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SAMENVATTING

Vele fysische systemen komen in twee scherp van elkaar te onder-—
scheiden fasen voor, bijv. een vaste en een vloeibare, een mag-
netische en een niet magnetische. Het verschil tussen twee van
zulke fasen is, vanuit atomair standpunt, gelegen in het al of niet
bestaan van een zekere ordening over grote afstanden binnen het
systeem. Uit berekeningen aan eenvoudige modellen, zoals het Ising
model, is gebleken dat een dergelijke ordening optreedt zodra de
wisselwerking tussen de atomen een zekere kritische waarde over-
schrijdt. Anderzijds zijn er ook systemen waarin "kritieke" ver-
schijnselen van schijnbaar geheel andere aard optreden. Een poreus
materiaal kan waterdoorlatend worden zodra de porositeit een kri-
tieke waarde overschrijdt. In dit geval kan niet van een ordening
over grote afstand worden gesproken, maar wel van samenhang op grote

schaal.

Het onderwerp van dit proefschrift is een nadere analyse van het be-
grip "samenhang op grote schaal", en de relatie hiervan met het be-
grip "ordening over grote afstanden'". Daartoe wordt een eenvoudig
model ingevoerd van een systeem dat bestaat uit wisselwerkende ob-
jecten, waarin de objecten worden voorgesteld door punten en de mo-
gelijke wisselwerking tussen twee objecten door een lijn tussen de
corresponderende punten. Op deze manier wordt het gehele systeem
voorgesteld door een netwerk. Essentieel voor het model is dat elk
van de wisselwerkingen een zekere kans heeft om niet te functioneren.
Als we alle lijnen van niet functionerende wisselwerkingen weglaten,
zal het overblijvende netwerk in het algemeen uit een of meer brokken
bestaan, clusters geheten, die eindig of oneindig groot kunnen zijn.
Het ligt voor de hand om een oneindig cluster in verband te brengen

met samenhang op grote schaal.

In het eerste deel wordt dit model, het random—-cluster model, in de-
tail gedefiniéerd en in verband gebracht met andere modellen. In
het bijzonder wordt aangetoond dat het zowel een generalisatie is
van het Ising model als van het percolatiemodel. Tevens wordt het

model tegen een wat meer algemene wiskundige achtergrond geplaatst.
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In het tweede deel worden de eigenschappen van het model onder-
zocht voor het eenvoudigst mogelijke geval, waarin het gelijk

is aan het percolatiemodel. In het derde deel wordt deze analyse
uitgebreid tot het meer algemene geval, waaronder ook het Ising
model valt. Een van de voornaamste resultaten is een stelling die
het verband legt tussen de samenhang op grote schaal in het perco-
latiemodel en de ordening over lange afstanden in het Ising model.
Verder wordt het verband aangetoond tussen een aantal criteria voor
samenhang op grote schaal, en de invloed nagegaan van een uitwen-

dige invloed op die samenhang.
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INTRODUCTION AND SUMMARY

In this thesis we are dealing with a model in the theory of
phases. As is well known a physical system in equilibrium,
which from a microscopic point of view consists of many particles,
can from a macroscopic point of view exist only in a few different
pure phases, the system undergoing a phase transition if it
changes from the one pure phase to the other. One of the main
questions is how a pure phase can be characterized and what types

of phases we can have.

Classically, a phase transition can be characterized by the
properties of the Helmholtz free energy (which is directly re-
lated to the Gibbs probability measure on the states of the system),
in particular by singularities of the free energy. The existence
of a pure phase can be characterized by a homogeneity property, or
the vanishing of long-range correlations, and its nature by
certain order parameters such as the magnetization or the long-

range many spin expectations in the case of a ferromagnet.

Recently, a theory has been developed in which a pure phase of a
system can be characterized as soon as the symmetries of the
system are given. In particular, each probability measure of

that system (e.g. the Gibbs measure) is a unique linear combination
of probability measures associated with the pure phases of that
system, i.e. a macroscopic state is a unique mixture of pure
phases. Moreover, these pure phases are characterized by cluster
properties which are associated with the symmetries of the system,

and which are comparable to the vanishing of long-range correlations.

One should notice that in most of the characterizations of pure
phases or phase transitions mentioned above, the symmetries of the
system play an essential role. For example, all proofs of the
existence of the free energy depend strongly on translational
symmetry. Moreover, the concept of order itself suggests a
certain regularity or symmetry. It is felt, however, that the

concept of cooperative behaviour is of a more general nature, and

iv



should not depend so heavily on the symmetries of the system.

In this connection it is interesting to remark that there are
other physical systems which show a cooperative phenomenon,
e.g. porous media through which a liquid percolates, and certain
cascade processes. The cooperative effect is in these cases the
impregnation of the whole medium when the fraction of wide pores
exceeds a certain critical value, and the avalanche effect
occurring in the cascade if the probability of an individual
event exceeds a certain critical value. In their simplest form
both these systems can be described as special cases of the so-
called percolation model. This model is to be compared with the
Ising model, which is known to be a suitable model for phase
transitions of the usual type. The concept of long-range order
in the Ising model is in the percolation model replaced by the
concept of "connectivity-at-large" or "large-range commnectivity",
for which a symmetry of the system is irrelevant.

"inter-

The purpose of this thesis is to develop a theory of
acting objects" in which the concept of large-range connectivity
is analysed. To this end we introduce a simple model of a system
consisting of infinitely many interacting objects, in which the
objects are represented by points, called vertices, and the
possible interactions between two objects are represented by lines,
called edges, between the corresponding points. In this way, the
system is represented by a graph; obviously, we are mainly
interested in connected infinite graphs. The possible states of
the system are obtained by allowing each of the interactions to
"function" or not. The edge representing such an interaction is
called a constituting edge or a dummy edge, respectively. If for
a given state all dummy edges are deleted, the graph thus obtained
from an infinite connected graph consists in general of one or
more mutually unconnected pieces, called clusters, which may be
finite or infinite. It is natural to relate the occurrence of

an infinite cluster with a collective phenomenon. Finally, the
probability measure on these states is obtained by associating

to each edge a probability of being a constituting edge; in



general, this probability may depend in a prescribed way on the

state of the other edges.

In the first part of this thesis this model, the random-cluster
model, is defined and related to other models. In particular it

is shown that it is a generalization both of the percolation model
and of the Ising model. It is further shown that the theory of the
random-cluster model is intimately connected with the combinatorial

theory of graphs.

In the second part the properties of this model are investigated
for the case where the edges are statistically independent. In
this case the model reduces to the percolation model .The main
observables investigated are the probability that a given vertex
belongs to an infinite cluster and the long-range limit of the
probability that two vertices are connected. It is shown that
these observables are related to each other as well as to a de-
rivative of the "free energy'" of the system (if this exists).
Moreover, it is shown that the first observable has a clustering
property which is, however, not related to a symmetry of the

system.

In the third part the analysis of the second part is extended to
the case where the edges are not necessarily independent; this
case covers both the percolation model and the Ising model. One

of the main results is the establishment of a relation between

the large-range connectivity of the percolation model and the long-

range ordering of the Ising model.
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ON THE RANDOM-CLUSTER MODEL

I. Introduction and relation to other models

Synopsis

The random—cluster model is defined as a model for phase
transitions and other phenomena in lattice systems, or more
generally in systems with a graph structure. The model is
characterized by a (probability) measure on a graph and a

real parameter «k . By specifying the value of x to 1,2,3,...
it is shown that the model covers the percolation model, the
Ising model, the Ashkin-Teller-Potts model with 3,4,... states
per atom, respectively, and thereby, contains information on
graph-colouring problems; in the limit x+0 it describes linear
resistance networks. It is shown that the function which for
the random-cluster model plays the role of a partition function,
is a generalization of the dichromatic polynomial earlier

introduced by Tutte, and related polynomials.



1. INTRODUCTION

This paper is the first of a sequence of papers devoted to
a model for phase transitions which was recently intro-

1)%) :
. This model, to be called the

duced by the authors
random—-cluster model, is actually a one-parameter family of
systems, which includes among its members the spin 3 Ising
model and the percolation model, but also systems representing

graph colourings and certain electrical networks.

The member of the family which hitherto has been most
thoroughly investigated is the Ising model, introduced by
Ising in 1925 as a model for ferromagnetism upon a suggestion
by Lenz 2), and later on also applied to antiferromagnetism,
ordening in binary alloys, condensation of a lattice gas and
many other phenomena. In 1943 Ashkin and Teller introduced
a lattice model in which each atom can be in four states,
which was a direct analogue of the two-state Ising model 3).
In 1952 Potts generalized both models to one with an arbitrary
number of states per atom 4).

A less—known member of the family is the percolation model
(connectivity model) which was introduced in 1957 by Broadbent

5)

and Hammersley as a model for the percolation of a liquid
through a porous medium, the spread of a disease through a
community and similar phenomena. Its resemblance to the Ising

6)

model was first recognized by Hammersley , and various

methods developed for the Ising model were translated and

7)

applied to it by Sykes and Essam , but a precise relation

between the models was not established until 1968 (see ref. 1).

The problem of finding the number of ways in which the
vertices of a given graph can be coloured with not more than
a given number of colours n so that adjacent vertices have

different colours (n-colourings) has a longer tradition than

*) A preliminary account of this work was given at the Summer

School and Seminar on Critical Phenomena at Banff (August 1968).




the models mentioned above; in the form of the four-colour
conjecture it has a history which goes back to the middle of
the 19th century. In his research on the colouring problem,
G.D. Birkhoff introduced in 1912 the chromatic polynomial,
which is an extension of the number of n-colourings from
integral values to arbitrary real values of n 8). It is
easy to see that the number of n-colourings of a graph is
equal to the degeneracy of the ground state of the "anti-
ferromagnetic" Ashkin-Teller-Potts model. This establishes
the relation of the colouring problem to the models dis-

cussed above.

Finally, the oldest member of the family is the linear
electrical network, investigated since the beginning of the
19th century. It was Kirchhoff who showed in 1847 that a
central role in the systematic analysis of these networks

is played by what nowadays is called the generating function
for spanning trees 9). In 1954 an important relation between
this generating function and the chromatic polynomial was dis-
covered by Tutte ]0). He showed that for a given graph both
functions are special cases of a two-variable polynomial which
he called the dichromate of the graph and which is now
generally referred to as the Tutte polynomial. Another two-
variable polynomial, which later on was called the dichromatic
polynomial and was shown to be identical, apart from a certain
factor and a shift of variables, with the Tutte polynomial,
had been introduced by Tutte in 1947 ]]). This polynomial was
introduced in a different way by Zykov in a study of recursive

2)

functions on graphs. The generating function for spanning

trees also served as a model for the partition function of a

branched polymer without rings. 13)

As a final step in establishing the relations between these
models and problems the random—cluster model was introducedl),
which, as we shall show in detail in this paper, embodies the
entire family. The model is defined for an arbitrary graph,

and associates with each edge e of the graph a real



parameter p_; if 0 < Py = 1 for all edges e, the model has
a probabilistic interpretation. In addition, one real
positive parameter x occurs in the description of the model;
it represents in a way the complexity of the model.
Different values of k describe systems with different
properties, the various systems discussed above appearing
as the cases where ¢ is an integer > 0, sometimes combined
with special limiting values of the Py K = 0 corresponds
to the electrical network, «k = 1 to the percolation model,
k = 2 to the Ising model, «k = n > 2 to the Ashkin-Teller-
Potts model with n states per atom and to the n-colouring
problem.

After having introduced the random-cluster model we ob-—
served that if all parameters p, are given equal values,
the function which plays the central role in the theory of
the model reduces, after a simple change of variables, to
the dichromatic polynomial. Temperley independently made

4)

a similar observation , and, together with Lieb,

developed a transfer-matrix approach for the case of a
quadratic lattice 15). Essam also investigated the relation
between the aforesaid problems, paying particular attention
to cluster expansions 16).

The aim of the present paper is the precise definition of
the random-cluster model for an arbitrary countable graph.
After an introductory section 2 on graph-theoretic notions
we first define in section 3 the percolation model and a
number of characteristic quantities related with it. We
then derive a recursion relation for these quantities and

a differentiation relation connecting some of them. In
section 4 we show that the Ising model, and more generally,
the Ashkin-Teller-Potts model, can be formulated entirely
in terms of the percolation model. The same procedure is
applied to the chromatic polynomial in section 5, and to a
certain class of electrical networks in section 6. In all

these cases the recursion relation derived in section 3

plays an essential role. It is a special case of a more



general recursion relation studied by Zykov 12). Therefore,

the characteristic functions of the various models are re-
cursive functions on graphs in the sense of Zykov. Their
interrelation is discussed in section 7, in which the
random-cluster model is defined and some of its properties
are discussed, Finally, in section 8, the position of the
random-cluster model with respect to the above-mentioned
systems and problems, and with respect to the branch of
combinatorial mathematics to which it belongs is briefly

sketched.

2, GRAPHS AND CLUSTERS

A graph G is defined by a set V of vertices, a set E of

edges and an incidence relation i between edges and

vertices, associating with each edge ecE an unordered pair
i(e) of vertices v,v'€V, the ends of e; if v = v' the
edge is called a loop. The edge e is said to be incident
with the vertices in i(e) and vice versa. If G is the
graph thus defined, we write G = (V,E,i). If more than one
graph is considered, the vertex set and the edge set of G

are denoted by V(G) and E(G), respectively.

We shall frequently encounter products of commuting quantities
Qa over all elements a of a set A; we shall denote them by
by QAsnaeA 024, The
(cardinal) number (of elements) of a set A will be denoted by
|A|. So the number of vertices is |V| , the number of edges
|E| . A graph G is finite if both |V(G)| and |EG)| are
finite, and infinite otherwise. If both |V(G)| and |E(G)|

Qa' For convenience we put Q

are finite or infinite countable the graph G is countable.
If the number of edges incident with a vertex v is finite for

all veV(G) the graph G is locally finite.

A subgraph of a graph G = (V,E,i) is a graph G' = (VisEd55")



such that V'CV, E'CE and i'(e) = i(e) for all eeE'. Since
i' is the restriction of i to the domain E' we shall de-
note it simply by i. If G' = (V',E',i) and G" = (V",E",i)
are subgraphs of a graph G = (V,E,i) then (V'UV",E'UE",1i)
and (V'NnV",E'ME",i) are subgraphs of G, to be called the
union graph and the intersection graph of G' and G" in G,
and to be denoted by G'UG" and G'NG". If V'CV" and E'CE",

then G' is a subgraph of G", and we write G'CG". In
particular for subgraphs G' of G we have G'CG. A spanning
subgraph or partial graph of G is a subgraph with V' =V,

The spanning subgraph G' with the set of edges E' will be

denoted by GE"

A path between two vertices v and v' in a graph G is a
finite sequence of alternatingly vertices and edges of G:

V=V(s €15 V]s €0y seey V e s vn=v', such that

n=1?
i(ek) = {vk-l’vk} for. k=1 2000 ng it 18 oftenh Te—
presented only by the edges which it contains. Two vertices

v and V'eV(G) are connected in G if there is a path in G

between them; if not, they are disconnected. The relation

of connection between vertices is an equivalence relation.
A graph G is connected if any two of its vertices are
connected. A cluster (or connected component) of a graph
is a maximal non-empty connected subgraph. The smallest
cluster consists of one vertex and no edges (isolated
vertex). The number of clusters of a graph is easily seen
to equal the number of equivalence classes under the re-

lation of connection.

A polygon in a graph G is the subgraph consisting of the
vertices and edges of a path in G, containing at least one
edge, between two coinciding vertices and with all vertices

distinct except the first and last vertex. The smallest

polygon is a vertex with a loop. A set of polygons is called

dependent if the sum modulo 2 (symmetric difference) of the
edge sets of a finite subset of polygons is the empty set.

The number of independent polygons of a graph is called the




cyclomatic number of that graph. A tree is a connected

non-empty graph having no polygon as a subgraph. The
smallest tree consists of one isolated vertex. A tree in a

graph is a subgraph which is a tree. A spanning tree in a

graph is a spanning subgraph which is a tree. A forest is
a non—-empty graph having no polygon as a subgraph. A forest
in a graph is a subgraph which is a forest. A maximal

spanning forest in a graph is a maximal spanning subgraph

which is a forest.

We shall find it convenient to have defined the operations
of deleting and contracting edges from a graph. Let

= (V,E,i) be a graph and E'CE a subset of edges. Then we
B-E' = (V,B-R',1) is
obtained from G by deleting the edges of E' from G, and we
denote it by 2 G = (V,E-E',1). Let further V be the set of

shall say that the spanning subgraph G

equivalence classes of the set of vertices V under the re-
lation of connection in GE' (in other words, let the vertices

of G which are connected in G_, be identified), and let 1 be

El
a relation on the edges of E-E' such that if the edge e€E-E'
is incident in G with i(e) = {v,v'}, then i(e) = {v,v'} ,

where veV is the class of V containing v. We shall say that

the edges of E' are contracted from G in order to obtain the
’ P -
graph BF G (V,E-E',1).

m

Obviously, if E',E" are disjoint subsets of E we have
o (e = 98B L 2B (g c) and €' @ ©) =¥ (€ 0.
Moreover we can prove that C (eE"G) = CE UE"G = @E"(CF'G)
(see lemma 1 in section 3.2), where G = G' denotes that the
graphs G and G' are isomorphic; we shall write = instead of =
It follows that we may define Tr %e E %E' with %eEXJ{E} and
TT;GE' @e = é with @ = d{e}, where 2% is the operation of
deleting the edge e from the graph, and C; the operation of
contracting ghe edge e from the graph. 0b5$rVﬁ that by
definition %°G = G and G¢G = G. A graph o zE G with E' and

E"CE(G) disjoint is called a descendant of G. The vertex



= 1 "
vey = V(eg 9E G) is called the vertex of the descendant

associated with the vertex v of the graph G.

3. THE PERCOLATION MODEL

3.1. Description of the model

With an arbitrary graph we can associate various
mathematical systems which serve as models for certain
physical systems. One of these is the (bond) percolation
model, introduced in 1957 by Broadbent and Hammersley 3)
as a model for a medium with randomly distributed pores
through which a liquid percolates. In this section we
shall discuss this model for the case of a graph with non-
directed edges. We shall successively introduce events on
a graph (cf. Rényi 17) ch. I), local events, random events,
probabilities of random events (cf. Rényi 17 ch. II),
ls)ch.3).

Special care is to be taken in the definition of probabili-

random variables and expectation values (cf. Zaanen

ties and expectation values on infinite graphs because of the
occurrence of infinite products and sums and of the values

+ » of certain expectation values.

Let G = (V,E,i) be an arbitrary graph, each edge of which
can be in two different states, to be denoted by ¢ and d.
For each e€E we consider the two events: "e is in the
state c" = "e is a c-edge'" and "e is in the state d" =

"e is a d-edge'". These events are considered to be each
other's negation; we denote them by e and de, respectively.
In the literature on the percolation model the basic elements

such as vertices, c-edges, d-edges, occur under various names.

For convenience we give a short translation list:

vertex atom site vertex atom
edge bond bond link bond
c(onstituting) undammed black active occupied
d (ummy) dammed white passive vacant
this paper ref. 5) ref. 7) ref. 19) ref. 20)



From these events, to be called edge events, we construct
more detailed events by taking (logical) products; we

call these events product events and denote them as al-

gebraic products. Thus Cede' is the event "e is a c-edge

and e' is a d-edge'. Using the symbolic power introduced
\J n
in § 2 we can denote the general product event by cE dE
where E',E"CE; cede = 0 = "the false event". For completeness
@

we write ¢ =d =1= "the true event'. Obviously s ¥ de =1,
The most detailed (smallest) product events are those of the
form chD with CUD = E and CD = ). We call them elementary
events. The set of all elementary events is called the
event space, denoted by Q. The (logical) sum of two events
a and a' is denoted a+a'. From now on we shall assume
complete distributivity for logical sums and products. Two

events a and a', say, are called incompatible, or disjoint,

if aa' = 0.

The events formed by finite sums of finite product events
(that is, the events obtained by closing the collection of
edge events under finite sums and finite products) are

called local events. The events formed by closing the

collection of local events under countable sums and countable

products are called random events. The most general events

are obtained by closing the collection of random events under
arbitrary sums and products. By the assumption of complete
distributivity each event can be written uniquely as a sum

of elementary events, so that there is a one-to-one
correspondence between events and subsets of the event space.

This correspondence will be used extensively in the following.

We next define the probability P(a) of local events a.

Firstly P(0) = 0 and P(1) = 1, secondly for the edge events

P(Ce) = Pa and P(de) 32 ='1—Re, where 0 < B, = 1. For

finite product events c¢ d with E'NE" = @ we define
E' Ell El Ell

P(c ' d )=p q , i.e. the edge events are considered to

be independent. For finite sums of disjoint finite product



events we have P(Z?=] ai) = Zg=1 P(ai). Using the above-
mentioned correspondence between events and subsets of the
event space, we see that the probability on local events
corresponds to a normed measure on the algebra of the

cylinder sets corresponding to the local events.

A local variable will be a real function f on the event

space 2 which assumes only a finite number of different
values fi such that for each i the sum of all elementary

events with f(chD;G) = fi is a local event a.. For

i

brevety we shall often write f(chD;G) = f(chD) = £(C;G) =
= f(C). The expectation value with respect to P of a local
variable f is defined to be <f> = Z?=] fi P(ai) = <f;G,P> .

The local variables correspond to the simple functions with
respect to the algebra of cylinder sets, the expectation
value corresponds to the integral with respect to P of a
simple function. The functions obtained by closing the
collection of non-negative local variables under the suprema
and infima of countable collections (admitting the value +=)

are called non-negative random variables. The difference

between two non-negative random variables, not both assuming

a value # 0 at the same time, is called a random variable;

the non-negative random variables are called its positive

and negative part.

Using the extension procedure of measures on semirings to-
gether with the Daniell integral scheme, we can, given a
probability P on local events with the corresponding ex-
pectation value <f>, extend these uniquely to a probability
on random events and an expectation value of random variables

8)

(Zaanen : ch. 2, 3), for which we use again the notation
P(a) and <f>. If the expectation value of a random variable
is finite, the random variable is said to be summable. If
not both the expectation values of the positive and negative
part of a random variable are + », the random variable is

said to be integrable. In the special case that the graph

10




is finite, the expectation value of a random variable re-
duces to a sum: <f> = ZCCE £(C) quD; here and in the
following we understand by D the set E-C. In general we
write <f> = J dP(C) . £(C)s

CCE

A particular class of (non-negative) random variables is
formed by the indicators of random events; the indicator
of an event a is the function which takes the value 1 if a
occurs and the value 0 if a does not occur. For con-
venience we use the same symbol for the event and for the

indicator of that event. So c, will represent both the

e
edge event c, and the indicator (of the event) that e is a

c-edge. We have <a> = P(a) for random events a.

A countable graph G together with a probability P as

described above we call a percolation model, to be denoted

(G,P). Notice that the absence of correlations constitutes
a most essential feature of the model. The probability P

is completely characterized by the mapping p from E into the
real interval [0,1] such that p(e) = B P(ce). We shall
say that the measure P is generated by the mapping p.

We shall say that two vertices v and v' of G are c-connected
in G, if there is a path in G between v and v' such that all
edges in that path are c-edges. If GC is the spanning sub-
graph of G with E(GC) = C = the set of all c-edges, we may
equivalently say that v and v' are c-connected in G if they
are connected in GC. Analogously we define a c-cluster,

a c-polygon, the c-cyclomatic number etc.

Finally, we shall list some functions which will be con-
sidered in this or in subsequent papers. Most of these are
indicators; for brevity we shall omit from their definition

the words "the indicator of the event that".



Y = the number of c-clusters
w = the c-eyclomatic number
Yo = G' is a c-cluster
Yariy = G' is a c-cluster containing the vertex v
’
£ i3 SE% Sar
Yatey = G' is a finite c-cluster containing the vertex v
b
o . - - . - .
Yo'y = G' is an infinite c-cluster containing the vertex v
b
f = . akA e o
T = there is a finite c-cluster containing the vertex v
o0
| g there is an infinite c—cluster containing the vertes v;
obviously y. = 1 - 5
y YV YV
s = the vertices v and v' are c-connected = v and v' be-
long to the same c-cluster
Yo = the ends of the edge e are c-connected
Yoy! = the vertex v is c-connected with at least one vertex

1

v' of the set of vertices V'

For negations of y indicators we use the symbol §:

6vv' = the vertices v and v' are not c—connected (are c-dis-
connected) ; va, 0 R Yot

Ge = the ends of the edge e are not c-connected (are c-dis-
connected) ; 6e =1 - §

va, = the vertex v is not c-connected with any of the
vertices of V'; 6vV' =] - Yoy

f )

6v " Yy

o f

<Sv - Yy

Obviously, we have for finite graphs
Y - YR
c'Ce ©

For finite graphs the above-mentioned functions are random
variaples. We shall prove in a subsequent paper that for

countable graphs they are also random variables.

12




3.2. Associated random variables on descendants. Recursion Theorem

(3.1)

Lemma 1

Let f be a random variable defined on the event space of a
graph G. Let E' and E" be disjoint subsets of E(G), then
CE'ﬁE"G is a descendant of G. Now we associate with f a
function f on the event space of CEng"G by the definition
(for disjoint sets E' and E" the union E'UE" is alternatively
denoted E' + E"):

| n \
Fc;C® 2% 6) = £(C+E';6) for all cCE(CE9QE 6) = E(G)-E'-E".

