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STELLINGEN

Experimentele resultaten van Van Dingenen en Hautecler doen vermoeden
dat de in dit proefschrift beschreven gemengde excitaties ook in

ijzer waarneembaar zijn.

W. van Dingenen en S. Hautecler, Physica 37 (1967) 603.

Het is onwaarschijnlijk dat de lokale excitatie in Cu-10%Al, waar-
genomen door Nicklow e.a., zou kunnen worden toegeschreven aan

geisoleerde Al atomen. Nader onderzoek van deze excitatie langs

verschillende symmetrierichtingen verdient aanbeveling.

R.M. Nicklow, P.R. Vijayaraghavan, H.G. Smith, G. Dolling en
M.K. Wilkinson, in Neutron Inelastic Scattering, Vienna, IAEA
(1968) Vol. I, p. 47.

De conclusie van Turrell, dat alleen roostervibraties met een golf-
vector k = 0 optisch actief kunnen zijn, berust op een onjuiste

bewijsvoering.

G. Turrell, Infrared and Raman Spectra of Crystals, London,

Academic Press (1972) p. 106.

Daar de selectieregels voor fotonabsorptie, fotonverstrooiing en
neutronverstrooiing onderling verschillen, kan een combinatie van
experimenten met behulp van deze methodes in veel gevallen zinvol

zijn,

Voor de analyse van neutron-verstrooiingsexperimenten in de

(w,Q)-ruimte is de gangbare methode, waarbij de variabelen w en Q

worden gescheiden, te verkiezen boven de door Janner en La Fleur

voorgestelde gegeneraliseerde Ewaldconstructie.

A.G.M. Janner en P.L. la Fleur, Phys. Letters 36A (1971) 109.



6. Tegen de door Liu gegeven verklaring voor de magnon-phonon wissel-

werking in terbium zijn bezwaren aan te voeren.

S.H. Liu, Phys. Rev. Letters 29 (1972) 793.

7. De abrupte afname van de neutron-magnon verstrooiing in ferromag-
netische 3d metalen boven een bepaalde drempelenergie van de
magnonen wordt veelal toegeschreven aan de wisselwerking tussen
magnonen en Stoner excitaties. Gezien de resultaten van een recent
onderzoek aan nikkel door Mook e.a. is deze verklaring moeilijk te

handhaven.

H.A. Mook, J.W. Lynn en R.M. Nicklow, Phys. Rev. Letters 30
(1973) 556.

8. De door Lowde e.a. toegepaste methode voor de analyse van waarge-
2 I EAEA
nomen "extra' neutronverstrooiing in = Ni is gebaseerd op een aan-

tal veronderstellingen die slechts ten dele juist zijn.

R.D. Lowde en C.G. Windsor, Adv. Phys. 19 (1970) 813.

9. Het verdient aanbeveling om bij het experimentele onderzoek aan de
ordening van roosterdefecten in kristallen gebruik te maken van

neutronendiffractie.

10. De doeltreffendheid van experimenteel natuurkundig onderzoek wordt
in belangrijke mate bepaald door de samenstelling van de groep
onderzoekers die bij het project betrokken is. Het is vooral van
belang dat deze groep zowel experimentele als theoretische elementen

bevat.

Leiden, 21 juni 1973 E. Frikkee
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CHAPTER I

INTRODUCTION

The scattering of thermal neutrons is an effective means for

the investigation of the structure and the dynamical properties of
condensed matter in general and magnetic substances in particular.
Owing to the fact that the neutron is subject to magnetic and nuclear
interactions, it may create or annihilate elementary excitations both
in the electron system (electron-hole excitations and magnons) and

in the crystal lattice (phonons). From the dispersion relation, i.e.
the relation between the frequency and the wave vector, for these
elementary excitations one may obtain information about the inter—
atomic force constants and the exchange interaction between the
electrons. Hence the aim of neutron-phonon and neutron-magnon scat-
tering experiments is usually the determination of the dispersion

relation for these excitations.

As nickel single crystals may be easily obtained, it is not surpris-
ing that the phonon dispersion relation in nickel has been the sub-
ject of a number of previous investigations [1=3|. In nickel with

the natural isotopic composition neutron-magnon scattering is quite
weak in comparison with coherent and incoherent neutron-phonon scatter-
ing, and early investigations on magnons in natural Ni have therefore

been restricted to the low-frequency range |4-7

. The study of magne-

tic excitations could be extended to higher frequencies when 60N1

single crystals became available |8-11 + In these samples the magnetic
scattering cross section is the same as in natural Ni, whereas incohe-
rent nuclear scattering is absent and the coherent nuclear scattering

is an order of magnitude smaller than in natural Ni.

The main purpose of the present work is the investigation of the
mutual interaction between elementary excitations in ferromagnetic
nickel. Owing to the spin-orbit coupling of the electrons, the
electron spin system interacts with the crystal lattice.

Some static magnetic properties of ferromagnets, notably magneto-
striction and magnetic anisotropy, are directly related to this
spin-lattice interaction. In addition, the interaction gives rise

to dynamic effects, such as the coupling between magnons and phonons.



This coupling is particularly strong for magnons and phonons with
approximately equal frequencies and wave vectors and results in
the formation of mixed excitations, which are usually called magneto-
elastic waves |12-14|. However, the perturbation of the phonons is

not restricted to this relatively small frequency range. Along the
whole dispersion relation one may expect small deviations in the
polarization vectors and frequencies of the phonons, as a result of

the fact that the interatomic force constants depend on the magneti-
zation direction |15|. Magnon-phonon interference has been observed

by Bommel and Dransfeld by means of ferromagnetic resonance in

nickel films at a frequency of | Ghz |16|, and a variation in the velo-
city of ultrasound in nickel as a function of the magnetization
direction has been observed by Alers et al. for a fixed sound frequency
of 10 MHz |17|. The latter result is equivalent with a change of the

phonon frequency at a fixed wave vector.

Inelastic scattering experiments with thermal neutrons are usually
applied to observe excitations with frequencies larger than 1 THz,

a limit which is well above the region where the resonant interference
between magnons and phonons in nickel occurs. DeWit and Brockhouse

| 18] have made a search for magnetic perturbations in the phonon dis-
persion relation in nickel by carrying out phonon measurements along
the main symmetry directions at 400 oC, i.e. above the Curie temperature
Tc = 359 OC, at 300 °C and at room temperature, and by comparing the
phonon frequencies at these temperatures. It was found that the
average frequency shifts could be explained by anharmonic effects,
except for some branches, which exhibited frequency shifts almost
twice as large as the average. The average result agrees with the
conclusion from the ultrasound experiments, that the change in phonon
frequency as a function of the field direction is extremely small
(<0.1Z). As the frequency shifts between 22 °c and 400 °c due to
anharmonicity are of the order of 3%, the possible additional shift

due to the change in saturation magnetization will be unobservable.

A change in the phonon polarization vectors, however, may be detected

more easily by means of neutron scattering than a change in frequency.




In a cubic crystal, transverse phonons along the high-symmetry
directions cannot give rise to neutron scattering if the scattering
vector is parallel with the phonon wave vector. A lowering of the
crystal symmetry by magnetoelastic interaction may be observed by
looking for neutron-phonon scattering under experimental conditions
for which these scattering processes would be forbidden if the crystal
were cubic. Almost all experiments with the triple~axis spectrometer
that will be described in chapter V and VI were performed in a con-
figuration where scattering by purely transverse phonons is forbidden,
and in this way magnetic perturbations of these phonons could be de-

tected.

Although the spin-lattice interaction leads to an interference and
mixing of excitations, the total number of perturbed elementary ex-
citations, which is equal to the number of degrees of freedom in

the crystal, is expected to remain the same. In the present report
experimental evidence will be presented for the existence of an ad-
ditional excitation in nickel which appears to possess both elec-
tronic and vibrational properties. The first experiments on a nickel
multidomain crystal by means of the time-of-flight spectrometer were
actually intended as control measurements in an investigation of an
additional excitation observed in Ni (4% Fe), which was interpreted
originally as a magnetic impurity mode connected with the iron atoms.
It turned out, however, that this additional mode was also present
in pure nickel, and the present work was to a large extent aimed at
a further investigation of its properties. To this end an extensive
use is made of group-theoretical selection rules that govern, on the
one hand, the interaction of the new mode with magnons and phonons
and, on the other hand, the neutron scattering by each of these ex-

citations.

In chapter II a review is given of the theory of phonons and electronic
excitations in a ferromagnetic metal, followed by a short summary

of the theory of neutron scattering by these excitations in chapter
ITI. The spectrometers used for the scattering experiments, which are
installed at two of the horizontal beam facilities of the High Flux
Reactor in Petten, are described in chapter IV. In the chapters V and

VI the experimental results are presented, mainly according to the



chronological order of the experiments. In view of the unusual aspects
of the results a large number of the recorded neutron spectra is in-
serted. A possible interpretation of the additional mode is suggested

in chapter VII.

Some of the results given in this report have been published pre-

viously |19|. A comparison of preliminary data obtained for Ni (4% Fe)

and Ni multidomain crystals has been given in a report |20|, which

is available on request.




CHAPTER II

THEORY OF ELEMENTARY EXCITATIONS IN FERROMAGNETIC NICKEL

2.1. Introduction

In this chapter a review will be given of the theory of the low-energy
elementary excitations in an itinerant ferromagnet like nickel. The

theory of lattice vibrations (phonons) will be summarized in section

2.3. In analogy to the phonons, which are the collective elementary ex—
citations in the crystal lattice, the Stoner excitations (single electron
excitations) and magnons (collective electron excitations) are the
elementary excitations in the system of itinerant electrons. As an intro-
duction to the theory of these magnetic excitations, which will be pre-
sented in section 2.5, a short discussion of the electronic band struc-
ture will be given in section 2.4. The transformation properties of all
these excitations are directly related to the symmetry of the crystal lat-
tice, and may be treated quite generally by means of group theory. In sec-
tion 2.2. a concise summary will be given of those theorems of group theory

that are essential for the description of the excitations.

2.2, Crystal symmetry and group theory

Nickel crystallizes in the face-centred cubic (f.c.c.) structure with a
lattice constant a = 3.524 %. One may define a primitive lattice, con-
taining one atom per unit cell, by introducing the three basis vectors

3 = 70,10 , 8, = $(1,0,1) , a, = £(1,1,0).

The volume v of the primitive cell, which may be written as a (szi3),

is equal to a /A An arbitrary lattice point 1= 13) is defined

1’ 27
as

= 7
A Zl§]+,2§2¢23§3. (2.1)

It will be shown below that the elementary excitations (or any particle
within the crystal lattice) may be characterized by a wave vector q in
the reciprocal lattice, which is based on the vectors b E and b3,
satisfying the conditions

b..a. = 2n6. ..
= R 1,]
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In explicit form the vectors Ei are given by the expressions

b

by = 2@y az)/v, o By = 2nlagxad/v, , by = 2n(ayxa,) /v,
and for the f.c.c. lattice in particular

b, = 2n(T,1,1)/a » by = 21(1,T,1)/a , b, = 2n(1,1,1)/a.

A reciprocal lattice vector (or point) I = (rl,rz,r3) with integer

components T is defined by means of

Sl fR0 73 g T
and has the property
exp(ir.l) = 1 (2.2)

for any vector I of the real lattice. The first Brillouin zone may
be considered as the unit cell of the reciprocal lattice and is de-
fined to consist of all the points q that are closer to T =0 than

to any other reciprocal lattice point T.

Owing to the symmetry properties of the crystal lattice, group theory
may be applied to facilitate the computation of the energy of the
elementary excitations and the electrons, to label the corresponding
eigenfunctions according to their symmetry properties, and to establish
the selection rules for interaction between electrons, phonons and mag-
nons. The application of group theory to problems in solid-state physics
has been treated extensively in various text-books |21-26|, and only a

brief outline of the theory will be given here.

Classification of eigenfunctions

Consider the time-independent Schrodinger equation for a general system:

HY., = EY, . (2.3)
1 1

H is the Hamilton operator, ?i is one of the eigenfunctions belonging to

an 1-fold degenerate level with energy E. If # is invariant under the trans-
formations T of a finite group G, the 1 eigenfunctions belonging to the
eigenvalue E constitute the basis for an l1-dimensional, irreducible repre-
sentation I'(T) of the group G. The transformation properties of the 1

eigenfunctions ?i are defined by




1
Y. =5)T y 2
P(T).i .2 xij(T).j (2.4)
1=1
for i = 1,...,1, where P(T) is the operator corresponding to the trans-

formation T.

A relation similar to (2.4) holds for the expansion of a function in the
subspace, which is spanned by the orthogonal set of n eigenfunctions, be-
longing to a finite set of energy eigenvalues. The n-dimensional representa-
tion I'(T) corresponding to this basis of eigenfunctions may be decomposed

into a number of irreducible representations of G, which may be written as

P'(T) = ¢ F (T) ® <y r (T) ® .. .0 S r (T) (2.5)

The coefficients c, are given by
I v *
c. = = )Xa (TIX(T), (2.6)

where the summation is over all the elements in G, g is the number of
these elements, and the characters Xy (T) and x(T) are the traces of the
matrices I (T) and I'(T). Hence, each eigenfunction belongs to a specific
irreducible representation of G, and may be labelled accordingly. To de-
termine the function Wz that transforms according to the i-th row of I'"
one may apply the projection operators sz defined by

2 \:l
P =_8§ {3 (ME(T) 2.7)
where 1u denotes the dimension of the irreducible representation N
The operator P?i, in particular, projects the function ?z out of an
arbitrary linear combination ¥ of the n basis functions, i.e. if ¥

- ‘4 . - -
contains ?i with a coefficient Ai:

" .
P v (2.8)

- 0 : : a
The functions Y% transformlng according to the other rows of I' may

be obtained from r by means of the projection

a L& (2.9)
i

Subduction and compatibility

i i i ible re-
Suppose that G' is a subgroup of G. In this case, the irreduci

4 ibili relations
presentations of G and G' are connected by compatibility £



which may be derived by means of the subduction procedure described be-
low (see ref. |26/, p.89,219). Consider an irreducible representation
r®(T) of G. The set of matrices F?s)(T') from Fn(T), corresponding to the
the elements T' of G' will be referred to as the representation of G'
a '
r i
Ty

may be decomposed into irreducible representations FE(T') of G' by ap-

that is subduced by the representation TQ(T) of G. In general,

plying (2.5) and (2.6), where the summation in (2.6) is restricted to
the elements T'. The irreducible representations TQ(T) of G and T:(T')
of G' are compatible if FB(T') appears in the decomposition of the sub-

duced representation T?s)(T’).
Subduction will be applied frequently in this report,

(a) to investigate the influence of a reduction in the symmetry of the
crystal on the transformation properties of the eigenfunctions;

(b) to determine the selection rules for neutron scattering by excita-
tions with a specific wave vector q;

(c) to establish the compatibility for branches of dispersion relations
between directions and points with different symmetries in the re-

ciprocal lattice.

Bloch's theorem

Let us now consider a Hamiltonian that is invariant under the symmetry
operations that constitute the space group G of the crystal. For the
f.c.c. lattice of nickel the space group is symmorphic, i.e. every sym
metry operation T = {R]E) of G is a combination of a rotation R and a
primitive translation n = n,3,*n,3,tn,a,. The rotations R constitute the
point group Go’ where R may be a proper or improper rotation, the latter
being a combination of a proper rotation and space inversion I. For con-
venience the total number of lattice sites i (see the definition in (2.1))
is taken equal to N = NIN2N3 by introducing the restriction that Zi can
take the values O,I...,(Ni-l). In addition, cyclic boundary conditions are
introduced: it is assumed that any eigenfunction ¥(r) satisfies the con-

ditions

¥(x) = ¥(r+N,a,) = ¥(x+N,a,) = ¥(r+N a,) (2.10)

3
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The group of N primitive translations {Elg} (E is the identity element
of Go) is a subgroup 7 of G, and an arbitrary eigenfunction ¥(r) must

transform according to one of the irreducible representations I'® of 7.
It can be shown (cf.|[24|,p.76) that these representations are all one-
dimensional and may be labelled by means of N wave vectors q in re-

ciprocal space
9 = 94By*a b, %a5b,

where q; can take any of the values O,I/Ni,...,(Ni~])/Ni. Hence, there

are N irreducible representations ?ﬂ, which are given by
rUE[n} = exp(iq.n) , 2.11)

and it may be readily verified that the functions transforming as

rd must be of the form
?3(5) - exp(ig.g)ég(r) . (2.12)

where ya(g) has the periodicity of the lattice:

u (r) = u (r+n).
ks Iy : Mt

The wave vector g in (2.11) may be defined to be within the first Brillouin

zone, because exp{i(g+r).n} = exp(ig.n)exp(ii.ﬁ) = exp(ig.n) according to

(2.2).

The results above are known as Bloch's theorem [27[, and are valid for the
eigenfunctions of an arbitrary excitation or particle within the lattice.
The function u (r) characterizes the specific excitation or particle, and
transforms according to one of the irreducible representations I'* of the
point group of q , Go(g). This is a subgroup of Go and consists of those
operations {ng} that transform g into itself (or, if q is a point on
the zone boundary, into g+t, where T 1is a reciprocal lattice vector).

The irreducible representations of the point groups may be found in ex-
isting tables |22—26,28,29i and by means of the projection operators

(2.7) the functions u (r) transforming according to P may be determined.
In the following sect%bns of this chapter and in section 7.3 some applica-

tions of this procedure will be given.

The classification of the eigenfunctions by means of the irreducible



representations of G is particularly useful to establish selection
rules for the mutual interaction between electrons, magnons and pho-
nons, and for their interaction with neutrons. If two particles or
quasi-particles occupy eigenstates of a Hamiltonian Ho, and if the
interaction operator has the same or a higher symmetry than Ho’ the
interaction between the particles or quasi-particles is allowed by
symmetry if their eigenfunctions transform according to the same

irreducible representation of the group G of Ho.

If, on the other hand, the interaction operator has a lower symmetry
than Ho, the selection rules are obtained in the following way. Con-
sider, for example, the electron-phonon interaction, and suppose that
the Hamiltonian # for the electrons contains an interaction operator

H'(r) corresponding to the electron-phonon interaction:

H=H + H'
(o]

where Ho is the Hamiltonian of the unperturbed electron system, In
general H' may consist of various terms that transform as different
irreducible representations of the space group G, but it will be as-
sumed here for simplicity that H' transforms as a specific row of the
irreducible representation I'P of G. Transitions between the electron
states Wi and Vf, which transform as Ti and Ff, may be induced by
electron-phonon interactign if the decomposition of the direct product

representation I = rPer! contains Ff. According to (2.5) and (2.6) this

is the case if

L 4

ce ggxfmxp(r)xi(r) #0, (2.13)
as the characters of the direct product representation '’ @ I’ are given
by

x(T) = Xp(T)Xi(T)'

Thus selection rules for the interaction between particles and quasi-
particles may be derived from the symmetry properties of Ho and #',
and the eigenfunctions of the particles involved, by means of the cor-

responding character tables.




Double-valued representations

The theory described above is only applicable to electron states in a
crystal if the Hamiltonian does not contain spin-dependent terms.

For the explanation of the experimental results it will be necessary

to invoke electron spin-orbit coupling, which has as consequence that

double groups and double~valued representations must be used to classi-

fy the electron eigenfunctions |30-32

The transformation properties of the spin functions u+; of a particle
with spin +} along the z-axis, under a rotation R(¢) about this axis, are

given by
R(¢) u.y = exp(+ii¢) Uy (2.14)

where ¢ is the angular coordinate in the xy-plane. A characteristic pro-
perty of these functions is the change in sign under a rotation of 360°
about the z-axis, and this leads to a doubling of the number of trans-
formations. For each proper rotation R there is an additional "barred"
rotation R = ER (E is a rotation of 3600), which may be distinguished
from R because it changes the sign of the spin functions. Therefore one
has to introduce double-valued representations Tg for particles with

spin } :

B = B
FD(R) = —FD(R) (2.15)

For the representations corresponding to improper rotations IR one
usually follows the convention (cf. [22|, p.87) to assume that the spin

functions are invariant under space inversion.

If the two-dimensional representation based on the spin functions u+i is

denoted by D;, and the single-valued irreducible representations of

-

93(1) by Fg, the double-valued irreducible representations AB for the

functions us(‘_z;)u+£ are obtained by means of a reduction of the direct-

product representation:

re®D, =c I'ec . r’e...e@c T

S ] (2.16)

The numbers (-

aB

1 +
‘T @ ;xB(R)TrfDi(R)}xa(R), (2.17)

are derived from an equation similar to (2.13):



where the summation is over all (proper and improper) rotations of the
single group Go(g) and 80(3) denotes the order of Go(ﬂ). The traces of
the matrices D£ may be found in table A.2.

Up to this point, we have only considered the symmetry properties of

the eigenvalue equation (2.3) with respect to coordinate transformations.
Since the energy eigenvalues are real, taking the complex conjugate of
(2.3) yields

*
HY =E ¥ (r),
q® = By @

if the Hamiltonian is real. Hence the energies of the states correspond-
ing to y" and v are equal, while v transforms as I'*" if ¥ transforms
as T, The term "time reversal” for taking the complex conjugate is comr
monly used, because complex conjugation of the time-dependent Schrodinger
equation HY = ih3¥ /a3t gives rise to time reversal: ay* = iﬁaw'/ﬁ(-t). Time
reversal and taking the complex conjugate are two examples of anti-unitary

operators (see |21, p.328).

The existence of additional degeneracies due to time-reversal symmetry will
s N o o ’ .
in general depend on the relation between I' and I' . According to Wigner

|33| one may distinguish three cases:

(a) T is equivalent to a real representation,

(b) T is not equivalent to F‘,

(c) T is equivalent to F‘, but not equivalent to a real representation.

In case (a) no additional degeneracy occurs, whereas there is a doubling
of the degeneracy in cases (b) and (c¢). This rule applies to single-valued
representations; for double-valued representations the corresponding rule

will be given below.

A straightforward method to decide to which case a particular representa-

tion I
S

lowing criterion

of the point group Go(3> belongs, is the application of the fol-

So(g): case (a)
ZXG({Q]Q}Z) =40 : case (b) (2.18)

-go(g,: case (¢)




The summation in (2.18) is over those elements {Q|0} of the point group
; : 2
—_ - 13) -
Go that transform g into -q or -g+r. Obviously the elements {Q]O} be

long to Go(a), whereas {Q]g} in general does not belong to Go(ﬂ)‘)'

The same criterion (2.18) may be used for the double-valued representa~-
tions rg, if the summation is extended over the rotations Q of the double
point group Go that transform g into -q or -g+1. However, the rules

for the doubling of the degeneracy are reversed: in cases (a) and (b) the
degeneracy is doubled, whereas no additional degeneracy occurs in case

(c).

Magnetic groups

Owing to the existence of a net magnetization, a ferromagnetic crystal has

a lower symmetry than a paramagnetic crystal |34,35

. The magnetic point
group comsists of the operations that take the crystal lattice into itself
and leave the magnetization M invariant. Since M is a pseudo-vector, its
direction is reversed under reflection in a plane containing M, and there-

fore only the identity E, the inversion I, rotations C ,, around the direc-

tion of M and reflections ICnM can be elements in then:agnetic point
group. On the other hand, the magnetization changes sign under time re-
versal © and consequently a combination of © and a coordinate transforma-
tion that takes M into -M also belongs to the magnetic point group. Hence
the magnetic point group consists of unitary elements (R) and anti-unitary

elements (GR).

In a similar way one arrives at the following definition of the magnetic

point group of the wave vector, M(q)
M(@) = Gh(g) + 96, (q).

Gﬁ(g) consists of the unitary elements of the magnetic point group that
transform q into g or g+t, whereas OGI(S) consists of the anti-unitary

elements of the magnetic point group that transform g into ~q Oor —q+T.

’) {ng} is an element of Go(ﬂ) if Go(g) contains I; in all other cases
{ng} belongs to IGo(g)|23L
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The number of elements in Gg(g) is equal to the number of elements in
OGI(S). G‘(g) itself is not a group (it does, for example, not contain
the identity operation E), but the elements in G?(g) and Gl(&) together
constitute a group, which will be indicated by Gz(g). The point group
M(q) will be denoted according to the Schonfliess notation Gz(Gg)' used
previously by Dimmock and Wheeler |35].

The concept of magnetic point groups may be illustrated by the following
example. Consider a wave vector g along the z-axis of the reciprocal lat-
tice, i.e. parallel with the vector (E‘+§2)/2, where g‘ and 32 are defined
on page 6. In the paramagnetic phase t?e point group Go(g) is CAv’ which
22° Céz’ Cal, 1c2x, ICZy’ ICza and ICZb (the
operations are defined in appendix A). In the ferromagnetic phase with the

consists of 8 elements: E, C

magnetization directed along [110] (the a-direction), only the elements E
and ICZa remain symmetry operations, i.e. Gﬁ(g) = Cs' In addition there

are two anti-unitary symmetry operations 6C and OIC |36]; the rota-
2z

2b

tional components C,, and IC,,, together with E and IC -~ constitute the

2b 2
point group C2v’ and the magnetic point group M(q) is therefore sz(Cé)

(see table 6.2).

The symmetry properties and the essential degeneracies of the eigen-—
functions in the ferromagnetic phase are determined by the irreducible
representations of the unitary subgroup GZ(&) of M(g). Additional degeneracies
may occur due to the anti-unitary elements in M(q), and a criterion simi-

lar to (2.18) may be applied to distinguish three different cases (see,

for example, |21],p.343, or [35/). We shall not consider this criterion in
detail, since this would require a rather lengthy discussion of the so-called
corepresentations of M(g). It can be shown that no additional degeneracies
will occur for the single domains magnetized along [001], [110] or [111],
that were investigated in the present work. For these domains the magnetic
point groups M(q) for the symmetry points and lines of the reciprocal lat-
tice have been tabulated in |36| (see also table 6.2). By inspection of
existing tables of corepresentations |25,37| it may be verified that for

the point groups M(q) relevant to the investigation on single domains no
additional degeneracies exist, neither for the single-valued nor for the

double-valued representations.




Pseudo-magnetic_groups

If the Hamiltonian of a system is invariant under a reversal of the mag-
netization M, the eigenstates with wave vector q transform according to
the irreducible representations of the pseudo-magnetic point group GEM(S).
This group consists of those elements of the crystal point group G0 that
transform g into itself (or, if g is a point on the zone boundary, into
g+1) and M into M or -M. For the case considered above, i.e. gq along the
z-axis in a [110] domain, the pseudo-magnetic point group GEM(S) = C

2v?

2,° ICZa and ICZb. The operations E and

IC leave M invariant, whereas C. and IC transform M into -M,
2a = 2z 2b - -

and consists of the elements E, C

2.3. Phonons

In this section a survey of the theory of non-interacting phonons will
be given |38,39

two other approximations are usually made:

« In addition to the cyclic boundary conditions (2.10),

(a) The adiabatic approximation. It is assumed that the electronic wave
functions are at any time determined by the instantaneous positions
of the nuclei.

(b) The harmonic approximation. The motion of an atom due to the potential
generated by the other atoms is assumed to be harmonic. In other words,
the series expansion of the potential in terms of atomic displacements
is terminated at the quadratic term.

Consider a Bravais lattice consisting of N atoms with equal mass M%) at

positions

Ry(6) = 1 + u (v), (2.19)

where 7 is the equilibrium position of the I-th atom, and El(c) the dis-
placement from this position due to thermal vibration, In the harmonic

approximation the classical equation of motion for u, (t) reads

Mg = -] e @1 B, (2.20)

M= - 97.48x1072% g,



where o and B denote the Cartesian coordinate directions and ¢ , the
o

5]

elements of the interatomic force constant matrices. Since Bloch's
theorem is based on the periodicity of the lattice and cyclic boun-
dary conditions, it may also be applied to classical equations of
motion. Hence BZ(t) may be expanded in 3N normal vibrations:

N
u, () = ] £.(Q)exp{ig.l-iw,(q)t}. (2.21)
- e ST
ot - ¢
Each normal mode is characterized by its wave vector g, its polariza-
tion vector éj(g) and its angular frequency uj(g). The summation in
(2.21) runs over N discrete vectors g confined to the Brillouin zone.
After substitution of (2.21) in (2.20), the following set of 3N homo-

geneous equations for the £'s is obtained:

2 SO B
Mol (@) (@) = gDaB(g) £5(2). (2.22)

The dynamical matrix D is directly related to the force constant ma-

trix $:

=) ¢ -1* {=iq. (I-1")}
D.s@ Z'*ce(_l__ Yexpi-ig. (Z-7')}. (2.23)
The condition for the existence of non-trivial solutions Eﬁ of (2.22)
is

det|Mof @E - D@ = 0, (2.24)

where E denotes the unit matrix. This secular equation yields three
solutions wj(g), and after substitution in (2.22) the corresponding
vectors Ej(g) are found. The general form of the matrix elements

3 -7'

Jaﬁ(i 1') and DaB

2.2 for interactions ranging out to fourth neighbours.

for an f.c.c. lattice is given in tables 2.1 and

The calculation of the frequencies and polarization vectors along sym
metry directions may be simplified considerably by applying group-theoreti-
cal methods |40-43|. Although derived from a classical equation of motion,

(2.22) may be considered as an eigenvalue equation similar to (2.3):

D@E @ = M (@E. (@) (2.25)




Table

2.1.

