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I N T R O D U C T I O N

1. Statement o f the problems

In many respects the physical properties of high polymer solu­
tions are quite different from those of solutions of low molecu­
la r weight compounds. For instance the thermodynamic properties
are far from ideal, even at low concentrations, and nearly a ll
macromolecular solutions have large v iscosities . Various tre a t­
ments have been developed to explain the properties of macro-
molecular solutions and have led to a b e tte r insight into the
problems concerning high polymers and their solutions.

A d if f ic u lt  problem has been the choice of a simple and yet
adequate model for high polymer molecules and th e ir  solutions.
The molecule i ts e lf  is  often too complicated for calculations of
the thermodynamic properties by means of s ta t i s t ic a l  thermo­
dynamics. A model tha t has been quite succesful is  the quasi­
la ttic e . In th is model the polymer chain is  divided into segments,
which have the same size and shape as the solvent molecules. Even
the simple theory of Flory and Huggins gave a rather good expla­
nation of the thermodynamic properties. In la te r  years a number
of refinements have been introduced. In some theories the solvent
has been treated as a continuum.

The average dimensions of the polymer chain are frequently
expressed in terms of s ta t is t ic a l  chain elements, introduced by
Kuhn. I t  was found by th is author that the average square of the
end-to-end distance of a polymer chain is  proportional to the
number of chain elements. The fact, that two chain elements can­
not occupy the same volume element at the same time was neglected
(“volume-effect”). But during the la s t years th is  fact has been
taken into account by several authors. This leads to a correction
in the root mean square end-to-end distance. I t  Is s t i l l  an open
question whether th is  correction  is  a function of molecular
weight or not. In any case, however, there ex ists a connection
between the volume-effect and the deviations from ideal thermo­
dynamic behaviour. This connection can be expressed by a relation
between a parameter describing the volume effect and the second
virial coefficient in the osmotic pressure.

I t  is  the aim of the present work to compare the resu lts  of
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osmotic pressure determinations with light scattering and viscos­
ity . Prom osmotic measurements we can derive the number average
molecular weight and the second v ir ia l coefficient. This second
v irial coefficient can be derived also from light scattering data
which give us, in addition, the weight average molecular weight
and the molecular size. We are thus in a position, in principle,
to relate both the size and the second v iria l coefficient to the
molecular weight.

The contribution of polymer molecules to the viscosity  is  a
function of size and shape. A discussion of the viscosity data in
relation to molecular size and weight will be given.

Before going into a more detailed discussion of existing theo­
rie s , a b rie f summary will be given of the fundamentals under­
lying the three methods used: osmometry, lig h t scattering  and
viscometry.

2 . Osmotic pressure

When a solution is  equilibrated with the solvent by means of
a semi-permeable membrane, there is  a difference in pressure
between the solvent and the solution, which is  called osmotic
pressure. Thermodynamically the osmotic pressure can be easily
explained. The chemical po ten tia ls  of the solvent in the pure
solvent and in the solution must be equal at equilibrium, and one
can write down the dependence of th is  potential on pressure and
concentration. This leads to the following formula for the osmo­
tic  pressure

n = (iJT/vj) In (l-Xj) (1.1)

where % is  the osmotic pressure; R the gasconstant, T the abso­
lute temperature, the molar volume of the solvent and x 2 the
mole frac tion  of the so lu te . This formula is  valid for ideal
solutions. When the concentrations are small, th is  formula may
be written as

n = (RT/v1) x 2 = (RT/M) c (1. 2)

Here M is  the molecular weight of the solute component and c i ts
weight concentration.

The osmotic pressures of high polymer solutions do not obey
van ’t  Hoff’s law, even a t low concentrations. According to
McMillan and Mayer 1 one can represent the osmotic data by a
series expansion:
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71 = (RT/M)c + A2c2 + A3c3 + d .3 )

In most cases the  two f i r s t  terms o f the  s e r ie s  expansion are
s u ff ic ie n t  to  describe the osmotic behaviour. The c o e ff ic ie n ts  A
are the so -ca lled  v i r ia l  c o e ff ic ie n ts .  Molecular weights can be
obtained by p lo tt in g  vjc  (the  reduced osmotic p ressure) aga in st
c, and ex trapolating  to zero concentration.

3. Light scattering

M olecular weights can a lso  be derived from l ig h t  s c a t te r in g
measurements. When a beam of l ig h t  i s  going through a so lu tio n ,
th is  l ig h t  is  sca ttered  in a l l  d irec tio n s  with an in te n s ity  which
is  proportional to  the molecular weight of the so lu te  molecules.
This phenomenon can be explained in  d i f f e re n t  ways: one o f the
th eo ries  i s  based upon the s c a tte r in g  by a s in g le  p a r t ic le ;  an­
o ther theory s ta r t s  from the fa c t, th a t  f lu c tu a tio n s  in  concen­
t ra t io n  and density  cause f lu c tu a tio n s  in  the re f ra c t iv e  index.
The in te n s ity  of the sc a tte re d  l ig h t  depends on the magnitude of
these flu c tu atio n s .

We w ill give only a short survey o f  the formulae obtained from
the f lu c tu a tio n  theory and i t s  ap p lica tio n  to  so lu tio n s  of high
polymers. In these so lu tio n s  the e f fe c t  o f density  f lu c tu a tio n s
i s  usually  n eg lig ib le  compared with th a t  o f f lu c tu a tio n s  in  the
composition.

A fluc tuation  Ac in  a volume v requ ires an osmotic work

AG = (v/2c) (dtj/dc) (Ac)2 (1.4)

The average value of (Ac)2 i s  given by

(Ac)2
f +a>d (Ac) (Ac) 2 exp (-AG/feT)

- 0 0

.+0D
ƒ d(Ac) exp (-AG/kT)

- 0 0

kT
v (dn/dc)

The fluc tuations in  the re fra c tiv e  index are given hy

(1.5)

An = (Ac) dn/dc
kTc

so th a t (An)2 = (dn/dc)3 v ( < f a / d c ) -  ( I * 6 )

I f  the osmotic pressure i s  given by 1,3 one can derive a formula
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for the reduced in tensity  of the lig h t scattered in the 90° d i­
rection with the aid of Rayleigh’s formula:

Kc/R 90 =  1/U2 +  2A2c/KT (1.7)

where K = 2 ̂ ( d n / d c ) *
Na X4 * 1 * ’

R go is  the reduced in tensity  of the scattered lig h t and NA is
Avogadro’s number. Formula 1,7 is  valid, when the solute mole­
cules are not larger than about 1/10 of the wave length and when
they are not anisotropic. When the solute molecules are aniso­
tropic there is  a depolarisation of the scattered lig h t and we
have to correct with the Cabannes factor.

When the p a rtic le s  are large, the interference between the
rays, scattered by different parts of the molecule, must be taken
into account. I t  is  then found that the in tensity  is  larger in
forward directions than in backward directions. The ra tio  f l 4 S o /

f l 1 3 5 o is  called dissymmetry; i t  is  a measure of the mean dimen­
sions of the solute molecules. Formula 1,7 must now be replaced
by

Kc 1 2A2
«90 ƒ (p) * M P ^ * ~ W C (I,9)

where ƒ(p) is  the Cabannes factor and P90 is  a function of the
dissymmetry and thus of the dimensions of the molecules. Formulae
for P90 have been derived for long chain molecules, rods and
spheres 2 ,s. Numerical data can be found in the work of Doty and
Steiner 4.

4. Viscosity

A polymer sample in a given solvent is  often characterised by
i ts  limiting viscosity number. This quantity is  given by:

[rj] = lim Cn-T)0)/r)0c (1,10)
c-»0

where t; and t)o are the v iscosities of the solvent and the solu­
tion respectively.

A well-known empirical relation between this limiting viscosi­
ty number and the molecular weight is

[•rj] = kMa (1 .11)
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proposed by several authors (Kuhn, Mark, Houwing). We shall in
the following refer to it as Mark’s equation. Theoretical con­
siderations 5•*•7>*• ®.10, 11 on the viscosities of high polymer
solutions show a dependence of K and a on the size and shape of
the molecules. Strictly speaking the exponent a is also dependent
on the molecular weight. In section 11,4 a discussion of these
theories will be given. A log-log plot of [tj] and M should give a
straight line, when the molecular weight range is not too large.

According to Peterlin 8 one will obtain a straight line for
the whole molecular weight range, when is plotted against
Hf* in accordance with the relation

[q] = ♦ kJt*) (1.12)
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II

R E V I E W  O F  C U R R E N T  T H E O R I E S

1. The second virial  coef f icient

Calculations of the thermodynamic properties can be carried
out by means of s ta tis tic a l thermodynamics. The free energy of a
system is  related to the partition  function Z:

F = -kT In Z ,

where Z = 2 g4 exp(-Z JkT)i
The main problem is  the calculation of the to ta l number of

d istinc t configurations gj with energy £*. When the translational
and internal degrees of freedom of the molecules are independent
of the composition of the mixture, the partition  function may be
written as

Z * 2 g. (N l t N 2 ) exp(-Zj/feT) ,

where ƒ' and f 2 are those parts of the partition  function which
are due to the internal degrees of freedom of the molecules of
the species 1 and 2 respectively; N i  and N 2 are the numbers of
these molecules, g. (Nx, N 2) is  the number of ways in which the
N i  and N 2 molecules can be arranged such tha t E j is  the to ta l
potential energy of the molecules. Since we are interested only
in the free energy of mixing, the factor f ^ 1 f ^ 2 may be ignored.