This function f is nothing but the section of f determined
by the product events cE'dE" (cf. Ha1m052])§ 34), and it
follows that if f is a random variable, f is a random variable.
Moreover, 1if f is summable, f is summable. This procedure
uniquely defines f on all descendants of G. In particular

F(C;6) = £(C;G) and Tw;¢%Pc) = £(c;0).

The state of an edge is a property of the edge alone. There-
fore, if the state of all edges of G is given, the relation of
c—-connection is determined on all descendants of G, and also
on all subgraphs of G. But this relation of c-connection on
descendants is ultimately connected with the relation of

c-connection in G, as is shown by the next lemma.

Let G be a graph, 1let E',E" be disjoint subsets of E(G) and
v,v' be vertices of V(G). Let CE'G be the graph obtained by
contracting the edges of E' from G, and v,v' the vertices of
V(CE'G) associated with v,v'. Then v and v' are connected
if and only if v and v' are connected in (CE'G)E".

in GE ’UE"

Proof. Preliminary remarks: (a) if v and v' are connected
in a graph G, there is, by definition, a path in G connecting

them, and we may even say that there is a vertex—disjoint

path in G connecting them, i.e. a path in which each vertex

1
occurs only once; (b) all edges of (CE G)E" and GE' are



Corollary

edges of GE'UE""

If there is a vertex—disjoint path in GE'UE" between v and v'
'

we construct from it a path in @ G)E" between v and v' in
the following way: If any edge of E' occurs in the path, we
remove it together with the preceding and succeeding vertex

'
and we replace it by the vertex of cE G associated with the

preceding vertex.

' —
1f there is a vertex-disjoint path in (CE G)E" between v and

3, 3

v', we construct from it a path in G between v and v' in

E'"UE"
the following way. First, if v is incident in G with the first
edge ej of the path, let v be the first vertex of the path in

G to be constructed. If v is not incident in G with e,

E 'UE"

there is a vertex v" of V(G) incident with e; in G such that
v o= v, so there is, by definition of contraction, a path in
GE' between v and v"' and this path will be taken as the first

part of the path in GE'UE" from v to v' to be constructed.

1 # V,V",

Secondly, e; is also incident in G with a vertex v"
. E' =

so the second vertex of the path in (C G)E" must be v'" , and

we can repeat the procedure on the second vertex and the second

\J
edge of the latter path. By the finiteness of the path in (CE G)E"

we obtain in this way a path in GE'UE” between v and v'.

For all descendants of a graph G:

6w Tt 2 Nt Gt ™ Oy ¥ ot (% ToTa Sv = 57

Functions having this property are called €R-invariant. The

CZ-invariance property does not hold for all random variables;
— —_— f f g
e.g. W ¥ w, Yo - VT v Yo # y; in general. However,

o ©

. . ; o £ f

if the number of contractions is finite, then Top ™ e AL
For convenience we shall sometimes drop the association bar over
functions and vertices, so we shall write f instead of f, and

v instead of v, where no confusion can arise.

Using the extension of f to all descendants of G, we shall

14




Theorem 1

(3-2)

(3.3)

(3.4)

(3:5)

prove a recursion theorem in which the expectation value
<f3;G> is expressed in terms of the expectations values
<f;éiG> and <?}QLG> defined on smaller graphs. This
property is especially useful in the case of €J -invariant

random variables.

Recursion theorem: Let (G,P) be a percolation model and £

an integrable random variable. Then for all edges e€E (G)

<£36> = p_ <?;£‘eG> +q, <f;zeG>

Proof. By definition <f> = fdP(C) f(C). By construction P

E

; E-
can be regarded as a product measure 1.e. P = P = p® x p ¢

]

where the upper index specifies the domain of P, If f is
summable we can apply Fubini's theorem, if f is non-negative
it is the limit of a non-decreasing sequence of summable

random variables and we may again apply Fubini's theorem:

de’E (c) £(C) = JdPe(C') [dPE“e(C'U £(C'+C";6) =
CCE c'Cle}  C'CE-e

P [dPE—e(C) £(C+e36) + q [dPE-e(C) £(C36).
J

CCE~e CCE-e

By the definition of the extemsion of f to the descendants

Ce andiﬁeG this is equal to

F(C: F(C: = F:C F: 90>
P, JdP(C) f(C,dLG) *q, JdP(C) f(c,Q%c) pe<f,C;G> + q <f; 26>,
CCE-e CCE-e

Finally, if £ is integrable, but not necessarily summable or
non-negative, then either the positive part £ of £ or the
negative part f of f is summable, say f , without loss of
generality. We may use Fubini's theorem on the positive and
negative part of f and collect the terms with P and q,*

+ - + 73
<f:G>=<f ;6> - <f 36> = {pe<f ;@eG> + qe<f ‘;Qec>} -

7

’ LG> - <—:- ¥ C - <k 20 L
{<f ;86> - <€ 366> L + g <€ 396 - <396 .




Because f =T Yand £ =T this equals

— + - -+ ="
pe{<f ;é’eG> =<f ;€G>}+ qe{<f ;3eG> ST ;%G>} =
(3.6) =P, <f;62G> *+q, <'f_;9eG> deel
Since the summability of a function implies the summability

of the sections we have the following corollary.

Corollary The expectation value of a summable random variable f is a

linear function of Pe with the finite boundary values:
(3.7) <£;G,p, = 0> = <'f;zec> and <£3G,p, = 1> = <?;€eG> .

The recursion theorem may be generalized using the extension
of functions to general descendants in the case of summable

or non-negative random variables:

' — 1 1
(3.8) <£3G> = JdPE c') <£;0°9° 6> for all E'CE(G), D'=E'-C'.
C'CE'
In particular we obtain for E' = E:
(3.9) <£3G> = JdPE(C) F;6%Pc> = JdP(C) £(C;G).
CCE (G) CCE (G)

3.3. A relation between Yy and ée.

An application of the recursion theorem is the proof of a
proposition relating the expectation value of the number
of c-clusters, Yy, with the expectation value of the in-
dicator 6e of the event that the ends of the edge e are in
different c-clusters. To prove this we need a lemma which
contains the essential feature of the relationship (cf.

Berge 22) e Thae 198,

We recall that the number of clusters of a graph G is the

number of equivalence classes of the vertices of G under

16




the relation of connection in G: if G' is a cluster of G,

V(G') is an equivalence class of V(G) under connection in G.

Lemma 2 Let G be a countable graph. Then for all edges e€E(G) and all
subsets CCE(G)-e

(3.10) y(C;G) = y(C+e;G) + §_(C36).

Proof. We recall that y(C;G) is the number of clusters of GC’
y(C+e;G) is the number of clusters of GC+e’ and 6e(C;G) is the
indicator of the event that the ends of e are disconnected in

GC' Evidently, a path in GC between two vertices is a path in

GC+e between the same vertices. Let v,v'€V(G) belong to a
cluster of Gc+e’ then there is a path 1in GC+e between them.
If the cluster of GC+e containing v,v' does not contain e,

this path is a path in GC’ too. Therefore, a cluster of GC+e

which does not contain e is a cluster of GC which does not

contain an end of e. There is just one cluster of GC+e con-
taining e, with vertex set V', say, and the vertices of V'
may belong to several clusters of GC. We shall prove that
"several" can be only 1 or 2. Either 5e(C;G) =0 or
se(C;G) = 1.  Firet, let 6e(C;G) = 0; then there is a path
in GC between the ends of e. Consequently, a path in GC
between any two vertices of V' can be obtained as follows:

by definition, there is a path connecting them in GC+e; if
this path contains e, replace e by the path in GC between the
ends of e. Hence, there is just one cluster of GC containing
the vertices V', and so y(C;G) = y(C+e;G). Secondly, let
Ge(C;G) = 1, then there is no path in GC between the ends of
e. In this case, each vertex v of V' is connected in GC
either with one end or with the other end of e. For, there

is a path in GC+e to a given end of e; the part from v to

the first end of e occurring in it (which may be the given end)
is a path in GC from v to that end, not containing e. If

there was also a path in GC to the other end of e, we could
construct a path in GC between the ends of e, contrary to

the hypothesis. Hence, there are just two clusters of GC’



Proposition 1

(3:11)

(3.12)

(3.13)

(3.14)

containing together the vertices of V', and so y(C;G) =

y(C+e3G) + 1. ||

Differentiation relation.
Let (G,P) be a percolation model such that y is summable.

Then for all edges e€E(G), with P = l—qe:

qi<y> = <§ >,
edq e
e
Proof. By the preceding lemma y(C;G) = y(C+e;G) + ée(C;G)
for each CCE(G)=-e = E(QEG) = E(C;G). By the £€2-invariance
of y and of & this is equivalent to Y(G;QLG) = Y(C;CZG) +

+ 6e(C;2%G), and integrating we get

Y3 6> = <Y;(%G> + <6e;EBeG> 4

By the recursion theorem <y;G> = Pe<Y;C;G> + qe<Y;2eG>’ from

which it follows that
<y3iG> = <Y;£ZG> + qe<6e;2%G>.
By the summability of y this can be differentiated, giving:

qe-%<y;G> = qe<<Se;9eG>.

e
The proposition follows because <6e;G> = pe<6e;CéG> +
+ qe<6e;§2G> » again by the recursion theorem, and
<6e;6;G> = 0 because in é;G the ends of the edge e coincide
so that §_ = 0. [ |
Notice: obviously, for a finite graph y is summable for

any P.

4, THE ISING MODEL OF FERROMAGNETISM

4.1. Reformulation of the partition function

18

We consider a finite spin } Ising system and we represent



(4.1)

(4.2)

(4.3)

(4.4)

this system by a finite graph G, so that to each spin there
corresponds a vertex of the graph, and to each interaction
between a pair of spins there corresponds an edge incident
with the corresponding vertices. With each vertex v we
associate a spin variable O which can take the value +I
or -1. With each edge e we associate a coupling constant
Je and an edge variable Go ™ Ol el where v and v' are
the ends of e; i.e. {v,v'} = i(e). The Hamiltonian of

the system is taken to be

H==- ] J (o 1),
ecE (G)
where E(G) = E is the set of edges of G, and the energy of

the ferromagnetic ground state has been chosen to be zero.

Let ¢ represent a sequence of values of 9y for all veV(G)
and ZO denote the summation over all possible sequences 0.
The canonical partition function Z of the model is defined

as

z =) exp{-gH(0)}
o

We shall formulate the partition function in terms of the
percolation model 1). To this end we shall first show that
the partition function Z(G) of a system with finite graph G

satisfies a recursion relation. For any edge ecE (G)
2(6) = p2(£6) + q.2(2,6),
where

d, = exp(—ZSJe), P, =gl s

To prove this relation one notices that the sum over all
states of G can be split up into a sum over all states with

P = +1, and a sum over all states with oe = -]:



(4.5)

(4.6)

(4.7)

(4.8)

}exp{;'éEBJe,(oe,—l)} -

The spin states of the graph é;G, with the edge e contracted,
are in one-to-one correspondence with the spin states of the

graph G which have o, = +1, and E((feG) = E(G)-e, so

z(€6) = 8 ,(o ,~DY} .
(€0) g exp{e'gE_e RICH )}

Oa*l

Because V(%EG) = V(G), the spin states of the graph zeG are
just the same as those of the graph G, and the summation over
all states may be split up as before. Using E(ELG) = E(G)-e,

we obtain

2(36) = g

o

)
exp Z BJe,(oe,-l)} e z exp 2 BJe.(oe,-l)K.
: e'cE-e g e'cE-e {

e +1 O'e-"l

The above-mentioned recursion relation for Z(G) follows by
elimination of the partial sums from Z(G), Z(é;G) and

Z(%eG) in eqs. (4.5), (4.6), (4.7).

The recursion relation for Z(G) implies an interpretation for

Z(€,6) and Z(¥6):

z(26) = 1im 2(G), Z(P G) = 1im Z(G);
e Je—++m € Je—>0

so taking the limit of strong ferromagnetic coupling is
equivalent with contracting edges, and taking the limit of weak

coupling is equivalent with deleting edges as one would expect.

If we iterate the recursion relation with respect to all edges

we finally get
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(4.9)

(4.10)

2@ = | pCq® z(%Pc),
CLE

which expresses the partition function of G in terms of the
partition function of systems without interaction. Evidently
Z(BQ%DG) = exp{lV(ﬁ%aDG|1n 2} . Because the number of
vertices of such a graph equals the number of clusters, and
the latter, unlike the former, is a €97 -invariant random
variable, we can write |V(802DG)l = Y(@;CCQDG) = v(C3G), and

therefore:

2@ = § p%P 2¥(%® o ¥iq,p>
CCE

in the terminology of the percolation model, with the pro-
bability measure P generated by (4.4). The term probability
is justified only in the ferromagnetic case, i.e. when

Je > 0 for all edges ecE (G) , because only then 0 < q_ < 1.
By eq. (4.10) we have rewritten the partition function of an
Ising system, which by definition is a sum over spin states,

as a percolation model average, i.e. as a sum over edge states.

4.2. Generalized reformulation of the Ising model.

(4.11)

In the theory of the Ising model one is not only interested in
the partition function but also in canonical averages of spin

functions f(0):

ca

<f> = = 2 f (o) exp{-BH(c)}//z exp{-BH (o) }.
o o

The denominator in the right-hand side of this definition is the
partition function Z, which in the previous section has been re-
written as a percolation model average. The numerator of the
right-hand side can also be rewritten as a percolation-model
average, but the method used in the previous section cannot be
applied. Instead we shall use an alternative method, which,

of course, also applies to Z.

We start by writing 1 = £(1+oe) + %(l—oe), and thereby
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) f(o)exp{-gH(0)} =

I Q

z i(l+oe) f(o)exp{—-BH(03G)} + z i(l—oe) f(o)exp{-RH(0;G) } =
o o
g %(1+oe) f(o)exp{-BH(o;Q%G)} + d, g %(1—06) f(c)exp{—EH(o;JgG)J,

(4.12)

by the same argument that was used in section 4.1 Notice
however that both terms in the last member are sums defined

for the same graph ieG. Multiplying the first sum by 1 = Pt
and collecting the terms with Pe and those with q, we cbtain:

(4.13) a, y £(o)exp{-BH(0;3,G)} + p, Y §(1+0,) £(0)exp{-BH(0;%6) )
o 0}

Iterating this with respect to all edges we get the expansion

) £(o)exp{-gH(03G)} = ) quE_C ) {£(1+o)}c f(J)expi*ﬁH(T;%EG) -
o CCE o

(4.14) = quE_C ) {5(1+o)}c £(o),
CCE o

because the Hamiltonian of a graph without interactions is zero
If we define a function on the event space of G, thus for every

CSE(G) , by

(4.15) £(c;6) = {3(1+0))° £(030),
o}
then by the definition of canonical averages we have
(4.16) <f> = <£>/<T1>.

In this way we have arrived at a description of canonical
averages in terms of percolation model averages. The factor
{£(1+o)}C can be interpreted as the restriction that all

spins connected by c-edges must be parallel in order to give

a non-zero contribution to the summation. So each c—-connected
component of G acts as one spin. Since the operation “is
linear and all spin functions f(c¢) can be linearly expressed
in terms of 1, A G019 etc., it is sufficient to con-—

sider the random variables related with these special functions:
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T = (3(1+0)3%1 = 2749,
(0]

6y(0) = §{£(1+o)}c-cv - 0,

o © = § 41800,y = v, (0 29,
(o)

and in general for V'SV (G):

—_
(4.17) o' (€ = § (1(1+))° o¥
(0]

]

= Ev'(C) ZY(C)’

where € is the indicator that each c-cluster contains an

V'
even number of the vertices of V'. The random variables
(4.17) are all €9-invariant and obviously satisfy the re-

cursion relation. From eqs. (4.15)-(4.17) we find:

z(6) = <2';6>,
(4.18) “9y” can gt
) § Y
“9%% " can <va'2 >[<27>,
V'
<0 >can = <€V'2Y>/<2Y>'

If in eq. (4.18) v and v' are the ends of the edge e€E(G)
we have in particular <o > = <y 2Y>/<2Y>, On the other
e can e
hand, one easily sees by differentiating the free energy,

|

= =0 In Z,with respect to Je:
R | 9H (o) - s _ 9 A e
(4.19) 3Je = Z z aJe exp{-BH(c)} = Z Z (1 ce) exp{-gH (o) }=1 00> can’

Using eqs. (4.4), (4.10) and (4.18) we obtain

(4.20) 4 a—:— 2 1n <2"> = < _2'>/<2V>.
e

e

This equation (4.20) is analogous to eq. (3.11), and shows

that in the percolation model the function <y> plays the



same role as the free energy in the Ising model.

Up to now we have chosen the ground-state energy for ferro-
magnetic interaction zero in order to normalize the measure
P:P(1)=1, and to make it possible to interpret P as a pro-
bability: 0 < P(de)=qe < 1. In the antiferromagnetic case

the above given procedure leads by eq. (4.4) to values

qe>1 and pe<0. It is possible to retain a probabilistic
interpretation of the p's and q's by replacing for "anti-
ferromagnetic edges" the factor (o,-1) in eq. (4.1) by (o *1)
and the factors 5(1+0e) in eqs. (4.12)ff by %(l—oe), and vice
versa, but in that case the function 2¥ in eq. (4.10) is re-

placed by a more complicated one.

4.3 Ising model in magnetic field.

(4.21)

(4.22)

In section 4.1 and section 4.2 we have considered the spin }
Ising system without an external magnetic field. In the case
where there is a magnetic field, which has the value B, at
the position of the spin v with magnetic moment m the

Hamiltonian of the system is

H=- ) J (o -1) - } m B (o _-1).
eEE(G) e e VEV(G) vV Vv

23), Suzuki 24)) that such an

It is well known (cf. Griffiths
external magnetic field can be replaced by one supplementary
"ghost spin' which interacts with any spin v with a coupling
constant mva. We may therefore replace the Hamiltonian of
the system with graph G in an external magnetic field, given
in (4.21), by the Hamiltonian of the system with graph Go, ob-
tained from G by adding one vertex o and for each vertex v of

G an edge incident with v and o:

H® = - J (o -1)
eepzz(c°) Al i

The partition function Z0 calculated from this Hamiltonian H®

24




is twice the partition function Z calculated from H, which
has, of course, no influence on the expectation values of

spin correlations.

4.4, Ashkin—-Teller-Potts model.

(4.3)"

(4.23)

There is a straightforward generalization of the Ising model
in which each atom can be in n different states, where n is
an arbitrary number > 2 3’4>. In this so-called Ashkin-
Teller-Potts model the energy between two interacting spins
is taken to be zero if the atoms are in the same state, and
equal to a constant if they are in different states. If the
system is represented by a graph, just as in the Ising model,
and if the above-mentioned constant is denoted by ZJe, the
Hamiltonian can again be written in the form (4.1), where the
edge variables g, have the values +1 and -1, accordingly as
the atoms at the ends of e are in the same state or not.
Although we cannot introduce simple spin variables for the
states of the atoms (i.e. g, cannot be written as a simple
product of two spin variables), we shall still denote the
states of the system by o. We can then apply the same pro-
cedure as was used in sections 4.1 and 4.2. We thus get a
recursion relation for the partition function Z=Zn(G,B,J)

just as in the case of 2 states per atom (see eq. 4.3).
z(6) = p_ 2(&£6) + q_ 2(40),

where P and q, are again defined by eq. (4.4). But now,

after iterating eq. (4.3), we have to substitute in eq.
EDn | ¥(C3E) - CoD

(4.9 zZ(2G) =n , because in the graph € 9 G each

of the "atoms" can independently be in n states. So eq.

(4.10) is generalized to

2¢6) = J p°qta’(G® o Vig,ps.
CCE

In case the interaction energy 2Je is positive, we have

again 0 < P < 1, i.e. P is a probability measure.
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5. GRAPH COLOURINGS

5.1. Formulation of the problem

5.2. Recursion

An old and well-known problem in graph theory is the
following. Let G = (V,E,i) be a finite graph and Qn a set of
n elements called "colours'". Each mapping f of the set of
vertices V into the set of colours Qn is called a (vertex)
colouring of the graph with at most n colours; colourings
with the property that for each edge the ends have different
colours are called n-colourings. The problem is to study the
total number of n-colourings of the graph, which is denoted

by P(n;G), as a function of n.

In the special case that G is planar, i.e. if there exists a
faithful representation of the graph as a map in a plane such
that lines representing edges do not cross, the number of
n-colourings of G is equal to the number of country colourings
of the dual map such that neighbouring countries have different

colours.

relation

(5.1)

(5.2)

As found by R.M. Foster (unpublished, see however ref. 25)
there exists a recursion relation for the total number of
n-colourings P(n3;G). It is derived by dividing the n-
colourings of %eG for a given edge e into those which have

the property £(v) # f(v') where v and v' are the ends of the
edge e, and those with f(v) = f(v') (possible because e is

not an edge of %eG). The former ones are just the n-colourings
of G, the latter ones just the n-colourings of é%G, because in

the latter graph v=v'. So
P(n; 3.6) = P(n;6) + P(n; £G),

and we arrive at the recursion relation:
P(n3;G) = P(n;ﬁ;G) - P(n;CLG).
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This may be compared with eq. (3.2) and eq. (4.3). Iterating
eq. (5.2) with respect to all edges we get G.D. Birkhoff's

formula 8)

(5.3) P;6) = § (-)° Pn;c%P%) = § (€ 269,
CCE CCE
because the graph CQSDG consists of just y(C;G) isolated

vertices which can be coloured each one independently with n

colours.

We can write, with p=l-q, D=E-C:

(5.4) e s timq ® § plg al ",
CCE g CCE

If we allow also negative values of measures in the percolation
model, as we did in the case of the antiferromagnetic Ising

model, we can write eq. (5.3), with the aid of (5.4), as

€5:5) ° P(n3;G) = lim q“E<G) <n';G,P>, p = l-q.

q—)'m

This should be compared/with eq. (4.10) and eq. (4.23). For

the antiferromagnetig’&ase of the Ashkin-Teller-Potts model

7

the probability q ~ ® corresponds to temperature zero, so the

number of n-cp2Ourings is equal to the degeneracy of the ground

state of pife antiferromagnetic Ashkin-Teller-Potts model with n
ssiﬁgs/;;;‘atom.

A

6. LINEAR RESISTANCE NETWORKS

6.1. Formulation of Kirchhoff's problem

In this section we shall consider finite electrical networks
consisting of linear resistors and generators of electromotive
force; the electrical character of the network is in no way
essential to what follows. We shall represent such an electrical-

resistance network by a finite connected graph G = (V,E,i) where
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(6.1)

(6.2)

(6.3)

V is the set of nodes of the network, E the set of branches
of the network (resistors or generators) and i the incidence
relation. Kirchhoff 9 solved in 1847 the problem of finding
the currents through the branches of a finite network each of
which has a resistance and an electromotive force. By virtue
of the superposition principle, however, it is sufficient to
solve the case where only one edge e has an electromotive
force U, say, while every other edge e'#e has a resistance
Re" Moreover we shall concentrate on Kirchhoff's solution
for the electric current Ie through the edge e. This solution
can in our notation be written as follows. If U, and Ie are

measured in the same sense, then

1 =-vu, J RE-T-e/ ) T
T(,0) TeT(E,0)

where for any graph G, J(G) is the collection of edge sets of

all spanning trees in G.

To get this in a more usual form we multiply the numerator and

denominator of (6.1) with the product SE_e of all conductances
8. e R-!:

e e
I = - * *

A s ) S

e [
e / TEWLO)

Eq. (6.2) expresses the current Ie as a quotient of the
generating functions of spanning trees of the graphs Z%G and
CiG. The effective resistance szf = - Ue/Ie "seen by" the
electromotive force is, in the special case when e is parallel
to some resistance, say e',

off . 88/ 7 & mm—iln, f. 8% de) = dle),

R -
as

» eTE,6) / TETQ0) e' TETYO)

Indeed, the spanning trees of L;G can be made to spanning trees

of %eG by undoing the identification of the ends of e (which are

the ends of e' too) and adding the edge e'. These spanning trees

are just the spanning trees of 2LG containing e'; hence
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(6.4)

9 T
) 8 w0 L] T, Mo Sogly
Bt TR0 TE®® ite) = i(e"),

which proves (6.3). A comparison of eq. (6.3) with (4.20)

. > - ¢ &
shows that the generation function of spanning trees ZTE'RG)S
plays a role similar to that of the partition function of the

Ising model.

6.2, Reformulation

(6.5)

(6.6)

(6.7)

We may observe that the generating function of spanning trees

i s T : AN

ZT(G,S) = ZT(G) = ZTG1TG)S obeys a recursion relation:
= ” . - :

ZT(G) ZT(ELG) + SeZT(CéG) if e is not a loop in G,

because we can devide the spanning trees of G into two classes
according to the occurrence or non-occurrence of the edge e:
if a spanning tree of G does not contain e, it is also a

is just a

T J
spanning tree of C%G. This recursion relation is to be

spanning tree of 2EG; if it does contain e, c%G

compared with those in eq. (3.2), (4.3) or (5.1).