Interatomic force constant matrices 4(1-1')
B e —

for the first four neighbours in nickel.

neigh-

exp. values in

rr | s
bour dyne/cm| 2|
3 3’ Yl a‘ = 17,178
first ~2—(],l,0) [ % 0 5] = -26
0 0 &} Y, = 19,316
. (uz 0 0 a, = 880
d = ol o~
secon 2(2,0,0) 0 Lz 0 By 519
0 O :2
::13 = 626
oy 3(2 . 5‘3 ’13 Y3 :53 = 320
thir EALERE) 3 By, & ) o
2 Y3 B3 O3 3 453
- 3 2 8 p—
5 65 By 3 =173
! % Yy @, = 275
fourth 3(2,2,0) Y, % 0 ﬁb = =160
0 0 8, Y, = 424




Table 2.2.

Elements of the dynamical matrix D for an f.c.c. lattiee.

Forces between the first four neighbours are taken into account.

Dii = 4&1{2 - ci(cj + ck)} + 481(1 = cjck) +
232(1 - Ci) + 252(2 pho Cj - Ck) +
8u3(l * Cicjck) + 863
404(2 - Ci(Cj - Ck)} + 484(1 " Cjck)

Ko Ci(cjck + cjck)} +

D.. = 4y s.s, +
1] (e
( .
853ck(Sisj + siSj) 8y3Cksisj +

4*4515j

Notation: c; = cos(aqi/Z), s; = s1n(aqi/2)

Ci = cos(aqi) 3 Si = 51n(aqi)

In this table i, j and k have been used to denote
the Cartesian coordinate directions, in order to
avoid confusion between the coordinates and the
force constants. In the expression for Dii’ j and
k are the two remaining directions. In the expres=

sion for Dij’ k denotes the third direction.




where Mw?(g) and Ej(q) are the eigenvalues and eigenvectors of the
operator Q;Ej(ﬂ) may be identified with the function u (x) in (2.12).
According to equation (2.23) D depends only on the lattice vectors
(Efi') and on q, and is therefore invariant under the operations of
Go(g). Consequently, the eigenvectors transform according to the
irreducible representations of Go(g)..For the classification of the
normal modes the notation of Bouckaert et al. |44| will be used; the
symbols for the symmetry lines and points of the Brillouin zone are
indicated in figure 2.1. In accord with common practice, we shall
denote q by its components s qy and q, in the orthogonal coordi-

nate system based on the vectors

Ex = 2n(1,0,0)/a , Ey = 2wn(0,1,0)/a , Ez = 21(0,0,1)/a.

Figure 2.1,

Brillouin zone of the f.c.e. lattiece.
Symmetry points and lines have been

indicated in BSW notation |44].

As an example of the group-theoretical treatment of the lattice vibra-
tions we shall consider the phonons with q = (z,z,z). The three eigen-
vectors éj are unit vectors in real space and constitute the basis for
a three-dimensional representation I'(R). For the Ni crystal I'(R) is
equivalent to the group of six transformation matrices R for the vec-
tor (x,y,z) (see table A.1), corresponding to the six symmetry opera-
tions of Go(;,c,:) = C3v' From the character table for C3v (table A.13)

and the characters y(R)

-1
X(E) = 3, x(C3g) = x(Cyp) = 0 , X(ICyy) = X(ICy,) = x(IC, ) = 1



one obtains by means of (2.6):
C(Al) =1, c(ﬂz) =0, c(A3) =1,

and I' may therefore be decomposed as follows:

r=A /; o

; 1 e 3

Consequently, the phonon dispersion relation Wj(&) along tlll] consists of a
doubly degenerate branch (A3) and a non—-degenerate branch (ﬁ‘). By

applying the projection operator (2.8)to an arbitrary vector (x,y,z)

one obtains the eigenvectors

(2.26)

s - a3 PN Lo ez 4t =
E(N) =30, , Ei(A) = 277(1,1,0) , £y (A = 6 7(1,1,2).

It is readily verified that the eigenvectors are orthogonal, and that

the branches Al

respectively. The eigenvalues may finally be determined by substituting

and A3 correspond to longitudinal and transverse phonons,

the eigenvectors (2.26) in (2.25).

The same procedure can be used for the other directions with high symme-
try, 4 = (0,%,%) with Go(g) = C2V and q = (%,0,0) with Go(g) = CAV' and

for the mirror planes (011) and (001) with Go(g) - Cs' The eigenvectors

and corresponding eigenvalues are collected in table 2.3. Along the

Table 2.3.

Symmetry properties of phonons in an f.

a G, (q) £j
Chv (1,0,0)
table (0,1,0)
(0,0,1)
374(1,1,1)
2'5(1,—1,0)
6'5(1,1 ,2)
(0,%,%) 272(0,1,1)
(1,0,0)
2'5(0,1,‘1)

(nsZ,%)

(Olj)plane

272(0,1,1)
(a,2-£b,2_5b)
(E,Z-ia,z_ia)

(n,%,0)
(001)plane

(0,0,1)
(a,b,0)
(b,a,0)

s C = 2sb/a -

d = b/a




three symmetry directions there are two transverse-phonon branches

and one longitudinal-phonon branch. Phonons with qQ in a mirror plane
are polarized either perpendicular to this plane (I'“ = =) or in the
plane (r* = +). The phonons belonging to the + branches are not purely
longitudinal or transverse, and a and b in table 2.3 are functions of
g. Calculation of the dispersion relation along the directions A,A and

I from the dynamical matrix defined in tables 2.1 and 2.2,yields the re-

sult shown in figure 2.2.

r A X = r A r
]
[zo0] ¥ [ozz] [zzZ] L
8}— —p— —
P 2‘
focruz) 8, 4z A
68— = = 2 — —
L
a— A -+ =, -4 A =
2 — =3 684 =
. 4 L
I T 1 L= | 1 L = |
TR T SR TR TR Y TN O T JI T 2 4

Figure 2.2,

Phonon dispersion relation v(gq) in nickel along symmetry directions,
caleulated by means of the interatomic forece constants determined by

Birgeneau et al. |2

2.4. Electrons

Next, we consider the itinerant electrons in the crystal lattice [24],
which are in this case the electrons that originate from the atomic 3d,

4s and 4p states. If the spin-orbit coupling is neglected, the total

Hamiltonian HT for the electron system reads

2
Bi G & pahd
e = i SN F e s (2.27)
4 S igi' = =

where m, is the electron mass, Bi and r; are the momentum operator and
the position vector of the i-th electron. The first term Ho consists

of the kinetic energy of the electrons and the periodic lattice potential
V(Ei) due to the ion cores, the second term HC represents the energy re-
sulting from the Coulomb interaction between the electrons. By means of

the Hartree-Fock approximation one may obtain the following eigenvalue



equation for the energy of the one-electron states:

= Y., 2
Hiwi Ei+i (2.28)
According to Bloch's theorem, the functions Wi are of the form

‘L‘l = WjEU(E) = em(i&'z)ujh(s)uc’ (2.29)

where j, k and o denote the band index, wave vector*) and spin direc-
tion, respectively, u is the spin function of the electron (0 = + },
which will be indicated by + or +), and ujk(i) has the same periodicity

as the lattice:

ujk(r) = uj5§5+£).

In the ferromagnetic phase the energy eigenvalues E(jkt) and E(jk+) are
different; in general the energies may be obtained by solving a matrix
equation similar to (2.25). For each spin direction there are six bands
of interest: five 3d bands and one 4s-4p band, and quite a number of
computations on these bands has been published |45-51|. In the band
structure calculated by Zormberg |48| the effect of spin-orbit coup-

ling has been taken into account.

In connection with the selection rules for interaction between the
electrons and the collective excitationms it is of interest to esta-
blish the symmetry properties of the functions ujk(g)uo, in particular
for the 3d bands. The one-electron Hamiltonian in (2.28) is invariant
under the operations of the magnetic space group, and therefore the func-
tions u'k(i)uo must transform as the irreducible representations of
Gﬁ(k). The labelling of the electron states may be performed in three
steps. First, we determine the functions ujk(i) that transform as the
irreducible, single-valued representations Fg of Go(&) (a). In the next

step the spin-orbit coupling is introduced and the direct-product re-

presentations r* ® D§ are decomposed into double-valued representations (b).
s

’ . . -
) According to common practice, the wave vector of the electron will
be denoted by k. This should not cause confusion with the wave vector

of the scattered neutrons, to be introduced in chapter III.




Finally the lower symmetry of the ferromagnetic state is taken into
account by subducing the representations onto the proper magnetic point

group (¢).

{a)_Paramagnetic phase, without spin-orbit coupling.

In the tight-binding approximation, the 5-dimensional representation

FS for the 3d bands is based on the functions

£()xy , £(r)yz , £()zx , £(x) (y2-22) , £(r)3 ! (3x2-rd).

These functions are linear combinations of the spherical harmonics Yi
(m = 0,+1,+2) which describe the angular dependence of the wave func-
tions for the 3d electrons in an isolated atom. From the transformation
properties of the basis functions under the operations R of Go(E) and
subsequent reduction by means of (2.5) and (2.6) one obtains the follow-

ing decomposition along the symmetry directions A,A and I.

k = (z,0,0) g =4,04,0 ;é ® A, (table A.11)
k = (2,%,%) ;S Ut “."1 @ 3'.3 (table A.13) (2.30)
k = = 2% 9'4._)02,393; (table A. 7)

(0,5,8) Tg

1 4

The bands AS and 13 are doubly degenerate, but become four-fold degene-
rate if the two possible spin states are taken into account. Also for
the other, nondegenerate, bands a doubling of the degeneracy has to be
introduced. To construct wave functions with the correct transformation
properties, linear combinations of the basis functions must be chosen.
The proper combinations listed in the first colummn of table 2.4 were

taken from the tables given by Cornwell |24

. Figure 2.3 shows the elec-
tronic band structure in the paramagnetic state |48, for which case the

decomposition scheme (2.30) holds.

As has been mentioned earlier, the removal of band degeneracies by spin-
orbit coupling is related to the reduction of Fge Di according to (2.16)
and (2.17). The traces of the matrices Di(R) for the operations of the

/ X - G lres -
point groups C4v’ C3v and C2v are given in table A.2, while the characters

of the double-walued representations are listed in the lower part of the

tables A.11, A.13 and A.7. For simplicity the operations R have been omitted
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Electronic band structure for the 3d and 4s-4p bands along b, and
J ¥ 3

A for paramagnetic nickel |48| if spin-orbit coupling ie neglected.

In accordance with the selection rule (2.13) the 4s-4p branch hy-

bridizes only with the b,, L, and A, branches of the 3d
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from the tables, and when using the characters one should bear in mind
that y(R)= -x(R) for the double-valued representations. Application of

(2.17) yields the following decomposition scheme

.T\®D£=;3 A, @D

: =;*.7,aé®x)=;~, A.®@D, =A ®A

4
A, @A @ A (2.31)

'- [ = A'\ ‘.‘. )
A e L)ﬁ @I

‘..i ® Di J.S

[}
~
¥
)
-
38
-
w
-
=~
~

The splitting of the bands is shown schematically in table 2.4. By means

of criterion (2.18) it is found that A A, and I_ belong to case

6* 270 M6 5
(c¢), and AA and AS to case (b). Hence, the Aa and AS bands "stick together'

as a result of time-reversal symmetry. The four-fold branches 65 and A

3
are split up into two double branches, whereas all other branches remain

doubly degenerate. Since the quantization axis for the electron spins may
be chosen arbitrarily, the matrices D,(R) are not defined uniquely, and a
determination of the wave functions with the proper transformation pro-
perties becomes quite complicated for the split AS and A3 bands, unless

the quantization axis is chosen in a sensible way (e.g. parallel to k).

Next we take into account the reduction of the symmetry in the ferro-
magnetic state, which leads to a further splitting of the bands. As an
example the magnetization direction is chosen along [bl?], i.e. per-
pendicular to the wave vectors (z,0,0), (z,2,2) and (0,z,z). For these
k's the unitary elements in the magnetic point group M(k) are E and
ICZe’ i.e. GO(E) = CS. It is seen from the character table (table A.5)
that the group Cs has only one-dimensional irreducible representations,

which implies that all degeneracies are removed.

Subduction of the representations in (2.31) onto Cs gives:

3 -4 3 3 4
A + T I N: 5oF X &
.Jb 1 D \/4 I LS I ®r
7‘3 "4 A > 7'4 2
L7 el Ag I (2.32)
A, » r3 ] ."4

Since the notation of Bouckaert et al. refers to a purely cubic crystal,
the irreducible representations in the ferromagnetic state will be in-

R
dicated by I'", where 8 corresponds to the row in the relevant character

table.




Table 2.4.

Representations of the 3d electron bands

paramagnetic &) ferromagnetic, E//[Ol?]b)

4 e femy|r? ug (©

3 1 (ax?-r2) 374 (3x2-r?)
2 2 2 2

yz 2 yz
Xy 2_!x(y+z)

Xz Z_ix(y—z)

34 (xy+yz+zx) ! ' yz; 2 'x(y+z)

2 2
X -y } y -z

3-i(322-r2) 3_*(3x2-r2)

4

2_5(yz-zx) ] I 2_£x(y—z)

6-§(2xy-yz-zx) yz;2— x(y+z)

3-5(3x2-r2) 3_5(3x2—r2)

yz yz
Z-Ax(y-z) 2_5x(y—z)
2—!x(y+z) 2-5x(y+z)

232 Zod
y -z y =z

%) See tables A.11, A.13 and A.7. The eigenfunctions ug(z) listed

in the firet colum transform according to r;.

) see table A.5.




The eigenfunctions transforming according to F3 and TA are easily
derived if one takes into account that the transformation properties
of the spin functions, with the [blij direction as quantization axis,
are defined by (see (2.14))

Euf = u, Eu+ = u* » Ic2eue = iuy , ICZe“@ ol <.

k 2 = 2148
FJ: x(y+z)uf, x(y-z)u+, yzu,, (y -zz)u;, 3 £(3x =y )“f

YA: x(y+z)u+, x(y-z)u?, yzu, , (yz-zz)u$, 3-5(3x2-r2)u¢ s
In table 2.4 the final splitting of the bands is given. It should be
pointed out that there is no relation between the position of the bands
in the table and the electron energies. Furthermore, the suggested one-
to-one correspondence between wave functions and bands may be misleading.
The wave functions belonging to, for example, a T3 band are linear com~
binations of the five 3d-like functions in (2.33) and those 4s,4p-like
functions that transform as F3. The functions listed in the last columm
of table 2.4 should be interpreted as the dominant term in the wave func=-
tion for a certain k, and in this way the relation between the bands Fg
in the ferromagnetic phase and the bands F; in the paramagnetic phase may
be established. An example of the electronic band structure in both phases

is shown in figure 2.4. for the []OQ] direction.

2.5. Electron-hole excitations and magnons

The theory of magnetic excitations in a ferromagnetic metal is based on

the electronic band structure. A transition of an electron from the state
]j50> to the state lj'E'c'> is equivalent to the creation of an electron-
hole excitation with wave vector q = E’-K, energy fuw(g) = E(j'&'o')-E(jEp)
and spin ¢'-o. When electron-electron correlations are taken into account,
collective excitations (magnons) may exist, which are linear combinations
of electron-hole excitations with spin (0'-0) = 1. Theoretical treatments
of the magnetic excitations in metals have been given both for single~band
|52-54| and multiple~band systems |55-581.

A convenient method to describe the magnetic excitations is the occupa-

tion-number formalism. The electron transitions are expressed in terms of

. + e
the Fermion operators cjko and cjko » which create and annihilate an




electron in state |j5p>. The operators obey the anti-commutation rules

({A,B} = AB+BA )

+
{cjhc,cj'klc'} = Gle

} =0

Skt

‘ch_O’cj ll(.lcl
+ +

feey a3

jko J'E'U'} i

. . + 3 + 2
A repeated application of cjkc yields a zero result: cjkcl =

and consequently the number of electrons in each state is 0 or 1.
Below, a short review of the theory for a single-band model will be presen-

ted, which is actually based on a summary given by Walker |59].

Expressed in Fermion operators, the Hamiltonian (2.27) for a single band
becomes
+ + +
H"ZEE(E) "'iZX V(ﬂ') v fe ot 1 1S
Ko c&ccgp q"k koo cgfg UCE q'o CE ¢'"ko (2.35)
E(E) is the energy of the Bloch eigenstate of HO with wave vector k.
The matrix element <5+3'o,5f—3'0']Hclhfc',5y>, which depends in fact on

the vectors k, k' and q'(cf. 54|), has been approximated by V(q').

In the ground state the majority of the electrons is supposed to be in

+ states. The spin raising operator S;(g) is defined by

+ e o
55(3) ch"'ﬂ‘cl_(_*, (2.36)

and creates an electron-hole excitation by inducing a transition from a
4 state to a + state. The energies of these Stoner excitations are de-

rived from the equation of motion
i S @ = I:Sg(_q) ] - (2.37)
From the equations (2.34), (2.35), (2.36) and (2.37) one obtains the
following linearized equation for S;(ﬂ), where n_ denotes c:cr:
i 4= 51 (@) = (e(0-e(krg)ls, (@) +
g'v(g')(nyyg., = Pagry) s;_(_q) +

' +
(nk_*-nk_*g*)g.v(ﬂ )Siaq" (@
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After the introduction of renormalized energies E (ko)
E(ko) = f(h)'ly(g')nkq.c
q =
(2.38) may be written as
. d + r + Y ' +
i 3= SE(S) = 1E(§+)-E(§+Q%)}SE(5_) + (ny-nyﬂf)é\'/(g )SPS.(Q). (2.39)

where S;(g) contains the factor expl{iw(g)t}.

At this stage one may continue in two different ways. If the last term in
the right-hand side of (2.39), which describes the interaction between

. - + .
Stoner excitations, may be neglected, the excitation created by Sk(g) is

stable and has the energy
fw (g) = E(k+gt)~E(k+). (2.40)

Inclusion of the interaction term leads to a change in energy and a finite
lifetime of the excitations. For a specific q the energy (2.40) is a func-
tion of k; therefore the Stoner excitations occupy a continuum in (w,q)
space, the boundaries of which are determined by the shape of the 4 and

+ band (cf. figure 2.5). Owing to the interaction term, there are solutions
of (2.39) that correspond to collective excitations. Changing from individual
spin raising operators s’ (g) to the operator XARS (q) yields the following

integral equation for the Ak s -~

—

{ £)= = - ' - 1
(B g8 ()~ (g) Iy qZ[V(g L L e R
The eigenvalues fiw(q) are found from
gt ke

1+ V(q) Z =0 (2.42)
k E(k+qt)-E(k¥)-huw(q)

and it can be shown that there exists a magnon-like solution fiw(qg) of

(2.42) which is quadratic for small values of q
2 4
fiw(g) = Dg” + 0(q ) . (2.43)

The constant D is related to the electronic band structure [60] .

Figure 2.5 shows some results of a calculation on magnetic excitations

in nickel by Thompson and Myers l61].




Figure 2.65.

Magnetic excitations in nickel along [100] |61].

(a) Continuum of Stoner excitatione and magnon dispersion relation
for a single-band model.
(b) Magnon dispersion relation on enlarged scale (0.01 Ry corresponds

to v = 32.8 THz).




CHAPTER III

THEORY OF THERMAL NEUTRON SCATTERING IN FERROMAGNETIC NICKEL

3.1. Introduction

In the present chapter the two dominant interactions between the neutron
and the scattering sample will be discussed. These are, first, the strong
interaction between the neutron and the atomic nuclei and, secondly, the
electromagnetic interaction between the magnetic moments of the neutron
and the electrons. In general there exists also an interaction between
the magnetic moments of the neutron and the nuclei, but this interaction
is negligible, certainly for nickel, because the three dominant stable
isotopes SsNi, 60Ni and 62Ni have a nuclear spin equal to zero (cf. table
3.1). There are actually still two other electromagnetic interactions,
viz. the interaction due to the movement of the neutron in the electro-
static field of the nuclei |62| and the relativistic neutron-electron
interaction |63|, but these may be neglected in comparison with the two

main interactions mentioned above.

The theory of thermal neutron scattering has been extensively reviewed
in the literature |64-66|, and in this chapter only a brief summary will
be given of the theory relevant to a ferromagnetic metal. In section
3.2. the basic cross section formulae will be discussed. The derevation
of the elastic and inelastic cross sections is sketched in sections 3.3.
and 3.4, respectively. In the presentation of the inelastic scattering
theory we consider processes that involve one of the elementary excita-

tions introduced in the previous chapter.

3.2. Nuclear and magnetic scattering

If the interaction between the neutron and the specimen can be described
by a potential V(r), the scattering cross section can be calculated as
follows. The state of the incident neutron will be defined by its wave
vector Eo and its spin quantum number Sy the state of the scattered
neutron correspondingly by k and s. In the first Born approximation the

differential cross section for scattering into the solid-angle element

d2 is given by |67]:




2
n ) 2
75 M- o

k[ : ; 2
T [—“21 |<As| [dr exp(iQ.x)V(X)|A s >|° , (3.1)
o ‘2#h ee

where Ao and A denote the complete sets of quantum numbers that charac-
terize the initial amd final state of the scattering specimen, Q = 50-5

is the neutron scattering vector and m the neutron mass. For a comparison
with experiment it is necessary to average (3.1) over all possible initial
states }Aoso>’ each weighted according to its probability P(AO)P(SO), and
to sum over all final states |As> that are allowed by the conservation law

for Ehe total energy:
62
E(A)‘E(Ao) = EEn(k
Here E(Ao) and E(A) denote the energy of the specimen before and after scat-

it

-k”) = fuw.

o

tering and fiw the energy loss of the neutron. Energy conservation is taken
into account by including the following delta function, expressed in inte-

gral representation, in the summation over the final states:

+ o
1 r .. (E(A)-E(A .
S[E(A)-E(A)-1w] = 5— [ dt em[lc{—)TLol - LJ

-t

In (3.1), V(r) should be regarded as an operator and is expressed in

Heisenberg representation V(r,t) according to the definition

0(r,t) = expGED)0 (D exp (G0,

where H is the Hamiltonian of the scattering system and 0(r) any operator
acting on the system. After substitution in (3.1) one obtains the following

expression for the double differential cross section

k
o

Kk (mn]21 o

[ dt exp(~iwt) x
ZWHZJ 2rh
. * .
<fdrf dr'exp(-iQ.x)V (z,0)V(r;t)exp(iQ.x')>,, (3.2)
where E denotes the energy of the scattered neutron. The integrations are
over the volume of the specimen and <...>  stands for IP(A )P(s _)<A s |...]1A 83
T o (6] o0 00

Before the latter summation can be performed, the properties of the
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scattering system and the explicit form of V(r) must be specified.

\

To treat the nuclear scattering by a lattice of N nuclei with spin zero

at positions R,, the interaction potential Vn(r) is usually approximated
o7 d

by the Fermi pseudo-potential

v,(@ = §(x-R,;) , (3.3)

where the short-range potential of the nucleus is described by a delta
function. The scattering length b,, as defined in (3.3), may be complex
and has different values for the ;arious isotopes of a particular element
(cf. table 3.1). The imaginary part of bZ is only important for nuclei
with a large absorption cross section, and may be neglected for the Ni
isotopes. After substitution of (3.3) into (3.2) and integration over T

and r' one obtains for the scattering cross section

dZ: Kk 1 o
n r .
== == [ dt exp(-iuwt) x
dQdE L el
S
) b;b;-EXP{'ngﬁv(0)}exp(iQ.R7,(t)}»T. (3.4)
aqy b b L e

]

Table 3.1.

Nuclear scattering lengths of nickel isotopes |71

Isotope b(]O-lzcm) abundance(Z) |spin
8y 1.47 67.8 0
60Ni 0.28 26,2 0
6|Ni ? 102 3/2
62y -0.85 3.7 0
6hyi ? 1.1 0

* o 2 = Y
) For natural nickel one has:

3 4

<b> = 1.03x10 cm

-2
<b>2= 1.06x10 ? sz

<b2>= 1.43'110-2A cmz




The calculation of the magnetic scattering proceeds in a similar way,

by substituting for the magnetic interaction potential Vm(E) the energy

of the magnetic moment y of the neutron in the magnetic field H generated

by the electrons. For a single electron with spin g and velocity v the

field H(r) at a distance r from the electron position is equal to |66
OXY vXI

H - a2l (R
H(x) ZuBcurl {3 .

3
x| |z

where u. is the Bohr magneton, —e the electron charge and c the light

B
velocity. The magnetic moment of the neutron may be expressed in units

of the nuclear magneton by by
y - ZYUN s, v==1.913,

Hence the magnetic interaction potential becomes

[z
Vo(®)=-u.H(r) = 2yuy [ZUB s.curl| ‘
i\ :rl

ot

where the first term in the right-hand side represents the dipole-dipole
interaction between the spins s and g, and the second term the interaction

between s and the orbital magnetic moment of the electron.

In the description of the scattering by the 3d electrons in nickel the last
term in (3.5) may be neglected in first approximation, because the net
magnetic moment is for 91% due to the electron spins |68|. To account for
the itinerant character of the unpaired electrons the spin-density dis-
tribution S(r) is introduced by means of the Fermion operators (cf.

(2.34)) and electron eigenfunctions (2.29)
- +
.‘S(E) = k[{'jg'cg'v J'EG(‘E)CjEUE"Pi'E'G'(E)CJ"E'U' (3.6)

Without going through the complete derivation, which can be found in text-
books |65,66|, we give the final result obtained from the general expression

(3.2) for the magnetic scattering cross section for unpolarized neutrons

d7o 2y2 +oo ¢
=0k [ 1e2} L_ [ dt exp(-iut) JJ(5_,-e"e")
(o} c © aB \

dndE Ik _

<[dx[dr 's% (z,0)expi{-iQ. £ (0) Jexp{iQ.x' (£) }5° (x}t)>, (3.7)




Here e = Q/|Q| is the unit scattering vector, and a and 8 denote the
Cartesian coordinate directions. Since the spin density distribution
in nickel is concentrated in the vicinity of the lattice sites [69,70],
one may assign an effective spin S, to the atom at position R, and in-

troduce a magnetic form factor F.(Q)

S; = [ dr 5(x) (3.8a)

5;F,(Q = [ dr S(r) expi-iQ.(r-R,)) (3.8b)

The integrations in (3.8) are over the primitive unit cell, which con-

tains only one atom. Substitution in (3.7) yields

dzom Kk "82]2 1 Fx
o S S LS T -'W ',‘“ Y —.‘e’)
dndE " k ( 2] TeR ) 9t e (iut)))(S e
o'm c o ol
e
<ZZ'FZ(Q)FZ,(Q)S:,‘(O)exp-"-ig.ﬁ.(O)1exp"i9.5?,(t)’~s;,(t)>,r (3.9)

(3.4) and (3.9) are the basic expressions from which the nuclear and
magnetic scattering cross sections will be derived below. Some charac-

teristic differences between these two formulae mav be noted:

(a) The appearance of the form factor F.(Q) in (3.9), which is related to
the fact that the dimension of the épin density cloud around R, is of
the same order of magnitude as the neutron wave length. On theiother
hand, the dimension of the nucleus is much smaller than the neutron
wave length, Consequently the magnetic scattering is a decreasing func-
tion of IQ!, whereas the nuclear scattering is independent of the scat-

tering vector.

(b) Nuclear scattering depends on the correlation between the positions
BZ(O) and 31'(t)» whereas magnetic scattering is related to fourfold
correlations between spin components and position vectors. In the latter
case the spin-spin and position-position correlations may be separated

provided there is no spin-lattice interaction.

(c) Magnetic scattering depends on the relative orientation of the electron
spins (i.e. the magnetization direction) and the scattering vector,
which provides a means to distinguish experimentally between magnetic

and nuclear scattering.



3.3. Elastic scattering

For the calculation of the elastic and inelastic nuclear cross section

equation (3.4) serves as starting point. The position vector R, (t) is
decomposed as in (2.19), where the displacement Ez(c) is given by (2.21).

Since there is no correlation between the isotopes and the lattice sites

the factor <...>T in (3.4) may be written as

1L <b;bz,>exp{ig.(Z'-Z)}<exp{-ig.uz(0)}exp{iQ.u7.(t)}> (3.10)
A > 3 < .

