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INTRODUCTION

During the last twenty years much work has been done to calculate the
transport properties of gases at such low temperatures, that quantum effects
arise, caused by the increase of the De Broglie wavelength and by symmetry
properties.

Experimental data below 1.3°K, however, were not yet available. There­
fore we set up an experiment to measure the heat conductivity coefficient
of 3He and 4He in this temperature region that could be controlled by means
of a cryostat cooled with 3He. These investigations are described in chapter I.
Although the pressure of the gas was always so low, that no bulk liquid
condensation could occur yet an unsaturated multilayer film was adsorbed.
In the case of 4He the appearance of this film with its superfluid properties,
when the thickness came above a critical value, caused difficulties by its
indirect contribution to the heat conductivity. This fact made it necessary
to study the onset of superfluidity in unsaturated 4He films and some
3He-4He mixtures, as experimental data below 1.3°K were not yet available
for 4He and not at all for the mixtures. These experiments are described in
chapter II. Whereas for bulk helium the onset of superfluidity coincides
with the peak in the specific heat at the A-point, this is not the case for un­
saturated films as is again confirmed by our results. Not only the onset but
also the destruction of superfluidity, when the film has reached its critical
velocity, was examined. At supercritical velocities the flim flows not
frictionless any more, but under the influence of a gradient in the chemical
potential the velocity can still increase somewhat as follows from our data.

In heat conduction measurements of liquid helium always a temperature
jump between the wall and the liquid is included, if the temperatures of the
walls are measured instead of the temperature of the helium. This effect is
called the Kapitza resistance. This was also the case with the films we
examined. The Kapitza resistance was measured as a function of the
thickness of the films and of the temperature. As its value was independent
of the thickness we conclude that the resistance is situated between the
wall and the first adsorbed layer.





Chapter  I

THE HEAT CONDUCTIVITY.OF 3He
AND 4He AND THEIR MIXTURES IN THE GASEOUS STATE

BETWEEN 0.5 AND 3°K

Synopsis
The heat conductivity coefficient of gaseous 3He, 4He and a 50% 3He—4He mixture

is measured between 0.5°K and 3°K. The apparatus consists of two parallel horizontal
plates, and a shield ring around the upper one. The distance between the plates is
variable. A discussion about several methods to measure the heat conductivity is
included. Our results are compared with theoretical calculations of the transport
properties of the helium isotopes by De Boer, K eller, B uck ingham  and Scriven.
In general a satisfactory agreement is found.

1. Introduction. It is interesting to investigate the transport properties
of gases at low temperatures, because quantum effects clearly appear here.
As soon as the de Broglie wavelength of relative motion is comparable with
the molecular diameter, diffraction effects cause quantum mechanical
deviations from the classical behaviour. Also when this de Broglie wave­
length is of the order of the mean free path, symmetry effects can appear
due to the overlapping of the wave functions. In our experiment this is not
important, since there the de Broglie wavelength is at least still a factor of
100 smaller then the mean free path. However because of the fact, that at
the collision of two identical particles the wave functions must be symme­
trised, the collision cross-sections and therefore the transport properties
depend on the statistics which the particles obey.

The gases we investigated were 3He and 4He. These elements are very
appropriate for these experiments, because at very low temperatures they
do not condense at pressures high enough to measure the transport proper­
ties in a region where they are independent of the pressure. As 3He consists
of an odd number of particles and 4He of an even number, the two gases
obey different statistics, which will cause a sizeable difference in heat
conduction. With this in mind several authors have made theoretical
calculations of the transport properties of 3He and 4He. In chronological
sequence they are B uckingham , H am ilton  and M assey1) De B oer2) 3),

1



Cohen2 * 4), B uckingham  and S criven5), and K e lle r6). B uckingham  e.a.,
used an intermolecular potential with an exponential repulsion and an
attractive field, consisting of an inverse sixth and eighth power term, while
De Boer and Cohen used a Lennard-Jones type potential, as also did
K eller. In the case of 4He the latter found about the same values as De
Boer, but for 3He a rather large difference appeared. The values of K eller
are more preferable, because of the higher accuracy he could obtain by using
an electronic computer. B uckingham  calculated the transport properties
in the first Enskog approximation. K eller calculated also the second
approximation, as also did De Boer for 4He below 1.6°K. It appears that
in the first approximation the influence of the potential field is not very
large.

Measurements of the heat conductivity coefficient have been performed
by U b b in k 7), who investigated 4He, and by C hallis8), who studied both
gases. Viscosity measurements of 4He have been done by Van I tte rb e e k
and K eesom 14), Van I tte rb e e k , Schapink, Van den Berg and Van
B eek9), and Becker, M isenta and S chm eissner10 * * *). The latter have
also investigated 3He and some mixtures of 3He and 4He. All these ex­
periments were limited to the temperature region above 1.3°K.

By means of a 3He-cryostat we were able to measure the heat conductivity
coefficient at lower temperatures. For 3He we extended the region of
measurement to 0.5°K and for 4He to 0.9°K. The former limit was caused
by the operating characteristics of the 3He-cryostat, the latter by the
fact that the vapour pressure of 4He below 0.9°K is so low, that Knudsen
effects appear. Finally we also made some preliminary measurements with
a 50% 3He-4He mixture.

2. The method. The heat conductivity coefficient, A, is defined by the
general heat conduction equation

J  =  —A grad T
where J  is the heat current density and T  the temperature. If the tempera­
ture gradient is only in one direction, then

J x  =  — A(dT/cU),
and if A is a linear function of T  in the temperature region AT  where AT
must be small with respect to T, we have

J x  = -l(ATIAx).
The total heat current through a surface A normal to ƒ is

J A = Q  = -XA(AT!Ax),
AxjXA is called the heat resistance R, and

AT  =  RQ.
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This formula is analogous to Ohm’s law for an electric circuit. To calculate
A:the following quantities must be measured:
1) The total heat current Q.
2) The temperature difference A T.
3) The factors A and Ax.

For stationary measurements of the heat conductivity coefficient there
are two methods: the wire method and the plate method. An apparatus
according to the wire method consists of a wire W at the axis of a cylinder
c (fig. 1). A known current through the wire causes the desired amount of

_ _ _ _ _ _ _ _ _ _  w
L

Fig. 1. Wire method. Fig. 2. Plate method.

Joule heating, and by measuring the resistance of the wire its temperature
is determined. The cylinder wall is kept at a constant temperature. A plate-
method apparatus consists of two parallel horizontal plates (fig. 2) of which
the upper one u is heated and the lower one I kept at a constant temperature.
During a long time the wire method was considered as the best one for heat
conduction experiments, but it has some important disadvantages that can
be avoided if one uses the plate method in a correct way. The disturbing
effects in both mèthods are
a) The amount of heat, that flows away through the frame of the apparatus

and not through the gas.
b) The temperature jumps between the gas and the wall.
c) The amount of heat transported by convection.

These effects will be discussed for both methods.
The wire m ethod, a) When heat is supplied to the wire, part of it is

carried off by the wire itself. If the heat conductivity of the wire is known,
one can calculate this quantity in principle, but end effects make this rather
difficult. To eliminate these, W eber used contacts s attached to the wire to
measure the potential difference over that part of the wire along which no
temperature gradient was present, (fig. 1).

b) If the energy exchange between gas molecules and the wall is not
complete at a collision, a temperature jump between the gas and the wall
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arises. K n u d sen  defined an accomodation coefficient

a =  (Ei — E$I(E'\ — £ 2)»

where Ei, E'i and £ 2  are the mean energies of the gas molecules, respectively
after collision with the wall as it happens in reality, after collision with the
wall with complete energy exchange, and before collision with the wall.
S m olu ch ow sk i found for the temperature jump at the wall the formula,
AT*  =  (—15/2t)(2 — a) 12a) L dT/dx =  —y(dTldx)w, where L is the mean
free path and (dT/dx)w is the temperature gradient in the gas near the wall.

In the wire apparatus dT/dx =  —AT/x ln(R/r), where R atid r are the
radius of the cylinder and the wire respectively, x is the distance from the
wire, and AT  is the temperature difference between wire and cylinder. At
small x the temperature gradient becomes large, thus ATy, is large. One
can correct for this effect by measuring at different pressures, so that the
mean free path changes. So one gets different temperature jumps. This must
be done at low pressure to get a rather large value of L.

c) It is very difficult to avoid convection in the wire method, because
density gradients arise perpendicular or opposite to the gravitational field.
One can try to correct for it by measurements at different higher pressures,
but it is difficult to separate between a higher conductivity caused by
convection or by a real pressure dependence, and in fact here one is con­
fronted with the most important disadvantage of the wire method.

T he p la te  method,  a) Part of the heat supplied to the upper plate u
(fig. 2) will be conducted through the wall w to the lower plate I. There
will not be such a heat flow, if a part of the wall is at the same temperature
as the upper plate. This can be achieved by using a shield ring around the
upper plate, which is connected with I by the wall wi and with u by w2

s.... *2

\ r ï  u ns u—

r --------------

L L

Fig. 3. Plate method with shifeld ring. Fig. 4. Plate method with shield plate.

