when a dc current is supplied to the contact, larger than the
maximum supercurrent (V ji 0). The ac impedances in the electrical cir-

to the point contact have an influence on the dc current—voltage
dependence. A direct way to show this feature (§4.5) is to put a point
contact in the center of the bottom of a coaxial cavity.

The situation where the two superconducting blocks are connected
by two point contacts gets much attention in this thesis. Such a device
is called a double point contact. The maximum supercurrent through sym-

double point contacts as a function of an applied dc magnetic
field is calculated (§3). It will be shown that a circulating current
around the hole, enclosed by the superconductors and the point contacts,
gives rise to a self-induced flux in the hole that cannot be neglected.
The self—inductance has to be taken into account. In this way quantita­
tive agreement between the calculations and the experiment is obtained
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(§3.3). The relationship with a strongly coupled double point contact
where the total flux in the hole is quantized is treated in §3.2. The
dynamic behaviour of symmetrical double point contacts in the resistive
region (V 1 0) will be discussed (§4). There are ac magnetic fields in
the hole between the contacts in addition to ac voltages and ac currents.
A derivation is given of the fact that the dc voltage at constant applied
dc current oscillates as a function of the applied dc magnetic field.
The amplitude of these oscillations increases when one puts a normal
metal (such as copper or platinum) in the hole, since the self-inductance
of the hole is then frequency dependent. This fact can be used to im­
prove the voltage sensitivity of a magnetometer where a double point ■
contact is used as the magnetic-field-sensitive unit (§4.6).

The relation 2eV = hv has been confirmed within 1 £pm by Parker,
Taylor and Langenberg. Clarke proved that the quantity V/v is the same
within 0.01 ppm for all the superconductors tested in his experiment.
These high degrees of accuracy are possible because the ac Josephson
relation gives a direct relationship between the frequency v and the
electrochemical potential difference Ap per electron across the junction:
2eV = 2AÏÏ = hv. In a superconducting circuit the only changes in the
electrochemical potential occur at the junction, even when there are
several different superconducting materials or temperature gradients.
Hence, the measurement of V is not affected by eventual thermal gradients
in the superconducting parts of the circuit, since a voltmeter measures
differences in the electrochemical potential (§1.3).

The influence of temperature gradients in superconductors is dis­
cussed in part II of this thesis (§6 - §10). It is a known fact that the
Seeback, Thompson and Peltier coefficients are zero in a superconductor.
However a comparison between superconductors and superfluid helium II,
leads to the suggestion that there is an electric field in the bulk of a
superconductor when a temperature difference is applied on the supercon­
ductor. This electric field multiplied by the electron charge (eE) is^
exactly equal to the gradient in the chemical potential per electron Vp.
The essential difference between a superconductor and a normal metal
being that the equality holds exactly for a superconductor, while in a
normal conductor these two terms differ by a quantity related to the
differential thermo-electric power of the normal metal. The difference
in the electrostatic potential in the bulk of a superconductor due to a
temperature difference can be regarded as the analogy of the fountain
pressure in superfluid helium II.

The analogy between the properties of superconductors and helium II
has always been of theoretical and experimental interest ). Essentially
this similarity is due to the fact that in helium II and in superconduc­
tors a macroscopic number of (quasi) particles is condensed in the same
single (quasi) particle wave function. Therefore they both show a macro­
scopic quantum behaviour. Because of this fundamental common feature such
striking phenomena as superconduction (the absence of friction), the
Meissner effect, flux quantization and the Josephson effect in a super­
conductor, all have their analogue in helium II. It is then natural to
ask whether this analogy can be extended to the fountain effect in helium

* "Stromen zonder wrijving" by R. de Bruyn Ouboter, 19 december 1967,
Universitaire Pers, Leiden.
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II. In other words whether in a superconductor electrostatic voltage dif­
ferences can exist, which can be considered as the analogue of the fountain
pressure in helium II. Several theoretical papers showed that this effect
should exist indeed. The so-called "fountain voltage" shows up in the tem­
perature dependence of the work function of a superconductor. In part II
of this thesis an experiment is described where the temperature dependences
of the work functions of niobium and lead are measured. It turns out how­
ever that the fountain voltage shows up together with other terms due to
the temperature dependence of the surface dipole layer of the supercon­
ducting metal. Furthermore it appears that the change in the chemical
potential due to a change in temperature is a very complicated property
of the material and cannot be interpreted only in terms of the entropy
per conduction electron. This seems to be a fundamental difficulty in
measuring the fountain voltage. Apart from this, the measurements des­
cribed in part II give a fairly good insight in the magnitude of the elec­
tric fields in superconductors due to a temperature gradient.
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SUPERCONDUCTING POINT CONTACTS WEAKLY CONNECTING

TWO SUPERCONDUCTORS
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POINT CONTACT (THE AC JOSEPHSON EFFECT), §2.1 The resistive-super-
conductive region and the current-voltage characteristic for a single
point contact. The influence of ac impedances on the dc current-voltage
characteristic, §2.2 A single superconducting point contact shunted in
parallel by a superconductor or a low—resistance normal conductor,
§2.3 Microwave emission and absorption from superconducting point con­
tacts and the constant voltage steps in the current-voltage characteris­
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§3 THE CRITICAL CURRENT THROUGH A DOUBLE POINT CONTACT BETWEEN TWO
SUPERCONDUCTORS AS A FUNCTION OF THE APPLIED MAGNETIC FIELD, §3.1
Two superconductors weakly coupled by a double point contact when the
self-induced flux in the enclosed area is ignored (symmetrical and asym­
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coupled by a symmetrical double point contact when the self-induced flux
in the enclosed area is taken into account, §3.4 The interference grating.
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tion of double point contacts.
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§ 1 INTRODUCTION

§1.1 Many aspects of the properties of weakly-coupled superconductors
have been described previously by P.W.Anderson ■) in Progress in
Low Temperature Physics (Vol 5, Chap. I: The Josephson effect and
quantum coherence measurements in superconductors and superfluids
(1967)). The microscopic and macroscopic theory of the Josephson
effect 2) were described and experiments measuring the transmission
of supercuprents through thin insulating oxide barriers (a Josephson
tunnel junction) were discussed mainly in terms of quantum-mecha­
nical tunneling. An explanation was given of the interference of the
tunnel current when the magnetic field is applied (the dc,diffrac­
tion experiment of Rowell 3)*) and the double-junction dc macrosco­
pic interference experiments of Mercereau and co-workers 5)).
Furthermore experiments were reviewed which are related to the ac
Josephson effect 6-10); when a constant voltage difference V is
established across the junction the super-current oscillates at a
frequency (2e/h)V *0).

Soon after the discovery of the Josephson effect 2) in 1962
it was demonstrated that this effect was not only related to the
transmission of supercurrents through very thin (10 a 20 A) oxide
barriers but could also be observed in narrow superconducting con­
strictions (a technique due to Anderson and Dayem *') (1964)) and
in superconducting point contacts '2). in these experiments the ac
Josephson effect appeared to be related to the motion of quantized
vortices (Anderson's phase slippage concept).

In 1964-1965 Zimmerman and Silver 12) constructed Mercereau 3)
double-junction interferometers in which the oxide tunnel junctions
were replaced by superconducting point contacts. A point contact
between two superconductors is formed when a point of one super­
conductor touches the other. The contact resistance at room tempe­
rature is in the order of 0.1 to 1000 £1. The critical current of
the contact (which is the maximum dc current that can flow through
the contact while the voltage across the contact is zero) is seve­
ral orders of magnitude less than the critical current of the bulk
superconductor.

The behaviour of the evaporated tunnel junctions (oxide layers)
was fully understood at the time of Anderson's review article (1967),
contrary to the case of point contacts which are of a quite dif­
ferent nature. Since that time considerable progress has been made
in understanding the behaviour of superconducting point contacts
mainly by the work of Zimmerman and Silver 13—23)  ̂ Dayem and Grimes
24-25), Stewart 26), McCumber 27), Baratoff, Blackburn and Schwartz
28) and the Leiden group 29-37),

This part of this thesis concerns dc and ac interference pheno­
mena in superconducting point contacts weakly connecting two super­
conductors. They will be treated here in four sections (2-5) preceded
by a short summary of the phenomenological theory of superconduction,
containing some topics from the London 38)46) and the Ginzburg-Landau
theory 39), namely the Meissner effect 38)46), flux quantization
40-45) and the ac and dc Josephson effect *)2)46). This summary serves
to facilitate the discussion of the presented material.
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The properties of a single superconducting point contact will
be discussed in §2. Special attention will be paid to the resistive-
superconductive region, the current-voltage characteristic and the
radiative properties. The point contact will be treated using a two—
fluid model in which the total current js the sum of an ideal
Josephson super current ig(j) = ijsin A<)« (t) and a normal current
in (t) = V/Rn = -(h/2e) (9A<|> (t)/3t)/Rn . The influence of a shunt capaci­
tance and a series inductance will be taken into account.

In §3, the magnetic field dependence of the critical current
(the dc Josephson effect) through a double point contact, when the
self—induced flux in the enclosed area is taken into account, is
studied extensively. Its relation with flux quantization is discussed.

§4 deals with the properties of double point contacts in the
resistive—superconductive region, in relation with both the ac and
dc Josephson effects. Device applications such as in very sensitive
magnetometers and voltmeters are discussed. An experiment is descri­
bed where a double point contact is used to measure the magnetic
flux due to a rotating superconductor (the London Moment).

Finally, the last section of part I (§5) gives a description
of the experimental set-up and of the construction of the devices
studied in this research.

§1.2 THE MEISSNER EFFECT AND FLUX QUANTIZATION
The essential feature of superfluidity (superconduction) is ac­

cording to London 38) a condensation of a macroscopic number of par­
ticles (bound-electron pairs, first described by Cooper ^7)) in the same
single quasi—particle quantum state. Such a condensation can be des
cribed, as usual, by an internal order parameter. According to the
phenomenological theory of Ginzburg and Landau 39) the order para­
meter ïg is a complex quantity, with properties similar to those of
the wave function of the macroscopically occupied single quasi-par­
ticle quantum state. This complex order parameter 't'g has an amplitude
¥0 (r,t) and a phase <Kr,t):

f0(r,t,I)ei<Kr,t) (1 .1)
2 •In the Ginzburg-Landau theory 39) I ’l ' g l  is interpreted as the internal

order parameter of the original two-fluid model of Gorter and Casimir:
48) the charge density ps(T) of the superfluid particles at a given
temperature T is equal to the square of the amplitude: pg ■|’f8 p  and
hence:

^s /ps(?,t,T)ei<|>(r,t) (1.2)
The absolute phase is not observable, but we will show that phase dif­
ferences are directly observable quantitiés.

In the Ginzburg-Landau theory, the current density Is is related
to the probability current density of quantum mechanics in terms of the
wave function Vg of this single quasi-particle quantum state:

sI 2 (2m)
I* I2

(¥*$rs s - ï VÏ )s s
ft 2e -f,TSÏT !v* ~TrAI

(2e)
(2m)
= Iy 12-»- ■*v1 s = ps V (1.3)
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The charge (2e) which enters in this expression is equal to twice the
charge of a free electron, since according to the microscopic theory
of Bardeen, Cooper and Schrieffer v)  bound electron pairs are invol­
ved in the ordering process. The mass (2m) is very nearly equal to twice
the mass of a free electron . From eq. (1.3) one can define the fun­
damental relation for the generalised dynamical momentum ps of the super­
conducting pairs:

p H 2m v + 2eA = hV<(>. (1.4)s s
Taking the curl of the equation (1.4) the London 38) relation is obtained

or:
V x p (1.5)

V x v (2e)
(2m) V x A - -  Bm (1.6 )

Combining eq. (1.6) with the Maxwell equation

e^c V x B = Ig = Pgvs gives the following relations:

V^B = B/A^ and V^fg = Ig/A^ (in which A^ = e mc^/pse is the London-
Ginzburg-Landau penetration depth) explaining the Meissner effect:
the magnetic field (the magnetic induction) vanishes completely
in the bulk of a non-rotating superconductor (B = o). Even if the
magnetic field was already inside the metal before cooling through
the critical temperature, the magnetic field is expelled below the
critical temperature. We should like to remark that the eqs. (1.3)
and (1.4) are gauge invariant under the following transformations for
the vector potential, the scalar potantial, the phase and the genera­
lized dynamical momentum:

A' = A + * x . V  = v  ■ 3x
3t *

2e -V. -►
♦ ' = ♦ + TTX ’ P = Prs rs + 2eVx

If one deals with a multiply-connected superconductive region
instead of a simply-connected region, for instance a superconducting
cylinder whose thickness is large compared to the penetration depth,
one finds that although everywhere in the superconductor Vxps = o,
the circulation of the generalized dynamical momentum (and hence the
generalized angular momentum) around the hole of the cylinder is quan­
tized, ^psds = nh. The circulation of pg is also related to the magne­
tic flux $ enclosed by the hole. For each point in the superconductor
there can be only one value of the wave function ¥g. Thus the phase <f>
cannot change arbitrarily in the superconductor. If one adds the phase
changes in a closed loop around the cylinder, the wave function must
stay single valued. Hence irrespectively of how the phase <j> changes
as one goes around the cylinder, when one comes back to the starting
point the phase must give the same value for the wave function V ,
hence ^gdij> = n2ir (n = any integer) . Inside the bulk of the superconduc­
tor vg = o, hence eq. (1.4) gives
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p = 2eA = hV<j>

and the magnetic flux $ enclosed by the hole is equal

(1.8)
to 38,42-46.):

0 J V a = 4Asds = A  k s ds = A  4d* = “ A - (1.9)

In 1948 F. London 38) predicted that the magnetic flux trapped by a
superconducting cylinder would be quantized. The amount of trapped
flux has been experimentally found to be quantized in units h/2e by
Deaver and Fairbank 40) and Doll and Nabauer 41) in 1961. For a closed
path in a region of non-zero current (vs ^ o) one has fluxoid quantiza­
tion 38) ;

1
2e i p ds' s s —& v ds +e-'s s 0 A ds7 s s v ds

e7 s s +  4>
h
2e (1.10)

When, starting with the material in the normal state, a magnetic flux
is applied through the hole (area 0) of the cylinder equal to Bj_0 and
the cylinder subsequently is cooled into the superconducting state, a
persistent circulating current ic£rc is induced in such a way that the
total magnetic flux enclosed by the cylinder is quantized:

B 0 + L i . m nJ—  , (1.11)circ 2e
in which L is the self-inductance of the cylinder. Hence we stress
again this relation: the sum of the product of the external magnetic
field strength B_,_ and the enclosed area 0 and the product of the cir­
culating current i^irc ant̂  the self-inductance L is quantized. When
the applied magnetic flux is equal to an integral number of magnetic-
flux quanta, Bj_0 = nh/2e, the circulating current is equal to zero and
when the applied magnetic flux is equal to a half-integral number of
flux quanta, Bj_0 = (n + i)h/2e, the circulating current has a maximum,
at points where the quantum state jumps from the state with n quanta to
the state with n + 1 quanta. A schematic plot of the total enclosed
magnetic flux and the circulating current as a function of the magnetic
field applied in the normal state is given in fig. lb. If the cylinder
is cooled in an applied magnetic field from the normal to the supercon­
ductive state it passes into that quantum state, quantum number n, with
the lowest Gibbs free energy. This quantum state is conserved during the
further cooling process even if the field is switched off. A mechanism
which can be responsible for choosing one of these particular quantum
states (described in fig. lb) is explained in §2.2.

§1.3 THE AC AND DC J0SEPHS0N EFFECT
The dc and ac macroscopic quantum interference effects are observed

when two superconductors are "weakly" connected. The two superconductors
are at least in two dimensions much larger than the coherence length or
the London penetration depth, so that they can be considered as "bulk"
superconductors. The (non-zero) critical current of the weak link has
to be several orders of magnitude less than the critical current of the
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O Bj_0

Fig. la The critical current ic(-contaets ----- -------------------- 5 and tl>e current through the individual
Ï»H r  K! • • b t a functlon of the applied magnetic flux for a "strongly" coup­led double junction. The total magnetic flux is quantized. See fig. 6 for a Schematic
latinemcufrent°- ? Junc*1“ - When the aPPlied «<** is increased from zero, a circu-

8T %  ulndUCed ln SUCh a way (see £ig- b) that the total flux in 0 remainsanlfh "?• , contacts the circulating current adds to half the applied current
the critical current of the total junction is therefore smaller than when B 0 - o

Increasing 10  increase, the circulating current and ic decreases. The current through
b is constant and equal to the critical current i, of the individual contact "b" &

whichSUrPa-SeS- h/2—  the circulatir>8 current changes sign. It is now contacta which carries its critical current. The total flux in the hole is now equal to
h/2e (see fig. lb). When B^O is further increased, the circulating current decreases
the circ6? r-hr°U8h b zncreases> and the critical current increases. When B.,0 = h/2e
S3 2) 1 tln* Current 18 zero and the critical current is again equal to 2i, (see

£rh“
temperature in an applied field B,. The dotted line represents the self-induced f l ux !
v8 L1circ* ln t£ie hole. ,

bulk superconductors. The observed interference effects can be sum­marized as follows:
1) When two superconductors are weakly coupled, either by a very thin
oxide layer, or by a superconducting point contact, or by a narrow con­
striction or by a super-normal-super sandwich junction, a dc superconduc­
ting tunnel current of limited magnitude ij can flow through the junction

*7 a sence voltage difference (V = o) between both superconductors(the dc Josephson effect).
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2) When a constant voltage difference V is established across the weak
link the supercurrent oscillates with a frequency (2e/h)V and with an
amplitude i] (the ac Josephson effect). These oscillations are accompa­
nied by electromagnetic radiation with the same frequency.
3) If one deals with a double contact or with a contact of finite ex­
tension the supercurrents give rise to interference phenomena in an ap­
plied magnetic field.

As an introduction, a simplified derivation of the Josephson rela­
tions in analogy with Feynman (but extended by including the influence
of the vector potential A on the weak link 34)> by a discussion of the
gauge invariance of the equations and by introducing the electrochemical
potential instead of the voltage) will be presented here.

Fig. 2 A schematic diagram of a single point contact.

When two superconductors are separated by a weak link (see fig. 2)
the two (base state) wave functions ¥] and ¥2 of these two superconduc­
tors (fig. 2) are coupled by means of the Hamilton equations:

3¥.(t) 2
ih — ----  = Y H. .¥. (t) , H. . = H. .St ij J 1J Ji

which, in the absence of a magnetic field, can be written in the follo­
wing way

g\ji _
- j -  -  -  ^  * ,  + K¥2 , (1 .1 2 )

gij/ _
ih —  = + ^  ¥2 + CT, . (1.13)

In (1.12) and (1.13) Ap = p„ - p is the electrochemical potential dif­
ference per electron across the point contact (p = p + eV, p is the chemi­
cal potential per electron). The factor 2 arises from the fact that
Cooper pairs are tunneling (H22 - Hj j = 2Ap) and H]2 = H2] = K is the
coupling constant (see fig. 2). In the presence of a magnetic field the
coupling constants K in eqs. (1.12) and (1.13) change by the factors

2
A ds)s

, . 2eexp (-1
16

Agds) and exp (+i —
16
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respectively, where the integral is taken across the contact (6)*
since

H 2 1  =  < 2 l H l 1 > A ? « 0  =  < 2 I H I 1 > 1 = 0  e x p  ( i  i f  f  A s d s )J16 s

= K exp (i y  ( A ds) - H* .
h h 6 3 12

Eqs. (1.12) and (1.13) now change to

+ (K exp(-i n
r 2

A ds)} ¥
16 3 2

(1-14)

3 t
2Ay m
2 2 + (K exp(+i Ads)}s (1.15)

The vector potential "X is integrated over the thickness 6 of the contact
layer. First we substitute

Yj = >̂ pTe (with j = 1,2)

in which now pj is the total charge of the superfluid particles in j,
then we equate the real and imaginary parts of eqs. (1.14) and (1.15)
and take Pj = p :

2K/(P]p2)/h = ij ,

<(>2 - <̂j = Aij) (t) = the phase difference across the weak link.
In this way it is found that the super current is given by

igCt) = i jsin(A<|> (t) - f  A ds) E i sinA4>*(t) (1.16)
J16 s

and the electrochemical potential difference by

Ay h 3 A4>
2 TT • (1.17)

Recently several theoretical papers (Baratoff, Blackburn and Schwartz 28),
Bardeen and Johnson 102), and Gregers-Hansen, Levinsen and Fog Pedersen

)) have been published concerning the question which experimental
conditions have to be satisfied in order eq. (1.16) to be valid. Unfor­
tunately none of the models that are introduced in the calculations
applies on point contacts. In 53.3 (fig. 16) a measurement of the criti-
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cal current-magnetic field dependence of a double point contact will be
compared with the values calculated from eq. (1.16). The close agreement
between theory and experiments is strong evidence that eq. (1.16) is
correct for point contacts.

The eqs. (1.16) and (1.17) are gauge invariant. This can be verified
by using the definitions of Ay, y and A4> and the transformations (1.7) for
V and <j>. In eq. (1.16) we introduced a quantity Aif> called the gauge-inva­
riant phase difference of the weak link defined by

* 2eA<j> = A<t> - •==• A ds . (1.18)
* Jl6 s

In this definition the superscript should not be confused with the
symbol for complex conjugate.

For two^ identical superconductors at the same temperature Ui^= V 2
and hence Ay = eV. In this special case the time dependence of A*!1 is
given by

A<j>*(t) = A<f>*(o) ~

= A<|>*(o) + ^

in which E = - VV - -— r .a t
In order to see how the eqs. (l._ljjj) and (1.17) are related to the

experiment we introduce the quantity y which is called the gauge-inva­
riant electrochemical potential 50). it is defined by

o 6
rt r2

(VV + -gpOds dt'

E ds dt's (1.19)

?  y * :  ?  y + e .

Using the definition of y we obtain

-±  — *  7b ±TT 3AV y = Vy + eVV + e ,

■f ——  m  -)■
V y = Vy - eE . (1.20)

-> _ ) K
Since y a n d  E are gauge invariant y is gauge invariant. In a normal
metal y is constant in parts of a circuit where the temperature is^
constant and where currents are absent. In a bulk superconductor y
is also constant when there is a temperature gradient (see PART II).
From eqs. (1.17) and (1.18)

Ay h 3A<)>*
2 3t
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-  3A
(Vsy + e -yjr ) ds tl 3A<j>

2 3t
—  *Au h dA<(>

2 3t 0 .21)

The gauge-invariant electrochemical potential difference across a volt­
meter Ay " is equal toVM

UVM (y- u ) + e(V„ - V ) + eMrVM v 2 rVM
,2

1 VM

In this case U| = v>2 and VM (3Ag/3t)ds 0. Hence the quantity
measured by the voltmeter is equal to (Ayyjj)/e. When a voltmeter is
connected very close to the point contact, the inductance of the leads
between the voltmeter and the point contact can be neglected (^A ds = o)
and consequently AVVM A- *Aypoint contact' Hence using eq. (1.20)

ft 3A<f>
2e 3t (1.22)

where Vp would be the voltage if measured by a voltmeter very close to
the contact.