Further simplification is possible by applying the following identities

(a) <exp(A)> = exp{§<A2>} (see ref. |72|)
(b) <exp(A)exp(B)> = exp{}(AB-BA)}<exp(A+B)> (see ref. |73])

(a) holds if the operator A is a linear combination of the Bose operators

a and a+, while (b) holds if [A,B] = AB-BA is a number. Both conditions are
fulfilled for the operators A = "ig'EZ(O) and B = ig'EZ'(t) ’), and com-
bination of (a) and (b) yields

<exp(A)exp(B)> = exp(}<A>+B>+24B>)

Hence the correlation function in (3.10) becomes
<exp{-ig.gz(0)}exp{ig.gz.(c)}>T =
exp{—z»-'(g)}exp[dg.gZ(o)}(g.gz,(c)}>Tj. (3.11)

The factor exp{-2W(Q)} is the Debye-Waller factor, where W(Q) is defined

as
w(Q) = $<{Q.y,(0) )2>T

Next, (3.11) and (3.10) are substituted in (3.4), which yields
dt exp(-iwt)exp{-2W(Q)} x
>exp{iQ. (2'-1) bexp[<{Q.u, (0) HQ.u; () }>7] (3.12)

’) According to (3.26) Ez(t) is a linear function of the Bose operators

a;(g)and aj(g), and [A,B] may be expressed in the commutators (3.24).
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The last exponential function in (3.12) may be expanded in a power series,
in which the successive terms correspond to the partial cross sections for
zero-phonon, one-phonon,... scattering. Thus the elastic nuclear scattering
cross section is given by

el

do
( “] = exp{=2W(Q)}})) <b;bz.>exp{ig.(g'-1)}. (3.13)
A

df

Neglecting the imaginary part of the scattering lengths, one may rewrite

<b,b,> as
e &

-:b,‘,b > = <b>2 +

- N G T (3.14)

because the isotopes are distributed at random over the lattice.
The cross section (3.13) may accordingly be separated in a coherent and

an incoherent part:

(d“n]el 2 - 2

LEE_} = exp (=2W) <b>“ [Jexp (iQ.2)] (3.15)
/ coh (4
el

fd’J

{555}. = exp (~2W)N(<b2>=<b>2) (3.16)
inc

The coherent scattering leads to Bragg reflections, which are due to the
interference between the waves scattered from different nuclei. In a
single crystal the partial waves are only in phase if Q is equal to a
reciprocal lattice vector T, in which case (3.15) becomes
fffﬂ'el -’ 42, (=2w) §6 (Q-1) 3.17
@)oo =V, e, (3.17)

where Vs is the volume of the unit cell of the crystal. The incoherent scat-
tering, on the other hand, is isotropic and is (for Ni) due to the random dis-
tribution of the isotopes. For a general scatterer the disorder in nuclear spin
orientation gives rise to an additional contribution to the incoherent cross

section.

The elastic magnetic cross section may be derived in a similar way from the

time-independent part of the spin-spin correlation function in (3.9). If the

Jers 7 ¢ : : . X
z-axis 1s taken as magnetization direction, the expectation values <SZ>T and

"y @re zero. Furthermore, it will be assumed that there is no spin-lattice

<S¥




interaction, which implies that the spin-spin correlations may be separ-
ated from the position-position correlations. Hence the elastic magnetic

cross section becomes

2

2+v2

2ol 2
_I.Z_z.] {]-(ez) 1F (g)<sz>T x
e

<]} exp{-iQ.R;}exp{iQ.R,,}>
A

» . 8
T (3.18)
as all atoms have the same effective spin and form factor. The position-
position correlation function in (3.18) may be rewritten as follows

3
cop = exp(-20]] expiiQ -1} = N E7 exp-20 5000
A Yo T
and the final expression for the scattering cross section for unpolarized
neutrons becomes
el
do 3 2|2
m (2n) e Lanid z 2 .
[r} = N-v— ——Y—Z- {1-(e.m)"}F"(Q)<S >T exp(-2W) ) 6(Q-1), (3.19)
o mec T

2 . . . . . P
where e~ has been written as e.m, m being the unit vector in the direction

of the magnetization.

Hence the coherent Bragg reflection corresponding to a particular 1 is the

sum of a magnetic and a nuclear contribution in the ratio

242
t;lfii (-(e.m 1P @<s™2 1 w>?
e

For the integrated cross section for a particular Bragg reflection one

obtains from (3.17) and (3.19)

3 = N<b>2exp(-2W); (3.20)

“n,coh

e2 % Reid % 2
= N[;L7ﬂ {1-(e.m) “}F*(Q)<8">1 exp(-2W). (3.21)

mc
e

Some values for o and o for nickel are listed in table 3.2. For
m n,coh

the tabulated reflections om amounts to at most 17 of O ook and decreases
’

rapidly as function of Q. The elastic magnetic scattering is suppressed com-

pletely if the spins are oriented along the scattering vector (e.m = 1).




For a multidomain crystal with randomly oriented domains one should
use <(E'E)2> = 1/3. Furthermore, it may be seen from table 3.2 that the
Debye-Waller factor exp(-2W) leads to a reduction of the scattering cross

sections for increasing scattering vector.

The observed incoherent scattering depends on the experimental set-up.
If the detector surface, as seen from the specimen position, spans a
solid angle R, the incoherent scattering into this angle is proportional
to Q according to (3.16) with <b2>—<b>2 = 0.37 barn for natural Ni (cf.

table 3.1, | barn = IO-za cmz).

Table 3.2.
Elastic scattering cross sectione for natural Ni.
- —2 2 -

2 |lRI&™H | r@® |exp-2n®)| o (107 ey |0 (1072 en’y%)
(1,1,1) 3.088 0.793(9) 0.952 9.58 + 0.22 1010 + 19
(2,0,0) 3.566 0.703(8) 0.936 7.41 + 0.17 994 + 19
(2,2,0) 5.043 0.447(5) 0.877 2.80 + 0.06 930 + 18
(4,0,0) 7.132 0.157 (3) 0.769 0.31 + 0.01 816 + 15
a

) ref. |70|, uncertainties are given in parentheses in units of the
last decimal.

) calculated for T = 295 K and a Debye temperature O, = 385 K l2];

2h = 51,62 % 10 20 0° (0 in'ad D)y
74|, {1—(5,3)2} = 2/3.

) (3.21) with N = 1, <8%_ = 0.287
) (3.20) with N = 1, <b> =(1.03 + 0.01) x 10 2 em |71].

3.4, Inelastic scattering

Inelastic neutron scattering may be described in terms of creation or
annihilation of elementary excitations in the scattering system, pro-
cesses in which transfer of energy, momentum and angular momentum takes
place between the neutron and the scatterer. The cross sections may ac-
cordingly be expressed in terms of expectation values for products of
creation and annihilation operators, which will be discussed in section
3.4.1 for the phonons. A short description of the creation operators for

Stoner excitations and magnons has been given in section 2.5.




The cross sections for energy gain and energy loss scattering are related
to each other by the so-called detailed-balance condition. It can be shown
that the energy transfer fiw between a neutron and a scattering sample at

temperature T is governed by

(), - ~=(l) ()
dndE ok k1) (ddE), .

- -0
if the following conditions are fulfilled:

(a) The scattering system is in thermal equilibrium, which implies that
the probability of the initial state |i> = ]A°s°E°> is proportional
to exp(-Ei/kBT), where kB is Boltzmann's constant.

(b) The scattering process is reversible, i.e. the matrix element in (3.1)
has the property <f|V(£)|i> = <i|V(£)|f>, where |f> is the final state
|A55>.

3.4.1. One-phonon scattering

For a proper description of the scattering of neutrons by lattice vibra-
tions one has to use a quantum—mechanical approach |66|. In the occupation
number representation the eigenstates of the vibrating lattice are defined
by 3N numbers n. (g) which denote the number of phonons in the normal modes
(j»,9)+ The effect of the phonon creation and annihilation operators aJ(g)
and 8j(3) on the eigenstate ....nj(g),...> is defined by

i|.

a;(g)l...nj(g)...>= {nj(g)+l} ..nj(3)+l...>

aj(g)l...nj(g)...>= {nj(g)}!l...nj(g)—l...>

The operators satisfy the commutation rules (|A,B| = AB-BA)
[o} @>al,(@"] = 0
[aj(_q_).aj.(g')] =0

+ ' =
[55<3)’aj'(3 )] ®5i'%aq

It follows from (3.23) that the operator product a;(g)aj(g) is the phonon

number operator with eigenvalue nj(a).




_[‘1..

At temperature T the expectation value of nj(g)is
e =
<n.(g)>, = I_”expmwj (@) /kgT3=1]"" . (3.25)

Furthermore it can be shown that the Hamiltonian for the vibrating lattice

becomes

B = [Pho, (g){a;(g)aj (@) + 4}
ig

with corresponding energy eigenvalues

E = JMo. @0 (@) + i)

9

Thus a change in the energy of the crystal may be described as a creation

or annihilation of a discrete number of phonons.

In terms of creation and annihilation operators, the displacement ope-

rator u,(t) in a Bravais lattice can be written as I66|
u,(t) = JVE. () A } x
37 j_;j 1 ‘2.\:.%3.29_5

[aj(g)exp!ig.g-iuj(g)t} + a;(ﬂ)exp{-igzg+imj(g)t1], (3.26)

which is the quantummechanical analogue of (2.21). The one-phonon cross
section may be derived from the second term in the series expansion of

(3.12), which contains the correlation function

<{Q.4,(0) HQ.u,, () }>,, (3.27)
Substitution of (3.26) in (3.27) yields the expression

or, 2 1 < 3 .
10108 (@} smm—— [<n.(@)+1>, explig. (Z-2") Jexp{iu, (@)t} +
iq 3 2) wj(g_) j T j

<, (9)>pexpi-ig. (g-y)}expi-iwj@:}] (3.28)

where we have used

e =3 + e =
<aj(g)aj.(g > aj(_q)aj.(g ) T 0

<a.(@)a:,(q")>, = 6..,6 +1
aj q aj, q T ._,,.gﬂ, nj(s) >T (3.29)

1]

+ A
<aj(g)aj.(g )>T

8 8 <n, -
vjjl aggl n_] (ﬂ)”T




Again, the average <beZ,> may be separated into a coherent and an
incoherent part (cf. (3.14)), which results in a corresponding sepa-
ration of the inelastic cross. section., The final expression for the
coherent one-phonon cross section may now be derived from (3.12),
(3.27) and (3.28):

+1

— 4+

k 1 3

——-] T TR f dt exp(-iwt)exp{-2W(Q)} *
“eoh o

-0

b>7]] exp{iQ. (2'=1)}<{Quu, (0) HQ.ny, (£) 1>, =
A

2
3 Q.£.(q)
1 2k (2m)° 4 = ——J(——{ — :
= <h> Eo ST exp{ ZW(Q)}%:;E. u!j Q) i

[<nj (@)+! >T6{‘hu-'fij (q)}8(Q-q-1) +
<ng (@)> 8 thutio, (gQ)}8(Q+q-1)]. (3.30)

The cross section consists of two terms; the first one represents the
creation processes, the second one the annihilation processes. Both
terms contain two delta functions which ensure that energy and momen-
tum are conserved. This implies that an incident neutron with wave
vector 50 can be scattered into the solid angle element d? by only a
few phonons with the proper g and uj(g). Owing to these restrictions
it is possible to determine the phonon dispersion relation by means

of neutron scattering.

The magnetic interaction gives rise to an extra contribution to the
inelastic phonon scattering, which is usually called magnetovibration-
al scattering. Assuming that the effective spins §Z are oriented along
the unit vector m and remain unchanged during the scattering process,
one may simplify (3.9):
or a B a o . B
[1(8 gme e )<I] F;(QF,;, (Q)8;(0)exp{-iQ.R, (0) Jexp{iQ.R;, (£)}57, (£)> =
af 11
{1-(e.m) 2} <s%>2F% (Q) <exp{-iQ.R, (0) Yexp{iQ.R,, (t) }>

e.m T Q) <expi 19'—1 exp 9'—1' T

Obviously the magnetovibrational scattering is determined by the same
space-time correlation function that appears in expression (3.4) for
the nuclear scattering, and therefore the magnetic part of the one-

phonon cross section becomes
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2 1+l
ol W i ve?)? 2.2 2
= i; ToE _i dt exp(-iwt)exp{-2W(Q)} [;r:;ﬂ <S8 >Tp Q) x

e

(1= (e.m)*}]] expliQ.(Z'-1)} <{Q.u; (0)HQ.u,, (B)}>,.  (3.31)
11"

I1f the incident neutrons are unpolarized there is no interference between
nuclear and magnetic scattering and the cross sections (3.30) and (3.31)
may be added to find the total one-phonon cross section. The ratio between

the two contributions is the same as in the elastic cross section.

The incoherent one-phonon cross section does not contain a magnetic part.

From (3.12) and (3.14) one may derive

2 +1 5
4 %™ (Q.£.(g)}
2 2.k 1 =
[dﬂdgl. = (b>=<b>%) £ = exp{-2W(Q}H]] —L—— x
inc o iq wj(&)
[}nj(g)+l>T6(w-mj(g)} + <nj(9)>T6{w+wj(S)}] > (3.32)

In contrast to the coherent cross section (3.30), (3.32) does not con-
tain delta functions associated with momentum conservation. Therefore all
normal modes contribute to the scattering into the element d2, and the
energy spectrum of the scattered neutrons is related to the phonon fre-

quency distribution

8w) = 3 JIstumu, (@)
g

3.4.2, Inelastic magnetic scattering

The cross section for scattering by electron-hole excitations and mag-
nons may be derived from (3.6) and (3.7). As a first approximation the
coupling between the electron spin system and the lattice is neglected,
and the z-axis is chosen as magnetization direction. After introduction

of the Fourier transform S(q) of the spin density distribution (3.6)
5(@ = [ dr exp(-ig.p)S(x),

(3.7) may be written more concisely




at exp(-iut)]] (5, ~e"e)<s”(@,05%(-,t)>;. (3.33)
af

For an electron system where the z-component of the total spin is a con-
’ . . 2 2 e
stant of motion, only the correlation functions <S°S >T’ <S S >T and
- & k + o 8 .
<S 8 >_ are different from zero, S and S being defined by

& =55 i

a

The summation over o and B in (3.33) yields
Z%(éus-eae8)<sa(g,0)58(-g,t)>T = (1= (e.m *1<5%(,0)5%(-Q, ) >, *
af

% {l+(g-g)2}<S+(g,0)5_(-g,t) + S-(Q,O)S*(-g,t)>T. (3.34)

Hence the cross section consists of two contributions; scattering without
5 S 22 g 2 i : :
spin flip is related to <58 > whereas spin-flip scattering is determined
- . . . e
by the second correlation function, which can be separated in <§ § >_ and

T
= .
<5 8 >.. In contrast to the theory for neutron-phonon scattering,

T
the inelastic magnetic cross section is usually not calculated directly by
means of the Fermion creation and annihilation operators, but is derived
from the imaginary part of the dynamic spin susceptibility xae(g,w)153|, de~

fined by
8 @) = (aug)? £ [ dt expiut)<[5°(Q,8),5°(-0,0]>;

where g is the gyromagnetic ratio of the electron. It can be shown that

the cross section for spin-flip scattering is proportional to the imaginary
e

part of x (Q,w) |66]:

m_k

dndE  k
(o}

dZC' ( 2

2
-JEEJ ¥’ (g) — {1+(e.m) £) X
(gug)

‘m c
e

1 1 +- 4=
7 Texp (hali,T) {Imy (Q,w) - Imx (Q,~w)}. (3.35)

The scattering cross section of Stoner excitations may be calculated from
=
the susceptibility Xo (Q,w) of non-interacting electrons
S
E n}.(.* k+Qt (3.36)
k E (k+Qt)- E(k*)*ﬁu+10

Q) = (SL)
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Here k denotes the electron wave vector and nk the occupation number of

the state |ko>:

[ [E(hc)-EF
_=<n > = lexp|————
nku nkp B _ kBT

=1
+]] . (3.37)

where EF is the Fermi energy. Making use of the relationm

1

g2
x + 10

- ind(x) , (3.38)

one obtains the following expression for the scattering cross section

3323 il 5 .123. F ){1+(e.m) } (1=
daE "Lk |- 2) F @Uten) ] ,l“ko +Qo")
0 m c o#0
§{E (k+Qo"')~E (ko) -huw}. (3.39)

In an energy-loss or energy-gain process described by (3.39) the elec-
tron is transferred from the state |Ep> to the state ]5+gg'>, the neu-
tron spin flips and the neutron energy and momentum change in accor-
dance with the conservation laws. As shown by Elliott in a calculation on
iron |75|, the neutron scattering cross section for non-interacting
electron-hole excitations is weak. Moreover, the neutrons are scattered
over a wide angular range with a large spread in energy, which is con-
nected with the fact that the excitations occupy a continuum in (Q,w)-

space (cf. figure 2.5).

For a system of interacting electrons described by the Hamiltonian(2.35)

the susceptibility is given by

¢_ Xy (Qs)
X (Qu) = ———— (3.40)
I"v‘)‘o (2)1‘3)

where the matrix element V(g') in (2.35) has been replaced by a constant
V. From (3.40) one obtains
5 3
Imx (Q,w)

Imy  (Q,w) = - i (3.41)
{1- VRe/ (Q,u.)1 - {VImxo (Q,w)}

where the real and imaginary parts of X (Q,u) are defined by (3.36) and

(3.38). Since Imy (g,u) = 0 outside the continuum of Stoner excitations,



+—
Imy (Q,w) may be replaced by a é-function

Im(’ (Qyu) = F6{1-VRex, (Q,u)}. (3.42)

Hence the scattering by collective electron excitations leads to a well-

defined energy transfer fiw, where w satisfies the condition

1-VRex' (Q,) = 0, (3.43)

and it may be readily verified that this value of w is equal to the angular
frequency of the magnon with wave vector +q = Q - 1, defined in (2.42).
From (3.35) and (3.42) one may finally derive the following expression for
the neutron-magnon cross section |66]:
2 +1
rd CF 3 242
m _k (2m) ye 2 1 2 z
e kv [ ] FO(Q 7{1+(e.m)”} <875 x

| dRdE | S = c2
e

zz [<n (g)+1 >T6 hw-hw(q)}6(Q-g-1) +
T

<n(g)>, 6 huthu(@) }18(Q+g-1)] (3.44)

where the magnon dispersion relation w(q) is given by (2.43) for small gq,

and the occupation number <n(_<1)>T is the same as for phonons (cf. (3.25)).

In a system of interacting electrons the scattering by the Stoner excitations
becomes very weak |76,77|. This is a consequence of the sum rule (cf. ref.
771, p. 876)

o : 5

+ ™

[ 4o m” @) = Fienypmny)

-0

- . 5 : +-
which gives the relation between the integral over Imy and the number of
Bohr magnetons per atom. Hence the peak in the susceptibility at w=w(q)
due to the magnons must be compensated by a decrease in the susceptibil-
ity of the Stoner excitations, which results in a decrease in the scat-

tering by these modes.

Before concluding this section, a few remarks should be added with regard
to the calculation of the cross sections. In the derivation of (3.39) and
(3.44) from the dynamic susceptibility the vibration of the lattice is not
taken into account and therefore the Debye-Waller factor does not appear

in the cross section formulae. For a comparison of the relative magnitude

of the magnon and phonon cross sections one may use (3.30), (3.31) and
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(3.44) with exp(=2W) = 1. As far as the Q-dependent factors are concerned,
the magnon cross section varies as FZ(Q), which is a rapidly decreasing
function of Q (cf. table 3.2), whereas the nuclear part of the phonon cross
section (3.30) increases as Qz, and the magnetovibrational part (3.31)
varies as Qze(Q).

It may be readily verified that the inelastic cross sections (3.30) and
(3.44) obey the detailed-balance condition (3.22), because the ratio be-
tween energy loss and energy gain scattering is determined by
<n(_cl)+l>,r/<n(3)>T = exp(ﬁm/kBT). The same ratio is found for the scatter-
ing by Stoner modes when the Fermion occupation numbers (3.37) are sub=~

stituted in (3.39).

In the derivation of the magnetic cross sections in this chapter the con-
tribution due to the orbital magnetic moment of the electrons has been
neglected. For the elastic cross section this contribution is small, and
may be estimated by means of the known value of the magneto-mechanical
ratio |68,70

ratio between spin-spin and spin-orbit scattering depends on the energy

« For the inelastic cross section of the Stonmer modes the

and momentum transfer. Calculations on paramagnetic nickel by Lovesey
and Windsor |78,79| show that for large energy transfer (iw>0.15 eV) the
orbital susceptibility Ime(g,w) is comparable with or even larger than
ImxS(Q,w). However, in the range fiw<0.05 eV, which is of interest for
neutron scattering experiments, Ime is considerably smaller than Imxs.
In this energy range the scattering by magnons, which depends solely

on Imxs, is dominant in comparison with the scattering by Stoner modes.
In natural nickel the neutron-magnon cross section is on the other hand

small in comparison with the neutron-phonon cross section.

To give a comparison between the cross sections (3.30) and (3.44), we
shall calculate the scattering cross sections for the magnon and the
phonon observed in the experiment that is shown in figure 5.9.

At T = 295 K the occupation number of a collective excitation with

v 3.63 THz is given by <n(v)»29s = 1.242. Moreover, the values

k = 3.746 X-], ko = 4.612 X_l and exp(-2W) = | are used. The final

=27 2

values for the cross sections are 46.3 x 10 em” for the phonon and

26.2 x IO~27 cm2 for the magnon (cf, table 3.2 and figure 5.9).



3.4.3. Selection rules

Even without detailed knowledge of the cross sections it is possible to
establish selection rules for the various scattering processes by means
of (2.13). In an inelastic scattering process the transition between the
initial state |5030> and the final state |ks> of the neutron is induced
by a time dependent perturbation #'(x,t), which may, for example, re-
present the interaction between the neutron and a phonon. It may be seen
from (3.1) that the matrix element corresponding to this transition does
not depend on k and 50, but only on Q = EO-E, and it is convenient to es-
tablish the selection rules on basis of the point group of the scattering

vector. The procedure may be illustrated by means of the following example.

Consider a phonon with wave vector q in a cubic crystal, its wave function
transforming according to an irreducible representation r® of Go(g), and
suppose that a scattering experiment is performed at Q = g+t. The point
group of Q,Go(g), is a subgroup of Go(g), consisting of those elements of
Go(ﬂ) that leave Q invariant. In contrast to Go(g), Go(g) does not contain
operations that transform Q into Q+t. This is a consequence of the fact
that Q is determined by the experimental scattering configuration, i.e.
an experiment performed in Q is not equivalent to an experiment in Q+t.
The compatibility relations between r% of Go(g) and the irreducible re-
presentations of Go(g) may be determined by means of the subduction pro-
cedure described in section 2.2. If the spin functions |s°> and |s> of the

i f
neutron transform as T* and T

of Go(g), and if T* is compatible with rP

of Go(g), then neutron-phonon scattering is allowed by symmetry if (2.13)
holds, the summation in (2.13) being restricted to the elements T of Go(g)
1t should be emphasized that the neutron spin functions transform accord-

ing to double-valued representations.

If Q is parallel with a mirror plane of the reciprocal lattice, Go(g) =

Cs and the neutron states transform according to the two complex conjugate

representations T3 and r“ of CS (see table A.5). In a coherent neutron-

phonon scattering process the neutron spin does not flip, which implies
that x;(T)xi(T) = 1 for the elements T of G_(Q). Substitution of this
result in (2.13) shows that only the phonons transforming as Fl of Cs

(+ in BSW notation, cf. table 2.3) can contribute to the scattering.




If Q is parallel with one of the symmetry directions A, A or I the neutron
states transform according to the two rows of the double-valued representa-
or

tions A respectively, and the selection rule (2.13) does not

s A Ly
allow a6disgincti2n between processes with and without spin flip. However,

a more sophisticated selection rule may be formulated for states that trans-
form as the rows of an l-dimensional representation. In the case of neutron
scattering, the two different processes may be distinguished if the pure
spin states |4> and |+> are chosen as basis for the representations mentioned
above. Scattering of a neutron with spin g = + without spin flip by an ex-
citation with wave function ¥(r) is allowed by symmetry if ?(E)]‘> contains
a part that transforms as [+>. The extension of this selection rule to other
processes is straightforward. To apply the rule in practice it is convenient
to use the tables of coupling coefficients in |27|. In the case of neutron-
phonon scattering with Q along one of the three high-symmetry directions, it
is found that only the phonons transforming as A],AI and Zl (i.e. the long-
itudinal phonons) may give rise to neutron scattering.

Similar selection rules may be applied to the scattering by excitations with
a lower symmetry. In the present report we are mainly concerned with excita-
tions transforming as irreducible representations of the magnetic point
group Gg(g) or the pseudo-magnetic point group G%M(g) (see section 2.2 for
the definition of these groups), and the selection rules are in that case
based on the corresponding point groups of the scattering vector, G?(g) or
GgM(g). As an illustration of magnetic selection rules we consider the case
g//[bl?] and Q in the (011) plane, with G?(g) . ¢ (see table A.5). The

neutron states [+> and |4> transform according to r3 and Fa, respectively.

Consequently, TI excitations (e.g. electron-hole excitations with spin 0) may
lead to neutron scattering without spin flip, whereas spin-flip scattering
can only be induced by an excitation transforming as Tz (a magnon or Stoner
excitation). A detailed discussion of a number of different configurations

for M and Q is given in section 6.6 and appendix B.




CHAPTER IV

EXPERIMENTAL TECHNIQUES

4.1, Introduction

As shown in chapter III, the coherent one-phonon and one-magnon cross
sections (3.30) and (3.44) are zero except for those combinations of
Eo’ k, q and w(q) that obey the conservation laws for energy and
momen tum
Ll WS S Al G (4.1)
2

8

2m
n

fw =

&2 - k%) = + hu(g) (4.2)

The scattering conditions (4.1) and (4.2) refer to a process in which

an excitation with wave vector g and energy fw(q) is created or annihilated.
From the neutron wave vectors Eo and k for which a maximum in the cross
section is observed one may derive both g and w(g) for the excitation in-
volved in the scattering process. By means of a series of measurements for
different q's one may in principle determine the dispersion relation w(q)
of the excitation throughout the Brillouin zone. For the investigation of
the nickel crystals two different neutron spectrometers have been used:

a time-of-flight spectrometer and a triple-axis spectrometer. A short
description of these instruments, which are equipped with different

analyzer systems$,is given in sections 4.2 and 4.3, respectively.

As in other experimental techniques, a compromise between transmitted
intensity and resolving power should be sought by means of an appropriate
choice for the disposable parameters of the set-up. In the present ex—
periments the scattering cross section is relatively small and therefore
the collimation angles for the neutron beams have to be rather large.

The relation between the instrumental parameters and the 'resolution

ellipsoid” in (w,Q)-space is considered in section 4.4.

4.2, Time-of-flight spectrometer

In figure 4.1. the spectrometer is shown schematically. A monochromatic
beam is selected from thermal neutron spectrum of the reactor by means
of Bragg reflection at the (0002) planes of a zinec crystal. At the fixed

scattering angle ZOM - 350, which is defined by a 30' collimator placed in

front of the monochromator and a 22 x 45 mm2 diaphragm at the exit of the




shislding \

monochromator crystal

cellimator plug

shislding

chopper

spectrometer

sample

flight path

PR )

Tmeter

P S - : T rts
Mechanical part of the time-of-flight spectrometer. The angular p
V and ¢ of the sample table and the flight path may be varied in

! 3 ~ .
2.16" by means of step motors. The rotor with the double glit system

on a translation table, which allows accurate adjustment of the rotor

position and complete removal of the chopper and its shielding
beam path.
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collimator plug, the reflected neutrons have an energy E = 37.0 meV

and wave vector \k | = 4.22 & ]. The second order component in the beam,
which is due to the (0004) reflection, is about 8% of the first order
component. Before it impinges on the sample, the beam is pulsed by
means of a chopper, with either one or two sets of curved slits. The
chopper is suspended in a vacuum chamber by means of a flexible shaft
and driven by a 100 Watt, 3 phase hysteresis motor. Optimum trans-

ch is

equal to v0/2 , where Vs is the velocity of the incident neutrons and

mission of the chopper is obtained if its angular frequency w

p the radius of curvature of the slits |80|. For the single and double
chopper the optimum frequencies for transmission of the incident beam
are approximately 9,300 and 15,300 r.p.m. Further construction details

of the choppers are given in table 4.1.

Table 4.1.

Technical data of the chopper rotors

single double
slit syst. | slit syst.

rotor radius (mm) 55 70
slit width (mm) 2.5 5.6
slit height (mm) 50 50
number of slits 12
thickness of steel plates (mm) 1.3
radius of curvature, p(cm)

max. speed (r.p.m.)