(fig. 3). This shield ring is heated till it has the temperature of u. In that
case all heat supplied to the upper plate will go through the gas to the lower
plate in a parallel pattern. One can also try a shield plate above the upper
plate (fig. 4) like U b b i n k 7) did, but this construction is more likely to
induce convection.

b) The temperature gradient between two parallel plates is the same
everywhere if the heat conductivity coefficient is constant. Therefore
temperature jumps at the wall are much smaller than in the wire apparatus
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with the same temperature difference across the gas. As will be shown a
temperature jump is equivalent to an extra heat resistance, which in the
first approximation is independent of the resistance between the plates.
One can eliminate this effect by varying the distance. Then the variation
in heat resistance is only caused by the variation of the distance across the
gas.

c) The plate method is very suitable for avoiding and for detecting con­
vection. If the upper plate is warmer than the lower one, a density gradient
in the direction of the gravitational field is established. In this case there
will be no convection. Only corner effects may remain where the upper plate
meets the wall. These are avoided by the shield ring around the upper plate,
which is mounted in such a way that no sharp temperature gradients occur
at the edge of the upper plate. This is not the case when the shield plate is
situated above the upper plate. Since convectioh grows with increasing
plate distance, it can be detected by varying the plate distance. At room
temperature the plate method has the disadvantage of the long times, that
are needed to reach equilibrium -  this is caused by the high heat capacity
of the plates -  but at helium temperatures this is not important anymore.

From this discussion one can conclude that the plate method is more
favourable than the wire method. Therefore, we constructed an apparatus
consisting of two plates and a shield ring with a mechanism to vary the
distance between the plates. The following formalism can be set up to
describe the heat currents in this plate apparatus.

We define the quantities:

Qu as the amount of heat supplied per second to the upper plate.
Q\ as the part of Qu, that is transported through the gas to the lower plate.
Ql* as the part of Qu that is transported along the wall and via the shield

ring.
Qs as the amount of heat supplied per second to the shield ring.
Ql as the part of Qs that flows to the lower plate.
Ql1 as the part of Qs that flows to the upper plate.
Ri, f?2 and R$ are the heat resistances respectively between: upper and

lower plate, upper plate and shield ring, and shield ring and lower plate.

Tu, Ts and Ti are the respective temperatures of the upper plate, shield
ring and lower plate.

As has already been shown a heat conduction apparatus can be described
analogous to an electric circuit, where AT  corresponds to the potential
difference, R to the resistance, and Q to the current. A diagram of the
circuit is shown in fig. 5. It is possible, using Ohm’s law and Kirchhoff’s law,
to calculate the temperatures Tu and Ts as a function of the heat currents
Qu and Qs. If only the heat input Qu is used, then Tu — Ti = QUR where R
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Fig. 5. Electrical analogon of the heat conduction cell.

is the substitution resistance defined as \/R =  l/Ri +  l/(i?2 4~ Rs)- From
this it follows:

^ 1 (^ 2  +  R 3 )
(T* 0

Qu
Qu-

Ri 4- Rz 4- R3
The rise of T 1 caused by Qs is calculated in the following way:

(T, -  T ,)y. = Q]R3 = Qll(R1 + R2) 1 att *3
OJ + ÖJ1 =  Qs J

The current QJ1 flows through Ri, so

QY

(Tu -  r ,u
ê«=o

RxQin

Rl +  -̂ 2 +  R3

R1R3

Qs

Ri +  ^ 2  4- R3
Qs-

The total temperature difference

Ri(R* 4- *a)T u - T i
Ri R3

Qu 4*

R1R3
Ri +  R2 4- R3 0 )

In the same way the temperature Ts — T 1 can be calculated.

T _  r  = *»(*! + Rz) Ö 4- RlR*
Ri -T f?2 4" R 3 Ri 4~ R3 4~ R 3

Qu- (2)

From (1) and (2), it follows that if Tu — Ts =  0,

Tu - T i  =  QuRi- (3)

In that case all heat supplied to the upper plate will be transported through
the gas between both plates. From (1) and (2) it can also be concluded that,
if Ri, R% and R 3 are independent of the heat currents, Tu and Ts are linear
functions of Qu and Qs.

During the measurements it is impossible to realise exactly the state, where
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Tu equals Ts, because of the use of nonidentical carbon thermometers, for
which the complete calibration curve could only be calculated after the
measurements. We used a graphical method to accomplish this. While Qu
is kept constant, Tu and Ts are measured at different values of Qs- On a
graph one gets now two straight lines, Tu(Qs) and TS(QS). At the point of
intersection Tu equals Ts.

The heat that is supplied by the heater to the upper plate is called Qu.
This is a known quantity. However, when the outer He bath is warmer
there is always a small unknown heat leak from the outer He bath to the
upper plate and the shield ring. This quantity is called Qo. One must make a
correction for this, and also for the temperature jump. With respect to these
corrections one can write:
Tu - T l =  AT = (Qu +  Qo) Ri =  (Qu +  Qo)(Rg +  Rw) =  ATg +  ATy, (4)
where A Tt is the temperature difference across the gas layer,

ATy, is the temperature jump at the wall,
Rg is the resistance of the gas layer,
Ry, is the transition resistance at the wall.

Differentiating (4) with respect to Qu gives
dAT/dQu — Rg -j- Ry/, (5)

because Qo is independent of Qu\ and, further,
8(8ATI8Qu) 8Re

~h------------- sir• (6)

if Ry, is independent of h, where h is the distance between the plates.
Previously we defined R =  Ax/XA as the resistance of the gas between

the plates with separation Ax and surface area A. Therefore Rg =  h/AX.
Differentiating with respect to h gives

dRg/dh = \/AX. (7)

From (5) it follows that, in order to correct for $o, A T must be measured as
a function of Qw

For different Qu, Tu and Ts are measured as a function of Qs. Thus one
gets several sets of two straight lines. If Ri, R2 and Rg are independent of
Qu, the slopes of these lines are equal. This fact enables a more accurate
determination of the lines, and therefore of the intersection points. It
follows from (6) that it is essential to measure at different plate distances.
First A T is determined as a function of Qu for some values of h. The slope
of these straight lines, dAT/sQu, is then plotted as a function of h. The
slope of this line gives l/Ak, from which X can be derived. This method is
only correct if Ry, is independent of h, or in others words, if i?w is independent
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of T.
AT* =  —y(8Tj8x) v ' y_

w Qu —XA (8T/8x) XA ' W

Rw depends on the temperature via y and X, where X is the most important
factor. If X changes strongly within the temperature region AT, this gives
a different I?w at the upper and the lower plate, and also a change in R\.
In both cases this influence works in the same direction, namely a bending
of the line AT(QU). The effects, however, cannot be separated. We have
found that within our accuracy AT(QU) is always a straight line, so that
we can apply the method we developed to calculate X.

3. The apparatus (fig. 6). The heat conduction cell in the apparatus
consists of the upper plate u and the lower plate I, both made of copper.
The surface area of u is 3.46 cm2 at room temperature. A cavity b is drilled
in I, in which the cooling liquid is condensed. In the temperature range
below 1.3°K this is 3He; above 1.3°K 4He is used. The vapour can be
pumped off through tube p, in order to lower the temperature. A copper
shield ring s is mounted around u. It is connected to u by the stainless steel
cylinder w\, which has a wall thickness of 5 X 10-3 cm, and to I by suc­
cessively the stainless steel bellows a and another thin stainless steel cylinder
Wz- Inside wz is a cylinder i made of celleron. This cylinder isolates wz from
the gas between the plates.

In order to vary the distance between u and I, the following construction
was made. The bellows /, which can be compressed or stretched by means
of a micrometer system, are soldered on the top of the vacuum jacket v. The
micrometer system consists of the screws e and h which have a difference
in speed of 0.25 mm. The screw e is mounted on the vacuum jacket, h on the
top of the bellows /. The displacement can be read on the scale g. This
motion is transmitted to the system of the upper plate and the shield ring
by means of the wire w. In this way the upper plate and the shield ring can
be moved up and down with respect to the lower plate, which is rigidly
connected to the vacuum jacket via p and via the thin walled stainless steel
tube n. This tube connects I to a rigid frame work consisting of three
supports r which lead to a separate extra bottom plate t. The entire frame
is fastened inside the top plate of the vacuum jacket.

The vacuum jacket itself encloses the whole system and can easily be
removed, while the apparatus remains supported. One turn of the micro­
meter gives 0.25 mm change in plate distance at room temperature. At the
operating temperature we must correct for the shrinkage of e and h. This
correction must also be applied to the surface area of u.

The gas is introduced between the plates through the capillary c with
1.8 X 10-2 cm inner diameter. Outside the vacuum jacket it widens to a

8
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Fig. 6. The apparatus.

tube with 0.4 cm inner diameter enabling the evacuation of the apparatus
in a short time, and a quick establishing of the pressure equilibrium during
the measurements. Inside the vacuum jacket the capillary must be narrow
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to reduce the heat leak into the heat conduction cell from the outer 4He
bath. The vacuum jacket can be evacuated through a tube that is not shown
in fig. 6.

Hu, Hs and Hi are heaters consisting of 50 jx constantan wire, wound on
a small copper bar. In order to achieve good thermal contact between the
wire and the bar, the heaters are covered with a thin layer of lacquer. Tu,
Ts and Ti are carbon thermometers of the De Vroomen type in which a
layer of carbon is deposited on a copper bar. The copper bars for the heaters
and the thermometers are soldered in holes, drilled in the plates and the
shield ring. The electrical connections from the heaters and thermometers
to the vacuum tight, four-wire electrical seals d are made from thin niobium
wire, which is superconducting in the temperature region where we measured.
The requirements for connecting wires within a vacuum jacket are a low
electrical resistance and a high thermal resistance; both are fullfilled in the
case of a superconductor. The resistance of the thermometers is measured
with a dc Wheatstonebridge with which the resistance can be measured
with an accuracy of 1 : 104. The thermometers were calibrated from
measurements of the saturated vapour pressures of 3He and 4He. The
temperature scales used were for 4 * *He T58 and for 3He T62. 1 he vapour
pressures were measured with an oil manometer filled with Octoii-S. For
temperature ranges of some tenths of degrees the relation between the
temperature T  and the resistance R of the thermometers could be described
with the formula 10log R = A \ / ( 10log R/T) +  B. The constants A and B were
calculated from the calibration curve. With these values the pioper temper­
ature was calculated for each measured value of R. The amount of heat that
was supplied to the heaters Hu and Hi was calculated by measuring the
resistance of the heaters with a Wheatstone bridge and reading the current
on a milliampmeter. The resistance was corrected for the resistance of
the connecting wires.