Eqs. (1.16) and (1.22) are a quantitative formulation of the
Josephson effect: a dc supercurrent ig = i| sin Aij> can flow through a
weak link when no voltage difference is present and its maximum value
i] is reached when A<f> = tt/2. When Vp is constant in time the super­
current is(t) = ij sin A<(i*(t) = i] sin {A(j> (o) - (2e/ft)Vpt) oscillated
with a frequency

Eq. (1.23) is the simplest form of the ac Josephson effect.
In general however the voltmeter is not connected very close ^ 3A<j>*
to the contact. In that_case thejneasured voltage V^ Vp = - -x--- r— -
but the relation v ■ 2eVjj/h = 2eVp/h still holds. A circuit 6
for measuring Vjj is given in fig. 3. The only requirement for the cir­
cuit is that the voltmeter is connected to the contact with leads

With the bar above V or i we indicate the time average of a voltage
or a current over times which are an order of magnitude larger than
the time periods of V or i due to the Josephson effect. This means
that V and T can be varying with time but in general slower than with
the Josephson frequency.
On the other hand, a bar above "y" indicates that we deal with the
electrochemical potential y instead of with the chemical potential y.
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that have a purely inductive impedance (no resistance, no capacitance).
Connected in parallel to those leads may be any impedance (dotted re­
gion), such as a combination of resistances (§2), capacitances (§2.1),
self-inductances (§2.2) or even a cavity (§4.5) or another point con­
tact (§4).

iiiir
Fig. 3 Diagram representing the voltmeter circuit. Vp is a voltmeter very

close to the point contact. is the actual voltmeter at room temperature. The leads
to Vm  are represented by pure inductances. The dotted area between the leads indicates
that any impedance may be connected to those leads in parallel with the voltmeter and
the point contact, i are the current leads to the contact.

For the loop through Vp , VM and the inductances

c VM = VP " 37 * As(x,t)dx .
circuit

From eqs. (1.16) and (1.22) we obtain

rt

(1.24)

i (t) = ijSin{A<j) (o) - 2ïï(2e/h)Vp (t')dt'}

If Vp > 0 at all times the integral will be increasing in time and
after a certain time t the current is(x) = is(o). The value of t will
be such that

Vp(t)dt = 2ir .

Hence
1 2e 1

V = t h r
From eq. (1.24)

2e 1

v p ( t ) d t •  £  vp .

(T
h T

2e \
h t

{V (t) - —  ^ A (x,t)dx}dtM 91 s

V (t)d t -- —  i {A (x ,t) - A (x,o)}dxM h 7 s s
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When no ac external fields or currents are applied, the flux in the leads
and the voltage VM are periodic in time with period t .
Hence

T o
and we obtain

VM (t)dt = VM (t) and A (x ,t) = A (x,o)s s

In the simple case of fig* 32 the parallel impedances will contain the
capacitive coupling between the wires to the point contact (of order
100 pF). Together with the self-inductance of the wires lpH) it formes
a low-pass filter with a cut-off frequency of the order 10® Hz which is
equivalent with a voltage of 0.2 pV according to eq. (1.25). Hence for
values higher than 0.2 pV, the measured voltage will in good approxi­
mation be constant in time. The important difference with the —  & A ds = 0
case is that now the ac current through the point contact is noi s
sinusoidal as a function of time (§2.1 and §2.2). The radiated frequen­
cies will contain harmonics of the fundamental frequency given by (1.25).
The occurrence of the ac Josephson effect was first demonstrated by
Shapiro «) (1963) and then experimentally investigated by Fiske ') (1964);
Yanson, Svistuno and Dmitrenko ) (1965) and, very intensly, by Eck,
Scalapino, Parker, Taylor and Langenberg 9,10) (1964-J1967). Finnegan,
Denenstein and Langenberg ,0) confirmed the relation V = (h/2e)v within
0.12 ppm and found experimentally that v = 483.59372(67 MHz/pVNBc t.a or
h/2e = 2.0678515(2).10"15 Weber. b

Further discussions of the ac and dc Josephson effect will be
postponed to the following sections in Part I. Especially their rela­
tion with the relevant phenomena, observed in superconducting point
contacts, will be emphasized. For simplicity we will assume that the
two superconductors are of the same material and at the same tempera­
ture. In this case Ap = eV. The more general case will be treated in

^  this thesis, where the influence of temperature gradients
in the superconducting material will be discussed.

There is considerable interest in the intrinsic accuracy of the
Josephson frequency-voltage relation (eq. 1.25). The ac Josephson
effect establishes a relationship between frequency and electroche­
mical potential difference (Ap ) across a Josephson junction by means
of the basic relations: 3A<f>*/3t = - 2Ap /h (eq. 1.21). This relation
does not involve_g. The charge of the free electron e enters in the
equations when Ap across the junction is compared with Ap* across
the voltage standard cell. When these two are equal, no current is
flowing through the standard cell and in this case Ap* across the cell
is defined as eV. A discussion of the general validity of the relation
2eV = hv and its significance for the measurements of the fundamental
constant h/e is given in the introduction of the paper by Finnegan,
Denenstein and Langenberg 10). The conclusion is that the value of h/e
determined by the Josephson effect is correct within the present meaL
suring accuracy of 0.12 ppm.

There has been a theoretical prediction by Nordtvedt 108) that
the value of e in the Josephson equation should be different from the
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free-electron charge with an amount of the order of 10-1® e, but
Langenberg and Schrieffer 109> and Hartle, Scalapino and Sugar HO)
showed that this conclusion is wrong. According to Stephen '**) and
Scully and Lee ''2) the coupling of the radiation field with the junc­
tion would cause the relation v = 2eV/h to be wrong with an amount of
the order of 10 ® v, but according to McCumber'also the electrochemical
potential is shifted by this effect so that the relation hv = 2Ap
remains correct.

These considerations are of great relevance with respect to the
reliability of the new experimental determination of the atomic con­
stants h and e and the fine structure constant a(a“' = 2e0hc/e^ =
137.036,1 (2)) by means of the Josephson effect.



24

§2 TWO SUPERCONDUCTORS WEAKLY CONNECTED BY A SINGLE SUPERCONDUCTING
POINT CONTACT (THE AC JOSEPHSON EFFECT).

Superconducting point contacts have several advantages over
the usual evaporated thin film tunnel junctions (superconductor,
oxide-layer, superconductor) which are very delicate and extremely
sensitive to damage. The point—contact areas are at least four or
five orders of magnitude smaller than the areas of the evaporated
oxide junctions and hence no single—point contact "diffraction—like
effects 3»4) are expected to occur due to the small size of the con­
tacts. Zimmerman and Silver 12) observed that the interference pheno­
mena persist undiminished up to fields as large as 3000 gauss and even
at these fields no diffraction-like attenuation was observed. Further­
more the point contacts have more favourable coupling, capacitive, ra­
diative, mechanical and fabricational properties than evaporated tunnel
junctions. Evaporated tunnel junctions have a relatively large shunt
capacitance while superconducting point contacts have a relatively
large series inductance 22). In practice, different types of weak con­
tacts have been used by various physicists 31), Originally Zimmerman
and Silver 12) made weak contacts by pressing two mutually perpendicu­
lar niobium wires together in such a way that the contact resistance
was between 0.1 and 10 ohm at room temperature. At liquid-helium tem­
peratures the critical current of these contacts varied between zero and
1 mA. However these weak contacts were not reliable and reproducible and
later on they constructed weak contacts by means of niobium screws. The
contact pressure could then be adjusted from outside the cryostat. Nowa­
days these authors make weak contacts by mounting a single niobium screw
in a solid block of niobium 2,"23) (§2.2). These rf biased point contacts
(SQUID's) seem to be satisfactorily reliable and reproducible for the ap­
plication as a magnetometer. The abbreviation SQUID stands for Supercon­
ducting Quantum Interference Device, a magnetometer which will be discus­
sed in §2.2.

The construction of reliable and reproducible double point contacts
is more complicated and forms a part of this research. It will be discus­
sed in §5.2. . . .

Clarke 32) and others 29»30) employed another technique of dipping a
thin niobium wire in molten tinlead solder, whereby a droplet of solder
is caused to encircle the niobium wire. After Clarke ), such a device
is called a SLUG, which is an abbreviation for Superconducting Low-induc­
tance Undulating Galvanometer, a galvanometer based on the Josephson
phenomenon. This will be discussed in §4.7. Depicted in the figs. 4 7
are different types of single and double point contacts as they were
used in our laboratory; see also the references 31,51-59) and §5.2.

§2.1 THE RESISTIVE-SUPERCONDUCTIVE REGION AND THE CURRENT-VOLTAGE CHARAC­
TERISTIC FOR A SINGLE POINT CONTACT. THE INFLUENCE OF THE AC IMPEDANCE
ON THE CURRENT-VOLTAGE CHARACTERISTIC.

The system of two superconductors connected by one point contact is
the most simple of all possible weak connections between two superconduc­
tors. Nevertheless, it is a complicated system because very small indue-
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N b  1 0 0 p , N b  5 0  p

in s u la t io n  la y e r

N b  1 0 0  p

N b 5 0  p

Fig. 4 Top: A double junction made by winding an uninsulated 50 y Nb wire
around a 100 y Nb wire, from which the insulation on opposite sides has been partially
removed 31). The weak contacts are anchored by means of a sealing wax droplet, ij and
i2 are the current leads. V] and V2 are the voltage leads.

Bottom: A cross section showing the weak contacts.

Cu
j x s ^  Sn + Pb

Nb(50u)

V

Sn + Pb

N b(sop)

Fig. 5 The Sn-Pb solder droplet junction 29,30,52). ij an<j £2 are current leads
and V voltage leads; i] are the additional current leads which can generate a magnetic
field in the double junction.
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Nb -  screws

V - leads

nsulatiorvO ~  4m m 2 j ^ .

b 2 a in v a r Snin s u la tio n

t 0.1 |!V  5 .1 Q 6Gauss

v = 0
B±

1 appI “  1 .2 m A =  constant

Fig. 7 Cross section of a stable double point contact. The cross-hatched areas
represent niobium blocks separated by a glass layer. In the upper block there are two
niobium screws penetrating the glass layer. These can be adjusted at room temperature
to give a contact resistance of 1 to 10 0. In order to study the influence of a normal
metal in the hole on the i - V - Bxdependence, a copper bar can be pushed into the
hole and pulled back out again while the device remains at liquid helium temperatures.
For a permanent set-up a thin-walled cylinder of Cu or Pt, fitting tightly in the hole,
is baked together with the glass and the niobium to form a solid unit.

— V - leads-  leads—

glass layer-*-

— V - leadsi -  leads—

Fig. 6 The cross section of a double point contact with a large area 34)12)15)
(4 mm^) used to measure the V - dependence at constant applied current (see §4).
The cross-hatched areas represent tin blocks separated by an insulating layer (10 -
30 y). In the upper tin block there are two niobium screws penetrating the insulation
layer. These can be adjusted at room temperature to give a contact resistance of about
1 Si. _
At the bottom of the figure is shown the measured V - B^ dependence.
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tances and capacitances that usually can be neglected play an important
role, even in its dc current-voltage characteristics. Also joule heating
in the contact can affect the shape of the i — V characteristic, but we
will not deal with this effect in this thesis.

It is necessary to select some models characterising essential
theoretical and experimental features 26)27)34) 0f a point contact.
Stewart 26) performed calculations on a single point contact with a capa­
citance in parallel with the contact. McCumber 27) calculated the T  - V
characteristics of a point contact with a capacitance in parallel and also
of a point contact with a self—inductance in series under different circuit
conditions. Here we will start with a somewhat different approach 34), At
first both the super current and the normal current through the contact will
be taken into account and we will ignore the self—inductance of the point
contact and the capacitive coupling between the superconductors. Furthermore

w*-ii apply certain limitations to the differential equations of the con­
tact. Primarily the two cases for which either the current or the voltage
are constants of time will be discussed. We also ignore the impedance.of the
leads of the voltage or current source. In this case Vp = Vj* and we will
simply denote V for the voltage across the point contact. This approach ap­
pears to be convenient for understanding the modulation in the voltage V at
constant applied current i as a function of an external magnetic field Bj_for
a double point contact. This will be discussed in §4. As usual, 26)27)34) we
assume that the linear dimensions of the contact are so small that the in­
fluence of an applied magnetic field can be neglected. Later on the influence
of a shunt capacitance and a series inductance will be discussed 26)27),

According to Josephson (eqs. (1.16) and (1.22)), the supercurrent
through a single point contact is equal to:

ig(t) = ij sinAi)>*(t) = ij sin{A<(>*(o) - [ V(t')dt') . (2.1)
* o

If the junction is brought into the resistive-superconductive region
(V(t) ^ o), a normal current also has to be taken into account. As men­
tioned in the introduction we will assume that this normal current i (t)
is equal to n

*»<?> V(t)
Rn

(2.2)

in which is the ideal ohmic resistance of the junction. The total
current is equal to

i(t) = i + is n sin{Aij>*(o) - n
ft

o
V(t' )dt' } + Rn

.(2.3)

We first take V as a constant in time . The integral can then easily
be evaluated and gives:

i(t) = i. sin{A<|>*(o) - Vt} + V/R .1 n n (2.4)
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If V = o, this expression reduces to i = is = i|sinA<j) (o), thus any
dc current between -ij and +ii can flow through the junction. If V ^ o,
then i8(t) is the sinusoidal ac Josephson current at a frequency v =
(2e/h)V (eq. (1.23)) and an amplitude ij. The time average of is(t) is
equal to zero and only the normal component contributes to the dc current.
The T - V characteristic which is measured with dc or low-frequency me­
thods can be described with:

V = o, o £ i(t) £ ij (2.5a)

V^o, ITET = V/Rn (2.5b)

and is given in fig. 8a.

single point contact

v= constant i = constant

Fig. 8 The current-voltage characteristic of a single point contact
a) When the voltage is constant in time (eq. (2.5))
b) When the current is constant in time (eq. (2.9))
c) When there is a capacitance in parallel with the junction, and a self-inductance
and resistance in series with the point contact. Due to a combination of ac impedances,
connected to the point contact, the i - V characteristic can be very non-linear.

Now we take i(t) constant in time in eq. (2.3) and calculate
V(t). With eq. (1.22) we obtain

i = i|SinA<|>*(t) + “
n

= ijSinAi(i*(t) - 3A<*3t~ ~ = constant. (2.6)
n

The analytical solution of this equation is given by Aslamazov and Larkin
60). when i > ij, then V(t) is a periodic function of A<|> (t) with period
2tt. The voltage derived from this equation is a sharply peaked function
of time, especially when i is only slightly larger than ij (see fig. 9).
The peak height is equal to 2ijR^ and the width is of the order (h/2e)/
(iIRn)• With a typical value ijR^ 2 200 yV this gives 10 ns. Further­
more we derive from eq. (2.6)

A4>* (t) ^
1 ft —dA<|> .

t “ R 2e i-i. sinA<t>* ’n J 1
A <f> (o)
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Fig. 9 Time dependence of the voltage across a point contact when the current
l through the junction is constant in time. From this figure the time dependence of
the normal current in (t) = V(t)/Rn can easily be obtained. The supercurrent is(t) can
be obtained from is(t) - i - in (t). The signal is sharply pulsed and therefore there
are strong harmonics. The time average of this voltage as a function of i is given in
flg* 8b• '

hence
1= = _L Jl "f -dA»*
v R 2e i—i. sinA<j> *n 1 (2.7)

in which v is the fundamental frequency of the complete signal belonging
to the mean voltage V(t). The time average of the voltage is equal to the
time average in one period, hence

V(t) - i-

Which is again eq. (1.25).

ft r T  h * i *-a A<p
2e 3 1o

(2.8) gives:
2irR

d t = £ v .

i > i,, V(t)
-2ir *~dA<t>____
o i - ijSinA^*

(2.8)

(2.9a)

For the values of i between o and ij we obtain:

o S i s i, , V(t) = o. (2.9b)
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From these two equations the i - V dependence can be calculated and is
given in fig. 8b.

Voltage biasing can be achieved by shunting the junction with a
parallel ideal resistance R with an applied current through R much larger
than ij (see ref. 13) or an ideal capacitance C (see below, eq. (2.10)
and also refs. 26 and 27). _

A constant current can be realized experimentally if one applies
the current with a circui£ having a high impedance 34)27). However if
one tries to measure the l — V characteristic with such a constant
current circuit (e.g. fig. 32) it is nearly impossible to avoid capacitive
coupling between the two superconductors of order 100 pF.

We will now show that a current source plus leads may act as a vol­
tage source on the point contact.The amplitude of the ac current is of the
order of i.. Hence the ac component of the voltage across the capacitance
Vac * ii / (2irvC). Now if Vac < < V we can take the voltage as constant in
time, hence

-  -  11 1 _ 11 h
V ~ V + Vac : V > > 2uC v 2irC 2eV

or
2 —2(iR ) = V >n

— 1l> 2e 2ttC (2.10)

Situations can occur where i < ij and (2.10) is still satisfied, if

2 2 h *1< W  * (iV > ?. 2i 2ic
2wi.R

hence i R^ > > or 6 > > 1, with 8 = , /9_n C .. ~nence ij*n 2ttC c * c h/2e
In this case there are at least two solutions for eq. (2.11), namely
one with V > 0 satisfying (2.10), and one with V = 0. This shows the
physical significance of the parameter 8C introduced by McCumber. When
g is large (with the typical values of i] - 100 uA, Rn = 10, and C =
100 pF, the value of 8C = 30), a current source shunted by a capacitance
acts like a voltage source on the point contact. Stewart and McCumber
26,27) Have performed more detailed computer calculations on the system
of a point contact with a capacitance C in parallel driven by a constant-
current circuit. They both solve the equation

i = c + i sin A<(> (t) = constant . (2.11)dt R 1n
McCumber ^7) aiso performed calculations on a point contact in series with
a self-inductance while the system is voltage biased. Again for values of
T between i. and a certain value otcij, (where 0 < ac < 1), two solutions
for V are possible: V = 0 and V > 0. The value of ac depends on a charac­
teristic value 6l S (h/2e) / (2*Li ,) e l/(2£). Decreasing i from values
I > i, the transition to V = 0 at T = i ^  is continuous with dV/di finite
at V I 0 (except when 8L = 0). Both parameters 6l and 3C are temperature
dependent because ij is temperature dependent. The fact that the ï - V
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characteristic depends on the temperature-dependent values of 6l and Be
probably can be used to explain the observed temperature dependence of
the observed i - V characteristics of point contacts. The calculations of
Stewart and McCumber have been extended to a more realistic model of an
external circuit plus point contact by Warman and Blackburn 61). They re­
present the external circuit by a voltage source in a series with a resis
tance. A typical result is qualitatively given in fig. 8c. The hysteresis
(a consequence of the region of negative resistance) is often observed in
point contacts especially at temperatures far below the critical tempe­
rature of the superconductors.

§2.2 A SINGLE SUPERCONDUCTING POINT CONTACT SHUNTED IN PARALLEL WITH A SUPER­
CONDUCTOR OR A LOW-RESISTANCE NORMAL CONDUCTOR.

Zimmerman and Silver 21-23) have performed experiments on a supercon
ducting point contact shunted in parallel with a superconductor (pure
self-inductance L) or with a low-resistance copper shunt from which the
resistance R can be neglected compared with its self-inductance L when
high-frequency techniques are used (a)L > > R)21)23),

Especially a device (SQUID) where the self-inductance and the point
contact form a closed loop has got great attention because of its simple
reliable way of construction. The self-inductance is a solid "C"-shaped
block of superconducting material (niobium), supporting a screw that
closes the "C" and forms the weak contact (see fig. 10b). These devices
are mechanically regide while the adjustment of the point contact does
not change due to thermal cycling because the screw and the block are
made out of the same material. Hence there is no stress in the sample
due to differences in the thermal expansion in the device. Both the mecha­
nical and thermal properties make it sufficiently reliable and reproduci­
ble to use it as a magnetometer. In order to understand the behaviour of
these devices we apply Kirchoff’s law to the circuit of fig. 10a.

Fig. 10a)A circuit representing a point contact (carrying a supercurrent i. and
a normal current in) in parallel with a pure self-inductance L (carrying a current

b) Schematic drawing of a single-loop SQUID. A solid superconducting ring
supports the niobium screw.

c) Schematic drawing of a double-loop SQUID.
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di, d$(t) -ft 3A<(> (t)
^ dt dt + ^ 2e 3t (2.12)

$
in which $ is the magnetic flux in the self-inductance. When A<(> changes
by some reason from 0 to 2ir during a time t then the change in magnetic
flux is equal to

This means that the change of the flux m  L is equal to one flux quantum,
independent of whether L is a superconductor or not and also independent
of whether a normal current (resistance Rn) flows through the point con­
tact or not. In order to understand how the system under discussion be­
haves, we neglect the normal current in the point contact (Rn infinitely
large) and take a current i linearly increasing in time: i = i0mt. This
total current is equal to

i = i ut = i + iTo s L thi - i,.i. £ .«K
$ 2ewhere we have used A<|> = - -r- ®(t)>

(2.13)

From eq. (2.13), $(t) can be obtained as a function of time by graphi­
cal methods. In the solution of eq. (2.13), the value of the parameter £
defined by

irLi.
£ 5 h72e

(2.14)

plays an important role. It appears that $(t) is continuous in time when
2£ < 1. The voltage V across the junction is proportional to the first
derivative of the 4>-t curve leading to

d$ wLi V______o________ ___________
dt 1 - 4r Li .cos 4r «(t) 1 - 2£ cos <t>n 1 n n

where V = iQuL is the time average of the voltage across the point contact.
When 2£ > 1, then $ is not a continuous function of time (fig. 11a). At
values of with 2£ cos{(2e/h)$j} = 1 a discontinuous transition takes
place and jumps to a certain value $2 (fi-S- lib). This jump corresponds
to a 6 peak in the voltage (see fig. 11c) equal to: ($2 “ ®l)6(t).
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In the limit 2£ > > l^the jump occurs when ig is equal to the critical
current i] (because cos A<|>j = 0) of the junction while $2 “ $1 is almost
equal to h/2e. This means that a flux quantum is trapped in L every time
the critical current is reached in the point contact. The jumps are some­
what less than a flux quantum. Between two jumps the flux in the hole is
almost constant (much smaller than a flux quantum), while the voltage
across the system is almost zero (much smaller than the average voltage
V = i0o)L). The current through the point contact is essentially a saw­
tooth. An example of the time dependences of $, V and is is given in
fig. 11. The observed ac phenomena can also be explained in good appro­
ximation by assuming flux quantization in the hole.

3 vt A
3 vt d

a b c

Fig. 11 Time dependences of ig, $ and V of a single-loop SQUID (fig. 10a, b)
with_£ * 100. The preamble phenomena are not shown. The jumps occur with a frequency
v = V/(h/2e) where V “ i0toL. An external current i = tutiQ is applied.
a) _Supercurrent is as a function of time. The changes in is are very small. The peak
to peak amplitude is approximately (h/2e)/L - (Tr/£)i, = 0.03 i,. The insert gives
is - t on a larger is scale. It is essentially a saw tooth according to ie
(1 - vt)(h/2e)/L = ij + ooti0 - (h/2e)/L.
b) Flux in the hole in units of

il ’

function of time. Between twoflux quantum as
jumps the flux is almost constant. It changes then only (h/2e)//(2ir£) = 0.04 h/2e.
The insert gives $ - t on a larger $ scale. The change is proportional to (h/2e) x
/l - vt / /2tt£. The zero of the $ scale is shifted an interal number of times h/2e.
c) Voltage across the point contact as a function of time. Between two jumps the
voltage is most of the time smaller than the average voltage across the point con­
tact. The continuous part contributes only 4% to the average voltage. The rest
comes from the 6 peaks. Again the insert gives the V - t dependence
scale. Between two peaks V = V/{ (1 - v O / S ttZ) . larger

As large voltages are involved in this system, the normal current
in the point contact also can play an important role in determining the
behaviour of the system. Taking the normal current into account, eq. (2.13)
becomes a second order differential equation and we cannot describe the
behaviour of the system in simple physical terms. However we believe that
the general features remain unchanged, namely that periodically a flux
quantum is trapped in L, that this occurs at values of is ~ ij and that
the trapping of flux is accompanied with voltage peaks.
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Instead of applying a current linearly increasing in time, Zimmerman
and Silver 21)23) studied the system of a point contact shunted in parallel
with a self-inductance (SQUID) by putting the coil of a tank circuit in
the hole. A radio—frequency current equal to i0sin lot is then applied on
the tank circuit. The rectified voltage across the tank circuit depends
on the amount of energy dissipated in the SQUID per cycle. For a constant
value of iQ this rectified voltage is observed to be periodic in the ex­
ternally applied magnetic field with a period (h/2e)/0.