The scattered neutrons may be detected simultaneously at four different
scattering angles by detectors placed in a shielded flight path at a
distance of 191 cm from the sample. The detectors have a sensitive volume
of 2.5 x 2.5 x 10 cm3 filled with 3He to a pressure of 6 atm. and may be
mounted vertically at 23 alternative positions. There is no additional

collimation for the scattered beam, and hence the opening angle of a detector

is determined by the size of its front surface (10 x 2.5 cm2) and the dimen-

sions of the sample. After amplification and discrimination the detector




pulses are stored according to their time of arrival in the 1024-words
memory of a multichannel analyzer. The velocity, wave vector and energy
of the scattered neutron can be calculated from the flight time of the
neutron between the centre of the chopper and the detector, and the known
distances between chopper, specimen and detector. Observations are carried
out at fixed scattering angles in periods of the order of 48 hours, and
correspond to scans through reciprocal space along four directions de-
termined by the scattering angles. In general a number of peaks will ap-
pear in the spectra (cf. figure 5.1), which may be ascribed to scatter-
ing in specific points Q. Besides the long counting period, the time-of-
flight technique has the disadvantage that the wave vectors q of the
observed excitations are in general not along high-symmetry directions.
In the present experiments, however, these drawbacks are compensated

by the favourable aspects of the method. It is possible to accept and
analyze all the neutrons scattered into four different directions, and

to discriminate between the neutrons from the first and second order
components. Furthermore the instrument has good resolution properties

for energy-loss scattering.

4.3. Triple-axis spectrometer

A detailed description of the spectrometer has been given previously by
Bergsma |81

+ The path of a neutron through the different parts of the

instrument, before it is finally captured in the BF3 detector, is

sketched in figure 4,2,

detector

sample
20y analyzer

mono -
chromator

-

Figure 4.2,

of the triple-axis spectrometer.




In comparison with the time-of-flight spectrometer, the triple-axis
spectrometer is a more versatile instrument. This is due to the fact

that there are four independent angular variables, ZEM, ¢, ¢ and ZBA,

which may be adjusted by means of three rotation axes. | denotes the

angular position of the sample, while 28, ¢ and ZﬁA are the scat-

tering angles for the neutron at the monochromator, the sample and
the analyzer crystal, respectively. Collimators are placed in front
of the monochromator and analyzer, while 2 : 1 reduction gears en-
sure that the monochromator and analyzer crystals are kept in Bragg
reflection position when the angles 26M and 28A are changed. The wave
vector 50 is determined by the value of ZeM, while the analyzing sys-—
tem is open for those neutrons that are scattered through the second
collimator and have a wave vector k satisfying the Bragg reflection

condition for the chosen angle 28A.

By means of the four disposable parameters arbitrary scans through
(w,Q)-space can be performed, a complete scan consisting of a series
of subsequent counting periods of about 10 minutes at fixed values

for the angular positions. In practice the spectrometer is operated

in constant-Q or constant-w configurations. The former mode of opera-
tion corresponds to an w-scan at a fixed point Q in reciprocal space
and involves variations in ZGM, Y, and ¢. In the latter mode the ener-
gy transfer fiw is kept constant while ¥ and ¢ are usually varied in
such a way that a series of wave vectors 3(1) along a symmetry direc-
tion is scanned. In figure 4.3. both operation modes are shown in re-

ciprocal space and compared with a time-of-flight scan.

Application of the procedures described above results in the observa-
tion of a single excitation with a predetermined wave vector or fre-
quency, if the instrumental parameters are chosen appropriately.

In contrast to a time-of-flight analysis, Bragg reflection by the ana-
lyzer crystal does not allow a distinction between neutrons with wave
vectors k, 2k, etc. A second disadvantage of the instrument is the pos-
sible occurrence of spurious maxima, which may arise from Bragg reflec-
tion of higher order neutrons in the incident beam by the sample, fol-
lowed by incoherent scattering of these neutrons into the detector by

the analyzer crystal.
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Figure 4.3.

Different scans in (w,Q)-space. (a): triple-axis, constant-Q scan;

(b): triple-axis, constant-w scan; (ec): time—of-flight scan.

4.4. Resolution

There exists a strong correlation between the luminosity and the
resolution of the spectrometers. For the triple-axis spectrometer

these properties are determined by the collimation of the neutron

beam, both in horizontal and vertical direction, and the distribution
of the mosaic blocks in the three crystals, which corresponds to a
spread in the direction of the reciprocal lattice vectors T
Consequently there will be a spread both in length and direction

for the wave vectors 50 and k of the neutrons that reach the sample and
are accepted by the analyzer system. The spread in the energy transfer

to the sample is directly related to the spread in and |k|, while

k_|
=0
the spread in g depends on the mosaic spread of the sample and the
spread in 50 and k (cf. (4.1) and (4.2)). Some additional factors
should be taken into account for the time-of-flight spectrometer, viz.
the distances between chopper, sample and detectors, the width At of
the neutron pulse, the dimensions of the sample and its orientation
with respect to the directions of the incident and scattered neutrons
(if the sample is not axially symmetric), the detector thickness and

the width of the time channels.



As a result of these instrumental factors, the intensity observed with

the triple-axis spectrometer at a particular setting, or with the time-
of~flight spectrometer in a particular time channel, does not only arise
from scattering in a single point (wo,go). The intensity I(wo,go) may be
expressed as an integral over a volume in (w,g)-space, where the contribu-

tion from a volume element dwdg is proportional to the resolution function

R(w-wo,gjao):

2
I(wo,go) ={dq [ d“(ga%i) R(m-wo,gfgo).
w,q

The resolution of a triple-axis spectrometer has been treated in a number
of papers |82-84|, whereas a similar treatment for a hybrid time-of-flight
spectrometer as described in section 4.2 may be found in |85|. A review of
the various methods to calculate and to measure the resolution function has

been given by Bjerrum Mgller and Nielsen |86].

For both instruments the resolution may in first approximation be described

by a Gaussian function
4

4
R(w_wo’srso) . Roexp(- Z ZZ Mklxkxl)’
k=1 i=1

where Xl, X2 and X3 denote the three components of 3;90. X& = Wt and

Ro and Mkl are complicated functions of the instrumental parameters of the
spectrometer under consideration. The surfaces in (w,q)-space with con-
stant R(u-wo,gfgo) are ellipsoids, and the one for which R(w-uo,gfgo) =

QRO is usually referred to as '"the resolution ellipsoid".

To determine a point mo(go) of the dispersion relation of an excitation
by means of a spectrometer scan, the centre of the resolution ellipsoid
is moved through the point (“6’90) of the dispersion surface in (w,g)-
space. Obviously, the height and width of the peak in the spectrum of

scattered neutrons is related to the orientation of the ellipsoid with

respect to the dispersion surface, Sharply defined peaks are expected
when the shortest axis of the ellipsoid is approximately normal to the
dispersion surface, a situation which is illustrated for two dimensions
in figure 4.4. These "focusing" effects are of interest for the selec-
tion of an optimum experimental configuration for the determination of

a specific branch of a dispersion relation. To avoid a complete calcul-
ation of the resolution ellipsoid, graphical methods have been developed
for a triple-axis spectrometer |87,88|, to determine the focusing con-

figuration.







CHAPTER V

INVESTIGATION OF A NICKEL MULTIDOMAIN SINGLE CRYSTAL

5.1. Introduction

In the present chapter a description will be given of a number of in-
troductory experiments on a nickel single crystal. The measurements

were partly aimed at the investigation of phonons and magnons, but

in view of the impressive amount of previous publications |1-11] on

these well-known excitations, no attempt was made to repeat the com
plete determination of their dispersion relations. The central sub-
ject of this chapter is the interaction of phonons and magnons with
an elementary excitation, which has not been observed previously.

To collect information on this excitation and on its interaction with
the known excitations, a search was made for perturbations in the
phonon and magnon dispersion relations. The discovery of the excita-
tion, which, for reasons to be explained later, will be denoted as a
mixed excitation, is described in section 5.2. In sections 5.3 and
5.4 a summary will be given of detailed measurements by means of the
triple-axis spectrometer on the mixed excitation, phonons and magnons.
A discussion of the experimental results will be presented in section

5.5,

All experiments reported in this chapter were carried out at room tem—
perature on a large single crystal that was borrowed from S.C.K., Mol,
Belgium by courtesy of Dr. S. Hautecler. Actually, the experiments
described in |1| and | 3| were carried out on the same crystal*). Some of
its properties are listed in table 5.1. Since no external magnetic field
was applied, the crystal may be assumed to consist of a large number of

domains with various magnetization directions.

*)

This is a specimen with the natural isotopic composition.




Table 5.1.

Specimen specification

impurities Cu 0.01%
Fe 0.057
Si 0.01%
shape cylindrical
eiliuier sxiy /1 [or]
diameter 30 mm
length 70 mm

lattice constant , a [3.524 %

5.2. Time-of-flight measurements

The first experimental evidence for the existence of an additional
elementary excitation in nickel was obtained from three time-of-
flight runs, which will be discussed below. The chopper rotor with
the single slit system was operated at a speed of 9775 + 10 r.p.m.
To increase the counting rate at the expense of angular resolution,
the four detectors were placed side by side to form a 10x10 cm2

sensitive area, and the pulses from the detectors were added.

The experiments were carried out with k and k parallel either to
the (Oll) plane or to the (001) plane. As discussed in section 2435

the phonons with wave vectors g in a mirror plane of the reciprocal

lattice have polarization vectors £. either in or perpendicular to

this plane (cf. table 2.3). The factor (Q.ﬁ ) in the neutron-phonon

cross section (3.30) ensures that only the phonons with gJ in the

scattering plane (i.e. the phonons transforming as representation +)

will be observable. To compare the frequencies of the observed phonons

with the results in |2|, the phonon frequencies and corresponding

polarization vectors in the (OIT) and (001) planes were calculated from

the set of interatomic force constants determined by Birgeneau et al
(see table 2.1).

Figure 5.1. shows a part of the time-of-flight spectrum obtained in

the (001) plane. In inset (a) the experimental configuration in Q-space
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is given. The calculated phonon dispersion relation along the path

of k is plotted in inset (b); the dotted line in (b) indicates the
energy change of the neutron, |ki-k2|ﬁ2/2mn, expressed in THz (1 THz =
4.135 meV). Phonons are expected to be observed at the intersection
points of the dotted line and the phonon branches with even symmetry
(+). The frequencies corresponding to the observed three maxima in
the time-of-flight spectrum are plotted in (b), the corresponding

scattering vectors Q and calculated polarization vectors £ in (a).
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Time~of-flight experiment in the (001) plane. The dominant peak at
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the text.
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of the incoherent elastic peak.

It is obvious that the maxima 1 and 3 are due to phonon scattering.

The longitudinal (i]) phonon is observed in energy gain under nearly optimum

conditions: g//é;. On the other hand, the + phonon at.v = 3,20 THz is

4 o e
unobservable, because the calculated angle between Q and £ 1is 70

Maximum 2 cannot be explained by phonon scattering and indicates that
some other excitation with a frequency v = 4.30 THz must have given

rise to neutron scattering at Q= (1,1,0).

The existence of this excitation was confirmed by a subsequent measure-
ment in the (011) plane. The experiment shown in figure 5.2. was in-
tended to observe the excitation with a reduced wave vector (1,0,0),
which is equivalent to (1,1,0) in an f.c.c. lattice. As may be seen
from the spectrum, an additional maximum is indeed observed close to

(1,0,0) at approximately the same frequency: vV = 4,15 TVz. The maxima




1 and 3 are again due to scattering by phonons; the observed frequen-
cies are slightly smaller than the calculated values. The expected
second phonon peak in energy gain at 8.4 THz is too weak to be ob-

servable, because the angle between Q and £ is 80°.

For the third experiment, performed in the (001) plane, the con-
figuration was chosen in such a way that k was almost coincident
with the line [l,;,@] in the zone boundary plane between the (000)
and (200) zones, i.e. the crystal was almost in (200) Bragg re-
flection position and the scattering angle almost equal to
arcsin(lo/Zdzoo) = arcsin(Zn/ako). Besides the expected phonon

peaks, an additional peak appeared at v = 4.15 THz and Q = (1, 0.46,0).

To determine the intensity in the additional peaks, the different
spectra were normalized by making use of the fact that the incoherent
elastic scattering in nickel is entirely of nuclear origin and there-
fore (apart from the Debye-Waller factor) independent of the scatter—
ing angle. The constant background due to neutrons that have not passed
through the chopper was determined by taking the average intensity in
the last 40 time channels (217-256), and was subtracted, Next, the
corrected spectra were multiplied by a scale factor to normalize the
total number of counts in the elastic incoherent peak to the value
199.1x103, which corresponds to an intensity of roughly AXIOA counts

in the central channel of the peak. The remaining background is large-
ly due to inelastic incoherent phonon scattering from the specimen.

For a final correction, this contribution was determined by means of
separate time-of-flight measurements on a polycrystalline nickel sample
at scattering angles 26.2° and 28.90, where coherent elastic scattering
was known to be absent and coherent inelastic scattering was weak.
After normalization of the background spectrum and subsequent subtrac-
tion from the other three spectra, the integrated intensity in the ad-
ditional peak could be determined. A summary of the results is given

in table 5.2. By means of the known value for the incoherent elastic scat-—

e 0.37 barn/ster.atom) one may

4 3 : : 2
tering cross section in nickel (<b">-<b>

estimate the scattering cross section of the mixed mode. The normalized

integrated intensity of 2650 counts, for example, corresponds to a

scattering cross section of 4.9 mbarn/ster.atom.
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Swmmary of time-of-flight vesults

scattering |[wave vector|frequency integrated
run nr, angle mixed mode |mixed mode intensity
(degrees) Q (THz) (normalized)
2 21.0+1.2 | (1,0,0) 4,15 2650 + 450
1 36.2+1.2 (1,1,0) 4,30 2210 + 370
3 25.6+1.2 (1,0.46,0) 4.15 950 + 580

A further exploration of reciprocal space for additional scattering
processes was performed by means of the triple-axis spectrometer, and
will be described in section 5.3. An advantage of the time-of-flight
technique for this particular investigation is the good resolution

for energy loss scattering, which makes it possible to distinguish

the phonons from the mixed excitation. In energy gain, the resolution
of the time-of-flight spectrometer is poor and it becomes impossible
to separate the maxima. For the investigation of energy gain pro-
cesses the use of the triple-axis spectrometer is therefore indispens-

able.

5.3. Triple-axis Spectrometer measurements

5.3.1. Scattering by phonons and mixed modes

In order to collect additional data on the mixed excitation in other
parts of the Brillouin zone, a series of constant-Q experiments along
the :lOO] and [Tll] directions was performed by means of the triple-axis
spectrometer. The crystal was mounted with the (017) plane horizontal.
Zinc (0002) crystals were used as monochromator and analyzer in com-
bination with collimators of 20° (in front of the monochromator) and

30" (in front of the analyzer). The analyzer position was kept constant
during each scan to realize a constant: analyzer reflectivity and detec-
tor efficiency. To vary the energy transfer, the energy of the incident
neutrons was changed. The irregular variations in the intensity of the
incident beam as a function of neutron energy, which are connected with
the detailed shape of the neutron spectrum in the reactor and the varia-

tion of the monochromator reflectivity, were eliminated by determining




the counting time by means of a monitor detector in the incident beam.
Thus, the remaining variation in the counting time is only due to the
efficiency of the monitor, which is a slowly varying function of the
neutron energy. A possible source of spurious maxima in the recorded

spectra is eliminated in this way.

The measurements were carried out both in energy loss and energy gain,
in scattering configurations for which Q//q. In this case only scatter-
ing by longitudinal phonons and magnons should be observable. In most
scans the frequency interval between 2 and 8 THz was investigated to
detect possible additional scattering. For the determination of the
frequencies of the léngitudinal phonons one usually covers an inter—
val of about 3 THz, in which case additional scattering processes

may easily remain undetected.

The main part of the raw data for g = (£,0,0) has been summarized in
figures 5.3 and 5.4. Some scans in the outer part of the Brillouin
zone have been omitted, because the scattering patterns change very
gradually in this region. A number of scans, extended up to 10 THz,

which were performed for £30.7 to cover the range of the longitudinal

phonons, have been omitted too. In general the frequencies of the L]

phonons are in good agreement with the results of Birgeneau et al.
|2|, as may be seen from table 5.3. Scattering by magnons could be
seen in the scans at £ = 0.1, but the observed maxima were very broad,

due to the large gradient of the magnon dispersion relation.

table 5. 3.

Frequencies (in THz) of b, phonons, @ = (2+%,0,0)

present results | previous results |2]

E >E E <E E >E
o (o) 0

| +

I+ |+ |+ |+

I+ I+ |+

|+
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Results of constant-Q scans between 2 and 8 THz along the [200]
direction, performed in energy loss (figure 5.3) and in energy
gain (figure 5.4.). The frequencies indiecated by A, and be refer
0 the results of Birgeneau et al. |2|. Filled eireles are used

o
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o distinguish overlapping spectra and arrows indicate the ap-

propriate scale. The energy loss sean at ¢ = 1.0 represents the
average of six separate scans. An approximate decompogition of

t

he double peaks at ¢ = 0.8 and 1.0 has been indicated.




Turning now from the expected scattering by the longitudinal phonons

to the additional scattering processes, one may conclude that:

(a) Well-defined peaks appear at positions that correspond to the
transverse (AS) phonons. The maxima are particularly pronounced
for small {; they may be observed in the whole ¢ range in energy
loss and for § € 0.5 in energy gain.

Weak and rather broad maxima, resulting from scattering by the
mixed mode, are observed at approximately constant frequency:
v=43+ 0.2 THz at £ = 1.0 and v = 4.9 + 0.3 THz at § = 0,
Overlap with the dominant A] phonon peaks impedes the observa-
tion of the mode for z = 0.4 and 0.5. Near the zone centre a
small difference in energy transfer is observed: v = 5,25 + 0.20

THz in energy loss and 4.60 # 0.20 THz in energy gain.

In the energy loss scans in the interval 0.5 Gg 1.0 the two peaks
corresponding to the mixed mode and the transverse phonon overlap,

which leads to broad maxima. An approximate decomposition of two
double peaks is indicated in figure 5.3. Further experimental

evidence for the composite structure of these maxima will be pre-

sented in section 5.4.

Ni (€00}
8l energy gain

tv i)
6

1
Ni [£00]
energy loss

Figure §5.5.
Observed longitudinal phonons (QU, transverse phonons (o) and mixzed

excitations (®) along the [100] direction. The drawn curves 4, and

A, represent the results of Birgeneau et al. |2|.
J




The frequencies of the observed excitations have been summarized in
figure 5.5. In the present context the most interesting part of the
results is the almost dispersionless branch corresponding to the mixed
modes, which seems to interact with both phonon branches. The frequen-
cy of the mixed mode at Q = (3,0,0), v = 4.35 + 0.15 THz, is in agree-
ment with the time-of-flight result close to Q = (1,0,0) (cf. table
5.2). In general the scattering cross section of the mixed mode is
small: = 1/6 of the cross séction of the longitudinal phonon at

0 = (3,0,0). Close to (3,0,0) the ratio between the cross sections for
energy gain and energy loss is larger than expected. A similar dis-
crepancy may be noticed between the scattering cross sections of the
As phonons for ¢ > 0.7. The As branch is only observed in energy

loss scans, in contrast to the expectation, based on the de-
tailed-balance condition (3.22), that the cross sections for energy
loss and energy gain scatfering should be approximately equal (see
also (7.4)). Furthermore,it may be noticed that the frequencies of

the AS phonons at z = 0.9 and 1.0 are clearly smaller than the ex—
pected values. These deviations, both in the intensity and the fre-
quency, were confirmed in an independent experiment which will be

discussed in section 5.4.

The constant-Q measurements in the [Tll] direction have been limited
to the outer and intermediate region of the Brillouin zone: q=
(Z,2,z) with 0.23 €% € 0.5 (ef. figure 5.6.). The average frequency
of the longitudinal (Al) phonon at ¢ = 0.23 is found to be 6.37 THz,
which is in reasonable agreement with the value 6.23 + 0.10 THz de-
rived from the results in |2| by interpolation. The additional scat-
tering at v = 5 THz is in some respects similar to that observed in
the [200] direction. The maxima recorded in energy loss close to the
zone boundary are composed of contributions from the mixed mode and A3
phonons, whereas a weak single peak, due to the mixed mode, is ob-
served in energy gain. In figure 5.7, where the observed frequencies
have been plotted, one may notice some differences in comparison with

figure 5.5. Owing to the large separation of the A, and A3 branches

1
and to the fact that the A3 branch is situated below the branch of

the mixed modes, the latter may be observed in the intermediate region
of the zone (0.2 < g < 0.4), where the average frequency v = 4.8 + 0.2

THz is found. The results obtained in energy loss close to Z = 0.5
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are indicative for an interference between the i3 phonons and the

mode and, in addition, lifts the restrictions imposed by cubic sym

metry on the neutron scattering by the 53 phonons.

3:3.2. Scattering by magnons

mixed mode, which leads to a change in the frequency of the mixed
As mentioned earlier, the magnon dispersion relation in nickel has
| been determined previously by different research groups. Therefore,
the present investigation of the magnons has been restricted to the
relatively small frequency interval between 3 and 6 THz, close to
the crossing of the magnon dispersion relation and the flat branch

of mixed modes. Q was chosen along the ElOOj direction.
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Figure §.8.

Detail of the dispersion relations close to the zone cenire. The data

points are taken from figure 5.5, energy loss. M represents the magnon
dispersion relation hv = Dg° for D = 400 meVa% |7|, ¢} al
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Figure 5.8 shows the (v;q) region of interest and the dispersion rela-

tions for phonons, magnons and mixed modes. The aim of the measurements

was to investigate whether there is an interaction between the magnons

and the mixed modes. If this interaction exists, one may expect a per-

turbation of the magnon dispersion relation near the crossing at

v = 5.25 THz (the frequency of the mixed mode in energy loss).

In view of the large gradient of the magnon dispersion relation,




constant-v scans are clearly more favourable for the investigation of
magnons than constant-Q scans. To increase the intensity the collima-
tion was relaxed: collimators of 40' and 60' were installed in front

of the monochromator and analyzer crystals, respectively. A scattering
configuration was chosen where focusing of neutron-magnon scattering is
realized, namely energy loss scattering in the configuration shown in
figure 4.2 with Q = (2-7,0,0). Thus, the magnon peaks were well-defined
in spite of the larger collimator opening angles. In order to obtain a
reasonable statistical accuracy for the magnon scattering, counting
times of about one hour at each spectrometer setting were required.
However, in extended counting periods long-term variations in the back-
ground intensity may lead to spurious maxima, and the measurements were
therefore carried out in 6 subsequent identical 8 minutes scans, the re-

sults of which were added.

Ni muitidomain, constant V
V=363 THz
Q =(2-2.00)

0
counts/ 1imin. \Q
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Figure §.9.

Comparison of the scattering eross sections of a magnon (t = 0.076)

and a 4, phonon (t = 0.246) in a constant-v scan.

The relative magnitude of neutron-magnon and neutron-phonon scattering
is illustrated in figure 5.9. In this configuration with small [Q| the
magnon scattering is favoured by the relatively large value of F(Q°,
whereas the scattering by the longitudinal phonons is depressed by the
relatively small value of the polarization factor (5.9)2 = 92' In
constant-v scans for v < 3 THz there is an overlap of the two maxima
and the observation of the magnon peak is hampered by the dominating

phonon peak.
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Figure 5.10.

Neutron-magnon scattering observed in constant-v scans.

The complete set of energy-loss constant-v scans between v = 3,63 THz

and 5.80 THz is collected in figure 5.10. The maxima observed between

v = 4,10 THz and 5.56 THz are obviously distorted; they are broader and

higher than one would expect from interpolation between the scans at

v = 3.87 THz and 5.80 THz. This anomalous behaviour may be more clearly

demonstrated by plotting the integrated intensity in the peaks as a func—

tion of frequency (see figure 5.11). It should be emphasized that the in-

crease in intensity from neutron-magnon scattering observed here, is

superposed on top of the intensity due to the mixed mode at v = 5 THz,
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Figure 5.1

tion, the scale factor being adjusted to the data point at v = 5,80 THz.

da

Integrated intensity in the magnon peaks as a funetion of frequency. The

dotted line indicates the variation of the factor <n(v)+1> in the cross sec-




that was observed in constant-Q scans (figure 5.3, £ = 0.0 and 0.2).
In the present constant-v scans the scattering by the mixed mode is
not observable as a maximum, but as an increase in the background in

the scans at v = 5.09 THz and 5.32 THz.

No attempt has been made to perform a detailed calculation of the
neutron-magnon cross section according to (3.44), with proper correc-
tions for resolution, analyzer reflectivity and absorption. Only the
variation of the factor <n(v)+1> as a function of v has been indicated
in figure 5.11. There is little doubt, however, with regard to the
general trend of the neutron-magnon scattering in this frequency inter-
val: the intensity is expected to decrease monotonically for increasing
v. Hence one may conclude that the observed increase in the neutron-
magnon cross section near the crossing with the mixed mode branch at

v = 5 THz is probably due to the interaction between the magnons and

the mixed modes.

5.4. Comparison of time-of-flight and triple-axis measurements

There is a clear difference between the neutron spectra observed in
energy loss with the time-of-flight spectrometer close to Q= (1,0,0)
(cf. figure 5.2) and with the triple-axis spectrometer at Q = (3,0,0)
(cf. figure 5.3).. However, agreement for the frequency of the mixed
mode could be obtained by decomposition of the double maximum in the

triple~axis scan into contributions from the mixed mode and A. phonons.

In this section we shall present the results of a separate trgple-axis
experiment close to (1,0,0), which was performed in order to make a com~
parison between the two experimental techniques for the same Q. A comr
stant-Q scan at Q = (1,0,0) would have to cover a range of small scatter—
ing angles, where the background of fast neutrons is quite large. To avoid
the disturbing influence of the background, only one instrumental para-
meter, 6., was varied, while the scattering angle, specimen orientation

M
and analyzer setting were kept constant, Thus, the set-up becomes similar

to a time-of-flight spectrometer where Eo is variable instead of k.

In Q-space a scan is performed along the line parallel to Eo passing through
(1,0,0), as shown in figure 5.12. In order to compare the cross sections in

(1,0,0) and (3,0,0) the value for k was chosen equal to the value used in

the scan at (3,0,0).




Even in the modified experimental configuration a correction for the
fast-neutron background had to be made. This was done by repeating each
scan while the analyzer crystal was turned away from its reflection
position by about 5°. The effect of long-term variations in the back-
ground level was eliminated as accurately as possible by repeating each
scan 5 times with a short counting time (= 10 min.) Figure 5.12 shows
the results for energy gain and energy loss scattering after subtrac-
tion of the background, which amounted to about 2200 n/50 min. for
energy gain and 2900 n/50 min. for energy loss. The spectra show maxima
that may be correlated with + phonons and mixed modes, and are in agree-

ment with the results obtained in (3,0,0):

(a) Energy gain scattering by the mixed mode is weak compared with energy

loss scattering.
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(b) The scattering by the nearly transverse + phonon close to (1,0,0)
is much stronger than expected; moreover, the phonon frequency is

smaller than expected (5.90 THz instead of 6.25 THz).

It seems likely that the difference between the time-of-flight and triple-
axis results may be explained as a resolution effect. Two different scat-
tering processes should be distinguished. First, transverse phonons are
observable in and close to (1,0,0) and (3,0,0) in Q-space, in spite of
the fact that scattering by purely transverse phonons is forbidden in
these points (£.Q = 0) and very weak in the direct neighbourhood. Second-
ly, scattering by the mixed excitation is observed, and it will depend

on the experimental configuration whether the scattering by the mixed
mode can be separated from the neutron-phonon scattering.

The resolution of the triple-axis spectrometer in the constant-Q scan

in (3,0,0) was obviously not sufficient to achieve this, whereas the
relatively good resolution of the time-of-flight spectrometer in the
range between 4 and 6 THz allowed a clear separation of the two peaks
close to (1,0,0) (see figure 5.2). The triple-axis energy loss experi-
ment described in this section may be considered as an intermediate case

where the separation of the two components is incomplete.

5.5. Discussion

The measurements described in this chapter may be considered as an intro-
duction to similar measurements on single-domain nickel samples, to be re-
ported in the next chapter. The present discussion will accordingly be
limited to those experimental results that seem essential for a prelimin-
ary understanding of the observed mixed excitation, and that have determin-
ed the further course of the investigation. Although the discrepancy be-
tween energy gain and energy loss scattering stands out as a challenging
problem, the discussion on this issue will be postponed (see section 7.4).

The main subject in this section will be the observation of "forbidden"

scattering by AS and A3 phonons in relation to the existence of the mixed

modes.

It has been stated in section 5.3.1 that in a scattering configuration where
Q // g only scattering by longitudinal phonons and magnons should be observ-
able. Actually, the scattering by transverse phonons is not strictly for-

bidden, because the observation is not restricted to a single point Q,




but to a 4-dimensional region in (w,Q)-space defined by the resolution
ellipsoid. Close to the zone centre the resolution ellipsoid allows the

observation of phonons with a relatively large range of propagation di-

rections g/ig . Since the polarization vector £ of the transverse phonons

is not perpendicular to Q if g is not parallel with Q, neutron scattering
by transverse phonons will be observable for small values of r (cf. figures
5.3 and 5.4).

However, the observation of transverse phonons in energy loss close to the

zone boundaries cannot be explained by means of resolution arguments. The

angular spread in the wave vector g connected with the size of the resolu-
tion ellipsoid will decrease as ¢ increases and therefore the intensity of
the transverse-phonon peaks is expected to decrease continuously with in-

creasing £. This is not the case, as may be seen from the scans in the in-
terval 0.4¢z€1.0 along [100] (figure 5.3) and in the interval 0.235z<0.50

along rTII] (figure 5.6, energy loss).