Let us f i r s t  consider zero heat of mixing. This means that the
interactions between a ll kinds of molecules in the system are the
same and a ll possible configurations have the same energy. In
th is  case the free energy of mixing is  -T times the entropy of
mixing. This entropy is  then related to g by means of Bolzmann’s
formula

3 = k In g(Ni  , N 2 )

and A S .i, = SN l 'K2 -  SNl <0 -  S0 iJy2

An exact solution of the problem is  impossible and a simpli­
fied model of the solution has to be introduced. Such a model is

12



the quasi-crystalline la ttic e . The polymer chains are assumed to
be composed of segments, which have the size and shape of a sol­
vent molecule. Each solvent molecule and polymer segment occupy a
s ite  of the la ttic e . I t  is clear that the partia l molar volumes
and v2 in the solution are equal to the specific molar volumes.

The model of the quasi la tt ic e  has been used by several
authors. Plory 12 and Huggins 13 calculated the combination fac­
to r g for solutions without heat of mixing. The method used is
often called the f illin g  up method and consists of placing f i r s t
the solute molecules on the la t t ic e  s ite s  (one a t a time) and
afterwards the solvent molecules and counting the number of ways,
in which the N2 solvent molecules and the N2 polymer molecules
can be arranged. This treatment leads to a rather simple expres­
sion for the second v iria l coefficient:

A2 m RTv1/2MI (II. 1)

where M0 i s  the "molecular weight” of a segment. This re su lt
shows an independence on molecular weight.

A slight refinement was introduced by Miller 14, Guggenheim 15
and Huggins 16. The probab ility , th a t two neighbouring s ite s
are occupied by a solvent molecule is  somewhat larger than the
product of the over-all p ro b ab ilitie s . The expression for the
second v irial coefficient becomes

A2 = (RTvi/2Mo) ( 1-2/z) ( I I .2)

where z is  the coordination number of the la ttic e .
The method used by Miller and Guggenheim is  different from the

fillin g  up method. They calculated the probability that a sequence
of P neighbouring s ite s  is  occupied by a polymer chain and the
probability , tha t these s i te s  are occupied by P solvent mole­
cules. The authors obtained a d ifferen tia l equation, whose solu­
tion leads to the combination factor.

The resu lt of Munster 17 is  somewhat more complicated. This
author tried  to account for the flex ib ility  of the polymer chain
and found that the v iria l coefficient is  dependent on molecular
weight and flex ib ility . When the polymer molecules are completely
flexible, the second v iria l coefficient may be written as

RTv, r z_o ,
A» - l s w r [1 * z (II'3>

This resu lt was obtained by the introduction of the so-called
virtual molecules. These are sequences of s ite s , which have the
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same size and shape as the polymer molecules. When the number of
virtual molecules is  A, the combination factor is

g (Nl tN2)
(Nt + A) 1

Nl A!
When there is  a small heat of mixing the theories of athermal

solutions are extended to thermal solutions in the following way:
the free energy of mixing consists of an entropy term and a heat
term. I t  is  assumed that the entropy of mixing is  the same as. in
the absence of heat effects 1S, so that the free energy of mixing
is

AG = AG(ath) + AH (II, 4)

When the heat of mixing is  expressed according to Van Laar 19, the
p a rtia l molar heat of mixing of the solvent (heat of dilution)
becomes:

A/ij = pep2 (11,5)

where p is  a constant and cp the volume fraction of the solute.
The second v iria l coefficient is  usually written as

A2 = (fl7V < )(ft -  M-) (II. 6)

where ^ is  a parameter depending on the heat of mixing. In prac­
tice , n plays the role of an empirical parameter which accounts
not only for the heat of mixing but also for several shortcomings
in the entropy calculation. So i t s  exact physical meaning is  not
a t a ll clear. In a recent paper, however, Huggins 20 has given a
revised discussion of his theory, and the basis of the parameter
H is  somewhat c larified .

Orr 21 and Guggenheim 22 also derived a resu lt for mixtures
with a f in ite  heat of mixing. Guggenheim applied the method of
the quasi chemical equilibrium to polymer solutions. When the
mixture consists of two components, there are three d ifferen t
feinds of neighbours. The equilibrium is  written as

(l- l)p a ir  + (2-2)pair ^  2(l-2)pairs.

The reaction constant is  easily  obtained in terms of the number
of neighbours, also when there is  a heat of mixing. A calculation
of the p a rtitio n  function is  then possible. Orr used a mathem­
atically  identical method and derived the same result.
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According to McMillan and Mayer 2 the second v irial coefficient
can be expressed in terms of the molecular d is tribu tion  func­
tions .

R7Nn * r
A  2 = 2  y / f i  ^*2 ( *  12 ) " ^ 1  ( *  l )  ’ F  2 ( * 2 ^  ^  ( I I >  7 )

f 1(x1) is the probability that partic le  1 has the coordinates x1
and F2 1 2 ) Probability that 1 and 2 have the coordinates
and x2 respectively. V is  the volume of the system considered. So
the second v iria l coefficient is  closely related to the molecular
interactions in the liquid. Zimm 23 evaluated the integral for a
pair of chain molecules. The interaction between these molecules
is  due to interaction between pairs of segments and in th is  way
a resu lt is  obtained for A2, which is  the same as the resu lt of
Flory and Huggins. This re su lt is  only approximate, since the
interactions between the segments of a single chain are neglect­
ed. Zimm gave a discussion of th is problem and came qualitatively
to the conclusion that there should be a dependence on M and on
the stiffness of the chain.

The work of Plory and Krigbaum 24 and of Grimley 25 on the
second v ir ia l coeffic ien t is  closely re la ted  to th e ir  work on
the volume effect. Their s tarting  point is  the evaluation of the
function F2( x 12) .  According to Grimley, th is  function may be
written in terms of configurational p a rtitio n  functions. Since
the d is tr ib u tio n  functions F1 are equal to unity for liqu id
systems, i t  is  possible to evaluate the integral 11,7 when the
interactions between three and more segments are neglected and
the solvent is  treated as a continuous medium. The final resu lt
for the second v iria l coefficient is  rather complicated, but for
a limited range of molecular weights can be written as

A2 = clTe (II. 8)

where c and e are constants. In the second and third section of
th is chapter we will revert to Grimley's theory.

The theory developed by Plory and Krigbaum shows also a de­
pendence of A2 on M. Their resu lt is  obtained in the following
way: Inside the chain which has the shape of a sphere with a
Gaussian density d is trib u tio n , the solution is  trea ted  as a
la ttic e . Outside the sphere the solvent is  treated as a continu­
um. The polymer chains can penetrate  in to  each other to some
extent. The free energy required for th is  in terpenetration is
identified with a macroscopic free energy of mixing. Thus, when a
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polymer segment is approached hy another arbitrary segment, there
is  a decrease in entropy, which may be expressed in terms of the
original Plory-Huggins theory. The heat of “mixing" too is  ac­
counted for in a manner analogous to Huggins’ treatment for solu­
tions. Integration over a ll segments and over the whole volume
gives an expression for the change of the free energy when two
molecules approach and interpenetrate each other. When the d is­
trib u tio n  function F2 is  given by c2exp(-ie2/kT) ,  where w2 is
equal to the free energy calculated and c is  a normalization
constant, a result is  obtained for the second v iria l coefficient
which ind icates th a t A2 decreases with increasing molecular
weight.

Prigogine 26,27 and coworkers applied the cell model to poly­
mer solutions. The quasi la tt ic e  approximation is  used and the
moliecules or molecule segments are considered to be point cen­
ters, interacting with each other according to the Lennard-Jones
interaction law. When a polymer is  mixed with a solvent, the mean
fie ld  changes somewhat and when this fact is  taken into account,
excess functions for volume, heat and entropy can be derived. In
th is manner the la ttic e  model can be extended to cases in which
there is  a volume change.

2 . Volume e f f e c t

The mean size and shape of unbranched polymer chains depends
on several factors. The length of a monomer unit, the valence
angle and re s tric ted  free ro tation  a ffec t the mean end-to-end
distance of a polymer chain. Calculations of th is  end-to-end
distance have been performed by various authors. Among these
W.Kuhn 28 introduced the s ta t is t ic a l  chain element and treated
the problem as a random fligh t one. The polymer chain is  replaced
by a chain consisting of N s ta tis tic a l chain elements with a mean
length A in such a way, that the orientation of one of the chain
elements is  independent of the orientation of any other element.
The calcu la tion  leads to a p ro po rtionality  between the mean
square end-to-end distance of the chain and the number of chain
elements.