In order to get meaningful results about the static behaviour of the
system, L has to be a superconductor. The flux $ in L is then equal to
the sum of an applied flux Bx0 and the self—induced flux $s = Lic£rc =
-LiisinA(|> , (see later on §3). From the single valued nature of the wave
function one obtains

, -2e r . , -2e .A 4 = —7—  6 A ds = —r—  $ .T ft ' s ft
Thus the following relation is obtained:

$ = Bj.0 + Licirc = 8^0 + LijSin(-^- $) (2.15)

This equation is the same as eq. (2.13) when Bx 0 is replaced by io wtL.
The $ - Bj_0 dependence is continuous for 2£ i 1 and discontinuous when
2£ > 1. This result was derived previously by Zimmerman and Silver 22)23)
and resumed in ref. 23 fig. 3. They also reported measurements of the
$ - B± 0 dependence.

The mechanism responsible for the choice of the quantum state when
a cylinder is cooled through its transition temperature with a magnetic
field B±applied on the enclosed area 0 can probably be understood from
the £ dependence of the solutions of eq. (2.15). When T S Tc , then
£ < < 1 and the field will penetrate almost completely. When the tempe­
rature is decreased, ij will increase and 2£ will become of the order
one. Solving eq. (2.15) now gives that a circulating current flows in
the sample. The flux quantization is still incomplete and there is only
one solution of the Bx 0 + 0S Versus Bj.0 dependence. The final number of
flux quanta trapped in 0 can be found by continuously increasing £ with
a fixed Bx0 value. It appears that the solutions for the total Bx 0 +
Licirc ten<i t0 nh/2e in which n has such a value that |icirc | is the
smallest possible value which satisfies eq. (1.11) (fig. lb).

Devices where the point contact is shunted by more than one su­
perconducting loop are also of experimental interest 23)51). An exam­
ple is given in fig. 10c. The formula corresponding to eq. (2.15)
gives the flux $r in the right-hand-side hole:

(L + M) i sin -^-(®r + Bx0).

Here Bx0 is the flux applied to the right-hand-side hole, L is the self-
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inductance of the hole and M is the mutual inductance between the two
holes. The flux H  in the other hole is given by the condition that the
sum of fluxes in both holes is constant.

§2.3 MICROWAVE EMISSION AND ABSORPTION FROM SUPERCONDUCTING POINT CONTACTS
AND THE CONSTANT-VOLTAGE STEPS IN THf^ DC CURRENT-VOLTAGE CHARACTERISTIC.

In the previous sections it has been shown that the current or vol­
tage of a point contact are strongly time dependent. From eq. (1.25) one
obtains that a dc voltage of lpV across the contact corresponds to a
frequency of 483.6 MHz. Consequently a point contact will emit ra­
diation with a frequency of the order of magnitude of 500 MHz. Further­
more the dc properties will depend on the electromagnetic radiation
radiated on to the contact. In general, the behaviour of point contacts
is similar to the behaviour of oxide layer junctions but the antenna
problem is quite different. The emission properties are strongly depen­
dent on the external circuitry and are often difficult to calculate.
The capacitive coupling between the two superconductors will flatten
sharp peaks in the V-t dependence (see discussion §2.1). The main ex­
perimental difficulty is to get the radiation out of the point-contact
region. The detected radiation is only a few percent of the power ge­
nerated in the contact *3).

Here is an advantage in using point contacts instead of oxide-
layer tunnel junctions, because the capacitive coupling between the two
superconductors is smaller for point contacts and hence the radiation can
be coupled better to the detection system. When radiation is supplied to
the contact, current steps of constant voltage can be observed in the
dc current-voltage characteristic at values V = (n/m)(h/2e) (n and m are
here integers). These steps can be understood theoretically by conside­
ring a voltage-biased case in which a small ac voltage with amplitude v is
superimposed on the dc voltage V0 (and v < < V0) in the following ele­
mentary way: V(t) = V + v cos tot .o
The time dependence of phase difference A<|>*(t) is given by

A<J>*(t) = A<t>*(o) - n V(t')dt'

A<f> (o) | (Vq + v cos (ot')dt'

A**(o) - -  V t - ^  1  sin totn o  n to

and the supercurrent by

is(t) = ilsin [ A4>*(°) - Vot - 1  sin tot]
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When v < < Vq one gets:

i (t) = i. sin(A<|>*(o) - ^r- V t) -s l  n o

i —  sin wt. cos(A<l>*(o) - ^r- V t).1 n u n o

The time average of the first term is equal to zero, hence the time
average of is(t) is equal to the time average of the second term,
which is unequal to zero only when (2e/h)V0 = v, (with w = 2ttv) .
The magnitude of

i (t) = -J(v/V )i,sin A<l>*(o)s O 1

can be varied by varying A<(>*(o). In this way the current steps at constant
voltage are explained. For a general calculation see ref. 113. Current
steps at constant voltage have been observed many times in single point
contacts, for example by Parker et al. * ) and by Grimes et al.^ ) )
(see also §4.5). Shapiro 52) has observed them in droplet junctions
which behave very similarly to point contacts. Detailed analog com­
puter studies of the Josephson radiation effects have been reported by
Werthamer and Shapiro 52)  ̂ and Sullivan and Zimmerman )•

Fig. 24 shows a contact placed in the center of the bottom of a
coaxial cavity. In §4.5 the influence of its resonant electromagne­
tic radiation field is discussed. Fig. 25 shows the observed current
steps at constant voltage.

§2.4 APPLICATIONS: RADIO-FREQUENCY, MICROWAVE AND FAR-INFRARED SPECTROSCOPY,
NOISE THERMOMETRY AND VOLTAGE STANDARDS. THE DETERMINATION OF THE FLUX
QUANT.

Both the ac properties and the non linearity of the dc current-
voltage characteristic can be employed to construct a detection or
measuring instrument from a point contact. The possible applicabi­
lity has been proposed by several authors * * ).

The most direct application is the use of point contacts to mea­
sure the quantity h/2e by measuring the voltage across the junction
and the frequency of the radiation absorbed (or emitted) by the contact.
In the experiment of Parker, Taylor, Finnegan, Denestein and Langenberg
•0) it appeared that 2e/h = 483.59372(6) MHz/bV. Clarke shunted two
droplet junctions 52) in parallel and observed that no current flowed
in the circuit when both junctions were exposed to the same radiation
and biased in the corresponding constant-voltage steps. From his ob­
servation he concluded that the values of h/2e are the same for two
different superconductors within 0.01 ppm. This higl^ degree of accuracy
is possible because the Josephson relation hv = 2Ap" is a direct rela­
tionship between the frequency and time averaged electrochemical po
tential difference Ap- across the junction. In a superconducting circuit
the only change in IT* occurs at the junction. The value of IT is con-
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stant everywhere else even when different materials are used or when
there are temperature gradients (see also Part II).

Voltage biased point contacts can probably be used as voltage
standards, by defining the value h/2e and using eq. (1.25). The un­
known voltage is measured by determining the frequency v of the emitted
radiation. By this technique several orders of magnitude can be gained
in accuracy because frequencies ca^ be measured within 1 part in 10*0
while voltages are only known within 1 ppm l0). According to eq. (1.25),
a voltage of 2.10“ 15 volt across the contact gives rise to a frequency
of the order of 1 Hz, so that voltages of this order of magnitude can
be measured. This result can be compared with the accuracy of the other
voltage measurement devices discussed in §4.7.

Zimmerman and Silver showed a possible application of point con­
tacts in radio-frequency spectroscopy by coupling a voltage biased
point contact to Co 59 18). Used as a spectrometer, the point contact
is shown to be a continuously tunable ultra-low power oscillator-
detector from 1 to 3.10° Hz. It appeared that the frequency limit could
be extended to the superconducting gap frequency.

Zimmerman, Silver and Kamper ]9) showed still another possibility
to use point contacts namely by shunting a point contact with a small
resistance R and applying a dc current on this circuit. In this case
the voltage across the contact is approximately constant apart from an
additional random voltage due to_thermal noise in the resistance.
The mean square of this voltage Vn2 - 4kTRAv (Nyquist theorem) where k
is the constant of Boltzman, T the absolute temperature, R the resis­
tance and Ay a cutoff frequency, which is in general a geometric constant.
The line width of the emitted radiation is now temperature dependent and
this property enables one to measure the temperature.

As the i - V characteristic is non-linear, the shape of the dc cha­
racteristic is changed when ac currents flow through the contact. This
property can be used to detect electromagnetic radiation. By properly
biasing the contact, the change in the dc voltage can be made roughly
proportional to the amplitude of the applied radiation, hence it is
possible to get the amplitude of the unknown applied radiation in ar­
bitrary units. Grimes et al. 25) showed that such a point-contact de­
vice can be used to detect radiation in the far-infrared region even
when the frequency is beyond the superconducting energy gap. The mea­
surement of the frequency of an unknown ac signal can be performed by
measuring the current steps at constant voltage in the dc i - V cha­
racteristic lu)* )25).
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§3 THE CRITICAL CURRENT THROUGH A DOUBLE POINT CONTACT BETWEEN TWO SUPER­
CONDUCTORS AS A FUNCTION OF THE APPLIED MAGNETIC FIELD.

The critical current ic is defined as the maximum current that
can flow through a double point contact without any voltage appearing
across the junction. Therefore neither the calculations nor the measure­
ments are complicated by shunt capacitances or inductances in the cur­
rent supply. This makes the comparison between theory and experiment
rather easy. Furthermore, the ic - BA dependence corresponds roughly
with the V - Bx dependence at constant applied current i > ic. This
property can be used to ch£ck theoretical results on the ic - BA de­
pendence by measuring the V - BA dependence (see the discussion in
§4).

The critical current ic of a double point contact between two
superconductors is a function of the magnetic field BA , applied per­
pendicularly to the enclosed area 0 between the contacts. This is a
consequence of the fact that the phase differences across the two
weak contacts are related to the enclosed magnetic flux in the fol­
lowing way (see fig. 6):

2g
d̂<|> = n2ir = o = A<l>a - ^gAgds

(^s = junctions excluded) in which

A<(>a s (<|>2 - <f>1)a and A<f>b = (<t>2 -

are the phase differences across the weak contacts a and b respective
ly. The phase differences inside the bulk superconductors (1) and (2)
are found by integrating eq. (1.8) around the hole (junctions exclu­
ded). The wave function is single valued, hence the line integral of

along the closed loop is equal to n2ir. Without loss in generality
we take n = o. The gauge-invariant phase differences A<(> , as defined
by eq. (1.18), thus differ by 2e/h times the total enclosed mag­
netic flux 34):

A<j>* - a <|>* = Agds (£s = junctions included). (3.1)

S3.1 TWO SUPERCONDUCTORS WEAKLY COUPLED BY A DOUBLE POINT CONTACT WHEN THE
SELF-INDUCED FLUX IN THE ENCLOSED AREA IS IGNORED (| A ds = BA0 5s
nh/2e).

In order to show some of the essential features of a double junction
we shall first ignore the self—induced flux in the area 0. The total
flux in 0 is then equal to the applied flux ysAsds = B±0 and in ge­
neral is not equal to an integral number of flux quanta. Hence from
eq. (3.1) it follows that:

A<)>* = A** + 4r B, 0.b a n *
(3.2)
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The total current through the double junction is equal to the sum of
the currents through the individual contacts.

i(B ,A<f>*) = i sinA<)>* + i sinA<l>* =d * a z D

= ijSinA$a + i2sin(A<l>* + BA0).

The maximum of i(BA,A<|>*) with respect to A** is equal to the criticalcurrent of the junction, hence: a

W  = ~  i2^2 + ^i,i2cos2 I B±0 . (3.3)
When ij = i£ this equation reduces to 1)5)46)63);

ic (Bi ) " 2i] i c o s  f  B x ° l  • (3.4)

symmetrical  double poin t  c o n t a c t , $ s =  O

/ \ A / \
2 2«

iL 2 Jl O h 2 h2e 2e 2 e 2e

Fï?' '»a«T^e crltical"current oscillations as a function of the applied mag-
netic flux Bj.0 in an area 0 for a symmetrical double point contact when the self-
induced flux is ignored (4>s - o).

b)!wo T  “ V characteristics (i(t) - i - constant). One at an applied
flux n h/2e and one at (n + J)h/2e. When the applied flux is not equal to one of
these values the 1 - V characteristic lies between these two curves.
... . c)Voltage oscillations at several applied currents which are constant
both with respect to time and magnetic field. The current values are 2/3, 1 and
4/3 times 2ij respectively.

This relationship is represented in fig. 12a. One of the significant
features of this ic - BA dependence is that ic = o when BA 0 =
(n + i)h/2e (n = integer). However this result has never been observed
This might be due to an asymmetry (eq. (3.3)), but the main reason is
most likely the self-induced flux in 0 which we ignored. This will be
discussed in §3.3.
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§3.2 TWO SUPERCONDUCTORS STRONGLY COUPLED BY A DOUBLE POINT CONTACT
(^gA ds = Bx0 + Licirc = nh/2e).

When the two superconductors are so closely connected that they
can be considered as one superconductor (having a hole), fluxoid quan­
tization holds (eq. (1.10)). When vs = o everywhere in the integration
loop, one obtains from eq. (1.11)

^sAgds = Bx0 + Lic^rc = nh/2e ,

Vrc ■ r - B‘°>- (3.5)

Due to flux conservation the applied current i divides equally between
both contacts of the symmetrical double junction. The circulating
current adds to the applied current in one of the contacts (a) and
subtracts from the other (b). The total current through point contact
"a" is given by

*a * 2 + *circ
and the current through "b" by

(3.6)

2 ^circ‘
(3.7)

Addition and subtraction of these two equations gives

i + i.a b
and

2i . = i - i. .circ a b

(3.8)

(3.9)

Suppose that through each contact a certain maximum supercurrent can
flow and that for instance its critical value ij is determined by the
Silsbee 64) or Ginzburg—Landau 39) value. When the applied current i
is increased from zero the critical current is reached when the total
current through one of the contacts (a), in which the applied current
and the circulating current have the same direction, reaches its cri­
tical current value i|, hence Jic + |icircl = *-1• Here it is assumed
that the junction is symmetrical, that L is independent of the currents
and that 2ij > (h/2e)/L. The critical current is equal to 34);

lc ' 2il - 2l ‘ c i r c
(3.10)

in which n is an integer determined by the condition that ic is a maxi­
mum with respect to n but smaller than or equal to 2ij. The ic - Bx
dependence described by eq. (3.10) is symmetric with respect to BA- 0
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and is given in fig. 1 together with the total flux in 0 and Licirc as
a function of Bx. These results apply to a symmetrical double junction.
However when ij ^ i2 the curve representing the i - B± dependence is
8“lifted a | n8 the Bj. axes by an amount L | i j - i21 /0 with respect to
the curve -icj - Bx 33), which is obtained by reversing the direction
of the applied current (the magnetic field being in the same direction).
When an ac current is applied on such an asymmetrical double junction
a dc voltage can appear across it, even though the applied dc current
is equal to zero 33)(see fig. 13).

I'dno ac - currents

_I__„ BjO
3/2  (h/2e)

no ac - currents
constant d c-current= in

6 0  p v \\,//.\\ B I O
-1 -1 /2  O 1/2 1 3/2 (h/2e)

no dc current
applied a c current
i = ic  cos U)t

-1 \  /- 1/2 O
___ B j O

1/2 T ~ \ /3 /2  (h/2e)

Pig. 13 A demonstration of the rectification process of an asymmetrical
double junction.
a) Schematical drawing of the critical current as a function of the applied flux
in the absence of ac currents (no rf signals).
+ = critical current in the positive direction
~ * critical current in the negative direction
The total shift of the two curves is equal to L|i|
intersection are situated at B^O/Oi/ae) - Jm (m integer).'
b) The measured dc voltage at constant dc current - i0, applied
(+) and negative (-) directions, in the absence of ac currents.
c) The observed rectified dc voltage when an ac current with amplitude i„ is
applied in the absence of a dc current. °

i2 |(2e/h)/0. The points of

in the positive

§3.3 TWO SUPERCONDUCTORS WEAKLY COUPLED BY A SYMMETRICAL DOUBLE POINT
CONTACT WHEN THE SELF-INDUCED FLUX IN THE ENCLOSED AREA IS TAKEN
INTO ACCOUNT (^gAgds = Bx0 + Licirc i nh/2e).

When the currents through the individual contacts in a symmetrical
double junction are unequal due to an applied magnetic flux B. 0 it follows
from eq. (3.9) that a self-induced flux
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$ = Li . = iL(i - i.) = jLi (sinA<j>* - sinA<(>*) (3.11)s circ a b 1 a d

has to be added to the applied flux B̂ O. The total enclosed magnetic
flux is equal to ^sA gds = B^O + Licirc. This is in general not equal
to an integral number of flux quanta. It follows from eq. (3.1) that

A*. A<(> ¥  (Bx° V' (3.12)

The total current through the double junction is now equal to

i(Bx ,A<f>*) = ij [ sinAiji* + sin{A<)>* + ■^■(B^O + $g)}l

and $ is given by

$Li. [ sinA$a - sin{A(J>a + -^-(B^(B 0 t » )}1s

(3.13)

(3.14)

For given values of Bx 0 and i the values of A<|>a , A<f»b and $s can be cal—
culated from eqs. (3.12 - 3.14). It should be noted however that eqs.
(3.12 - 3.14) have metastable solutions which might be of no practical
importance. In order to get insight in the stability of the solutions a
mechanical analog of a double point contact might be helpful. Sullivan
and Zimmerman  ̂̂ )  showed that such a mechanical analog consists of two
pendulums in a gravitational field, coupled to each other by a torsion
bar. The parameters of a double point contact and of a double pendulum have
a one-to—one correspondence in such a way that the equations governing the
two systems are the same.

In general there are several stable solutions ®s,oi f°r a certain
value of A4> and BjO. The index a in $s>a is used to distinguish between
these different solutions. From eq. (3.14) $s,a can Le calculated as a
function of A<|>* and Bx . Each of these 3>s>ct functions have to be substi­
tuted in eq. (3.13). Then ia (Bx ) is^determined as the maximum of
i(A<J>*, BA , $s>a) with respect to Aij>a and fixed values of Bx and a.
Finally the critical current is the largest current of all currents
i<x(Bj.) for different values of a. At Bx values where an ia-Bx curve
intersects an other ia , - BA curve, a discontinuity occurs in the slope
of the ic - Bx dependence. For the double point contacts treated in this
chapter this is the case when BA 0 = (n + J)h/2e. The result of this cal­
culation is shown in fig. 14. Also BA 0 + $s (the total flux in 0) and
$s = Licirc (the induced flux in 0) are derived for the situation where
the critical current is flowing through the double^ point contact and
are represented in the figure. The critical current when half a flux
quantum is applied (ic min) ts a function of £ (see fig. 17) ) ).^The
reduced self-inductance £ is defined in eq. (2.14). When £ < < 1 this
critical current is equal to £ij. Hence, when £ = 0, the critical cur
rent is zero (ia + ib = 0) and the circulating current equal to
|(ia - ib ) = i|//2. When £ > > 1 one obtains from eq. (3.14) that
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s i n A < j >
*
a sin{A<)>*a + x(B̂0 +V } 24>

s <
2h/2e 2 ir

Li. £ Li, £

from which we derive

B O  + I ; nh/2e •s
This relation shows that in this limit the total flux in the hole is
nearly quantized in units h/2e. The critical current derived from eq.
(3.13) is now given by eq. (3.10).

In principle, these theoretical results can be verified in several
ways. In order to measure the ic - Bj_ dependence of a double point con­
tact, Jaklevic et al. 5), Zimmerman and Silver *2) and Clarke 52) used
a method in which the time average of the voltage across the double
point contact is measured when the positive part of a low-frequency ac
current with amplitude larger than the maximum critical current, is

O B j_0
2 2e

Fig. 14a)Curves representing the critical current of a weakly coupled
double junction (----- ), the current in point contact a (-----) and in b (.... )
as functions of the applied flux through the hole. This may be compared with
fig. 1 which shows the case for strong coupling. The self-induced flux 4>a is taken
into account. In this figure £ - 5. The difference between the currents through a
and b can be interpreted as twice the circulating current.

b)The flux induced in the hole by the currents through the contacts a
and b, and the total flux in the hole as a function of the applied flux B 0.
Because £ is small, the flux quantization is not complete.
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applied on the junction. This complicated tijne average as a function of
Bx is more closely related to the complete i - V - BA dependence -^)2 )̂
(see 54) than to the real ic - Bx curve. Hence this method cannot be
used to study the details of the ic - Bx dependence. Only a method
determining 7(V,BX ) gives the critical current of the junction. There
can still be some discussion as to whether the critical current deter­
mined in this way is equal to the calculated critical current (due to an
apparent reduction as a consequence of the external circuitry of the
double point contact 27»6!), but we will disregard complications of
this kind. In order to measure the ic - Bx dependence we employed double
point contacts with a small enclosed area 0 obtained by pressing a single .
superconducting needle on a superconducting sheet (§5.2). An interesting
feature of junctions with 2i]L < h/2e (where 2ij = ic max is the maximum
critical current of the double contact) is that a theory assuming com­
plete flux quantization in 0 is unable to explain why the critical cur­
rent is larger than zero when a half integral number of flux quanta is
applied. Hence with junctions having a small enclosed area it is possible
to decide whether there is complete flux quantization or not. Furthermore,
these small areas give rise to a long period and a large amplitude in the
ic-oscillations, which facilitate the measurement. _

In order to get a sufficient number of data points, the voltage V
across the junction is plotted on an X—Y recorder as a function of Bx
at a constant applied dc current i. This is done at several values of
i in the critical-current region ic min < i < ic max- The values

M i )  S Bi (i,V)

are determined from these graphs and are plotted against i which is the
critical current of the double point contact when the applied magnetic
field is equal to this Bx (i) value. Hence the intersections of the lines
of constant current with the zero-voltage line give ic(Bx ). In this way
figs. 15 and 16 are obtained.

600
ha

500

300

200

gauss

200

Fig. 15a)Critical current ic of an asymmetrical multiple point contact as
a function of the applied magnetic field Bj_ (constructed from fig. 15b).

b)V - B^ dependence at several different applied dc currents i in the
critical-current region. In this example the applied current is varied with steps
of 25 yA. At every value of i the limits Bj. (i) = V) are determined and
plotted as a function of i (which is the critical current ic at that particular
Bj_ value) in fig. 15a.
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ig. 16 In the upper part of the figure the experimental points for the
ic ” dependence of a symmetrical double junction are plotted. The lines a, b
and a + b (----- ) have been theoretically calculated 36). The values ii « 185 pA,
£ " ?'5> °.= 24 x 10’8 cm2 ^  the eqs. (3.13) and (3.14) were chosen to give*
the best fit with the experimental points. Thus L = 1.8 x 10“12 henry i
2ll m 370 pA, imin = 84 pA and AB^ * 0.86 gauss. max

lower part of the figure shows the calculated graphs of the self-
induced flux *3 - Licirc and of the total flux B̂ .0 + 4>s, both theoretically cal­
culated for the case where the junction is critical. For the value of £  - 0.5
the flux quantization is very incomplete.

One of our best results is given in fig. 16. The maximum and mini-
mum critical current are ic max = 2i, = 370 yA and ic min = 84 yA res­
pectively. The period in the magnetic field ABX = 0.86 gauss. The beha­
viour of this double junction can be analysed in detail with eqs. (3.13)
and (3.14). In order to find the characteristic value £ of this parti­
cular double junction the general relationship between the minimum
critical current ic min for an applied magnetic field Bx = (n + j)
(h/2e)/0 (n = integer), is calculated and plotted as a function of £
(fig. 17).