Observation of "forbidden" scattering by AS or ﬁ3 phonons may be expected
if the symmetry of these phonons is reduced by a perturbation with non-
cubic symmetry. As mentioned in chapter I, magnetoelastic interaction may
lead to such a reduction in symmetry, with the result that, for example,
neutron scattering by A, phonons is allowed in [111] domains. However,

the experimental results indicate that the perturbation of the phonons

is most pronounced in a limited region of g-space, and it seems therefore
probable that the perturbation is related to the presence of the mixed mode.
The change in the scattering cross section of the A, and AB phonons as a
function of q seems to be due to a resonant coupling between these phonons
and the mixed mode., As a result of the coupling, the originally transverse
phonons become partly longitudinal (i.e. their symmetry is reduced), and
may therefore be observed in the present scattering configuration. Accord-
ing to this interpretation the scattering by the perturbed, partly longitudin-
al phonons should reach a maximum at the crossing (or the point of closest
approach) of the dispersion relations of the phonons and the mixed modes.
In the [100] direction the crossing occurs at r = 0.55, whereas the closest
approach in the lel] direction is at the zone boundary, ¢ = 0.50. From
figure 5.6 it is seen that the intensity due to the perturbed A3 phonons

is indeed largest near the zone boundary. Along the [100] direction the

frequency difference between the As phonons and the mixed modes is small




in a large range of ¢ (0.5¢z<1.0) and therefore the variation in the

scattering by the perturbed phonons is less pronounced than in the
ET]I} direction.

One may conclude from the observed perturbation of the phonons, in
particular from the change in the polarization vector, that the inter—
action with the additional mode leads to a lowering of the phonon sym—
metry. The most probable explanation for this effect seems that the mode
has magnetic properties. This assumption is supported by the fact that
also the magnons are perturbed near the crossing with the additional
branch. The property of the new mode to interact both with magnons and

phonons may be considered as an indication that the mode itself is a

mixed excitation, in which electronic (i.e. magnetic) and vibrational

properties are combined,

The increase in the neutron-magnon scattering in the frequency inter-
val between 4.10 and 5.50 THz is probably a consequence of the mixed
character of the excitation. Due to the interference between the mixed
mode and the magnons, the latter will acquire some lattice-vibrational
properties. Since the nuclear scattering near (2,0,0) is much larger
than the magnetic scattering, the admixture of a vibrational component

will lead to an increase in the cross section of the perturbed magnons.

Summarizing the preceding discussion, one arrives at the following pre-
liminary description of the properties of the mixed excitation. The
excitation is observable in different regions of Q-space and may be de-
scribed by a specific dispersion relation. However, the variation in the
frequency is small in the investigated parts of the reciprocal lattice,
and in this respect the excitation shows some resemblance with a localiz-
ed excitation or an optical phonon. From its interaction with the trans-
verse phonons and the magnons one may probably conclude that the excita-

tion is a mixed electronic-vibrational mode.




CHAPTER VI

INVESTIGATION OF NICKEL SINGLE-DOMAIN SINGLE CRYSTALS

6.1. A crucial experiment

From the triple-axis experiments on the multidomain nickel crystal some
indications for the magnetic character of the mixed excitation could be
deduced. Near the zone centre the mixed mode interacts with the magnons,
and near the zone boundaries the interaction between this mode and the

transverse phonons leads to a lowering of the symmetry of the phonons.

More direct evidence for the magnetic properties of the mixed excitation
near the zone boundary was obtained by means of a time-of-flight experi-
ment on a single domain. The same specimen that was used previously was
mounted with the [bli] direction vertical, magnetized in the horizontal
plane along the [le} direction in an external magnetic field of 9075 Oe,
and the time-of-flight spectrometer was set to observe the mixed excita-
tion in energy loss at Q = (1,0,0). The scattering configuration is there-
fore the same as in one of the previous time-of-flight experiments (cf.
figure 5.2), and the spectrum recorded without external field shows in-
deed the additional peak centred at channel 99. Strikingly enough, this
peak is strongly reduced when the crystal is magnetized along the [fii
direction, as shown in figure 6.1. The small bump that remains was also
observed in the spectrum of polycrystalline nickel, and is probably due
to incoherent one-phonon scattering. A numerical analysis according to
the normalization procedure used in section 5.2 -yields an integrated in-
tensity in the "maximum" of -160 + 380 for the [l]f] domain relative to

the polycrystalline specimen (cf. table 5.2 for the multidomain crystal).

The result of the present experiment confirms the assumption that the ex-
citation is of magnetic origin. On the other hand, the total disappearance
of the peak was not expected and in connection with this a number of ques-
tions arise. Since this experiment has been decisive for the further course
of the investigation, a rather detailed discussion of the result is given

below.
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Comparigon of the scattering by the mized exeitation in a multidomain and
a single domain. Charmel nr. 100 corresponds to an energy transfer of
17.5 meV (v = 4.23 THz) at @ = (1,0,0).

A possible explanation for the disappearance of the additional peak might
be that the energy of the excitation is changed to such an extent, that the
peak is shifted out of the observation range of the spectrometer. However,

a change in the magnetic field direction of IOO, 20° and 28° in the horizon-

tal plane, from [le] towards [100], leads to the conclusion that this ex-

planation can be ruled out: the peak shows up with increasing intensity at

the same position where it was observed without field. One may therefore




conclude that the scattering cross section depends on the magnetization

direction. However, the influence of the magnetization cannot be ascribed

to factors like (l+(£.g)2} or (I-(g.g)z}, present in the cross sections

for magnon scattering (3.44) and magnetovibrational scattering (3.31),
respectively. In the present configuration, M // [fif] and Q = (1,0,0),
the field dependent term (3.3)2 has the value 1/3 and the cross sections
(3.31) and (3.44) are different from zero. Consequently, the scattering
must be described by some other mechanism. A detailed discussion of the
peculiar behaviour of the scattering cross section will be given in sec-

tion 7.3.

Another conclusion from the present experiment is, that the additional scat-
tering in (1,0,0) from the multidomain crystal is probably due to [110] or
[100] domains, because all [111] domains are equivalent with respect to Q=
(1,0,0) and are therefore expected to yield the same zero result. At room
temperature the [lll] directions are the easy magnetization directions, but
the magnetic anisotropy is known to be small |89,90| and therefore [)10]

and [lOO] domains are likely to be present in the multidomain crystal,
especially as closure domains near the surface. Moreover, one should take
into account that the neutron beam is strongly attenuated on its way through
the large cylindrical sample: the transmission through 3 cm nickel is only
0.37%. Hence the bulk of the sample contributes only little to the observed
scattering, and one observes mainly the surface layer of the crystal, where
the path of the neutrons through the sample is short. In this way one may
understand why the additional scattering is clearly observed in the multi-

domain crystal, but not in the [lif] single domain.

To this point the discussion has been limited to the scattering in one par-
ticular point in Q-space. By consideration of continuity, however, the same
arguments may be used for the triple-axis experiments along [lOO] and [Tll]

on the multidomain crystal. The results summarized in figures 5.3 - 5.7

should then be interpreted as a superposition of separate contributions, each
being due to a particular domain type. On the basis of the time-of-flight ex-
periment on the []77] domain one might expect, for example, that the addition-

al branch along [100] (cf. figure 5.5) is not observable in [111] domains.




6.2. Choice of single domain samples

In order to start a more systematic investigation of the mixed excitation
under different magnetic conditions, four new samples were prepared.
Platelets with dimensions 5x25x25 mm3 were cut by means of spark erosion
from a large single crystal, supplied by Metals Research, Cambridge. The
long edges were oriented along directions of high symmetry, so that samples
of the types [110]-[001], [110]-[T10] and [110]-[T11] were cbtained (cf.

table 6.1). During the measurements a particular sample was mounted in the

Table 6.1.

Crystals used as single domain

crystal nr.| orientation

P2 [110]-[o01]
[110]-[111]
[110]-[T10]

25 mm gap of a C-shaped permanent magnet giving a field strength of 3050+30
which is sufficient to reach magnetic saturation at room temperature, even
for the hard magnetization direction [901]. The field direction could be

chosen either horizontally i.e. in the scattering plane, or vertically.

Although it was concluded in section 6.1 that the scattering cross section
of the mixed mode with g = (1,0,0) is a function of the magnetization di-
rection, it is not evident that the mode actually has a magnetic moment.
If the spin s% of the mode is zero, it should be classified accord-

ing to the irreducible representations of the pseudo-magnetic point group

+ : - s
GSM(3)° This will be the case if the mode corresponds to an electron ex—

citation within the same spin band . If, on the other hand, the mode has

a spin % equal to +1 or -1, which is the case for electron transitions
between states with different spin, it must transform as one of the irredu-
cible representations of the unitary subgroup Gg(g) of the magnetic point
group M(g) (these groups have been defined in section 2.2). The latter of
these two possibilities was chosen as basis for the selection of the scat-
tering configuration in the experiments described below. The measurements

were restricted to the [100], EIIOJand EIIIJ directions in single domains,




magnetized along one of these three high-symmetry directions.

Table 6.2.

Magnetie point group M(q) for symmetry directioms

M//[001] M//[110] M//[111]
point point point
line q M(q) line q M(q) line g M(q)

] 1
X° (1,0,0) D, (Cp)| X (1,0,0) C, (C) | X (0,1,0) C, (C.)
2
(

) (0,0,1) Dy (Cp)

(0,0,1) Dah CAh

z,0,0) CZV(CS) z,0,0) CZ(CI) \ CZ(CI)

(0,0,z) DA(C (0,0,z) C (cs)

4) 2v
(Z,%4%) Cz(c1) (Z5%,% CZ(CI) Zst) Dq(Cy)

(Z,%,2 () T,5,5)  €,(C,)

(z,%,0) CZV(CS) L DZ(Cz) (z,z,0) C2(C])

(0,z,8) C,(C)) | 1 494 Cﬁv(CS) L- (z,z,0) c_(C))

“~

(0,%5,%) (Cl)

The notation for the symmetry lines and pointe has been introduced

by Cracknell |36|. Distinction is made between nonequivalent divec—
tions, while the comnection with the notation of Bouckaert et al.

for the cubic crystal |44| is retained. The point growp in parantheses

M 3 . 5
18 the wnitary subgroup G _( 2 and £° in the [120] do-

0
main there are no anti-unitary elements. The magnetic point group for

q) of M(q). For A
2 + 1 ANy ; ~
A® in the [710] domain has been treated as an exarmple in section 2.2.

In spite of this restriction, however, the number of magnetically non-
equivalent combinations of M and q is large. This is due to the fact that
vectors g that are equivalent in a crystal with cubic symmetry, will be-
come nonequivalent in a ferromagnetic single domain, which has a lower sym-
metry. The nonequivalent combinations of M and q, relevant to the present
investigation, are listed in table 6.2; complete tables may be found in
|36]|. The measurements to be described in this chapter cover only a limit-

ed number of these combinations. The time-of-flight experiments were aimed




at the observation of the mixed mode in or close to the points (1,0,0)

and (0,0,1) in different domains, whereas the experiments with the triple-

; L ¢ g 2 2 -
axis spectrometer were limited to the directions A~ = (0,0,z), " = (z,%,0)

and \° = (z,z,z) in a {110} domain. The results are presented in sections

6.3 and 6.4, respectively.

6.3. Time-of-flight measurements on [OOI], [1!0] and [111] domains

The time-of-flight experiments on single domains were intended to confirm
and to extend the experiment described in section 6.1. The first aim was

to check the assumption that the scattering by the mixed mode at Q = (1,0,0)
should be due to [001] or/and [llO] domains. In addition, a search was made
for scattering in points like (0,1,1) and (1,1,0), which are equivalent to
the points (1,0,0) and (0,0,1) because they are connected by translations
over a reciprocal lattice vector. A complete list of the various points X
and the investigated cases is given in the tables 6.3, 6.4 and 6.5. Short-
ly before the experiments on single domains were started, the new rotor
with the double slit system was put into operation. Due to the more effi-
cient use of the incident beam, the measuring time could usually be kept
within the practical limit of 48 hours, in spite of the small volume

of the samples. Apart from a change in the delay time from

384 us to 0 us, which caused a shift of 48 channels in the spectra, and a
slight change in the energy of the incident neutrons to Eo = 36.4 meV, the

instrumental parameters were the same as before (cf. section 5.2).

Table 6.3.
>

= , <y, ) A b
Experimental result r pointe X~ and X in a [001] domain

LIPEe

3 /
X~ XI

w// [001] ©,0,n* |@a,0,00* A 70 0 Y A T I
(0,0,T) (1,0,0)* 0, ,1) (T,0,T)
(0,1,0) 01,1y 1(15051)
(0,1,0) @) (1,0,1)

investigated yes yes yes
crystal nr. 2 1 1
orientation M hor.

mixed mode
observed yes

) Imvestigated pointe X.
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Table 6.4.

Experimental results for points X2 in a [110] domain

)(2 Xl X2 )(l
M//[110) 0,0, | (1,0,00 [@1,1,00 | ¢0,1,1) (1,0,1)
(0,0,1) (1,0,0) (1,1,0) ©,1,1) (1,0,1)
0,1,00 |, 7,0% ]| ©0,1,0 a,,D
(0,1,0) (1,1,0) 0,1,1) (1,0,1)
investigated yes no’I ves no
crystal nr. 152 3,4
orientation M vert. vert.
ixed mode
Fbserved yes no

*) These cases have been tnvestigated by means of a different set-up
where the C-magnet with the sample was mounted in a eradle which
could be rotated about a horizontal axis. The vesults have not been
used, because it ig not certain that the field was sufficiently strong

to reach saturation,

*») Investigated points X.

Table 6.5.

Experimental results for pointe X in a [111] domain

X X X
w/[111] (1,0,0) | 0,1,0% | (01,1
(1,0,0) | (0,1, 0,T,1)
(0,1,0) (1,0,1) (1,0,1)
(0,1,0) (1,0,1) (1,0,1)
©,0,0% | 1,1,0) (1,7,0)
(0,0,1) (1,1,0) (1,1,0)
investigated ves yes yes
crystal nr. 3 3 3
orientation M hor. hor, vert.
mixed mode
observed no no no

* . 3
) Investigated points X
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In most cases only one point X from each column in the three tables was
investigated. As may be seen from the tables, four measurements were per-
formed close to the points (0,0,1) and (1,0,0). The results are found to
be in agreement with the preliminary conclusion in section 6.1: for a
[111] domain the additional peak is absent or at most very weak, whereas
scattering at about 4.0 THz is observed in [110] and [bOl: domains. In
figure 6.2 the relevant part of the spectra has been plotted. The position
of the additional maximum (channel 148) is in agreement with the previous
measurements., To estimate the intensity in the maxima, the background was
subtracted and the remaining spectra normalized to an integrated intensity
of 199.1"103 counts in the elastic incoherent peak. Next, the normalized
spectrum for the [lll] domain was subtracted from the three other spectra,
and finally the integrated intensities in the maxima were determined (see
table 6.6). The intensity in the point (0,0,1) for a [OOIJ domain is found
to be of the same magnitude as the intensity observed in the same point for

the multidomain crystal.

Table 8.6.

Comparison of intensities in the 4 THz peaks

M Q %ntegrgted
— intensity
| [oo1] (0,0,1) 2150 + 450
| [001] (1,0,0) 700 + 280
| [110] (0,0,1) 1000 + 290
1] | ¢0,0,1) 0 el
multi- "
domain | (05051 2650 + 450 )

-
) Speetrum used as reference.

P 3
) Value taken from table 5.2.
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Seatt

cattering by the mixed exeitation in four different single domains. The

normalization procedure is deseribed in the text. The drawm curves in the

spectra are identical and represent the "background” due to ineoherent

scattering.

. 1 X 3 -
In table 6.3 the points X (or Xz) listed in different columns are
equivalent because they are transformed into each other by one of the

translations 1 = (1,1,1), (1,1,1), etc. Since the properties of an ar-
bitrary excitation are invariant under these translations, the mixed

mode has, for example, the same energy in the points X] = (0,1,1) and
(1,0,0). Moreover, its eigenfunction transforms according to the same
irreducible representation of the same point group Gg(g) in both points.
However, the scattering cross section of the mode is not necessarily the

same in these points, because the selection rule for neutron scattering
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Time-of-flight eaperiment close to (1,0,0) in a [001] domain.

(a) Part of the observed time-of-flight spectrum.

(b) Phonon dispersion relation along the path of k. The dotted curve
indicates the energy loss of the neutron, eapressed in THz.

(e) Scattering configuration in @-space.

The frequencies and wave vectors of the observed phonon (o) and mixzed

mode () are plotted in (b) and (e¢). Moreover, the caleulated polarization

vector £ of the phonon is drawn in (c).

is based on the point group of the scattering vector Q, GM(Q) (cf. section
3.4.3). Due to the fact that G'M(Q) does not contain elements that trans-
form Q into Q+t, the point groups G (g ) and GM(_QQ) of the scattering vec-

tors Q] and 22 = gl+_r_ are in general different.

As shown in the tables 6.3 and 6.4, different cross sections are observed
for three pairs of equivalent wave vectors g, corresponding to points X
and X2 in a [001] domain and x* in a [110] domain. For each pair the mixed
mode is observed at Q = (0,0,1) or (1,0,0), but not at Q = (1,1,0) or
(0,1,1). To illustrate this difference, the experimental results for the
points X‘ in a [00]] domain have been summarized in figures 6.3 and 6.4.

The experiment close to Q = (1,0,0), shown in figure 6.3, has been presented




earlier in less detail (cf. figure 6.2). The experimental configuration

is given in the figure. It should be mentioned that the calculation of

the phonon frequencies and the notation for the irreducible representa-
tions of the phonons are based on the dynamical matrix for the cubic crys-
tal. In other words, in these calculations the influence of magnetic ef-
fects, like magnetostriction, on the frequency of the phonons is neglected.
This is not an essential restriction, however, because the calculated phonon
dispersion relation is only used to identify the phonon peaks in the observed
spectra. It has been pointed out earlier that in a mirror plane of the re-
ciprocal lattice only the phonons with even symmetry are observable. In ad-
dition to the mixed mode in (1,0,0), a + phonon is observed at v = 6.1 THz,

which is in reasonable agreement with the calculated frequency v = 5.95 THz.

The experimental configuration for observation of the mixed mode at

Q = (0,1,1) in a [001] domain s shown in figure 6.4. The measuring time
was adjusted in such a way, that the integrated intensity in the elastic
incoherent peak was about the same as in the preceding experiment. In spite

of the fact that the mixed mode exists in (0,1,1) with a frequency of 4.0 THz

T T T v T
3 4 5 V(THz) 6 (a)

I H // [001], horizontal 12
Q= (011)
counts
(014 3870 min.
e Sk 0.11) 5.82 THz
2 — | T 10+

2

x 10

%0 o6
(000) | 002), q lchqggelnn 0 )
140 160 180 200
£Lgure o
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and that the neutron energy loss in (0,1,1) corresponds to this same
frequency, no inelastic scattering by the mixed mode is observed. On
the other hand, a maximum due to phonon scattering is appearing at
the expected position (calculated frequency: v = 5.75 THz).

By a comparison of cross sections for the same excitation in non-
equivalent points O, i.e. points for which the point groups G:(Q) are
different, it is in general possible to obtain information on the sym-
metry properties of the excitation. This will be discussed in detail in
section 6.6 for the pairs of points x! and X2 that have been investi-

gated by means of the present time-of-flight experiments.

6.4. Triple-axis measurements on a [1103 domain

In this section the results of triple-axis experiments on a nickel [110]
domain will be presented. Since the time-of-flight experiments in spe-
cific points in Q-space have yielded evidence for the pronounced influence
of the magnetization direction on the scattering cross section of the mix-
ed excitation, one may expect the same or a similar influence to exist
throughout the Brillouin zone. The aim of the measurements described in
the present section was to repeat the triple-axis experiments that were
carried out on the multidomain crystal, with the same scattering configura-
tion, but this time on a single domain, and to determine in this way to
which extent a particular domain contributes to the total scattering in a
multidomain specimen. A complete investigation of the main symmetry direc-
tions of reciprocal space, listed in table 6.2, would occupy the triple-

axis spectrometer for at least half a year, and the experiments were there-

fore restricted to the directions fbo{?, ETld]and 'F}lj in a r;loj domain.

This choice was based on the considerations (a) that the magnetic field
should be oriented vertically to obtain a large accessible range of scat-
tering angles, and (b) that the measurements along the main three symme-
try directions should preferably be carried out on the same crystal.
Crystal nr. 4, magnetized vertically along [lle, was used as specimen.
Apart from the specimen, all the instrumental parameters were the same

as specified earlier in section 5.3.1. The constant-Q scans were performed
in the configuration Q//q, which is suitable for the observation of lattice

vibrations that are purely or partly longitudinal.




The results of the measurements along the |001| direction, which were
performed in energy loss and energy gain, are summarized in the figures
6.5 and 6.6, respectively. A comparison with the results for the multi-
domain sample (figures 5.3 and 5.4) shows that the scattering by the
mixed mode has disappeared except possibly in the energy loss scans for
> 0.5. Although it is difficult to decompose the additional peaks at
5 THz for ¢ = 0.7 and 0.8 in figure 6.5, it seems probable that these
maxima are in fact double peaks. Observation of the mixed mode in (0,0,3)

may be expected on basis of the time-of-flight result in (0,0,1) for the
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[110] domain, shown in figure 6.2. In addition the Lo phonons contribute
to the scattering, which leads to broad maxima near the zone boundary.

A striking difference between figures 5.3 and 6.5 is the absence of ad-
ditional scattering at 7 = 0.4 for the [110] domain. This result supports
the earlier conclusion in section 5.5 that the scattering by bg phonons

in the outer part of the Brillouin zone has another origin than the scat-
tering by these phonons close to the zone centre, which is due to the fin-

ite dimensions of the resolution ellipsoid.

In figure 6.7 the measured frequencies are compared with the data of

Birgeneau et al., which are represented by the drawn curves 4, and AS.
The broad peaks for z320.7 have not been separated into partial contri-
butions from phonons and mixed modes; the width of the composite peaks

is indicated by error bars.
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seanned frequency interval (ef. figure 6.6).




Along the ﬁ?l{} direction only three constant-Q scans were carried out
in energy loss at 7 = 0.3, 0.4 and 0.5. The results are in striking con-
trast with those obtained for the multidomain specimen, as may be seen
from figure 6.8 where similar scans on both samples are compared. Apart

from a weak maximum, which may be due to scattering by perturbed A, pho-

3
nons, no scattering from the mixed mode could be detected in the scans

on the single domain.

NI multidomain VAL i’\ Ni single domain
Q =(1-c142.142) X ( | F/ [110] . vertical
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mixed mode and perturbed \, phonons
domain sample and a [110] domain.

based on the A] phonon at =0.3.

Finally, the longitudinal (Tl) phonons along the FTIO] direction were
investigated. The additional maxima at v=6.7 THz observed for small values
of r£(cf. figures 6.9 and 6.10) are probably due to mixed excitations, al-
though there is no experimental evidence that these excitations belong to
the branch of mixed modes that was observed at lower frequencies along

the [001] direction. Near the crossing between the flat branch and the I
phonon branch at £=0.3 a resonance-like interference between the phonons
and the mixed modes gives rise to an anomalous increase in the scattering
by the mixed modes. The continuation of the flat branch on the other side
of the crossing could not be observed. It should be emphasized that in
figure 6.10 a mixed mode with a frequency v=4.0 THz exists at r = 1.0, which

corresponds to the point (1,1,0). This mode has been observed in the
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time-of-flight experiment close to (0,0,1) but is not observable in the
equivalent point (T,I,O) (see table 6.4). For the mixed mode with
frequency 6.7 THz the conditions for neutron scattering are reversed.
This mode is observable in (3,2,0) but not in the equivalent point

(0,0,2), which corresponds to Z = 0 in figure 6.7.

If one reviews the results collected in constant-0Q scans on the [llO]
domain (see figures 6.5-6.10), it is striking that the mixed modes are
only observable in small regions of Q-space: close to the zone boundary
if Q// [001] and close to the zone centre if Q// [TIO]. One may there-
fore conclude that the scattering by the mixed modes observed for the
multidomain sample along the [100] and [Tll] directions (see figures
5.3-5.7), must be partly due to other domains. This applies in particu-
lar to the additional maxima observed close to the zone centre (0,0,2)
if Q// [OOI] and close to the zone boundary if Q// fTIIJ. On basis of a
possible interpretation of the mixed mode, suggested in section TSy A&
seems likely that the latter maxima are due to scattering in ETlf] domains,

whereas the former maxima may originate from [OOI], [OIOJ or [100] domains.

6.5. An experiment at liquid-nitrogen temperature

In view of the mixed magnetic-vibrational properties of the new excitation
it is of interest to collect further information on the origin of the elec-
tronic component of the mode. Experiments at low temperatures offer the
possibility to distinguish between collective electron excitations and
single electron-hole excitations. The occupation numbers <n(g)>,r appearing
in the cross section of the collective excitations (see (3.30), (3.32) and
(3.44)) are governed by Bose-Einstein statistics (3.25), whereas the cross
section (3.39) of electron-hole excitations depends on the occupation num-
bers 0y 27 of the initial and final electron states, which are determined
by Fermi-Dirac statistics (3.37). Consequently, the cross section of col-
lective excitations decreases when the temperature is reduced : for T + 0
the energy gain cross section tends to zero, while the energy loss cross
section approaches a constant value. On the other hand, the cross section
of a single electron excitation is determined by the energies of the ini-
tial and final electron states relative to the Fermi energy EF' It will be

shown below that the energy loss cross section increases for decreasing T



if the electron states are close to the Fermi level and EF does not change;

under the same conditions the energy gain cross section decreases.

For a collective excitation with a frequencv v = 4.0 THz one obtains the
following occupation numbers at T = 296 K and T = 82 K :

<n(v)> 1.10 and <n(u)>82 = 0,11. Hence the energy gain cross section

296
changes by a factor 10, while the energy loss cross section, which depends

on <n(v)+1> changes by a factor =2, If one considers electron transitions

T)
between states situated 4.0 THz below EF and at FF, respectively, the fol-

lowing occupation numbers are of interest:

<n55>296 = 0.657, <nEc>82 = 0.912, <1_n&*9"3T= 0.5. For the states chosen

above the ratio between the cross sections becomes

2
do

{d0dE

]1055,82

-

idhd[.gain’gg § gain, 296

It should be emphasized, however, that the cross section ratio is a func-

tion of the positions of the electron states relative to EF'

The experiment was performed on crystal nr. 4, which was mounted in a
cryostat with its DlO] axis vertical, and magnetized along the iWOj axis

in a horizontal magnetic field of 9075 Ne. The time-of-flight spectrometer
was set to observe the mixed mode as close to the point Q = (0,0,1) as pos-
sible. As a result of the limitations to the accessible angular range for the
incident and scattered beam the experiment could not be performed at the zone
boundary: the experimental configuration is shown in figure 6.11. In

sent measurement one has to apply a rather strong field, because the magnetic
anisotropy constants increase as the temperature is reduced. At T = 80 K a
field of 3 kOe would not be sufficient to magnetize the crvstal along the
ET]Q] direction, and a deviation of the magnetization direction towards a
Dl]] direction would occur. Since this deviation would lead to a decrease in
the scattering cross section (cf. figure 6.1), it would be impossible to draw

any conclusion regarding the occupation number of the mode.

Measurements were carried out at room temperature, T = 296 K, and at
the observation times were adjusted in such a way that the accumulate

intensities in the elastic incoherent peak were approximately equal. It




Ni [T10] domain

3 zl(wmz)
x10 ® T=296K
' intensity O T= 82K X102
3 (4.0 THz)
ol (azimz) il 10

l

4
Iy 1 1\74(7:'1_‘)1 -

channel nr.
— l

|
80 100 120 140 160

Figure 8.11

Comparison of time-of-flight spectra at T = 296 K and 82 K

be seen from figure 6.11 that the scattering by the mixed mode is

very weak, which is due to the fact that the point of observation is rather

unfavourable. Although the experimental accuracy is poor, it still seems

possible to conclude that the scattering by the mixed mode does not change

appreciably when the temperature is reduced, while the frequency increases
by about 9% from 4.0 to 4.35 THz. A subsequent measurement was carried out

at room temperature after removal of the crystal to check that the addition-
| al peak was due to scattering by the nickel specimen. It may be seen that
the change in the annihilation cross section for the nearly longitudinal
phonon with v = 4.0 THz in figure 6.11 is indeed roughly a factor 10, as
expected for a collective mode. On the other hand, the behaviour of the
\ cross section for the mixed mode indicates that the thermal properties of

this mode are consistent with those of a single ele

ctron excitation.




6.6, Discussion

The experimental results on single domains suggest that the scattering
by the mixed excitation is only observable if specific magnetic condi-
tions are fulfilled. At first sight the relative orientation of the mag-
netization direction and the scattering vector seems to plav a dominant
role in the scattering process: in a fixed point in Q-space one cbserves
a change in the scattered intensity if the magnetization direction is

changed. However, the variation in the intensitv cannot be described by

2
a factor {1+(e.m)"}.