For accurate measurements it was necessary to keep the temperature of the
lower plate constant. This was achieved by the following mechanism. An
electronic recorder was used as the zero instrument in the Wheatstone
bridge with which Ti is measured. We provided the recorder with a relay
which closed the heater circuit of Ht when Ti became too low. Then the
lower plate was heated untill Ti again had the right value, and the heater
circuit was reopened. In this way the temperature was kept constant
within 10“4 to 10-5 °K, depending on the temperature region.

4. Results. The results of the measurements are illustrated in the figures.
a) 3He. Fig. 7 gives an example of the behaviour of Tu and Ts as a

function of Qs for various values of Qu- We see, that a linear dependence
exists, and that the slope of the straight lines is independent of Qu. This
proves that Ri, Rz and R 3 are independent of Qu and Qs.
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Fig. 7. Tu and Ts as functions of Qu-
O: Tu a : T,

In section 2 we found that

^ 1 ( ^ 2  4~ R3) R1R3 aTu — T, =  ----- ^ Q -I------------ — ----- Óg
/  +  * 2  +  * 3

and that
T T _  ^ 3 ( ^ 1  4~ ^ 2) f t _______R 1R3 ft

‘ l ~  Ri +  R2 +  R3 Q s+ R 1 +  R 2 + R 3 V “

From these formulas it follows that

8TU R1R3 , dTg _ +  ^ 2)
dQg Ri -f- i?2 4" R 3 &Qs Ri 4" Rz 4" R 3

These derivatives can be calculated from fig. 7. Then from the two equations,
f? 2  and i? 3  can be derived with respect to R\. The result is, that Ri, R2 and
R3 appear to be of the same order of magnitude. This can be understood,
when one observes the surface area A and the thickness Ax across the gas
in the areas between u, s and I. The surface of the area between u and I is
3.46 cm2 and the thickness varies from 0.1 to 1 mm. Between u and s is an
area with a surface of 6 cm2 and a thickness of about 1 mm. The area
between the shield ring and the lower plate, has a surface and a thickness of
the same order of magnitude. The ratio Ax/A is important for R. In all



three cases, this is about the same. The heat conducted by the walls is much
smaller, than that transported through the gas in the different areas.

From fig. 7 we find the temperature Tu, when Tu equals Ts.
I5.1Ct3*K

Fig. 8. A T  as a function of Qu for different values of h.

In fig. 8 the temperature difference Tu — Ti is plotted as function of
Qu for the various values of h. We observe that the dependence is again
linear. It also appears that the lines intersect the Qu axis at a negative value
of Qu- It is negative because of the heat leak Qo, which is about 10-6 W.

The slope of the lines gives dAT/dQu for different plate distances.These
are plotted in fig. 9 and 10 for all temperatures at which we measured. Here

iOO.ict3ci

Fig. 9. 8(AT)jdQa as a  function of h in  th e  case of 3H e for different tem peratures.
A : T  =  0.65°K O : T  =  0.90°K
v : T  =  0.77°K o :  T  =  1.086°K
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again we get a set of straight lines. From the fact that they are straight we
may conclude, that no convection occurs between the two plates. The lines
can be separated into two kinds, those which start with a horizontal part
(fig. 10) and those which do not (fig. 9). The difference is the result of a
change in the apparatus that was made after several measurements. During
the first measurements (fig. 9) the wire w that connects the shield ring with

Fig. 10. ë(AT)jdQu as a function of h in the case of 3He for different temperatures,
o: T  =  0.54°K « : T  =  2.06°K
a : T  =  0.82°K ■: T  =  3.099°K
□ :“T =  1.607°K

the upper bellows was so long that when the micrometer was turned to its
lowest point, both plates touched each other. Turning the micrometer
upwards immediately effected a displacement of the upper plate. After
some measurements it appeared that the connection between wire and
shield ring was not strong enough. Then a better one was made, but now
the wire was about 0.5 mm longer, so that only after about two turns of
the micrometer the upper plate was raised. Since it was difficult to detect
this point exactly, we decided to take h as the displacement of the micro­
meter. It is not the plate distance. For this reason dAT/dQu was a constant
till h became so large that the upper plate was raised. The value of this
constant part will be discussed later. The slope of the h dependent part is

d(dATIdQu) 1 1
8h AX’ °r d(dAT/8Qu) '

A ....dh "

In this relation X' is the value of the heat conductivity coefficient, we should
get using the room temperature values of A and h. In order to correct for
the shrinkage that occurs, we must multiply X' with the factor 1.0027.
Thus X =  1.0027 X'. The final values are tabulated in table I.

In these measurements of the heat conductivity coefficient one is re­
stricted to a rather small pressure range. It was necessary to work at a

13



TABLE I

The heat conductivity coefficient
A for 3He gas

T(°K) A(W/°Kcm)
0.54 4.07 X 10-»
0.65 4.48
0.77 5.14
0.82 5.45
0.90 5.87
1.086 6.84
1.607 9.20
2.06 10.68
3.099 12.50

pressure sufficiently lower than the saturated vapour pressure of 3He,
but not so low that Knudsen effects disturbed the experiment. In the
temperature region between 0.54°K and 1°K we used pressures varying from
60 [a Hg to 200 (x Hg. At 3°K the pressure could be chosen at several milli­
meters Hg. We always performed measurements at different pressures, and
were satisfied to find the same value of the heat conductivity coefficient.

b) 4He. Generally the behaviour of the heat currents as a function of
temperature was the same at the 4He as at the 3He measurements, which

Qu=a66,io"4w

0.815

Qu=5.74,10‘6w

0.815 0u=3.O4«1O W

0.811

Fig. 11. Tu and T,  as function of <J,, in  the  case of 4He, w ith  a  superfluid film.
o: Tu a : T,
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means that Tu and Ts depended linearly on Qs. An- important exception,
however, was observed in those experiments, where a superfluid unsaturated
4He film was adsorbed on the walls of the apparatus. This phenomenon
occured at the lowest temperatures, where we were obliged to work at a
rather high value of P/Po in order to avoid mean free path effects. P  is the
pressure of the gas and Pq the saturated vapour pressure at the operating
temperature. The dependence of Tu and Ts on Qs is shown in fig. 11.

The curvature of the graphs is explained by the properties of a mobile
superfluid 4He film that will be discussed extensively in chapter II. Under
the influence of the heat supplied to the shield ring and the upper plate
the film flows from the lower plate along the walls to the heated plates,
where it evaporates. So the heat will be carried off by normal heat con­
duction and by the circulation mechanism that is created by the film
resulting in a lower temperature difference with respect to the lower plate
than without the circulation. When the film velocity reaches its critical
value, friction occurs and so the fraction of the total supplied heat that
is carried off by circulation diminishes and the temperature differences
will start to rise steeper. With respect to the formalism that was developed
to describe the distribution of the heat currents this means that i?2 and R3
become dependent on Qs and Qu. The effect of these curved lines results in
a less accurate determination of the intersection point where Tu equals T,.
This was especially true when the slopes of both curves near the intersection
points were almost equal. Moreover, the intersection point was not always

hig. 12. 8(AT)ldQu as a function of h in the case of «He, a t different temperatures
■ : r =  0.907°K a: T  =  1.547°K
•  : r = 1 . 1 0 1 ° K  a : T  =  2.08°K
v : T =  1.304°K o : T  =  3.01°K
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reached, because it became difficult to keep Ti constant at the very high
values of Qs that were sometimes necessary to bring the shield ring and the
upper plate at the same temperature. In this instance the curves had to be
extrapolated. In principle the film has no influence on the method used to
derive X, because Ri stays independent of the heat currents. This follows
since Ri  does not include the resistance of the film adsorbed on u, the
direction of the heat current being perpendicular to the upper plate. Thus
T u — Ti will be a linear function of Qu, when Tu equals Ts. This is in a-
greement with our results.

In fig. 12 dATIdQu is plotted as a function of h for various temperatures.
At the low temperatures the vertical scale is shifted to avoid overlapping
of the almost parallel and coinciding lines. The values of X derived from
this graph are given in table II.

TABLE II

The heat conductivity coefficient
A for 4He gas"

2T K ) A(W/dKcm)
0.907 3.07 X 10-5
1.101 3.34
1.304 3.39
1.547 3.48
2.08 4.05
3.01 6.27

For 4He the pressure range was still more limited then in the experiments
on 3He, because the saturated vapour pressure of 4He is much lower than that
of 3He. At 0.9°K measurements were taken at several pressures between
10 and 30 /x Hg. These all gave the same heat conductivity coefficient
within a few percents. As is shown previously the accuracy was smaller at
the higher pressures because of the superfluid film. Between 1.1 °K and
1.55°K we varied the pressure from 40 up to 100 (jl Hg. At 2.08°K it was
0.4 mm Hg and at 3.01°K 2 mm Hg. Finally we measured at T  =  0.8°K.
Here the saturated vapour pressure is 12 fx Hg. At this temperature we
found a pressure dependence of X, and values much lower than were predicted
by the theoretical calculations. For instance at P =  3// Hg we found
X =  1.45 X 10~5 W/°Kcm and at P  =  9 (x Hg 1 =  1.8 X 10~5 W/°Kcm.
The pressures were measured on a calibrated pirani-type manometer, and
were corrected for the thermomolecular effect using the graphs calculated
by R o b erts  and S y d o riak 11) from the Weber-Schmidt equation.

c) 3He-4He m ix tu res. Several experiments were performed with a
50% 3He-4He mixture. Here the behaviour was analogous to the experiments
with pure 3He. The results are given in table III.