From this figure and from the observed ic max (= 2ij) and ic min
the value of £ can be determined. The experimental results given in
fig. 16 are consistent with £ = 0.5 (where 2ij = 370 yA and hence L =
1.8 x 10— 12 H ) . As ABX = 0.86 gauss the area 0 can be calculated with
AB±0 = h/2e giving 0 = 24 x 10"8 cm2. The values of 0 and L are not
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■c.min

, h /2e

5 Tl Li

2 2e

Fig. 17 Behaviour of a symmetrical double point contact as a function of
£ ■ uLij/(h/2e) when a half integral number of flux quanta is applied on 0 and
when the junction is critical.  ̂ -,
a) critical current of the double contact, ic = ic min ( ) an^ the currents
in contact a (----- ) and in b
b) self-induced flux $s - Licirc in 0 (..... ) and the total flux Bx0 + $s in

When 0 is of the order 4 mm^, then L : 10 ^ H. With ij m 500 yA the value of £
is of the order 1000. For this value the amplitude of the ic oscillations is
(h/2e)/L and the flux quantization is almost complete.

completely independent because the self-inductance depends on the di­
mensions of the hole. Suppose for example that the area 0 is the area
inside a closed superconducting ring with inner radius R s 3pm and
thickness 2a. From the values of L and 0 and with the formula L —
P0R(ln(R/a) + 0.08) we obtain R/a = 1.5 and a s 2pm. This seems reaso­
nable and shows that the values chosen for L and 0 are consistent with
each other. # ,

For the case where the double contact is critical (using the known
values of ij, £ and 0) we can calculate the total critical current ic,
the current through each of the individual contacts, and the self—
induced flux $s in 0, as functions of Bx . The results are given in
fig. 16. The experimental points are also plotted in fig. 16, showing
that the agreement between theory and experiment is within the experi
mental accuracy. The three parameters ij, £ and 0 were chosen to fit
the experimental results. The fact that the maximum of ic is somewhat
shifted from BA = 0 (see arrow in fig. 16) may be due to a constant
external magnetic field superimposed on the applied magnetic field, for
instance currents in the leads to the double point contact can generate
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a magnetic field in the hole. It is also possible that the junction may
be slightly asymmetric (§4.4).

We should like to emphasize that this experiment shows that the
self— inductance of the hole between the contacts plays an important
role in the properties of a double function. Eqs. (3.13) and (3.14)
are found to be correct within the measuring accuracy. Flux quantization
is not the basic principle that determines the properties of a double
contact. For instance, this experiment has shown that dic/dB1 is con­
tinuous and zero at the points where an integral number of flux quanta
is applied on 0. A theory assuming flux quantization predicts that
dic/dBj_ is discontinuous and changes sign at these points. Furthermore
for this particular double point contact 2Li] = h/2e < h/2e. Flux
quantization would predict that the critical current should then be
zero when a half-integral number of flux quanta is applied on the
junction, again in contradiction with this experiment.

We should like to point out that the circulating current is con­
siderable (icirc = |ia - ib |/2 = 0.62 i, = 115 yA) at Bx0 = (n + j) x
h/2e in a situation where the self-inductance is small (as presented
in fig. 16). Due to the small value of £ however the self-induced flux
®s = k^circ smaH  (= i(Jh/2e)). On the other hand, at B±0 = nh/2e,
the circulating current is equal to zero with a zero slope as a func­
tion of B1 (fig. 16). Furthermore, it is noteworthy that when the cri­
tical current flows through the double junction the curves of the total
enclosed flux $, the self—induced flux $g and the circulating current
i-circ as functions of the applied magnetic field BA (as presented in
fig. 16), are completely different from these curves in the situation
in which the applied current is zero. Eq. (3.13) with i = o is satisfied by

A<j> + A$ = 2irna b
and also by

$  $
Aó - Aij> = 2irn + ir.

a D

An analysis of the dynamical equations of a double point contact leads
to the^requirement that in a stable equilibrium position cos A<J>a and
cos A<j>b both must be larger than zero. Therefore the second solution is
not acceptable because in this case cos A<f>a = -cos AA* so one of the two
must be negative. Substituting the solution Ad>* + Ad>u = 2irn in eas.
(3.12 - 3.14) one obtains

$s = “Li, sin { irn + (Bĵ O + $g) }

where n has to be chosen in such a way that

cos { irn + (B, 0 + $ ) } > 0.n s
The close agreement between the calculated and the measured ic - B±

dependence (fig. 16) is strong evidence that the relation i = i,sinAcj>*
is correct for point contacts. Later on Fulton 37) extended eqs. (3.11)
and (3.13) in order to include several types of asymmetry in the double
point contact. His calculations and measurements also support this con­
clusion.
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N = 2

N = 3

O.l 1LV 5 0 0  |iO c
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Fig. 18 The interference grating-multiple point contacts. The left series
of graphs give the calculated ic/ii as a function of (2e/h)BJ_0 for gratings of
2 to 6 weak contacts ignoring self-inductances and mutual inductances and assuming
that all of the contacts are identical.

The right-hand side of this figure gives the observed voltage oscillations
as functions of the applied magnetic field for various assemblies. The type of
assembly is indicated at the left of each experimental curve.
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§3.4 THE INTERFERENCE GRATING.
A logic extension of the discussions given above can be made by

connecting two superconductors by more than tuo point contacts, which
are adjusted on a straight line in such a way that an interference
grating is formed. The possible importance of such an interference
grating has been mentioned by Feynman 46) £n his lectures. When we take
a large number of point contacts the slope of the V — BA characteristic
(see later on §4) becomes large and hence a sensitive magnetometer can
be constructed in principle. Experiments of this kind were first per­
formed by Zimmerman and Silver ^3). However it was uncertain whether

the point contacts in their grating were operating in the same way.
By neglecting the self-inductances and the mutual inductances of

the holes between the contacts and using eq. (3.2) we obtain by straight­
forward calculations 34)35)

i c (Ba ) = i,
sin N(ir B±0)

sin (it Ba 0)
(3.15)

(see fig. 18a). Within the experimental limitations (e.g. the self­
inductance and the mutual inductances can in fact not be neglected)
this relation has been confirmed by an experiment 35) the results of
which are given in fig. 18b. Here we assume that the shape of the curves
representing the voltage oscillations as a function of the applied magne-
bic field at constant applied current is in qualitative agreement with
the calculated shape of the critical current oscillations of eq. (3.15)
(see §4).

From the experiments described above we~have the impression that it
is difficult to construct a grating of more than six contacts with an
acceptable chance on being successful. Increasing the number of point
contacts decreases the probability that all contacts are in such a con­
dition, that the optimal 3V/9Bj_ value is obtained.
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§4 TWO SUPERCONDUCTORS WEAKLY CONNECTED BY A DOUBLE POINT CONTACT IN THE
RESISTIVE-SUPERCONDUCTIVE REGION.

§4.1 A GENERAL INTRODUCTION AND A SURVEY OF THE EXPERIMENTAL DATA.

In §3 we demonstrated that the critical current of a double point
contact is an oscillating function of the applied magnetic field. It
is also observed 29-31,34) that the dc voltage across a double point
contact oscillates as a function of the applied magnetic field
when a constant current is applied on the junction. The complete i - V -
Bj_ dependence can be represented by a corrugated surface 31). The critical
current ic and the dc voltage V (at constant applied current) are both
periodic functions of the applied magnetic field with a period ABa =
(h/2e)/0. A maximum in the critical current corresponds to a minimum in
the voltage. The amplitudes of both the ic and V oscillations decrease
when the enclosed area 0 between the contacts is increased. Double point
contacts with a small enclosed area (0 = 60 ym^, L ; 10“^-10- ** henry)
can be obtained by simply pressing a superconducting point on a super­
conducting sheet or by using a solder-droplet junction (fig. 4) (see
§5.2). Some typical results are represented in figs. 19 and 20. When
two superconductors are pressed together the irregularities of the con­
tact area sometimes result in a double point contact between the two
superconductors. When there are more than two contacts it is still pos­
sible that the system behaves as a double contact because a small en­
closed area gives rise to larger amplitudes in the ic and V oscillations
than when a large area is enclosed. Hence the influences of the large
areas can often be neglected *3) (see §5.2). The largest area with an

2 5 0 0  yA

3 0  yV2 0 0 0  yA

’ appl -  '  7 0 0  pA

gauss

Fig. 19 Voltage oscillations of a double point contact in the resisitive-
superconductive state as functions of the applied magnetic field at various
constant applied currents. These were measured using droplet junctions 29-31),
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0 =  6 0  H2

_ ABj_= 1 gauss7 5 0
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Fig. 20a)X-Y recorder
One at B^O “ nh/2e and one
tion shown in fig. 4.

plots of two i - V characteristics of a double junction,
at B^O “ (n + })h/2e 3I). These apply to the type of junc-

f. ,n. b)Voltage oscillations at constant applied current for the junction of
fig. 20a. The amplitude of the oscillations can be deduced from the voltage diffe­
rences (at the given applied constant currents) of the two lines shown in fig. 20a
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empty hole in which oscillations were measured was 0.75 cm2, l z 10-8
henry 12), This limit is determined by the fact that the amplitudes
in the T - V - B, oscillations diminishes when the area 0 becomes large
(fig. 17). Also the thermal noise in the flux in the hole is estimated
to be on the order of a flux quantum in holes of these dimensions.
Oscillations from larger holes can be observed when the hole is filled
with a normal metal, such as copper or platinum (see later §4.6, and
table I). '

In double point contacts ac properties can be observed as in single
point contacts. The electromagnetic radiation emitted by the individual
point contacts of a double point contact interferes* One can control the
phase difference of the radiation emitted by the two contacts by means
of an applied magnetic field 32) (see §4.5).

In order to explain the observed phenomena we use eqs. (2.1) and
(3.1). The total current through the junction is equal to the sum of the
supercurrents through the individual contacts and the normal current

i(t) = i j (sinA<j>a + sinAij»̂ ) + V(t)/Rn =

= 2ijsinAij)*(t)cos(^ ^gAgds) + V(t)/Rn * (4.1)

Here we have used

i{A«j>*(t) + A<j>*(t)} = A<|>*(t) = A<j>*(o) - V(t')dt\ (4.2)

By analysing the equivalent diagram of a double point contact it can be
derived that these equations are correct when the applied current i(t) =
i = constant in time and also when V(t) is constant in time iff : 0 or if
V > > i]Rn . in order to simplify the calculations it is assumed that
the circulating current due to normal electrons 34) can be neglected,
hence (eqs. (3.9), (3.11):

2i . = i.(sinA<t>* - sinA<j)*) = 2$ /Lcirc l a  p s

or

$ /Li. = -sini^r 6 A ds}cosA$ (t). (4.3)s i  n 's s

The eqs. (4.1), (4.2) and (4.3) are the basic relations 34) Gf the
i - V - Ba dependence.

§4.2 WHEN THE SELF-INDUCED FLUX IN THE ENCLOSED AREA IS IGNORED

The advantage of ignoring the self-induced flux in the hole
($ = o) is that eq. (4.1) has a simple analytical solution
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i(t) = 2i1sinA$*(t)cos ^  B,0 + V(t)/R .i n n (4.4)

is essentially the same as eq. (2.3) when i is replaced by
2i]I cos ^  Bx 01. Hence the solutions of the equations are the same.
If V(t) = V = constant in time,

V = o, o s  i(t) $ 2ij|cos (^ BiO)| (4.5a)

V o. Ut) = V/Rn> (4.5b)

More important is the limit i(t) = i = constant in time:

o S i S ic = 2ij|cos(- Bj.0)| , V(t) = o (4.6a)

• .■ 1 > \  , W )  = Rn/i2 - if(Bx ). (4.7a)

This result already explains the observed voltage oscillations in
the resistive-superconductive region as a function of the external mag­
netic field Bx , for the case that the applied current is constant and
exceeds the critical value 34). The i - V characteristics for i = 2ii
(when Bx0 = nh/2e) and for ic - o (when Bx0 = (n + j)h/2e) are represen­
ted in f i g .  12b. In the same figure, we have also shown the voltage oscil­
lations V as a function of the applied magnetic flux Bx0 at several values
of a constant applied current (fig. 12c).

From eq. (4.4) it is easily seen that the amplitudes of the ac cur­
rent or voltage are a maximum when Bx0 is equal to an integral number of
flux quanta and that it is zero when a half integral number of flux quanta
is applied. This explains the results of the experiment described in §4.5.

§4.3 WHEN THE SELF-INDUCED FLUX IN THE EMBRACED AREA IS TAKEN INTO ACCOUNT.

If we drop the condition that the self-induced flux in the hole is
equal to zero ($g ï  o) it is no longer possible to give a simple ana­
lytical solution of eqs . (4.1) - (4.3). We first consider eqs. (4.1) -
(4.3) for the case that V is constant in time:

i(t) “ 2ijSin(A<j> (o) — Vt)cos ^(Bx 0 + 4>g) + , (4.7)

$
ÏT" = “sin ê(Bi° + $ )cos(A<(>*(o) - Vt).. A J 11 S tl (4.8)
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When V = o these expressions reduce to

i = 2i | sinA<|>*(o)cos •̂(B10 + 4>g), (4.9)

4>

= -sin + $g)cosA<|>*(o). (4.10)

The ic - Ba dependence calculated from these two equations is the game as
the ic -  Bx dependence derived in §3.3. When V ^  o, we may take A>j> (o) = it
in eqs. (4.7) and (4.8) without losing generality. From eq. (4.8) we can
derive that $s is a function of cos{(2e/h)Vt) and therefore that cos{(e/h)
(Ba0 + $s)} is also a function of cos{(2e/h)Vt). According to eq. (4.7)
the supercurrent is(t) = i(t) - V/Rn is equal to 2i]sin{(2e/h)Vt) times
a function of cos{(2e/h)Vt), and therefore is(t) = -is(-t). Furthermore,
is(t) is a periodic function of time^with a frequency (2e/h)V. Hence the
time average of is(t) is zero. The i - V dependence is described with the
equations:

V = o, o £ i(t) $ i£ ; (i^ calculated in §3.3) (4.11a)

V I* o, i(t) - V/Rn . (4.11b)

In order to calculate the time dependence of is eq. (4.8) is solved with
graphical methods. We plot both the right-hand side and the left-hand side
of eq. (4.8) as functions of <fs at a certain voltage, magnetic field and
time in the same diagram (fig. 21). The $s values of the points of inter­
section are the solutions of eq. (4.8). The amplitude of the sin function
representing the right-hand side of (4.8) is equal to |cos(2e/h)Vt|.

By solving eq. (4.8) for different values of t we obtain $s as a
function of time. In general there is more than one solution but there is
only one solution that is of physical importance: it is the solution that
has a continuous development in time. From fig. 21 it can be derived that
this solution is such that (nh/2e) - BA0<$S < ((n + l)h/2e) - BA0, where
n is an integer chosen in such a way that nh/2e S BA0 S (n + l)h/2e. In
principle it is possible that $s is not in this interval, but this is not
a stationary solution because every time (2e/h)Vt = J(k + J) (k integer)
the only solution of (4.8) is $s = 0 and the junction has to jump back
into this state. Knowing $s(t) we can derive the time dependence of the
total amount of flux in the hole between the contacts. It has the remar­
kable property that it oscillates between nh/2e and (n + l)h/2e (fig. 21).
When BA0 is exactly equal to an integral number of flux quanta there are
several solutions that are continuous in time, but in a practical situation
this very special case will never occur. It is a prediction of the theory
that the time average of the total flux in the hole is roughly equal to
(n + $)h/2e if the junction is in the resistive region. From BA0 + $s(t)
we derive cos(2e/h)(BA0 + $s) as a function of time. Substituting this
function in eq. (4.9) finally gives the total current as a function of time.
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p H j A  A.
.r .h .t.

0 R S etc llthl t6 8 ValU6S Qx’ Rx’ Sx etC- fr0" the points of intersection
he flL L  T  T - eS fre the Solutions of eq. (4.8a) and correspond to
reorder to find l”w -  ln bhe ho*e by currents through the contacts a and b.n order to find the solutions of eq. (4.8a) at another time the amplitude of the
sin function must be changed (amplitude is equal to |cos(2e/h)Vt|) and again the *
values of the points of intersection must be determined. In this way the time de- 8
that is6c o V  8ol“tlo"s oi. e<l- <*-8a> can be derived. There is only one solution
n  r  ^  tïme (Wh!n * ‘ <h/2eV>(^2>. then cos (2e/h)Vt - 0 and S* - 0
(n J' -1 the.solutl°n in the interval -B^O + nh/2e, -Bx 0 +
1 )h/2e where n is chosen in such a way that nh/2e S Bj.0 i (n + l)h/2e.
Iependence°of S 18 bbe °nly sol“tion that is of physical interest. From the timeependence of Sx, the time dependence of *8 + ^ 0  and of is can be calculated. The
results are given in the middle and lower part of this figure, respectively.

freauencv if is(t) iS giVen in fig‘ 21 • The fundamentalfrequency is 2eV/h and there are strong harmonics. Especially the second
of thelL i et”S t0fhave a large amplitude. In the limit £ + . the behaviour
function B 0 +n* ° 0 -  ̂'IV ^  ^ather simP}e- The time dependence of the
and (n + i)h/2 Swt) a b}ock~shaPfd function between the values nh/2e
2(2eV/h) ** NOW ls^  ls essel>tially a saw tooth at a frequency

the eas V ï )  I T V T  **Cti°na.> we w i U  also consider the solutions ofthe eqs. (4.1) (4.3) when i is constant in time 34). Again, V(t) =. ' . ' ' “ '-wMouauL. XU Lime 1 . Agan
o when 1 s 1C (with 1C derived in §3.3). When i > i the values of $,
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Li-circ and therefore also of cos{(2e/h)(B±0 + $s)} can be obtained as
functions of A<J>*(t) from eq. (4.3)̂ . Using this result, is(t) and V(t)
can be obtained as functions of A<j> (t) from eq. (4.1). V is a periodic
function of A<j>* with period 2ir, and thus V is a periodic function of
ƒ v(t')dt' with period h/2e. When i > ic, V is always positive and there­
fore V(t) is periodic in time. Again, the time period is equal to

J_
v T JL [”2lT dA|fr*

2e o V (A<(>*)
(4.12)

The time average of the voltage is equal to the time average in one
period:

V(t) J_
T

•T

V(t')dt'
o

i > i , V(t)c
_ _ _ _ 2 tt_ _ _ _
c-2ir *dA<t>
o V(A<f>*)

(4.13a)

When i S i then V(t) = o:c

o i i S i , V(t) = o .c
(4.13b)

symmetrical double point contact, $s*0

Fig. 22 Description of the i - V - Bj. dependence of a symmetrical double
point contact when the self-induced flux is not ignored. This figure is obtained
from computer calculations solving eq. (4.13).
a) Critical current as a function of the applied flux on 0. -
b) Two i — V characteristics (i(t) = i * constant). One at an applied flux B̂ .0 z
nh/2e and one at B^O * (n + i)h/2e. The curves are not perfect hyperbolas. The vol­
tages are slightly larger than that of a hyperbola V * Rn /iz " ig.
c) Voltage oscillations at applied currents which are constant both with respect
to time and magnetic field. The current values are 0.8, 0.9, 1.0 and 1.1 times
2ij respectively.
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Eqs. (4.1) - (4.3), with i(t) = i = constant in time, can be solved numeri­
cally. The voltage^ and the total flux in 0 can be obtained as functions
of time. The i - V - BA dependence can also be calculated from these
equations (see fig. 22). In fig. 23 pictures are given of V and of Bx0 + $s
in units h/2e as functions of time. In fig. 22 the calculated i - V - B,
dependence is depicted b^ means of the ic - BA oscillations, two i - V
characteristics and the V - BA oscillations at several values of the
applied constant current i.
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8‘-2^a)The °P plcture shows the time dependence of the voltage across a
« a ™ 1? P h C !Ct When a constant current is applied on the junctionf In thisexampie we have chosen 1 - 202 pA, 2i, - 200 UA, R„ - 10, B̂ .0 - 10‘5 h/2e and £ -
dén Tit!6 °£i "as Chosen 8li8htly different from zero because the B,0 depen-
fiv Q f 10n!! eqS> (4- °  and (4>3) ia discontinuous at B^O - o. As in
if tl  - V ^ W e 6 depe"denCe 0f the normal current can be obtained from the equation
ferinces from^iv Q. sapercVrre" t £r°” 1.(0 - i - i„(t). The significant dif-
per cvcle i n ^ r n '  f f  “  the case of a double junction there are two peaks
Setic field °ne the V - t dependence depends on the applied mag-
In the lower part of the figure a picture is given of the total flux in 0 as a
with flüx°- tlme' Th6 SÜarP PeakS in the Upper part of the fi*ure are associatedith flux jumping in and out the enclosed area 0. With the value £ - 5 the flux
quantization is incomplete and thus the maximum flux in 0 is 0.82 h/2e and not h/2e.
The minimum of B^O + *s - 1.7 x ]o-6 h/2e.

b>Thc top picture shows the V - t dependence of the same double
junction as in fig. 23a (hence £ = 5 and 2i, = 200 uA) but now with an applied
current equal to 220 pA and an applied flux }h/2e. For this particular B lvalue
the time period is half the value calculated from eq. (4.12). The maximum i

lh/2qeUal t0 157 PA- ThiS iS the " itical current of the “ ™  \ o  -

of time. Th6 l0W6r picture ®ives the tctal flu* Bj.0 in 0 as a function
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§4.4 THE RECTIFICATION PROCESS FOR AN ASYMMETRICAL DOUBLE JUNCTION.

When an ac current with an amplitude larger than the critical
current is applied on a double junction, an ac voltage will be generated
across the junction. When the critical current is smaller in the posi­
tive direction than in the negative direction, the amplitude of the vol­
tage in the positive direction will be larger than the amplitude in the
negative direction. Therefore the time average of the voltage will be
positive and unequal to zero, even when the applied dc current is equal
to zero. A situation in which the critical currents in the positive and
negative directions are unequal occurs in an asymmetrical junction. In
§3.2 it was discussed that the |ic | - Bx curve for currents applied in
the positive direction is shifted with respect to the |ic | - Bx curve
for currents applied in the negative direction. The total shift is equal
to L|ij - i21/0. The rectified voltage is a periodic function of the
applied magnetic field 33)65). a  demonstration of this rectification
process is given in fig. 13.

§4.5 A DOUBLE POINT CONTACT PLACED IN THE CENTER OF THE BOTTOM OF A
COAXIAL CAVITY.