It seems probable that the peculiar variation in the scattering cross
section is a consequence of the mixed character of the mode. Obviously,
the excitation has magnetic properties and must therefore be some kind

of electronic excitation, probably an electron-hole excitation. On the
other hand, there are indications that the mode has phonon-like proper-
ties. Excitations with mixed electronic-vibrational proverties may exist,
owing to the interaction between the electrons and the crystal lattice,
which is a consequence of the spin-orbit coupling of the electrons. 1t
seems probable that the scattering of neutrons by such mixed modes will
be subject to two restrictions. In the first place, the coupling between
the electrons and the lattice is restricted by selection rules that are
connected with the symmetry of the electron states, the lattice vibrations
and the electron-phonon interaction potential (cf. section 2.2). In this
way the magnetization direction may favour or prevent the formation of a
mixed excitation with specific symmetry properties. This aspect will be
discussed in section 7.3. Once the magnetic selection rules permit the
coupling between the electron states and a lattice vibration with a spe-
cific symmetry (i.e. a specific polarization vector E), the scattering

of a neutron by the mixed mode is restricted by gsimilar selection rules,

based on the transformation properties of the mixed mode and the symmecry

of the interaction potential between the neutron and the mode.

The aim of the present discussion is to arrive at a more detailed specifi-
cation of the symmetry properties of the mixed mode, which could only be
described in very general terms in section 5.5. It will be shown that the
irreducible representation belonging to the mixed mode mav be determined

in some of the investigated single domains bv means of the selection rules




that are applicable to the interaction of the mode with neutrons and
phonons. The use of group theory in the analvsis of the experimental
data has the advantage that there is no need to specify the eigenfunc-
tion of the mode in detail. It is only necessarv to define the point
group in which the mode should be classified and, secondly, to which
irreducible representation of this group it belongs. This analysis may
be considered as a definition of the framework, in terms of symmetry,

into which the final interpretation of the experimental results should
be fitted.

One of the complications in the group-theoretical approach is the am-
biguity in the choice of the appropriate point group. Although the mixed
mode has magnetic properties, it may have a higher symmetry than that
allowed by the magnetic point group M(a). By means of additional time-
of-flight experiments in the points X it was found that reversal of the
magnetization did not influence the scattering cross section of the mixed
mode. This result does not prove unambiguously that the properties of the
mode are independent of the sign of the magnetization, because the inci-
dent neutron beam was unpolarized, but it indicates that one may possibly

. ¢ +M A §
use the pseudo-magnetic point group Ga (a) to describe the mixed mode.

Another uncertainty arises in connection with the application of the se-
lection rules for neutron scattering. In the present experiments it was
not possible to establish whether the scattering by the mixed mode is a

process with or without spin flip. To distinguish between the two proces-

ses, an expverimental set-up would be needed in which the incident beam is

polarized and the polarization of the scatteréd neutrons is analyzed. In

view of these uncertainties the following possibilities will be considered:

(a) scatterxng with or without spin flip on basis of the unitary subgroup

J (q) of the magnetic point group M(q) .

(b) scattering without spin flip on basis of the pseudo-magnetic point

+M
group Gg (a).

It should be emphasized that excitations transforming according to irre-

ducible representations of a pseudo-magnetic group cannot possess a mag-

netic moment. Consequently the neutron spin cannot flip during the scat-

tering process.




To apply the selection rule (2.13) to inelastic neutron scattering in

a point 0 in reciprocal space, one has to determine the corresponding

P

subgroup CM(Q) or G (Q), which consists of the elements of G (g) or
oy SO

(a) that leave O invariant. Suppose that the mlxed mode transforms
accordlng to an irreducible representation of I (q) Since the selec—
tion rule is defined for the subgroup G (g), the representation
of the mode should be decomposed into 1rreduc1b1e representations of
this subgroup by means of (2.5) and (2.6). After these preliminaries
the selection rule may be applied, taking into account that the neutron
states transform as double-valued representations and the mixed mode as
a single-valued representation (cf. section 3.4.3). One may attempt to
determine the irreducible representation of the mode in the point group

(g) by a comparison of neutron scattering cross sectxons in two points
Q 91 wogris and Q2 = a*t1, with different point groups u (Q) The sub-
duction of the representation of the mode onto these noxnt groups yields
different irreducible representations, which implies that the cross sec-
tions in g] and gz are different. In appendix B a detailed group-theoreti-
cal analysis is given of the time-of-flight results in the various points
X (cf. tables 6.3-6.5). For each case the absence of scattering in a spe-
cific point is interpreted as a consequence of interdiction bv the selec-

tion rule.

An important conclusion from the analysis is that the scattering cross
section of the mixed mode with g = (0,0,1) or (1,0,0) cannot be explained
by means of magnetic point groups, except for the mode with g = (0,0,1)

in the [001] domain. In the other three cases the experimental results can
be described by means of pseudo-magnetic point groups, which indicates
that the mixed mode has no magnetic moment for these combinations of M and
a. The interpretation of the scattering results by means of selection
rules is less reliable when the cross section is found to be zero in all
investigated points Q, which is the case for the points (1,0,0), (0,1,1)
and (0,1,1) in the [}ll] domain. In table 6.7 a summary is given of the

possible representations of the mixed mode.




Table 6.7.

Pogsible irreducible representations for the

1

mixed modes with q = (1,0,0) and (0,0,1).

possible rep.| angular final
group mixed mode momentum selection )
(units H)

r

[0o1] | (0,0,1) | Git@) =c

4h

5
7
8
4

r

r
loo1l Mgy = 9
[oo1] | 0,0, | 6Z'(@) = 7, r

+M
[o01] | (1,0,0) G="(q) oh

+M "
[110] | (0,0,1) 6= (@) =D,

(1] | 0,00 | 2 = ¢, ré(2)

*) This selection is based on the assumption that the mode transforms ac-

cording to an odd representation (see page 100).

A similar procedure may be used to determine possible representations for

the mixed mode with v = 6.7 THz and a = (0,0,0) in the [110] domain, which

was observed by means of triple-axis experiments in 32 = (2,2,0), but could
not be observed in 21 = (0,0,2) (cf. figures 6.10 and 6.7, respectively).

The point groups for 91 and 92 are identical to those for Ql = (0,0,1) and

92 = (1,1,0) in the [110] domain, and the analysis leads to the conclusion
that the neutron scattering by this mode can only be explained by means of
pseudo-magnetic point groups. By means of the subduction table B.4 and the
table of observable excitations B.2, two possible representations are found:
F3 and F7 of D2h' From this result one may conclude that the modes with qi=
(0,0,0), v = 6.7 THz and q = (0,0,1), v = 4 THz in the [110] domain are es-
sentially different. In other words, if the modes are considered as specific
points (v,q) of a dispersion relation, they do not belong to the same branch.
This may be proved by means of the compatibility relations for the excitations
with g = (0,0,z), for which ng(g) = C2v’ at the zone centre (0,0,0) and the
B onm tagle B.4 it is seen that the
mixed mode in (0,0,1), which transforms as ' or I  of DZh' is compatible with

zone boundary (0,0,1) where GEM(_q) =D,
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aT” or " branch along [OOg], whereas the mixed mode in (0,0,0), which

transforms as F3 or T7 of DZh’ is compatible with a F3 or Fa branch.

As a logical continuation of the analysis in appendix B one might final-
ly attempt to explain the experimental data by means of point groups with
still higher symmetry. It turns out that this approach fails, because the
next group is Go(g) = Déh for each of the cases in table 6.7. Consequent—
ly, the mixed mode would transform according to the same irreducible re-
presentation of DAh in each domain, and the selection rule would allow
neutron scattering in Q = (1,0,0) and (0,0,1) irrespective of the magne-

tization direction, which is in contradiction with the experimental results.

The fact that the frequencies of the mixed modes with g = (0,0,1) or
(1,0,0) are approximately the same in different domains, suggests that one
is observing the same excitation in each domain. The difference in the
scattering cross sections may possibly be explained as a consequence of

the modification of the transformation properties of the excitation by mag-
netic interactions. According to this argument one should preferably use a
description for the excitation that is applicable to each of the domains,
i.e. the one based on pseudo-magnetic point groups G%N(S). We shall there-
fore assume that the mixed mode has no magnetic moment, and that its mag-
netic properties are a result of magnetic interactions transferred via the

spin-orbit coupling of the electrons.

A second selection from the possible representations in table 6.7 can be made
if one takes into account that the mode has a vibrational component. Since
the lattice vibrations with g = (0,0,1) transform according to odd repre-
: a * g
sentations (Tii(I) == 1) Zone may expect that the mixed mode also trans-—
4
4h? I of

should be excluded. This implies that the classification

forms as an odd representation. Hence the representations FA of D
D2h and F4 of C2h
of the mixed mode in the [}11] domain by means of selection rules has yield-
ed an incorrect result. The failure of the procedure for this case is probablyy
due to the fact that no positive scattering result is available for one of
the points Q, and is therefore not considered as a disqualification of the

analysis for the other domains.

1f the mixed mode with g = (1,0,0) in the Dll] domain is assumed to trans—
form as the odd represencation " of C2h’ neutron scattering in 91 = (1,0,0)

= (0,1,1) is allowed by symmetry. Similarly, one might expect

*)Subduction of Xz and X; onto the groups listed in table 6.7 yields odd

representations.




scattering in QB - (O,I,T) if the mode transforms as Tz of C2h (cf.
table B.4). In section 7.3 a possible explanation for the absence of

scattering in these points will be suggested.

The second item of this discussion is the observation of "forbidden'" neu-
tron-phonon scattering, which may be related to the symmetry properties of
the phonons. In a crystal with cubic symmetry the phonons with q along the
symmetry directions A, A and I are purely transverse or longitudinal, and
neutron scattering by the transverse phonons is forbidden if Q//q. The ob-
servation of phonon scattering near the zone boundary, at frequencies close
to the transverse branches AS and A3 indicates that the symmetry of the pho-
nons is reduced. As stated earlier in section 5.5, it seems probable that
this reduction in symmetry is due to the interaction between the phonons and
mixed modes, because the perturbation is most pronounced in those regions of
the Brillouin zone where the frequencies of the phonons and the mixed modes
are approximately equal. If this assumption is correct, the wave functions
of the perturbed phonons should transform according to irreducible repre-
sentations of GZ(S) or GEM(S)' where the point group is related to the sym-
metry of the interaction between the mixed modes and the phonons. Since the
main part of the experimental results on perturbed phonons has been collect-
ed in the [OOI] direction, the following analysis of the symmetry properties
of phonons in single domains will be restricted to this direction. The point
groups of interest may be found in table B.1, because the point groups of

q = (0,0,z) and Q = (0,0,1) are identical (see the definition of the point

group of the scattering vector Q, given in section 3.4.3).

To determine the conditions for neutron-phonon scattering in single domains
one may use the procedure that was applied above to the scattering by the

mixed mode. The representations of the phonons with q= (z,0,0) and (0,0,7)
are listed in table B.5 for different magnetization directions. It is seen

that a reduction in symmetry results in a removal of the degeneracy of the

AS phonons. If the phonons are described by means of the point group Gg”(g),

neutron scattering by the former A. phonoms is still forbidden if g//Q,,

except in the [lllj domain. This mZy easily be verified by a comparison of
the representations in table B.5 with table B.2, where the observable ex—
citations with spin O are listed. To explain the observation of forbidden
neutron-phonon scattering in the [llQ] domain the phonons should therefore

be treated on basis of the magnetic point group Gi(g). In that case the




A A <
representation ! of Coy for one of the transverse phonon branches 1s

1 3 e : .
reduced to I' of Cs which allows a deviation of the polarization vector

in the plane perpendicular to M and neutron-phonon scattering.

This analysis for the phonons propagating along [001] in a [110] domain
shows that the ohserved perturbation of the phonons cannot be explained
by lattice deformations that are caused by magnetostriction, because these

effects are invariant under magnetization reversal and result in a sym-

¢ X +M . : s 7
metry to be described with G; (q) . Hence, interaction with the mixed mode

at v = 4 THz appears to be the most probable origin of the perturbation
of the phonons. Although the symmetry properties of the mixed mode are

governed by the pseudo-magnetic point group, the interaction between the
mode and the originally transverse phonons has a lower symmetry and must

be treated by means of the magnetic point group.

The observed interference between the mixed modes and the phonons in the
[110] domain offers a possibility to confirm the final selection from the
possible representations for the mixed mode given in table 6 7. If the in-
teraction potential is invariant under the operations of G‘(g), interfer-
ence between the phonons and mixed modes is only possible if both trans-
form according to the same irreducible representation of Gg(g). As the
mixed mode has no magnetic moment in this case, the forbidden neutron-pho-
non scattering must be due to Tl phonons. Hence one may conclude that the
mixed mode that gives rise to the observed interference with the phonons
at ¢ = (0,0,0.5) in the []ld] domain, transforms as Fl of GZ(S) = CS
(i.e. it should be invariant under reflection in the (110) plane). The com-
patibility relations in q = (0,0,1) require that the mixed mode has the
same property, x(ICza) = 1, at the zone boundary, which implies that the
mode with ¢ = (0,0,1) in the []Id] domain transforms as F8 of Doy (cf.
table A.8).

In a similar way, the representation of the mixed mode with q = (0,0,0) in
the [110] domain may be determined unambiguously by means of the observed
interference with the "longitudinal” phonons at q = (0,3,-0.3,0). The
former E] phonons transform as Fl both in the magnetic and the pseudo-
magnetic point group, whereas the mixed mode with q = (0,0,0) transforms
as r3 or r7 of F— (q) = DZh' To establish the compatibilicy relations for
the mixed mode branch in the [(go] direction, for which G— (@ = Chy? the

subduction table for the [lld] domain in table B.4 may be used It is




found that the representations F3 and r7 in (0,0,0) are compatible

with the representations TZ and T] along [EEhJ, of which only the latter
can interfere with the ?l phonons. Further reduction to the magnetic point
group G:(:,?,O) = CS does not change the interference condition, because
FZ and T] of qu are reduced to Tz and F] of Cs, and hence one may gon-
clude that theﬁmixed mode with g = (0,0,0) in the [110] domain transforms
as F7 of D2h' No conclusion can be drawn with respect to the symmetry of

the interaction between this mode and the phonons.

As shown above, a detailed investigation of the phonon dispersion relation
in single domains may be useful as an independent check on the determina-
tion of the irreducible representation for the mixed mode with q = (0,0,1)
or (1,0,0). By means of measurements along the [z00] direction in a [0o1]
domain one may distinguish between the two possible representations I

and FS given in table 6.7. If interference between the mixed mode and the
originally transverse phonons is observed, the former should transform as

F] of GZ(c,0,0) = Cs' a representation which is compatible with FS of

+M . 25
G; (1,0,0) = D2h’ but not with I~

The present discussion has been restricted to a classification of the mixed
modes according to their transformation properties, in order to extract as
much information from the experimental results as possible, without spe-
cifying the eigenfunctions of the modes in detail. In the next stage of the
analysis, to be presented in chapter VII, an attempt will be made to con-
struct physically realistic excitations, in which electronic and vibration-
al properties are combined in such a way that the mixed excitations have

the transformation properties derived above.




- 104 -

CHAPTER VII

DISCUSSION AND CONCLUSION

7.1, Introduction

The discussion presented in this concluding chapter may be considered as

the third stage in the interpretation of the results, complementary to the
preliminary discussion in section 5.5 and the group—~theoretical analysis

in section 6.6. In contrast to the analysis in section 6.6, where the sym-
metry properties of the mixed modes were determined in a straightforward
way from the experimental results, the following interpretation is much
more speculative. This applies in particular to section 7.3, where a pos-
sible interpretation of the mixed electronic-vibrational modes is suggested,
and to section 7.4, where a tentative explanation is given for the discrep-

ancy between energy gain and energy loss scattering by the mixed modes.

Although the final interpretation of the mixed modes is speculative, the
existence of these additional modes in nickel could be established with more
certainty. In general, spurious maxima occur quite frequently in neutron
scattering experiments, and some possible sources of spurious scattering

are mentioned in section 7.2. In the present investigation, however, it could
be shown (by applying a magnetic field along symmetry directions) that the

observed additional scattering was not due to spurious scattering processes.

The interaction between the mixed modes and the magnons, which has not been

considered in section 6.6, is discussed in section 7.5. In addition, this

final section contains a summary of the characteristic properties of the mixed

modes, and a short speculation concerning the possible existence of similar

modes in other metals.

7.2. Observation of mixed modes and forbidden phonon scattering

Below we shall consider the experimental limitations for the observation of
the mixed modes and perturbed phonons. In the outer region of the Brillouin
zone the modes are in general not easily observed because their frequency is
of the same order as the frequency of the transverse phonons. Moreover, the
scattering cross section is small compared to that of the phonons, and ob-

servation of the mixed modes is therefore only possible in scattering con-

figurations where scattering by the transverse phonons is weak or forbidden

by symmetry.




From the experimental data it is obvious that even in the configurations
that are most favourable for intensity reasons, i.e. energy loss, con-
stant-Q scans with Q along high-symmetry directions, the scattering by
the mixed mode is not observed separately, but in combination with scat-
tering from nearly transverse phonons which have been perturbed by inter-
ference with the mixed mode. Hence a second condition for the observation
of the additional mode is that the instrumental resolution allows a sepa-
ration of the two contributions, a condition which is in general not ful-

filled in conventional phonon scans with a triple-axis spectrometer.

A complicating factor in the investigation of magnetic perturbations of
phonons is the possible occurrence of spurious phonon peaks, even when

the instrumental configuration has been chosen especially to eliminate the
scattering by these phonons. One possible source of spurious neutron-phonon
scattering are double scattering processes, in which the incident neutrons
are scattered elastically in the sample (a Bragg reflection corresponding
to a reciprocal lattice vector 14) prior to the inelastic scattering pro-

cess |91|. The first reflection results in a secondary incident beam with

a wave vector Eé = 56-11 and hence there are two possible scattering vec-

tors Q = 50'5 and Q' = 5;—5 » for which the selection rules for phonon scat-
tering are different. A similar situation occurs when the sequence in the
double process is reversed; in that case the inelastic process precedes the
Bragg scattering, and there is a primary and a secondary scattered beam.

Unexpected scattering by transverse phonons in Ni Pd 45° observed recent-—

DD
ly by Kamitakahara and Brockhouse |92|, has been attributed to this type of

multiple scattering.

A second source of spurious scattering, which is related to the instrumen-
tal resolution, is of importance for alkali metals, where the dispersion
surfaces are highly anisotropic. The consequences of a rapid variation of the
phonon frequencies and polarization vectors within the volume of the resolu-
tion ellipsoid have been considered by Copley for rubidium |93| and by Werner
and Pynn for sodium |94|. Spurious phonon scattering may be particularly pro-
nounced if the longitudinal and transverse phonons are nearly degenerate,
which is the case in body-centred cubic crystals for q = (0,0,1). In nickel

this effect is expected to be less important.

At the outset of the present experiments on the multidomain sample the con-

ditions have been chosen in such a way that observation of the mixed mode




was relatively easy. The search for additional scattering processes close

to the zone boundary by means of the time-of-flight spectrometer was aimed
in particular at the frequency region around 5 THz, and special care was
taken to suppress the scattering by transverse phonons. Furthermore, the
instrumental resolution for energy loss processes was sufficient to separ-
ate the additional maximum from the weak maximum corresponding to the trans-
verse phonon, which indicated that two distinct excitations contributed to

the scattering.

In a later stage of the experiments a series of constant-Q scans was per-
formed on the multidomain sample to check if the broad maximum observed in
Q = (3,0,0), in particular the phonon contribution at v = 5.90 THz, could
be due to double scattering processes. No significant difference could be

observed between three scans for which the final wave vector was chosen

equal to 3.93, 4.28 and 4.66 R-‘, respectively. This result indicates that

double processes are not contributing to the scattering, because the Bragg
scattering in such a process is expected to be very senmsitive to a chahge

in the neutron wave vectors Eo and k .

Positive indications for the magnetic origin of the additional mode and the
unexpected scattering by transverse phonons were finally obtained from ex-
periments on single domains. The variation in the scattering cross section
of the mixed mode as a function of the magnetization direction (cf. figures
6.1 and 6.2) shows clearly that the mode has magnetic properties. Further-
more, it could be shown (by applying a magnetic field along the [110] direc-
tion) that the forbidden scattering by the A3 phonons, observed in the multi-
domain sample close to Q = (-3/2, 3/2, 3/2), is almost entirely due to a
change in the phonon symmetry by a magnetic perturbation (cf. figure 6.8).

It seems likely that the forbidden scattering by the A_. phonons close to Q =

5
(0,0,3) may be influenced in a similar way by the magnetization direction.
Experiments at Q = (0,0,3) in other single domains, in addition to those in
the [110] domain, have not been performed because of time limitation. There
are other experimental results, however, which indicate that the scattering
cross section of the Xé phonons depends on the magnetization direction. In
comparing the time-of-flight experiments presented in figures 5.1 and 6.4,
which were performed on a multidomain sample and a [001] domain, respective-
ly, one observes a pronounced increase in the scattering cross section of the
+ phonon with v = 5.9 THz in the [bOl] domain. Since this + branch is compat-—

ible with the Xé phonon in (0,1,1) one may expect similar changes in the cross




section of the X; phonons in (1,0,0) and (3,0,0).

The interference between the mixed modes and the phonons is strongest if
their frequencies are approximately equal, and therefore the perturbation

of the phonons is most pronounced in a few parts of the dispersion rela-
tion: the AS' Z] and ZA branches close to the zone boundary point X, and

the branch A3 close to the zone boundary point L (see figures 2.1 and 2.2).
In connection with the present results, it seems likely that the anomalous
frequency shifts observed by DeWit and Brockhouse in the A3 and Z] branches
(denoted as T(£:££) and A(O£1) in their paper |18|) are caused by the inter-

action between these phonons and the mixed modes.

Observation of additional scattering from a 60Ni crystal has been reported
by Lowde and coworkers l9,77|, who performed time-of-flight, energy gain
scans in the (100) plane. An excess of scattering was observed close to the

zone boundaries for small w, which was ascribed to longitudinal spin-spin

correlations <SZSZ>T(see eq. (3.34)). Although our data show that the energy

gain scattering by the mixed modes is weak along the [pOIJ direction, the
observed excess might be due to these modes. Unfortunately, it is quite dif-
ficult to compare the results for 60Ni with our time-of-flight scans close
to the zone boundary points X, because the former data are presented after
averageing over different directions e = Q/Q in the (100) plane and inte-
gration over small intervals of 5 meV in fiuw (which corresponds to a resolu-
tion of 1.21 THz).

7.3. A possible interpretation of the mixed modes

In the course of the present investigation the following properties of the

additional modes could be established:

(a) The modes have both magnetic and vibrational properties. It was found
that the neutron scattering cross section depends on the magnetization
direction, that the modes interact with the magnons, and finally that
the interaction between the modes and the phonons has the symmetry of
the magnetic or the pseudo-magnetic point group. From a comparison be-
tween the cross sections at T = 296 K and 82 K it was concluded that the
variation of the occupation number of the mode as a function of tempera-
ture is consistent with that of an electron-hole excitation. On the other
hand, the magnitude of the cross section in energy loss experiments, which

is of the same order as the neutron-phonon cross section, is too large to
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be explained by magnetic scattering. Hence it seems probable that the
main contribution to the scattering is due to the vibrational compon-

ent of the modes.

(b) The energy of the modes is almost independent of q and very small in

comparison with the electron energies.

(c) In the [11@] domain two different mixed modes were observed, which
transform according to the irreducible representations T7 and T8 of

D,., and have clearly different energies. Each of the modes is ob-

2h
servable in a limited region of Q-space.

(d) The modes with g = (0,0,1) and g = (1,0,0), observed in the [001]
domain, transform according to irreducible representations that are

not compatible (F9 of D,, is compatible with F7 of DZh). Hence these

4h
modes have different transformation properties, although their energies

are equal within the experimental accuracy.

The appearance of an additional branch in the excitation spectrum of a crys-
tal can be explained in two ways: either it may be due to a mixing of other
known elementary excitations, or it may be a truly new branch which is re-
lated to a degree of freedom not considered before. With regard to the first
possibility, it is difficult to conceive how a combination of phonons and
magnons might lead to a new branch without dispersion. The same difficulty
is encountered if one tries to construct mixed excitations from single elec-
tron excitations and phonons, because the electron-hole excitations in the
electron system occupy a continuum in (Q,w)-space. Hence it seems that the

mixed excitations should be explained by invoking a new degree of freedom.

Most of the experimental results can be understood qualitatively if it is
assumed that the mixed modes are polar electron-hole excitations similar to
the polar magnons considered by Slater |95| and Sokoloff |96|. As a result
of the finite range of the interaction between the electrons, an electron-
hole pair may form a bound state. Instead of moving in an uncorrelated way
through the lattice, the electron and hole spend most of their time on near-
est neighbour sites or, occasionally, on sites with a larger relative dis-
tance. These polar modes may in fact be considered as an impurity in the
periodic charge distribution of the electronms, and the calculation of their

eigenfunctions and energies may be performed in a similar way as for a mass

defect or a magnetic impurity in the lattice.
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By identifying the observed modes with polar electron-hole excitations,
one may understand the results (c) and (d) listed above. If the hole is
supposed to be localized at one particular lattice site, while the elec-
tron spends its time on the nearest neighbour sites, there are 12 polar
modes, which transform as the irreducible representations of the point
group Go of the considered set of 13 lattice sites. Inclusion of more
distant lattice sites leads to an increase in the number of possible
modes. Each of the polar modes has a constant energy, except in those
regions of (Q,w)-space where interference with other excitations is

strong.

For a theoretical treatment of the polar modes in a metal, it is con-
venient to start from a description of the 3d electrons by means of
Wannier functions wjo(zfé) localized on the lattice sites L. The rela-
tion between the Wannier functions and the Bloch functions (2.29) is

given by

Wi, D) = N“lec exp(-ik.D) ¥y (0, (7.1
where the summation is over all the Bloch functions of the band charac-
terized by the indices j and o, with k covering the first Brillouin zone.
The main argument for applying Wannier functions to describe the polar
modes is that the condition on which the description in terms of Bloch
functions is based, viz. the translational periodicity of the lattice, is

no longer fulfilled in this case.

To explain the small energy of the modes, the admixture of a vibrational
component, and the observation of the modes by means of neutron scattering,
the description of the polar modes given by Sokoloff |96| has to be modi-
fied. The modes considered by Sokoloff are polar magnons with a spin quan-
tum number S% = 1, which correspond to electron transitions between Wannier
states with different spin. Their energies are of the same order of magni-
tude as the exchange splitting AEd between the 3d bands, which is about
0.35 eV = 0.026 Ry for Ni |97| (corresponding to a frequency V = 85 THz).
In figure 2.5, where a value AEd = 0.07 Ry has been used, the branches of
the polar magnons would be expected in the energy interval between 0.01

and 0.07 Ry. The neutron scattering cross section of polar magnons is re-

3 - -+ K ~
lated to the correlation functions <S+S >T and ¢S S >p in (3.34) and is



found to be extremely small except in the region of (Q,w)-space where
the flat branches corresponding to the polar modes cross the magnon dis-
persion relation. Hence Sokoloff concludes that outside this region the

polar magnons are not observable by means of neutrons.

The excitations observed in the present experiments have in some respects
quite different properties. In the first place they do not possess a mag-
netic moment (i.e. g% = 0), and the electron transition which leads to the
formation of the mixed excitation must therefore connect Wannier states

with the same spin. In terms of Wannier functions, the states w.*(zf}) are
all occupied, whereas the number of holes in the upper states wj%(g-l) is
determined by the condition that the average number of unoccupied + states
per lattice site should be = 0.6. A polar electron excitation with §% = 0

may be visualized as a transition of an electron from the state w. (r-Z)

to an unoccupied state wJ (r-1") localized at a nearest nexghbour s1te of

1, which results in final electron configurations (3d) and (3d) at the
sites I and 1', respectively. Since the excitation must be compatible with
the symmetry of the lattice, the transferred electron is distributed over
the 12 nearest neighbour sites of 7, in such a way that the eigenfunction
of the final state transforms as an irreducible representation of the point
group of the 13 lattice sites considered in this example. This means that
the electron performs a hopping motion between equivalent lattice sites.
Obvioasly, the same arguments may be used in the case where a hole is dis-
tributed over the nearest neighbour sites of 1'. On a local scale, these
polar excitations are very similar to the polar model proposed by Van Vleck
|101| to describe the electronic and magnetic properties of nickel. In this
model it is assumed that 607 of the Ni atoms is in the (3d) configuration
and 407 in the (3d) configuratlon, these two configurations being con-
tinuously redistributed over the lattice sites. The redistribution may be

realised by a hopping of holes from atom to atom.