The length of a s ta tis tic a l chain element depends on the val­
ence angle, the hindered rotation and the bond length. Calcula­
tions, which account for these parameters were carried out by
tyring 29, Debye 30, Taylor 31 and Benoit 32. Beside these in ter­
ferences between successive elements along the chain there exist
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interferences between elements which, along the chain, are fur­
ther apart. The fact that two chain èlements cannot occupy the
same volume element at the same time is well-known under the
name of the volume effect. In this section we will give a survey
of the theories dealing with the volume effect. These theories
have led to three types of results for large molecular weights:
a. the volume effect is negligible.
b. the mean square end-to-end distance <h2>ev is proportional to

the molecular weight; one can say, that the length of a sta­
tistical chain element increases somewhat.

c. the ratio <h2>nv/N depends on the molecular weight.
It can be shown that result (a) is incorrect. This has been

discussed, among others, by Hermans, Klamkin and Ullman 33. In
the first treatment of Hermans 34, the theory of Hadwiger 35 and
that of Grimley 2S, the fact that the elements are connected to
form a chain is ignored and a result of type (a) is obtained. At
the present time it is hardly possible to say which of the re­
sults (b) or (c) is correct. With respect to this question the
treatment of Rubin 36 is of interest. He treated a polymer chain
in m-dimensional space. For m=2 the average square of the end-to-
end distance diverges for large molecular weights. A convergence
was found for four dimensions. Rubin could not make a decision
for real polymer chains, but he proposed a formula of the follow­
ing type:

<h2>*v = NA2.f(Na) (II.9)

where a has a value between 0 and 0.5.
Some authors have looked for a solution of the Fokker-Planck

equation for the problem considered. Here the chain is represent­
ed by a string of beads (numbered 0,1 ... N). When the center of
the first bead is at the origin, the location of the other beads
can be represented by the vectors rlf r2, etc. In the absence of
a volume effect, the vectors (r* - rj) can have any value, but
when real polymer chains are considered not every value is pos­
sible. One can write

ƒ(r, t+1) = ƒ ds ƒ(r - s, t) y(r, r - s) (11,10)

This means, that the probability of finding the (t+l)th element
at r is equal to the integral of the probability of finding the
tth element at (r - s) multiplied by the transition probability v|i
The function y (r, r - s) denotes the probability that the link
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between the elements t and t+1 has a vector displacement s. The
assumption is  made that

Y (r, r -s) = X [l + VF(r)]

where v is  the volume forbidden by the presence of a bead and
F(r) is  the probability that any of the other beads has a posi­
tion r with respect to the origin; X is  a normalising constant.
Hermans, Klamkin and Ullman 33 (HKU) considered only the f i r s t
order perturbation which means that F may be replaced by F , the
probability of finding a bead a t r when there is  no volume effect.
Solution of the Fokker-Planck equation derived from ( I I ,10) led
to the following expression (type b) for large molecular weights:

* NAa [ l  ♦ cw] (II, 11)

The constant c depends on the shape of the beads. Wall 37
derived the same resu lt for a cubic la ttic e . In James’ theory 38
the chain elements are impenetrable spheres with a constant dia­
meter, but the distance between adjacent spheres is  not constant
the p robab ility  function for th is  d istance is  Gaussian. The
volume effect was treated in a way similar to the KHU method, but
the resu lt is  somewhat different, since other approximations are
involved. At the lim it of very large N the result is

<h2>mv ~  v2N2 ( I I ,12)

However, i t  would appear to be inconsistent in th is  theory to
retain  a term of order v2,' so that the physical significance of
the result 11,12 is  doubtful.

Grimley 39 has remarked that the function y can be related to
the pair distribution function for the two elements. With a num­
ber of approximations he came- to a resu lt which shows an increas­
ing effect with increasing molecular weight:

<fc2 > . v  = NA2 [l + cN* ]  (11,13)

This re su lt d iffe rs  appreciably from one obtained e a r lie r  by
Grimley 2S. In th is  former treatment the chain molecule was con­
sidered as a gas with Gaussian density d istribution  around the
centre, which means that the chain-character is neglected. In the
absence of a volume effect the chain behaves like an ideal gas;
the real chain is  treated as an imperfect gas. Grimley calculated
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the configurational pa rtitio n  function, neglecting ternary and
higher order interactions. The resu lt obtained is

</i2> .„ = NA2 [1-0.143 (P l /A 3 )N-'A] ( IÏ .1 4 )

Here -px is  the volume excluded for a segment by the presence of
another one. For large molecular weights the volume effect can be
neglected.

Flory 10 made the following assumptions: (a) the density d is­
tribution of the chain elements remains Gaussian in the presence
of a volume effect; (b) the connection between the chain elements
can be neglected. The molecule is  then divided into shells around
the center of gravity; the density of the elements in each shell
is  constant. Flory stated that the mean dimensions of the mole­
cule can be corrected with a factor a and i t  was the purpose of
th is  theory to derive an equation for th is  parameter. When the
la ttic e  model is  used, the number of ways of arranging a certain
number of elements in a shell can be calculated. Summation over
the shells gives the number of ways, in which the molecule can be
b u ilt  up. I t  turns out th a t a is  dependent on the molecular
weight in the following way

a 5 -  a3 = CIV* (II.15)

So the correction as a resu lt of the volume effect increases
slig h tly  with increasing molecular weight. This resu lt is  con­
firmed by the calculations of Bueche 40. His model is  nearly the
same as that of James. Flory’s a is  found to be given by

a 2 = (1 + 2 e N * /k T )  (11.16)

where e is  an interaction parameter.
Zimm, Stockmayer and Fixman 41 (ZSF) calculated the excluded

volume by means of the molecular distribution functions, already
mentioned in the f i r s t  section of th is  chapter. Their s ta rtin g
point is an equation similar to equation II, 10

fjf (p. t+1) = ƒ ƒh (p .t) $ (p .t, t+1) d(t )  (11,17)

Here the ƒN are pair distribution functions for two elements of a
chain of N  elements; $ plays the role of a transition probabili­
ty. The f i r s t  step in the ZSF treatment is  the derivation of the
distribu tion  functions ƒ and the function $. Their basic d is­
tribution function is  F m {N } , i .e .  the distribution function of a
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molecule consisting of N elements with specified coordinates {N}.
I t  is  assumed that th is function is  given hy

N .  1
f NNW  = ^iiX ^  f  (i, i+1) II cp( i , j )  (11,18)

Here QN is  a normalising factor, y is  a bond probability and tp is
a measure for the interactions between the chain elements. The
function $(p, t, t+1) is  given by

$(p .t.t+ l) = j(p. t)y(t ,  t+l){l+(JN(p, t, t+ l)} //t (p ,t) (11,19)

where j  is  another normalising constant and J N a function ac­
counting for the interactions between the elements of the chain.
I t  is  also a measure for the deviation from random behaviour. An
e x p lic it expression for the mean molecular dimensions on the
basis of th is theory could not be obtained. However, i t  is  common
to a ll theories thus far advanced, that there is  a s tra igh tfo r­
ward re la tion  between the volume effect and the second v ir ia l
coefficient. In the ZSP treatment th is appears from the fact that
the second v ir ia l coefficient can be expressed in terms of the
function JN.

Even so, the ZSP equations are too im plic it to lead to an
explic it relation between volume effect and second v iria l coef­
f ic ie n t unless d rastic  approximations are made. The only case
worked out so far is  the very f i r s t  approximation, in which the
assumption is  made that the only configurations to be considered
are those in which the chain does not bend back on i t s e l f  more
than once. The authors express the hope that the relation found
between volume effect and second v iria l coefficient may be
applied also to cases in which more than one segmental contact
occur, even though the expressions obtained for the volume effect
and the second v iria l coefficient separately would be valueless
for these cases. The result derived is

</*2> .v  = (H , 20)

where h„ is  the root mean square end-to-end distance in the ab­
sence of volume effect, A2 the second v iria l coefficient, M the
molecular weight, iVA Avogadro’s number and K a numerical con­
stant. The procedure of re la ting  volume effect to second v iria l
coeffic ien t has the advantage, tha t unknown parameters can be
eliminated. ZSP hesita te  to make a decision of the asymptotic
behaviour for large molecular weights.

Recently Wall, H iller, Wheeler and Atchison 42,43 and Rosen-
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bluth and Rosenbluth 44 have made ca lcu lation s with the aid of
electron ic  computers. These ca lcu lations have-not yet led to a
result for large molecular weights.

3. Volume e f f e c t  and second v i r i a l  c o e f f i c i e n t

I t  has been mentioned in the preceding sections that a re la ­
tion ex ists  between the volume e ffec t and the second v iria l coef­
f ic ie n t. Physically th is i s  quite clear since both phenomena are
due to interactions between segments of polymer molecules. In the
paper of Zimm, Stockmayer and Fixman the re la tion  between the
mean square end-to-end distance of the chain and the second v ir ­
ia l co e ffic ien t is  very clear (11,20). In principle every theory
of the volume e f fe c t  can lead to an expression o f th is  kind.
These expressions have the great advantage that some unknown
parameters can be eliminated.