In the previous sections it has been shown that the voltage across
a double junction is strongly time dependent when a dc current i larger
than the critical current is applied on the junction. Therefore radiation
is emitted by the point contacts which can be considered as oscillating
dipoles. Furthermore it has been shown that a point contact can be used
to detect radiation 24). in order to observe both these features the be­
haviour of a double point contact with a small enclosed area has been stu­
died in its own resonant electromagnetic field by putting it in the center
of the bottom of a microwave cavity by extending a technique due to Dayem
and Grimes 24) (see fig. 24). It was observed 31) that the current-voltage
curve shows steps at constant voltages which correspond to a resonant
frequency of the cavity according to eq. (1.23). The steps at constant

,~"Sn

mylar
insulation

insulation

Fig. 24 The coaxial cavity 32). Cu = copper coaxial cavity, Nb ■ niobium center
conductor, Sn = tin foil, P = load adjuster.
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Inï^r!lWer\ mOS% P^ nOUnCed When the aPPlied flux on 0 was equal to an
dr nUm^ey of,flux quanta (Bx0 = nh/2e) (critical current maximum

l-tage minimum). The steps disappeared when the applied flux was
u 3,half lnte8ral number of flux quanta (Bx 0 = (n + i)h/2e)

ieSred itHe ?el?~lnduced flux of a d°uble point contact can never'be
gnored in principle, one can understand this behaviour from the results
lfrfJr \  Cre • W3S '0ncluded that the amplitude of the ac voltage is
nh/2e S  an lntegral number of flu* quanta is applied on 0. When Bx0 =

supercurrents through the individual contacts are oscillating
?n ï quency and in phase’ radiation is emitted. When Bx 0 =
latine with SUper^urrents thr°ugh the individual contacts are oscil-
Janrr8w  h h V 3™6 frequency but in opposite phase and since the dis-
tance between the two point contacts is much smaller than the wavelength
not be “ dlabl°n*J;he eCt emitted radiation is now much smaller and c Lnot be detected. Therefore steps in the current at constant voltage are
shown innfig?e25W32).Bi° = *h '2* and absent when B-° = <« + J)h/2e, as is

2 2e

n h /2 e  and Bx0  S T v S E T  f V  C*V ity  ° f  f i * ‘ 24 f ° r  ^he c a s e s  Bl 0  -
o f  th e  te m p e ra tu re . They d ^ e n d  o n ty  on th e  ^  ? °n “ ?n t - v? l t a 8a ^ P 8 « e  in d ep en d en t
fo llo w in g  t a b l e :  X CaV lty t e n s i o n s  a and b shown in  th e

c a v i ty

1
2
3

a (cm) b(cm) V o ltag e  s te p s  o ccu r
0 .3 0 0 .7 5 34 (pV)
0 .2 3 0 .6 5 41
0 .1 9 0 .5 5 49

§ 4 ' 6 S Er a f I U- T - ° bx Ad e S e n c e ! AL IN  THE H0LE BETWEEN THE s u p e r c o n ™ c t o r s

Up to now we considered the L in pn (L ,
If however the v.lue of t depend, on the'fluency ofthc
(4!l-3)°of dependence i, introduced in eq..

thé» rs tj'.trrth*
O f the semple, Th. v.lue o, L i .  '
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enclosed by the superconducting blocks and the point-contacts. This means
that a relatively small magnetic field period ABj_ necessarily implies a
small amplitude of the oscillations (fig. 17). What one would like to have,
however, is a double point contact with at the same time a small ABj.
and a large amplitude in the dc voltage (V) oscillations. This can be
achieved by putting a normal conductor (copper or platinum for example)
in the hole, insulated from the blocks. In this case L is frequency de­
pendent due to the skin effect of the normal metal. We denote the low-
frequency limit of L by L^f and the high-frequency limit by L^f.

Low-frequency magnetic fields penetrate the normal metal completely,
consequently the period ABj. is unchanged. Also the value of the critical
current should be unchanged because this is the largest current flowing
through the double point contact with V = 0 (and hence with v = 0). If,
however, V is so large that_the penetration depth for an ac magnetic
field with frequency v = 2eV/h is much smaller than the dimensions of
the normal conductor, the ac magnetic field is completely excluded from
the normal conductor. In this case L is equal to Lfof which is smaller
than L^f. From fig. 17 it can be seen that a smaller self-inductance leads
to a larger amplitude in the ic-oscillations. Also the amplitude of the
voltage oscillations is larger. Apart from the period ABj. (which remains
unchanged) the corrugated i - V - Bj_ dependence for these values of V
is the same as if the hole was filled with a superconductor instead of
a normal metal. In the intermediate voltage region there must be a tran­
sition between these two limiting cases: where the normal metal is absent
(fig. 26a) (small V) and where the normal metal is replaced by a super­
conductor (fig. 26b) (large V). For a hole of a diameter of 1.8 mm par­
tially filled with a copper bar (resistivity at 4.2 K equal to 0.1 yO cm)
the transition to the higlf-frequency limit is almost completed at 0.07 nV.

Fig. 26 These figures each give two i - V characteristics of a double point
contact: one at an applied magnetic field value where the critical current ic is a
maximum and one where the ic is a minimum. Three different experimental situations
are considered:

a) Where the hole is empty.
b) With a superconducting bar in the hole,
c) With a normal metal bar in the hole. The bar has the same dimensions as the

superconducting bar of fig. 26b. The curve with an applied field where the ic is a
maximum is unchanged compared with figs. 26a_and b. All other curves are changed due
to the presence of the normal metal. At low V values the curves are the same as in
fig. 26a. At high V values the curves coincide with the curves of fig. 26b.
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From the considerations given above the T - V - Bj. dependence of
an ideal double point contact with a copper bar in the hole can be con­
structed (fig. 26c). In the case that £ > > ] the peak t£ peak amplitude
of the ic oscillations is equal to (h/2e)/L. If the i - V characteristic
of this double point contact can be represented in first approximation
by a hyperbola V = R i ^  - ic ,̂ then the amplitude of the V oscillations
is R/2(h/2e)/L when i a ic max, and (R2/V)(h/2e)/L when i > > ic. when
Lif and Ljjf are both large enough the amplification factor for the vol­
tage oscillations is *^(Llf/L^f) when i s ic max and Llf/Lhf when i > > ic

Fig. 27 The full lines are two T - V characteristics of a double point contact
with an empty hole: one is with an applied magnetic field where the ic is a maximum,
the other is at an applied magnetic field value where the ic is a minimum.

The dotted lines give the two corresponding curves with a copper bar in
the hole (see fig. 7). The maximum ir is unchanged due to the presence of the copper.
At the higher voltage values the i - V curves are in the middle of the T - V curves
with copper.

In the insert are given the V — Bx dependence at two applied current
values. Left: the empty hole, Right: with a copper bar in the hole.

An experimental result is given in fig. 27. The value of_Lif/Lhf was in
this case equal to 4. The shape of the experimental i - V curves deviates
from the shape of the i - V curves given in fig. 26 because the curves in
ii-g. 26 are derived from a theory in which are neglected many properties
of the double contact such as the capacitive coupling between the niobium
blocks, and self-inductances and resistances in series with the double
point contact (§2.2). Hence, also the calculation of the amplification
factors of the amplitude of the V-oscillations is just an estimation. It
is observed in fig. 27 that the maximum critical current is the same if
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the copper bar is in or outside the hole. The transition region discussed
above cannot be observed in this case because it is very small (V < 0.07 nV).
In the region of the T - V curves with V > 4 pV the average values of theI - V curves (in fig. 27) with and without the copper bar tend to coincide
(see insert in fig. 27). In agreement with the order of magnitude cal­
culation given above, the amplitude of the voltage oscillations is en­
hanced by a factor of 4 in this region. For currents just above the criti­
cal current (V 1 pV) this factor is about 2. Again in agreement with the
estimation given above.

In this experiment the copper bar occupied only 75% of the area of the
hole. We could not fill the hole more completely because we wanted to be
able to move the bar up and down in the hole. It seems that there is much
room for improvement here. A copper bar clamped tightly between (but insu­
lated from) the niobium blocks should give a much larger amplification
factor (table I).

For a more permanent set-up an insulated thin—walled tube of copper
or platinum, fitting tightly in the hole, is baked together with the niobium
and the glass to form a solid unit. In this way voltage oscillations from
double point contacts with large holes can be observed. A summary of the
experimental results is given in table I (§5.2).

§4.7 APPLICATIONS:, THE MAGNETIC-FLUX METER AND THE VOLTMETER; THE LONDON MOMENT.

The critical current of a double point contact and the dc voltage across
it are both periodic functions of the applied magnetic field with a period
(h/2e)/0. When 0 = 1 cm2, the magnetic field period is equal to 0.2 pgauss.
Due to this property double point contacts can be used to measure very
small changes in the magnetic field in 0 (probably even on a level up to
100 kgauss). Forgacs and Warnick 57) used a double point contact in the
feed-back mode as described in §5.1, Their sensitivity is of the order of
1 to 10 nanogauss. As an example of an application of this magnetometer
they measured the fluctuations in the vertical component of the earth mag­
netic field. The response time of the meter was of the order of 0.1 s. This
method can be compared with the SQUID's developed by Silver and Zimmerman
23)51) who use a point contact shunted by a self-inductance as a sensor
(§2.2). The sensitivity is of the order of 0.1 nanogauss and the response
time 1 s. In principle the sensitivity of double point contact magneto­
meters can be increased by increasing the enclosed area 0, which includes
that the period in the magnetic field will be decreased. However, the am
plitude of the voltage oscillations also decreases (§3.3) and this can
pose a limit on the sensitivity or complicate the measurements. However,
one can obtain a small ABj. and still have a large amplitude in the voltage
oscillations, if one fills the hole as completely as possible with a nor­
mal conducting material such as copper or platinum (§4.6). Also a super­
conducting flux concentrator eventually in combination with this technique
can be used. In a so-called flux concentrator the Meissner effect 35) and
the principle of flux conservation 66) are used to concentrate a relatively
large amount of flux, originating from a small magnetic field applied on
a large area, into the small area between the contacts. Consequently also
in this way it is possible to decrease the period in the oscillations with
out changing the amplitude. However, this fluxmeter has to be calibrated.
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It is not possible to measure magnetic fluxes absolutely in units of the
flux quantum h/2e.

Magnetic fields large compared to (h/2e)/0 can be measured by coun­
ting the number of oscillations corresponding to the unknown field (fie.
31c).

The ultimate sensitivity of a double point contact as a magnetometer
is determined by the thermal magnetic-flux noise in the hole. In order to
calculate the order of magnitude of the thermal noise of the magnetic flux
in a normal metal cylinder or in the hole of a double point contact in
the resistive region we assume that the system can be represented by an
equivalent circuit consisting of a closed loop of self-inductance L, a
resistance R and a noise-voltage source Vv . The noise voltage is supposed
to be equal to the Johnson noise of the resistance R. Within a frequency
band 6v the contribution to the mean square of the noise voltage is equal
to Sy2 = 4kTR6v. This gives rise to a noise current iv in the circuit de­
termined by

6i2 = 4kTR6v{R2 + (2irvL)2}-1

and a noise flux in L by

6$2 = 4kTRL26v{R2 + (2TTVL)2}-1.

Integration over all frequencies gives for the mean square of the flux
noise

<r kTL

For a cylinder with a diameter of 2 mm and a length of 1 cm, the self­
inductance is of the order of 4 x 10-10 henry. At 4 K the value of kT
is 5.6 x 10 ^  joule. Hence = 1.5 x 10~16 weber. This is about 10%
or a flux quantum.
v RThj lnf^uence of the noise in the magnetic flux on the measured dc
V dependence can be separated in two parts: The high-frequency
components (faster than the voltmeter response) give rise to a decrease
in the amplitude of the measured voltage oscillations. The amplitude of
the time average of the voltage oscillations in the presence of noise
Th» H ^ laf d *S!Umln? 3 gaussian distribution for the flux noise.
The width 4$ of the distribution can be obtained from the relation

$2

'+ °° 2 ®2$ exp { ------ - }d$
(A$)

+00 4>2
(A*)2

} d$

kTL

—00
exp { -
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This gives (A$)2 2kTL and
r+00

exp { -
—00

If the V - $ dependence is given by

$ „ I d$ i /2irkTL.
(Af)2

—  $V = -V cos (2tt, ) + constant,o h/ ze
where V is the amplitude of the V oscillations (in the absence of
noise), we obtain for the amplitude V of the average V oscillation
in the presence of noise

V f+" $ $2V = ----—  cos (2tv ,-T.) exp { - 01-n,T } do
°’n /SfkTL J- 2kTL

V = V exp ( - 2ir2 — 0 } (4.15)
°'n ° (h/2e)2

When the total noise /kTL is larger than 1/5 of a flux quantum, the am­
plitude of the V - Bj. oscillations may be reduced considerably.

The low-frequency components of the noise are directly observable
as random fluctuations in the voltmeter output. The mean square value of
the low-frequency noise in $ is equal to

$2 = kTL—  , (4.16)If T„M

where is the meter time constant. The value of is supposed to be
large compared to L/R. From this equation we see that the flux noise,
observed with a slow voltmeter decreases when R increases, while the total
flux noise is independent of R. For a constant t ĵ, the total noise flux
and the low-frequency noise flux increase with L. When a normal metal
cylinder is put in the hole (§4.6) the total flux noise in the double
point contact is in good approximation unchanged. A detailed calculation
(including the noise contribution of the normal metal cylinder, and the
mutual inductance between the double point contact and the cylinder)
shows that the cylinder only changes the frequency spectrum of the noise
and not the total root-mean-square value. The presence of noise poses a
limit (of several square centimeters) on the largest area 0 with which
voltage oscillations can be observed, even when there is a normal metal
cylinder in the hole (table I, §5.2). A rather special application of
the applied flux dependence of the dc voltage across a double point con­
tact has been performed by Zimmerman and Mercereau *5). They drew a niobium
wire, with flux pinned m  it (after the wire was brought into the mixed
state due to an applied magnetic field), through the hole between the
contacts and they showed that the flux was pinned in units h/2e.

When the magnetic field applied on 0 is due to a certain current,
double point contacts can be used to measure this current 67). By using
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Fig. 28a)The voltage across a solder droplet junction 29) as a function of the
additional current ij, when the current i2 is held constant (see fig. 5). The oscil­
lations in the voltage can be used to detect changes in ii (fig. 29). The maximum
dV/di, = 0.02 0.

b)Voltage oscillations as a function of applied magnetic field of this
droplet junction with ij «= 0. This figure can be compared with figs. 19 and 21b. By
applying Ampères law it is verified that the period in i] of fig. 28a is in agreement
with the period in the applied magnetic field.

ii = 0 ,  i2 =  5 0 0 |lA
Bj.= 0 .37  gauss

O | i j  = 5 0 0  ii A
4 .6  inA corresponding
to  a  AB =  0 .3 7  gauss

unknown
voltage

s t a n d a r d
res i  s t a n c e

Sn Pb

•appl.  V

Fig. 29 The voltage-measuring device proposed by Clarke 52). The standard re­
sistance is of the order of KT» «. A current i is applied to compensate the unknown
voltage. The unbalance of the bridge is detected with a solder droplet junction.
Current changes of the order of 1 UA can be detected. Since the standard resistance
is 10 0 ft, this corresponds with v.

the device as a null detector also voltages can be measured. Clarke
52) used an analogous method to measure small voltages. The principle ot
this method is given in fig. 29. A solder droplet junction is used to
detect the currents when the bridge is out of balance (see figs. 28 and
29). The estimated sensitivity is of order 10“'5 volt. The response time
L/R is less than one second because L can be as small as 10~8 henry. The
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mean square of a voltage due to thermal fluctuations is equal to 4kTRAv
(see S2.4). This formula shows that voltages of the order of 10”'5
volt can only be measured when R is of order of 10-° ohm. The value of
Av must be at least of the order of 1 Hz because otherwise the response
time of the circuit is more than 1 second, which is inconvenient. The
most sensitive commercial voltmeters can measure 0.1 nanovolt across
10 ohms with an L of the order of 10 phenry. Thus a gain of 105 in sen­
sitivity can be achieved. By replacing the unknown voltage and the stan­
dard resistance by Josephson contacts, Clarke 52) was able to prove that
the values of h/2e for different superconductors are equal within 0.01
ppm. For further applications see the refs. 51, 68, 69 and 107.

The London Moment
In our laboratory double point contacts are used to measure the

London moment. When a superconducting cylinder is rotated around its
axis the Maxwell equation

e c v x B = j + e 3E/9to o
becomes in the stationary state

2 -+ -*■ , Ne c V x B  = ne(v - v ) ,o s s o
in which the current density j ■ n e(v - v ), and v “ a) x r is the
velocity of the lattice (solid-body rotation). Following London 58)
this equation with

x Pc V x (2mv + 2eA)s
gives

$ 2 (S + 2 ^ )  .  1 ( |  + ^ )  and 1 +; .
e X2 A2

These two equations show that B + 2mw/e and j are zero in the supercon­
ductor apart from a small surface layer of thickness A. They imply that
a magnetic field B = - 2im/e is generated in the superconductor by the
currents in the surface layer. Since j = 0 in the bulk of the super­
conductor, the superconducting electrons are in the bulk of the supercon­
ductor in solid-body rotation with the lattice. Only near the surface
the electrons lag a little behind, giving rise to a surface current.
If one puts a rotating cylinder with radius R in the hole of a double
point contact there will be a flux $ = tt(R - A)2b = —it(R - A)2 2mio/e =
—IT(R - A)2 4irmv/e in the hole. The critical current and the dc voltage
across the double point contact will oscillate as a function of the
number of rotations per second v = m/2x with a period Av given by

h/2e _ h/m
n (R - A)24tt-  8ir2 (R - A)2e

Av = (4.17)
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When R z 3 mm the value of Av is about 1 hertz. In order to check the
validity of this equation no magnetic field calibations are necessary.
In order to determine h/m the only quantities that have to be measured
are R and Av. The correction due to the presence of the X layer is of
the order of 20 ppm. On this level also other corrections are expected
due to the surface dipole layer of the metal and relativistic effects
(Anderson *))•

The London moment was for the first time, independently and almost
simultaneously measured by several groups in 1964 73) (Hildebrandt;
Hildebrandt and Saffren; King, Hendricks and Rorschach; Bol and Fairbank).
The measured magnetic field value agreed within the accuracy of 5 - 8%
with the value derived by London. Later on the London moment was measured
by Bnckman ) (using a double point contact and a flux transformer) and
by Hendricks et al lui) using a conventional Flux-Gate Magnetometer. All
these experiments however needed a calibration of the magnetometer which
limited the accuracy to 3%.

If one uses the fact that the critical current and the dc voltage
across a double point contact are periodic functions of the flux in the
hole, with a period that is exactly equal to one flux quantum, no such
calibration is necessary. Zimmerman and Mercereau 106) performed an ex-
periment where they rotated the double point contact itself. Here it is
difficult to define the value of R that has to be used in eq. (4.17).

In order to obtain the accuracy of 1 to 10 ppm that is necessary to
see relativistic effects and surface dipole layer effects it is preferable
to rotate a cylinder of insulating material on which a single-loop SQUID
is evaporated. The present accuracy obtained in this experiment is 220
ppm as reported by C.M. Falco and W.H. Parker at the Thirteenth Inter-
nationai Conference on Low Temperature Physics, 1972, Boulder, Colorado,

A different method that seems equally promising is to rotate a super­
conducting cylinder in the hole of a double point contact (fig. 30). The
possibilities of such an experiment are investigated in our laboratory It
turns out that trapped flux in the rod (still arising from small stray mag­
netic fields in the cryostat) area serious noise source in this experiment.
All parts of the apparatus, except the double point contact, the rod and a
superconducting shield, are made of non-metallic materials (delrin
CÜ - ° Ï ^ ;  Tw° cylinders.of M-metal (moly permalloy) around the cryostat
shield the earth magnetic field to about 1 pgauss from the interior of
the cryostat (see §5.1). The double point contact is used in the feed­
back mode (fig. 33c). When the cylinder in the hole is rotated the output

ar°?" ! certain main value that is determined by the London
amplitude of the oscillations is determined by the frozen-in

field, the frequency is equal to the rotation frequency. A very preli-
minar result is given by the plot of the magnetometer output versus
Z i V i S -  31 \ ™ e London moment is visualized by the change in the
level of the oscillations when the rotation speed is changed. In fig
31 it can be seen that the frozen-in field is large (amplitude of the
oscillations) compared to the signal (the change in level when the ro­
tation frequency is changed). The value of h/m measured in this experi­
ment (using eq. (4.17)) is 8 cm2/s. The theoretical value is 7.3 cm2/s.
This result shows that, although the frozen-in field is large, a reasona-
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ble accuracy (10%) can be obtained. The experiment is continued. The
shielding will be improved and a better Meissner effect of the rod will
be obtained by using a tin single crystal.

---B

Fig. 30 30 4 0  s 50

Fig. 30 Cross section of the London moment apparatus. the suspension system
and the rotation axes are made out of Celoron (C). The support system for the double
point contact (DPC) is made out of Delrin (D). The Delriri part is shielded with lead
foil. B are bearings; G is a 20:1 gear box (ESCAP G27); M i s  the motor (ESCAP 26 PL
11-210 dc motor; rotation speed variable up to 7100 rotations per minute); Sn is the
tin rod generating the London moment. The double point contact has a hole diameter of
1.0 cm and is provided with a Pt cylinder.

Fig. 31 Output of a double-point—contact magnetometer (in units of a flux
quantum)'versus time. A tin rod of radius 3.2 mm is rotated in the hole. The large
oscillations are due to a magnetic field in the rod. The London moment is proportio­
nal to the change in the level of the oscillations when the rotation frequency is
changed (in this experiment between 1.0 and 0.5 Hz).
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§5 DESCRIPTION OF THE EXPERIMENTAL SET-UP AND THE CONSTRUCTION OF
DOUBLE POINT CONTACTS.

55.1 THE EXPERIMENTAL SET-UP.

Electronics

A diagram of the electronics that we used to measure the T - V - B
dependence is given in fig. 32. It merely consists of a dc current sup­
ply to the magnetic field coils, a dc current supply for the current
through the point contact and a dc voltmeter connected to it. All leads
have low—pass filters to reduce the influence of pick—up noise from the
building. With this circuit the i — V — Bj. dependences described in

6, 16, 18, 19, 21 and 27 were measured. For the application of

10005}

32 Circuit to measure the i - V - B± dependence of a double point contact.
The current supplies to the double point contact (denoted P in the figure) and the
magnetic field coils are simply a battery, a potentiometer and a series resistance with
a low-pass filter (F). The voltage is measured by connecting the voltmeter through a
low-pass filter (F) with the point contact.

the double point contact as a magnetometer more advanced techniques are
necessary. Following Forgacs and Warnick 54)9 we used a lock-in ampli-
fier to improve the signal-to_noise ratio and to make the output of the
magnetometer linear as a function of the unknown field Bx . The procedure
is as follows (fig. 33). With the current supply to the point contact
we apply a current larger than the critical current. The V - BA depen­
dence at this current is sketched in fig. 33a. For simplicity it is sup­
posed to be sinusoidal. With the reference output of the lock-in am­
plifier we superimpose an ac magnetic field Bac in the kilohertz region on
the dc field B^. The peak-to-peak amplitude of Bac is smaller than |AB± .
The ac field then gives rise to an ac voltage across the point contact
of the reference frequency. In a maximum or minimum the frequency of the
ac voltage is twice the frequency of the applied ac magnetic field. The
amplitude and phase of the ac voltage are dependent on Bj_. They are mea­
sured by a lock—in amplifier (Princeton Applied Research, type HR—8).
In the inserts of fig. 33a the V — t dependence is given at several dif­
ferent Bj_ values. In fig. 33b the output Vou^ of the lock-in is given as
a funcjtion of Bj_ . For small Bac values it is proportional to the deriva­
tive dV/dBj_ of the V - B^curve. The signal—to—noise ratio in the Vou  ̂- B^
curve is now improved considerably, compared to the dc measurement. For
the application as a meter for magnetic fields smaller than or of the
order of AB^ , we want the output V0yt of the lock-in to be linear with
Bx . This can be accomplished by applying a dc magnetic field Bout to the
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Fig. 33a)V - B; dependence of a double point contact at constant applied current.
For simplicity a sinusoidal form is assumed. In the inserts are given the V - t depen­
dences, when a small ac magnetic field Bac_is applied on the contact. The amplitude and
sign of the corresponding ac component of V depend on the value of .

b) 0utput Vout of a lock-in amplifier tuned at the frequency of_the ac mag­
netic field. When the amplitude of Bac is small, Vout is proportional to dV/dB^

c )  S closed: Double point contact operated in the feed-back mode. The out­
put of the lock-in is approximately linear. Magnetic fields much smaller (1%) than one
period can be detected.