We can derive an expression for the generating function of
spanning trees which closely resembles expression (4.10) for
the partition function of the Ising model. To that end we
observe that we may characterize the spanning trees GT of a
finite connected graph G by the property w(T;G) = 0,

y(T;G) = 1, or equivalently by

w(T3G6) + y(T3G6) = 1 = inf {w(C3;G) + y(C;G)}.
CCE (G)

The last equality follows from the inequalities w>0 and y>1.
This characterization can be used to generate all spanning

trees of a given finite connected graph G by a polynomial in x:

ST = Z SC lim x{w(C;G)+Y(C;G)—1} = lim x-] 2 SC x{w(C)+y(C){
TET(G) CE x40 x+0 CCE
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(6.8)

(6.9)

(6.10)

(6.11)

}

Now putting x = k’ for positive k and using Euler's formula

(cf.ref. 22, ch. 4, th. 2)
w(C36) = [c| - [v(@)| + v(C;6)
in eq. (6.7) we get, with

(1.4 Kis)_l >

i

PAS K£S(l + KiS)‘], q

the equality

B pan b ) ScKi{|c|-lv| *2Y(C)} _y4p K—§{|v|+1] iE )
TET(G) «+0 CCE K+0 CCE

((C). C D
R L )p g2

Notice that p + q = 1 and 0 < p < | for § > 0, so that we may
write the generating function of spanning trees in terms of

the percolation model as:

-3{|v[+1},

2,(638) = lim x k' 3G,P>.

K¥0

Eq. (6.11) is to be compared with eq. (4.10) and (5¢5)%

7. RANDOM-CLUSTER MODEL

7.1. Description of the model

After having shown, in the preceding sections, that for a
number of models and problems the functions which play a key
role in the calculations can be expressed in a uniform way in
terms of the percolation model, we shall in this section intro-
duce a new model with a "key function" which includes the

above-mentioned key functions as special cases.

Let first G = (V,E,i) be a finite graph and P a normed measure
(P(1)=1) on the event space of G, generated by a function p on
E. We shall find it convenient to allow negative values for

p, i.e. we consider P to be a signed measure. Let k be a real

number and let Yy denote the number of c-clusters. We define
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(7.1)

(7.2)

(7.3)

the cluster (generating) function of G by (q@ = 1-p)

z quE‘CKY (C;6) -
CCE

Z(G3pyk) =

and a normed signed measure by

C E—CKY(C;G)

’ -1
u(C) = u(C;G,p,x) =P q Z (G,p,K)

for all subsets CCE(G) and for all (G,p,k) such that
Z(G,p,x) # 0.

Next, let G be an infinite countable graph, and let Gn be an
increasing sequence of finite subgraphs of G such that

Un=]
event a on G there is an n(a) such that for n 3_n(a), a is a

Gn = G and Z(Gn,p,K) # 0 for almost all n. For any local

local event on Gn' The normal signed measure u(a) of a local

event on G will be defined by

u(a) = lim u_(a), n > n(a),

n—>ox
where My is the signed measure defined on Gn' A necessary and
sufficient condition for this limit to exist is that u(cC)
exists for all finite subsets CCE(G). This signed measure u
may be extended to random events by the procedure mentiomed in
section 3.1, and the corresponding expectation value to
random variables £, to be denoted by <f;G,u> = <f;G,p,k> = <f>,
Notice that, unlike P, the measure u is not a product measure.
The influence of the c-clusters makes the edge events dependent
on each other, and thus introduces a global effect in the

measure.

A countable graph G together with a normed signed measure M

as described above we call a random—-cluster model, to be

denoted (G,u) or (G,p,k).

In order to have in the random—-cluster model an analogue of

the magnetic field in the Ising model, we shall occasionally
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add to the graph G a supplementary vertex 0 and to each vertex

v of V(G) one supplementary edge incident with v and o. The

graph thus obtained will be called supplemented and denoted
¢® = (v°,E°,i), with V° = V(G)U{o}, E° = E(G)UE_, where E_ is

v

the set of supplementary edges. The probability for the edge
incident with o and v to be a c—-edge will be Bl Furthermore,
= Ol b
1 Bt M8 The measures generated by p = pUpO are de
o o
noted p and u .

7.2. Some properties of the random-cluster model

(7.5)

Proposition 2

In the preceding sections we have shown that in the various
systems considered the "key function" obeys a recursion and
a differentiation relation. We shall now show that in the
random-cluster model the cluster function Z obeys a recursion

relation and a differentiation relation.

The cluster function Z is defined for finite graphs G, so the
number of c-clusters lies between | and ]V(G)\ . Consequently,
Z is finite for any finite graph. Let G be a finite graph and
ecE(G) = E, then with E-e=E', E-C =D, E'-C' = D' for
C'CE',

- )
) quDKy(C;G) wls § ol Y (CTHei), o Y(C'56) {
CCE C'CE' 8 N

- 3 ¢ Ip KY(C';CLG) +q (Y (€326
C'CE' e e 2

Z(G) =

because y is ‘?D—invariant, i€ y(C';éiG) = y(C'+e;G) and
Y(C';2LG) = v(C';G) for all e and all C'CE'. From eq. (7.5)

we obtain the following:

Recursion relation.

Let (G,p,<) be a finite random-cluster model. Then for all
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(7.6)

Proposition 3

(7.7)

Proposition 4

(7.8)

(7.9)

edges ecE(G):

Z(G) = pez(c;_c) + q,2(9,6).

Notice that for 0 < p < 1, eq. (7.6) is a particular case of

theorem 1.

In order to obtain a differentiation relation for Z, we make
use of lemma 2 and the same type of argument as was used in
the proof of proposition 1. Thus we easily obtain the

following:

Differentiation relation.

Let (G,p,k) be a finite random-cluster model with p = 1 - ¢

and Z # 0. Then for all edges ecE(G):

3
-1
5 In Z(G,p,x) = (1=k ")<8_3G,p,«>
e

Finally, we mention the following, almost trivial, property of

the cluster functions.

Product relation.
Let (G,p,k) be a finite random-cluster model and G' and G"

disjoint subgraphs of G. Then
Z(G'WG") = Z(G")+-Z(GC").

Indeed, if CCE(G')VE(G"), C'=CE', C"=C"E", D'sD'E' and
D"=DE", then C= C'UC", D=D'UD", y(C;G) = y(C';G') + v(C";G"),

and therefore

Ll l alll T nt 1.0t
quDKy(C,G W05} o p% gl GTEE56N)

Cll DH CH,GH
q 2. g MACEH

Since summation over all CCE'UE" is equivalent to a repeated
summation over all C'CE' and all C"CE", eq. (7.8) follows by

summing (7.9).
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7.3. Special cases of the random-cluster model

(7.10)

(7.11)

(7.12)

(7.13)

In this section we regard only finite graphs. We show that
the random—-cluster model generalizes the systems discussed in
previous sections. The percolation problem is regained by

putting « = 1.

CD
Z(G,p,1) = 1 and u(C;G,p,1) = p q ,

i.e. p reduces to the original measure P.

As shown by the equations (4.10) and (4.23), together with
(4.4), expressing the partition function of the Ising and
Ashkin-Teller-Potts model in terms of the percolation model,

we have for x = n > e

Z_(G,8,3) = Z(G,1-exp(~28J),m).

As shown by equation (5.5) for the chromatic polynomial we

have further

-E (G)

P(n3;G) = lim g Z(G,1-g,n).

q—)oo

Finally, the generating function of spanning trees in connected
graphs, occurring in the theory of linear resistance networks,
can, by eq. (6.9) and (6.11), be written as

-4{|v(G) |+1}

ZT(G,S) = lim K Z(G,K%S/(1+K£S),K)-

k+0

The differentiation relations for the various systems follow
from the single differentiation relation (7.7) for the random-
cluster model. The equations (3.11), restricted to finite
graphs, (4.20) and (6.3) are obtained from (7.7) using the same

procedure as for the cluster function.

To begin with, for « = 2 and probabilities (b5.b) , 'eq. (1.7)

reduces to eq. (4.20). Next we observe that for « = 1 both
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\ (7.14)

(7.15)

(7.16)

(7.17)

sides of (7.7) vanish. In order to obtain eq. (3.11) we first
divide both sides of (7.7) by (x=1) for k # 1, and then take
the limit k>1. From the left-hand side of (7.7) we get, after

having interchanged limit and derivative,

—a-ln Z
q —2—-lim L5 q s 1im-@i————— , by 1'HGpital's rule,
que k1 k=1 eaqe -1 —Q(K'])
oK
] 3 - o | 3
=g lim 2~ '<yk' 3G,P> = qesa—<Y,G,P>-

e k>l

From the right-hand side of (7.7) we get

lim & 1<8 3G,p,k> = <8 _3G,p,1> = <6 _3G,P>.
o1 e - e

So eqs. (7.14) and (7.15), together with (7.7), give eq. (3.11).

Finally, we have seen that at least one quantity of linear
resistance networks is also obtained in an asymptotic way,
namely by putting p = K£S/(|+Ki3), (see eq. (6.9) ), and taking
the limit «x+0. Because for x+0 both sides of (7.7) tend to -=,

4

order to obtain eq. (6.3). The procedure used to derive eq.

they have first to be multiplied by -x°, as we shall show, in

(6.11) is now applied in the reversed direction to Z =<¢'3;G,P>

and <Ge;G,p,K> = <GeKY;G,P>/Z. We then obtain

SAVID g Ay B p o€ (M@ (@1}
CCE

<k'3G,P(k,S)> =

<5eKY;G,P(K,S)> - K£(|V|+2)(1+K£S)-E Z Scde(C)Ki{w(C)'i"Y(C)—z‘.

CCE

b(|v]+2) eq. (7.17)

The reason for splitting off the factor «
is that we want the power of k in the summation to be non-
negative. Under the constraint Ge(C) = 1, which gives the non-

vanishing terms, the ends of e are in different c-clusters, so
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there are at least two c-clusters. Since w > 0, it follows
that w(C) + y(C) > 2 in this case. The infimum is reached

for those sets TCE for which w(T) = 0 and y(T) = 2. Evidently,
T+e is just the edge set of a spanning tree of G containing e.
By the considerations leading to (6.5) we may equivalently say
that TGTTCZG), i.e., on the analogy of eq. (6.6), we may de-

fine a spanning tree of éLG with edge set T by

(7.18) w(T36) + Y(T,6) = 2 = inf {w(C) +v(@1} , TeT(LO-
C: §_(C)=1

For the left-hand side of (7.7) we get, after multiplying by

}

-k* and changing the differentiation variable to Se (eq. (6-9) ),

& (1+K£Se) 5
lim -k 1 53 1n Z = lim 2o n 2 -
k+0 =K e k¥0 e
.t i
= 1im-———J%——— 7 P bl 7 ) SCKé{w(C)+Y(C) 1}

aS

k¥0 (1+k*S )  «+0 e CCE , by (7.16),

(7.19) 3%— a0y % 1w Ki{w(C)+y(C)—1} = 3%— 1n ZT(G’S)’ by (6.6).
e CCE k40 e

For the right-hand side of (7.7) we get after multiplying by
-Ki and substituting (7.16) and (7.17)

Tim A (1= et 7 s% (Cy 2 0 (C)+y(C)-2} ) §C A{w(@)+y(0)-1}
k+0 CCE e CCE

) s® 1im & (C)Ki{w(c)+Y(C)-2}///z s 1im Ki{w(C)+Y(C)-1} _
- CCE k+0

CCE k¥0
(7.20) = zT(é’éG,S) 25 (G,58)
by (6.6) and (7.18). From (7.7), (7.19) and (7.20) we obtain
3 -~
(7.21) E In Z,(G,8) = ZT(%G,S)/ZT(G,S).

In order to obtain eq. (6.3), we have to apply (7.21) to an
edge e' parallel to the given edge e, and to the graph QLG.
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Notice that éi.fLG and C;G differ only by a loop.

7.4. The cluster generating function and other polynomials

In this section we shall derive relations between the cluster
generating function and other graphs polynomials which in the
course of time have been introduced by several authors, and
which will be defined explicitly below. First we mention the
two-variable polynomial Q, introduced for arbitrary graphs by
Tutte in 1947 11). In 1954, Tutte ]0), in a study of graph-
colouring problems, introduced another two-variable poly-
nomial for finite graphs, the dichromate y. It was not until
1967 that it was explicitly stated, again by Tutte 27), that
the polynomials Q and x are identical apart from a factor and
a shift of variables. A somewhat different line of research

was pursued by Zykov 12

, who in 1962, in a study of recursive
functions on graphs, introduced a two-variable polynomial y,

and showed that the four-variable polynomial y', also intro-
duced by him, the two-variable polynomial P, which is identical,
up to a factor, to Tutte's Q, and the dichromate y are all
particular cases of the polynomial y apart from factors and

changes of variables.

Finally, we mention the two-variable polynomial p, introduced

by Crapo 28)

for finite pregeometries (matroids), which he
showed to be identical in the above sense to the generalization
of the dichromate to matroids. We shall show that the cluster-
generating function Z, which is a (|E|+1)-variable polynomial,
is a generalization of the above-mentioned polynomials, in the

sense that different edges can have different "weights".

Before showing the connection between Z and the polynomials Q,
X, ¥, ¥' and p, we shall introduce a slightly generalized
polynomial Z' and a corresponding measure u'. Let G = (V,E,i)
be a finite graph, x and y be two mappings of E into the set

of real numbers and let £, n be two real numbers. Then we
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(7.22)

(7.23)

(7.24)

(7.25)

(7.26)

(727)

(7.28)

define (D = E-C)

) nyDEY @C; G)-Y(E;G)nw(C;G) ,
CCE

Z'(G!X’y,g,n) =

C.D Y(C;G)-Y(E;G)nw(C;G)/Z'(G -

U'(C;G’X’y9£,n) =EXYyE§& ’y9g’n)'

This polynomial Z' and measure u' are related to Z and u

through Euler's formula
[v(G)| + w(C;6) = |C| + y(C;G).

Eliminating w from Z' and u' by (7.24), we deduce

—y(E;G>n-|v<c)|

Z' (G,x,y,E5n) = (xn + y)E g Z(G,xn/(xn + y), &En)

u'(C;G,x%,y,E,n) = u(C36,xn /(xn +y), En).

One observes that apart from factors there is no loss of
generality in going from the 2(|E|+1)-variable polynomial Z'

to the (|E|+1)-variable polynomial Z.

The polynomial Q, now called the dichromatic polynomial, is
¥(C;6) w(C;G)
CgEt z . We

defined for finite graphs by Q(G,t,z)=Z

have immediately:

-|lv()|

(G, t 8y = (z+1) 1 BEO, Z2(G,z/(z+1) ,tz).

The original definition of the dichromate X, now called the

Tutte polynomial, is rather complicated and will be omitted

]2), the Tutte polynomial is

here. As Zykov has shown
uniquely determined by the following properties, which were
deduced by Tutte. If all edges of G are loops or isthmi,
x(G,x,y) = x]E1~w(E;G)yw(E;G). If G has an edge, e say, which
is neither a loop nor an isthmus, x satisfies the recursion
relation x(G) = x(C%G) + x(ELG). One readily verifies that

z'(G,1,1,x-1,y-1) obeys these conditions, so
E(G -Y(E3G -|V(G =1
siasz, gy 9B O gy VB Rpagy il "z[c,l—y , (x-1) (y-1) |-
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(7.29)

(7.30)

(7.31)

8. DISCUSSION

The polynomials § and ¥' introduced by Zykov are defined in
the following way for finite graphs. If all edges of G are
loops, ¥(G,a,B) = 1, ¢¥'(G,a,B,u,v) = ulV(G)IVIE(G)I. If G has
an edge, e say, which is not a loop, ¥y and y' are defined re-
cursively by the recursion relatioms Y(G) = aw(ﬁzc) + Bw(L%G),
' (G) = uw'(ﬁLG) + Bw'((%G). One readily verifies that the
functions {B8/(1-a)} a Z(G,1-a,(1-a)/B) and uY(E;G) X

x Z'(G,B,a,u, (v-a)/B) obey these conditions for Yy and y'

respectively, so

1-a

-

V(G
w'(c,a,s,u,v>=(—@-)| SAMECT z(c%s_(v_-ﬁ]

V=0 B

. 1V
¥ (G,a,B) = {_—4

1-a

The rank generating function p was defined for matroids by

Crapo. A matroid, or (combinatorial) pregeometry, is the

Boolean algebra of all subsets of a finite set X together with
an integral-valued rank function r on this algebra, satisfying
the following relations. (1) r(#)=0, (2) for all x€X and
X'CX-x we have r(X'+x)-r(X') is 0 or 1, (3) for all x,x'eX
and X'CX-x-x' we have r(X'+x+x")-r(X'+x)-r(X'+x")+r(X') is 0
or -1. If X is the edge set E(G) of a finite graph G, and if
the rank function is the function [Cl—w(C;G) - |V(G)|- y(C;G),
o has the following form:

plE gy = gt RSRRIGLREE 0,
CCE
p(G,E,n) = (n-"l)IE(G)I E—Y(E;G) n—lV(G)I Z(Gyn/ (nt1) ,&n).

From the foregoing analysis one can draw two main conclusions.
a) A number of seemingly unrelated physical systems, such as
the linear resistance network, the percolation model and the

Ising model, can be considered as special cases of one single
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(8.1)

(8.2)

(8.3)

(8.4)

model, the random-cluster model. This model has the advantage
over the Ashkin-Teller-Potts model, which constitutes another
generalization of the Ising model, that the parameter «
characterizing the various special cases can take all real
values, including the remaining non-negative integral values
0 and 1. This fact enables one to study the properties of the
model as a function of a continuously varying additional para-
meter. If, e.g., the system exhibits a phase transition in
the thermodynamic limit, one can investigate how its critical

behaviour changes with k.

In this connection it might be of interest to study those
quantities which form the generalization of the thermodynamic
quantities and spin correlations of the Ising model. As such

we mention the generalized free energy

F(G°,p%,«) = 1n 2(¢°,p°,x)

- A 3 d o 3 3 o
and its derivatives, qesa— F(G ), qe'SE;T qesaz F(G) etc.,

the first of which can, ebyproposition 2, be written as

9 =1 o o
desq, F(G%) = (I-x )<8,36°,u>,

and in addition the quantities <va'>’ <y w>s etcs

vv'v

Of particular interest are the (generalized) local magnetization

M and local susceptibility x:

M@E°,v) = (1)) - q

(o o=
oviq_. BLE ) e iCirr=) oy >y

9
ov'quv,

x(G%,v,v') = q q (i

ovaqov

and the corresponding '"global" quantities, obtained by summing

over all vertices and vertex pairs, respectively.

b) The cluster generating function Z(G,p,x) which takes a
central place in the theory of the random-cluster model, is

a straightforward generalization of a polynomial in two
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variables, the dichromatic polynomial, which is playing a more
and more important role in the theory of graphs and its ex-
tension, the theory of matroids. The dichromatic polynomial
of a given graph G is the generating function for the number
of spanning graphs of G with a given number of clusters and

a given cyclomatic number; the cluster generating function
generates all individual spanning subgraphs in such a form
that the number of clusters and the cyclomatic number can be

read off immediately.

The dichromatic polynomial has recently been put in a wider

29)

mathematical perspective by Brylawski in an interesting

study on what he calls the Tutte-Grothendieck ring. The main
idea of Brylawski's work goes back to Tutte's paper 1 in
which he introduced the polynomial Q. One might expect that
a combination of the ideas developed in this branch of mathe-
matics, which deals almost exclusively with finite sets, with
those developed in the theoretical treatment of the thermo-
dynamic limit in translationally invariant systems will lead

to a deeper understanding of phase transitions.
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ON THE RANDOM-CLUSTER MODEL

II. The percolation model

Synopsis

The relationship between several criteria for large-range
connectivity in an infinite percolation model is investigated.
In particular, we establish the equivalence, under a non-
trivial condition, between weak and strong large—range
connectivity, related, respectively, with the probability of
a vertex to belong to an infinite cluster and the probability
of a vertex to be connected with vertices ''very far away".
Furthermore, it is shown that the role of infinity can, in a

certain sense, be taken over by a supplementary vertex.

43



1.

INTRODUCTION

This paper is the second one in a sequence of papers on the
random-cluster model. In the first paper 1), to be referred to
as I, the random-cluster model was defined and shown to include
as special or limiting cases the linear resistance network, the
percolation model, the Ising model and the Ashkin-Teller-Potts

model.

The main reason why the Ising model has been extensively in-
vestigated lies in the fact that it exhibits a phase transition,
existing in the occurrence of a certain type of long-range
ordering of the spins under certain conditions of temperature
and magnetic field strength, and the absence of such an ordering
under different conditions. A sharp transition between the two
regimes occurs only if one takes the thermodynamic limit of a
monotone increasing sequence of finite systems. All quantities
of interest related with ordering, such as the free energy, the
spontaneous magnetization, the magnetic susceptibility (all
taken per vertex), are thereby functions on an infinite system

which is the limit of finite systems.

The question arises whether the random-cluster model also ex—
hibits a phase transition of some sort. Before studying this
question in its generality it is interesting to focus attention
on the special case of the percolation model. In the first
place, this model can be defined directly for an infinite
countable graph, without the intervention of finite graphs.
Secondly, for an infinite countable graph the model shows a
"phase transition', the probability that a given vertex belongs
to an infinite c-cluster being zero for certain choices of p and
positive for different choices (see Broadbent and Hammersly,
and Hammersley &) e Moreover, the percolation model is not
only a special case, but, in a sense, also the basis of the
random—cluster model. One may, therefore, expect that many
properties of the percolation model will be typical for the

random-cluster model as a whole.
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In § 2 we show that the functions listed in I § 3.1 are random
variables. In § 3 a basic theorem on covariances of random
variables of a given type is derived. On the one hand, this
theorem is a generalization of an inequality derived and used by
Harris in a paper on the percolation model 3). On the other hand,
it is closely related to the well-known second inequality of
Griffiths 4), as will be shown in a subsequent paper. A further
generalization of the theorem to measures on finite distributive
lattices will be given in another paper by Ginibre, Kasteleyn
and the author 5).

Section 4 deals with various criteria for large-range connectivity
in the percolation model. These criteria are shown to be strongly

related, and independent of local disturbances of the graph. The

covariance inequality turns out to be crucial in the analysis.

In § 5, it is shown that for locally finite graphs there is a
connection between functions expressing the large-range connectivity
of the percolation model and certain functions in the supplemented
percolation model, introduced in I § 7.1. The supplementary vertex

turns out to play the role of a "point at infinit U
piay P Y

Finally, in § 6, the results of the paper are discussed.

To conclude this introduction we make a few remarks concerning

notation and other conventions.

In the proof of various propositions we shall need increasing
sequences of finite graphs having a given infinite countable

graph as a limit. We choose such a sequence once and for all,

denoting the sequence by Gy, Gz, G3, «v-« - Then, by definition,
(1) G1CG,CG3, seee (2) G =UZ_ G . We shall further write

n=1
V(Gn) = Vn’ E(Gn) = En’ B(Gn) =

boundary of Gn in G, to be defined in the next section. If

n
Bn, where B(Gn) is the vertex

V',V" are subsets of V then the distance between them (in G) is
denoted d(V',V"), i.e. d(V',V") is the infimum of the lengths

over all paths (in G) between all pairs of vertices v'eV' and

45




V”EV" I

We shall consider many functions on an infinite countable set,

viz. the vertex set V of the infinite countable graph G, or,

more generally, a subset V' of V. Of special interest are the
limit points of these functions, among which the limes inferior
and the limes superior. Usually, one introduces a natural number,
say n, to order the elements of such a set, and one write lim infn
or lim infn+°° . Since the lim inf and the lim sup do not depend on
the ordering of the elements of a set, this intermediate step is
not necessary, and, in fact, it might complicate the analysis in
this paper unnecessarily. We shall, therefore, denote the two

limits by lim inf and lim sup ey If the two are equal, we

vev!
shall write limeEV" If an integer n arrives in a natural way, as
in the sequence Gy, Go, «oe» Gn’ ... 5 we shall not only write
lim inf , but also lim_, rather than lim . Furthermore, we
n n n>®

shall use the usual convention for ordering and convergence of
functions. If f and g map a set X into a set Y, then f<g means
that f(x) < g(x) for all x€X, and f+g means that f(x) > g(x) for

all x=X.

Moreover, to make the lemmas, propositions and theorems meaningful,
we restrict ourselves in each section to graphs of a certain type.
Section 2 applies to infinite countable graphs, i.e. IVUEI is
infinite countable. Section 3 applies to arbitrary countable
graphs, i.e. |WE| is finite or infinite countable. Section 4
applies to infinite countable graphs with an infinite countable
vertex set, i.e. |V| is infinite countable. Section 5 applies to
infinite countable graphs with an infinite countable vertex set
and which are locally finite, i.e. IVI is infinite countable, and
the number of edges incident with a given vertex is finite for all

vertices of the graph.
Finally, we recall that we shall use the same symbol for an event

and its indicator, as we did in I. Consequently, a sentence like

"If v and v' are c-connected and v' and v'"' are c-connected, then
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v and v" are c-connected" will be written either in the form

. - 1"
15 va| and YV'V"’ then van " or in the form ”YVV'YV'V"lYVV”

2. RANDOM VARIABLES ON INFINITE COUNTABLE GRAPHS

In this section we show that for a percolation model (G,P), where

G = (V,E,i) is an infinite countable graph, the functions on the
event space of G which were listed in I § 3.1 (end of the section)
are all non-negative random variables, and, thereby, integrable.
We recall that a non-negative random variable is obtained by
closing the collection of non-negative local variables under the
suprema and infima of countable subcollections. A local variable

f is a function which assumes only a finite number of (finite) real
values fi such that the event f = fi is a local event. A local
event, finally, is an event obtained by closing the collection of
edge events under finite sums and finite products. It is essentially
an event on a finite subgraph of G. It will be sufficient to prove
that the listed functions can be obtained as limits of increasing
sequences of non-negative local variables. In the proofs we shall
use the monotone sequence of finite subgraphs of G introduced in

section 1, G; c G, € G3 ... with ‘Jn:I e = G.