Grimley described both the volume e ffec t and the second v iria l
c o e ff ic ie n t  by means of the molecular d istr ib u tion  functions.
With certain approximations he obtained formulae with a parameter
0j. When th is  excluded volume parameter i s  eliminated a rather
complicated expression can be derived.

In the same way F lory’s a. can be elim inated and a formula
quite analogous to expr. 11,20 i s  obtained. The constant has
an other numerical value.

For comparison we write down the resu lt which can be ca lcu lat­
ed from the Hermans, Klamkin and Ullman treatment:

<h2> = </i2>Av + K' AJH2/NKh0 N* (11.21)
The formulae obtained have in common that the volume e ffe c t

disappears when the second v ir ia l coeffic ien t is  zero. The asymp­
to t ic  behaviour for large molecular weight is  not at a ll clear,
since A2 also depends on the molecular weight. At th is  point we
may ask how the second v ir ia l co e ffic ien t depends on the molecu­
lar weight. With respect to th is  we can only say that the second
v ir ia l c o e ff ic ien t decreases with increasing molecular weight.
The theory of Munster leads to a linear relation  between A2 and
M~l . The formula proposed by Grimley w ill hardly be distinguish­
able from th is  resu lt unless the molecular weight range i s  very
large.

4. Viscos i ty

In th is  section on v isc o s ity  theories we w ill r e s tr ic t  our-
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selves to those theories, which take into account the hydrodynam­
ic interactions between the segments of a single chain. The ear­
lier work on free drained coils (Huggins, Kuhn, Kramers, Hermans)
will not be considered here.

Kirkwood and Riseman 7, and also Peterlin 8, used the model
of the polymer chain. In the theory of Kirkwood and Riseman this
polymer chain consists of monomer units with an effective bond
length 6; Peterlin used the concept of the statistical chain
element. Dehye and Bueche s and. independently. Brinkman 6 intro­
duced a porous sphere with an effective radius R. Sadron 9 and
also Plory 1#*“  worked with the equivalent particle concept.
According to this concept a polymer chain may be represented by
an impenetrable particle which has the same shape as the average
chain. This equivalent particle is a sphere when the molecular
weight is large and more rod-like when the molecular weight is
smal 1.

Obviously the model of Kirkwood and Riseman is the most real­
istic one. The presence of the monomer units causes a disturbance
of the flow at any arbitrary point in the liquid. Using the
method of Oseen as adapted by Burgers, and averaging over all
possible configurations of the chain, the following result is
obtained:

N  = (Na ; b*P/36 t)otf) P.F (11,22)

where t, is the frictional constant for a monomer unit and r) the
viscosity of the solvent; Xo is a parameter which contains rj0
and 6. Formula 11,22 may be written as

W  = (0.38 W A <h2>l'2/M) x F(x) (11,23)

where * =
A similar result was obtained by Debye and Bueche and by

Brinkman. The effective radius R of their porous sphere is de­
fined by

R2 = (5/3 P) 2 <rj>av (11,24)
j = i

where rj is the distance of the r-th segment from the center of
gravity^ The radius is found to be 0.53</i2>*v. Outside the sphere
the flow is the same as it would be if the molecule were a com­
pact sphere. Inside the sphere a friction between the monomeric
groups and the solvent appears. Stresses and velocities have to
be continuous at the surface of the sphere. When possible defor-
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(nations (and thus the influence of the gradient) are neglected,
the following formula can be derived:

[q] = (4tc N a R3/2M) $(o) (11.25)

where $(o) is a function of the parameter defined as follows:

<t 2 = 3 P  5/(4* R r,o),

We see that the expressions 11,22 and 11,25 have the same form.
The numerical constants are somewhat different. The frictional
constant ^ can be given a value which will make the [q]-M-rela-
tion coincide practically with the appropriate Mark equation.
This can be shown by plotting ln[q] against InM. Tables of the
exponent a in Mark’s equation and the corresponding values of the
functions F and $ are given in the papers of Kirkwood-Riseman and
Debye-Bueche. It is therefore possible to calculate [q], when we
know also the mean end-to-end distance and thus the effective
radius of the polymer coils. The result of Brinkman is essential­
ly the same as the result of Debye-Bueche. The limits of the ex­
ponent a of Mark’s equation for large and small molecular weights
are 0,5 and 1 respectively. However, the theories are valid only
for large molecular weights. Peterlin derived a result with the
same limits for large and small molecular weights. In terms of
the Kirkwood-Riseman parameters his result may be written as

M  = (Na s i>2P/24 f\oM) P (1 + 1,2 \0 P*)-1 (11,26)

According to Sadron the viscosity of high polymer solutions
can be described by the viscosity of solutions of impenetrable
particles. The shape of the particles depends on their molecular
weight. At high molecular weights, for instance, Einstein’s law
may be applied, and the exponent a of Mark’s equation is found to
be 0.5.

Plory’s model also is an impenetrable sphere, but the dimen­
sions of this sphere are not given by the formulae of Kuhn.
According to Plory’s theory of the volume effect the mean dimen­
sions of the polymer chain have to be multiplied by a factor a.
Since in good solvents this factor is proportional to it/0-1 and
in poor solvents nearly independent of M, Mark’s exponent a is
expected to vary from 0.5 to 0.8. The formula is usually written
as

[q] = k' a3 (H.27)
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I l l

E X P E R I M E N T A L  P A R T

1. Techniques used

When one wants to measure the physical properties of high
polymers as a function of molecular weight, the polymer sample
has to be divided into fractions with a narrow molecular weight
range. The fractionation can be performed on the basis of the
so lub ility  which is  in general a function of the molecular
weight 4S. The extraction method has the advantage that the frac­
tions with a high molecular weight contain a re la tiv e ly  small
amount of low molecular weight components compared with the frac­
tions obtained when the precipitation method is  used. This la s t
method has the advantage tha t the equilibrium between the two
phases is  reached more rapidly. Overbeek and Staverman 46 sug­
gested therefore a method which would have the advantages of both
methods. According to th is method the polymer sample is  dissolved
and a large part is  precipitated  by means of a precip itan t, so
that the lowest fraction remains in solution. The precipitate is
dissolved again and the procedure of precipitating is  repeated.
The polystyrene fractions numbered with arabic figures were ob­
tained by Benninga 47 using th is method; the polyvinylacetate was
fractionated by van Beek 48 in the same way. A discussion of the
problems concerned with th is  fractionation method was given by
Benninga. The polystyrene fractions A, B, etc. were obtained by
us using the precipitation method.

The limiting viscosity number can be easily derived from vis­
cosity measurements with solutions of d ifferent concentrations.
The flow time of a polymer solution in a capillary  viscometer
is  proportional to the viscosity of that solution i f  the correc­
tion for kinetic energy may be ignored and the flow is Newtonian.
Then the quantity <rj -  •n0) / Tloc can be replaced by (t  -  t 0) / t 0c
where t and t a are the flow times of the solution and pure sol­
vent respectively. Plotting ( t - t 0) / t 0c against c and extrapolat­
ing to zero concentration leads to the limiting viscosity number.
According to Huggins 49 the slope of the straight line is  equal
to fe[r)]2 where k is  independent of the molecular weight and for
many polymers of the order of 0.5. Our viscosities were determin­
ed with an Ubbelohde viscometer. Solutions of different concen-
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trations could be prepared in the viscometer by adding a certain
amount of a stock solution to a known volume of the solvent. In
this way a series of viscosities was determined very rapidly.

Osmotic pressures and turbidities are not so easily obtained.
The first of these properties can be measured by means of an
osmometer in different ways. One can apply the dynamic method,
the static method and the compensation method. We always used the
static method. After filling the osmometer with a solution we
waited until equilibrium was reached. The measurements were per­
formed by means of a modified Zimm-Meyerson osmometer described
by Benninga 47. We placed the membranes between two copper plates
in the same way as described by Stabin and Immergut 50. In this
way equilibrium was reached sooner than when the membrane was
supported only by one copper plate. The difference in height
between the levels in the two capillaries was read by means of
a telescope. The accuracy of the reading was about 0.05 mm. The
difference in height multiplied by the density of the solution is
equal to the osmotic pressure of the solution when a few assump­
tions have been made. In the first place the surface tension of
the solvent and the solution have to be equal. Solutions of poly­
styrene in organic solvents have nearly the same surface tension
as the pure liquid; so the influence of a difference in capillary
effects may be neglected. Further the concentration does not
remain the same during the experiment since the level in one of
the capillaries changes somewhat after filling. We used capilla­
ries with a small diameter and thus the influence of the change
in the concentration on the osmotic pressure may be neglected.
An uncertain point is the „asymmetry” of the membrane. When the
osmometer is filled with puré liquid there remains always a small
“osmotic pressure” . We always used membranes with an asymmetry
less than 0.3 mm. So the influence on the osmotic pressures can
never be very large and when the osmotic pressures are not too
small this asymmetry may be neglected. Since the densities of the
solution and the solvent are not the same, one must in principle
apply a "density correction". In our case, however, the influence
of the density was very small. We assumed that the density of
solution and solvent were the same, an approximation which is
valid for dilute solutions of the samples investigated in the
type of osmometers used by us.