S open : Magnetic fields much larger than one period can be measured
by counting the number of pulses when the field is turned on.

point contact which is proportional to Vout (switch S of fig. 33c closed).
Large magnetic fields (compared to ABj.) can be measured by counting the
number of pulses when the unknown field is turned on (switch S of fig.
33c open). The equations determining the state of the system are

B = aVout out
B . = B + BJL out
V = V sin 2out o
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From these equations we obtain

B /AB^ Bout Iout . „ out Xs m  2ir ---------
ABa

B _ + B

aV /AB. aV
O  io

If now Bgyt/ABj. is of the order of 1 and aV0/ABj. > > 1 (large feed­
back factor) then Bout/(oV0) < < 1 and hence (Bout + BX)/ABX - n or

B / a  + nABj./a

This is the required relationship between VOU£ and Bx . Although Bx can
change over many periods, the total dc magnetic field (Bout + Bx) on
the point contact is almost constant. The system is locked on a fixed
point in the V - Bj. curve. Furthermore it should be noted that the mag­
netometer sensitivity dVout/dBx = - 1/a. Henc£ it is in first approxi­
mation independent of the amplitude V0 of the V oscillations.

The same procedure can be followed when the lock—in amplifier is
tuned to twice the reference frequency. This has the advantage that
pick-up from the leads to the ac magnetic field coils, can easily be
eliminated.

Shi e1d i n g .

In order to reduce the influence of external magnetic fields we
took several precautions. The double point contacts were mounted on
non-magnetic material such as "Delrin". They were 10 - 15 cm removed
from slightly magnetized materials such as brass and stainless steel.
We only used glass dewars. Shielding from external dc and ac magnetic
fields (such as the earth magnetic field or 50 Hz and radio-frequency
pick-up) was obtained by putting the sample in a superconducting (Nb)
box and by surrounding the cryostat with two p-metal cylinders (Alle­
gheny Ludlum Moly Permalloy). These cylinders were hydrogen annealed
in controlled atmosphere after forming. The length is 120 cm and the
wall thickness 1.5 mm. The diameter of the inner cylinder is 12 cm and
of the outer cylinder 20 cm. After properly "shaking" the cylinders by
ac techniques, the external dc magnetic field (earth field) reduced to
a value below 1 pgauss at the site of the sample.

§5.2 THE CONSTRUCTION OF DOUBLE POINT CONTACTS.

The simplest way to obtain a multiple point contact is to press a
superconducting point on a superconducting sheet. One might think that
this results in a single point contact but the irregularities on the
surfaces of. the two superconductors result in a contact region consisting
of a combination of point contacts. Each pair of point contacts encloses
a certain area. From fig. 17 it can be derived that a double point contact
with a small area (small L) will have a larger amplitude in the ic-oscil-
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lations than double point contacts with a larger area. Hence the double
point contact with the smallest area has the tendency to dominate the
others. Therefore a superconducting point on a sheet behaves very often
like a double point contact. The i - V - Bj_ dependences described in the
figures 13, 15, 16, 19, 21 and 25 were measured with this type of con­
tacts .

The device in fig. 5 is a solder droplet junction first employed
by Clarke 29)52). A droplet of tin-lead solder (which is superconducting
at liquid—helium temperatures) is forced to encircle a niobium wire.
An insulating oxide layer on the niobium wire provides that only point
contacts are formed between the wire and the solder (due to the irregu­
larities of the two surfaces). This type of junction has in common with
the "point on a sheet" that in both cases the i - V -  BA dependences
are inpredictable.

The device of fig. A is developed by Omar et al. 31). The double
junction is made by winding an uninsulated 50 ym niobium wire around
a 100 ym niobium wire, from which the insulation on opposite faces
has been partially removed. The weak contacts are anchored by means of
a sealing wax droplet. The unremoved portion of the insulation, which
is enclosed by the superconductors and the contacts, is the area giving
rise to the period in the ic and V oscillations. However, also in this
case a double point contact with a small enclosed area, accidently
formed between the two superconductors due to the roughness of the
surfaces, can dominate the i - V - Bj_ dependence.

The devices discussed so far all have the advantage of being small.
The volume occupied is only a few mm3. The areas enclosed by the point
contacts are also small and hence the amplitudes in the ic and V oscil­
lations are large. Also the period ABj. is large. This makes them parti­
cularly useful to check theoretical results (fig. 16) but fairly in-
attractive for the application as a sensitive_magnetometer.

A more serious disadvantage is that the i - V - Bj_ dependence of
these devices does not reproduce. It may be changed completely when they
are warmed up to room temperature and cooled back down again. Further­
more the enclosed area between the point contacts is unpredictable.

The device of fig. 6 is more sensitive to magnetic fields. Also
the area between the point contacts has a well defined orientation
with respect to the external magnetic field. The advantage of using tin
is that one can easily work in the temperature region where the amplitude
of the oscillations is a maximum. However, this device also lacks repro­
ducibility. This is mainly due to the fact that the coefficients of
thermal expansion of nylon, tin and niobium are different. The thermal
stresses in the device change the adjustment of the screws. They have to
be adjusted before cooling down to liquid—helium temperatures and one
cannot be sure aforehand that oscillations will be observed at all.

An improved version of the device in fig. 6 is depicted in fig. 7 2®).
It consists of two niobium blocks and two niobium screws, separated by
a thin layer (150 ym) of Schott sealing glass 101. The niobium blocks
and the glass were baked together in order to form a mechanically solid
unit. The glass has the same coefficient of thermal expansion as niobium.
Hence there are no thermal stresses in the device. This device does not
require re-adjustment between two thermal cyclings and is sufficiently
reliable to be used as a magnetometer. A summary of the data on these
double point contacts is given in table I.
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TABLE I

Summary of the data of double-point-contact devices with different enclosed area
0. They are all constructed according to fig. 7 with a normal metal cylinder in
the hole. Sample number 2 was used for the experiment described in fig. 27.
Sample number 17 is used to measure the London moment.

Sample construction

Sample number 2 10 1 1 17 15Hole diameter (mm) 1.8 3.1 5.2 10.1 15
Cylinder length (mm) 12 12 10 25 20% of the area 0, not shielded
by the normal metal 100 13 8 4 5
Kind of normal metal - Pt Pt Pt Pt
Total resistance at 300 K (0) 1.25 1.65 1.8 2.2 1.3
Calculations

Self-inductance of the cylinder (10 7.5 25 50 112Amplification factor due to the
presence of the normal metal - 7.8 12.5 25 20
Total flux noise/(h/2e) in % 6 10 19 27 47
Reduction factor of the amplitude of
the V oscillations due to hf noise 0.93 0.82 0.45 0.25 0.04
Lf flux noise/(h/2e) in % 0.2 0.3 0.6 0.9 1.5Magn.field period ABj. (pG) 8.15 2.75 0.98 0.26 0.12
Observations

ic at 4.2 K (pA) 650 155 225 110 105Peak-to-peak amplitude of the V
oscillations AV (nV) 250 600 330 200 140
AV/AB.,. (mV/gauss) 30 218 340 800 1200Lf.flux noise/(h/2e) in % 2 0.6 1.5 2 8
Lf.magn.field noise (ngauss) 160 16 15 5 10
Number of thermal cyclings without
readjustment 28 21 8 21
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§6 INTRODUCTION

§6.1 PRELIMINARY CONSIDERATIONS

Since the publication of the books of London the analogy
between the behaviour of superconductors and helium II has been of con­
tinuing interest (Vinen 72)) ^ superconductor has got its name from
the property that a dc electric current can flow through a supercon­
ducting wire without any voltage appearing across the terminals.
Helium II (the liquid phase of ^He below 2.17 K at saturated vapour
pressure) is called superfluid because it can flow through a narrow
capillary without any pressure difference across the ends. The elec­
trons in a superconductor and the helium atoms in helium II both behave
as particles of a fluid that can flow without any friction. This simi­
larity has a fundamental origin.

The helium atoms are bosons and therefore they obey Bose-Einstein
statistics. Below 2.17 K a (Bose-Einstein) condensation takes place.
This can be characterized by the conjecture that below 2.17 K the same
single—particle quantum state is occupied by a macroscopic number (on
the order of Avogadro's number) of helium atoms. The electrons in a
metal are fermions and therefore obey Fermi-Dirac statistics. In a
superconductor however, the interaction between the electrons via the
lattice leads to the formation of the so-called Cooper-pairs 47).
These electron pairs have spin zero. Since these quasi particles are
in a way bosons they can occupy the same single quasi-particle quantum
state. The fact that in helium II and in a superconductor a single
(quasi) particle quantum state is occupied by a macroscopic number of
(quasi) particles is the basic reason that their behaviour is so similar.
For both superfluids a complex order parameter can be introduced. This
order parameter has an amplitude ¥0 and a phase <f> (eq. 1.1), as was dis­
cussed in Part I. The requirement that the wave function is single
valued leads to the prediction that ps = 2mvs + 2eA = 0  for the elec­
trons tn a solid, isolated block of superconducting material and that
Ps = mvs = 0 in a bulk volume of superfluid helium. H. London pre­
dicted in 1946 that this means for helium experimentally that it is im­
possible to make a singly-connected volume of superfluid helium rotate
with respect to the fixed stars. For a rotating superconductor this
means that a magnetic field is developed in a superconductor (the London
moment) given by

t 2m -*■B = - —  ooe
where to is the angular velocity of the superconductor (see §4.7). This re­
lation was derived by F. London ^®). It implies that a rotating supercon­
ducting rod will have a magnetic moment, the so-called London moment. It
has been investigated first in 1964 by Hildebrandt 73). The measured value
of B is in^agreement with the calculated value.

When oo = 0 then B = 0 even when an external magnetic field is applied
on the superconductor. This fact is known as the Meissner effect (see part
I, §1). The "Meissner effect in helium" is much more difficult to verify
experimentally. In 1967 Hess and Fairbank 74) succeeded in demonstrating
that also the analogue of the Meissner effect exists in helium.



77

Under certain conditions it is thermodynamically unfavourable for a
bulk volume of superfluid to maintain a complete Meissner effect. In that
case the superfluid forms threads or rings of a non—superfluid core. The
superfluid can then no longer be considered as a singly connected body.
Jhe requirement that the wave function is single valued then does not lead to
Ps = 0 to the quantization of the circulation integral of the genera­
lized impulse:

^pgds = nh .

Following Onsager and Feynmann this means that for helium the circulation
vs, yvsds is quantized in units of h/m 75), in a superconductor it

gives fluxoid quantization in units h/2e (see §1.1). In both types of
superfluids a regular structure of vortex lines can build up. Also in mul­
tiple connected volumes the behaviour of superfluid helium is similar to
the behaviour of superconductors. Due to the total absence of friction
the circulation yvsds is conserved in time, as demonstrated by van Alphen
et al. 76)f while in a superconducting ring the magnetic flux is conserved.

The analogy between helium II and a superconductor can also be exten­
ded to the ac Josephson effect. Just as the ac Josephson £ffect in super­
conductivity is described by the relation v = A^T*/h = 2eVM/h (see part I),
there exists an ac Josephson effect in liquid helium described by the re­
lation v = Ap/h = mgz/h, in which z is the pressure head in cm helium
(Anderson and Richards 77)).

As a last example of the similarity between superfluid helium and a
superconductor we discuss here the Bernoulli effects in the two superfluids.
A gradient in the square of the velocity of the superfluid particles should
give rise to a pressure gradient in helium II and an electrostatic vol­
tage gradient in superconductors.

Landau 78) postulated in 1941 that in the two-fluid model for helium
II the driving force for the superfluid component is equal to the gradient
in the chemical potential. This leads to the equation of motion

D v 3v
m4 ~§r Eb4 1 T '  V s  x x V  + ̂ (*m4vs2)

= -^u= - v ^p + sVT + —  Vim. (v - v )2~ myH (6.1)o p 4 n s

where m^ is the mass of a helium four atom, p is the density of the fluid,
v0 - 1114/p is the volume per particle,_^s is the entropy per particle, vn
is the velocity of the normal fluid, vs is the velocity of the superfluid,
and pn is £he density of the normal fluid.

When V x vs =^0 everywhere in the fluid, this equation gives for a
stationary flow (3vs/3t = 0) at constant temperature = 0) and when the
normal component is clamped by a superleak (vn = 0) that ipsvg + p/p is
a constant everywhere in the fluid. Hence a difference in the superfluid
velocity gives rise to a pressure difference. This so-called "Bernoulli
pressure" cannot be measured in a Venturi tube (Meservey 79)f van Alphen
80)). One has to use a membrane gauge (Hildebrandt 81))or a Rayleieh disk
(Pellam 82)). ;
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The analogue of the Bernoulli pressure exists also in a supercon­
ductor. It can be generated by applying an external magnetic field on a
superconducting cylinder (Bok and Klein 83)), The Meissner currents in
the sample gives rise to a gradient in the velocity of the Cooper pairs.
When the magnetic fields are sufficiently slowly varying (below the gap
frequency) no currents of normal electrons are generated. Therefore
the normal electrons are essentially clamped by the lattice just like
the normal fluid in helium II is clamped by a superleak. The equation of
motion for the Cooper pairs is 38,84,85,92)

3v ^
2m ■- * - 2m v x ( ^ x v ) + ^ j  (2m v )e 3t e s  s e s

= - V 2 y  + 2e(E + v x B )s

which together with the London equation eB = -me^ x vs (PART I, eq.
(1.6)) gives

3v _ _ ,
m , S = -V(y + 4m v ) + e E - mvHe 3t e s

= -^(eV + y + imevs + ®H)

= -V(y + jm v^ + mH). (6.2)e s
In this equation v is the superfluid velocity, e the electron charge,
m the electron mais and E the electric field in the superconductor.
Furthermore Vy is given by 84-86)

p _
^y = ^y - 4 —  m^ (v - v )o 2 p n s

where y is the chemical potential per electron when ^(v - v )^ = 0.
In°eq. (6.2) is added a term 2eE = -2eVV (compared with eq. (6.1))

because the Cooper pairs are charged quasi particles. In Part II the
3Ï/3t term can always be neglected in E (electrostatics). Hence E =
-VV and y = y.

A complete set of the two-fluid equations of motion in a super­
conductor, based on the analogy between a superconductor and helium II,
is given by Putterman and de Bruyn Ouboter 85) and by Putterman in his
thesis.

In connection with the dissipative term VH in eq. (6.2) exists a
phenomenological relation

mH = -£V.J .s
For helium II the term VH is introduced by Khalatnikov **^). In a super­
conductor it can be interpreted as a difference in the electrochemical
potential of the normal and the superconducting electrons due to a
non-equilibrium between the two fluids. The presence of this difference

s s
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can in certain situations lead to interesting consequences, which have
recently obtained attention In our discussion we will neglect
possible contributions of the term, because the influence of is
usually very small.

For a stationary flow (3vs/3t = 0) at constant temperature
(vu0 =0), an electrostatic voltage difference exists between two
points 1 and 2 in the superconducting metal equal to:

V - V2 V1
V s  2 2
“S T  *(vs,2

if the normal component is clamped (vn = 0).
Since in a stationary situation IT is constant, this electrostatic

voltage difference cannot be measured by a voltmeter which is directly
connected to the points 1 and 2 (see 51.1). It will be shown in §6.2
that the Bernoulli voltage can be measured if the coupling between the
superconductor and the voltmeter is established via a capacitor and
(phase sensitive) ac techniques are used. Bok and Klein °3) and Morris
and Brown °°) measured the Bernoulli voltage in this way. Although the
theory described above has been criticized by Adkins and Waldram 82 ) on
the basis of microscopic considerations, the experimental results are
in agreement with this simple local two—fluid electron theory.

Eq. (6.1) is also the basic equation for the fountain pressure in
helium II. The fountain effect arises when a temperature gradient is
applied in helium II. The warm^end will have a larger pressure than the
cold end (from eq. (6.1) with vn = vs = 0 and 3vs/3t = 0) according to

Ap - AT (H.London).

When the liquid at the high pressure end can escape then the liquid will
squirt like a fountain.

Apart from a paper of Ginzburg in 1944 88), the superconducting ana­
logue of the fountain effect in helium II has not been considered until
recently. Since 1964 several papers showed that there should indeed be
voltage differences in a superconductor that can be considered as the
analogue of the fountain pressure in helium II (Luttinger 89) ; Kresin
and Litovchenko ), Stephen 91), Betbeder-Matibet and Nozieres 92),
Vinen ), Putterman and de Bruyn Ouboter 85)). A simple derivation of
the fountain effect in a superconductor based on the analogy between a
superconductor and helium II can be obtained from eq. (6.2). In a statio­
nary situation y is constant. The contributions in y of the velocities
of the superfluid and normal particles, analogous to the £mev 2 in
eq. (6.2), are neglectable in this case. Hence we obtain for a supercon­
ductor that

' V ÏÏ = ^ y + eVV = 0.

This relation implies that there is no Seeback effect in a superconductor.
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A temperature difference in a superconductor does not give rise to a dif­
ference in y and therefore not to a thermal emf. This property has been
observed with great accuracy . It is perhaps the most convincing ex­
perimental proof for the validity of eq. (6.2).

When one uses for the chemical potential the naive relation

U = - J o sed T »
where se is the entropy of the electrons per electron, then a fountain
voltage of the order of 1 yV per kelvin is expected for metals such as
niobium or lead. Later on it will be shown that this naive expression
(Vinen ” )) for the change in y due to a temperature gradient is very in­
complete and misleading. It is clear from the beginning that the fountain
effect in a superconductor will never be able to drive the electrons out
of the metal. The binding forces between the electrons and the metal are
much too strong. The fountain effect in a superconductor should be compared.,
with the fountain effect in helium II in a closed vessel. Like the Bernoullii
potential, the fountain potential cannot be measured with wires connected
to the superconductor. Since the fountain voltage is part of the tempe­
rature dependence of the work function of the superconductor (§6.2), we
used a capacitive method. Part II of this thesis describes the experiment
in which we measured the temperature dependence of the work function of
niobium and lead.

§6.2 CHOICE OF THE MEASURING METHOD.

An electrostatic voltage difference cannot always be measured by
connecting a voltmeter directly to the two points of interest. Here we
are interested in the voltage difference in a metal with a temperature
difference between the ends. Since both terminals of the voltmeter have
to be at the same temperature, this means that in a part of the circuit
a temperature difference must exist that exactly cancels the temperature
difference in the sample. Thus we have constructed a thermo couple. In
order to demonstrate the principle of the measuring method, we consider
a circuit that contains only elements of the same superconducting mate­
rial. From eq. (6.2) it follows that y is constant in the stationary state
(3vs/3t = 0), even when there is a temperature gradient. Hence there is
no thermal emf.. The voltmeter will measure zero voltage when the wires
are connected directly to the sample (fig. 34a). If, however, the contact
between the voltmeter and the sample is established via a vacuum capacitor
(fig. 34b), the voltmeter will measure the voltage difference in the
sample if the temperature is cycled with a frequency f such that the re­
sulting impedance 1 /(2TtfCm ) of the capacitance is much smaller than the
impedance of the voltmeter (Cm  > > Cy, see eq. (7.9)). For these fre­
quencies the voltage difference across the measuring capacitance Cjj is
practically zero. The chemical potential of the vacuum is taken to be
zero. Hence the electrochemical potential is constant in the vacuum
between the sample and the capacitor plate. Addition of eV and y in all
parts of the circuit now shows that the electrochemical potential across
the voltmeter terminals (Cy) is equal to eAV in the sample. Here it is
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Fig. 34 Dependence of temperature (T) ,_chemical potential (p), electrostatic
energy (eV) and electrochemical potential (p) as a function of place in the sample
and in the voltmeter connections. For simplicity all metals are supposed to be the
same and superconducting.
a) The voltmeter is connected directly to the sample. The electrochemical potential
is constant throughout the circuit. The voltmeter indicates zero voltage. Since the
impedance of the circuit is low, the voltmeter can be an ordinary voltmeter with a
fairly low input impedance.
b) An electrometer (high-input-impedance voltmeter) is connected capacitively to
the sample. Since eV changes in the sample and V is constant across the capacitor CM
(with Cy < < CM, see eq. (7.9)) a voltage difference will appear across the termi­
nals of th£ electrometer. Since p is the same at both ends of the voltmeter, the
change in £  across the voltmeter is equal to the change in eV across the sample. The
change in p across the voltmeter can be interpreted as due to a change in work func­
tion of the superconducting metal.

assumed that the surface dipole layer of the metal is constant as a func­
tion of temperature. When different materials are used in the circuit a
dc voltage will be developed across the capacitor (§7.1). Only the time-
dependent part in the electrochemical potential will be measured by the
voltmeter (eq. (7.9)) and this is eAV.

The argument for the measurement of the Bernoulli potential in
superconductors is essentially the same as for the measurement of the
fountain voltage. When the wires of the voltmeter are connected direct­
ly to the sample, contact voltages will be established that exactly
cancel the Bernoulli voltage. Just as in the case of the fountain voltage
a capacitive coupling gives rise to the desired signal in the voltmeter.
The assumption here is that the surface dipole layer of a superconduc­
ting metal is independent of the velocity of the electrons at the surface.
The agreement between theory and experiment shows that this assumption
is justified. Later on we will see that the assumption that the surface
dipole layer is temperature independent (a necessary condition for a
correct measurement of the fountain voltage) is not correct (Herring and
Nichols y5)).
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§6.3 APPARATUS DESIGN CONSIDERATIONS.

The fact that a capacitor is used to establish the connection
between the sample and the voltmeter requires ac techniques to measure
the voltage. This means that the temperature of the sample should be
varied with a certain frequency f. There are several reasons to make f
as high as possible. The most important is that a high value of f means
that the impedance of the capacitor is low and therefore the impedance
of the voltmeter can be kept fairly low. (The impedance of the voltmeter
should be larger than the impedance of the capacitor Cm , eq. (7.9)).
When low impedances are used, the influence of noise sources like thermal
noise, mechanical vibrations in the leads and pick-up signals (50 Hz, rf
stations) is reduced. A direct consequence of a higher frequency is that
the influence of low-frequency noise like fluctuating thermal voltages in
the leads is lower. Unfortunately due to several experimental circum­
stances the frequency f is in practice as low as 1.5 Hz. The basic reason
for this low frequency is that one wants to warm the sample up and cool
it back down to well defined temperatures. Warming the sample up quickly
is no problem. With a good heater one can warm up the sample to the de­
sired temperature in a short time. During the cool-down part of the pe­
riod however one has to switch the heater off and wait till the sample
comes back to its original temperature. The cool-down time constant is
proportional to the length of the sample squared. Hence a short sample is
necessary. Furthermore, the capacitive coupling between the sample and
the voltmeter should be as large as possible (§7). This requires large
cross dimensions. A short sample with large cross section implies that
large amounts of heat are necessary to warm it up. The dimensions of the
sample were mainly determined by the fact that the liquid helium in the
dewar should not boil off too quickly. The niobium samples were typically
10 mm long and 5 mm in diameter.

The capacitive coupling between the sample and the voltmeter was
5 - 100 pF giving an impedance of 109 to 10'1 0 at 1.5 Hz. The thermal
noise of a 10'0 £2 resistance at room temperature is, for a time constant
of 1 second, equal to 0.6 yV. Therefore powerful signal averaging tech­
niques are necessary to get a good signal—to-noise ratio because there
are important other noise sources (mainly due to mechanical vibrations)
and the signal is expected to be of the order of 1 yV. We used a lock-in
detector with a time constant of 100 seconds (fig. 40).

In order to avoid oxidation and contamination of the sample surfaces
a vacuum of 10~'0 to 10”'2 torr is necessary. Furthermore the sample
should be formed in this vacuum (by evaporation techniques) or it should
be annealed and outgased (for niobium at 1500 - 2000 K). In addition to
these requirements it should be possible to mount a thermometer which
can be used in the liquid-helium range, which is resistant against very
high temperatures and that can measure the temperature within 0.1 K.
Furthermore one wants to obtain a sensitivity of 1 yV. The usual sensi­
tivity in work-function measurements is about 10 mV.