We shall say that two vertices v,v'eV are c—connected in a sub-—
'
graph G'CG, and denote this event (and its indicator) by W 3

0T, Yyt in G',if there is a c-path in G' between v and Vv'.

Lemma 1 Let y(V';G') be the number of equivalence classes of the set of
vertices V'CV under the relation of c-connection in the graph

G'CG. Then,

(2.1) y(V;G) = Supninfn.y(Vn;Gn.) = 1imn1imn,Y(Vn;Gn,),

2e2) <y3;G> = supninfn,<y(Vn;Gn,); Gnan,> 5




Proof. We first prove that Y(Vn;G) E infanVn;GnO, and then that
y(V;G) = supny(Vn;G). Observe that for v,v'EVn, L PR in Gn'
implies g SO in Gn'+1’ which implies Ty in G, because
Gn,Can+fZG. Therefore, Y(Vn;Gn,) > Y(Vn;Gn'+l) > Y(Vn;G)- Con-
versely, if Yoy in G, there is an index n' = n'(v,v') such

that et in Gn" because there is a (finite) c—-path in G be-
tween v and v', so there is some Gn' containing that c-path. Be-
cause Vn is finite there is an n' such that for all v,v'EVn with
Yoy in G also Yoot in Gn" Therefore, for that n', Y(Vn;G) =
y(Vn;Gn,). This implies that y(Vn;G) = infn.y(Vn;Gn.). To
prove that y(V;G) = sup y(Vn;G), we observe that evidently
Y(V,36) <YV L5
class of the vertices of V under c-connection in G contains at

G) < y(V;G). Furthermore, a given equivalence

least one vertex, v say, and there is an n = n(v) such that vEVn.
Therefore, y(V;G) 5_supny(Vn;G) and it follows that Y(V3;G) =
supnY(Vn;G). This completes the proof of (2.1). From the
integration theorem on monotone sequences eq. (2.2) follows

(cf. Zaanen 6) h. 3§13 Th. 3,4). ||

Lemma 2 Let w(G') be the c-cyclomatic number of a graph G'CG. Then
(2.3) w(G) = supnw(Gn) = llmnw(Gn),
(2.4) <w3G> = supn<w;Gn> = 1imn<w;Gn>.

Proof. The c-cyclomatic number of a graph G equals the number of
c-edges which are not in a maximal spanning c-forest in G (cf.
Konig N Ch. IX Th. 2 and 4). Let Fn be a maximal spanning c-forest
in Gn and Gn+lDGn’ then we can extend Fn to a maximal spanning

c-forest in G such that F ZDFn. This we do in the following way.

(1) n+l 0 e
Let G be the spanning subgraph of Gn+l with as edges E(Fn) and
the c—edges of Gn+1 not in Gn' If G(]) does not contain a
c-polygon, it is a maximal spanning c-forest of Gn+l' If G(l)

contains a c-polygon, that polygon contains a c-edge, e say, with

48



Lemma 3

(2.5)

(2.6)

eeEn+] B En’ because otherwise the c-polygon should consist of

edges of Fn and it was a c-polygon in F_, contrary to the

n
hypothesis. Let G(Z) be ﬁeG(l), then G(z) is a spanning sub-
(2)

and we may repeat the procedure given above on G .

(1)

graph of Gn+l’

By the finiteness of G we finally obtain a G containing no

.y n+tl
c-polygon. Then G(l) is a maximal spanning c-forest in Gn+|’ con-—
(1) (1)

(1)

taining Fn' So choose Fn to be G The maximality of G

+1
follows, because upon adding a c-edge of Gn+l which is not in G

(1)

to G , the obtained graph will contain a c-polygon containing

that edge, e say. Indeed, the ends of e are c-connected in

G (1) (1)

12 so in G , and by construction also c-connected in G >

So between the ends of e there is a c-path in G(l) which does not

contain e, and which, together with e, gives a c-polygon in
G(i). Moreover, the graph F = Ug;an is a spanning c—forest in

G = U;l]Gn. F is obviously a spanning c-forest in G. F is
maximal, because if we add a c-edge, e say, not in F, to F, this

graph will contain a c-polygon, because the ends of e are
c-connected in G, so in some Gn’ in Fn’ and in F, and we can
construct a c-polygon as before. Thus, by a theorem mentioned
before, w(C3;G) = |C-E(F)| = \U;;l{GWEn-E(Fn)M = supn|0'\En-E(Fn)l =
= supnw(CﬁEn;Gn), where obviously w(Gn) is increasing. The last
property together with the integration theorem on monotone

sequences gives (2.3) and (2.4). ll

Let G' be a cluster of G, with G' = (V',E',i), and let E" be the
set of all edges of G incident with V' and not in E'. Then

' E'ﬁEn E"ﬂEn ] E'ﬂEn E"mEn
YG' = 1nfnc d = 11mnc d
E'NE E"NE E'NE E'"NE
<YG|;G> - infn<c wia n;Gn> = 1imn<c &

g  dg A 5 - :
Proof. Obviously, y,.= ¢ d ,because in order that G' is a c—cluster

G'
the edges of E' must be c-edges and the edges of D" must be d-

edges. The rest of the proof is immediate. | |




Lemma 4

(2.7)

(2.8)

Lemma 5

(2.9)

(2.10)

By ZG'CG we shall understand the summation over all finite sub-

graphs G' of G.

If v is a vertex of G, then
f f

P Y
» G'éc Gl
£ £
<Yv> - 'Z <YG';V>.
G'SG

Proof. Firstly, we notice that the number of finite subgraphs of

a countable graph is countable, so the summation over all subgraphs

restricted to the finite ones makes sense. Furthermore, by de-
e f £ f : :

finition, Vo = SUPG'QGYG’;V , and all YG';V are incompatible, from

which the lemma follows. |

If v, v' are vertices of G, then

G G
& = o= limy
vav Supanvv anv' ’

< ;G> = sup < ;G > = 1lim < 3G >.
vav) Pn vav, a L va!) =

Proof. Because GDGn+]DGn, if v and v' are c-connected in Gn’

b - ; ; . 7 2
they are c—connected in Gn+l and in G. Thus AL in Gn = Ao uxGn+],
< | A in G. On the other hand, if v and v' are c-connected in G,

there is a (finite) c-path between them in G, and there is a n such
that Gn contains that path, from which it follows that v and v' are
c-connected in G_. Therefore, Y _, in G < sup y._, in G_. It

n vV n'vv n

follows that ng' = sugﬁyvv, in Gg. ||

In the special case that the graph G is locally finite, i.e. the

number of edges incident with a given vertex is finite for all
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Lemma 6

(2.11)

(2.12)

vertices of the graph, we have in addition a useful lemma con-
: f O .
cerning the event ; (E that v belongs to a finite c-cluster. This

2)

is mainly Th. 5 of Broadbent and Hammersley

We define the vertex boundary in G of a subgraph G' of G as the set

of vertices of G' which are incident with edges of G not in G', and

denote it by B(G'). Furthermore, we shall write B(Gn) = Bn'

Let v be a vertex of a locally finite graph G. Then

f Gn Gn
28, lim sup 6VB = 11mn SVB >
n n
«f;6> = lim sup <6 . 36>= lim <8__ 3G >.
v’ n an’ n n an’ n

Proof. For convenience we shall prove the negation of the

oo . 3
assertion i.e. y. = lim inf_y in G.. First of all we notice

v n'vB n
that in a locally finite connected infinite graph G there is for
any vertex v an infinite vertex-disjoint path with initial vertex
v, i.e. an infinite sequence of alternatingly vertices and edges
of G: vg = Vv, ej, V], €2, .-+ such that i(ek) = {v } for

N k+1* "k
k= 1,2, ... (cf. Konig

, Ch. VI, theorem 3). So if v belongs
to an infinite c-cluster, there is an infinite vertex-disjoint
c-path in G with initial vertex v. There is an n such that v
belongs to Gn’ and we may construct a c-path in Gn from v to
some vertex v'EBn: let v' be the last vertex in the infinite
c-path in G such that all preceding edges belong to Gn' In the
same way one may construct from a c-path in Gn+l between v and
some vertex v'EB a c-path in G between v and some v'eBn

n+l1’
(as long as v belongs to Gn). Therefore, X in G <

B YvB +1 e Gn+1 = YvB

On the other hand, if for all n' > n we have y I 16G s
anv n

o«
in G_,or in G £ 1lim inf i :
in n’ sz n anBn in Gn
the number of vertices in the c-cluster of G containing v is
at least SuPn';ndn'(v’Bn')’ where dn'(v’Bn') is the distance

in Gn between v and Bn" i.e. the length of the shortest path

in G , connecting v and B_,. Since UG = G and G is locally
n n n n




finite, lim supnBn is empty: for every v'eV there is an n such
that v' and all edges incident with it in G belong to Gn’ so

v'éBn, for n' > n. Therefore, lim sup_,_ _d '(V’Bn') = and it

n'>n'n
follows that v belongs to an infinite c—-cluster. Consequentely

Y, 1n G = lim 1nfnyVBn in Gn » and the lemma follows.||

For graphs that are not locally finite, the random variables Yi

can, in general, not be approached via the local variable Yanin Gn.
In that case, it is sometimes useful to approach them via other,

not local, variables, provided the graph is bilocally finite. We

shall say that a graph is bilocally finite, if for all pairs of

vertices v, v'€V the number of edges incident with v and v' is

finite and thus, in particular, the number of loops incident with

a given vertex v = v' 1is finite. The complement of Vn in V will

be denoted by U , i.e. U = V-V .
n n n

Lemma 7 Let G be a bilocally finite graph and veV. Then
: Sy =
(2.13) T llmnévU = supndvU .
n n
C =
(2.14) <Yv> = 11mn<6vun> = supn<6vU >

Proof. First, because Vn is non-decreasing in n, Un is non-

increasing in n, and therefore, is non-increasing in n.

o YVUn
Secondly, if Yt 2.7 belongs to an infinite c—cluster of G.
Moreover, the number of vertices c-connected with v is infinite,
by the assumption that G is bilocally finite, because otherwise
the number of c—edges in the c-cluster containing v, and hence
the c-cluster itself, should also be finite, contrary to the
hypothesis. So, each set Un contains an infinite number of
vertices c—connected with v, and it follows that YU for all n.
On the other hand, assuming Yi’ there is an n such that all

the vertices c—connected with v belong to V,» SO in Un there is

no vertex c-—connected with v, hence GVU , or equivalently:
n
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not for all n You_* Consequently, by the last two implications
) n f
= i = () O A fi i
e lnfanUn and ¥ sup_ VU, he first remark, together with
the integration theorem on monotone sequences, completes the proof

of the lemma. ||

3. COVARIANCE INEQUALITY

Theorem 1

(3.1)

In I § 3.2 we proved a recursion theorem for integrable random
variables. In this section we shall present a second theorem

on a subclass of these functions, which is a generalization of an
inequality on "combinations of links" derived by Harris in a paper
on the percolation model (ref. 3, lemma 4.1). The proof given

here is an example of the use of the recursion theorem. Before
stating the inequality, we shall define the type of functioms to
which the theorem applies. They are characterized by the property
that for each edge e€E(G) and all subsets CCE(G)-e, the function f
defined on the event space of G obeys f(C+e;G) > £(C;G); these

functions will be called locally increasing functions. A function

satisfying the reversed inequality f(C+e;G) < f(C3;G) will be called

a locally decreasing function. In terms of the associated functions

on the descendants 6éc and E%G, as defined in I § 3.2, we can
write f(C;q;D z_?(C;ﬁ%G) for locally increasing functions. Evident-
ly, if f is locally increasing, the positive part £ of f is

locally increasing and the negative part f of f is locally de-

creasing.

For two summable random variables f and g in a percolation model
(G,P) we define their covariance as follows:

cov(f,g;G,P) = <f,g3;G,P> = <£;G,P><g;G,P> .

Covariance inequality: Let (G,P) be a percolation model, and let
f and g be summable, or non-negative, locally increasing random

variables. Then

<fg;G,P> > <f;G,P><g;G,P>.
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(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

Proof. First, let f, g and fg be summable. By the recursion
theorem on an edge ecE(G), say, we get, omitting the association

bar over f and g:

cov(f,g;G) = pe<fg;(,'eG> + qe<fg;2eG> = p§<f;eec><g;dec> -

2 eie ) _ ) ) ) . -
qe<f,2eG><g,ﬂeG> peqe(<f,¢;G><g,2>eG> + <£;96><g;£6>)

p, (<fg;6,6> - <£;66><g;6,6>) + q (<fg;D6> - <£;2.6><g,96>) +

+

(p,~p2) <f; 8.G><g; £C> + (qe-q§)<f;2eG><g;ﬂeG> -

peqe(<f;C’eG><g;ZeG> + <£;2% 6><g; £6>).

Because PP

mN

- =l g2
P9, = 9,795> We get from eq. (3.2)

cov(f,g;6) = p, cov(f,g;6,6) + q, cov(f,g;DC) + peqe(<f;QG><g;é;G> +

+ <£3D G><g3 Q6> - <£306><g; BG> - <£39 G><g; €6>) = p, covlfg; GO +

+ g, cov(f,g;86) + pa,(<f;66> - <£.86>) (<g;(,6> - <g;6>) .

By the definition of locally increasing functions, f(C;C;G)zf(C;ng),
so <f;CLG>

v

<f;i%G>. Hence we get for the covariance the inequality
cov(f,g;G) = Pe cov(f,g;ééG) * g cov(f,g;j%G).

Iterating this inequality for a finite number of edges ecE'CE(G),

we get
c' D! c! D!
cov(f,g36) 2 [ p a cov(f,g;6 2 6, C'+D'=E'.
CIEEV
In case G 1is finite, we can choose E' = E(G) and obtain the

covariances for the smallest descendants of G

COV(f,g;cc»DG) = <fg;CC56DG> = <f;€C:0DG><g;(?C95DG> "

= {fg(c)} - {£(C)}{g(C)} = 0,
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(3.7)

(3.8)

(3.9)

from which the theorem follows. In case G is an infinite countable
graph, we define for each finite subset E'CE(G) local variables

- B DNE'
hE' by hE,(C) 2 covi(f, g3 bs) G). One observes that these
functions only depend on the states of the edges in E'. Further-

more, the hE' are summable and have the property

@r-p! gl bt
<h.E,;G>= 2 p- q cov(f,g;" D" G).
c'ce'
For the increasing sequence @CECE,C.. of finite subsets EnCE(G)

with UnEn = E(G) we get by a repeated use of egs. (3.5) and (357):
writing hE = hn’

n
cov(f,g) = <h@> e infn<hn>,
In fact, the functions hn will converge to zero almost everywhere
(a.e.), because by Lévy's theorem on bounded sequences of con-
ditional expectations (cf. Doob 8) Ch. VII Th. 4.3 corollary 1),

which in this case reads:

OWEn DWEn
if f is summable, limn<f;C Dt NG - E(CSGY 1A, &y

we have for the limit function of the sequence of summable

functions h
n

ONE_ DNE CNE_ DNE

A e . n n
hmnhn (C3G) llmncov(f,g, £

b Ng) = limn<fg;e e e -

OﬁEn DWEn GﬁEn DﬂEn
- (1imn<f;c 2 G>)(limn<g;€ D TG =

= {fg(C)} - {£(C)}{g(C)} = O a.e.

Notice that f,g and fg are finite a.e. by their summability. By
the convergence of the sequence hn to zero a.e., and the finite-
ness of the measure (P(1) = 1), we conclude that also the ex-
pectation values <hn> wil converge to zero. In fact, by eq. (3.8),

this convergence is monotone.

Secondly, let f and g be locally increasing non-negative random
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Corollary

variables. Then we may define functions f and g by: fn(C) =
min{£f(C) ,n}, and analogously for g," Observe that if f is locally
increasing, so is fn: if £(C+e) < n, then £(C) < f(C+e) < n and
hence fn(C+e),3 fn(C); if £f(C+e) > n, either £(C) < n and hence

n = fn(C+e) > fn(C), or £(C) > n and hence fn(C+e) =n>n-= fn(C).
Moreover, fn is summable, because it is non-negative and bounded
by n. Therefore, the functions fn form a non-decreasing sequence
of locally increasing summable functions converging to f as n tends
to infinity. Applying the covariance inequality just proved to fn
and Byrs We have <fngn,> >) <fn><gn.>, because fn’ gyt and fngn'
are all summable locally increasing functions. By the integration
theorem on monotone sequences, we get <fg> = supngupnﬁfngn,> >
> (supn<fn>)(supn,<gn,>) = <f><g>, That proves the theorem for
non-negative locally increasing random variables. Analogously one

proves eq.(3.1) for non-positive locally increasing random variables.

Finally, we remove the summability condition on fg in the first part
of the proof by observing that if <fg> = +®, the inequality (3.1)
holds trivially, whereas <fg> = - » can be excluded by the following
argument. If <fg> = - o, then for the negative part (fg)— of fg we
should have <(fg)—> = +» , But, <(fg)-> = <(f+g— + f-g+)> =

- —<f+(-g—)> - <(—f-)g+> = <f+><-g—> - <-f—><g+> = <f+><g—> +

+ <f-><g+>, because f+, g+, -f and —g— are all locally increasing.
Because f and g are summable by assumption, f+, g+, f and g- are

summable. Thus we get <(fg) > < @ . \|

Harris' lemma 4.1. 3).

Let Ay, Ap, ones A H:.a finite number of
finite subsets of E(G), let a; be the event ¢! and let a be the
event a) + ap + .. + a_. Let By, By sy Bn be a finite number

of finite subsets of E(G) and define the events bi and b analogously.

Then P(ab) > P(a)P(b).

Proof. Let f be the indicator of the event a, and let g be the

indicator of the event b. Then f and g are locally increasing
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Proposition 1

(3.10)

(3.11)

and non-negative (and summable). To show that £ is locally in-
creasing, we first show that a; is locally increasing. This
follows because for any CCE(G)-e, ai(C) = | implies AigC, hence
Ai§Q+e, from which ai(C+e) = ], Because a = Ziai, £(C) =

= a(C) < a(C+e) = f(C+e). Analogously, one proves that g is lo-
cally increasing. Hence, the covariance inequality can be
applied and the corollary follows. Notice that Harris' lemma
remains true if we allow a countable number of countable subsets

of E(G). ||

In a subsequent paper, to be referred to as III, a generalization

of the covariance inequality to the random-cluster model will be

derived. It will be shown that for spin-systems with only pair
4)

interactions the second Griffiths-Kelly -Sherman inequality is

a corollary of this generalized covariance inequality.

Finally, we give another, typical, property of locally increasing
functions by comparing the expectation values with respect to two
different probabilities P. The relation of this proposition with

the covariance inequality will be discussed in III.

Let (G,P) and (G,P') be the percolation models generated by the
mappings p and p', and let f be a locally increasing random

variable. If p' < p, and if f is non-negative or P-summable, then

<f;G,P'> < <f;G,P>.

Proof. First, suppose that f is non-negative. If <f;G,P> ==,(3.10)
is trivially true. Therefore, suppose that <f;G,P> < =, i.e. f is
non-negative and P-summable. By the recursion theorem, for any

ecE (G) ,

<f;G,P> = pe<f;c’ec,P> - qe<f;2eG,P> = <f;2eG,P> - pe(<f;8eG,P>—<f;2$eC,P>).

Because f is locally increasing, (<f;€fhP> = <f;2%G,P>).; 0, and
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P2 pé s by assumption, so from eq. (3.11) we get

<f£;G,P> 3_<f;£%G,P> - pé(<f;ch,P> - <f;iLG,P>) =

(3.12) = pé<f;€eG,P> + ql<£;8.6,P>.

If we write the measure P as a product measure, P = PE, eq. (3.12)

may be written as <f;G,PE> > <f;G,PE-e X (P')e> , or iterated
for the finite number of edges eEEﬁ -

8 E—En E
(3.13) <f;G,P"> > <f;G,P x (') % .

Analogously to the procedure used in the proof of the covariance
inequality, we proceed by defining the functions fn(C;G) =

= <f;€ann§PQEnG,P>, which have the property <fn;G,P'> =
=<f;G,PE"En X (P')En> . By the repeated use of eq. (3.13) we ob-

tain, with Ej = 0.

(3.14) <f3G,P> = <f4;G,P"'> > <£;G,P"> > <f5;G,P'> >...> lim infn<fn;G,P'>.

By Fatou's lemma on non-negative sequences, lim infn < fn;G,P'> >

> <lim infnfn;G,P'> > 0, and by Levy's theorem on bounded se-
quences of conditional expectations, limnfn(C;G) -

= limn<f;COjEn2PnEnG,P> = £(C3G) a.e.. Consequently, from eq. (3.14)
we obtain eq. (3.10), <£3;G,P> > <f;G,P'> , which completes the

proof for non-negative locally increasing functions.

If £ is P-summable, its positive part £ is locally increasing and
P-summable, and its negative part f is locally decreasing and P-
summable. For the positive part £* it follows at once from the
preceding considerations that <f+;G,P> > <f+;G,P'> , and £ is P'-
summable, too. As £ is locally decreasing, (-f—) is locally in-
creasing, so instead of eq. (3.14) we have <f ;G,P> < lim supn<f;;G,P'>.
1f <f ;G,P'> < =, by Lebesque's theorem and Levy's theorem it will
follow that <f_;G,P> < <f ;G,P'>, and consequently <f;G,P> =

= <£736,P> - <f ;G,P> > <f'3;6,P'> - <f ;G,P'> = <£;G,P'> , where-
as in the case <f ;G,P'> = =, eq. (3.10) is trivially satis-—

fied. ||

58



4. LARGE-RANGE CONNECTIVITY IN INFINITE COUNTABLE GRAPHS.

On the analogy of the concept of long-range order which is an
important element in the theory of the Ising model, we shall intro-—
duce the concept of large-range connectivity in the percolation
model to describe the extent to which the vertices of a graph are
connected on the average. As long as we do not restrict ourselves to
locally finite graphs, the fact that a vertex is connected to a
large number of other vertices does not imply that it is connected to
vertices at "long distance". Therefore, the term 'large range" is
preferred to "long range'; for locally finite graphs, however, the
terms are equivalent. Just as in the Ising model one distinguishes
various criteria for long-range order, we shall distinguish various

criteria for large-range connectivity.

A first criterion for large-range connectivity is based on the
value (zero or positive) of the quantities <yz>. In order to
have a criterion that does not depend on the choice of a special
vertex, we consider in particular the limes inferior of these

quantities. We say that a percolation model has weak large-range

connectivity, to be denoted by W, if lim infv<yj> > 05 The
property <y: > > 0 is denoted by W_. In addition we shall later on

o«
> for the increasin
ooy AL 1 &

ot n SR e ’ s
sequence of finite subgraphs Gn of G. If 1im 1ntn|Vn| ey Yy 0

we say that the percolation model has global large-range connec?iviqu

discuss the quantity lim infv]an_]Z

Next, we consider the quantities 1lim infv,<yvv,> and
lim infvlim infv,<yvv,>. If the latter quantity is >0 we say that

the percolation model has strong large-range connectivity, and we

denote this property by S. The property lim infv,<yvv,* > 0 is
denoted by Sv' A justification for the terms "weak" and "strong"

will be given later on in this section.

In order to be able to have somewhat more specified criteria for
large-range connectivity, we shall often consider the limes in-
ferior, not over the whole set of vertices V of G, but rather

over an arbitrarily given infinite subset V' of V. The correspond-
ing criteria for large-range connectivity will be denoted by primed

symbols: W', S; and S'. Taking in particular V' = V one gets back
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Lemma 8

Lemma 9

W' =W, etc.

For convenience we shall list the several types of large-range

connectivity:
W " 0
. < >
v Yy z Vs

W lim inf <Y:> > 03 w' lim inf <y$> 0
veV veVv'

Sv: lim inf <va,> >0, SRl lim inf <va'> > 0
V'EV ¥ v'evl

S : lim inf 1lim inf Yew= 2 0, ' 8! .: . kim inf lim:inf Sy > > 0,

veV v'ev vev' v'ev' v

In this section we shall always suppose that the set of vertices V

of G is infinite countable.

The relation |y between vertices of V defined by wvyv' if and only if

<va,> > 0, is an equivalence relation.

Proof. Evidently, y is reflexive and commutative. Transitivity |
follows, because if <YVV.> > 0 and <Yv'v"> > 0, then by the
transitivity of connection

<y > 2 <Y

vV 'Y

b X AR >< >
vy = vav YV'V" ’

by the covariance inequality (Th.1), so <va"> >0 l[

For any two vertices v,v'eV, oy £ g > 0 if and only if there is a

path in G between v and v' such that for all edges e in the path

pe>0.