In contrast to the molecular weight determinations with the
aid of osmotic pressure measurements which leads to the number
average molecular weight M n , the determination of the molecular
weight by light scattering gives us the weight average A/w . From
this fact it is also clear that the presence of dust has a large
influence on the molecular weight derived from the tUrbidity.
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Preparation of completely dust-free solutions is  d iff icu lt and is
the c ritica l point in the technique of measuring tu rb id ities. Two
methods can be applied for preparing dust-free liquids: filte rin g
and centrifuging. D ust-free solvents can be prepared best by
filte r in g  through a glass f i l te r ,  solutions of high polymers are
better centrifuged (the density of the solvent has to be lower
than that of the dust partic les; i t  was therefore necessary to
f i l te r  the ethylene chloride solutions).

The solutions which were measured in Leiden were centrifuged
and brought into a dust-free rectangular cuvette by means of a
dust-free  p ip e tte . The cuvettes and p ip e ttes  were cleaned by
means of condensed acetone vapour in the usual way 51. In Delft
we prepared the solutions starting  from a filte red  solvent and a
centrifuged stock solution. The solutions were prepared in a
cuvette which had the shape of a half octagon.

The apparatus for measuring tu rb id ities used in Leiden is  de­
scribed in the thesis of Trap 52 and that of Prins 53. The light-
source was a high pressure mercury arc and the in tensity  of the
sca tte red  lig h t was measured in the usual way by means of a
photom ultiplier. Fluctuations in the in ten sity  of the lig h t-
source could only be observed by measuring the in tensity  of the
ligh t scattered by a standard solvent. We used benzene, and our
calculations were based upon the values of the reduced intensity
obtained by Carr and Zimm S4. The apparatus at the Central Labor­
atory T.N.O. in Delft had the advantage that the fluctuations of
the light-source were not important. The intensity of the primary
beam is  compared d irec tly  with the in tensity  of the scattered
lig h t in such a way th a t the e le c tr ic  currents given by the
photomultiplier (scattered ligh t) and the photocell (a part of
the ligh t of the light-source) are compared with each other. The
values obtained were also compared with a benzene standard.

The values of the increment of the refractive index were ob­
tained by using a Zeiss interferometer.

An important question is  the question of the accuracy of the
measurements. Rather accurate are the measurements of the v is­
cosity. Since we used viscometers with a flow time for the pure
solvent of the order of 100 seconds and since the accuracy of our
time estimations was about 0.2 sec., i t  is  easily seen that the
errors in the lim iting v iscosity  number are ra ther small. And
they become completely unimportant when they are compared with
the molecular weight determinations of the polymer. We have a l­
ready discussed the corrections which have to be applied to the
osmotic data, but which are negligible. And since we always used
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an accurate temperature bath (0.02 °C) and thus thermometer ef­
fec ts  could not play an important ro le, we might expect th a t
osmotic pressures could be determined with a rather large accura­
cy. In practice, however, the osmotic pressure measurements are
far from accurate for reasons which are not yet quite clear. The
membrane processes are not well known and the reason for the
small accuracy can perhaps be found in the membrane i ts e lf ,  for
instance absorption of polymer on the membrane. Since the accura­
cy of our osmotic data is  as a rule not better than 5 — 10% i t
makes no sense to take in to  account a possible e ffec t o f 'th e
third v iria l coefficient, so that the extrapolation to zero con­
centration can be performed with the aid of the formula:

Vc = (RT/M) + A2c (III, 1)

I t  has already been said in the foregoing part that the pres­
ence of dust in a solution strongly affects the turbidity of that
solution. The presence of dust can be detected by measuring the
dissymmetry of the scattered lig h t. When the molecular weights
are small a correction can be applied. But when the molecules
cause a dissymmetry th is point becomes very uncertain. The accu­
racy of the molecular weight (and the second v iria l coefficient)
s furthermore affected by the accuracy of the dn/dc  determina­

tions. An error of one percent of th is quantity causes an error
of two percent in the molecular weight. We conclude th a t the
molecular weights obtained from the light scattering measurements
an be given with an accuracy of about 5 -  10%.

At th is  point we wish to acknowledge the help and assistance
given by Dr. Pals and Mr. Huldy of the Central Laboratory T.N.0 .
in Delft. Further we are much indebted to Messrs. H. van Niekerk

m e a s u r e m e n t s 311(1 "* WleSenhahn f°r d° ing Part of ^

2 . R e s u l t s

In th is section we will give the resu lts  obtained from osmo­
metry, viscometry and lig h t sca ttering . Since one part of the
lig h t sca tte ring  was performed in Leiden and another part in

l f t .  we will denote these re su lts  in the tab les by L and D
respectively . In table I we have collected the values of the
refractive index n and the increment dn /dc .  The values of n  are
the values published by Outer, Carr and Zimm 5S. The dn/dc  values
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Table I
Values of re fra c tiv e  index n and increment dn/dc

fo r various polymer solvent systems.

n dn/dc
cm3/g

polystyrene-butanone 1.378 0.224
polystyrene-toluene 1.496 0.112
polystyrene-ethylene chloride 1.444 0.165
polyvinyl acetate-butanone 1.378 0.095

are measured a t  a wave length of 5460 X . Tables I I ,  I I I ,  IV and V
conta in  the r e s u l ts  of the systems polystyrene-butanone, poly­
s ty re n e -  to luene, po ly sty ren e-e th y len e  ch lo rid e  and po lyv iny l-
aceta te-bu tanone re sp e c tiv e ly . In ta b le  V, a lso , some osmotic
data of the system polyvinyl acetate-to luene are given.

Table I I
Molecular weights A f, root mean square end-to-end d istances h,
lim iting  v iscosity  numbers [q] and second v ir ia l  c o e ffic ien ts

A 2 fo r various polystyrene frac tions  in butanone.

frac tio n Osf Mw. 10‘ 3
A

(dyn
osm.

2.10‘7
e cm4g '2)

l ig h t
sca tte rin g
L D

h  ( X )
L D

W
(cm3/g)

A 415 760 520 0.25 0.36 0.35 990 515 76
B 275 470 - 0.22 0.36 - 655 - 62
C — 390 330 - 0.36 0.50 550 445 59.5
D — 205 - - 0.47 - - - 43.5
E — 145 155 - 0.50 0.57 - - 32
P — 120 95 - 0.59 0.80 - - 24
3 — 125 105 - 0.53 0.79 - - 30
6 305 385 375 0.22 0.36 0.45 525 405 68

I t  is  c le a r  from the th e o re tic a l considerations given in the
chap ters  I and I I ,  th a t  in c .g .s .  u n its  the dimensions of our
v i r i a l  c o e f f ic ie n ts  become dyne cm4g '2 . The slope of the lin e
obtained by p lo ttin g  n/c against c leads d ire c tly  to th is  v i r ia l
c o e ff ic ien t. The lin es  obtained by p lo ttin g  Kc/Rgo against c have
a slope which has to be m ultip lied  by RT/2 . The lim iting  v isco si­
ty  number and the r e f r a c t iv e  index increment are  expressed in
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Table I I I
Molecular weights M, root mean square end-to-end distances h,
limiting viscosity numbers [t|] and second v iria l coefficients

A2 for vatious polystyrene fractions in toluene.

f ra c tio n Mn . 1 0 ' 3 K 10‘3
(dy

osm.

42.1 0 ‘7
tie cm4g ’2)

l ig h t
s c a t te r in g
L D

h  (X)
L D

[r,]
(cm3/g )

A - - 505 - — 0.84 —  • 475 156
B - - 350 - - 0.97 - 365 108.5
C — - 340 - - 0.97 — 375 102
E - - 160 - - 1.21 - — 61
P - - - - — — — 35
3 50 - - 1.68 — — — _ 38
4 90 140 - 1.56 1.30 - - — 54
5 135 200 - 1.31 1.25 — 355 — 67
6 330 445 345 1.09 1.30 0.97 600 310 123
7 545 765 - 1.14 0.99 — 770 — 174
2 ' 17.5 - - 7 .5 - - - — 15.5
3 ' - - 125 - - 2.01 - - 49

Table IV
Molecular weights, root mean square end-to-end
distances, limiting viscosity numbers and second
v iria l coefficients for some polystyrene frac­

tions in ethylene chloride.

fraction Mw. 10' 3
D

A j .1 0 '7
D

h (X)
D

[tj]
(cm3/g)

A 490 1.41 720 120
B - - - 97
C 330 1.14 640 86.5
D - - - 65.5
E 145 1.36 - —

P 85 1.86 — 37.5
6 335 1.14 640 99

cm3g-1. The average end-to-end distance of the chain is  given in
Angstroms.