In this experiment one has to compromise between these requirements.
We mounted the heater and thermometer on the sample in open atmosphere.
The pressure in the inner vacuum can (see fig. 36) was 10-5 torr before
the sample was cooled down to helium temperature. During the measurements
the pressure was as small as the vapour pressure of nitrogen and oxygen
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at 4.2 K. Hence if there was a gas layer absorbed on the sample surface,
it was constant during the measurement.

§6.4 THE TEMPERATURE DEPENDENCE OF THE WORK FUNCTION.

For niobium the signal measured with the method described in §6.2
and §6.3 (the difference in work function at T + AT and T) turns out to
be of the order of 10 times larger than the voltage calculated with the
naive formula

- eAV = Ay = -
fT+AT

J T
se dT.

There are two reasons for this which are possibly intimately connected.
First of all the assumption that the surface dipole layer of the metal
is independent of temperature is probably not justified (Herring and
Nichols). Secondly by writing dy = - sedT we neglect terms in y due to
the thermal expansion of the metal. In fact dy = - sedT + vedp. Hence
when p is temperature dependent (due to the expansion of the metal)
an extra dependence of y on T is introduced. This extra T dependence
of y can be calculated for a free-electron gas contained within the metal
surface. The order of magnitude of the changes in y due to this term turns
out to be larger than the sedT term; even at low temperatures where the
thermal expansion of a metal is small.

Hence we calculate the change in the chemical potential dy when
we increase the temperature of an ideal Fermi gas 96) by dT and at the same
time increase the volume of the system by aMVdT, where aM is the experimen­
tal coefficient of the volume expansion of the metal:

dy = - s dT + v dpe e

' - *edI * V J t >M dT

- s dT + v { (|£) + (i^) (— ) } dTe e v3T'V '‘SV'T'dT'M 1 ai

s dT + —  (oi - a ) dT.e XT P M'

Since the Griineisen constant

a V a v
Y = P . P e = iXTCV XTse 3

for an ideal fermi gas

o a “ 0L.
dy = - s dT + £  -2----- s dT.e 3 a e (6.3)
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In this expression 1 ,3V= tt (-r=) is the coefficient of volume expansion of
v v 3T P , 3V

an ideal Fermi gas at constant pressure and = - tr (t- )m is the isother-*T ” " V '3p''T
mal compressibility of the ideal Fermi gas. The value of oip is typically
on the order of 10“'0 x/K^. On the other hand for niobium is of the
order of 10”^/K at liquid—helium temperatures. Therefore “m  > > ap and
eq. (6.3) can be approximated by

2 aM4  —  s dT .3 a eP
(6.4)

This relation indicates that the change in p is strongly dominated by the
term due to the expansion of the metal. Although the electrons in niobium
can certainly not be considered as being free, we can learn from this
kind of observations, that the thermal expansion of the metal affects the
interpretation of the fountain voltage in an important manner. An inter­
pretation simply in terms of the entropy per particle (as in the case of
helium II) is insufficient. This is basicly due to the fact that electrons
are charged fermions enclosed in a metal.
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§7 ANALYSIS OF THE MEASURING METHOD; DISCUSSION OF THE EFFECTS CONTRIBUTING
TO THE ELECTROSTATIC SIGNAL.

§7.1 ANALYSIS OF THE MEASURING METHOD.

In §6.2 we proved that the fountain voltage cannot be measured by
connecting wires directly to the sample. A capacitance has to be used to
provide the coupling between the sample and the voltmeter. We will give
here a more general derivation of the signal that will appear across the
voltmeter. Hence the material is not necessarily superconducting and

kinds of metal may be used for the sample and the leads to the
voltmeter (fig. 35). The parts B and D of the circuit are the voltmeter
leads and are of the same material. The electrometer is represented by its
input impedance (parallel capacitance plus parallel resistance) and an
ideal voltmeter V (voltmeter with infinite impedance).

From the entropy production and the Onsager relations for an isotropic
metal without magnetic field, and with an electric current and a tempera­
ture gradient, one obtains (De Groot And Mazur 97))

Js,tot T - nl (7.1a)

v ( J ) = - n f a  + R? (7.ib)

where Js,tot is the total entropy flux, \ the heat conductivity, n is the
differential thermo-electric power and R is the resistivity of the metal.
When I = 0 (no current flow) we obtain from (7.1b) that

or

r l
e n(T) dT

1

V2 - - v  -
cl

n(T) dT .
1

(7.2)

In parts of the circuit where ^T = 0 and 1 = 0  the value of p is constant
At the contact surface of two different metals for example the chemical
potential p is discontinuous but a dipole layer is formed in the contact
region that gives rise to a discontinuity in V in such a way that Au =
Ap + eAV = 0. Hence

‘1 - e(V2 - V,) (7.3)

at a contact surface between two metals.
In order to be able to calculate the signal appearing across the

voltmeter in fig. 35 we need the definition of the true work function of
a metal (Herring and Nichols 95)).
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eW - u - eVV - e O ^  - VV) + y ,

VV - V M = - W + - .  ' (7.4)e

In eq. (7.4) is the electrostatic voltage just outside the metal,
is the electrostatic voltage just inside the metal and W is the true
work function.

With the Maxwell equation for the electrostatic case

^Egds = - ^dV = 0 (7.5)

we have the sufficient number of equations to calculate the voltage in the
voltmeter. Following Domenicali ®°) we add all changes in the electrostatic
potential in the metal (fig. 35):

v, - v2 = - A t) + ^ A t) ,

v2 - v3 - " ~ A t) + - A t) = 0 ,

V3 “ V4 = " 7 A t) + 7 A t) ,

V4 ' V5 ‘ ~ 7 A t) + 7 A t) - 0 *

V5 - V6 * V ’

V6 ' V7 = “ 7 A t) + 7 A t) = 0 »

v7 - v8 = - i  A «  + j  US(T) ,

v8 - v9 “ ~ ~  US (T) + -  yS(T + AT)

v9 " vio = A t + AT) " 7 A t + AT)
v - v = - Vv10 1 1,10

(-T

T+AT
ns(T) dT ,

(7.6)
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T

Fig. 35 Diagram of the measuring circuit. "S" represents the sample on which
a temperature gradient is applied. "B" and "D" represent the electrometer leads.
They are made of the same material. "A" represents the metal establishing the capa-
citive coupling Cm  with the sample. The electrometer is represented by its equivalent
circuit. The numbers in this figure distinguish the points in the circuit between
which the electrostatic voltage difference is calculated in eq. (7.6).

Since B and D are the same material (the indices B and D simply distinguish
the two voltmeter leads) yB(T) = pD (T). Addition of all equations gives

V 1,10 V = - W^(T) +
■T+AT

nc(T)dT + WS(T + AT) .
T b

(7.7)

In deriving this equation we assumed that currents flowing in the cir­
cuit are so small that they do not affect the validity of eqs. (7.2),
(7.3) and (7.4). In practice the currents are of the order of 10-15 ampereO'* 6000 electrons per second).

The quantity on the right hand side of eq. (7.7) can be regarded as
the emf acting on the circuit of the capacitance CM and the voltmeter in
series. Since^ dc voltages across the voltmeter leak away via the shunt
resistance, V = 0 and we get from eq. (7.7)

V 1,10 AT) - w\ t ) +
•T+AT
, nS(I>dIJdc • (7.8)

The index dc indicates that we have to take the dc component of the quan-
toty between the brackets.

When AT = 0 eq. (7.8) gives the volta potential of the two metals
A and S. When the temperature is cycled with a frequency f such that
27rfCvR > > 1  then the impedance of the voltmeter can be represented
purely by its capacitance. Hence

WS(T AT)
•T+AT -|

ncdTT S Jac
V =

CV + CM
(7.9)
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Here the index ac indicates that we have to take the ac component of the
quantity between the brackets. It should be noted from eq. (7.9) that the
nature of the other side of the capacitance Cy (metal A) has in first in­
stance no influence on the measured voltage V (however see 58.2). Further­
more, the capacitance Cy of the voltmeter (including the leads) should be
kept as small as possible and should be as large as possible in order
to give the best Cjj/(Cy + Cy) value. Finally when the metal S is a super­
conductor then rig = 0 and the measured voltage is completely due to the
temperature dependence of the work function:

V ------- --- [ WS(I +
CV + CM

57.2 THE TEMPERATURE DERIVATIVE OF THE WORK FUNCTION.

(7.9a)

In order to estimate the temperature derivative of the work function
one would like to have an expression for the work function at arbitrary
temperature. However, the elegant techniques for the calculation of the
properties of the electrons in a metal (bulk properties) based on the
periodicity of the lattice are invalid in the surface region of the metal.
This complicates the calculation of the surface properties and therefore
of the work function. The simplicity of the expression for the work func­
tion of a metal (eq. (7.4)) is misleading. The difference in the electric
potential VM - Vv across the surface, and the chemical potential p contain
the many-body effects of the electrons interacting with the lattice. Even
at absolute zero the work function is a complicated property of the bulk
and surface structure of the metal. Crude models have to be introduced.
Recently models are developed based on the formalism of Hohenberg, Kohn
and Sham 99) in which the electrons are treated as an inhomogenéous elec­
tron gas (at zero temperature) with density n(r), moving in a self-con­
sistent pseudopotential including the lattice potential, the electrostatic
potential and the exchange and correlation energies. These potentials
(except the lattice potential) are all functionals of n(r). In first ap­
proximation the lattice is represented by a uniform positive background.
The self-consistency problem described above is numerically solved by
Lang and Kohn 99). The calculated work function is in good agreement (10 —
20%) with the experimental values of elements in which the electrons can
be reasonably approximated by a charged electron gas such as the alkali
metals. From their numerical results it can be derived that

_M Ve(\T - V ) = (-40 + 6.5 r )/r2s s (eV) (7.9)

1ovOII3. 24 r )/r2s s (eV) (7.10)

and with eq.(7.4) |e|w = (-20 + 17.5 r )/r2 .s s (eV) (7.11)

In these equations rs is the radius (in atomic units) of a sphere which
on the average contains one electron. (One atomic unit of length is equal
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to 5.2 x 10 m). The value of rs for different metals varies between
1.5 (high density of electrons) and 6 (low density of electrons). Ac­
cording to eq. (7.11) eW has a flat minimum of 3.94 eV at a rs value of
2.23. The value of eW changes slowly for the rs values of the elements of
interest while e(VM - Vv) and y are fairly strongly rs dependent.

The temperature derivative of an electron gas contained in a metal
can be estimated using

,dW. _ ,3W. ,3W. ,dV.
MT'M '3T^V '3V'T ^dT^M (7.12)

The first term is the change in work function when the volume of the metal
is kept constant. With eq. (7.4)

e(— ) = (!H) + c (3(VM ~ VV).
^3T;V 'ST'v 3T

(M) + (Hi) (i£) + ,3(VM - VV),
vT'p 4 p ;T '3T'V ( 3T 'V

,3W.
e(3T)V Se 'e v3T/V+ v (l£) + c(d(yM - yV))

The value of (3y/3T)v can be estimated for a free electron gas 9 )̂ (see
eq. (6.3)). It turns out to be small. The term e{3(VM - vV)/3t )v can contain
all kinds of surface effects such as the possible evaporation of an absor­
bed gas layer during heating of the sample (§9). For a clean metal surface
(3y/3T)y and { 3(V^ - V^)/3T } y are not independent. A change in y affects
also the distance over which the electrons tunnel into the vacuum region
outside the metal. Hence it affects the double—layer moment. The sign is
such that a change in y is partly compensated by a change in the dipole
layer term analogous to the observations of Heine and HÓ^es discussed be­
low. Therefore it is expected that (3W/3T)V in eq. (7.12) can be neglec­
ted .

to
by

The second term of eq. (7.12) gives the change in work function due
the thermal expansion of the metal. It can be written in terms of r

(— ) (— )v3V'TMT;M (M.) (f!“)v3r 't v dT 'Ms
V s  , 3W .
3 '3r ’s T *

We obtain the contribution in the temperature derivation of e(V̂ * - V^),
y and |eW| due to the thermal expansion of the metal by using this rela­
tion and eqs. (7.9), (7.10) and (7.11).

- evV) = (80-6.5rs)/rJ eV (7.13)
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—  = (-120+24r )/r
o l , dT s s eV (7.14)

- S  <|e|w) = (40-17.5O / r * eV (7.15)
'M

For high-density metals (rs < 2.2) the work function increases with tem­
perature, while for low density the work function decreases with appro­
ximately 0.7 V. For niobium (rs = 1.6 when there are 5 free electrons
per atom) the work function increases with 0.8 V. For lead (rs = 2.3)
the work function should be practically independent of temperature. For
copper rs = 2.76 and dW/dT is equal to -0.3 V.

The agreement between the value of the work function calculated by
Lang and Kohn 99) and the experimental value is a bit surprising. Con­
tributions in the work function due to the fact that the lattice is not
a homogeneously charged continuum but a lattice of positive ions seems
to be only of second order, in agreement with the experiment; the work
function of different metal (crystal) faces differs only by 10%. However,
if one wants to answer the question of what the individual contributions
of vi and e(V^ - V^) are in the temperature derivative of the work func­
tion, the model has to be handled with great care. Heine and Hodges *®^)
calculated the potential jump due to the surface dipole layer by substi­
tuting as many experimental parameters in the calculated y as possible.
The result is that the value of the electrostatic potential jump at the
surface is much smaller than the value calculated by Lang and Kohn.
Furthermore Heine and Hodges show that a difference in y between two
different metals is almost completely compensated by a change in
e (vM - vV), leading to a constant work function of 4.1 eV within an
accuracy of 10%.

A discussion of the physical effects contributing in the temperature
derivative of the work function is given by Herring and Nichols (ref. 95,
table VIII). It should be noted that the effect of the atomic vibrations
on the work function can possibly be neglected here because the tempera­
ture is low in this experiment. In a pure metal with a clean surface the
main contribution to the temperature dependence of the work function
should come from the expansion effect. Surface contamination can greatly
affect the temperature dependence of the work function especially in a
temperature region where the contamination is evaporated from the
surface (§9.1).

As a conclusion of this paragraph we would like to remark that much
work has to be done in order to calculate the temperature dependence of
the work function. At the moment it seems likely that the temperature
derivative of the work function at low temperatures of clean metals is
mainly due to the thermal expansion of the metal

,dW> ,3W. ,dV. _ V s  , 3W .
MT* M  * 13V'TMT'M ~ 3 ''3rg;T ’

I
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In the special case of a superconductor a possible contribution in the
temperature dependence of the work function could come from the influence
of the presence of a gap in the density of states of a superconductor.
The chemical potential of the electrons in a metal is defined by

N
✓CO

{1 + exp E kT U } * (dN/dE)dE.

By using the fact that the number of states J (dN/dE)dE is conserved at
the superconducting transition and that the difference (dN/dE)s - (dN/dE)n,
which is the difference between the density of states of a superconduc­
ting and a normal metal, is symmetric with respect to the chemical poten­
tial of the superconductor, it can be derived that ys = yn. At the criti­
cal temperature one should expect this from thermodynamics. Hence we see
no discontinuity of the W-T dependence at the superconducting transition
temperature. From this point of view the result is quite different from
other experiments associated with the work function of metals, such as
the photoelectric observations of the energy gap of superconductors by
Kunz 10'). In these electron yield experiments the highest occupied
energy levels, in a region of large density of states, are involved.
These are in a superconductor the levels just below the energy gap. The
value of y (measured in our experiment) is almost temperature indepen­
dent, while the energy gap (involved in electron yield experiments) is
strongly temperature dependent. Therefore the electron yield in a photo
electricity experiment will be more temperature dependent than one would
expect from the temperature dependence of the work function.
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§8 DESCRIPTION OF THE APPARATUS; NOISE SOURCES AND ERRONEOUS SIGNALS.

§8.1 DESCRIPTION OF THE APPARATUS.

Fig. 36 is a schematic drawing of the apparatus. It has three vacuum
spaces which can be evacuated independently.

The inner vacuum can (sealed with an indium O-ring) contains the
sample with the electrical connections to the electrometer (Analogue
Devices 311 J). Attached to the sample are a heater Hs and a thermometer
Ths (see figs. 36, 37 and 38). The inner vacuum jacket can be evacuated
by a diffusion pump (P2) to a pressure of 10-5 torr at room temperature.
On the outside of the inner vacuum can are attached a 100 ft heater (H)
and a calibrated Ge thermometer (Th). Radiation shields in the pumping
tube prevent warming up of the can. They also prevent that gas, original­
ly absorbed and gradually released by the room temperature part of the
apparatus, continuously flows in the inner vacuum can and thus changes
the surface properties of the sample during a run.

The outer vacuum can contains the inner vacuum can. It can be
pumped by a mechanical pump P] to a pressure of 0.1 torr in order to
thermally isolate the inner vacuum can from the liquid-helium bath.
Through the valve we can put helium gas in the outer can to provide
good heat contact between the helium bath and the inner vacuum can. Hence
the function of the outer vacuum can is to provide a heat switch between
the helium bath and the inner vacuum can. The leads of the sample heater

helium
level

, indium
O-ring

inner vacuum can

outer vacuum can

Fig. 36 Diagram of the apparatus. With the pump P] the outer vacuum can can
be evacuated. Through the valve V4 one can put helium gas in the outer vacuum can.
P2 is a diffusion pump. It can pump the inner vacuum can down to 10“5 torr at room
temperature. In the inner vacuum can the sample S is mounted (fig. 37 and 38). On
the outside of the inner vacuum can a heater H and a calibrated thermometer Th are
attached. With P3 the shielding tube (III) of the signal wires can be evacuated.
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Hs and the sample thermometer Ths are guided through the pumping tube
of ? 2  t0 room temperature. In the case of the niobium sample (fig. 37)
the leads of the sample heater run via a feedthrough in the outer vacuum
can and from there through the pumping line of Pj to room temperature.
The leads of the 100 0 calibration heater H and the calibrated Ge thermo­
meter go via the pumping tube of P, to room temperature. The signal leads
from the sample capacitor run via a feedthrough (f) in the third vacuum
space (III) which is a stainless steel tube that can be evacuated with
P3. Glass—to—metal feedthroughs are used to bring the wires outside the
vacuum spaces at room temperature (not drawn in the figure).

The construction of the niobium sample and the support system of
the measuring capacitance is given in fig. 37. The sample S is attached
rigidly to the copper flange of the inner vacuum jacket with a locknut
and an indium 0-ring. This construction provides good heat contact
between the sample and the wall of the vacuum jacket. The cool-down time
constant is estimated to be of the order of 20 ms. The wires of the sample
heater come from the outer vacuum can via a glass-to-metal feedthrough
into the inner vacuum can. The sample heater is made from a 20 pm diameter
non-inductively wound constantan wire with a total resistance of the order
of 30 - 50 0. The thermal contact between the heater and the sample was
provided with General Electric 7031 varnish. The heater was attached to
the sample in a groove to provide good heat contact. This was important
because a bad heat contact makes the time constant long and the heater
can easily be burned out (currents as large as 0.1 A root mean square were
passed through the 20 pm wire). A high-impedance system is very sensitive
for pick-up. Therefore the heater was partly shielded from the measuring
capacitance via a diaphragm in the support system.

The capacitive coupling of the electrometer with the high-temperature
end of the sample, is realized via a cylinder (C) that is mounted in a
hole drilled in the sample and a ring (R) around the sample. The total

feed through __
fo r  heater wires

vacuum

- 1— 1 nega t  i ve
— ^ — * signal lead

sample thermometer

teflon positive signal lead

Fig» 37 The niobium sample and the sample capacitance. The sample is attached
to the copper vacuum jacket through a hole and fixed by a lock nut. An indium 0-ring
provides vacuum sealing and good heat contact. The sample-heater wires run via a
feed through into the outer vacuum can. The niobium parts are hatched.
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copper
?>-----(with lead layer)positive

signal lead
\\-----thermometer Th,

epibond
heater

negative
signal leadapiezon

layer \

vacuum jacket

Fig. 38 The copper and lead sample, and the sample capacitance. The device is
screwed against the vacuum jacket. The heat contact is provided via a thin layer of
apiezon. In the copper sample the hatched parts are pure copper. In the lead sample
the copper parts and the parts between the copper and the vacuum jacket are covered
with a layer of lead. The value of the capacitance was 100 pF for the lead sample,
and 66 pF for the copper sample.

carbon
thermometer Ths

5 0  pm
constantan

Fig. 39 The sample thermometer on the niobium sample. A 50 ym insulated con­
stantan wire is glued against the niobium to provide thermal grounding and mechanical
rigidity. At the end of the wire (where the insulation is partly removed) a small
droplet of carbon makes a resistive contact between the wire and the niobium. The
resistance of the carbon is temperature dependent and is (after being calibrated)
used as the sample thermometer.

capacitance was on the order of 6 - 10 pF. The sample thermometer was
attached on the outside of the sample between the diaphragm and the outer
capacitance ring.
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For the sample thermometer (fig. 39) we used a construction similar
to the technique developed by Kunz '0'). First a 50 pm insulated constan-
tan wire is glued with Ge 7031 varnish on the sample. Then a small droplet
(0.5 mm) of Colloidal Graphite (Dag dispersion, Colloidal Graphite in
Methylisobutylketon) is dipped on the sample and over the uninsulated end
of the 50 pm constantan wire. When the droplet is dry the graphite makes
electrical contact between the sample and the uninsulated end of the wire.
The room-temperature resistance is of the order of a few hundred ohm.
The value at 4.2 K is 2 - 3 times larger. The value of ^  at 4.2 K is
typically 0.1 K~*. We used this carbon resistance as our thermometer.
The temperature can be measured very locally (̂  1 mm2) and fast (time
constant of the order of 10 ms). Since the calibration of the thermome­
ter did not reproduce exactly between two thermal cyclings between liquid
helium temperature and room temperature, it had to be calibrated at the
beginning of every run. All components (heater, thermometer and sample)
have a thermal time constant of the order of 10 ms. Hence when the tempe­
rature is cycled with 1.5 Hz the sample is continuously in quasi equili­
brium. This means that there are no temperature gradients in the warm
end of the sample and that the thermometer indicates the real temperature.

A cross section of the lead sample is given in fig. 38. The signal
for lead turned out to be small (fig. 42b) and hence the capacitive coup­
ling between the sample and the electrometer had to be large (eq. 7.9a).
This implies a long sample and since the cool-down time constant of a
rod is proportional to its length squared, the temperature distribution
in the sample will not be equal to the quasi-equilibrium distribution.
In order to insure that the temperature is at least homogeneous in the
warm end of the sample, it is made of copper. A brass section between
the heater and the vacuum jacket provides that not too much heat was
necessary to warm the sample to the desired temperature. The thermal con­
tact between the sample and the vacuum jacket was established by a thin
layer of Apiezon.

Finally we remark that the copper and the brass were completely
covered with a thin layer of lead. Since all relevant integration paths
in eq. (7.6) can be taken in the lead, the presence of the copper and
the brass have no influence on the interpretation of the signal as being
due to the temperature dependence of the work function of the lead layer.
The thermal expansion of copper, however, is much smaller than of lead.
The presence of the copper will introduce stresses in the lead layer.
These might affect the value of the W-T dependence e.g. the coefficient
of volume expansion of a lead layer on copper is about 1/3 of the bulk
value of lead. Hence the contribution in the W—T dependence due to the
thermal expansion will in a lead layer on copper be a factor of 3
smaller than in a freely expanding piece of lead (eq. 7.15). The sample
thermometer was constructed in the same way as the thermometer of the
niobium sample. The sample heater for the lead sample was 200 0.