The constant value of dAT/dQu at small h is caused by the fact, that a
small gap remains between the upper and the lower plate, when the upper
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TABLE III

T h e  h e a t  c o n d u c t iv i ty  co e ffic ie n t
A fo r a  5 0 %  3H e -5 0 %  «H e

g aseo u s m ix tu re

T ( ° K ) A (W /°K cm )

0.531 3.81 x  10-5
1.011 5.6
1.522 6.13
2.080 6.78
3.009 8.75

plate is in this lowest position. This is probably caused by a thin rim of the
solder, with which the wall is fixed in the lower plate and that lies between
the shield ring and the lower plate. The variation of this value of dAT/dQu
with the temperature is in reality a pressure dependence, for the lower the
temperature the lower the pressure has to be. This pressure dependence was
checked by doing some measurements with different pressures at the same
temperature at h =  0.

5. Theory. The amount of heat that is transported through a gas is
directly related to the transport of kinetic energy by the molecules. If we
restrict ourselves to a system with a temperature gradient only in the
2-direction, the amount of heat transported through a surface of unit area,
which is perpendicular to the temperature gradient and which moves with
the average velocity of the molecules is

J z =  n\m V2Vz =  —A dT/dz (1)

where n is the number of molecules,

m is the molecular mass,

V is the peculiar velocity.

To make a theoretical calculation of X, the average in (1) must be evalu­
ated. The best method for doing this is by the Chapman-Enskog method,
which is based on solving the Boltzmann equation. The details are given in
Chapm an and Cowling, ‘‘The mathematical theory of nonuniform
gases” 12). The formula for the heat conductivity coefficient of a gas of low
density is

X 5KT
~  jCy 8.Q(2’2)(T) ^

where
oo

_  jvs {zgrTƒ “ p ( -  w ) ds ®
0
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where /.i : the reduced mass of the colhding particles
g : the relative velocity of the colliding particles
K : the Boltzmann constant
Q(2)(g): the total collision cross section
cy: the specific heat per gram at constant volume.

The total cross section is a weighted average of the differential cross sections,
which can be calculated from the two particle problem. Since in our ex­
periments we are concerned with 3He and 4He at low temperatures, the
two particle problem must be solved using quantum mechanics.

The quantum mechanical differential cross section a(g, X). sin % d/, where
% is the scattering angle, can be determined by solving Schrödinger’s equation
{h2l2fi) A2xp +  (\ng2 — V) =  0, where V is the intermolecular field, which
is assumed to be angle independent. It appears that the radial wave functions
undergo phase shifts rji(k) with respect to the unperturbated problem. These
r)’s are functions of the orbital angular momentum quantum number I and
the wave number of relative motion k =  fig/h, and they dèpend on the
potential model that is used. The phase shifts are the only features of a
collision that enter in the final quantum mechanical expressions of the
transport properties. One finds that

a{k, x) =  P 2 2  (21 +  1) exp{2tqi(k) — 1} P{(cos /).
i

This leads to the expression for the total cross section

QV)(k) =  2ji/ ( \  — cos2/) <x{k, x) sin *d* =
o

=  (2* /* 2) S  (/ +  1) • (/ +  2){l +  f) sin2{^+2(£) -  r,i(k)}.
i

In order to calculate QW(k) only the phase shifts must be calculated for
different values of I.

For indistinguishable particles, which obey Bose Einstein statistics and
have zero spin, I is even. This is designated by Qg E . For indistinguishable
particles, which obey Fermi Dirac statistics and have zero spin, I is odd.
This is similarly designated by QE D.- And I is both even and odd for dis­
tinguishable particles.

If the spin S ^  0 the matter is more complicated. For atoms consisting of
an even number of particles the total wave function must be symmetrical,
according to the Ehrenfest-Oppenheimer rule13). In our problem we have to
deal only with the radial wave function and the spin wave function of the
total wave function. Therefore the product of the spin- and radial wave
functions must be symmetrical. For a system of two particles with a nuclear
spin, every state is (2s +  l)2 — fold degenerate. Of these different spin
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wave functions (s -f l)(2s -f 1) are symmetrical, and s(2s +  1) are anti-
symmetrical. To get a symmetrical total wave function the former must be
multiplied by a symmetrical radial wave function and the latter with an
antisymmetrical one.

Therefore the states with a symmetrical radial wave function appear with
a weight (s -f- 1) / (2s -  1) and those with an antisymmetrical one with the
weight s/(2s +  1). This gives for the total cross-section for B.E. particles
with spin s :

<2*b .e . —  2s +  i ^ b .e . +  -J -+ T  - (4)

It is clear that for atoms consisting of an odd number of particles, i.e. those
with an antisymmetrical total wave function, the weighting factors have
changed place. This gives the expression

Qs _
F.D. —

S

2s 1 Qb .e .
s +  1
2s +  1 Q0

F.D.* (5)

Since 4He has an even number of particles and zero spin, we get from
formula (4), Q4He — Q%.e. — Qb .e .- Thus in this case the phase shifts rji(k)
have to be calculated only for even I. As 3He has an odd number of particles
and spin s =  \  formule (5) gives Q,He =  Q̂ , D =  %Qb.e. +  IQf.d.- Now the
phase shifts rji(k) have to be calculated for even as well as odd values of i.
This symmetrization of the wave functions causes an important difference
between the transport properties of 3He and 4He.

Moreover a further difference between these gases is the fact that 4He has
a real or virtual stationary state at very small relative wave numbers, which
is not the case with 3He. This means that at / =  0 and when k is very
small r]o{k) is proportional to \n  — ka for 4He, where a is the diameter of the
atom. This leads to Q<2> ~  k~2. If one introduces this in the formulae (2) and
(3), it is easily seen that A ~  7"* at T  =  0°K.

In the case of 3He r]o{k) is proportional to Ka. This leads to a constant value
of QW. If this is introduced in (2) and (3) it follows that A ~  at T =  0°K.

Calculations based on this theory have been performed by several authors
for several different intermolecular potentials. Since the interaction potential
is not known with enough precision, a curve is generally assumed of the type
indicated by purely theoretical considerations but with constants that can
be determined experimentally. For the repulsive part either an exponential
term, or a twelfthpower term is used. The attractive part is represented by
a sixth power term, which is related to virtual dipole-dipole interation, and
an eighth power term related to virtual dipole-quadrupole interaction. The
constants that are to be determined are the minimum value of the potential
(e), and the distance between the molecules when the potential is zero (a)
or where the potential has its minimum value, (rm).
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The first calculations of the transportproperties of 4He were done by
B uckingham , H am ilton  and Massey, for several potentials and three
values of the constants that were not well known at that time. Several years
later De Boer calculated the transport properties of 4He using a Lennard-
Jones type potential with 6-12 power laws:

with e =  14.11 X 10~16 erg and a =  2.556 A. These constants are obtained
from a best fit of the second virial coefficient for 4He gas at high tempera­
tures. De Boer calculated as well the first as well as the second approxi­
mation.

In 1951 Cohen and De Boer calculated the transport properties of 3He
with the same potential, and in 1954 Cohen, O fferhaus and De Boer did
it for 3He-4He mixtures. In both cases only the first approximation was
used. B uckingham  and Scriven used an exp — 6-8 potential for their
calculations

e =  14.04 X 10~18 erg and rm =  2.943 A. a =  13.6 and =  0.2. The con­
stants f 1 and are functions of a and /?. They are also derived from the best
fit with the second virial coefficient data at high temperatures. By applying
Keller’s corrections, we calculated the second approximation for this inter-
molecular potential.

K eller calculated the viscosity coefficient of 3He and 4He using a
Lennard-Jones potential, as well in the first as well as in the second approxi­
mation. He used an electronic computer, to be able to compute more phases.
This enables a more accurate calculation of A. The theoretical curves are
drawn in fig. 13 where our experimental values are also shown. In the 4He
case, there is a good agreement between Keller’s and De Boer’s values, but
in the 3He case a rather large difference exists, which is already present in
the phases. This is probably caused by the greater accuracy K eller could
attain.

At the lowest temperatures there is no difference between the results
obtained with a Lennard-Jones potential and those with an exp — 6-8
potential. At higher temperatures the former gives in the 3He case a some­
what higher value, while in the 4He case the difference stays small. It is
clear from the Schrödinger equation, that the influence of the potential
for 3He is larger than for 4He because of the difference in mass between
both isotopes.

In fig. 13 are also shown the values of the heat conductivity coefficient

<p(r) =  4e

<p(r) =  e
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that can be obtained from the experimental viscosity coefficients measured
by Becker, M isenta and S chm eissner.10)

K| K,

*K 40

Fig. 13. The heat conductivity coefficient A as a function of the temperature.
0 : 3He and 4He measured by the authors.
□: 4He measured by U bbink 7).
V: 3He and 4He calculated from the viscosity data of Becker, M isenta and

Schneisner 10)
-------  K i : calculated by Keller, first approximation ®)
-------  K 2: calculated by Keller, second approximation

B-Sf: calculated by Buckingham  and Scriven, first approximation 5).
S2 ' second approximation of the Buckingham-Scriven method, calcu­

lated by the authors, by applying the correction that K 2 makes on Ki.
------- Second approximation calculated by De Boer 2).

• : 50% 3He-4He mixtures measured by the authors.
-------  50%: calculated by Cohen, Off erhaus and De Boer 4).