All our measurements were carried  out a t a temperature of
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Table V
Molecular weights, in tr in sic  v isc o s it ie s , mean square end-to-end
distances and second v ir ia l coeffic ien ts  of some polyvinylacetate

fractions in d ifferen t solvents.

frac tio n

I
II

I I I
IV

Toluene Butanone

*fn.10*3 A2.10*7 Afn.1 0 '3 Mw. 10 -3 i 2. i o ' 7 h (X) w
L D osra. l ig h t

sc a tte rin g
L D L D

220 0.38 205 290 240 245 0.70 1.25 665 665 80

650 0.29 — 740 805 - 0.97 1.24 725 920 170

775 0-23 — - 1200 - 0.79 1445 220

- - - 1650 2450 - 0.51 0.30 1340 2080 360

25 °C except the lig h t  sca tter in g  measurements at D elft which
were done at room temperature. The errors due to a small temper­
ature difference are n eg lig ib le  and therefore we have co llected
a ll  our resu lts in the same tab les. The A/w values and the values
o f A2 in tab le III  obtained in Leiden are the averages o f the
measurements carried out at wave lengths of 4360 A and 5460 A.
The concentrations used in Leiden were of the order 0 ,1 -0 ,5  x
10'4 g/cm3; in D elft we measured tu rb id itie s  of solutions which
had in general a concentration le ss  than 0 , 1 x 10 4 g/cm .

Part of the osmotic measurements of polystyrene in toluene has
already been presented in the th esis of Benninga 47. We have done
some more experiments and have obtained r e su lts  which are a
l i t t l e  d ifferen t. Although in some cases i t  seemed that the third
v ir ia l  c o e ff ic ie n t  had to be taken into  ac,count, the stra igh t
lin es  are within the experimental errors. Therefore we have ca l­
culated a ll our values with formula 111,1.
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IV

D I S C U S S I O N

1 .  General remarks

A measure of the efficiency of a fractionation  is  the d if ­
ference between the molecular weights obtained from osmometry and
ligh t scattering. When the fraction is  homogeneous the Mm and M„
values are equal and when the heterogeneity is  large the d iffe r­
ence between the two molecular weights of the fraction is  also
large. According to Plory 56 the ra tio  Mw/Mn is  equal to 2 when
the polymer sample is unfractionated. When we compare our number
averages with the weight averages given in tables II , I I I  and V
we can conclude that in general the fractions were not sharp.
Furthermore i t  is  obvious that the fractionation method applied
by Benninga has no great advantage compared with the precip ita­
tion method since there is  s t i l l  a rather large difference be­
tween the two average molecular weights. I t  appears, however,
that the difference in molecular weights of two successive frac­
tions is  in general somewhat larger in the f i r s t  case. This con­
clusions are strongly dependent on the calcu lation  of the Mv
values which were performed on the basis of the /?90-values of
benzene, obtained and discussed by Carr and Zimm 54. (fl90 =
le.B.lO^cm'1, X= 5460 X ) .

I t  is  worth while to give the i?90-values of butanone, toluene
and ethylene chloride, which were measured by us. When we take
again the value 16.3 10"6cm‘1 for the reduced in tensity  of ben­
zene, the reduced in tensities for butanone, toluene and ethylene
chloride become 5.0 10"16, 18.5 10‘ 6 and 8.0 10'6cm"1 respect­
ively.

In general the dissymmetries of the lig h t scattered  by the
polystyrene solutions were small. I t  was therefore impossible to
make accurate determinations of the mean end-to-end distances of
the chain molecules. We have ignored the dissymmetries of the
fractions with the lowest molecular weights. The dissymmetries of
the fractions with higher molecular weights were taken into ac­
count but we do not believe tha t they are very accurate since
they are s t i l l  rather small and easily affected by the presence
of a small amount of dust. So i t  is  not possible to give a de­
f in ite  answer to the question of the volume effect from d irect
measurements of the dimensions of the chain molecules. In .section
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3 of this chapter we will try to answer this question using the
viscosity data and the molecular weights.

The measurements on the polyvinylacetate fractions which
showed a much larger dissymmetry gave us some information about
the relation between the mean end-to-end distance and the molec­
ular weight. These measurements, too, are discussed in the next
sections.

2. Thermodynamic properties

The Plory-Huggins formula for athermal solutions predicts the
independence of the second virial coefficient A2 on the molecular
weight M. Prom the later theories based upon the lattice approxi­
mation and which introduced a number of refinements, only the
theory of Munster led to a (linear) relation between A 2 and l/M.
When this theory is extended to thermal solutions, as was applied
by Huggins, there still exists a linear relation between A2 and
l/M. In contrast with this the theories of Grimley and Flory-
Krigbaum show a dependence of A2 on M  wich is not linear. It' is
not easily seen from the Flory-Krigbaum treatment what the ex­
plicit relation is, for there are two parameters which are char­
acteristic of the system. These parameters are related to the
critical temperature of the solution. But even when we know the
magnitude of these parameters there is still the uncertainty of
Plory’s parameter « of the volume effect, which has also an in­
fluence on the second virial coefficient. It is therefore impos­
sible to check the Flory-Krigbaum theory with our data.

Grimley’s expression for A 2, which can be approximated by
formula 11,8, shows a linear relation between logA2 and logM for
a limited molecular weight range. Besides the plot of A 2 against
M in fig. 1 we have also given a log-log plot of these quan­
tities (fig. 2). The second virial coefficients are not very
accurate, and taking this fact into account we cannot make a
definite conclusion about the relationship between A2 and M. From
the figures, however, it is clear that the log A 2-log M relation
may well be linear. In that case the second virial coefficients
of the systems polystyrene-butanone, polystyrene-toluene and
polystyrene-ethylene chloride can be represented by A 2 =
2.9 108A/'° •30, A 2 = 7.1 108Af'°-3° and A 2 = 7.8 108 M m°-28 re­
spectively. In principle it is possible to calculate the ratio of
Grimley’s excluded volume parameter to the cube of the length
of a statistical chain element from the values of A2 and M. But
we then- have to know the exact relation between M  and A 2 since
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Figure 1
Second v i r ia l  c o e f f i c i e n t  o f  some p o ly s ty ren e -so lv en t  systems

vs. molecular weight.
•  butanone (light scattering) ©butanone (osmometry)
▲ toluene (light scattering) A toluene (osmometry)

■ ethylene chloride (ligh t scattering)

the exponent e is  s t r ic t ly  speaking a function of M. We have
tried  to f i t  our data to a theoretical curve but i t  was not pos­
sib le  to make any accurate determinations of the parameters we
wanted to know. Qualitatively we can say that the excluded volume
parameter is  larger in toluene and ethylene chloride than in
butanone, since the constant c of formula 11,8 is much larger for
the toluene and ethylene chloride solutions. In that case, how­
ever, the exponent e must be different although the dependence of
e on p, is  a logarithmic one and thus the influence of the so l­
vent on e is  much smaller.

In table VI we have collected some (x-values for various poly­
styrene-solvent systems. The molecular weights of polystyrene are
the averages of the different weight averages measured in Delft.
The calculation of jx can be performed with equation 11,6 which
can be transformed into

A2 = (RTdJMid*) (54 -  ix) (IV. 1)
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l » 9  A 2
(BuU dom  and T olu tn t)

F ig u re  2
lo g -lo g  p lo t  o f second v i r i a l  c o e f f ic ie n t  o f  some po lysty rene-

so lv en t systems vs. m olecular weight (see  also  f ig . l ) .

Table VI
Some ^-va lues fo r d if f e re n t
p o ly s ty ren e -so lv en t systems

M„. 10 *3
M-

Butanone
M-

Toluene
V

Ethylene
ch lo rid e

505 0.486 0.459 0.459
350 0.481 0.453 0.4591
330 0.479 0.453 0.459
150 0.477 0.442 0.451
115 0.468
90 0.467 0.433

where d 1 and d 2 a re  th e  d e n s i t i e s  o f  th e  s o lv e n t  and polym er
re s p e c tiv e ly  and M1 i s  the  m olecular w eight o f  th e  so lv en t com­
p o n en t. For d 2 th e  v a lu e  o f 1 .06 i s  i n s e r t e d .  (H .S tau d in g e r,
“Die Hochmolekularen Organischen Verbindingen” , B erlin  1932).

3 . V i s c o s i t i e s  and dim ensions o f  the po lym er m olecules

A ccording to  M ark’s eq u a tio n  (1 ,1 1 ) a lo g - lo g  p lo t  o f  th e
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limiting viscosity number [?)] against the molecular weight M
should give a straight line. According to the theories of Debye-
Bueche (D-B), Brinkman, and Kirkwood-Riseman (K-R) this is strict­
ly true only for a narrow molecular weight range. Also the treat­
ment of Flory and Fox shows a dependence of the exponent a on M,
since the factor a of Flory’s theory is a function of A/.