Proof. Because G is countable, the number of paths is countable.
. : E' E'
1f there is no path between v and v' in G such that p = <c > > 0,
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Proposition 2

(4.2)

(4.3)

where E' is the set of edges in the path, then Y__, is the sum of
a countable number of events of probability zero, and hence an

event of probability zero itself, so that B >=0. If there is
a path in G with <cE'> > 0, then <y__,>2<c i 0. |

By Lemma 8 we can divide the vertices of G into equivalence classes
of ¢. If two vertices are in the same class, there is, by Lemma 9,
a path between them such that for each edge in the path pe>0. So
the equivalence classes of y are equal to the equivalence classes of
the vertices of the graph obtained from G by deleting all edges

with pe=0. The connection defined by <va,> > 0 will be called
P-connection, i.e. two vertices v and v' are P-connected in G if
<va,;G,P> > 0. A cluster defined by P-connection will be called

a P-cluster. Analogously one defines a P-path, a P-polygon, etc.

Let v,v'eV belong to the same P-cluster. Then
(a) Wv if and only if Wv, -

(b) S; if and only if SL, :

) © @ o
= = 80 <y > > < " 2
vav vavava Yoo = vavav

Both functions g and Y: are locally increasing, so by the

Proof. Evidently, yzzyzyvv,

covariance inequality and the last inequality
< C!)) oo

> < >< >.
Yoo = Ngy' 7yt

By definition, if Wv, then <y3.> > 0, and by assumption i 0,
so it follows from eq. (4.2) that <Y:> > 0, so wv‘ By the
symmetry between v and v' the converse statement is also true which

proves (a).
Taking the limes inferior over v" in eq. (4.1), we get
lim inf < - A > lim inf < >

v'ev! YVV" Y YVV' v'ev! YV'V" 2

from which we prove (b) in the same way as we proved (a) from (4..2)-<11
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Part (a) of Proposition 2 is formally identical to Th. 2 of Broad-

2)

bent and Hammersley These authors, however, consider oriented
graphs which are locally finite and have a high degree of regularity,
and in which all Po have the same value. In their proof they make

an implicit use of the covariance inequality.

Proposition 3 Let v€V. Then

(4.4) lim inf <y__,> = lim inf <y _,>.
T A vey'

Proof. By Lebesque's theorem on a bounded sequence of functions

6)

(cf. Zaanen Ch. 3 § 14 Th. 3) applied to the set of functions

£ o o s
Yud (the indicator that v and v' belong to the same finite c-

cluster), ordered in an arbitrary way, we have:

o 0. . : f
(4.5) 0 < <lim inf Yf > < 1im inf <Y£v'> < lim sup <Y£V,> < <lim sup } S ) I
v'ey' WV v'ey! v'ev' v'ey!
Now for any CCE, Yiv,(c) = | only for a finite number of vertices
v', so lim supv,ev,ygv,(c) = 0, and consequently <lim SUPV'EV'YVV'>=O'

Therefore, it follows from eq. (4.5) that

(4.6) lim <Yf sone g
viev' WV

o : f
The proposition follows from the relation Tt © T + j R and

eq. (4.6).

Proposition 4 Let vEV. Then

(a) S; implies WV, (b) S; implies S', (c) S' implies W'.

0 L=} o
so < > > < > 10
Yyv'? Yoo =2 Vyy!

Taking the limes inferior over v'eV', and using Proposition 3, we

Proof. Evidently, for any v'eV': Y: >

get

(4.7) <y > > lim inf <Y__,>.
V v'EV' ¥

-]
If S;, lim infv|ev,<va’> > 0, by definition, and hence <Y ~ > 0
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(4.8)

(4.9)

Proposition 5

by eq. (4.7), so W, That proves (a). Taking the lim inf over

v in eq. (4.7), we obtain

lim inf <Yt> > lim inf lim inf <y_ ,>,
vev' vev'  v'ev’ v

from which (c¢) follows. In order to prove (b), interchange v and

v' in eq. (4.1), and take the lim inf over v' and over v", ob-

taining
12
lim inf lim inf <y ,> > |lim inf <y_ ,> 3
1 ' ' v '
veVv v'ev v'ev

from which (b) follows. ||

A somewhat sharper result can be obtained by using a simple con-

dition on the vertex v with respect to the set of vertices V'.

Let veV belong to a P-cluster containing an infinite number of
vertices of V'. Then

(a) W' implies Wv, (b) S; is equivalent with S'.

Proof. To prove (a), let not WV, i.e. <Y:> = 0. Then by Prop. 2(a)

for each vertex v' in the P-cluster containing v, we also have

© . 0 - . -
<y ,> =0, In particular <y_,> = 0 for the infinite number of
v v

vertices of V' belonging to that P-cluster by assumption, from

. . . . e .
which it follows that lim 1nfv,ev,<yv,> = 0,1i.e. not W'

(a).

. This proves

We prove (b) by first proving, analogously to (a), that from the

assumption not S;, i.e. lim inf ,> =0, it follows that

<Yy
viev' ‘wv

lim infvEV' lim infv,ev,<va,> = (0, i.e. not S' by Prop. 2(b) and
the assumption. The converse of this is true by Prop. 4(b).

Therefore (b) follows. ||

A strong result on the equivalence of strong large-range connectivity

and weak large-range connectivity can by obtained by imposing a much
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Theorem 2

(4.10)

(4.11)

(4.12)

stronger condition on the vertex v, the set V', and the system.

Weak Strong equivalence. Let vEV belong to a P-cluster con-
taining an infinite number of vertices of V' and let

©

1imv'eV'<Yv6vv'Yv'> = 0. Then W' is equivalent with S', is

equivalent with S;.

Proof. Let veV', then evidently, Y:v' =Y Y

Taking expectation values this gives

©
Y

- ® o _ ©
<va|> YVYVv> <YV6VV' V'>'
By Proposition 3, lim infv'eV'<va'> = lim infv'eV'<va'>’ and by
assumption limv'EV'<Yv6vv'Y:'> = 0, so from eq. (4.10) we obtain

by taking the limes inferior over v',

o oo
lim inf <y > = 1lim inf <y >
v'ey! v v'ev' v'v!
By the covariance inequality on the locally increasing functions
o oo o o0 o o« %
Y. and YV" <yvyv,> i_<yv><yv.>, and therefore we obtain from

v
(4.11) that

lim inf <y ,> > <y.> lim inf <y ,>.
eyt wet =T gt W

If W', then by Proposition 5(a) also Wv, and consequently
V'EV'<YV'> > 0. So by eq. (4.12) also

1im infv'eV'<va'> >0 Aves S;. By Proposition 4(b), S; implies

<y3> lim inf

S', and by Proposition 4(c), S' implies W'. Therefore, W' ultimate-

ly implies S', which implies W', which proves the theorem. | |

3)

Harris proved that for all v,v'eV of the quadratic lattice, with

all p_=p, <Y006 .Yw|> = 0. For an extension to other planar

e vouvv''v 9)
lattices the reader is referred to Fisher . On the other hand,
we shall give an example in which W' and S' are not equivalent, and

.<Yw6 .Ym.> # 0. Let G be a Bethe lattice with

i ed lim
inde v'ev v ve''v
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Theorem 3

(4.13)

(4.14)

coordination number n, i.e. an infinite countable connected tree

in which each vertex is incident with n edges, and let for all

edges PP+ It can be derived from Fisher's 0) analysis of this
case that <Y:> =0 for p < (n-])_l, and <Yz> > 0 for p > (n-l)—l.

d(v,v' o
p ( )

Furthermore, <y _ ,> = , and limv,<yvv,> = p , because

vV
limv,d(v,v') = ® by the locally finiteness. So if p = 1, then
limv,<yvv,> =1, and if p < 1, E?en 1imv,<va,> = 0. If follows
that in the open interval (n-1) <p<l we have W' and not $'. It

can further be shown that in that interval

oo o - '
]_imv’<Y 6 IY '> = lim .(]'<Y‘f,>l/n)2(n l)(l_pd(V,V )) o

= (|-<va:‘/‘¥)2(“") ;o Finall tices that lim_,<Y 6. .Y
Y, . i f] y, one notice g W LT

for p=1 and for 0 <p < (n-1) . In the former case, we have

both W' and S' and in the latter case neither W' nor S'. We see

that in this example the equivalence of W' and S' just depends on

. 99 o
<
the value of llmv, Yvévv'Yv'>'

1f we restrict ourselves to bilocally finite graphs, we are able
to give Theorem 2 in a sharper form. This will follow directly
from the clustering property of YtY:" or equivalently from the
clustering property of yiyi,, in bilocally finite graphs, which is
the subject of the next theorem. We recall that a graph is bi-
locally finite of for all pairs of vertices v,v'€V the number of

edges incident with both vertices is finite.

Clustering property. Let G be a bilocally finite graph and vEV.
Then

i o 2 £ £
lim cov(y ,Yw.) = lim cov(Y ,Y.,) = 0.
v'ev' hadeg v'ev' b s

Proof. Let Gy, G,, G3, ... be the increasing sequence of finite

subgraphs of G introduced in § 1, and let Un = V—Vn be the set of

f

vertices of G not in Gn' Evidently, Yi = Yf6 * Yoy for any

vV, so

1> < <yf5 Yf >+<YfY > < <Yf6 Yoa'O-y >+<Yf Y )*<YfY
= Cihroul] el DS 4 '"“v'U v' v’Un v v



(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

<Yf5 f 6. tyr >

and <Yf><yf >
T vovu Ty %ty
n n

By definition, if Yorg e VY is c—connected with at least one of

. n p
the vertices of Un; consequently, because Un is countable,

f
YV'YV'U> — ”z <vaY 1o
n v EUn

Combining the eqs. (4.14), (4.15) and (4.16), we obtain

f f f f £
cov(y. , .) iCOV(YVGVUn’YV'(SV'U )t S > b R i

v’ v'v
n n v"eUn

Taking successively the lim sup over v' and the lim inf over n in
eq. (4.17), and using the fact that lim sup Ia < I lim sup a for

az0, and that lim inf (a+b) < lim sup a + lim inf b, we get

lim sup cov(y W ,) < 1lim sup_ lim sup cov(y 8 ,Yf 8 4w ) +
1 1 U v U
v'ev v'ev n
+ lim sup_ <Y£YVU > 4+ lim infn Z lim sup <yf,v 7
n V"EU v'ev'

We shall show that each of the terms in the right-hand side of
eq. (4.18) is zero. First, we can choose n so large that vEVn.
Because Vn is finite, except for a finite number of vertices of

= 0 for these vertices, and thus

V', v'év_ . Consequently, & ,
n v'U,

U.

lim sup, lim sup cov(YfG vU_ < Yf,d ) = 0.

)
v'ev' v
Secondly, by the considerations in the proof of Lemma 7, You
n
tends monotonically to Y:- So, by the integration theorem for

monotone sequences,

b f £ f »
lim sup_ <YvaU eal lim SUP_Y M ISy ” 0.
n n

; . f
Finally, by eq. (4.6), lim sup v'eV'<Yv'v"> = 0. Hence, from the
eqs. (4.6), (4.18), (4.19) and (4.20), it follows that

f

e o

lim sup cov(y.,
v'ev'
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By the covariance inequality on the locally decreasing functions
yi and Yi,, cov(Yi,Yi.) > 0, so we conclude that

’ f 4 a ; R p
llmv,evcov(Yv, YV,) = 0. Substituting Yv = ] Yv we obtain the

other equality in (4.13). ||

Corollary of Let G be a bilocally graph and let veV belong to a P-cluster con-
e 3 taining an infinite number of vertices of V'. If
” o« o«
1lmv'€V'<Yv6vv'Yv'> = 0, then
(4.22) lim inf <y ,> = <y > 1lim inf <y ,>
v'ev' Ve a v'ev' ¥

Proof. Eq. (4.22) follows directly from eq. (4.11) and Th. 3. ||

Notice that the clustering property of Th. 3 does not require any
property of the percolation model except the bilocally finiteness
of the graph, which is essential for the proof of eq. (4.20). 1In
the special case that the percolation model is such that all
vertices are equivalent, the corollary of Th. 3 states that

lim inf >2, independently of v and the set V'(!)

L= =)
viey' Yyu'” T Yy

Up to now, we have seen that the types of large-range connectivity
which we have considered, even if defined with respect to a certain
vertex, do not depend essentially on the vertex to be chosen. We
shall now show that these types of large-range connectivity are not
changed if we contract or delete a finite number of edges, if
chosen appropriately. Consequently, we may change the values of P
for a finite number of edges, if not chosen to bad, without

changing the large-range connectivity.

Proposition 6 Let v€V, and e€E be an edge which is not a P-isthmus of (G,P).
Then contracting or deleting the edge e does not change the large-

range connectivities of the types W X, SL and S'.
Proof. Let the ends of e be i(e) = {v'",v"}. If v'=v", e is a
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(4.23)

(4.24)

loop, and the state of the edge e does not influence Y, OF va"
so the proposition is trivial. Therefore, let v" # v"'. Be-

o]
cause the functions Y and Y__ v are locally increasing, we have

by Proposition 1
(e e] o0 o
A A s L A
Mgyt 3R,6> 2 <y 136> 2 <y 3 € 6.

It follows from eq. (4.23) and the definitions of wv, W', S; and S'
that in order to prove the proposition it is sufficient to prove
that the large-range connectivities in the graph G;G imply the
corresponding large-range connectivities in the graph Z%G. We
shall make use of the following properties of i and You'® For

all (CE-e,
© © f L) f @
YV(C"'e) = YV(C) o YWH(C)va(C) + YVV"'(C)YV"(C) >

vav (C+e) = vav(c) +(SV"V'"(C) (van(c)va V'(C) * Ywm (C)YV”V'(C) }

v 4.24), V(0T (Cre) + YL(ONY(Cre)=
YV(C) + YV(C)YV(C+G) and YVV.(C+e) - YVV'(C)YVV.(C;e) +m
évv'(C)va.(C+e) = va,(C) + évv'(C)va.(C+e)- 15 YV(C)YV(C+e)=l,

v belongs to a finite cluster of G

To verify (4.24), observe that Yz(C+e)

+

o’ however to an infinite
cluster of GC+e' It follows that one end of e must be in the same

finite cluster of GC as v is, whereas the other end of e must be

2 , e 3 - f o
in an infinite cluster of G so in another one, 1.e. YV(C)YV(C+e)=

c’
f o ¥ =
YVV"(C)YV"' (c) + vavn(c) YV" (C). If (SV'V' (C)wi (C+te) = 1, v and

v' belong to different clusters of G whereas they belong to the

C’
same cluster in GC+e' If follows that one end of e must be in the
c a Vv is, whereas the other end of e must be in
another cluster of GC containing v', i.e. va,(C)yVV,(C+e) =

- vall(c)avllv'll (C)YV"'V' (C) + vam(c)vanvn(C)Yvnvl(c) . That

completes the proof of eq. (4.24).

gsame cluster of G

Using Yf w <Y nand 8 4 4, =6 <1, and taking expectation values
Vv vV v'v e

in eq. (2.24) we obtain
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(4.25)

(4.26)

(4.27)

[+ s <] o (=]
<YV;6’€G> < <YV;2eG> B <YVV"YV'";2QG> + <YVV'"YV";2eG>,

<wi;eeG> S <vav;saec> * <YVV"YV"'V';26G> g <vam YV"V';2€G>

By the reasoning leading to the egs. (4.2) and (4.1), we get

o0
Y T e e nY

(o]
< » » £
Yy~ = Tyy"lyy™y v''v A AR A

<vav> = <YVV"YV"V'"YV'" V'> 2 <YV"V'"> VV"YV e 120
We observe that <Yvnvn|;E£G> = <ye;2%G> > 0, by the assumption
that e is not a P-isthmus. Using this fact we obtain from egs.

(4.25), (4.26)
<Y ,€G> < <Y X)G> 1 + 2/<Y G‘),

<va';€eG> S <va|;ﬂeG>(] + 2/<Ye;2’ec>)

Taking the limes inferior over veV' in the first part of eq. (4.27)
we obtain a similar equation for lim infvev,<Y:>. Taking the

lim inf v'ev! and lim 1nfvev,11m lan'GV' in the second part of

eq. (4.27) we obtain similar equations for lim i“fv'ev'<va‘> and

vev! ey’ va,>. Using eq. (4.27) and the last

obtained similar ones, it is clear that some large-range connectivity

lim inf lim inf

in C’G implies the corresponding large-range connectivity in .9 G.

That completes the proof of the proposition. ‘\

5. THE SUPPLEMENTARY VERTEX AND LARGE-RANGE CONNECTIVITY

We shall show in this section that the concept of weak large-range
connectivity in a locally finite percolation model is related with
the accessibility of the supplementary vertex in the supplemented

percolation model, as introduced inI § 7.

We recall the relevant definitions. If (G,P) is a percolation model,

the supplemented percolation model (GO,PO) is obtained by adding the

supplementary vertex o and the set of supplementary edges EO,




Lemma 10

(5.1)

consisting of just one edge incident with o and v for each vertex
veV(G), to the graph G, and the map p from Eo into the interval
[0,1]. So with G = (V,E,i) we obtain G° = (Wo, EUE_, iUi ) and
p° = PXPO, where Po is generated by Ps i.e. P° is generated by
pup, = po. If the graph G is locally finite, we say that (G,P)
is a locally finite percolation model and that (GO,PO) is a
supplemented locally finite percolation model. In this section
we consider percolation models with a variable supplementary
measure PO. In particular, we are interested in the limit where
the function P, goes to zero; this is the analogue of the limit

of a vanishing magnetic field for the Ising model. We shall then

call (GO,PO) a variable supplementation of (G,P).

Let (GO,PO) be a supplemented percolation model such that

o: 4 ra B L, O O
lim 1nfv€Vpov > 0, and let veV. Then o (A G 4P > 0.

Proof., If Yoni’ then both o and v belong to the same finite

c-cluster of GO, and by lemma 4 we may write

£ 0l o f 0 O
» - o P %
<YOVYV’G P > G'EG()(YG';OV’G P

If o belongs to a finite c-cluster G', with finite set of

vertices V', evidently all supplementary edges from o to the

n
vertices of V-V' are d-edges, so ¥etioy g_dE , where E" is the
b}

set of supplementary edges incident with vertices of V-Vv'; Be-

cause V' is finite, V-V' is infinite, so E" is infinite. Con-
n

sequently, <YG,.OV;GO,PO> < qE = 0, by the assumption that
2 0 0. _
TP oy > 0.f Therefore, <YG',ov’G ,P > =0 and by eq.

O (¢
(5.1) also <y__y ;G ,P > = 0. |

lim inf

The following proposition contains the essential idea of the

. . o0
above—-mentioned relationship between Yv and Yov'
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Proposition 7

(5.2)

(5.3)

(5.4)

(5.5)

Let (GO,PO) be a supplemented locally finite percolation model

- . > Y oo . F -
such that lim lanEVpOV 0 Then Yv Yov a.e

0
Proof. In order to prove that Vg Yov a.e., we have to prove

© f
1) = e d th = «Ca i
that Ty o 0 a.e and that Yonv 0 a.e Lemma 10 1s
equivalent to the latter equation, so it remains to prove that
(e ] N 5
<YVGOV;GO,PO> = 0. Using the Lemma's 5,6, we obtain

o

< o) .
Yy ov?

(6]

6%,2% = lim <y €%

vB (Sov;Gn’P *s4
n

where we used the fact that if & ym in ¢° = yw in G, because
ov, v v

the c-cluster containing v cannot contain the vertex O or anmy of

. (o} . -
the supplementary edges. If Yanéov in Gn’ we can say equivalent

ly that there is a c-cluster G' in Gn such that it contains v and

at least one of the vertices of Bn, le€s and such that

Yoo ’
G';vB
all supplementary edges incident with it are dEedges. Therefore,

G

(0] (o]
<'YVB (SOV’Gn,P z <YG|;VB G
n n

g o V(G
&362,0%= | @ 2%,

“Yg'svB °
G'SG g

where E' is the set of supplementary edges incident with V(G").
1f for all C:YG';VB (C) = 0, G' does not contribute to the sum
in the right-hand side of eq. (5.3). If YG';an can be 1,
i.e. G' contains v and at least one vertex of B and is
connected, V(G') contains at least d(v,Bn)+1 vertices. By the
assumption lim infvpOv > 0, we have, except for a finite number

of vertices v,
'

RACR L

where a and b are constants. Therefore, we obtain from eq. (5+3)

d(V’Bn) d(V,B
Gn’P> =ba

< 1-1lim inf p = a <1 and hence

ov
b ad(v,Bn)

lqOV
& for the contributing c-clusters,

0 .0
. < . . >
<Yan60v’Gn’P > 2ha 'Gﬁv%; <Yan’Gn’P

So, using eq. (5.2) and (5.4), and the property of locally finite
graphs that limn d(v,Bn) = » , we have

¥ g d(v,Bn)
<Yvéov;G % 2 R hmn a =0,

and it follows that <ym6 ;GO,P0> = 0. |l
vV ov
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Theorem 4

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

From this proposition we immediately deduce a relation between

weak large-range connectivity and the accessibility of the
supplementary vertex. Furthermore, the role of the supplementary
vertex with respect to strong large-range connectivity is clarified

by the following theorem.

Let (G,P) be a locally finite percolation model and let v,v'€V. If
(GO,PO) is a variable supplementation of (G,P) such that
> 0, then

lim lnfvevpov

lim <y_ 36°,P% = <y_3G,P>,

n

¥
P, YO0
lim <y :¢°,P% = <y ;G,P> + <y°°6 ym ;G,P>
W" ’ WV’ ’ v VV' vl’ s o
p _+0
0
: _ ® o Gw o Gf _ G» = Gf
Proof. Evidently, Ak LR O S + oy = + e a.e.,
by Proposition 7 and the assumption. Hence,
lim <y 3G°,P% = <y ;G,P> + lim e LS
w0 oY v w V'V
Py Py
; o GE o Gf_G o GE G _ =G » Gf G
Evidently, for any n, Yva ._Yva 6an +Yva YvB B Yvaan+ Tvly 'vB
The number of supplementary edges incident with Vn is finite,
so lim <ym6G GO,PO> = 0, because it is sufficient to let go

Po¥0 v an;
to zero the p _ with vV_ in order to get y = 0. So it follows
ov n ov

that

Fiaad a2t o Oty ey T 2e % O
v'v viv '"vB

po¢0 po¢0 n

Obviously, y: < 1, and thus,

lim <Y$YGf e ;GO,PO> < lim infn <y§y 3G, P>

Y
p. 40 v an an
(o]

(=]
By Lemma 6, Yv = lim YVB , and the limit is obtained monotonically,
so by the integration tﬁeorem on monotone sequences and Lemma 6

we have
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(5.11)
(5.12)
(5.13)
(5.14)
Corollary
(5:15)

f «

lim inf <ny ;G,P> = <Y£ 1imanB 3G,P> = <YVYV;G,P> = 0.
n

B b
Using eqs. (5.10), (5.11) and the non-negativeness of indicators it

follows that

in < YGfYGB .09 99
P, +0 n

From eqs. (5.8), (5.9) and (5.12), eq. (5.6) follows.

4 G G
TZ prove eqé &7 werlrst observe that Yo = {0 + va'dvv'
Yoot ¥ Yovdvv'Yov' ® Yot ¥ Yvsvv'Yv iy £ Hence,

- 0 L0 o G © 0 L0
lim <y ,3G ,P > = <y ,3G,P> + lim <Y “s S A6 PSS
vV vV vv''v
po&O P, +0
Let £ be a bounded random variable, then
lim (<fY ;G %p% - <fYG G 5 2 >) lim <fy:Y€f;GO,PO> = 0,
Py Y0 po+0
Gf o o
because by (5.9) and (5.12) 11m #O 3G ,P > = 0, whereas £
is bounded. Using (5.14) repeatedly in the right-hand side of
eq. (5.13), we obtain eq. (5.7). | |
Let (G,P) be a locally finite percolation model and ve€V. If
(GO,PO) is a variable supplementation of (G,P) such that
lim 1nfvevpov > 0, then
lim inf 1lim <y ,;GO,PO> = lim <Yy G P > 1lim inf lim <y ,;GO,PO>.
vV ov ov

Y=yt ey ! 4
v'EV p0¢0 p0¢0 v'EV p 0

© o © o f
Proof. By eq. (4.10), > <Yv6vv'Yv'> S ™ for

(G,P). By (5.7), the left-hand side can be replaced by

lim b 40" Y "GO P°> . By Th. 3 and eq. (4.6) the right—hand side,
0

after taklng the limes inferior over v', becomes <Y 3 lim inf <Y >

V.
O\
which by (5.6) equals 11mp0¢0<Y0v,G ,P%>1im inf 11mpo¢o ,G oL >



Corollary

(5.16)

(5:17)

(5.18)

Collecting these results the corollary follows. | |

Another consequence of Theorem 4 is obtained by using the

differentiation relation, I Prop. 1, together with Lemma 5,
- f ; : .

thus relating S i with a derivative of the average number of

clusters.