It seems possible that the mixed excitations observed in the present scat-
tering experiments are polar modes, similar to the one described above,

In a neutron scattering (emergy loss) process a polar excitation may be
created from the ground state where the charge distribution has the

periodicity of the crystal lattice. It is quite difficult to estimate the




energy difference between the ground state and the excited state, be-

cause it may be expected that the perturbation in the charge distribution
due to the hopping 3d holes will be compensated to a large extent by the

4s electrons (cf. ref. |101|). Moreover, the electronic excitation is mix-
ed with a perturbation of the lattice, which means that a part of the ener-

gy transferred to the specimen is absorbed by the lattice (see section 7.5).

The admixture of a vibrational component to the electron-hole excitation is
of importance for the observation of the excitations by means of neutrons.
In Sokoloff's description of polar magnons the interaction between these
electronic excitations and the lattice is neglected. For excitations with
frequencies much larger than the phonon frequencies this approximation is
justified, because the lattice is unable to adapt itself to the rapid
oscillation of the electron between the different lattice sites. If, how-
ever, like it seems to be the case here, the frequency of the polar mode

is within the phonon frequency band, a strong coupling with the lattice

is expected. When a localized, polar electron excitation with a low fre-

quency w; is created, the atoms in the perturbed region start to oscillate

about their equilibrium positions 7 with the same frequency wy and polari-
zation vectors E,. The directions of the polarization vectors are directly
related to the transformation properties of the polar excitation, and may
be determined by means of projection operators if the irreducible repre-
sentation belonging to the polar electron excitation is known. The coup-
ling between the electronic mode and the lattice is equally important in a
scattering process. It may be expected that it is possible to induce elec-
tron transitions between Wannier states by creating a local disturbance in
the lattice periodicity. Hence, creation of mixed electronic-vibrational
modes with low frequencies may occur in neutron scattering processes where
a number of atoms in a relatively small region of the crystal lattice is
displaced from their equilibrium positions. In such a situation, a redis-
tribution of the electrons over the vibrating atoms may even result in a
state which has a lower energy. If this is the case, the creation

of a mixed mode requires less energy than the creation of a purely vibration-

al mode (see section 7.5).

The neutron scattering cross section of a mixed excitation may be calculated

by means of the general expression (3.2), where both nuclear and magnetic




interactions should be taken into account. If one considers the inelastic
scattering by a single localized excitationm, the integrations over r and
r' in (3.2) may be restricted to the perturbed region of the crystal. De-
composition of the correlation function TR in (3.2) into a nuclear
and a magnetic part, as applied in the derivation of (3.18) and (3.31),
is not possible in this case, because the instantaneous positions of the
oscillating electron and atoms are correlated. For nickel the situation
is more favourable, because the magnetic scattering by the electron is
small in comparison with the nuclear scattering, and may be neglected in
first approximation. Hence the main contribution to the cross section of
a mixed mode in nickel is given by eq. (3.12), where the summation over

71 and 7' is restricted to the lattice sites in the perturbed region.

It may seem odd that the observed cross sections, which clearly depend on
the magnetization direction, should be mainly due to interaction with the
nuclei. This paradox may be explained by the fact that the distribution of
the electron over the lattice sites and the atomic displacement vectors
El(t) are governed by the magnetization direction, as will be shown for the

simplified case considered below.

Symmetry properties of polar excitations

In order to show that the experimental results can be interpreted, at least
qualitatively, in terms of scattering by polar electron excitations, we
shall consider a very simple model, which involves only 13 lattice sites.
It will be assumed that the electron-hole excitation consists of a hole
localized at site ] and an electron distributéd over the nearest neighbour
sites 2,...,13 (see figure 7.1). Furthermore, we assume that the Wannier
functions wj+(£fl), belonging to the states occupied by the electron, are
characterized by the same indices j+ for each Z, and spherically symmetric.
Under these conditions, the eigenfunction of a localized electron-hole ex-
citation is a vector ¥ with 13 components WZ, where the subscript refers to

the lattice sites. If ¥ is normalized by
13
I ¥y, =1,
=1 :

glals : T . ¥
the probability to find the electron at site 7 1s equal to VZVZ. Moreover,
each ¥ transforms according to an irreducible representation of the point

group of the set of 13 lattice sites.




Figure 7.1.
Lattice sites involved in a nearest-neighbour polar mode.

The number of polar modes and their eigenvectors may be determined by
means of the decomposition formulae (2.5) and (2.6), and the projection
operators (2.7). Both in the paramagnetic and ferromagnetic phase there
are 12 polar modes and ! "acoustic" mode, the latter consisting of an
electron and hole at site 1. In the paramagnetic (cubic) phase the modes
transform as the irreducible representations of Go = Oh. The decomposition
yields

1 3 5 9

r=2r erer oer o F]O

(7.2)
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where FS, ' and FIO are three-dimensional, 73 two-dimensional and T

one-dimensional (cf. table A.15).

In a ferromagnetic single domain a number of degeneracies is removed, and
the electron distribution over the lattice sites is changed as a result of
spin-orbit interaction. Since the observed modes have almost equal frequen-
cies, they should probably be interpreted as nearly degenerate modes that

originate from the same degenerate mode in the cubic phase. It has been con-

cluded earlier (cf. section 6.6) that the mixed modes must transform as odd

representations, if the point group contains I. Consequently, the mixed modes



can only originate from the three-fold degenerate states Fg or Flo in

the cubic phase. In the following interpretation we shall consider the
: ove- L)

mixed modes arising from the I'” state; the modes related to the Flo

state are discussed briefly in section 7.5.

It has been concluded in section 6.6 that the mixed modes transform as
irreducible representations of the pseudo-magnetic point groups GEM<S)’

and we shall therefore investigate the change in the properties of the

9 Q )
I'" states when the crystal symmetry is lowered from Go to GE”.

Table 7.1.

. +M
Subduction of r? of 0, onto G=".

M GEM table | subduction

o] | b, | A2 (r’ @r'”
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In table 7.1 the subduction of the representation Tg of Oh onto the sub-
groups GEM is given for the domains of interest. The eigenvectors ¥ of these
polar modes may be constructed by means of projection operators and are
given in appendix C, table C.1. It is found that the probability distribu-
tion of the electron is strongly influenced by the magnetization direction.
Let us congider the r? mode in the [001] domain as an example: the electron
ie found with equal probability 1/8 at the sites 4,5,6,7,10,11,12,13, and
performs an oscillation along the magnetization direction. By comparing the
vector components ¥, and the relative positions of the sites in figure 7.1
it is seen that the three polar electronic modes correspond to electron
oscillations in mutually perpendicular directions, one direction being
parallel to M. These directions will be denoted as the polarization direc-

tions of the modes.

For the interpretation of the scattering cross section it is necessary to
derive the symmetry properties of the displacements u, of the lattice sites,
induced by the polar electron excitation. The oscillations of the 13 lattice

sites in figure 7.1 may be described by means of a 39-dimensional vector u




|

= K5l

with components uf, ug and uf, which transforms according to the same
irreducible repre;ent;tion a; the polar mode. Projection operators have
been used to construct the vectors u listed in tables C.2-C.4. One may
expect that the average direction of the 13 vectors u, is parallel with
the polarization direction of the polar mode, and this is indeed con-
firmed by the result of the projection procedure. Although some compon-
ents of the 37'5 are perpendicular, most components are parallel with the

polarization direction of the mode.

After these considerations the observation of the various mixed modes
with different transformation properties may be explained. If the mag-
netic scattering is neglected, the coherent cross section of a mixed

mode with a frequency Wss localized at 13 lattice sites, is given by

2
<

é “n k 1 }m
== =— [dt exp(-iwt) exp{-2W(Q)} x
dnagie Ky g S
2 13 13
<b> exp{iQ. (2'-1)}<{Q.u; (0) }{Q.u,, (E) }> , (7.3)
=1 1'=1 M=t i S N &

where Bz'(t) = 27,(0)exp(iwit). Expression (7.3) may be written in a more

concise way if the dynamic structure factor F(Q) of the mode is introduced:

13
F@ = ] {Q.u,(0)}exp(~iQ.1). i1

=1
Substitution of (7.4) into (7.3) yields

dzc
n

dRdE o

b

exp{-20(Q) }<b>2<F" (Q)F(Q) >, -t ). (7.5)

The scattering cross section of a mixed mode in a point Q is directly re-
lated to its structure factor, which may be derived from the vectors u,
tabulated in the tables C.2, C.3 and C.4. For each of the modes consider-
ed in appendix C the value of F(Q) was determined for those points Q that
have been investigated in the present work (cf. tables C.5, C.6 and C.7).
In each case the structure factor vanishes in a number of points Q. This
is actually a consequence of the symmetry properties of the mode, and
could have been predicted on basis of the selection rules for neutron

scattering. Some of the observed modes may be identified unambiguously by



means of the structure factor tables. The excitations observed at Q =
(0,0,1) and Q = (1,0,0) in the [bOl] domain are the mixed modes trans-—
forming as Tg and (F‘O)] of th’ respectively. The modes observed at
Q= (0,0,1) and (Z,2,0) in the [110] domain correspond to the modes
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transforming as ' and I'' of D h? respectively. This interpretation 1s

in agreement with the final seiection of representations given in table
6.7, where the mixed modes were considered as excitations with a wave
vector g. The correspondence between the selected representations of

G- (9) in table 6.7 and the representations of GEM in table 7.1 is evi-
dent for g = (0,0,1) in the [bOIT and rian domains, because G— (q) and
GEM are identical. Moreover, it can be shown that the polar mode trans-

8 +M =g ol
r G- = -
h’ transforms as I' of = (q) D2h if it is in

forming as (rlo)1 of D

terpreted as an excitation with wave vector gq.

In the time-of-flight experiments performed close to the points

Q= (1,1,0), (0,1,1) and (1,1,0), the scattering by the mixed modes was
too weak to be detected (cf. tables 6.3, 6.4 and 6.5). For one (in some
points: two) of the three mixed modes, scattering in these points is for-
bidden by symmetry, but the remaining mode(s) should have been observable
according to the structure factor tables C.5 - C.7. Consider, for example,
the experiment at Q = (0,1,1) in the [001] domain, shown in figure 6.4,
where scattering by the (r'o i mode is forbidden. Since no scattering from
the other two modes was observed, it seems probable that their structure
factors in Q = (0,1,1) are very small. If one assumes, as a first approx-
imation, that the structure factors of these other modes are zero, some
additional relations between the displacement vectors of nonequivalent
atoms may be derived. It should be emphasized, however, that the deriva-
tion of these relations, which is given below for different modes, is

based on a very simple model. In reality, the number of lattice sites in-
volved in the mode is expected to be of the order of 1000 (see section
7.4).

Let us consider a relatively simple case: the T9 mode in the [bOIT do-
main. The displacement vectors u, are characterized by four amplitudes,
denoted by a, b, ¢ and d in table C.2, where the latter three refer to dis-
placements along the z direction. From the fact that the mode was not oh-
served in Q = (0,1,1), one may conclude that F(0,1,1) = b=4c = 0. This

means that the oscillations of the atoms 1,2,3,8 and 9 are in phase, the




amplitudes for the atoms 2,3,8 and 9 being 1/4 of the amplitude for atom
1. Hence one obtains the following values for F(Q) in Q = (0,0,1) and
(0,0,2): F(0,0,1) = Bc-8d, F(0,0,2) = 8c+8d. As the scattering by the mode
in (0,0,1) is rather large, it seems likely that c and d have opposite
signs, i.e. the atoms in alternate layers move in opposite directions. The
vibration of the atoms is therefore very similar to a longitudinal lattice
vibration with wave vector q = (0,0,1). It may be expected that the scat-
tering by the Fg mode is weak in (0,0,2), because F(0,0,2) is small if c

r

and d have opposite signs. The scattering cross section of the I'" mode in
Q = (4,4,4) is determined by F(Q) = }(b+8a), where b denotes the displace-
ment of atom | along the z axis and a the displacements of eight atoms per-
pendicular to the z axis. On basis of the vibration pattern of the atoms
along the z direction, which was suggested above, it seems likely that a
; : Sl = =

, 18 accompanied by positive displacements U, and
ui, and negative displacements u: and ufl (see figure 7.1). In other words,

in table C.2 have opposite signs. Consequent-

positive displacement u?
the amplitudes a and b for T
ly, a small cross section in (},},}) may be expected if |a| is small in com

parison with |b|.

A similar discussion may be given for the (Plo) mode in the [bnl] domain,

which was observed in Q = (1,0,0), but not in (:,1,0) (cf. table 6.3). Ac-
cording to table C.2 the vibration pattern of the atoms is determined by six
independent parameters, of which a, b, ¢ and d refer to displacements along

the x direction. If it is assumed that the effect of the spin-orbit coupling
on the displacements is small, one may reduce the number of parameters by

using the approximations b = d and e = -f, which leads to the result F(1,0,0)

= at+be-8d, F(1,1,0) = a-4c. From the intensities in (1,0,0) and (1,1,0) one may
finally conclude that a = 4c, and that c and d have opposite signs, which

corresponds to a vibration pattern similar to a longitudinal lattice vibration

with ¢ = (1,0,0). In the same way it may be shown that the (T‘O),7 mode re-

sembles a localized longitudinal vibration with g = (0,1,0). Hence the three
mixed modes in the [NN1] domain are very similar, and it is therefore not sur-
prising that their frequencies are found to be equal within the experimental

accuracy.

Next, we consider the mixed modes in the [110] domain, for which the structure
factors are listed in table C.6. If one compares the displacement vectors in

the tables C.2 and C.3, it is seen that the vibration pattern of the ?8 mode




in the [110] domain is similar to that of the Tg mode in the [bﬁlj domain.
This similarity is confirmed by the fact that the frequencies of the modes
are approximately equal. If the effects of the spin-orbit coupling are as-
sumed to be small, one may reduce the number of parameters for the F8 mode
by taking a ~ 0 and d = e. After these simplifications one obtains
F(-3/2,3/2,3/2) = (3/2)x(c+8b) and since the TS mode was not observed in

0 = (-3/2,3/2,3/2) (cf. figure 6.8) one may conclude that c+8b = 0. This
means that the amplitude of atom 1 along the z axis is about 8 times larger
than the amplitudes of the atoms 4,5,6,7,10,11,12 and 13 perpendicular to

the z axis.

The vibration pattern of the F7 mode in the []ld] domain may be expected

to be essentially different, because this mode is observable at the zone
centre (2,2,0), and because it has a larger frequency than the modes con-
sidered above (=6.7 THz instead of =4 THz). The mode could not be observed
in (1,1,0), and one may therefore conclude that a+2b+2c = 4d+4e (cf. table
C.6). A large cross section in (2,2,0) is expected if a, b, c, d and e have

the same sign, which corresponds to a vibration pattern similar to a long-

itudinal vibration with ¢ = (0,0,0) and £ = 2_4(7,1,0). Since the F7 mode

was not observable in Q = (-3/2,3/2,3/2), it seems probable that a+2b+4f
= 2¢.

It has been found experimentally that the three mixed modes in the [llO]
domain are not observable in (-3/2,3/2,3/2). The three mixed modes in the
{bo{] domain are very similar to the T8 mode in the [ild] domain, and one
may therefore expect that these modes are not observable in the zone boun-
dary points L, either. Consequently, the mixed mode observed in (3/2,3/2,3/2)
for the multidomain sample (cf. figure 5.7) should probably be ascribed to
[111] domains. It seems likely that this mode corresponds to the P> mode in
the [111] domain. Inspection of table C.4 shows that the displacement vectors

u, for the ' mode are mainly along the E]lﬂ direction. The components of

u along the [11{] direction are equal for the atoms 2,4,7,8,10 and

lg, and the same applies to the displacement components along EHI] for the
atoms 3,5,6,9,11 and 12. A large cross section of the TS mode in

Q = (3/2,3/2,3/2) may be expected if these two sets of atoms vibrate in op-
posite directions. If this is the case, the mode resembles a longitudinal
vibration with g = (},},}). From the absence of scattering in Q = (0,0,1)

and (0,1,1) (see table 6.5 and figures 6.1 and 6.2) one may conclude that




the structure factors in these points, which are given in table C.7, are
small. This may be explained if it is assumed that the displacements per-
pendicular to Ell]j are small, and that the absolute values of the dis-
placements along tlll? are approximately equal. In that case one has
b=d=x-c=-e, F(0,0,1) = a and F(0,1,]) = 2a, which implies that only
atom 1 contributes to the scattering. If no simplifying assumptions are
made for the amplitudes, the small values of the two structure factors

may be interpreted in terms of the following relations: {a = b+c = d+e.

We shall not proceed to a discussion of the r6 mode in the [110] domain
6 : . P-4

and the I'" modes in the [ﬁll] domain, because these modes have not been

observed in the present scattering experiments. An investigation of the
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I'" mode in the |110| domain should preferably be performed along the

Dldj direction; the two modes (T6)l and (?6)2 in the Dll] domain are

expected to be observable along [11?] and [71@], respectively.

Although the general behaviour of the scattering cross section can be
explained by means of (7.3), difficulties are encountered when a quan-—
titative comparison is made between the cross sections for energy loss

in Q = (1,0,0) and (3,0,0). Since these scattering vectors differ by

a reciprocal lattice vector 1, for which exp(il.l) = ] (see (2.2)), the
phase factors exp{iQ.(Z'-1)} are equal for the two considered scattering
vectors, and hence one would expect the cross section to be proportional to
Q2 exp{~2W(Q)}. According to the values listed in table 7.2 the scatter-
ing cross section in (3,0,0) should be a factor 8 larger than in (1,0,0).

A rough estimate of the intensities in these points yields 190 n/10 min.

in (3,0,0) (figure 5.3, ¢ = 1.0) and 160 n/10 min. in (1,0,0) (figure 5.12).
For the determination of the latter value the background in figure 5.12

was assumed to be 1100 n/50 min. at v = 4.5 THz. Thus one obtains the ratio
1(3,0,0)/1(1,0,0) = 1.2 between the observed intensities, which is in dis-

agreement with the expected ratio.

This discrepancy may possibly be interpreted as an indication that the theo-
ry of imelastic scattering, summarized in section 3.4, does not give a pro-
per quantitative description of the scattering close to the zone boundaries.
It has been pointed out in section 5.3.1 that the scattering cross section
of the mixed mode for energvy loss processes close to the zone boundaries is

much larger than one would expect on basis of the detailed-balance condition




(3.22). It seems probable that these discrepancies between the experimental
results and the scattering theory are related to each other. A possible ex-
planation of the unexpected results is suggested in the next section, where

the attention is focused on the detailed-balance condition.

Table 7.2.

Comparison of scattering cross sections in (1,0,0) and (3,0,0)

ol il L 2 o | €Xp. value
Q" | exp(-2w) | Q° exp(-2W) 1@

1.783 0.984 3.128 = 16 n/min.

5.349 0.863 24.69 = 19 n/min.

7.4, The detailed-balance condition

As mentioned in section 3.4, the ratio between the cross sections for
energy gain and energy loss scattering is determined by the detailed-
balance condition (3.22), which is valid if (a) the scattering sample
is in thermal equilibrium and (b) the scattering process is reversible.
In the actual experimental configuration the final neutron wave vector
in the energy loss scan is not equal to the initial wave vector in the

energy gain scan, and (3.22) should be rewritten as

2 (k/k ) 2
g o’loss [ﬁw ) F o )
g = —— eXpPlr—] X — (7_6)
[ . Jloas (k/ko)gain kpT aade, gain

The calculation of the ratio between the two cross sections for

v = 5.0 THz, T = 298 K, k - 3,617 &£ and Kgain = 4986 &1 wiaida

loss
ldzh
dNdE

A comparison between the experimental results in the figures 5.3 and

2
49 ] (7.7)

= 1.30 x (EFEE

loss gain

5.4 shows that the scattering by the mixed mode observed at Q = (2,0,0)
is in approximate agreement with (7.7). Close to Q = (3,0,0), however,
the difference between energy loss and energy gain scattering is much

larger than predicted by the detailed-balance condition. It may be seen




from figures 5.6 and 5.12 that similar discrepancies between the cross

sections are found close to Q = (1,0,0) and Q = (-3/2, 3/25: 3/2)%

As the detailed-balance condition is directly related to two fundamental
assumptions in the scattering theory, it is of interest to consider why
the condition might be violated in the present scattering experiments.

It seems very unlikely that the scattering sample would not be in thermal
equilibrium, because the perturbations introduced by inelastic thermal
neutron scattering are negligible in comparison with the thermal disorder
already present. Hence the observed deviation from (7.6) should probably
be interpreted as an indication that the neutron scattering by the mixed
mode is not reversible. Below, we shall suggest a possible explanation,
which is based on the interaction of the localized polar mode with the

surrounding lattice.

The mixed polar modes introduced in the previous section are subject to
interactions with other excitations, in particular with the phonons. The
interaction with the transverse phonons near the zone boundaries is strong
because the frequencies are approximately equal. This interaction has been
discussed in connection with the observation of forbidden phonon scattering.
Moreover, the interaction with longitudinal phonons has been observed in
some experiments (cf. figure 6.9). As a result of the interacfion between
the mixed mode and the phonons, relaxation effects may be expected. If the
polar mode is initially created as an excitation localized at, for example,
13 lattice sites, it is expected to spread out over more distant neighbours
in the course of time, while it retains the same transformation properties.
Several properties of the mixed mode may be affected by this relaxation:

the phase differences between the vibrating atoms, the electron distribution,

the displacements u,, and even the frequency. In general, the localized mode

will acquire properties which are resembling those of a collective lattice

vibration.

It seems possible that the violation of the detailed-balance condition may
be explained if one assumes that the relaxation time is large in comparison
with the time involved in the neutron scattering process. In that case the
mixed mode created by a neutron has a more localized character than the re-
laxed modes which are observed in the energy gain experiments. In other words,

the final state in the energy loss experiment is not identical to the initial




state in the energy gain experiment, which implies that condition (b) on page

40 does not hold.

The observation time may be estimated by means of the uncertainty relation
AE = fi/At. In the time-of-flight experiments the mixed mode was observed

with a frequency width of the order 0.25 THz {AE = | meV), which corresponds

to an observation time of approximately 0.65 x 10—‘25. On the other hand,

1

2
“s, which is only

the relaxation time is expected to be of the order 1 x 10
slightly larger than the time involved in the scattering process. Still, it
seems possible that a mixed mode, created in an energy loss process, does

not reach its equilibrium state during the observation time. The distance
covered by the neutron during this time (= 17 R) is about 5 times larger than
the lattice constant (a = 3,524 R), and the set of lattice sites introduced
in section 7.3 can therefore only be considered as a first approximation in

the description of the experimental results.

The mixed modes observed in energy gain processes are in equilibrium

with the surrounding lattice, and may be assumed to involve a large
number of lattice sites. In this larger system the sites can be grouped
into sets that oscillate with the same phase and amplitude, in a similar
way as was done for the 13-site model. Since the number of lattice sites
is larger, the number of independent parameters in the displacement vec-
tors u, is larger, and one may expect that the scattering cross section
of theée modes does not show the pronounced maxima at the zone boundaries,
that are characteristic for a localized mode where nearest neighbour sites
oscillate in opposite phase. This is in agreement with the observation
that the cross section for energy gain scattering is approximately inde-

pendent of Q (cf. Q = (2,0,0) and Q = (3,0,0) in figure 5.4).

Our assumption that the mixed modes created by a neutron are not in
equilibrium with the lattice, is supported by the results of the con-
stant-Q experiments along the ETII? direction on the multidomain sample
(cf. figure 5.7). Close to the zone boundary the energy transfer between
the neutron and the mixed mode is clearly different in the energy gain
and energy loss experiment; the energy required for the creation of the

mode is larger than the energy released in the annihilation process.




7.5. Conclusion

This investigation grew out of earlier work on nickel alloys |20|. The
polar modes observed in the present experiments on nickel show a remark-
able similarity with the subject of that investigation: the magnetic im-
purity modes of a nearest-neighbour pair of iron atoms in Ni(Fe) |98|. The
experiments on Ni(47Fe) were aimed at a search for a possible impurity mode

6

transforming as the odd representation I' of D In view of the expected

2h’
variation in the cross section of this mode as a function of Q, the measure-
ments were concentrated near the zone boundary |20|. Obviously, this re-

gion in Q-space is also favourable for the observation of other excitations

transforming as odd representations, such as polar electron-hole excitations.

In the interpretation given in section 7.3 the attention has been focused
9 : d

on the I'" polar mode in a nearest-neighbour model, and naturally the ques-

tion arises whether one of the other polar modes could be the origin of the

observed scattering. Inspection of the decomposition (7.2) shows that,

besides , only one other odd representation (710) is present for the
13-site model. Subduction of TIO onto the point groups G:M leads to the
result that two of the three modes originating from Tlo gf 0h in the cu-
bic phase, may induce lattice vibrations in single domains. The lattice
site displacements u, of the resulting mixed modes transform as F]O of

%h in the GXH] domain, T6 and F7 of D2h in the [iuﬂ domain and F6 of

D3d in the I?ll] domain (see tables C.2, C.3 and C.4, respectively). It

is obvious that the experimental results cannot be explained on basis of
this mode, because it does not lead to the formation of mixed modes trans-

forming as
6.7.

of Din and r® of DZh’ as required by the results in table

Only little attention has been given to the observed interaction be-
tween the mixed modes and the magnons along the [EOOJ direction, mainly
because the experimental results are scarce. On basis of the preceding
interpretation of the mixed modes it is possible to make some remarks
with regard to this interaction. As the magnons have a spin s% = 1, the

A g . z z y !
coupling with mixed modes (with S” = 0) can only be due to an interaction

Hamiltonian which has the symmetry of Gﬁ(g). Spin-orbit coupling seems to

be the most probable interaction mechanism. The selection rules applicable

to the interaction between mixed modes and magnons may be found in table




o
B.2: coupling is possible if the mixed modes transform as r3 of Cp» i

of CS, or Fl of C,. To apply the selection rules the compatibility between
the representations of Gg-M and Gg(g) has to be determined for each single
domain, which leads to the results in table 7.3. It turns out that the polar
modes originating from the 79 modes in the cubic phase, may interfere with

the magnons in each of the domains investigated in this work.

Summarizing the discussion presented in this chapter, one may conclude that
almost all experimental results can be explained, at least qualitatively,

by polar electron-hole excitations interacting with lattice vibrations.
Spin-orbit coupling plays a dominant role in the observed phenomena. When
the crystal is magnetized, two characteristic properties of the mixed mode,
viz. the electron distribution over the sites, and the amplitudes and phases
of the displacement vectors Ey(t)’ are governed by spin-orbit coupling.
Secondly, the interaction between the mixed modes and the magnons would be

impossible in absence of spin-orbit coupling. The symmetry properties of the

o - -
Table 7.3.

ubduction table for the representations of the mixed modes onto the mag-

t
3 M =
netic point growps G (q) for g = (0,0,z) and (t,0,0).

M//Too1] M//T110] M//[111]

gt
(o]

M
G
JO(O’O»C)

(,J:(c,o,O) rle LC]

mixed modes determine the characteristic features of the scattering cross
section, in particular the peculiar variation of the cross section as a
function of the magnetization direction. Polar modes of the type consider-
ed above are most easily observed if the scattering vector Q is either
parallel with or perpendicular to the magnetization direction. Along these
directions the cross section for energy loss scattering is a periodic func-
tion of Q due to interference between the scattering contributions from
different sites. If, on the other hand, 0 is not oriented along or perpen-
dicular to M, the scattering cross section is in general small as a result

of destructive interference.




Other aspects of the experimental data, in particular the constant fre-
quency of each of the modes, and the irreversibility of the neutron scat-
tering process due to relaxation effects, are related to the fact that

the mixed mode is a localized excitation in interaction with its surround-
ings. The observation that the energy loss scattering does not vary ap-—
preciably with temperature is in accordance with the interpretation in terms

of a single electron excitation connecting states close to the Fermi level.

A few comments should be added with regard to the frequency of the mixed
modes. To explain the pronounced maxima in the energy loss cross section

at the zone boundary points X and L, we had to assume that the vibrations

of the atoms in alternate layers perpendicular to Q were in opposite direc-
tions, parallel and antiparallel with Q. In this case, the oscillations of
the atoms in the mixed mode are very similar to those in a longitudinal lat-
tice vibration with a wave vector q corresponding to X or L, the main dif-

ference being that the mixed mode involves only a small number of atoms.

Still, one might expect that the frequency of the localized mode would

be approximately equal to the frequency of the longitudinal phonon in X

or L, if the coupling with the electron-hole excitation were "switched

of f". It seems therefore probable that the energy difference between the
polar electron distribution and the periodic electron distribution is
roughly equal to the energy difference between the longitudinal phonon

and the mixed mode at the same point at the zone boundary. From the ex-
perimental results in Q = (3,0,0) for the multidomain sample (cf. figure
5.5) one obtains in this way an estimated value for the energy of the
electron excitation: - 17.8 meV. The minus sign indicates that in this
exceptional case, where a local perturbation has been created in the lat-
tice, the polar electron distribution has a lower energy than the periodic
electron distribution. The value given above has been derived from the
frequencies v = 8.55 THz and 4.25 THz; accidentally, the difference is al-

most equal to the frequency of the mixed mode.