Comparing our results with the theoretical curves, we observe the follow­
ing facts. Very good agreement exists for 3He below 1°K; above 1°K our
values are lower than the theoretical ones, but we agree with Becker’s
experiments. For 4He our values are somewhat higher than the theoretical
predictions. There is satisfactory agreement with the experiments of U bbink.
Observing our results with a 50% 3He-4He mixture we see that above
2°K there is good agreement with the theoretical values of Cohen, Offer-
haus and De Boer. Below 2°K, however,.a deviation occurs, probably
caused by the fact, that the concentration of 3He in the gaseous phase is
larger than in the layer that is absorbed at the wall — this is analogous to the
concentration difference between vapour apd liquid for a mixture of 3He
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and 4He. This difference from the theoretical curve increases at lower
temperatures, so at T =  0.53°K the heat conductivity coefficient we measur­
ed is almost that of pure 3He, The experiments with 3He-4He mixtures are
continued.
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Ch a pt e r  II

THE ONSET OF SUPERFLUIDITY IN UNSATURATED
FILMS OF 4He AND 3He-4He MIXTURES

Synopsis
The onset of superfluidity in unsaturated 4He films has been measured for several

film thicknesses between 0.8°K and 1.7°K by measuring the critical transport of these
films. Also the supercritical behaviour and the heat resistance between a film and the
wall, the Kapitza resistance, were examined.

For mixtures, which had at room temperature a concentration of respectively 50%,
80% and 90% 3He, the onset of superfluidity was measured between 1.3°K and 1.8°K.
In this region also adsorption isotherms of these mixtures were measured.

1. Introduction. A surface, that is in contact with liquid He II is covered
by a multilayer film, which has superfluid properties. The “Kamerlingh
Onnes effect” (1922)1) (the levelling of the surfaces of helium in two open
vessels, having a common wall) was the first indication for its existence,
although this conclusion was not yet drawn then, but much later in 1936,
when R o llin 2) postulated the existence of the film to explain the anomalous
heatflow in all kinds of experiments. Its properties were examined carefully
by D aunt and M endelssohn3) and later by many others4). The most
important properties are that the rate of flow of a film depends only on the
smallest width of the path and on the temperature, but not on the pressure
head. The experiments led to the concept of a critical velocity, vc, of the
film, which determines a critical mass transfer. The fact, however, that the
critical transfer rates measured by different authors disagree is caused by
the important influence that structure and contamination of the surface
on which it is adsorbed have on the film.

In 1950 Long and M eyer5) discovered, that an unsaturated film often
demonstrates superfluidity too. From their measurements on mass transfer,
and from heat transport measurements by Bowers, B rew er and M endels­
sohn6), Long and M eyer7) and Brew er and M endelssohn8) can be
concluded that above a certain value of the ratio P/P°, where P  is the
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pressure and P° the saturated vapour pressure, superfluidity appears. These
critical values of P/P0, hereafter indicated as (P/P°)c have been measured
by the above mentioned authors between 1.3°K and the A-point of the bulk
liquid and were found to be temperature dependent. At the same time the
critical transfer through such a multilayer superfluid film was measured
by them.

Several authors9) have tried to explain the lowering of the A-point and
with it the possibility of superfluidity in unsaturated films, by calculating
the condensation temperatures of a Bose-Einstein system in samples of finite
dimensions L X L X D, with D <^£. Also G inzburg and P ita e v sk ii10)
developed a phenomenological model analogous to the G inzburg-Landau
theory on superconductivity. In both ways a qualitative description is
obtained.

In heat conductivity measurements of gaseous 2 * 4He the unsaturated film
can introduce a disturbing extra heat transfer as was already mentioned in
our previous article on heat conductivity11). As the apparatus used then
was provided with a 3He cryostat, we were able to measure (P/P°)c values
in it between 0.9°K and 1.3°K; a temperature region that was not studied
before. In this apparatus we also measured the onset of superfluidity in
3He-4He mixtures for various concentrations, of which the results are pre­
sented in reduced phase diagrams. As the apparatus was not designed for
this purpose and especially the geometry was not ideal a second apparatus
Was built consisting of a glass cylinder closed at the top and provided with
a heater, whereas the lower end was in thermal contact with a ®He cryostat.
In this way the apparatus, that is very similar to those used by the previous­
ly mentioned investigators, was suitable to measure not only the onset of
superfluidity, but also the critical transfer rates for various values of P/P°.
As a third result we could derive the heat resistance between the film and
the solid wall - the Kapitza resistance. It is still impossible to give our
results as a function of the thickness of the film, as is desirable in order to
make a comparison with theoretical calculations, due to the fact that good
adsorption isotherms in the temperature region below 1.3°K are available
neither for 4He nor for 3He-4He mixtures. In the supercritical region we
examined the dependence of the transport on the gradient in the chemical
potential.

2. The method. First we shall describe the heat transport mechanism in
a vessel of which the walls are covered with an adsorbed helium film.

Let there be a cylinder c as in fig. 1 with a smooth inner surface and such
dimensions that the heat resistance, when filled only with gas, is high.
The bottom b is kept at a constant temperature, the top t can be heated by
the heater h. When no film is present on the wall, neither superfluid nor
normal fluid, the heat supplied to t will be carried off by normal heat
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Fig. 1. Scheme of the film flow apparatus; arrows indicate the circulation. Explanation
of the symbols is in the text.

conduction through the gas. When an immobile film is adsorbed, this film
will partly evaporate at t, but the loss cannot be replenished, so that a steady
state equivalent to the first is obtained. However, when a superfluid mobile
film is present the loss caused by evaporation will still be replenished, so
that a mass current takes place in the gaseous state from the top to the
bottom and through the film back to the top. Due to this convection, the
direction of which is indicated by arrows, only a small temperature difference
appears between t and b. In equilibrium the amount of heat supplied to
t is:

Q =  (L +  TS) m =  TSgrii

where L  is the latent heat, TS the thermomechanical term, Sg the entropy
of the gas and m the amount of mass that is transported per second. As the
film is bound to a maximum velocity vc, only a limited amount can be
transported mc — 2nrvcdps where r is the radius of the tube, d the thickness
of the film and p8 the density of the superfluid part of the film. So it is
easy to see, that when the amount of heat Q becomes higher than a certain
critical value Qc, more helium is evaporated than can be supplied by the
film. So the convection comes to an end in the upper part of the cell and the
temperature difference suddenly starts to rise. When the convection has
died out, here the temperature difference is determined by the normal heat
conduction.

From this mechanism one can obtain two methods to measure (P/P°)c.
The first consists of measuring the temperature difference AT  between top
and bottom, at a constant small heat input as a function of the pressure.
At equilibrium pressures below (P/P°)c AT  is determined by the heat
transported by the gas and by the accommodation coefficient. As long as the
heat conductivity coefficient of the gas does not depend on the pressure,
AT  remains constant with increasing pressure, till the film on the wall
becomes superfluid and AT  suddenly decreases, because now the convection



sets in. This ihethod always gives an error because (P/P°)c is defined at a
zero heat current and this is not realized here. Moreover, when mean free
path effects make that the heat conductivity becomes depending on the
pressure which is the case at low temperatures, AT  decreases already with
increasing pressure, when no superfluid film is present. Thus the point where
superflow sets in is not sharply indicated any more.

The second method is to measure with increasing heat input the critical
heat current for various pressures (fig. 4). Plotting then these Q as a function
of P/P° to extrapolate to =  0 gives the value of P/P° where the film
becomes superfluid (fig. 5).

Fig. 2. Scheme of the first apparatus, the same symbols as in figure 1.

The first method was used to determine the onset of superfluidity in films
consisting of 3He-4 * * * *He mixtures and originally also for 4 *He. As the apparatus
(schematically shown in fig. 2) was constructed in such a way that the
thermal resistance of the gas was low, AT  could not become very large.
Moreover, since its walls, consisting of bellows, were not smooth and had
varying diameters, it was not suitable for correct measurements of
Therefore a new apparatus was built to use method two. The construction
is given in section 3.

3. The apparatus. As the first apparatus is fully described in chapter 111),
we will discuss here only the second one. A drawing of it is given in
fig. 3. It consists of a glass tube a with inner diameter of 4.7 mm and
length 5 cm. It is closed at the top with the copper block k. To this block
are soldered the carbon thermometer of the de Vroomen-type e and the
heater /. The glass tube is at its lower end connected to the copper block I,
in which are drilled the holes b and c; è is a part of the adsorption space.
This space is filled through the stainless steel tube d. Originally it was a
capillary with diameter 180 p.. Later it was replaced by a tube with inner
diameter 2 mm, to avoid a disturbing pressure drop over it as will be discussed
in the next subsection. Space c is a 3He-cryostat, that is pumped off through
the stainless steel tube g; n and m are respectively a thermometer and a
heater. The part h is the top plate of the vacuum jacket that surrounds the
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apparatus. Here d and g pass into stainless steel tubes with £ inch diameter.
The adsorption space is outside the cryostat connected to a manometer
system consisting of an oil manometer filled with Octoil-S, (the levels are
read with a cathetometer), a Pirani gauge, (the scale was calibrated against
the oil manometer), and a Mac Leod gauge. All pressures were corrected for

Fig. 3. Second apparatus. Explanation of the symbols is in the text.

the thermo-molecular pressure difference according to graphs calculated
by R oberts  and S y d o riak 12) from the W eber-Schm idt equation13).