Let (G,P) be a locally finite percolation model and veV. If
(GO,PO) is a variable supplementation of (G,P) such that

lim 1nfvevpOV > 0, then

<Y£;G,P> = lim 1imnqo

<y3;G°,P%.
p_+¥0 i
0

)
v 8qov

Proof. By I Prop. 1, applied to the supplementary edge between

o and v, and the finite graph Gz

r? A0 0
E=> = qOV Bq <Y:Gn’P >e
ov
Furthermore, by Lemma 5, eq. (2.10) applied to the ends of the

same edge,

0 .0 ; o .0
<Y0V;G P > = 11mh<Yov;Gn’P >
By eq. (5.17), eq. (5.18) and eq. (5.6), with Gov = I_Yov’ the

corollary follows. ||

Along the line of the last corollary of Theorem 4 we can give a
characterization of the global large-range connectivity

ol =1 © -
lim 1nfn|an ZvGVn % K ,-?r ratherfof a quantity closely re
lated to it, lim sup_|V_| pX <y >. For convenience we shall
n' n vev, v

use a variable supplementation of the percolation model with

P P, for all vEV in the following proposition. Before giving

ov
the proposition we shall derive a lemma.
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Lemma 11

(5.19)

(5.20)

(5.21)

Let (GO,PO) be a variable supplementation of a locally finite

percolation model such that Poov =Py for all v'eV, let vEV and
k be an integer >0. Then, with Ps ™ l—qo,
k =1 k-1
3 ) 0 L0 f o ,0
q J <48 ( Z Y '] 3G ,P > = <§ Yy [ Z Y l] 3G P>,
( o aqo ovi, ey YV ov'v | Tey YV

where both members of (5.19) are continuously decreasing and bounded

in 0 £ P, < 1.

Proof. First of all we notice that by Proposition 7 for P> 0,
éovyﬁ =f60v a.e. FST kZO,O we have <60v(zv,evyvv,)—l;G°,P°> =
=m<60va(zv'eVva') ;G ,P > because even for po=0, if
Yoo ZV'EVYVV' = » by the locally finiteness, and hence
(Ev'eVva')-] = 0. Furthermore, if aoni’ v belongs to a finite
c-cluster of G° which does not contain o, so v belongs to a finite
c-cluster of G and all supplementary edges incident with this
cluster are d-edges. So it follows, using Lemma 4, that

lveh |
o

) va.]" 56%,2% = ] flven|™! ¢

< 3G,P>.
G'CG YG';V’ ’

By inspection, the right-hand side of eq. (5.20) is a power series
in q, with non-negative coefficients, bounded by 1, so the radius
of convergence is larger than 1. Therefore, the series converges
uniformly, as well as its derivatives, and we may interchange
derivative and summation, even without changing the radius of con-
vergence. So we also have

k -1
d IapEson s £ k-1 _ |ve"| )
[ 0 8qo] <6°V[v'évYVV'] S L Ty

G'CG A

and both sides of eq. (5.21) are continuously decreasing and bounded
1n 02X Po= 1. It is seen that the right-hand side of eq. (5.21) is
equal to the right-hand side of eq. (5.19) by the same reasoning as

was used to deduce eq. (5.20), so the lemma follows. |

We are now in the position to give a proposition about the global
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large-range connectivity for a subclass of the locally finite

percolation models. We shall say that a graph is locally bounded,

if there exists a finite number n such that for all vertices v of
the graph the number of edges incident with the given vertex is
not larger than n, i.e. there is a uniform bound for the number

of edges incident with the same vertex.

Proposition 8 Let (G,P) be a locally bounded percolation model and let the in-
creasing sequence of finite subgraphs Gn of G be such that
lim_ |V |"|B | =0 and UG = G. If (G°,P°) is a variable
n' n n nn

supplementation of (G,P) such that Dot iR, for all veV, then

N |
. =le 0 5,0 S RO O
(5.22) llmn[Vn| t\y;Gn,P > = Z <60V[ '2 YVV'J G B>t = 0.
veV v'ev
n
k

: =1 0 L0 . f -1
1f 11mn|Vn| <Y;G_,P > exists and Squ€V<Yv(zv'eVva') sG,P> < =,

where k is an integer >0, then the following limits exist, are
finite and equal:
(

k
n 3 - =1 . =1
(5.23) lim Lq ———} llmn[Vn\ <Y;G§’PO> - 11mn|Vn| Y <y

p Y0 = aqo veV
) n

<

k-1
( '2 YW.] 3G,P>.
v

Proof. The c-clusters of GZ may be divided in the c-cluster con-
taining the supplementary vertex, and those which do not contain
0. Furthermore, as we count for every vertex vEVn, c—dis-—
connected with o, the inverse of the number of vertices of Vn
c-connected with v, 1i.e. (Z_,Y ,)-], we just count each

v' vy
c-cluster not containing o once. So we have

et
Z wi] ;G::,PO>'

(5.24) y360,B% =1 + ] <8

(o]
O O Gn Gn =] 0.0
v'ev vav) ;Gn’P >=<60V(ZV'EVYVV') 3G P >.

* Q. e . o . . . .
Because § in G~ is decreasing and y__, in G_ 1s 1ncreasing 1n 0,
ov n vV n

7z 3 . =]
Obviously, we can write <oov(2

it follows from Lemma 5 that the limit

=] =1
() o (0] (o]
Z vavJ ;Gn’P ¥y <60V( Z val) 3G ,P >

(5:25) 1imn<6 [
2 v'ev
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(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

exists as the limit of a monotonically non-increasing sequence.
Hence,

A==

=
(¢] (0] (o]
XV vav] ;Gn)P 2 <6OV[ 2 YVV'J 3G P >,

0 < <6 [
Vive v'eV

n

Evidently, 6§ ,)_l only depends on the states of the

- ovéan(zv'EVva
edges in Gn’ so = the right-hand side of eq. (5.26) is equal to

et 0 .0
Z vav] L CE AR
v'ev

<60VYVB ( ’
n'v

)
p= ov an

=]
o]
val] ;Gn,PO> e
v
n

An upper bound for the right-hand side of inequality (5.27) is found
as follows. If v is c-connected with the boundary Bn of Gn’ and
not with o, at least d(v,Bn)+l vertices are c-connected with v,
where d(v,Bn) is the distance between v and Bn' From (5.26) and
(5.27) we obtain, therefore,

N | I

=1
o - 0 50 =
0 §_<60V[ Z va,] ;Gn,P°> - <Oov[ 'z YVV'J 3G ,P >_5{d(v,Bn)+]} .
v'ev VeV

From the eqs. (5.24), (5.25) and (5.28) we may conclude that

=1
o) (o)
Z y vJ ;G GRER) 8
vv
v'ev

2 =3
0 < 11mn|Vn| {<Y;G§,Po> - Z <8

vwv
n

: =1 =]
j_llmn|Vn| ) {d(v,Bn)+l} g

vev
n

In order to show that the utmost right part of ineq. (5.29) is
zero, we divide the vertices of Vn into two parts. One part, Bn]’

consists of the vertices of Vn within a distance n' from Bn' So,

: -1 -1 : -1
lim [V |™' § {d(v,B)#1} < lim |V |7°{ ] "1+ } (n')
2l veV R SRS VEB veV_-B
n nl n nl

Because the number of edges incident with any vertex is bounded

by n", say, by assumption, we may approximate the number of
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(5.31)

(5.32)

vertices of Bnl" The vertices of Bnl may be divided into those of
the boundary Bn’ those at a distance 1 from Bn’ ete., and, finally,
the vertices at a distance (n'-1) from Bn' Each vertex of Bn has

at most (n''-1) edges of Gn incident with it, because by definition
there is at least one edge incident with it which is not in Gn'

Therefore, the number of vertices at a distance 1 from Bn is at

most (n"—l)|Bn . Repeating this argument, one finds that

n'—]l

- (a"-1)|B_| + (@"-1)2[B_ |+ ... + (@"-1) B = c|B_|,

where C is a number depending on n' and n". From eq. (5.31) and

the assumption lim |V_| ]|B | = 0 it follows that
n' ' n n
: =1 =3 e |
lim |V | '{ 1 + ') CErs @Y s
n' n
veEB veV_-B
nl n =nl

Because for n' we may choose any number, this limit is zero, and

by eq. (5.30) it follows from (5.29) that (5.22) holds.

To prove the second part of the proposition, we notice that by

Lemma 11 the functions <6 o ( ot vv.)k-—l;GO,PO> are convex

functions in 1ln q, for all VEV and all k>0, because they are
finite and have a non-negative second derivative with respect to
1n 9, Now for a sequence fn of convex functions, if the limit
exists and is finite, the limit function is convex and continuous
and, moreover, piecewise differentiable, with the property that

(d/dx)limn f (x) = lim, (d/dx) fn(x) (cf. Fisher ]0), Lemma III).
If sup_ <Yf( ' VV)k_l;G,P> < », the functions

£ k¥=1.,0 O : ;
onv(Zv'va') ;G ,P > are uniformly bounded in Py V and

k'<k, because they are decreasing in P, and incPeasing in k',
by Lemma 11. Therefore, £from the existence, by assumption, of

lim lv |"l G ,P%> , so of lim_ |v | vEV <5ov(zv.evy ) G ,p%>

we conclude that q, (B/Bq )11m IV | 1<y ,GO P% exists plecew1se
8 0 -0
and is equal, by Lemma ll to 11m IV | VEV TG ( oy Vv LY sGE P >

But, from the convexity of this last limit we" know that the limit

function is continuous, and, consequently, eq. (5.23) is valid for

k=1 for all Pye By the repeated use of this argument, the existence,
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finiteness and equality of the right-hand side and left-hand side
of eq. (5.23) follows. ||

6. DISCUSSION

In this second paper on the random-cluster model our attention was
focussed on the percolation model. In § 2 we proved that in in-
finite countable graphs a number of functions are random variables,
and we derived in § 3 an inequality, important in the analysis of
§§ 4 and 5. In the last sections the main body of this paper is

contained, from which we take two main points.

First, in § 4 the relation between weak and strong large-range
connectivity was established, in particular their equivalence under
a non-trivial condition. This equivalence is also related with a
clustering property. In the theory of phase transitions such a
clustering property is related with the translational invariance,
or, more generally, with the existence of a group of automorphisms
of the system in question. In the present case, however, the

existence of such automorphisms is not required.

Secondly, in § 5 it is shown that the supplementary vertex plays
the role of infinity, in such a way that instead of investigating
the connections with infinity, we can investigate the connections
with the supplementary vertex. Since the supplementary vertex was
introduced to provide an analogue for the random-cluster model of
the magnetic field in an Ising system, the established relation-
ship paves the way to a relation between large-range connectivity
(i.e. the occurrence of infinite clusters) and spontaneous
magnetization. Such a relation will be derived in a subsequent
paper (III), in which the present analysis will be extended to the

random—-cluster model.
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ON THE RANDOM-CLUSTER MODEL

III. The simple random—cluster model

Synopsis The possibility of the occurrence of a phase transition in an
infinite simple random-cluster model (0 < p < 1, « > 1), which
includes the percolation model and the ferromagnetic Ising and
Ashkin-Teller-Potts model, is studied by means of several criteria
for large-range connectivity. It is shown that graphs which con-
tain the square lattice exhibit a phase transition in this sense.
The large-range connectivities in the simple random—cluster model
turn out to have the same properties as those in the percolation
model. Furthermore, it is shown that in graphs with a lattice
structure the generalized spontaneous magnetization is strongly

related to global large-range comnectivity.
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1.

INTRODUCTION

This paper is the third one in a sequence of papers on the random—
cluster model. In the first paper ]), to be referred to as I, the
random-cluster model was defined and shown to include as special
cases the percolation model, the Ising model and the Ashkin-Teller-
Potts model. In the second paper 2), to be referred to as II, we
investigated the relationship between several criteria of large-
range connectivity and the role of the supplementary vertex in the

percolation model, in order to get some insight into the possible

occurrence of phase transitions in the randomcluster model.

In this paper we are concerned with the same questions regarding
phase transitions as in II, generalized to what we shall call the
simple random-cluster model, which includes as special cases the
percolation model and the ferromagnetic Ising and Ashkin-Teller—
Potts model. The expectation, formulated in IT § 1, that many
properties of the percolation model will be typical for the random-—
cluster model, will in this paper be confirmed for the simple

random-cluster model.

An important feature of the simple random-cluster model will be
the fact that all functions of interest can be defined on, or
related with functions on infinite countable graphs. This
enables us to study the questions regarding phase transitions on
infinite countable graphs without the intervention of the "thermo—
dynamic limit". Moreover, the properties which where crucial in
the analysis of the criteria for large-range connectivity in the
percolation model can be extended to the simple random—-cluster
model. So the whole analysis of the criteria for large-range
connectivity, as given in II § 4, can be extended to the simple
random-cluster model, thus generalizing some of the methods

developed for the percolation model or for the Ising model.

The possible occurrence of a phase tramsition will again be studied
by means of the various criteria of large-range connectivity, intro-
duced in II. We shall show the simple random-cluster model shows

a phase transition in this sense if the graph is, or contains, the
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square lattice. The argument used to establish the non-occurrence
of weak 1arge—rang§)connectivity is an extension of an argument
used by Hammersley for the percolation model and by Fisher for the

Ising model 4). The argument for the occurrence of weak large-

range connectivity is an extension of the celebrated Peierls Ishy2)
argument, used in the analysis of the Ising model and of an
argument used by Hammersley for the percolation model 8). In § 2
we extend some of the properties of the percolation model to the
simple random-cluster model. In particular we show that the re-
cursion theorem, the covariance inequality, and a typical property
of increasing functions can be extended to the simple random-
cluster model, which is shown to exist for countable graphs. In
§ 3 we give the main theorem, stating that all properties of large-
range connectivity which in II were shown to hold for the per-
colation model, also hold for the simple random-cluster model. Fur-
thermore, we give conditions for the occurrence or non—occurrence
of large-range connectivity, and apply them to the square lattice.
Finally, in § 4, we show that, again, the supplementary vertex in
the simple random-cluster model plays the role of infinity. More-
over, for locally finite random-cluster models with a lattice
structure we show that the generalized spontaneous magnetization

is related with global large-range connectivity in a model which

is the limit of the simple random—cluster model with vanishing

supplementary edges.

We conclude this introduction with some remarks about notation.
Expectation values in the percolation model will be denoted by
<f;G,P> , where f is a random variable, G a countable graph and P
the measure generated by the mapping p (see I § 3.1). In the
(simple) random-cluster model we shall denote this expectation
value by <£f;G,u> or, more explicitly, as <f;G,p,k> (I § 7.1).

By <f> or <f;G> or <f;u> , we always understand the expectation
value in a random-cluster model. If the model is supplemented

(I § 7.1) we replace G, P, p, u by G°, P°, p°, u°
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2. RECURSION THEOREM AND COVARIANCE INEQUALITY

Lemma |

(2+1)

(2.2)

(D)

(2.4)

In this section we prove that the recursion theorem I Th. 1 and
the covariance inequality II Th. 1 for the percolation model can
be extended to the random—cluster model under suitable conditions.
We shall require that the measure P is a probability measure, i.e.
P is generated by a mapping such that 0 < p < 1. Furthermore, the
values of k are restricted to ¥k > 1., So, for « = 1 the per-
colation model is covered, and for «k = 2,3,... the ferromagnetic
Ising and Ashkin-Teller-Potts model. We shall call a random-—

cluster model (G,p,k) with O < p <1 and «k > 1 a simple random-—

cluster model. In this paper, we consider only simple random-—

cluster models.

In order to prove the existence, and properties, of the simple
random-cluster model, we first prove some properties of a finite

simple random-cluster model.

Let (G,p,x) be a finite simple random-cluster model, ecE and f a

local variable on G. Then

<f36> = <c 3;G><f; PG> + <d ;G><f; G>.,
e e e e

Proof. By definition (see I § 7), <f;G> = <fKY;G,P>/Z(G). By
the recursion property I Th. 1, <fKY;G,P> B pe<fKY;C;G,P> *
+ qe<fKY;2LG,P> , and it follows that

<£;6> = {peZ(C’eG)/Z(G)}<_f-; (?eG> + {qu(%G)/Z(G)}{f_;?eG%

Applying eq. (2.2) to ¢, and de’ and using the fact that E; =1

on G and © =0 on DG we obtain
e e e

<c 36> = P Z(C,6)/2(G),

<d_36> = q 2(2,6)/2(6).

From the eqs. (2.2), (2.3) and (2.4), eq. (2.1) follows. ||
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Corollary

(2.5)

(2.6)

Lemma 2

(2.7)

£ b Pe # 0, then
<-f-; @e(;’u> = <fce;G,u>/<ce;G’u>,
1f Po # 1, then

<E;R.G,u> = <fd_;6,u>/<d ;6,1

Proof. First we notice from eq. (2.3) that £ P 0 if and only if

Py ™ 0, because Z > k, and analogously that <de> = 0 if and only if
P, ™ 1. Applying Lemma 1 to the functions fce and fde we obtain the
corollary. ||

Before proving the covariance inequality for finite graphs, we re-

call a few definitions. The covariance of two summable functions

is defined as cov(f,g) = <fg> - <f><g>. A function is called

locally increasing if for all ecE and CCE-e we have f(C) < f£(c+e).

A function will be called increasing if for all CCC'CE we have
f(C) < f(C'). Evidently, if |E| is finite, there is no difference
between locally increasing and increasing functions. If -f is

(locally) increasing, f is called (locally) decreasing.

Let (G,p,k) be a finite simple random-cluster model and f,g in-

creasing local variables on G, then

cov(f,g) > 0.

Proof. We prove Lemma 2 by induction on the number of elements

of |[EG)| . If |E(@)]| =0,

cov(f,g) = f(¢)g(¢)KY(¢) _ f(ﬁ)KY(a) (;(¢)KY(¢) -
ity KY ) KY ()} I KY (9) ’

so eq. (2.7) holds with the equality sign. Suppose the lemma
is true for |E(G)| < n, and let |E(G)| = n. In the same way as

in the proof of II Th. 1, we obtain for any e€E(G), by the
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(2.8)

(2.9)

(2.10)

(2:11)

recursion property Lemma 1,
cov(f,g;G) = <ce;G>cov(?;§;é;G) + <de;G>cov(?;g;2%G) +

£ <Ce;G><de;G> (<_f-;eeG> - <?;2}eG>)(<_g.;C’eG> ~ <§;2e(;>),

By the induction hypothesis, observing that [E(@eG)\ = |E(ﬁeG)| =n-1,

we obtain from eq. (2.8)

cov(f,g;G) z.<ce;c><de;c><<?;G;G>—<?;2£G>>(<§;cgc> - <;236>).

B SO
y def1n1t1orl,Y z f(C+e)KY(C+e)quD
= <Ec'36e6,P>  oCR-e
<f;6;G> = = (Cie) CD , D = E-e-C,
<KY;é;G,P> ) Al i
CCE-e

and by using I Lemma 2, y(C+e) = Y(C) - Ge(C), and the assumption

f(C+e) 2 £(C), this can be written as

P rte@ Y@ CD /3 8e(0), (0 Co
- CCE-e CCE-e
<F;€6> > == =
Ce @D T @D
CCE-e CCE-e
§

= <fx ¢ %G>/<K—6e;ZeG>.

The function Ge is decreasing, so K_Ge is increasing, by the
assumption ¥ > 1, and by the induction hypothesis the lemma

holds for 2eG, so <TK_66;‘I€G>/<K_6€;9B€G> > <f;%eG> s -and it

follows from (2.10) and (2.7) that

<£;06> > <F; 36>,
e - e

Consequently, (<?;C%G> - <f;E%G>)(<E;C%G> - <§;2%G>) > 0, and hence
from eq. (2.9) we obtain eq. (2.7), which completes the proof. N

Using the relation between the Ising model and the random—cluster
model, as described in I § 4.2, we easily obtain the second

Griffiths-Kelly-Sherman inequality for a ferromagnetic Ising model
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with pair interactions only. For k=2, and p=l-exp(-28J), by
V'

eq. I (4.4), we have for V'CV that <o e e where eyt

is the event that each c-cluster contains an even number of

vertices of V' (including zero, possibly). So the GKS inequality
V' V" vl V"

o. ‘o> > &G > <g >

can can can

cluster model <eyr, yn” 2 <Ey1><Eyn”, where v'av" = (V'=V")+(V"'-V').

It is sufficient to take disjoint sets V', V".

< , reads in terms of the random-—

Corollary Let V',V'"CV(G), then <g

SE12<E 17 »

viavr = SEyrTtEy

Proof. If eyt and Egn> obviously Egtay Thus (Ev'Av")ZfCV'EV">'
The functions Eyr are increasing, because if eV,(C) = 1, each
cluster of G. contains an even number of vertices of V', and there-

C
fore each cluster of GC+e contains an even number of vertices of

V', so ev,(C+e) = 1. Consequently, by Lemma 2, <ev,evu>z<ev.><evn>

and the corollary follows. ||

We have shown that the restriction of the range of p to 0 < p £ 1
and of the values of ¥ to k > 1 are sufficient to guarantee the
covariance inequality for all increasing functions on all finite
graphs. We shall now show that there is no weaker condition on

p and «, independent of G, under which the covariance inequality
holds for all increasing functions on all finite graphs. First,
let G have one edge e with Pe = P- Taking £ = g = Cys We obtain
Z = <(°e+de)'<Y;P> and Z<ce;u> =<ce»<Y;P>. Zo Z2cov(c_,c ) =

X <(ce+de)KY;P><°e‘Y3P’ o <CeKY;P>2 o <deKY;P><ceKY;P>=quY(¢)+Y(e).
If the covariance should be non-negative, it follows that (qp) and
KY(e)_Y(ﬁ) must have the same sign. If e is a loop, y(e)-y(#) = 0,

so it follows that this sign must be positive, hence 0 < p < 1.

If e is not a loop, y(e)-y(®#) = 1, and therefore x« > 0. Secondly,
let G have two edges, e and e', with P.=P and pe,=p'. Taking

f=ce and g=c 1, we obtain Z = <(ce+de)(ce.+de.)KY;P>,

Z<ce;u> = <ce(ce.+de.)KY;P>, Z<ce.;u> = <(ce+de)ce,KY;P> and
Z<cece.;u> =<cece,KY;P>. So chov(ce,ce.) =

<(e +d ) (e o+d Ik 3Po<c e ik 3P = < (e itd DK 3P><(e +d e, ik 5P
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Lemma 3

(2.12)

(2.13)

<de(cev+dev)KY;P><cecevKY;P> - <ce(cev+de|)KY;P><decev.<Y;p> =

<dedevKY;P><cecevKY;P> = <cedevKY;P><dece'KY;P> =
=lqiTente ERRY. | patann Y Q)RYRe )T

- qupvaY(e)+Y(e') Y (ete ) ¥y (D)-y(e)-v(e') _ lj gy Crdar that
this covariance should be non—negative, taking into account that

0 <p <1l and k > 0, we must have that KY(e+e‘)+Y(¢)_Y(e)_Y(e')3 1.
If e and e' are parallel edges, i.e. both incident with the same
different vertices, y(e+e') + y(@) - y(e) - y(e') = 1, and it
follows that « > 1. Consequently, we see that 0 < p £ 1 and k > 1

is necessary and sufficient for the covariance inequality.

At this point it is convenient to introduce, in addition to p,
another mapping from E to the real numbers, related to p and «,
namely P, = p/(p+tqk). We shall write 1 - P, g, and denote by
P'< the measure generated by P, - Obviously, P, is an increasing
function of p for ¥ > 0, and a non-increasing function of « for

0 <p<1l. Further, if 0 < p <1 and «k > 0, then also 0 < P & L

Let G be a finite graph and f a local variable on G. Then f is
increasing if and only if for any two simple random-cluster models

(G,p,k) and (G,p',x') with p' < p and p;, 2P

<£56,p" k> & <£3G,pk>

Proof. First, suppose that f is increasing, p'

< p and p;. 2P,
If ' > k, it follows from p' < p that p;, < Pos and if k'< k, it
follows from p;, < p, that p'< p. So let first k'> k and p'<p.
Then <f> is non-increasing in k because <f> = <fKY;G,P>/<KY;G,P>,
and thus

e h 48 s
e i3 Jefte iRasie Gb2 o cov(£f,y;G,p,x) £ 0,

P <k ;P> <k 3P>2

by Lemma 2, f being increasing and y decreasing. Furthermore,

<f> is non-decreasing in p, because it is non-decreasing in
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each Po* Indeed, by Lemma 1,

<fiG> = <ce;G>€f;céG> + <de;G><?;§%G> =

(2.14) = <f;%c> - <ce;G>(<'f; (.’eG> - <_f-;98G>) .

where the only P, dependence is in <ce;G>. Furthermore, <ce;G> is
increasing in P> because by eq. (2.3) it is equal to peZ(ézG)/Z(G)
and Z(G) is decreasing in P, by II Prop. 1, and (if;C;G> - 4?;22G>)
is non—negative by the proof of Lemma 2, in particular eq. (2.11).
It follows that if k'> k and p'< p, eq. (2.12) holds. In case

k'< k and p;,i P s we observe that <f> is non-decreasing in « at
constant P, * Indeed,

» w -
<fKW;G,P> ki ’G’PK>

(2.15) <f3G,p,k> = = ,
<kY3G,P> <Kw;G,PK>
by eq. I(7.26) with x = Dok 7 ™o £E=1and n=«. It follows
that
(2.16) K[%E} <f;G,p,k> = cov(f,w3;G,p,k) > 0,
P

K

where the inequality holds because w is increasing. So, if

p:, = p.s We have <f;G,p,k> > <£;G,p",x"> , which is larger than
<f;G,p',x"> because p:, =P 2 pé,, so p" 2 p', and by the pre-
ceding part of the proof. It follows that if k'< k and p;, S P
eq. (2.12) holds. Consequently, if p' < p and pé,i P> then

eq. (2.12) holds. On the other hand, suppose that for p'< p and
p;,i P we have eq. (2.12). For any two sets C and C' such that
C'CCCE we consider the particular mappings p' and p defined by

pé = 1 for ecC', pé = 0 for eéC’', p, = 1 for esC an? p = 9 for
e¢C. Applying eq. (2.12) we obtain £(C') = £(C" ;KC )/KY(C ) =
= <£3;G,p' k> < <£3G,p,k> = f(C)KY(C)/KY(C) = £(C), i.e. £ 1s

increasing. This completes the proof of the lemma.