Since we have no accurate data for the root mean square end-
to-end distances h of the molecules, it is impossible to check
the viscosity theories with our measurements of M and h. We have
calculated the mean dimensions by means of the [rj] and M-values
on the basis of the D-B and K-R theories. To this end we need the
values of a for the different molecular weights. We have there­
fore made log-log plots of [tj] against M. In fig. 3 an example of
such a log-log plot is given. Usually straight lines are drawn
and doing so we obtain lines which can be represented by the
following equations.
polystyrene-butanone [rj] = 1.69 10'2A/0-64
polystyrene-toluene [t)] = 0.61 10'2A/0,77
polystyrene-ethylene chloride [rj] = 1.80 10’2A/0,67
polyvinyl acetate-butanone [rj] =2.38 10‘2A/0,65
The molecular weights M  are the weight averages. It is better to
plot this quantity against [rj] than the number average since the
viscosity average differs less from Mv than from M n.

Figure 3
log-log plot of. limiting viscosity number vs. molecular weight

for some polystyrene fractions in butanone.
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As mentioned above, the s tra ig h t lines are not theoretical
ones. According to the theories the slopes of the lines have the
lim its  of 1 and 0.5 for small and large molecular weights re­
spectively. We have therefore assumed that the estimated value of
a belongs to the molecular weight of 330 000 (polystyrene).

Since we are able to calculate the values of the parameters a
(D-B) and * (K-R) from the values of a and since we know the
relationship of these parameters to M,  i t  is  possible to derive
the values of $ (ct) (D-B, from 11,25) and xF(x)  (K-R, from 11,23)
for each molecular weight. Inserting the values of these func­
tions and M  and [tj] into equations 11,25 and 11,23 leads to the
mean end-to-end distances of the chain molecules. The resu lts
of these calculations are given in the tables VII, VIII and IX.

Table VII
Mean end-to-end distances of some
polystyrene fractions in butanone
calculated from [r)] according to
Debye-Bueche, Kirkwood-Riseman

and Einstein.

A/w. 10 "3
h ( A )
D.-B.

h (£)
K.-R.

h ( A )
Einst.

505 400 545 345
350 345 470 295
350 335 455 285
330 325 445 275
205 255 350 215
150 215 290 190
115 210 285 170
90 170 230 135

Furthermore we have calculated the dimensions of the molecules
from E in s te in ’s v iscosity  formula for impenetrable spheres.
Einstein’s equation, which was derived for an impenetrable sphere
leads, of course, to the radius of th is  sphere. To derive the
value of h from th is  radius we have used the same rela tion  be­
tween R and h as have Debye and Bueche. In fig . 4 we have
plotted the h-values against root M  for the system polystyrene-
butanone. Fig. 5 contains the h-values of polystyrene in the
three solvents as calculated by means of the K-R treatment. From
the tables and figures we see that there is  a difference of about
25% between the values of h calculated by means of D-B and K-R. A
conclusion about the correct values can' be obtained only by com-
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Table VIII
Mean end-to-end distances of some
polystyrene fractions in toluene
calculated from [ tj] according to
Debye-Bueche, Kirkwood-Riseman

and Einstein.

Mm. 10'3
h ( X )
d. - b.

h ( X )
K.-R.

h ( X )
Einst.

505 595 805 440
350 505 695 360
350 480 665 345
330 465 640 330
150 325 440 215
115 285 385 185
90 240 330 150

Table IX
Mean end-to-end distances of some
polystyrene fractions in ethylene
chloride calculated from [f|] ac­
cording to Debye-Bueche, Kirkwood-

Riseman en Einstein.

A/..10*3
h ( X )
D.-B.

h ( X )
K.-R.

h ( X )
Einst.

505 480 655 405
350 405 550 335
350 405 550 335
330 385 520 315
205 305 415 245
90 205 280 145

paring the calculated values with d irect measurements from ligh t
scattering and th is  seems feasible only with molecular weights
which are larger than those of our fractions. We will revert to
th is question in the next section.

An important resu lt (which is  of course dependent on the va­
lid ity  of the viscosity theories) is  the fact that the relation
between h and AfH is  a linear one. This means that for rather low
molecular weights the influence of the volume effect on the mean
dimensions of the molecules does not depend on the molecular
weight. However, we have to take into account a certain inaccura-
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F ig ur e  4
Root mean square end -to -end  d is ta n c e  vs .  square
roo t  o f  m olecu la r  weight fo r  some p o ly s ty ren e

fr a c t io n s  in butanone.
A Debye-Bueche
© Kirkwood-Riseman
© E in ste in

Figu re  5 .
Root mean square  end-to -end  d is ta n c e  c a lc u la te d
by the  Kirkwood-Riseman theo ry  v s .  square  ro o t
o f  m olecu la r  weight fo r  some p o ly s ty re n e  f r a c ­
t io n s  in  butanone (0 ) ,  to lu e n e  (A) and e thy lene

c h lo r id e  (Q)

cy and perhaps a possible effect of M would be within the experi­
mental errors.

The ra tio  of the fric tio n al constant for a monomer unit to
the viscosity of the solvent in the viscosity theories is  much
lower than expected from Stokes’ law. Even i f  we take into ac­
count the fact that Stokes’ law cannot be applied to the segments
of the chain molecule, a value of about 10% of that according to
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Stokes is unreasonably small. This discrepancy is not new; it had
been observed by many authors in previous work.

A check of the theory of Plory and Pox on the relationship
between M  and [q] (form. 11,27) would be possible by plotting
W  2/3 M ~1/3 against A(/[q]. At low molecular weights the factor a
becomes equal to unity and from the intercept the constant K
could be calculated. To apply this method, great accuracy is
necessary. Our polystyrene data plotted in this manner did not
give an accurate value of the constant.

According to the relationships between [q] and M  and to for*
mula (11,27) the factor would ibe proportional to A/0-05. Devia­
tions from the linear relation between h and M* would therefore
be small and frequently within the experimental errors. Apprecia­
ble values of a would be obtained only at much higher molecular
weights. In fact, if Plory’s relation is correct, the linear de­
pendence of [q]. on A/0,65 would mean that for two molecular
weights which are in the ratio 2:1. the h-values would be in the
ratio I.034 /2 to 1.

The theory of Kirkwood-Riseman applied to the polyvinyl ace­
tate data of table V in the same manner as described in the fore­
going part, leads to the following average dimensions: fraction
I. 495 &  II: 875 A; III: 1065 X and IV: 1545 A. Comparison with
the h-values obtained from light scattering shows a large differ­
ence. A better agreement between the observed and calculated
values would be possible if the function xF(x) were smaller than
that calculated from the exponent a of Mark’s equation. This
would mean that the frictional constant would also become much
smaller. The ratio of this frictional constant to that calculated
from Stokes’ law would then be about 10"2.

Since we have too few data, a plot of the calculated and ob­
served /i-values against the root of M  does not lead to a definite
conclusion about the relationship between h and M*. Again, how­
ever, a linear relation is compatible with the experimental re­
sults (fig. 6).

4. Second virial coefficient and dimensions

Much data about various polystyrene-solvent systems can be
found in the literature. In general the molecular weight-viscosi­
ty relations are not in very good agreement with each other. This
is mainly due to the inaccuracy of the molecular weight determi­
nations by means of light scattering and osmometry. With respect
to this the surveys of Prank and Mark 57*58 about investigations
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Figure 6

Relation between end-to-end distance of polyvinylacetate
in butanone and square root of molecular weight

A h according to the Kirkwood-Riseman theory
© h from dissymmetry.

on a polystyrene sample are very interesting. There exists a
large scatter in the data obtained. Only a few publications about
the estimation of the mean end-to-end distances of polystyrene
molecules exist. An extensive investigation was published by
Outer, Carr and Zimm 5S, who measured the dimensions of large
molecular weight polystyrene molecules in various solvents, name­
ly butanone, toluene, ethylene chloride, cyclohexane and some
mixtures of solvents. Kunst 59 reported a number of measurements
of polystyrene in benzene, and recently Notley and Debye 60 pub­
lished an investigation of polystyrene in cyclohexane and toluene.
Comparing our calculated dimensions of the polystyrene molecules
with the measurements of the end-to-end distances from light
scattering mentioned above, it seems that the Kirkwood-Riseman
theory leads to results which are in good agreement with those
measurements. The molecular weights of our samples were much
lower then those of Outer, Carr and Zimm and Notley and Debye,
but a comparison of the fo-values of polystyrene at about the same
temperature can be made by comparing h2/M (fig. 7). In this
manner the h-values obtained by applying the Kirkwood-Riseman
theory were found to be in better agreement with the light scat­
tering data than the values calculated by means of the Debye-
Bueche theory. However, for the system polystyrene-toluene this
does not seem to apply, but here the light scattering data are
small in number and are considerably scattered.