In our first measurement a 180 p, capillary connected the adsorption space
to the |  inch filling line, to diminish the heat leak. With this construction
we found that below 1°K the critical heat currents were smaller than at
higher temperatures at the same value of P/P°. This could only be understood
by assuming that the value of P  we measured was too high. This is caused
without doubt by the fact that a temperature gradient exists along the
capillary, since the outer bath is at 1.3°K and the adsorption space is at a
lower temperature. As a consequence it forces the film that is adsorbed in
the capillary to move to the higher temperature .There it evaporates and gas
has to flow back and to recondense in b. When the gas has a low pressure a
relative large pressure difference is necessary to transport the gas back,
especially when the mean free path becomes of the order of the diameter of the
the capillary. So at the top of the capillary the pressure, which is the pressure
we measure, is higher than in the adsorption space. Therefore we replaced
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it by a tube with 2 mm diameter. We indeed measured the same critical
heat currents at much lower pressures already. Finally this wide tube had the
disadvantage that we were not able to measure at high values of P/P° at
the lowest temperatures due to the heat leak which was introduced.

4. The results. In fig. 4 an example is given of the behaviour of the
temperature at the top of the glass tube as a function of the heat input Q for

O.IO
0.20

0.98

0.9 6

0.92

0.90
O Ó  . 2 0 lOO lO W 120

Fig. 4. The temperature of the top as a function of the applied heat input Q at
T — 0.9°K for several values of P/P°.

arrows indicate the critical heat input Qc
_  _ _the Kapitza temperature drop between the wall and the adsorbed helium.

TABLE I

T =  0.812°K T - 0.904° K T =  1.000°K T =  1.167°K

p /p o 0 . p /p o 0c p /p o 0 . p /p o 0 c
0.088 2.5 x  10-« W 0.105 0.5 x lO-» W 0.162 0.5 x lO-* W 0.30 2 x l0 - «  W
0.10 4.0 0.131 2 0.20 2 0.45 5
0.15 5.9 0.197 5 0.275 7 0.57 23
0.22 12 0.268 14 0.39 20 0.68 40
0.38 32 0.36 18 0.525 40
0.54 68 0.509 44 0.74 95

0.665 78

T -  1.29°K T =  1.51°K T =  1.72°K

P/P» 0 c p /p o 0 c p /p o 0 .
0.60 6 x10-«  W 0.70 1 x 10-0 W 0.92 12XlO-®W
0.655 12 0.795 4 0.96 40
0.75 40 0.85 8
0.775 47 0.89 32

0.96 96
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lO ' w
0.9 °K/

1.17°K,

O P/P° 0 .2 0 .4  0 .6  0 .8  1.0

Fig. 5. The critical heat input Qc versus P/P° at several temperatures.

1.7 °K 1.90.7 T 0.9

Fig. 6. The critical heat input Qc versus T  at several constant values of P/P°.
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different values of P/P°. One sees that all curves have a coinciding linear part
up to a certain value of Q, where the temperature starts rising more rapidly.
This value of Q is called the critical heat current Qc. In the graph it is in­
dicated by an arrow. The linear part that is associated with the Kapitza
resistance will be discussed in a following section. In table I and fig. S are
shown the critical heat currents Qc as a function of P/P° at different tempera­
tures. Fig. 6 shows Qc as a function of T  at constant P/P°.

1.8 °K  2.00.6 T 0 .8

Fig. 7. The onset of superfluidity expressed in values of P/P°, (P/P°)c, versus T
A Long and M eyer 7)
□ B rew er and M endelssohn 8)
O this article

TABLE II

T(°K) ( F /P ° )  e
0.812 0.055
0.904 0.10
1.000 0.15
1.167 0.27
1.29 0.45
1.51 0.65
1.72 0.84

Fig. 7 gives that value of P/P°, where the superfluidity sets in, (P/P°)c, as a
function of the temperature. These values are also given in table II.

The 1958-4He scale and the 1962-3He scale were used to calculate the
temperatures and the saturated vapour pressure of 4He at the temperatures,
where a 3He-cryostat was used.

5. Discussion. From fig. 7 it follows that the onset of superfluidity in
unsaturated films shifts to lower temperatures with decreasing thickness.
It also shows that already very thin films, with a thickness corresponding
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to a value of P/P0 of a few percents get a superfluid character. Although
no adsorption data on glass at temperatures below 1.3°K are available,
we suggest, that in this case the film can be only one layer thick, if the
first layer of very high density, which is probably solid, is disregarded.

Good agreement is found between our measurements of the onset of
superfluidity and those of previous authors in the higher temperature region.

There is also agreement between our values of Qc and theirs, except at
1.3°K, where our values are larger. This can have two reasons. The first can
be found in the roughness of the surface which most likely is different in
each experiment even if the material is the same. As, however, at higher
temperatures agreement is found this argument has very little value.
Another possible reason can be located in the measuring of the pressure.
As already mentioned in § 3 we found at the lowest temperatures a strong
dependence of the Q versus P/P° relation on the diameter of the filling
tube between the measuring cell and the top of the vacuum jacket,
which was caused by filmflow as a consequence of the temperature
gradient along it. If the filling tube is too narrow a pressure gradient is
produced so that too high a pressure is measured. The difference can be
more than a factor 2. The same phenomenon can happen in an apparatus
in which measuring cell and the outer 4He bath are at the same temperature,
but now if the filling tube to the top of the cryostat has too small a diameter.
In the part of this tube above the liquid helium level a film flow also will
occur as a consequence of the temperature gradient there, which will lead
to a higher pressure in the manometers. In the publications of Long and
M eyer7) and Brew er and M endelssohn8) the diameter of their filling
tube is not mentioned although it is indicated with the word capillary.
Especially at low pressures the effect is large. So possibly it can explain the
difference between their results and ours.

Some com m ents on th e  ca lcu la tio n  of vae from Qc- As already
stated Qc =  2jirTSgpBdvSo where r the radius of the glass tube, T  and Qc
are well known quantities and Sg the entropy of the gas phase easily can be
calculated. Badly known are the superfluid density pa and the thickness of the
film. Let us at first consider pB. For bulk He II in a first approximation one
may write pB/p =  1 — S/S*. This procedure can also be applied to an
unsaturated film, but the question is, what has to be taken as the 2-temper­
ature; the “peak” in the specific heat, or the onset of superfluidity for the
thickness in question. Between both temperatures there is a remarkable
difference, which has been explained by Brewer  e.a.29) by means of
surface waves that have a zero energy gap, and so thus a zero critical
velocity in the region between the mentioned temperatures. This means
that pB is zero there. So a possible way to express pB is by means of
Ps/p =  1 — 5/Sonaet, where Sonset is the entropy of the film at the tempera­
ture where the superfluidity sets in.
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As Tonaet is lower than Tx, Sonset will be lower than Sx -  the subscript A
indicates here the specific heat peak which leads to a value of vBc, that is
about a factor of two larger. If one treats the experimental data in this way
values of vBo can be derived which are proportional to the thickness and are
of the order of 100 cm s-1 to 300 cm s-1 for T  <  1.2°K. For the thickness
of the film we used values derived from Brew er e.a.29).

Long and M eyer7) applied a rather simplified model. They plotted Qc
versus the number of layers v and said 8Qc/8v is the differential amount of
heat carried per added layer. That means that there are some immobile
layers with upon them purely superfluid layers. As Qc is almost a linear
function of v at least above T  =  1.5°K the velocity of each added layer
remains the same in this case. Long and M eyer claim a variation of maximal
30%, but observing their graphs, we get the impression that for higher
thicknesses the slope changes with more than a factor two. Applying this
procedure on our measurements gives velocities of the same order of magni­
tude, as the other method. The accuracy, however, is very small.

D iscussion of th e  lin ea r p a r t of the  AT  versus Q curve. As
stated already in § 4 a feature of fig. 4 needs attention, because for all values
of P/P° the temperature of the top of the glass tube rises with the same slope
with increasing Q. As inside the apparatus the temperature can be expected
to be constant because of the superfuidity of the film, this linear tempera­
ture rise must be found in the heat resistance between the wall and the film.
In experiments with bulk helium this resistance between helium and wall
is known as the Kapitza resistance. Although many experiments have been

0.08
0.06

0.04

0.02

0.008
0.006

0.004

0.002

0.001
0.4  0 .60 .81.0 1.5 2.0 3.0

Fig. 8. A double logarithmic graph showing the inverse of the Kapitza resistance
versus T.

O experimental values with exponent 2.4
— — — theoretical values of K h a la tn ik o v  with exponent 3.
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done on this subject14) up to the present time a good explanation of this
phenomenon has not yet been given. From our results can be concluded,
th a t also for the thinnest films the effect occurs, so th a t most probably this
tem perature jum p m ust be located between the wall and the first layer. In
fig. 8 we have drawn the values of the inverse of £ 0 dTjdQ = R k -  see also
table I I I  -  as a function of the tem perature -  both on a  logarithmic scale.

TABLE III

T(°K) 1 /Rk W/°K cm1
0.812 0.012
0.904 0.018
1.000 0.019
1.167 0.026
1.29 0.036
1.51 0.052
1.72 0.074

Here 0  is the surface of the copper block th a t closes the glass tube a t the
top. The factor two arises from the fact, th a t the heat current twice passes a
transition plane between solid and film, once a t the top and once a t the
bottom  of the cell. From the graph follows a P 2-4 dependence on the temper­
ature. This is what is generally found for copper with a normal rough
surface. The dotted line is the theoretical prediction of K h a la tn ik o v 15),
which shows a bad agreement with our points. The absolute values of the
Kapitza-resistance measured by us are of the same order as those measured
by F a i r b a n k  and W ilk s 16), bu t higher than  those found by K u a n g
W ey  Y e n 17).