In Lemma 3 we have shown that the bounds on p and «, namely
0<p=<1and k > 1, are sufficient to guarantee that the ex-—
pectation value of an increasing local variable is non-decreasing

in p and is non-increasing in k. We shall now show that again
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Proposition |

these bounds are necessary in order that eq. (2.12) holds for all

increasing functions on all finite graphs.

First, let G have one edge e, which is not a loop. Taking f = Cas

we obtain <c KY;G,P> = peKY(e) and Z(G,P) = <(ce+de)KY;G,P> =

e
+ .
- peKY(e) C quY(Q) = peKY(e) + quY(e) ,; because e 1s not a :

=1 -1 -
loop. Therefore, <Ce;G,p,K>= (1 + ggPe K) = {1 + (pe -k} .
In order that 2gn is non—-decreasing in p, we must have k > O,

and in order that <c > is non—-increasing in k, we must have

=3
(pe -1) 20, so0=2p, <.

Secondly, let G have two edges e,e', which are both incident with

the same two vertices, i.e. e and e' are parallel edges. Taking

f = o agai?, we obtain <ceKY;G,P> = fce(ce' + de')<Y;G,P> -
et+e') e ete

SUtiN PR e A

parallel, and Z(G,P) = <(cg *+ de)(ce' + de')KY> =

y(@)_ y(ere)y _  v(eve’)

because e and e' are
Yleve')
+ qoqpt (K + qeQe'(k=1)} , thus

<G > = Pe/{1 + qgqe'(x=1)} . In order that c

in Po' We must have k-1 > 0, so k > 1, taking into account that

e 18 non-decreasing

0 <p < 1. Consequently, we see that we must have the bounds

0<ps<1 and k 21 on p and « in order that eq. (2.12) holds.

Observe that if f is a local variable on a countable graph G, its
values depend only on the states of a finite number of edges,
forming the finite set E', say, i.e. £(C;G) = f(CE';G). So it
follows that if we define a local variable f' on a subgraph G'CG
by £'(C';G') = £(C'ME';G), that then f' = £ for E(G') > E'. We
shall make a frequent use of this extension of f, defined on G,
to subgraphs of G, and hence, by the association procedure, to

descendants of G.

Let (G,u) = (G,p,k) be a simple random—cluster model, (G countable ,
0 <p<1 and k 2 1) and let G;CG,CG3... be an increasing sequence
of finite subgraphs of G converging to G. Then the measure u=(p,x)

exists, is a probability measure, and is independent of the sequence.
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Theorem |

(2.17)

1
Proof. Let E' be a finite subset of E(G) and let f = cE . Then

f is an increasing local variable, and by Lemma 3,

<f§Gn+],P,K> Z.<F;mEn+l-EnGn+],p,K>. By the definition of
association and extension, if C,CE, = E(G,) = E(DEn*’_EnGn+l),

F(C, 32 01706 4 1) = £'(CuiGyyy) = £(COE'36) = £'(Cy36,). Further-
more, the measures on %En+]—EnGn+| and G, are equal, because
Y(Cn;?Fn+l—EnGn+|) s 4 (i g IV(Gn+]) - V(Gn)|, as is evident
from the fact that these graphs only differ by the isolated vertices
of V(Gn+]) - V(G,), and the definition of u(I § 7.1). It follows
that <£';Gp41,p,x> 2 <£';G,,p,k>, so <f';G,,p,«x> is a non-decreasing
sequence in n, obviously bounded, so the limit exists. Moreover,

if G; is another increasing sequence converging to G, we can con-
struct an increasing sequence G; consisting alternatingly of sub-
graphs G, and subgraphs Gé, and hence converging to G. Therefore,
limn<f;GH> = lim, <f;G,> = 1imn<f;G6> = <f;G>, by definition, i.e.
<cE';G> exists for all finite E'CE(G) and is independent of the
sequence. Consequently, the measure u exists for the events c ',

so for local events, and hence for all random events, and is in-
dependent of the sequence. Finally, because (L is a probability,

u is obviously a probability measure. ||

Now we are in a position to extend the recursion property and the
covariance inequality, as well as other properties, to infinite

simple random—cluster models.

Recursion theorem: Let (G,p,«x) be a simple random—cluster model,

ecE and f an integrable random variable. Then

<f3;G6> = <ce;G><f;éeG> + <d_36><£;96>.

Proof. First, let f be a local variable. Then, by definition,

<f> = Z?_ f.<a.>, where a. is the local event f = f£f.. Hence,
i=]"1 1 T 1

by Prop. 1, <ai;G> = lim,<a;;G,> , and consequently, <f;G> =

limy<£3G,>. By Lemma 1, <£3G> = <cg36,><f;6,6,> + <d_;6,><f; 36>,
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so <f36> = lim <£;G,> = lim <c ;G >lim <f; G > +

n n e’n n e n
+ 11mn<de;Gn>11mn<f;fbeGn> = <ce;G><f;€eG> + <de;G><f;‘13eG>, by
Prop. 1 and the preceding remark. Notice that lianQGn = 2£G and

lim €6, = Ce.

Let L, be the collection of all non-negative local variables, let
-] g ; - X

L, be the collection of all non-negative functions which are the
infimum or the supremum of a countable subcollection of L., and

let f:k+l

be the collection of all suprema and infima of countable
subcollections of f:k, with k = 1,2,... . Then it follows that
f:k is non-decreasing in k, converging to the collection of non-
negative random variables, to be denoted f:. Morecver, one
verifies that f;k is closed under suprema and infima of finite sub-
collections. We have just proved that eq. (2.17) applies to f€L_.
We shall prove that eq. (2.17) applies to feE: by proving that it

‘ —k+ : . 3 —k.
applies to feL+k I, assuming that it applies to L+k

By definition, if fef:k+1, either f = sup f, or f = inf f with

n s

fnef:k‘ Furthermore, supnfn - 1imn'5uPn5n'fn and inf, £,

= infn'inf 'fn’ and these limits are obtained monotonically

n<n
(non-decreasing and non-increasing respectively). By the preceding
remarks, S“Pn<n'fn and infn«n'fn belong to E:k, and hence, by the

integration theorem on monotone sequences and the assumption,
<supnfn;G> = limnv<supn<nvfn;G> = 1imnv(<ce;G><supn£nvfn;¢%G> +

+ <de;G><suann-fn;2gG>) = <cg3G><sup,f,; 06> + <dg;G><sup,f,;39.G>.
Analogously we derive eq. (2.17) for inf f if at least one of

the £, is bounded. If all f, are not bounded, infnfn can be ob-
tained as the supremum of the monotonically increasing sequence of
functions g, = inf{f,n}, which obviously belong to flk+‘ and are
all bounded, and therefore satisfy eq. (2.17). Repeating the
previous argument for suprema we prove eq. (2.17) for int £ = L=
Sup_ 8y for the case where all fn are not bounded. Consequently,
if fef:k+], eq. (2.17) applies to f, and hence if fef:, eq. (2.17)

applies to f.

) + -
Finally, if f is an integrable random variable, f = f -f where
not both £ and £ are not summable, f+,f—ef:. Hence, <f';G> =

<ce><f*;6,6> + <de><f+;%ec> and <f 3;G> = <ce><f-;C;G> + <de><f—;2QG>,
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(2.18)

Theorem 2

(2.19)

and, without loss of generality, <f ;G> is finite, say. So we may
subtract them and collect the terms: <f;G> = <f+;G> - <f ;6> =

= <ce><f+;€ec> + <de><f*;ﬂec> - <ce><f-;(,°eG> - <de><f—;ﬂec> =

= <ce><f;C;G> + <de><f;2LG> . It follows that eq. (2.17) applies

to all integrable random variables. ||

Notice that in the same way one may prove for a finite set E'CE

and integrable random variables f that

' \J 1 '
<560 = | <«®d je<r;6°00 6>, ' + Dl = B

C'SE'

Functions obtained by closing the collection of non-negative in-—

creasing (decreasing) local variables are called non—negative

random increasing (decreasing) variables. The difference between

a non-negative random increasing variable and a non-negative
random decreasing variable, not both assuming a value # 0 at the

same time, is called a random increasing variable. Notice that a

random increasing variable is an increasing random variable, but

that the converse may not be true.

Covariance inequality: Let (G,u) be a simple random-cluster model,

f and g random increasing (or decreasing) variables which are non-

negative or pu—summable. Then

<fg;G,u> 2 <f;G,u><g;G,p>.

Proof. The proof of Theorem 2, starting from Lemma 2, is quite
analogous to the proof of Theorem 1, starting from Lemma . First
one proves that for increasing (or decreasing) local variables

eq. (2.19) applies, by Prop. 1 and Lemma 2. Secondly, we start
with the collection of non-negative increasing (or decreasing)
local variables, i.e. the collection L,NI (or Ly D) where I (or D)
is the collection of increasing (or decreasing) functions. Notice
that I(or D) is closed under countable suprema and infima, and

that if fel (or D) also inf{f,n} (or sup{f,n}) is an element of I(orD).
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Proposition 2

(2.20)

In the same way as in the proof of Th. | we can prove that eq. (2.19)

applies to f,geLunI (or L,AD), i.e. to non-negative random increasing
(or decreasing) variables. Finally, if f and g are summable random
increasing variables, f = £ -f and g = g+—g_, where f+,g+e‘f33f and
f',g'ezf:ﬁﬁ. Therefore, <(fg)+> - <(f+g+ + fg)> 2 <f+><g+> -

+ <f—><g—>, and -<(fg) > = <f+(—g—) + (-f_)g+> > = <fto<g> -

= <f_><g+>, where <(fg)™> is finite by the summability of f and g.
Hence we may add the two inequalitities and obtain <fg> =

<(fg)> - <(fg)™> 2 (<f+>-<f_>)(<g+>—<g_>) = <f><g>, so it follows
that eq. (2.19) applies to summable random increasing (or decreasing)

variables. ||

Let (G,p) = (G,p,«) and (G,u') = (G,p',k') be simple random-cluster
models and f a random increasing variable on G. If p'< p, p;,s_pK
and either f is non-negative or £' is y—summable or f is u'-

summable, then

<f;G,u"> < <£;G,u>.

Proof. The proof for non-negative f is quite analogous to the proofs
of Th. 1,2, in this case starting with Lemma 3. If f is a random
increasing variable, f = f+-f-, where f+,—f_ are increasing. Hence,
<f+;u'> < <f+;u> and —<f-;p'>_i —<f_;u>. By assumption, either £*
is p—-summable, so f+ is also p'-summable, or f is p'-summable, so

f is also y-summable. So we may add the inequalitities to <fj;u'> =

+ - - -
<f su'> = <f sput> s <F s> o SE su> = <f3p>. ||

Finally, we observe that by the proof of Prop. 1, if £ is an in-
creasing local variable, <f;G> = lim,<£;G,> = supn<f;Gn> of LT

f = sup,f where the f  are increasing local variables, we can

n’
choose the £, in such a way that f is the limit of a monotonically
increasing sequence of increasing local variables, and thus we ob-
tain by the integration theorem on monotone sequences that

<£3;G> = <sup,fn;G> = Supn<fn;G> = supnsupnv<f6;Gn'> - supn<fﬁ;Gn> =
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= supnsupn|<f5v;Gn> = sup, <f'Gp> - Using this it follows that most

of the lemmas in II § 2 apply to the simple random—-cluster model.

Lemma 4 Let (G,p,«) be a simple random-cluster model. Then the Lemmas

1,2,4,5 and 7 in II § 2 apply to it.

Corollary < va';G,p,K> = limn<yvv.;Gn,p,K>.

One notices that for the indicators Egrs where V' is a finite sub-

set of V, we have by the same reasoning as applied in II lemma 5

Eov'? that €, = supneV? . Hence, we have analogously

L0 Yyy! v

to eq. II (2.10)
(2:21) <€V|;G,p:'<> == limn<€V';Gn’p’K>’

which in terms of the ferromagnetic Ising model means that
V' - ) i
<g ,G>Can = 11mn<o ’Gn>can ~

3. LARGE—-RANGE CONNECTIVITY

In the previous section we have extended some of the basic properties
of the percolation model to the simple random-cluster model. We are
now in a position to extend the results on large-range connectivity
in the percolation model, as given in II § 4, to the simple random-

cluster model.

First we notice that BN limn(yvv, in Gn)’ by II Lemma 5, and
it follows that Nt is a random increasing variable, because
(va' in Gn) is an increasing local variable. Secondly, we have
in bilocally finite graphs that Vi mfnyVUn with Un = V—Vn, by
II Lemma 7, and analogously to II Lemma 5 we also have Nog: =
g 5 = 5 : ey n
limn'(YV(Vn'—Vn) in bnv). Therefore, in bllocaliy finite graphs
Y is a random increasing variable, and hence Yo is a random

decreasing variable. We recall that a bilocally finite graph is
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a graph such that for all pairs of vertices v,v'€V(G) the number
of edges incident with both v and v' is finite. In case the
graph is not bilocally finite, we can only prove that Y: is an
increasing random variable, and the covariance inequality may not

be applied. (See however the Appendix)

By inspection of the proofs in II §4 one will see that, except
for the proofs of II Lemma 9 and II Prop. 6, we ocnly need the co-
variance inequality, apart from general measure and integration
theorems, in order to prove the lemmas, propositions and theorems
in II §4. But we have just shown that the covariance inequality
holds in a simple random-cluster model and can be applied to Yot
and g, provided the graph is bilocally finite. In the proof of
II Lemma 9, we need the assertion that for a finite subset E'CE

E' E'
we have <¢ > > 0 if and only if p  >0.

In order to complete the proof of II Lemma 9 in the case of the

simple random-cluster model, we shall deduce the following lemma,

in which again Fo g p/ (p+gqk) and R = l—pK = q/(q+pK—1).
Lemma 5 Let (G,p, ¥ be a simple random-cluster model and E' a subset of
E(G). Then,
' ] L
(3.1) i < <cE 3G,pyk> < pE -
\J 1 '
(3.2) qE < <dE 3G,p,k> < qE .
\J '»-]
Proof. If E' is infinite, <CE > = limn<cEI Ens | Therefore, it
is sufficient to prove the lemma for finite E'. By Prop. 1,
\J 1
<cE 3G> = limn<cE 3Gp>s SO it is sufficient to prove the lemma
holds in a finite graph Gn such that E{SE(Gn). So let G be finite.
'
By the recursion relation and the definition of <c= >, we have
E' CD C E' e C"+E')
] & (0)p%PeY (@ D1 culidalsid Y {
E' CCE C'CE
(3.3) < 3G,pyk> = - ¥ st T a1y ?
C D y(C c'D E" D" (CrFC")
T 5%q"Y© ' 8 i P q ¢
CQE C'QE' C"QE"
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where C+D=E, E'+E"=E, C'+D'=E', C"+D"=E". By I Lemma 2,
y(Cte) = y(C) - ée(C), and hence y(C+e) < y(C) < y(C+e) + l. Re-
peating the argument we obtain y(C'"+E') < y(C"+C') < y(C"+E') + |p'|.

Substituting this in eq. (3.3), we obtain the inequalities

E' ¢t o1t E' E'
(3.4) P Lolih vl Cnsh S0, ot Sa30n TSP 3
C'QE'
from which eq. (3.1) follows. Analogously one proves eq. (3.2),
observing that y(C) = 1 < y(C+e) < y(C) and hence y(C") - lc'| <

< y(c"+c") = y(cM. ||

]
Corollary If E' is finite, then <cE > > (0 if and only if for all ecE' we

have P> 0.

|In order to complete the proof of II Prop. 6 in the
case of the simple random—cluster model, we use the following

lemma which forms the link between the eqs. II (4.24) and II (4.25).

Lemma 6 Let (G,u) be a simple random—cluster model esE(G), and let the
induced measures on the event spaces of (%G and 2£G be denoted by

u(C’eG) and u(@eG). Then

(3.5) <6 < ulE) < xu(R0).

Proof. First, let G be finite. By definition, for any CCE-e,
D = E-e-C, we have

u(C; 66) = quDKY(C;CeG)/Z(C‘eG) o quDKY(C‘Le;G)/Z(C’eG). and
u(C;36) = quDKY(C;%G)/Z(%G) = quDKY(C;G)/Z(ﬁeG)-
Furthermore, from II Lemma 2, vy(C;G) - 1 < y(C+e3G) < v(C;G),
~1.7(C;6) . v (Cte;G) JC6) 4

<

and consequently, for « > 1, k
thus K-lz(:z)eG) < 2(0,6) < Z(R,6). It follows that K_]u(c;ﬁec) <
< u(C;Ce6) < ku(C;4,6), and, consequently, that for all events
on eeG(QLG) eq. (3.5) holds. If G is infinite countable, the
measure of a local event is the limit of the measures on finite
graphs, and therefore eq. (3.5) also holds for local events on

infinite countable graphs, and consequently eq. (3.5) holds
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Theorem 3

for all random events on CLG (EEG). |

Notice that for xk = 1 the equalities hold, as is obvious.

From the preceding considerations, and by inspection of the proofs
in II § 4, we obtain the following theorem, embodying the results

on large-range connectivity in the simple random-cluster model.

Let (G,u) be a bilocally finite simple random-cluster model (G bi-
locally finite, 0 < p £ 1, Kk 2 1). Then all the lemmas, pro-

positions and theorems of II § 4 hold for G, ||

One should notice that the condition that the graph should be
bilocally finite, is not severe. It only excludes an infinite
number of loops at the same vertex, and an infinite number of
parallel edges between the same pair of vertices. So if V is in-
finite countable, it does not exclude the complete graph (V,E,1i)

where there is one edge between each pair of vertices.

The last theorem, together with Prop. 2, enables us to study

the question whether the simple random-cluster model exhibits a
phase transition or not. To that end, we first observe that if

we change u continuously in such a way that both p and P, do not
decrease, the functions <Y s B> and <va.;u> do not decrease, by
Prop. 2. Furthermore, at p=0, both ya and <va,> are zero,

so we have not WV, and at p=1, both <Yv> and <vae are 1, so

we have S'. It follows from Prop. 2 and the propositions II Prop.
2,3,4,5, that if the measure p changes from p=0 to p=1 in the
way described above, we will successively have the following types
of large-range connectivity: (1) not Wv’ 2) Wv but not W',

(3) W' but not S' and (4) S'. We may regard these four in-
compatible types of large-range connectivity as four phases of the

model. As is pointed out, at least the first and last phase are
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always present in an infinite bilocally finite simple random-
cluster model. On the other hand, if the model has a high degree
of regularity, e.g. all vertices are equivalent, W is equivalent
to W, i.e. we do not have the phase of type (2). Moreover, if
1imv,ev,<Y:6vv.Y:,> = (0, W' and S' are equivalent, by II Th. 2,
and we do not have the phase of type (3). We shall now extend to
the random-cluster model the arguments used in the analysis of the
percolation model and in the Ising model to show that in certain
graphs there is, or is not, large-range connectivity. These
arguments are of three types. First, we have the argument showing
that there is a p # 0 such that for p' < p we have not W s i.e-
<Y:> = 0, This argument was first used by Hammersley 3) for the
percolation model and later on by Fisher 4 for the Ising model,
and essentially uses minimal connecting sets (self-avoiding walks).
Secondly, we have the argument using isolating sets (boundaries)
showing that there is a p # | such that for p' > p we have W, 1i.e.
<Yz> >0 This argument was first used by Peierls 3) for the

6)

Ising model, and made rigorous by Griffiths and Dobrushig),

and later on, independently, by Hammersley 8) for the percolation
model. Finally, we shall give an argument, which is related with
both preceding ones and essentially uses parts of disconnecting
sets, which shows that there is a p # | such that for p' 2 p
<Y:GVV,Y:,> = 0, and hence, using the preceding arguments, shows
that there is strong large-range connectivity S'. Obvicusly, the
values of p to be found depend on the graph under consideration,
and can only be established in graphs with a regular structure. We
shall only give the general arguments, and a calculation for the

square lattice (for which the calculations are simple).

Before going on we shall define a few types of edge sets and
collections of edge sets. First, let G' be a connected subgraph
of G, then we shall call the set of edges of G' the connecting
set of G'. The collection of all minimal connecting sets of
connected subgraphs of G containing the vertices v and v' is de-
noted by Ovv,(G). Obviously, a set of edges belongs to cvv,(G)

if and only if it is the set of edges of a minimal path between
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Proposition 3

v and v' in G (or a vertex—disjoint path, or a self-avoiding walk).

vJchvvy(G) is denoted by

CV(G). Further, a set of edges E' is called a disconnecting set

The collection of connecting sets U

of G if the number of clusters of'?E'G is larger than the number of
clusters of G, more precisely, if there is an equivalence class of
the vertices of G under the relation cof connection in G which is not
an equivalence class in T)E'Gc Obviously, a disconnecting set is
minimal if and only if there are two equivalence classes of vertices
of 2E‘G such that all edges of E' are incident with a vertex of both
equivalence classes. We shall call the set of edges of G which are
incident both with a vertex of G' and with a vertex not in G' the

isolating set of G'. An isolating set is either a disconnecting set

or the empty set. The collection of all isolating sets of finite
connected subgraphs of G containing v is denoted by DV(G). Finally,
if Gn is a finite subgraph of G, we shall call a disconnecting'set
E' of G such that v and v' belong to different clusters of%E Gps
both containing a vertex of the vertex—boundary Bn of G, in G, a

separating set between v and v' of G, in G. The collection of

minimal separating sets between v and v' of G, in G is denoted by

val (Gn’G) »

Let (G,ps<) be a bilocally finite simple random-cluster model and

v,v'EV,
0 ! oo
(a) If ) p” <= , then <Y,3Gsp',k"> = 0 for p'<p and p i P
E'eC. (G)
v
E' T E'
(b) If g < 1 for all E'eD _(G) and ) Qi< Iey
E'eDp (G)
v
then <73;G,p',z'> > 0 for p'>p and p;,sz,
=2 E'
(e) If lim ) q =0,

' K
n E'€D (G,

then <Y:5W-‘sz;G,P':‘<'> = 0 for P'.ZP and p;vipK'

Proof. (a) By II Lemma 7, fﬁ=inf Y , so obviously

£ Vv n vU, g

o g inf I By definition, Yyu! = SUPgicp C and
vv'

] Y 1.
v EUn vV
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(3.6)

(3:7)

(3.8)

(3.9)

so we obtain, using Lemma 5,

x 3 T o E'
<yv> < 1nfn 2 ) B
V'EUn E'EOVV

\J
By assumption, ZE'ECVPE < o, g0 by the definition of Cv we have
'. ) Ev
Ly eVZE EC < o, Hence, 1nfn2 eU E Ecvv =0, because
Up o V=V decreases to the empty set, and it follows that <y > =0

from eq. (3.6). So by Prop. 2 and <Yv» > 0, part (a) follows.
'

(b) We notice that yf < SUpg. dE , by the definition ofjlf Let
D' be a finite subset of:DV, and denotejD -Dp' by D". Obviously,

(1- d ) = HE ED'(I ) and (l- ) are random increasing
variables, and thus by a repeated use of the covariance inequality
\J \J | 1 \i \] ] \AJ
- W a-E WS 5 -2 - P>
' ' 1 1 ' U \L} |
Evidently, (1-d& ¥ (1=a& P = (=& PP . q-& Yy -
o e & o E' e - B
- lnfE'GDv(l d% 1) o] SuPE'Eﬁ%d -3 B by the first remark , and

thus we obtain from eq. (3.7)
E' \l El
> > (I-<d >)D (1= <supE.€D,.d >) .
B Lmy '
;> so <d” > < 1 for E'€D; and by the
| 1
finiteness of D' we have (1-<dE >fD > 0. Obviously,

E!
] - (SUPE'ED"d SES)
\J
>0, because ZE eanE < =, by assumption, and hence for D' large

By assumption, qE <1 for E'
E' -
ZE'EJY“h:’ and this can be chosen to be

enough I "q < 3% It follows that we then have (Yj> >0, by

E'

eq. (3.8), which proves (b).

(c) We observe that 6§ , = inf (8§ , in G ) by II Lemma 5. Further-
2 vV n' vv n &

more, Y < lim 1nfv(yan in Gn), because if Yo the c-cluster

containing v is infinite and hence contains a vertex of the boundary

@

(==
of G in G, as soon as Gn contains v. Consequently, v 90 Y <

Al T i
lim 1nf (v VB vv'Y ' in G,), which by Ehe definition of
.(Gn,G) 1s <1lim 1n¥ SUPE'GD o1 (G G)dE . Obviously, we there-
fore have
<ym6 Yon > < 1lim inf Z qE' =0
VoV Y — nE’Gva,(Gn,G) K ’

by assumption. ||
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We shall show that in the square lattice we can find mappings p
such that the conditions in (a), (b) and (c) are satisfied. For

(a) and (b) this amounts to nothing but reproducing, in a

generalized sense, the proofs in the percolation, or Ising model.
'

First we choose all p_ = p. An upperbound for Z pE is
; ; e . E'€Cy(c)
provided by taking the summation over all, not necessarily vertex-

Ty pE
- n - : E'€Cv (o)
<2 _o(4p)" = (1-4p)~, which is <e provided p<i.