A block diagram of the electronics is given in fig. 40. The referen­
ce output of a PAR HR 8 (or PAR 124 Lf) lock-in amplifier, tuned at 1.5
Hz, is fed into a pulse generator (fig. 40b) that gives off pulses of ac
current at 10 kHz with a repetion rate of 1.5 Hz. A filter F filters out
all low-frequency currents. In this way pick-up at the reference frequen­
cy is avoided. The heater Hs warms the sample up with a frequency of
1.5 Hz. The signal is fed into an Analog Devices 311 J preamplifier
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T+ AT '

pulses o f a.c. current a t 10 kHz
rep. rate 1.5 Hz

lock — in

Fig. 40a Block diagram of the measuring circuit.

lO  kHz

1.5Hz

AFPA

5mHX-REC
FDSË1

Fig. 40b Diagram of the pulse generator and the heater-current recording sys­
tem. The reference output of the lock-in amplifier (fig. 40a) is connected to the
1.5 Hz terminal; the output of an audio-frequency oscillator to the 10 kHz terminal.
With a motor (M) the input to the audio-frequency power amplifier (AFPA) can be
varied slowly from a certain preset value, to zero. The current through the heater
Hs is continuously recorded by connecting the rectified voltage across a 10 0 resis­
tance in series with Hs to the X-axis of an X-Y recorder. The output of the lock-in
is connected to the Y-axis. In this way fig. 41 is obtained.

which amplifies the signal with a factor of two. Its main purpose is to
match the impedance of the signal source (Cy) with the type A preampli­
fier of the lock-in amplifier. The leads from the sample to the 311 J
preamplifier have a total capacitive coupling of 30 pF. A shunt resis­
tance Rs of 10^ - 10** 0 keeps the impedance between the leads as low
as possible, thus reducing the influence of thermal noise, mechanical
vibrations and pick-up as far as possible.

Of all noise sources, the noise due to mechanical vibrations turned
out to be the largest. The origin of this kind of noise is that in the
space between the signal wire (copper) and the shield (stainless steel)
electric fields exist due to the contact potential of the two metals.
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This field corresponds to a voltage difference of the order of 1 V. A
change in the capacitive coupling C between the wire and the shield of
AC gives rise to AC/C volt at the input terminal. Hence when AC/C is as
small as 10“^ the noise voltage is 1 pV. Because of this extreme sensi­
tivity to mechanical vibrations the cryostat assembly was mounted against
a rigid wall. Most of the measurements were performed during the night.
The remaining noise was possibly due to fluctuations in the helium bath.

In a typical run we pumped during one or two days with P), P2 and
P3. The pressure in the inner vacuum can was then 10-5 torr. Next we
let the helium in the outer can through V4 and precooled the apparatus
to liquid-nitrogen temperature. Subsequently the valves V2 and V3 were
closed and the cryostat was filled with liquid helium. Then the outer
vacuum can was evacuated with P] so that the sample thermometer could
be calibrated. In order to do this the inner vacuum can, including the
sample and the sample thermometer, was heated with a heater H to seve­
ral different temperatures between 4.2 and 11 K. A calibrated Ge ther­
mometer was used to determine the temperature. When the calibration of
the sample thermometer was completed, the outer can was again filled
with helium gas to a pressure of about 1 atm. In the next step we de­
termined the dependence of the temperature of the warm end of the sam­
ple T + AT on the peak-to-peak amplitude of the current through the
heater Hs. Finally a plot is made of the root—mean—square value of the
signal versus the peak-to-peak amplitude of the heater current (e.g.
fig. 41). This last measurement was performed automatically, mostly
during the night. The time constant of the lock-in amplifier was set
at 100 s. It took 3 to 4 hours to get a complete curve. During this
measurement the pumps Pj, P2 and P3 were disconnected in order to re­
duce mechanical vibrations.

§8.2 NOISE SOURCES AND ERRONEOUS SIGNALS

The most important random noise sources have been discussed in
the previous chapters (§6, §7 and §8.1) of part II. Random noises like
thermal noise, vibration noise and amplifier noise all have in common
that they can be averaged out by using a phase-sensitive detector,
tuned at the proper frequency and with a sufficiently long time con­
stant t . The root—mean—square value of the observed noise goes down with
1/v t . If however the measuring technique introduces erroneous ac vol­
tages that interfere with the signal at the reference frequency and
with a well— determined phase, then a lock-in detector cannot distingiush
between the signal and these (unwanted) ac voltages. Effects that give
rise to such ac voltages are discussed below..

When the sample is heated, the warm end of the sample will expand
and the distance d between the two capacitor sides of will change by
Ad. This means that the capacitance of the capacitor is time depen­
dent, with a frequency equal to the frequency of the temperature of the
warm end of the sample. Hence we have a vibrating capacitor. If there is
a contact potential Vc across this change in the capacitance will give
rise to a voltage according to

AV
V

AC,'M arAT
dC,"Mc
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When Vc s 1 volt and d = 0.1 mm then Ad must be smaller than 1 & to
provide that AV < < 1 yV. For the lead sample r = 10 mm, d = 0.1 mm and
a z 2 x 10”°/K (the thermal expansion of copper in this region) and
hence AV/AT would be of the order of 1.6 yV/K when Vc ; 1 volt. This
might be possible when the two sides of CM are made of different metals.
Since we have lead on both sides Vc will be of the order of 10 mV and
the interfering signal 16 nV. For the niobium sample r = 2.5 mm, a =
10“7, d = 0.1 mm giving a AV/AT value of 2.5 yV/K when Vc = 1 volt.
Also in this case we used the same metal (niobium) on both sides of the
capacitor. Furthermore Ĉ j was so designed that a ring on the outside
of the sample compensates capacitance changes on the inside of the sample.

The presence of a contact potential can be simulated by applying a
dc voltage on Cĵ . When the observed signal can be zeroed with a dc voltage
in the mV region one can conclude that at least part of thé signal
might come from the presence of a contact potential.

Another voltage interfering with the signal arises when the low
temperature part of the sample is not continuously at 4.2 K but oscil­
lates in time with 1.5 Hz on a certain T level larger than 4.2 K. In
that case a Nb-Cu or Pb-Cu thermocouple arises which might contribute
to the signal. In the niobium case the temperature of the niobium-copper
contact was within the measuring accuracy (0.1 K) equal to 4.2 K. In the
lead case the thermal contact between the sample and the copper wall of
the vacuum jacket (through a layer of apiezon) could not be considered as
perfect. A thermometer on the base of the sample showed that the tempera­
ture there was larger than 4.2 but practically constant. Therefore an
eventual thermocouple there will not contribute to the ac signal. Further­
more the (small) temperature oscillations of the base of the sample turned
out to be out of phase with the temperature oscillations at the warm end
of the sample.

Erroneous signals of a completely different nature arise from pick­
up from the heater current by the measuring capacitance C^. The preampli­
fier 311 J can be saturated by an audiofrequency voltage picked up from
the heater current (depending on amplitude and frequency of the heater
current). It then rectifies the pulses of this af voltage, leading to a
1.5 Hz output. This kind of pick-up was avoided by using a diaphragm
(fig. 37) to shield the heater from the measuring capacitance or by
establishing the capacitive coupling in the inside of the sample while
the heater is attached on the outside (fig. 38). We used the fact that
this erroneous signal is strongly dependent on the af frequency of the
heater current to verify that the observed signal was not due to this
kind of pick-up.

Pick-up from an eventual 1.5 Hz component in the heater current is
avoided by putting a filter (tuned at 10 kHz) in series with the sample
heater. Thus low-frequency currents were prevented to flow in the heater.
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§9 EXPERIMENTAL RESULTS.

The signal-to-noise ratio was of the order of 5 (fig. 41), and there
are several sources of erroneous signals as discussed in § 8.2. Therefore
several self-consistancy tests were carried out. A signal that is due to

mA 150
heater current

Fig. 41 Typical X-Y plot of the lock-in output versus rectified heater current
of a niobium sample.

the temperature dependence of the work function of the sample must ful-
fil several requirements. Some of these are:
1. The signal must be in phase with the temperature of the sample or

180° out of phase, depending on the (so far unknown) sign of the
signal.

2. The signal must be additive:

S(T + AT) - S(T) = {S(T + AT) - S(T + AT,)} + S(T + AT,) - S(T)

(the voltage measured when the sample is cycled between T + AT
and T must be equal to the voltage measured when the sample is
cycled between T + AT and T + AT] plus the voltage when the tem­
perature varies between T + AT] and T).
"üi® signal must be only dependent on T + AT and not on the
value of the audio frequency of the heater current, used to obtain
this temperature.

4. The signal must be proportional to CM when CM < < Cv (see eq. (7.9a)).
5. The signal should be different for different metals.
6. The signal should not be too strongly dependent on a dc voltage

applied on Cjj.

These requirements were investigated most extensively with the
niobium samples. The observed signals are not due to one of the erroneous
signals described in §8.2. We will now describe the results with niobium,
lead and copper separately.

N i  ob  iu m

The niobium sample is depicted in fig. 37. We obtained a plot of
the rms value of the signal versus the amplitude of the heater current
with the electronics described in fig. 40. A typical curve is given in



100

fig. 41. The noise is fairly large even at a time constant of 100 sec.
of the lock-in amplifier. For this curve we can derive the signal-
temperature dependence using the temperature-heater current calibra­
tion. The W-T dependence obtained this way was within the noise a
straight line in the temperature range between 4.2 K and 11 K (fig. 42a).
The slope was 10 yV/K. Hence

Fig. 42 Temperature dependence of the work function with respect to the value
at 4.2 K  of
a) niobium and copper
b) lead.
The dW/dT value is for lead an order of magnitude smaller than of copper or niobium.

We observed no discontinuity of any kind at the of the samples. The
experimental result described with eq. (9.1) seems to be independent
of the purity of the sample. We found the same W~T dependence for a
sample with a broad critical temperature region (7.8 K to 8.2 K) as for
a purer sample (99.8%) with a sharp Tc at 8.63 K. The W-T dependence was
also independent of whether the sample was annealed during one hour at
1500 K, or whether the surface was etched or not. In order to check
whether the observed signal could be due to a contact potential across
CM (as explained in §8) we applied a dc voltage on Cm - The signal could
be zeroed with a dc voltage of the order of 5 to 10 V. This means that
the observed signal cannot be due to a contact potential (which is of
the order of 10 mV). A summary of the most important results with the
niobium sample is given in Table II.

WT - W4 2 = 10(T - 4.2) yV (9.1)

too

3?
I

noise

Tiiobium
W-r-W.T-w4.2

copper
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TABLE II

Summary of Niobium data

Sample
number

(always Nb)

Material of
Cylinder C ring R

(see fig. 35)
cM (pF)

dW . yV
dT l n T vo(v) tb

1 B - 8 8.5 - A.2
1 B - 8 9.5 - 2.5
1 B - 8 11.6 - 4.2
1 . B - 8 13.6 - 2.3
1 B - 8 10.0 - 4.2
i* B - 8 11.5 - 4.2
i* Nb - 8 10.0 12 A.2
**1 Nb - 8 10 - 4.2
2 Nb Nb 10 13 - A.2
2 Nb - 5 13 - 4.2
2 Nb Nb 10 1600 - 4.2
2 Nb Nb 10 10 20 A.2
2 Nb - 5 10 5 A.2
2 Nb - 8 8 8 A.2

* leaking vacuum can.

Sample number one had a transition region between 7.8^K and 8.2 K.
1 is sample number one after etching the surface. 1 is sample
number one after annealing it during 1 hour at 1500 K in a vacuum
of 10~7 torr. Sample number two had a Tc at 8.63 K. B * brass, Nb =
niobium, V0 is the dc voltage that is necessary to zero the signal,
Tg is the liquid-helium bath temperature.

Lead

The W-T dependence of lead measured with the sample depicted
in fig. 38 is given in fig. 42b. The signal is of the order of 10 times
smaller than the signal from niobium. The signal could be zeroed with
a dc voltage of 0.1 V. Since contact potentials of different surfaces of
the same metal are of the order of 10 mV it is possible that erroneous
signals due to the thermal expansion effect as discussed in §8, form part
of the measured W-T dependence given in fig. 42b.

Copper

The W-T dependence of copper is measured with the sample depic­
ted in fig. 38, but where the copper was not covered with lead. The sig­
nal is then due to the work function of copper. The thermo-electric
power of brass which might also give rise to a signal was in a separate
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experiment shown to be small. The W-T plot is given in fig. 42a. The
order of magnitude of dW/dT is the same as for niobium but the sign is
different.

TABLE III

Metal rs j  a at 10 K
x 10° K

3 dW
a dT

from eq. (7.
(dW/dT) IQ R

15) (calculated)
(dW/dT)10K
(observed)

Nb 1.6 0.3 2.4 (V) 0.7 f
Pb 2.3 3.2 -0.1 -0.1 n, 0
Cu 2.76 0.04 -1.1 -0.04 -15

Helium

A helium layer adsorbed on the sample surface at 4.2 K1 strongly af
fects the measured W-T dependence between 4 K and 10 K because in this
temperature region the layer is evaporated from the surface. The W-T
dependence of the copper sample, with a small amount of helium in the
vacuum can is given in fig. 43. Our measurements show that when T > 7 K
almost no helium is left on the surface. The W-T dependence is then the
same as with no helium in the can. The difference of the work function
at 8 K and at 4 K is in good approximation equal to the difference in
work function of the sample due to an adsorbed helium layer at 4 K. By
admitting helium in the can in discrete quantities, the work function
difference saturates at a level of 6 mV

W - W , - 6 mV.gas clean

An order-of-magnitude calculation shows that this level is reached when
an amount of helium is introduced in the can which is sufficient to
cover the sample with a monolayer of helium atoms.

He gas

K 10

Fig. 43 Temperature dependence of the work function of the copper sample with
respect to the 4.2 K value, when there is a small amount of helium in the inner
vacuum can (compare the pure copper signal of fig. 42a).
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§10 CONCLUSION OF PART II.

In conclusion we would like to remark that an electrostatic voltage
difference in a superconductor due to a temperature difference has been
observed, although the Thompson, Seeback and Peltier coefficients are
zero. This electrostatic voltage difference is due to the temperature
dependence of the chemical potential of the electrons, which is a
complicated function of temperature and the metal properties. It cannot
be interpreted in the same simple terms as the pressure difference in
the fountain effect in helium II. In simple metals the largest contri­
bution in the temperature derivative of y is probably due to the thermal
expansion of the metal. It can be derived that the energy gap in a super­
conductor gives only a second order contribution on y. Electrostatic vol­
tage differences due to a difference in y cannot be measured by connec­
ting two wires to the sample. We used a capacitive coupling and hence
measured the work function change of the superconductor. However, the work
function is equal to y plus a contribution due to the dipole layer at
the metal surface. With our technique we were able to measure changes
in the work function of our samples as small as 0.5 yV. No discontinuity
was detected at the critical temperature of the superconducting samples
(niobium and lead). The signal was an order of magnitude larger than the
value estimated from the thermal expansion effect. In order to obtain
agreement between theory and experiment further investigations are
necessary. From the experimental point of view one would like to get a
pure sample with a pure surface in the way described at the end of §6.3.
Furthermore the calculations should be extended to non—zero temperature
and to more realistic cases where the electrons in a metal do not behave
as an ideal fermi gas.
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SAMENVATTING

DEEL I

In deel I van dit proefschrift worden eigenschappen beschreven van een
systeem dat bestaat uit twee supergeleiders, die zwak met elkaar zijn ver­
bonden. Speciale aandacht wordt besteed aan het geval waarin het zwakke
contact tot stand komt, doordat een supergeleider van een punt wordt voor­
zien en daarmee zacht tegen een andere supergeleider wordt gedrukt. Contac­
ten tussen twee supergeleiders die op deze manier zijn gemaakt heten
puntcontacten. Evenals bij andere soorten zwakke contacten worden hierbij
macroscopische quantum verschijnselen waargenomen die sterk verwant zijn aan
de in 1962 door Josephson voorspelde effecten voor een systeem waarbij de
twee supergeleiders zijn gescheiden door een isolatielaagje met een dikte
van ongeveer 10 8.

In hoofdstuk I wordt het Josephson effect ingeleid. Verder worden er
een aantal verschijnselen uit de supergeleiding besproken die nauw verwant
zijn aan het Josephson effect. Dit heeft ten doel om het Josephson effect
een plaats te geven tussen andere bekende verschijnselen uit de supergelei­
ding zoals fluxquantisatie en het Meissner effect.

In hoofdstuk II wordt de stroom-spannings karakteristiek besproken
voor het geval dat de twee supergeleiders door slechts een puntcontact zijn
verbonden. Een model wordt ingevoerd waarin het puntcontact vervangen wordt
door een parallelschakeling van een ideaal Josephson contact en een normale
weerstand. Indien de stroom door het contact constant wordt gehouden bevat
de spanning over het contact een component die in de tijd varieert met een
frequentie die gegeven wordt door de ac Josephson relatie. Volgens deze
relatie is de frequentie evenredig met de gelijkspanning over het contact.
Zo komt bijvoorbeeld 1 yV overeen met 0,5 GHz. Uit het beschouwen van enkele
geïdealiseerde gevallen blijkt dat wisselstroomimpedanties, die gekoppeld
zijn aan het puntcontact, grote invloed hebben op de waargenomen tijdgemid-
delde i-V afhankelijkheid. Ook de invloed van een wisselspanning op het
puntcontact wordt besproken.

Enkele toepassingen worden genoemd. De belangrijkste zijn: het gebruik
bij het vastleggen van een spanningsstandaard en bij het nauwkeurig meten
van de fundamentele grootheid h/e.

In een „dubbelpuntcontact" zijn twee supergeleiders verbonden door
puntcontacten. In hoofdstuk III wordt de afhankelijkheid afgeleid tussen

een uitwendig aangelegd magneetveld en de maximale gelijkstroom die men door
een dubbelpuntcontact kan sturen zonder dat er een gelijkspanning tussen
de twee supergeleiders ontstaat. Het blijkt dat deze zogenaamde ,,kritische
stroom" oscilleert als functie van het aangelegde’ magneetveld (gelijkstroom
interferentie). De periode in het magneetveld is omgekeerd evenredig met het
oppervlak dat door de twee puntcontacten en de supergeleiders wordt om­
sloten. Als dat oppervlak bijvoorbeeld 1 cm^ is dan is de periode 0,2 ygauss.

Volledige overeenstemming tussen theorie and experiment kan worden ver­
kregen als men de door Josephson afgeleide sinusvormige stroom—fase relatie
aanneemt en de invloed van de zelfinductie van het omsloten oppervlak in
rekening brengt. Dit is een sterke aanwijzing dat de sinusvormige stroom-
fase relatie juist is voor een puntcontact. Het hier bedoelde experiment
over gelijkstroom interferentie was het eerste in zijn soort dat quantitatief
in overeenstemming kon worden gebracht met de dc Josephson relatie.
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In hoofdstuk IV komt een dubbelpuntcontact ter sprake in de situatie
waarbij de gelijkspanning tussen twee supergeleiders ongelijk nul is. Wanneer
de stroom door het systeem constant wordt gehouden oscilleert de gelijkspan­
ning over het contact als functie van het magneetveld met dezelfde periode
als de kritische stroom: dit zijn de zogenaamde gelijkspanningsoscillaties.
Zowel de spanning over het contact als de magnetische flux in het omsloten
oppervlak oscilleren beide in de tijd met een frequentie die wordt gegeven
door de ac Josephson relatie. Van dit effect wordt gebruik gemaakt om de
amplitude van de gelijkspanningsoscillaties te vergroten door een buisje
van een normaal metaal in de holte te stoppen.

Eveneens in hoofdstuk IV wordt een experiment beschreven waarbij een
dubbelpuntcontact in een trilholte is geplaatst. Ook de gelijkrichtwerking
van een asymmetrisch dubbelpuntcontact wordt besproken. Tenslotte wordt in
dit hoofdstuk een kort overzicht gegeven van een aantal toepassingsmogelijk­
heden van dubbelpuntcontacten, voornamelijk als gevoelig element in magneet-
veldmeters (en dus ook in stroom en spanningsmeters). Het blijkt dat mag­
neetvelden van 1 nanogauss nog kunnen worden gemeten. Als concreet voorbeeld
wordt de mogelijkheid van een nauwkeurige meting van het London moment
besproken.

In hoofdstuk V wordt de experimentele opstelling behandeld evenals de
methode waarop men betrouwbare, reproduceerbare dubbelpuntcontacten kan
maken. Essentieel voor de betrouwbaarheid van de constructie is dat de
twee supergeleiders blokken zijn van niobium die met een glaslaagje aan
elkaar worden gesmolten dat dezelfde uitzettingscoefficient heeft als
niobium.

DEEL II

In deel II van dit proef schrift worden electrostatische effecten besproken
die optreden in supergeleiders als er een temperatuurgradient in wordt aan­
gelegd. Een temperatuurgradient heeft een gradient in the chemische poten­
tiaal ten gevolge. Aangezien echter de electrochemische potentiaal constant
is moet er een electrisch veld in de supergeleider bestaan dat de verande­
ring in de chemische potentiaal compenseert; dit ondanks het feit dat de
gebruikelijke thermoelectrische effecten nul zijn in een supergeleider.

In hoofdstuk VI worden enkele analogieën in de eigenschappen van
supergeleiders en van superfluïde helium besproken. Op grond van een twee
fluida model wordt aangetoond dat een temperatuurverschil over een super­
geleider aanleiding geeft tot een electrostatisch spanningsverschil. Dit
spanningsverschil vertoont een zekere analogie met de fonteindruk in
helium II. Het kan niet worden gemeten door middel van een voltmeter die
met draden aan het preparaat is verbonden. Daar deze spanningsverschillen
een belangrijke bijdrage leveren tot de temperatuurafhankelijkheid van de
uittreepotentiaal van de supergeleider kan een capacitatieve koppeling
tussen voltmeter en preparaat echter wel informatie geven over het elec­
trisch veld in het metaal. Men moet dan gebruik maken van wisselstroom
technieken.

In hoofdstuk VII wordt de capacitatieve meetmethode geanalyseerd.
Enkele termen die bijdragen tot de temperatuurafhankelijkheid van de
uittreepotentiaal van eenvoudige metalen worden besproken.

In de hoofdstukken VIII en IX wordt nader ingegaan op de experimen­
tele aspecten van het probleem. Er wordt beschreven hoe de thermometer,
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het verwarmingselement en het preparaat werden gemaakt. De temperatuur van
het preparaat kon worden gevarieerd tussen 4 en 12 Kelvin met een frequentie
van 1,5 Hz. De thermometer was voldoende snel om deze variaties te kunnen
volgen. Verder wordt aangegeven hoe eventuele storende signalen kunnen
worden geïdentificeerd en vermeden.

De meting aan niobium toont aan dat de kromme die het verband aan­
geeft tussen de uittreepotentiaal en de temperatuur in goede benadering
een rechte lijn is met een helling van 10 pV/K. Voor lood is deze kromme
niet recht. De hellingen zijn van de orde van 0,5 pV/K. Voor koper heeft
deze kromme een helling van -5 pV/K bij 4,2 K en van -15 pV/K bij 10 K.

In hoofdstuk X wordt erop gewezen dat er op dit moment nog geen goede
overeenstemming bestaat tussen theorie en experiment. In tegenstelling tot
het fonteineffect in superfluide helium, waar de waargenomen drukverschillen
kunnen worden beschreven in termen van de entropie per deeltje, kunnen de
waargenomen spanningsverschillen in een supergeleider niet eenvoudig worden
berekend uit de entropie per geleidingselectron. Effecten, zoals bijvoor­
beeld de verandering in de chemische potentiaal van de electrónen ten
gevolge van de uitzetting van het metaal, spelen een belangrijke rol.
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