D is c u ss io n  of th e  n o n l in e a r  p a r t  of th e  AT  v e rs u s  Q c u rv e .
In  section 2 we stated th a t as soon as the critical transport is reached a
sudden tem perature rise would occur. From our measurements we find,
however, a rather gradual one. The tem perature difference AT  along the
film — i.e. the tem perature difference between upper and lower p late minus
the tem perature jum p caused by the K apitza resistance -  rises exponentially
with the extra heat input Q — Qc. We have tried to find some systematics
in this behaviour. The flow of superfluid helium is often found to be governed
by the gradient in the chemical potential /a. As dfi =  —S dT  +  V d P  the
total difference in chemical potential along the film is

T+AT P+AP
Afi =  — /  S AT +  f V  dP .

T P

The dimensions of the glass tube on the wall of which the film flows are such
th a t the pressure gradient can be neglected. So only Tf T+AT S d P  has to  be
calculated. As values for S we used the data  calculated by L o n g and M ey er18)
by integrating the specific heat data  o f F r e d e r ik s e 19), who measured the
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specific heat of unsaturated films adsorbed on jewellers rouge. We calculated
as a function of QjTSg, where Sg is the entropy of the gas phase. As

already mentioned Q =  (L + TSi) 2nr dpBvs where L  =  T(Sg — Si). So

Q =  TSg 2n rdpsvs and QfTS =  2n rdpsvs.

Se is calculated following

Se = R In {(KT)* (ml2jih)]*P}

where K  is Boltzmann’s constant, P  the pressure of the gas, h Planck’s
constant and m the mass of a helium atom.

We found that
A/jl =  A(psvad)n.

It appears that in most cases « = 1 1 .  The factor A is proportional to the
critical transport rate.

A similar behaviour as described above can be found in what some authors
call the region of subcritical flow of saturated helium films, but that we
call already supercritical flow. A tk in s24) gives in a diagram of the frictional
force versus the velocity an example of “mixed flow”, consisting of a
frictionless part up to a certain critical velocity, and a pressure dependent
part, which can raise the velocity above the critical one.

C h an d rasek h ar and M endelssohn25) examined the subcritical flow
in the helium II film by means of thermomechanical film transfer. They
found flow rates that started as a linear function of the heat input, which
means pure superflow, but after this a curved section followed, in which
the dependence of the flow rate on the heat input became slower, till the
flow rate becomes constant. The authors suppose that the geometry of the
apparatus, which causes a radial flow of the film, is the reason of the curved
part.

Experiments on film flow at low pressure heads have also been published
by S ek i26). He measured the film flow from a surrounding bath into a
beaker as a function of the amount of heat supplied to a heater submerged
in the helium inside the beaker. The results show at the lowest effective
pressures -  i.e. thermomechanical pressure minus height difference -  pure
superflow, till the flow rate reaches a critical value, above which the flow
rate is a linear function of the effective pressure head. At still higher effective
pressures the flow rate rises ever slower, till it becomes independent of the
driving force. It is difficult to make comparisons with our results because
it is impossible to calculate the gradient in the chemical potential from their
data as the temperature differences are not published. But the character of
the results seems to be the same.

In channels with 0.4 cm till 50 [x diameter Van A lphen e.a.21) found a
quadratic dependence of the gradient in the chemical potential on the velocity
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of the superfluid. In slits with width of the order of a micron, W ansink28)
found that the pressure difference along the slit could be described with the
3.45 power of the superfluid transport. This suggests that the exponent is a
function of the thickness and gets larger when the thickness decreases.

6. Theory. Two methods have been applied to calculate the shift of the
A-point in helium films with decreasing thickness. As 4He follows Bose-
Einstein statistics, at a certain temperature the Bose-Einstein condensation
will take place. This means that at that temperature Tc a finite fraction of
all particles will be in the same state. In the case of helium-4 this is the
ground state. London pointed out that the A-phenomenon in liquid 4He is
such a condensation. In principle only in infinite systems a sharp transition
can be defined. When the same procedure as used to calculate Tc in infinite
systems is applied on finite systems as 4He-films a sharp transition cannot
be expected, as at temperatures above Tc the ground state is already
partially filled. As Goble and T ra in  o r80) point out it is better to speak
of a transition region, where the thermodynamic quantities change rapidly.
This region can however be characterised by a transition temperature. For
thin films, that means for a geometry L  X L  X D, where D <^L, these
temperatures have been calculated in the case of an ideal Bose-Einstein
gas9). As helium does not behave as an ideal gas, good agreement with
experiment cannot be expected. A more realistic way is to calculate it for
a non-ideal gas. This was done by Singh and P a th ria . They found a
reasonable agreement with the Long and M eyer data for temperatures far
enough from the A-point of bulk 4He. i.e. for not to thick films. They pointed
out that although in the ideal gas case the boundary conditions are very
important, in the non-ideal gas case they became rather unimportant, but
now the contributions arising from the presence of surface waves on the
liquid surface had to be taken into account.

The properties of helium near the A-point can also be described with the
approach as is applied in the phenomenological theory of phase transitions
of the second order, although it is not quite sure that the A-phenomenon is
such a transition. In this theory the thermodynamic potential is expanded
in a series of powers of an order parameter ip. This was done by G inzburg
and P ita e v sk ii10) in a way analogous to the treatment of superconducti­
vity by L andau  and G inzburg. The order parameter ip is the true wave
function of superfluid helium: ip(x, y, z) =  r] e1*1. The superfluid density and
velocity can be expressed in ip and <p: pa = m \ip\2 and vs =  (h/m) Ftp where
m is the mass of the helium atom. Above the transition temperarure ip is
zero and at the other side non zero. In the latter case the value of ip is de­
termined by requiring the thermodynamic potential to be minimal with
respect to ip. Together with the boundary conditions that |y>| is zero at the
wall as well as on the surface ip can be solved. When this formalism is
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applied to helium films it appears that starting from a certain thickness dc
no solution xp ^  0 can be found for films thinner than dc, so that the film
ceases to be superfluid. As it is a macroscopic theory, it is only valid for
dimensions much larger than the interatomic distance, i.e. for temperatures
not too far from the bulk-helium A-point. The final result for the shift of the
A-point is AT  =  2 X \0~14/d2. For films thicker than 15 A indeed a d~2
behaviour is found but the theoretical values are a factor 3 too small.
Perhaps a better agreement can be obtained by introducing into the calcu­
lations the Van der Waals forces between the helium and the wall.

7. 3He-4He mixtures. In the apparatus we used before to measure the
heat conductivity coefficient of gaseous 3He and 4He1:l) and which was
schematically shown in fig. 2, the onset of superfluidity in films of adsorbed
3He-4He mixtures was studied. As already mentioned in section 2 this
apparatus was not suited to measure critical heat currents because of the
fact that the diameter of the walls was not uniform. Therefore, the temper­
ature difference between the two horizontal plates was measured at a constant
heat input in the upper plate as a function of the pressure in the apparatus.

T = 1.5 °K

T -t .3 ° K

T = I.5°K
X .8 0 ° /o

T -1 .8 °K
X= SO°/o _

T =1.3 °K O—O— OO— O-

4 0  cm octoil15 cm octoil 2 0  30

Fig. 9. The dependence of the change in temperature of the upper plate on the pressure
at a constant heat input, expressed in the change in resistance of the thermometer,

AR, for various temperatures and gas concentrations X
o  measured points
*  onset of superfluidity
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Below the pressure where the superfluidity sets in, the temperature difference
remains almost constant, the conductivity being pressure independent as
long as no mean free path effects take place. But as soon as the filmbecomes
superfluid the temperature difference drops. In fig. 9 this behaviour is
shown for various concentrations and temperatures. Along the vertical
axis we plotted the temperature difference expressed in the change in
resistance of the carbon thermometer. It corresponds to a few millidegrees.

We examined three gas mixtures in which the concentrations of the 3He
at room temperature were respectively 50% 80% and 90%.

As a consequence of selective adsorption neither the concentration of the
film nor that of the vapour phase have these values. However, if one knows the
total amount of 3He and 4He in the apparatus and the amount that is ad­
sorbed, and if one assumes -  we cannot prove it -  that for the equilibrium
of an unsaturated film and its vapour the same concentration ratio’s are
valid as for the liquid-vapour equilibrium, then the concentration of the
films can be calculated, although no high precision can be claimed.

As an example we give here the calculation for a 50% mixture at 1,3°K.
Let the total input be A cm3 N.T.P. Then we can apply the following scheme:

3He 4He total
input (cm3 N.T.P.) b b 2b = A

adsorbed „ P <1 p +  q =  Z
in gaseous state „ b — p b — q

For the concentration of the gaseous phase X g this leads to the equation

b — p 0.5A — p
8 =  2 b - q  — p =  A — Z

A and Z  can be measured.
Now an iteration method gives the concentration of the film.
A bulk liquid mixture in equilibrium with a vapour phase of 50% 3He

should have a concentration Xi  — 2%20). Following our assumption, which
is also based on experiments of Inghram , M eyer and Long21), the con­
centration of the film Xf  would also be 2%. So in first approximation
P = 0.02 Z. At the pressure where the superfluidity sets in, A =  4 cm3 and
Z =  0.6 cm3. This leads to X e =  60%, which corresponds to a X\  value
of 3%. Substitition of p =  0.03 Z leads to X g =  58% and Xt  =  2.5%.
The value of X g =  58% is in agreement with the measurements of the heat
conductivity coefficient of a mixture, that had a concentration of 50% at
room temperature. When one substitutes the result, as published in reference
11, in the theoretical derivation of C ohen e.a.22) this leads to a corresponding
concentration of about 60%, which is within the accuracy of our calculation
given above. Similar calculations have been made for the other concentra­
tions and temperatures to derive Xt.
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The total amount of gas that was used was measured in a pipet system
of known volume at room temperature by measuring the pressure on an
oil manometer filled with octoil-S. The adsorbed quantity Z  was calculated
from the final pressure of the gas after expansion into the apparatus. The
volume of the apparatus was calibrated by expansion of a known quantity
of helium gas from a pipet to the apparatus at room temperature as well as at
the normal boiling point of liquid nitrogen. It appeared to be 6.37 ±  0.05
cm3. Because of this large volume an important correction had to be made
for the non-ideality of the gas at low temperatures. To do this we used the
values of the B-coefficients K eller e.a.23) calculated for pure 4He and 3He
gas and their values for B34. In the usual way we interpolated between these

x=so%

X = 8 0 %

2 0  mm Hg 25

Fig. 10. Adsorption isotherms.
The adsorbed amount, expressed in cm8 N.T.P. versus P  for different gas

concentrations at T =  1.3°K.