]

disjoint, paths with initial vertex v. Hence, <

In order to bound ZE%ﬂX“c)qK , one notices that to each isolating
edge set of]hzin the square lattice there corresponds in the dual
lattice (which is again a square lattice) a path between coinciding
vertices, enclosing the face corresponding to v. If such a closed
path has length n, the number of enclosed faces cannot be larger
than (in)?, and hence the number of closed paths of length n with
the same shape enclosing the given face cannot exceed n?/16. Con-
sequently, ZE'GDti' can be bound by all paths with a givenE%nitial
vei:ex; each one with a suitable multiplicity. So, ZE,EJ:'VqK <
5Zn=0 16 nzf?qszn which is finite for g.. " }, and hence for
p > (1+(3x) ) .
B!
For an upperbound of EE' '(Gn,G)qK , we observe that each
element of P__ . (G4sG) corresponds to a path between two vertices
of the vertex boundary of the dual of G,, such that it separates
the faces corresponding to v and v'. We can choose the sequence |
G, as an increasing sequence of rectangular subgraphs of the
square lattice containing v and v'., In that case, if a(n) is the
smallest of the distances between v or v' and the vertex boundary B, l
of Gn in G, that path contains at least 2 a(n) edges. Consequently,
the union cver the vertices of B, of the paths with initial vertex

v' and length at least 2 a(n) is larger than D_ ,(Gy,G), and we

E' k bt | 2a(n) =1
have Zpigp ()% < [BalPii2-a(m) 440 " |BJ(4q,) (1-4q)
provided éqK<l. We can choose the sequence Gn such that |Bnl;b-a(n),

A\l

: . ; g
where b is a constant, and it follows that 1nfan'Evav(Gn,G)qK

b' infna(n)(4qK)za(n) =0 if AqK <1 or p> (1+(3x)~1)~1,

Using II Prop.'s 3 and 4 and II Th. 3, we can summarize our results

for the square lattice as follows: (a) if p<}, then we have not
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-1.~1
Wv, and thus the phase of type (1); (b) 1f p >(1+(3k) l) 'y then

(= +]

W and <Y“6 +Y.+> = 0, and hence we have S', and thus the phase
v v vv''v

of type (4).

4, THE SUPPLEMENTARY VERTEX

Lemma 7

In this section we shall extend part of the results of II § 5 to
the simple random-cluster model In this case, however, as con-
trasted with the case discussed in § 3, the proofs given in II §5
do not hold as such for the random-cluster model. In particular,
one notices that the expectation value of a randem variable which
does not depend on the state of the supplementary edges, is in
general not equal to the expectation value of that random variable
for B ™ 0, i.e. when there is no supplementary edge. This fact
will for example break down the proofs of II Prop. 7 and II Th. 4.
Furthermore, the proofs of II Lemma |! and IT Prop. 8 depend
strongly on the fact that the measure in the percolation model is
a product measure, and this is not the case in the random—-cluster
model. We can for the simple random-cluster model derive a much
weaker proposition, which is sufficient, however, for establishing
a relation between the global large-range connectivity and the

generalized free energy.

Let (Go,uo) be a simple supplemented random—-cluster model such that

£ Go,u°> = 0.

lim 1nfve # 0, and let vwV. Then 3

Vpov

Proof. The proof is analogous to that of II Lemma 10. It requires
two additional steps, namely Lemma 5 and the fact that q is a
monotone function of q, such that q. = 1 for q = 1, from which it

follows that lim inf _ K # 0 if and only if lim lnfveVpov # 0.]|

V(pov)

If G' is a connected subgraph of G then we shall call the set of

edges of G not in G' which are incident with G' (so with the vertex
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Lemma 8

(4.1)

(4.2)

(4.3)

Proposition 4

boundary of G' in G) the edge boundary of G' in G.

Let (G,p,«) be a simple random-cluster model and G' a finite
connected subgraph of G with finite edge boundary and set of edges E'.

\J \J \J \J
If p, <P, for e€E' and P, 2P, for e¢E', then
<YG';G:P5K> = <'YG|;G’p'9K>'

Proof. First we notice that G', together with its edge boundary

E" 1is contained in the finite subgraphs G,, for n large enough,
because E' and E" are finite. Thus, Yo in G equals Yo in Gn for
n large enough. Furthermore, Yor is a local event, soO <YG,;G> =
= 1imn<YG.;Gn> , by definition, and it follows that it suffices to
prove eq. (4.1) for G finite. So let G be finite, and put

\J n
cE dE . Then

YG' -
Y El E" 1 Ell
<YG.;G,p,K> = YgrK sG,P>/Z(G,p,k) = P 4 z((:Ez G)/Z(G).

1N = ' 1N
Because G' is a cluster, Z(C’EzE G) = Kl VAG )Z(?,E 3E G), and con-
sequently we obtain, with V' = V(G'),

'+

E' E" 1-V' E"
<YGV;G9P9K> = Rl SR 2 Z(“E G)/Z(G) =t

E' _Cae ' " 1 " E' ! ' n
= [lcjf] JVEE @ T ey/zeE) = [%J !V <d® B 6,60

From eq. (4.2) and II Prop. 1, it follows that Ygr> is increasing
in P for ecE'. From eq. (4.3) and Lemma 3, it follows that
Yo' is decreasing in p, for e¢E'. Consequently, eq. (4.1) holds,

and the lemma follows. ||

o
From the Lemmas 7 and 8 we deduce the relation between ¥ and the

accessibility of the supplementary vertex O from v, i.e. 4

Let (Go,uo) be a simple supplemented locally finite random—-cluster

>0, and let veV. Then y: =y a.e.

model such that lim inf e

veV Pov
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(4.4)

(4.5)

(4.6)

(4.7)

Proof. The proof is analogous to the prcof of II Prop. 7. By II
Lemmas 5 and 6 it is sufficient to prove, analogously to eq. II

(5.2), that

- o _© - g . o o
lim < § 3G ,u > = 1lim 1lim <4 é§ 3G u > = 0.
n Yan ov?> ¥ n n'>n ran oVt 2r

Now, instead of eq. II (5.3), we obtain

o B' o
<Y. 8 3G > = Z Yt d 3G_ 1>,
an ov' n ¢'CG G ,an n
n
where E' is the set of supplementary edges incident with G'. If

G' contributes to the summation, i.e. G' contains v and at least
one vertex of Bn and is connected, then, by the recursion theorem,
and Lemma 8§,

B o E' Ty E
<YG';VB d ;Gn'> = <d )<YG';VB ) Gn'> < <d >\YG';VB ;Gn')'
n n n
By the assumption lim infvevpOV > 0, it will follow from Lemma 3
that for the contributing c—clusters there are constants b and a< |
] '
such that <d" > < (qOK)E <b ad(V’Bn), and therefore, by eqs.(4.5)
and (4.6) that
d(v,B ) d(v,B_ )

(o} n n -

<Yan(Sov;Gn'> <ba <Yan;Gn'> ba

Because G is locally finite, it follows from eq. (4.7) that

Bl 8O o AV Ro)
YB Gov,Gn.,u >=b llmna =

eq. (4.4), which proves the proposition. ||

limnlimh,< 0, and hence we obtain

From Proposition 4 we obtain a relation between weak large-range
connectivity and the accessibility of the supplementary vertex.
However, it concerns the large-range connectivity of a model with

a measure which is the limit of supplemented random—cluster model
measures. Lf u° is the measure of a random event on G~ in a variable
supplementation of a simple random—-cluster model (G,u), we denote by
u* (a) the limit function limp ¥ uo(a) = limD \a;Go,uO> which

9 +0
o' (]
is defined on the random events a on G; these events are independent
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Theorem 4

(4.9)

(4.10)
(4.11)
(4.12)

of the state of the supplementary edges. Because we do not know
whether or not ﬁ is a measure, we define the measure U as the
extension to the random events on G of the limit function U on
the local events of G. In the percolation model, for « = 1, ob~-
viously ' = U= u,; because in that case u is a product measure.
However, for « > 1, in particular for x = 2, where we obtain the
Ising model, we do not know whether or not ' =1, and if they

equal y or not.

The relation between weak and strong large-range connectivity and
the supplementary vertex is provided by the following analogue of

I Th. 4.

Let (G,u) = (G,p,«) be a locally finite simple random—cluster model

and v,v'eV. If (Go,po) is a variable supplementation of (G,u) such

that lim infvevpoV > 0, then
. O o e s
llmp ¢0<YOV;G i > = <y 361>y
(o]
. (0] (8] _ <] o0 -
A 10 Vg ts® ol = & <Y 3G > Sy B 0 ek Colirs
(o]

Proof. The first part of the proof is analogous to the proof of
II Th. 4. Obviously, we have to replace the expectation values
<Y:;P> etc. by the limit functions ' (Yz) etc. in the eqs. II
(5.8), (5-10), (5.11) and (5.13). To see that ' and p coincide

G . G= : ;
on the event Y, » We first observe that Y, 18 2 random increasing

variable, and hence by Prop. 2, we have

: 0, G=_ o . . G= 0 o
1lmpo¢0u (YV )G ) lnpr;OQYV 9G s 2

mn
]

iy (YT,;G)

Moreover, by II Lemma 6, ysm

lim infn(yan in G,), where the limit
is ultimately reached monotonically from above, and the indicators

(YvB in G,) are local variables (in fact increasing). So we obtain
n

G
; Ge» o0 © . 3 - n 0
1nfp e & 3G = 1nfp 1im 1nfn<yvB WG > -
0 o n
G G
. . . » n o 0 s : n — _<.°°. =% _:— 00.
= 1lim 1nfn1nfpoxvan;G s > = 1lim lnfn<YVB 3G, pu> = rv,G,u> —U(YV,G),

n
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Proposition 5

Corollary

(4.13)

by the definition of . From the eqs. (4.11) and (4.12) the eq.
(4.9) follows. An extension of this argument shows that i and U
coincide on the event yiva , from which the analogue of eq. II
n A )
(5.12) follows. To see that u and @ coincide on the event
o oo
Y ++Y. 8 .Y, we show that its indicator is a random increasing
vV vow''y
variable, and, in particular, is the limit of a monotonically
non—increasing sequence of increasing local variables. Indeed, by
IT Lemmas 5 and 6, ° +y. 8 *, = lim inf_( Cn 4. 5%n Y )
» Yoy T 0yt Yy nYyy! 'an v' vB,"’
the limit is monotonically non-increasing as soon as v and v'
belong to Gn’ because 1if Yol in Gn?l’ elther Yips? in Gn or

, by the definition of vertex boundary, and if YuB ¥

YanYv'Bn a+1 V"B
then YanYv'Bn' Observe that SUP{YVV"YanYv’BnJ equals the

i 1 + ) . t i {
function Yot YanOvv'Yv'Bn Because both Yoyt 1D Gn and \an

in G_ are increasing local variables + § in G
n g 1o » Yoy! Yan vv'Yv'Bn n

is an increasing local variable. Hence, by the same reasoning as

we used in the first part of the procf, we obtain u = i on the

event AP - yzévv,y:,, from which eq. (4.10) follows. l]

Let (G,u) be a bilocally finite simple random-cluster model, then

the clustering property II Th. 3 helds for (G, 1)

Proof. Analogous to the proof of ITI Th. 3. To see that the co-
variance inequality for ysw\S? with the measure U holds, observe
first that it holds with the measure uo, by Th. 2, and therefore

in the limit uO4J . Further, ¢ coincides with U on the events

Go G™ Ge G -
Yg » Ygr and YO Yo, by the argument used in the proof of Th. 4. ||

Let (G,u) be a locally finite simple random-cluster model, and vEV.
If (Go,uo) is a variable supplementation of (G,u) such that

lim lanEVpOV > 0, then

lim lnfv'EV'llmpo¢O<va'> > 11mp040<Y0v>11m 1an'€VJlmPO¢O<Yov'>'

Proof. Analogous to the proof of the corollary of II Th. 4. ||
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(4.14)

(4.15)

Applying the corollary to the ferromagnetic Ising model with
nagmetic field B (which need not be homogenous), and using I §4.3

and I§ 4.2, we get

lim inf rey! éig lim <cvov,;Gn,B>can =
= lim lim <0v;Gn,B>Ca lim inf lim lim <cV5G ,B> ;
B40 0 iey'  B4O n’" can

In case all vertices are equivalent, this reduces to

( 2
lim inf lim lim <0 0 ,3CG ,B> = Llim lim <o_3G_,B> ) )
v'ev' B0 e B40 SRR

which is independent of the vertex v and the set V'.

Finally, we give a proposition relating the generalized spontaneous

magnetization with the global large-range connectivity. However,

we shall give this proposition under rather strong conditions on the
system, compared with those used in II Proposition 8. We shall re-

quire that the system be very '"regular", so that there is in fact

no longer a difference between global large-range connectivity and

weak large-range connectivity.

An automorphism of a graph G = (V,E,i) is a one-to-one mapping ¥ of

vertices to vertices and edges to edges such that the incidence
relation is preserved, i.e. Y(V) =V, ¢(E) = E and for all e€E, if
i(e) = {v,v'} then i(®W(e)) = {v(v),¥(v')}. Two vertices v,v'EV are

called equivalent in a graph if there is an automorphism y of the

graph such that y(v) = v'. If the number of equivalence classes of

vertices under the relation of equivalence in the graph is finite,

we say that an infinite graph has a lattice structure. An

automorphism of a random-cluster model is an automorphism of the

graph such that p(¢(e)) = p(e) for all eeE. Two vertices v,v'eV

are called equivalent in a random-cluster model is there is an
automorphism § of the random-cluster mecdel such that y(v) = v'. If
the number of equivalence classes of vertices of an infinite random-—
cluster model under the relation of equivalence in the random-

cluster model is finite, we say that the random-cluster model has a
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Proposition 6

(4.16)

(4.17)

lattice structure.

Let (G,#) = (G,p,<) be a locally finite simple random-cluster model
with lattice structure and with an increasing sequence of finite

o =1 o 1 o _ o0
subgraphs Gn such that 11mn\Vn| |Bn| = (0 and UnGn =G, If (G ,u )
is a simple variable supplementation of (G,u) such that P~ B

o
for all vV, then the following limits exist and are equal:

lim [qoﬁ}limivnl-] In Z(G_,u") = (= ) 1im|vn|"’ y <y\f];G,T$>
p_¥0 9%/ n n vev_

Proof. First we show that 1imn|Vn|—] 1n Z(Gg,ho) exists and 1in in-—
dependent of the sequence Gn' This will follows from the sub-
additivity of ln Z, which is a direct consequence of II Prop. |
applied to the decreasing function <! and the product property of
the cluster function Z, mentioned in I § 7.2 So, if G; and G2 are
two finite disjoint subgraphs of GO, and G3 is a finite subgraph

of G° obtained from G, and G, by adding edges of G° to their unionm,
we have In Z(G3) < 1n 2(Gy) + 1n Z(G). Because (G,p) has a lattice
structure and is locally finite, and hence is locally bounded, and
since on ﬁhe other hand limh|Vn|-1|Bnl = 0, it follows that

1imn|Vn[— in Z(Gs,uo) exists and is independent of the sequence Gn

(cf. Fisher , and Hammersley lO))1 Secondly, 1n Z(Gﬁ,po) is a
convex function of In q,s by I Prop. 2 and Prop. 2, and hence we
may interchange derivative with respect to In q, and limit with
respect to n except for a countable number of points q,° Because
we are interested in the limit of P, decreasing to zero, we may
even neglect those points of discontinuity, if present, without
changing the limit value, provided we interpret the derivative as
a twovalued function consisting of the lefthand-derivative and

the righthand-derivative, the last of which is continucus from the

right. Thus we have

o] o]
DLREA

) - -1 o o© =3 5 =1 8
q . lim IV | In Z(G ,u) = (I=x ") 1im ]V | 2 <§ 3G
q, n' n n n' n ey ovonm
n
by the convexity and I Prop. 2. Because (G,p) has a lattice
structure, by assumption, we can choose a finite number of vertices,

one for each equivalence class, the vertices V), Vi, cco, Vi, Say.
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(4.18)

(4.19)

Let Gn" be so large that all Vi, ...« 4 belong to Gn"' Let n' be
the largest of the distances of the vertices V), ..., V., to

vertices of the vertex boundary Bh" of Gn" in G, i.e.

' = . n . -
n SuPisuvaBng(vi’v)“ It follows, for m > n', that if Bnl is

the set of vertices of Vn within a distance n' of the boundary Bn’

for each vertex vEVn—Bnl which belongs to the class of v, we have
o o . o o . :
S0 XS > T SRS : >
ov’Gn’u < Oovi’Gn"’p , because there is an automorphism Y
such that WVi = v and such that the graph an" is contained in Gn’
: O o 0 410
by the construction of n' and n > n", so <éov-;Gn"’u > = <6OV;an",u >
by the definition of equivalence classes, and this is larger than

0
<60v;Gn’“o> by Prop. 2 and an”CGn’ It follows that

<6 36% - <5 36% = <§_ ;67> - <6 ;G°> has for all vEV,-B,, a
ov’ n ov ov' n ovy = nn
bound a(n") = supi(<6ovi;Gg"> - <60V.;G >), which is independent of

n. Moreover, by eq. IT (5.31), |Ban < C|Bn’, where ¢ is a constant,

and hence lim |V |-||B | = 0, by the assumption on the G_. Con-
n' n nl n
sequently,
s = (€ ] o O
Lim |V |77 ] (<836, ,u%> = <8 367,u>) < a(@"),
VEVn

and hence the lefthand member of eq. (4.18) equals zero because
a(n") tends to zero for n'" »~. From the eqs. (4.17) and (4.18) we

so obtain

(6]

3 . =3 o oy —— ] . = : - o)
q —=— lim ‘an in Z(Gn,u ) = (1= ) llmn[Vn| Z ~6OV,G ol >

2 aqo n VEVn

- o £ = .
By eq. (4.9), 11mpo*0<60v;G ,u0> = <YV;G,u> , and by the assumption

that (G,p) has a lattice structure, there is only a fixed number of
o o =1

. <8 > -
sl > Hence, the sum |an ZVEVn oy Son

verges uniformly in n as a function of P> and we obtain from eq.

different terms <8 ;G
ov

(4.19) the eq. (4.16), which completes the proof. | ]

One notices that the requirement in Prop. 6 that the sequence Gn
be such that limn|Vn|_l|Bnl = 0, restricts the class of graphs to
which Prop. 6 is applicable. In particular it is not applicable
to Bethe lattices with coordination number n > 3, where for all

finite subgraphs G' we have [V(G')]-llB(G')i >(n-2)/(-1) = 4.
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5. DISCUSSION

APPENDIX

The main point in this paper on the simple random—cluster model is,
that the simple random-cluster model has mainly the same prcperties
with respect to large-range connectivity as were derived for the
percolation model in a preceding paper. We mention again the close
relationship between weak and strong large-range connectivity, in
particular their equivalence under a non—trivial condition. This
equivalence 1s related with a clustering property, which does not
depend on the occurrence of a group of automorphisms, but holds for

any bilocally finite simple random—cluster model.

In § 3 of this paper we restricted ourselves to bilocally finite
graphs in order to obtain the same properties with respect to large-
range connectivity as were obtained in II § 4. This restriction,
however, is unnecessary, as will be shown in an appendix, and it
turns out that the properties mentioned in II § 4 for the percolaticn

model hold for all simple random—cluster models.

Another interesting point is the relation between the generalized
spontaneous magnetization and global large-range connectivity, as well
as the relation between the generalized local spontaneous magnetization
and weak large-range connectivity. However, the large-range
connectivities are defined in this case in graphs with a measure |
which has not been shown to be equal to the random-cluster model
measure u. The question whether or not U = u is an intriguing open

question,

We shall first show that Yz is a randem increasing variable on any
countable graph. This will be a direct consequence of the following
lemmas. We shall denote the set of edges E-E, by Fn. The event
that there is a c-cluster containing the vertex v and an edge of Fn
is denoted YoF Notice that Fn is not a set of vertices, contrary

to Bn and Un~ The reader is warned against confusing YoF with
n

or YVU

”
an =



Lemma Al

(A.1)

(A.2)

Lemma A2

(A.3)

(A.4)

If v is a vertex of G, then

i O lnfanF = llmanFn .

CD>=, = 11 2
Yy 1nfn<Yan> llmn<YvF;

Proof. First we notice that if Y:, then the c-cluster containing

v has an infinite number of edges, because otherwise the number of
edges, and therefore the number of vertices, should be finite, and
hence the cluster should be finite contrary to the assumption. Be-
cause E_ is finite, it follows that for any n an infinite number of
edges of the c-cluster containing v is not in En’ so in Fn’ SO Y p »
and thus Y: < infnvan. On the other hand, if yi, then the number
of c-edges in the c-cluster containing v is finite, so there is an
n such that all these edges are contained in En’ so not YoF_ and
thus yi g_sup(l-van). Consequently, y: E infnvan. Obviously,
Yan is non-increasing in n, because E is increasing in n, so

r is decreasing in n, which completes the proof of the first part
of the lemma. The second part follows from the integration theorem

on monotone sequences. ||

Let v be a vertex of G, then

Yyp =~ SUP,» (YVFn in Gn') = llmn'(Yan in Gn|),
Ygp > = SUPLYup ;Gn'> = llmn.<YvF ;Gn.>-
n n n

Proof. If YF.? there is an edge of F, in the c-cluster containing w.
n

It follows that there is a c-path with initial vertex v containing an

edge of Fn’ so there is an n' such that this path is contained in Gn"

i.e. < supn,(yan in Gn')' On the other hand, if there is an

YVF -
n
\J . . .
n' such that (Yan in Gn.), obviously Yan in G, 80
supn.(yan in Gn') S Yop s and consequently B e supn,(yVF in Gn.).

Evidently, (YVF in Gn') is non-decreasing in nn, which completes
n
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STELLINGEN

van C.M. Fortuin

De reeds lang bekende ster—driehoekstransformaties in elek-
trische netwerken en de in het Ising model bekende ster-
driehoekstransformaties zijn beide een bijzonder geval van
een ster—-driehoekstransformatie in het random-cluster model,
die echter alleen in de genoemde twee gevallen algemeen toe-
pasbaar is.

De reeksontwikkelingen bij hoge en lage temperaturen in het
Ising model zijn bijzondere gevallen van reeksontwikkelingen
in het random-cluster model; de coefficienten van dergelijke
reeksen kunnen worden geinterpreteerd als elementen van de
incidentie-algebra op bepaalde tralies.

vgl. G.C. Rota, Z.Wahrsch.Th. 2 (1964), 340.

De invloed van massacommunicatiemiddelen op het massapsycho-—
logische gedrag kan worden toegelicht aan de hand van het
percolatiemodel. Daartoe worden individuen voorgesteld door
punten, massacommunicatiemiddelen door supplementaire punten
en communicatiekanalen door lijnen.

Het verdient aanbeveling om in de experimenten aan verdunde
oplossingen van magnetische atomen in niet-magnetische mate-
rialen te trachten enerzijds de lokale magnetische en ander-
zijds de spin-spincorrelaties op lange afstand te meten. Een
eventueel verschil in overgangstemperatuur zou mogelijk aan
de hand van het random-cluster model kunnen worden geinter-
preteerd.

Het verdient aanbeveling om de algebra's van observabelen,
zoals die in gebruik zijn in de algebraische aanpak van de
statistische mechanica, uit te breiden tot algebra's met on-
begrensde operatoren, teneinde het mogelijk te maken b.v. ook
de soortelijke warmte als observabele te beschouwen.

In het algemeen wordt in de fysica te weinig aandacht besteed
aan het asymptotisch gedrag van systemen bestaande uit veel
deeltjes. In het bijzonder geldt dit bij het gebruik van
periodieke-randvoorwaarden en de grote-volumelimiet.

Het verdient aanbeveling om het begrip samenhangend van een
graaf als volgt te definiéren: een niet-lege graaf is samen-
hangend als er geen twee niet-lege disjuncte subgrafen van
die graaf zijn waarvan de som gelijk is aan de graaf.

Vgl. J. Edmonds, Can.J.Math. 17 (1965) 449-467.



Als z een atoom van een tralie L is, L' de verzameling be-
staande uit z en alle elementen van L die boven z liggen
en L" de verzameling L-L', dan zijn L' en L" tralies dan
en slechts dan als voor alle x en y uit L geldt dat

(xVy)Az = (xA2)V(yAz) .

Als x, v en z elementen van een tralie zijn, dan zijn onder de
de conditie xVz = yVz de relaties x=y en xA(yVz) = xAy equi-
valent. Als tevens geldt dat xAz = yAz, dan zijn de relaties
x=y en xVW(yAz) = (xVy)A(xVz) equivalent.

Vgl. G. Birkhoff-Lattice Theory, 3rd edition 1967, Corollary
of II Th. 13.