The molecular dimensions found from light scattering for poly­
vinylacetate in butanone were larger than those obtained by
Shultz 61 for the same system and those of Chinai, Scherer and
Levi 62 for polyvinyl acetate in acetone. It is possible that this
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must be attributed to different degrees of branching in the sam­
p les. In fac t, i t  has been suggested by several authors th a t
polyvinylacetate is  often branched appreciably.

I t  has been established as an empirical rule that for a given
polymer with a certain molecular weight the second v iria l coef­
f ic ie n t increases with increasing lim iting  v iscosity  number.
This fac t can be explained by theoretical considerations: the
limiting viscosity number increases with the root mean square end
to-end distance and when the second v iria l coefficient increases
the mean end-to-end distance becomes larger too. In general our
data confirm th is  ru le  but when we assume th a t the v iscosity
measurements are correct, the second v ir ia l coefficients of the
system polystyrene-ethylene chloride are too large. Perhaps the
influence of dust on the tu rb id itie s  of ethylene chloride solu­
tions was somewhat d ifferen t since we f ilte red  the stock solu­
tions of th is  solvent and centrifuged a ll the other solutions.
But an influence of th is  kind is  not very probable and the ther­
modynamic behaviour of the ethylene chloride solutions is  not
clear.

An ex p lic it re la tion  between h2 and A2 is  given by the for­
mulae of Zimm, Stockmayer and Fixman (11,20) and that of Hermans,
Klamkin and Ullman (11,21). These equations can be transformed
into
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(IV.2)h 2/ M  = Cj + c2 A 2 kt*

811(1 h2/M - Cj + Cj A 2 ' (IV, 3)

respectively.
Since we have found that A2 is approximately proportional to

M~0-3 the quantity h2/M should increase slightly with increasing
molecular weight according to IV,2 and should decrease slightly
according to IV,3.

As has already been mentioned, the data of Outer, Carr and
Zimm for butanone are well in line with the dimensions calculated
by us for the lower fractions using the K.R. theory. Prom the
fact that h2/M appears to increase with increasing molecular
weight whereas at the same time the second virial coefficient
decreases, we may conclude that eq IV,3 cannot represent the
data. The formula IV,2 can be made to agree with experiment and
as has been shown by Zimm, Stockmayer and Pixman, the constant
c2 in this formula has the value expected from their theory.

Acknowledgement. The author is much indebted to Mr. R.Longworth
for reading the manuscript and improving the English.
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S A M E N  V A T  T I N G

Het doel van d it  onderzoek was de bestudering van de thermo-
dynamische grootheden en de afmetingen van polymeermoleculen in
oplossing. Door het meten van deze grootheden zou het tevens mo­
gelijk zijn  een verband tussen de tweede v iriaa lcoëffic iën t van
de osmotische druk en de afmetingen van de macromoleculen te
geven. Een dergelijk onderzoek werd enige jaren geleden verricht
door Outer, Carr en Zimm, die met behulp van lichtverstrooiing een
aantal viriaalcoëfficiënten en afmetingen in verscheidene oplos­
middelen bepaalden voor een serie  polystyreenfracties met een
groot molecuul gewicht. Een onderzoek voor kleinere molecuul ge­
wichten zou ons een inzicht kunnen geven in het gedrag over een
breed molecuulgewichtsgebied.

Ons onderzoek werd uitgevoerd met behulp van viscosimetrie,
osmometrie en lichtverstrooiing. De molecuul gewichten en de v i­
riaa l coëfficiënten kunnen berekend worden u it de osmotische en
lichtverstrooiingsmetingen, terw ijl de dissymmetrie van het ver­
strooide lic h t in lich ting  kan geven over de afmetingen van de
moleculen in oplossing. Ook het v isco s ite itsg e ta l is  een maat
voor de afmeting van de moleculen.

De thermodynamica en de theorieën over de afmetingen van de
kluwenmoleculen werden besproken in hoofdstuk I I .  Uit deze theo­
rieën is  gebleken, dat de tweede v iriaa lcoëffic iën t kleiner zal
worden met stijgend molecuul gewicht.

De afmetingen van de ketenmoleculen z ijn  in eerste  benade­
ring evenredig met de wortel u it  het molecuul gewicht. Gedurende
de laatste  jaren is  een aantal publicaties verschenen waarin het
zgn. volumeëffect in rekening wordt gebracht. Een exacte oplos­
sing van d it probleem is  nog niet gevonden, zodat een aantal be­
naderingen ingevoerd moesten worden. Deze benaderingen.zijn veel­
al van dezelfde aard a ls  de benaderingen, die toegepast moeten
worden bij de berekening van de tweede v ir ia a lc o ë ff ic iën t. Er
zijn dan ook pogingen gedaan om de afmetingen van de kluwenmole­
cul en te beschrijven door middel van formules, waarin de tweede
viriaalcoëfficiënt voorkomt.

De resu ltaten  z ijn  besproken in hoofdstuk IV. Aangezien de
dissymmetrieën van het verstrooide lich t klein en niet zeer nauw­
keurig waren, was een bepaling van de molecuul afmetingen alleen
mogelijk door berekening u it  de v isc o s ite it. Door vergelijking
van deze berekeningen met waarnemingen van andere onderzoekers
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voor grotere molecuul gewichten, kwamen we to t de conclusie, dat
de viscositeitstheorie van Kirkwood-Riseman to t betere resultaten
le id t dan die van Debye-Bueche.

In het door ons gemeten molecuulgewichtsgebied wordt de tweede
v iriaa lcoëffic iën t aanmerkelijk kleiner met toenemend molecuul-
gewicht. In d it molecuulgewichtsgebied is  tevens het kwadraat van
de afstand tussen begin en eindpunt van het molecuul evenredig
met het molecuul gewicht, aangenomen dat de theorie van Kirkwood-
Riseman to t goede resultaten le id t. De metingen van Outer, Carr
en Zimm, voor grotere molecuul gewichten in butanon vertonen een
afwijking van deze l in e a r i te i t ,  waardoor de theorie van Zimm,
Stockmayer en Fixman bevestigd schijn t te worden. Het effect is
echter zeer klein en in ons molecuulgewichtsgebied zouden de
afwijkingen van de eenvoudige betrekking tussen de d e e ltje s ­
grootte en het molecuul gewicht waarschijnlijk binnen de fouten-
grenzen vallen.
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S T E L L I N G E N

1
Berekeningen van de derde v iriaalco6ffic i6n t u i t  osmotische druk-
metingen hebben wegens- de onnauwkeurigheid der metingen geen zin.

2
De extrapolatiemethode voor de osmotische drukken, voorgesteld
door Guggenheim en McGlashan, heeft zowel practische a ls  theore­
tische nadelen.
E.A.Guggenheim en M.L.McGlashan, Trans.Paraday Soc. 48. 206(1952)

3
Het is  didactisch n ie t ju is t ,  in leerboeken in het hoofdstuk over
de molecuulgewichtsbepalingen van polymeren ook de v isc o s ite it op
te  nemen.

4
De berekeningen van de keten lengte  van v loeibare  seleen  door
Krebs en Morsch zijn  on ju ist.
H.Krebs en W.Morsch, Z.Anorg.Chem. 263, 305 (1950)
H.Krebs , Z.Anorg.Chem. 265, 156 (1951)

5
Het bestasui van macromoleculaire ringen, opgebouwd u i t  zwavel- of
seleenatomen, is  n ie t w aarschijnlijk.

b-V- 8:186!  en E .Weber,
P.W.Schenk

Z.Anorg.Chem. 265, 156 (1950)
Z.Anorg.Chem. 272, 288 (1953)
Z.Anorg.Chem. 280, 1 (1955)

6
Het is  mogelijk, dat een deel van de discrepantie tussen de u i t  de
experimenten berekende en de theoretisch verwachte waarden van de
wrijvingsparameter in de v iscosite i t s theorieën toegeschreven moet
worden aan een foutieve bepaling van het g ren sv isco site itsg e ta l.

7
Het door B latt voorgestelde mechanisme voor de isomeris a t ie  van
de n ie t gebonden en gebonden oximen van de ortho-hydroxy-benzo-
phenonen is  n ie t waarschijnlijk.
A.H.B la t t ,  J.Org.Chem. 20, 591 (19 5 5)



De door Müller voorgestelde methode voor het bepalen van thermo-
dynamische grootheden van mengsels langs diëlectrische weg levert
voor polymeeroplossingen geen nieuwe gezichtspunten.
P .H .M ü l le r ,  K o l l o i d  Z. 121, 79 (1951)

9
Als de door Bohm voorgestelde in terpreta tie  van de quantummecha-
nica ju is t  is , dan dient bij het onderricht ook de aandacht op
deze in terpretatie gevestigd te worden.
D.Bohnv P h y s .R e v .  85, 166 (1952)

8

10
Het is  wenselijk, dat de kennis der verkeersregels als verplicht
leervak in het lagere schoolprogramma wordt opgenomen.