T . 1.5 °K

25 cm octoil
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Fig. 11. Adsorption isotherms.
The adsorbed amount, expressed in cm8 N.T.P., versus P  for different gas

concentrations at T =  1.5°K.



5

cm octoil 4 0

Fig. 12. Adsorption isotherms.
The adsorbed amount, expressed in cm3 N.T.P. versus P  for one gas

concentration at T  — 1.8°K.

to get the B-coefficients of our 3He-4He mixtures. The adsorption isotherms
we measured are plotted in the figures 10,11 and 12. We plotted the adsorbed
volume against the pressure P, not against P/P° because P° is not constant
during one series of measurements as the concentrations change with the
pressure. P  is expressed in mm Hg or in cm octoil-S (PHg =  13.85 p octoil-S)
One sees that at low values of P  the adsorbed amount is a linear function of
the pressure.

This might indicate that the gas volume is larger than calculated. The
extra volume calculated from the slope of the isotherms would be about
1 cm3 at room temperature, which is in contrast with the accuracy of the
calibration we made. Moreover, the amount of 4He that has to be withdrawn
from the total input to enrich the 50% mixture to a 58% mixture is of the
same order of magnitude as follows from our adsorption measurements.

TABLE IV

T  =  1.3°K T  -- 1.5°K T  =  1.82°K
(PIP»°)o X t (F/Fa°)o X t (PIP*°U

0.02 .
0.08
0.26

0.055
0.175
0.425

0.045
0.20

0.105
0.33

0.09 0.24

The results are given in table IV.
In the figures 13, 14 and 15 the onset of the superfluidity is given in

reduced diagrams. The vertical co-ordinate is P/Pjj, where P  is again the
pressure of the gas, and P® the saturated vapour pressure of liquid 3He at
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3 h4h.

Fig. 13. Reduced phase diagram at T =  1.3°K.
— — — line of the onset of superfluidity.

*  A-point of the bulk mixture
O measured values of (P/P^)e,
□ partial 4He pressure

4 Hc 3 H c

Fig. 14. Reduced phase diagram at T — 1.5°K symbols see fig. 13
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4 Hc 3 H«

Fig. 15. Reduced phase diagram at T  =  1.8°K symbols see fig. 1.3

the same temperature. The horizontal co-ordinate is the 3He concentration
of the film. The drawn lines are the boiling and dew lines of the liquid
mixtures20). The dotted lines give the onset of superfluidity in the un­
saturated films. At the X  =  0 side they end at the measured pressure of the
onset of superfluidity in pure 4He films. At the other side they are extra­
polated to the A-point in the bulk liquid mixtures. Also the partial 4He
pressure P4 where superfluidity sets in expressed in terms of P4/P3 is plotted.
This appears to be a horizontal line. As, however, the vapour curve is almost
horizontal in this region, this is not surprising.
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SAMENVATTING

In dit proefschrift worden enige traiisporteigenschappen van gasvormig
en geadsorbeerd helium besproken.

Het eerste hoofdstuk behandelt de meting van de warmtegeleidings-
coëfficiënt van. gasvormig zuiver 3He en zuiver 4He, benevens die van een
50% 3He-4He mengsel tussen 0,5°K en 3°K. De meting van deze warmte-
geleidingscoëfficiënten is belangrijk omdat zeer duidelijk quanteuze effecten
optreden, wanneer de De Broglie golflengte vergelijkbaar wordt met de
molecuuldiameter. Bovendien zullen bij een botsing van twee identieke
deeltjes de golf functies gesymmetriseerd moeten worden, zodat de transport-
grootheden afhangen van de statistiek, waaraan de deeltjes gehoorzamen,
nl. Fermi-Dirac statistiek voor 3He en Bose-Einstein statistiek voor 4He.

De warmtegeleiding wordt gemeten tussen twee horizontale evenwijdige
platen. De bovenplaat is omgeven door een schutring, die dient om het
warmtetransport langs de wand te elimineren. De bovenplaat en de schut­
ring kunnen samen op en neer bewogen worden, waardoor de plaatafstand
gevarieerd kan worden. De warmtegeleidingscoëfficiënt wordt bepaald door
het temperatuurverschil tussen boven- en onderplaat te meten, als functie
van de aan de bovenplaat toegevoerde warmte, wanneer de schutring op
dezelfde temperatuur is gestookt. Door bij verschillende plaatafstanden te
meten kan worden gecorrigeerd voor temperatuursprongen aan het plaat-
oppervlak. Bovendien kan gecontroleerd worden of convectie optreedt. Uit
het feit dat de warmteweerstand evenredig bleek te zijn met de plaatafstand,
bleek dat het apparaat convectie-vrij was.

De resultaten zijn, wat betreft de pure componenten, in goede overeen­
stemming met theoretische berekeningen van K eller e.a., B ucking­
ham  en Scriven  en van Mason e.a. De resultaten bij het 50% mengsel
wijken nogal af van de berekende waarde van Cohen e.a. De reden hiervan
is, dat door de selectieve adsorptie aan de wand de concentratie een functie
van de temperatuur wordt, wanneer men van één mengsel uitgaat.

In hoofdstuk II worden metingen van het massatransport door onver-
zadigde 4He films onder invloed van een toegevoerde warmtestroom be­
schreven als functie van de druk boven de film in het temperatuurgebied
tussen 0,8°K en 1,7°K. De critische druk, die nodig is om een film te adsor-
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beren, die superfluide is, werd bepaald. Doordat de adsorptieisothermen
onvoldoende bekend zijn, vooral beneden 1,3°K, kan de dikte van de film
niet exact worden opgegeven. Als relevante grootheid gebruiken we de
verhouding tussen de druk en de verzadigde dampspanning. De critische
waarde hiervan is bij 0.8°K reeds gezakt tot ongeveer 0.05. Boven 1,3°K
is goede overeenstemming bereikt met eerdere metingen van Long en
M eyer en van B rew er en M endelssohn. Tenslotte werd de minimale
druk bepaald, die bij gegeven temperatuur en concentratie moet heersen
boven een geadsorbeerde film van een 3He-4He mengsel, opdat ook deze
films superfluide worden. De resultaten worden weergegeven in gereduceerde
fasediagrammen. Om de concentraties van de films te kunnen berekenen
werden voor de gebruikte gasmengsels adsorptieisothermen opgenomen.

44



ST ELLINGEN

I

Meting van de thermodiffusiecoëfficient in gasvomuge 3He-4He mengsels
bij zeer lage temperaturen is zeer bezwaarlijk door de druk- en temperatuur­
afhankelijkheid van de concentratieverhouding tussen de geadsorbeerde
film en de gasfase.

II

Bij experimenten met helium, waarbij nauwe toevoerleidingen noodzake­
lijk zijn om het schadelijke volume te beperken, moet rekening worden ge­
houden met de invloed, die het kruipen van heliumfilms heeft op eventuele
drukmetingen.

III

De door P a rk  gegeven verklaring van de verschijnselen, die optreden bij
de beweging van fluxbuizen in een supergeleider van het eerste type, is on­
volledig.

Park, J. G., Phys. Letters 20 (1966) 346.

IV

De verklaring van het verschil in viscositeit tussen HD en D2, die Diller
en Mason geven door het verschil in potentiaal-parameters te schatten uit
het verschil in nulpuntsenergie, is onjuist.

D iller , D. E. en M ason, E. A., J. Chem. Phys. 44 (1966)
2604.

V

Bij de voorstellen van Lovejoy tot uitbreiding van de internationale
temperatuurschaal tot 12°K is onvoldoende aandacht besteed aan de repro­
duceerbaarheid van platina-weerstandsthermometers.

VI

Het is te betreuren, dat P ippa rd  heeft gemeend zijn boek “The Elements





of Classical Thermodynamics” te verbeteren door in de laatste druk een be­
schouwing op te nemen over de derde hoofdwet der thermodynamica in
verband met het gedrag van 3He-4He mengsels.

P ip p a rd , A. B., ‘‘The Elements of Classical Thermo­
dynamics”, 4e druk, 1964, pag. 129.

VII

Het door Pankove  gevonden “nieuw effect in supergeleidende contac­
ten” is op eenvoudige wijze te verklaren.

P ankove, J. I., Phys. Letters 21 (1966) 406.

VIII

De afleiding, die Zimmerman geeft voor de vergelijking, die het ana-
logon van het a-c Josephson-effect in helium beschrijft, is onvolledig.

Zim m erm an, W., Phys. Rev. Letters 14 (1965) 976.

IX

Opdat een werkcollege resultaten af werpt, is het van belang, dat er dis­
cussies ontstaan tussen de assistent en de studenten.

X

Het is gewenst, dat in de scholen voor V.H.M.O. de activiteiten van de
schoolmusicus zich ook uitstrekken over de gebieden van geschiedenis, litte­
ratuur, beeldende kunsten en natuurkunde, om de culturele samenhang van
de muziek met genoemde gebieden te beklemtonen.

K. F o k k e n s , 21 september 1966