There is a striking similarity between the scattering bv the mixed modes

and the scattering bv the perturbed LS and £3

X and L (see figures 5.3, 5.4 and 5.6). The scattering by the perturbed

phonons close to the points

phonons is obviously in disagreement with the detailed-balance condition.
An explanation of this disagreement between energy loss and energy gain

scattering in terms of relaxation effects, as presented in section 7.4




for the mixed modes, may be given if one assumes that the perturbation of

the phonons is due to the interaction with the polar electron-hole excita-
tions: As a consequence of the perturbation of the lattice, introduced in
the course of the creation process, a localized electror-hole excitation

is created in addition to the phonon. Since the polar electron excitations
are essentially longitudinal modes, the interaction with the transverse
phonons is weak. The coupling leads to a change in the direction of the
polarization vector of the phonon and a slight change in the phonon frequen-
cy. Both effects have in fact been observed. If these mixed modes are ini-
tially created as strongly localized modes, which are not in equilibrium
with the lattice, violation of the detailed-balance condition may be expect-

ed in this case, too.

For the theoretical description of the electrons in transition metals it is
of interest that polar electron-hole excitatioms, in combination with lat-

tice vibrations, are found to be present in nickel. From the fact that the

frequencies of the mixed electronic-vibrational modes are well-defined,

one may conclude that their life time must be larger than = 0.7 X 10-‘2 s.
Furthermore, it has been shown that these mixed modes, which have fre-
quencies of the same order as the phonon frequencies, may be observed by
means of neutron scattering. If a mixed mode is created in a neutron scat-
tering process, it is fairly localized, but not in equilibrium with the
surrounding lattice. It seems likely that mixed excitations with low fre-
quencies are also present in other metals, especially in those metals where
the electron-phonon interaction is strong. However, it is easier to perform
an investigation on these modes in a ferromagnetic metal, because it is pos-
sible to distinguish the scattering by the modes from possible spurious scat-

tering processes by applying a magnetic field along svmmetry directions.




APPENDIX A

Character tables

In this appendix a compilation is given of the transformations and

character tables used in the preceding chapters and in appendices B and C.

The proper rotations {R|0} are defined by means of the following notation

for the symmetry directions: |24

a: [110] a: [111] x : [100]
b : [110] g : [N1] y : [010]
c : [101] y :+ [117] z : [o001]
a:fio] sl

e : [011]

£ : o]

The transformations are denoted by

E : the identity operation,

Cha» etc.: rotation through 2v/n in the right-hand screw sense
about the a direction,

I : space inversion,

ICna,etc.: improper rotation.

In table A.] a list is given of the transformation matrices for the
proper rotations R. The traces of the matrices Di(R)’ which are needed
for the reduction of T;OIH into double-valued representations Té, are
listed in table A.2. In the following tables A.3 - A.15 the characters
of the irreducible representations are given for 14 of the 32 point

fg and LB have been omitted and the represen-—
tations are denoted by a superscript only; in some cases the notation

groups. The subscripts in
according to Bouckaert et al. (BSW) |44| is given in addition. A class

of operations, which may consist of more than one element, is denoted

by Hi in the tables A.5 - A.15. The characters for the 'barred" rotations
R have been omitted from the tables. These may be derived by making use
of the relations x(R) = x(R) for the single-valued.representations and
x(i) = -X(R) for the double-valued ones. In general the double-valued
representations are listed only if they have actually been mentioned or
used in the text. In the last column of each table the letters a, b or

¢ indicate to which case the representation belongs with respect

to time reversal. The phonon polarization vectors for the




doubly degenerate 45 and A3 branches have been determined by means of
the two-dimensional representations given in tables A.ll and A.13,

The two-dimensional representations rio of Dy, and T of Dygs given in
tables A.12 and A.14, respectively, have been used to determine the
eigenvectors ¥ and u for the polar modes (cf. appendix C). For the
other two- and three-dimensional representations only the characters
are tabulated. Finally, each table contains a list of the corresponding

M *

. & < +M 4 . ”
point groups G _(Q), G M(9_). G:(g). G, (q) or G (q) with their symmetry

o}
operations.,
Table A.1.
Coordinate transformation matrices B
R R R R R R R R
10 100 010 100
E 01 Cay 01 9 Cra 10 9 2 0 9
001 001 \0 0T 0710
100 10 010 100
Cu| 010 Cyy 01 Cop 100 Cog 001
01 001 \0 0 1/ 010
100 010 | 10
Cax 01| | Cse 100 Cac 0T0 Cas 001
010 001 100 100
] 010 0071 001
Cael 00T |7 100 Cag 0T 0 C3s 100
4z -
010 001 \1 00 010/
| ‘1 | i ! J

Improper rotations: I = -E, IR = -R
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Tabie A. ¢
+ . = +% e o
Character table for the point group L,

G.(Q) =C, for M // [111], Q@ = (1,0,0), (0,1,1), (0,113
M // [001], @ = (0,1,1).

Table A.4
Character table for the point group C.
time
E
rev.
l
4
T 1 | a
S
1 =23 a




Table A.S.

Character table for the point groups Cq and Cy

time
rev.

(1,1,0), (1,0,0)

(0,0,1), (1,1,0)

(0,0,2), (2,2,0)
(n,%,%)

(0,1,1)
(1,0,0), (0,1,1)

(0,1,1)

Table A.6.

Character table for the point group Cg

time
rev.

- q
[o01] (1,0,0)
[110] (¢0,0,1), (0,0,0)

[111] (1,0,0)




Q

;é*(g)= Cy  [001] (1,0,0) E Cox ICay IC,,
1001] (1,1,0) E  Ca ICy; ICy
(110] (0,0,1), (0,0,2) E  Cp, ICp, ICy,
Lo} (1,1,0), (2,2,0) E Cyp 1€y, ICy,
Jc(g) = Clv for q:™ (D,%5T) E Crg ICo4 IC?_e
Table A.8.
Character table for the point group D,
’ P B R 5 R R R, | time
.22 B3 a5 5. % = w8 rev.
Lo i 1 1 1 1 1 1 | 1 a
1 =1 1 -1 | S S a
|
o=l -1 1 1 -1 -1 1 a
1 1 -1 -l 1 1 -1 -l a
[ 1 1 ! 1 -1 -1 -1 =l a
1 -1 1 -1 -1 1 -l 1 a
} 8% 5= 1 -1 1 1 -l a
1 1 -1 =1 =1 -] ] 1 a
G, (@) = Dyy: [001] (1,0,0) Cax Cay Czz I 1IC2x ICyy ICp,
110! (0,0,1), (0,0,2) Cpz €24 Cpp I ICy, ICp5 ICyy




132’ =

Table A.8§.

Character table for the point group C

¢

< . " | time
R R {
) HZ “3 4 | rev.
~a - | 1 ‘
Fo | 1 | ] [ a
r2 |1 -1 1 -1 a
r3 |1 i -1 -1
o (0 B S i b
M - L =
G,(Q) = c, for M // [001], Q = (0,0,1): Ry = E; Ry =C, ; Ry =
-1
RA = CQZ.
Table A.10.
Character table for the point group C,,
| | time
o 124 24
Ay Ry TRy By By Ke & Ry | zev.
r; ‘i 1 I 1 1 1 ] 1 1 a
I ] -1 ] -1 ] -1 1 -1 a
ra g i -1 -i | i -1 -i b
t“ |1 =i -1 i 1 =i -1 i b
rs | | 1 1 -1 =1 =1 -l a
ré 1 - S RS 1 -1 1 a
r7 | 1 i -1 =i -1 =i ] i b
rée |1 =i -1 i -l i 1 i b
M = Mot - R - ¢ R = : R
G,(a) = ¢, for M // [001], g = (0,0,1): Ry =E; Ry =C, ; R
R = -1 . ) - . R
R, =Cpp3 F T3 Re
. PR 1
Ry = 1C2; 3 Xg Icéz'




The notation Ag and A7 for fi

C,, for M // [001], Q = (0,0,1)

(z,0,0)

Two-dimensional representation .4

n p=]
E 2 L‘,‘X 4
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Table A.12.

Character table for the point group Dy

o2} GG GR) Gl e

rl0(Ir) = -rto(Rr)

8, B Bs BLAR R BB ‘Risip time
iy iy, Mg g S8 A Wi g g M5t ‘rev
& X rl 1 1 1 1 " | { l 1 . !
5 A e

I 17 £ LR TR T TR T O a

X3 r3 1 =1 1" =] 1 1 -1 1 -1 1 a

U o A (R T T T M N =

Xs 2 0 -2 0 0 2 0 -2 0 0 a

X} 01 1 1 1 1 -1 -1 -1 -1 - &

U AN [ TR U T (i T T S (R C 4

S

S L I T T R T S T A a

X} 2|1 -1 1 1 -1 -1 1 -1 -1 1 .

X T 2 .02 6 @ 2.0 2.0 0 .
G for M // [001] 0,0,1):
G, (@) = Dbh or M // [001], g (0,0,1):

" -1, B .
Rl =E; R2 = sz, Czy; R3 = sz; R, = CAZ' CAZ : RS - Cza) Czb ;
= - = . - - = _] =
Re =13 .’-77 ICox>» ICZy 3 Rg ICy, 3 Rg 26 gs chz ; RIO Fnes Iczb
Two-dimensional representation I''?
-1
E Cax Cay Co, C4z Céz C2a Cop




Table A.13
Character table for the point group C,
*) > 7 o 4 time
i 1 2 3 | rev
' |
3 | 1 [
S l | l a
[ 1 1 =1 l a
) 2 -l 0 | a
Ty ] g | 1 ! b
T ! 1 =i =g | b
| 2 1 0 c
|
#) The notation Ay, As and Ag for f; is due to Parmenter
7 (q) =C,  f = (£,5s8) Ry = E; Ry = Cory Cop 3
! dy ToRS SRR el i $ (Mot SREasN Vay sy

Two-dimensional representation A3 for q = (z,z,z2).

4
38 C35 ICoy 14

m
O

ah
LaQo

S

e A.1

o~

37 ~ s . "
Character table for the point group Dzg
iaracte Wee Jor vhe pownv group Uzdg

= i ; : time
Bl e S Tt 57

N
1
o
1
nN
o
o



M

G, = Dy, for M//[111]: Ry =E; Ry = Cycy Caoi By = €y Coyy Co
= . = =1 2 = C
R, = 135 RBg = 1Cy,, €71 5 Rg = 0oy, ICyg,
Two-dimensional representation I'®
E Can =1 f
36 C3s C2p C24 Cae
(1 o) -4 -;v§j -4 4/?) -1 0y (4 5-3} (i -4v3)
— ! . — " . - |
LO 1 (4,3 -1 t-i“ -4 L 9 1y W3 =§) N33 =7
ré(IR) = -Tr(R)
Table A.15.
Character table for the point group 0,
7 B R B D 2 o D | time
s Ry" By By By By Re g 'Hg g “Hi5| ‘rev.
ry rl ) O (IS (IS e /- () SO G [ a
r, r2 s TG (IR 205 TS VIR ) S T = a
P03 (2P s 2 6 "0 2= #2 1 6T a
et hegiug g 5 3T 05T 1 EE A
Eie 17 3 0 =) = L 3 0 =F =& | a
Py I8 s O R I S (R R R a
B T L 0 R A A | TR M T a
el W T TG I« - S T a
Pagd® |8 @ = =k =3 0 ¥ =t | a
Doy PR A 0 & =p b =3 G0 ) = a
G.=0.: R, ,=E; R,=¢C c c ¢ gt e
o el % 552 3a’ “38° “3y® “36° “3a’ 38" “3y* "35°
- : - -1 o)
Ry = Coxs Coys C2z3 By = Cux» Cays Chzs Cppr Cuyo
Rs = C2a» Cops Cac» Coa» C2ev Caf

the elements in A .
2*]

are the

corresponding to the proper rotatioms R in R

improper rotation IR

J

N

Iqu.

=]
Cbz’




APPENDIX B

Analysis of neutron scattering data by application of selection rules

In this appendix a group-theoretical analysis is given of the time-of-
flight results summarized in tables 6.3, 6.4 and 6.5. We recall that
scattering by the mixed modes was observed at 2 = (0,0,1), (1,0,0) and
(1,0,0) in a [001] domain, and at Q = (0,0,1) in a [110] domain. The
mixed mode was not observed at Q = (1,1,0) and (0,1,1) in a :OOlt do-
main, at Q = (1,1,0) in a :llO] domain, and at Q = (0,0,1), (0,1,1) and
(0,1,1) in a :lll] domain. The absence of scattering for a particular
scattering vector Q is interpreted as a consequence of the selection
rule for neutron scattering, which is based on the point group of Q
(cf. section 3.4.3). Below we shall treat the two cases (a) and (b)

mentioned in section 6.6.

Case_(a): Neutron scattering with or without spin flip on basis of the
point groups G:(g). In table B.l the subgroups 5§(2> for the investi-
gated points Q are listed, while the symmetry operations and character
tables belonging to these point groups are given in appendix A.

By inspection of the character tables one may easily identify the
irreducible representations for excitations with spin 0 and %1, which
can give rise to neutron scattering without and with spin flip, res-
pectively. Excitations with spin O transform as rl in each group, where-
as excitations with spin +l are characterized by K(ICZZ) - X(CZZ) = -]
and X(IC4,) = X(C4p) = +i in the [001] domain and by X(ICp,) = X(Cya) =
-1 in the :Iﬂi» domain. The representations of observable excitations

are listed in the left-hand part of table B.2.

One may conclude from table B.] that the selection rules based on the
magnetic point groups do not give a satisfactory explanation for all

experimental results:

1. In several cases the point group is C with only one single-valued
representation I'!. Hence neutron scattering by the mixed mode is not
forbidden in the points 91’ g2 and 23 for the :lll] domain and in Q,

for the fOOl] domain.

[ %]

For the LIlO: domain the subduction of an arbitrary representation
of Cyy onto the identical point groups of Q] and 22 yields the same
representation of Ce» and the cross sections in these points should

therefore be of comparable magnitude.



Both conclusions are valid irrespective of the spin states of the
neutron before and after scattering, and are in disagreement with the

experimental results.

Table B.1

Magnetiec and pseudo-magnetic point groups in single domains
g I I g g

M L aM
L8 9. Yo

(1,0,0) o A. Dop
(1,0,0)
(0,1,1)

(0,0,1)
(0,0,1)
(1,1,0)

(1,0,0)
(1,0,0)
(0,1,1)
(0,1,1)

(0,0,1)
(0,0,1)
(1,1,0)

Table B.2

Exeitations observable by means of neutron
geattering with scattering vector &.




On the other hand, one may select three possible representations for the
mixed mode with g = (0,0,1) in the [OOIJ domain that are in agreement
with the experimental results. To establish the selection rules one has

to reduce the eight irreducible representations of G:(g) = th onto the

subgroups Gg(gl) = C4 and GZ(QQ) il K This subduction is performed by

means of (2.5) and (2.6), where the summation in (2.6) is restricted to
the elements of the subgroups and the characters are taken from the
appropriate tables in appendix A. The results are collected in table B.3.
Since the mixed mode is observed in 91 = (0,0,1) it must transform as T!
of Ca if its spin is 0 or as r3(r%) if its spin is +1(-1). The absence
of scattering in 92 = (1,1,0) indicates that the mode transforms as <

of Cg; if its spin is 0 or as r! if its spin is 1. From table B.3 it is
found that the excitations transforming as I, I'” and I'® of Cin satisfy

these requirements.

Table B.3.

Subduction table for excitations with g = (0,0,1) in a [001) single domain.

Pogsible representations for the mixed mode have been indicated.

M
G
o

magnetic point groups G;M(g). As mentioned in section 6.6, excitations
transforming as irreducible representations of a pseudo-magnetic point
group do not have a magnetic moment, and only scattering without spin
flip can occur. Furthermore, there is no distinction between the two
spin states of the neutron: the spin states |+> and |+> transform either
as a two-dimensional representation (I'® of Coy» T® of C4y) or as a

pair of complex conjugate, one-dimensional representations (I'3 and r“

of C; or C,). In the latter case r? and ' represent two different li-

near combinations of both spin states and neutron scattering without




spin change occurs if the initial and final state of the neutron trans-
form as the same representation. If the neutron states transform as a
two-dimensional representation, one may distinguish between scattering
processes with and without spin flip by applying the selection rule

considered in section 3.4.3.

The selection rules are applied to the point groups GzM(g) listed in
table B.l. For each of these groups the observable excitations with

spin 0 are given in the right-hand part of table B.2, and the subduc-

tion of the representations of G;M(g) onto the subgroups GZM(Q) in

table B.4. It should be emphasized that the pseudo-magnetic point groups
for the scattering vectors 91 and 92 in the [llQ] domain do not consist
of the same elements; hence the subduction onto these two groups yields
in general different irreducible representations, which means that the

scattering cross sections in 91 and 92 are different. On the other hand
the point groups GEM(QI) and GSM(QQ) for the Ellﬂ domain are identical
and the cross sections in 91 and 92 are therefore of comparable magni-

tude in this domain.

A selection of possible irreducible representations for the mixed mode
can be made by means of the subduction table B.4, which leads to the
results given in table 6.7. When the experimental results in g] = (0,0,1)
and 92 = (1,1,0) in the [bo[} domain are treated on basis of pseudo-
magnetic point groups, one finds that the mixed mode with q = (0,0,1)

: 4 n9 M -
transforms either as I'* or as I'” of Go () DAh'
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Table B.4

Subduction table for excitations in single domains.

Possible representations for the mixed mode have been indicated.

~2M =
M q, _Q_i G table I's
[001] | g = (0,0,1) | D, | A.12

4
Q, = (0,0,1) [ Cpyy | AL1I
Q = (1,1,0) | Cpy | A.7

[o01] | g = (1,0,0) [ D,, | A.8
_Q_] = (1,0,0) Coy A.7
Q= (0,1,1) c; | A:s

[110] | ¢ = (0,0,1) | Doy, | A.8
Q; = (0,0,1) | Cpy | A.7
Q = (1,1,0) | Cpy | A7

[111] | g = (1,0,0)| Cop, | A6 | T 12 13 [7¥]
Q = (1,0,00]¢c, | A5 [rt r2 prl |2
Q= (0,1,1)| ¢ | A5 | i p2 pl |r2
Q3= (0,1,1)[ ¢, [ A5 [} ! p2 [r2




Neutron-phonon scattering in single domains

To establish the selection rules for neutron-phonon scattering in single
domains the representations of the phonons should be subduced onto the
magnetic or pseudo-magnetic point groups. For phonons with q along the

IOOI: direction the results of this subduction are collected in table B.5.

Table B.§

Subduction table for Ay and As phonons in single domains

M M
q g (q) 8 . Jo(g)

(%2,0,0)
(0,0,%)
(z,0,0)
(0,0,2




APPENDIX C

Symmetry properties of polar modes

In this appendix the eigenvectors are tabulated for the polar modes that
originate from the triply degenerate I'° state in the cubic crystal.

The eigenvectors Y of the electron-hole excitations are listed in table
C.]1 for three magnetization directions. Each mode may be characterized
by a specific polarization direction, indicated in the last row of the
table. The probability to find the electron at site . is given by YZ?Z.
where the positions of the sites are shown in figure 7.1.

Table C.1.

3 . . : ..
Eigenvectors Y of polar modes in single domains )

M// [001] M//[110] M//[111]

17y ()

0
0
d

O W ® N 00 o LoN

W N -

[o01]  [1o0q] [o10] | [110] [T10] [oor] | [111] [112]

*) a= 8‘*; £f= 6'*; the values of b, ¢, d, and e are defined for each

domain separately, and are subject to the normalization condition
13

vy

l

g R




A polar electron-hole mode induces vibrations of the lattice sites, which

are described by the displacement vectors u. For each of the polar modes

in table C.l the symmetry properties of the vectors u, for the 13 sites
=7

in figure 7.1 are summarized in the tablesC.2, C,3 and C.4, When some

x CR ? a
components uzs u{, or u; in the tables are equal the corresponding oscilla-

tions of the sites are in phase and have equal amplitudes. Similarly,
components with the same absolute value but opposite signs correspond

with oscillations in opposite phase with equal amplitudes.

Table C.2.

Displacement vectors u for mixed polar modes
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a, b, ¢, «.. are defined for r? and ri0, separately.

u,(rt%) is constructed by means of the projection

Pyy (r10)u, (ri0) = u,(rif)
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to obtain the proper phase relationship between u, and
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a, b, ¢, +vv.. are defined for each representation separately.




Table C.4.

isplacement vectors u for mized polar modes
A

in a Elll] domain; G; = D3d‘)
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a, b, ¢, +.... are defined for IS and I'®, separately.

g_l(rﬁ) is constructed by means of the projection

P12 (r®)us(r8) = uy (T9).
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Structure factors for mixed polar modes

The neutron scattering by a mixed polar mode is related to the struc-
ture factor of the mode, which is defined in (7.4). In the following
tables C.5, C.6 and C.7 the structure factors F(Q) are listed for
those points Q that are of interest for the present investigation.
The parameters a, b, ..., used for a specific mode, are identical to
the parameters occurring in the displacement vector u for the same

mode. It should be emphasized that the parameters are defined for

each representation, separately.

Table C.S5.

Strueture factors F(Q) for mized polar modes
in a [001] domain
Q r’ {ia a9,
(0,0,1) b+4c~8d 0 0
(1,0,0) 0 a-4b+4c-4d 0
(0,1,0) 0 0 a-4b+4c-4d
(1,1,0) 0 a+4b-4c—4d a+4b-4c-4d
(1,1,0) |0 athb=4c-4d | —a-4b+hcthd
(0,1,1) b=4¢c 0 a~4b-4c+4d
(4,4,%) i(b+8a) i (a—be+4f) i (a-4e+4f)
(0,0,2) b+4c+8d 0 0




Table C.6.

Structure factors F(Q) for mixed polar modes

in a [110] domain

Q

(0,0,1) 0 0 c+2d+2e-8f
(1,0,0) | a-2b-2c+4d-4e a-2b-2c+bd-he 0

(0,1,0) a=-2b-2c+4d-4e -a+2b+2c~4d+4e 0

(1,1,0) | 2a+4b+4c-8d-8e | © 0

(1,1,0) | © -2(a+2b+2c~4d-4e) | O

(1,4.4) | © —a~2b+2c-4E Jo+d-e+batsb
2,2,0) | o -4 (a+2b+2c+4d+be) | O

Table C.7.

Structure factors F(Q) for mired polar modes

in a [111] domain™

Q o (Té)l

(0,0,1) | a=4b=4e+2d+2e -2a+hb+herbd-tbe-4E+bg | O

(1,0,0) | a~4b-4c+2d+2e a-2b-2c-2d+2e+2f-2g a-2b-2c-2d+2e+2£-2g
(0,1,0) | a=4b-4c+2d+2e a-2b-2c-2d+2e+2f-2g | -a+2b+2c+2d-2e-2f+2g
(1,1,0) | 2a=4d-4e 2a-4b+4c-4d-be-4f+4g+ 0

-8h-8i
(1,1,0) | 0 0 2a+hb-betbd-be-bE-4g
(3,4,4) | (3a/2)-6b+6c-3d+3e | O 0

I(Q,I,g) ja-2b+2c+3d-3e a-2b+2d-2h+2i a+2b-2d+2h-2i

*) The column for (76) contains the values V3 x F(Q).
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SUMMARY

The present thesis deals with excitations in ferromagnetic nickel in
the frequency range between 1 and 10 THz, the interest being focused

on the mutual interaction between the excitations in the electron sys—
tem (magnons and electron-hole excitations) and those in the crystal
lattice (phonons). The experimental investigation was carried out on
natural Ni by means of two neutron spectrometers installed at the High
Flux Reactor in Petten. All the experiments except one were performed
at room temperature, both on multidomain and single-domain single crys-

tals. A separate experiment was performed at T = 82 K.

To investigate the coupling between the electrons and the phonons, a
search was made for magnetic perturbations of the phonons. From the

observation of "forbidden" neutron-phonon scattering along the sym-

metry directions [100] and [I]I] it was concluded that the polarization

vectors of the phonons deviate from the directions expected in a crys-
tal with cubic symmetry. The deviations of the polarization directions
were interpreted as a result of the spin-orbit coupling of the elec—

trons, which leads to a reduction in the symmetry of the crystal.

In addition to the phonons and magnons, a new type of excitation was
found., The formation of these excitations, which possess both electro-
nic and vibrational properties, is probably a result of electron-phonon
interaction. Various mixed modes with different transformation proper-
ties were observed. Fach of the modes could only be observed in a limit-
ed region of the Brillouin zone, their neutron scattering cross section
being strongly dependent on the orientation of the scattering vector Q
and the magnetization direction. The energy of each mode was found to

be almost independent of the wave vector, and the analysis of the experi-
mental data led to the conclusion that the spin quantum number S% of the
modes is probably zero. Most of these results could be explained by as-
suming that the mixed modes consist of a localized lattice vibration

coupled with a polar electron-hole excitation.

The analysis of the experimental results has to a large extent been car-
ried out by means of group-theoretical methods. Selection rules were ap-
plied to derive the transformation properties of the perturbed phonons
and the mixed modes from the scattering cross sections observed in dif-

ferent points in reciprocal space.




Strikingly enough, the neutron scattering by the mixed modes and the
perturbed transverse phonons was found to be in disagreement with the

detailed-balance condition, which gives the relation between the cross

sections for energy gain and energy loss processes. The perturbed pho-

nons and mixed modes are easily observed in creation (energy loss) pro-
cesses, but are almost unobservable in annihilation (energy gain) experi-
ments. These results seem to indicate that the localized mixed modes and
nearly transverse phonons that are created in an energy loss process,

are not in equilibrium with the surrounding lattice. This may be the case
if the relaxation time is larger than the time involved in the neutron

scattering process.




SAMENVATTING

Het in dit proefschrift beschreven onderzoek is gericht op de excitaties
in ferromagnetisch nikkel, in het bijzonder op de wisselwerking tussen
de excitaties in het elektronensysteem (magnonen en elektron-gat exci-
taties) en de excitaties in het kristalrooster (fononen). Het experi-
mentele onderzoek is uitgevoerd met behulp van inelastische neutronen—
verstrooiing, waarbij gebruik is gemaakt van twee neutronenspektrometers,
opgesteld bij de Hoge Flux Reactor te Petten. Met uitzondering van &én
experiment bij T = 82 K zijn de metingen verricht bij kamertemperatuur.
Als preparaat zijn &énkristallen van natuurlijk nikkel gebruikt, aan-
vankelijk ongemagnetiseerd, later gemagnetiseerd langs symmetrierich-

tingen.

De wisselwerking tussen elektronen en fononen kon worden aangetoond door

de waarneming van magnetische storingen in de roostervibraties. Uit het

optreden van "verboden" neutron-fononverstrooiing langs de [iOQ] en [lli

richtingen kon worden afgeleid dat de polarisatievektoren van de transver-
sale fononen afwijken van de richtingen die voor een kristal met kubische
symmetrie verwacht worden. Deze afwijkingen in de polarisatierichtingen

worden toegeschreven aan een verlaging van de kristalsymmetrie als gevolg

van de spin-baankoppeling van de elektronen.

Behalve fononen en magnonen zijn, onverwacht, gemengde excitaties waarge-
nomen, Het bestaan van deze excitaties, die zowel magnetische als vibratie-
achtige eigenschappen blijken te bezitten, is waarschijnlijk een gevolg van
de wisselwerking tussen de elektronen en het kristalrooster. Verschillende
gemengde excitaties, te onderscheiden aan de hand van hun transformatie-
eigenschappen, konden worden waargenomen. Elke excitatie bleek echter slechts
in een beperkt gebied van de Brillouin zone waarneembaar te zijn, waarbij

de werkzame doorsnede voor verstrooiing bovendien sterk afhankelijk is van

de richting van de magnetisatie ten opzichte van de verstrooiingsvector.

De energie van elke excitatie bleek nagenoeg onafhankelijk van de golfvector
te zijn. Daarnaast kon uit de resultaten afgeleid worden dat de excitaties
waarschijnlijk geen magnetisch moment bezitten (Sz=0). De meeste van boven-
genoemde resultaten konden worden verklaard door aan te nemen dat de gemengde
excitaties ontstaan door een koppeling tussen een lokale roostervibratie

en een polaire electron-gat excitatie.




Bij de analyse van de experimentele resultaten is veelvuldig gebruik ge-

maakt van methoden uit de groepentheorie. Selectieregels zijn gedefi-
niéerd voor de verstrooiing van neutronen door willekeurige excitaties in
een kristal, waarna met behulp van deze regels de transformatie-eigenschap-
pen van de waargenomen gestoorde fononen en gemengde excitaties zijn afge-
leid uit de grootte van de werkzame doorsnede in verschillende punten van

de reciproke ruimte.

In tegenstelling tot de verwachting bleek, dat de neutronenverstrooiing

door de gemengde excitaties niet voldeed aan de 'detailed-balance'" voorwaar-
de, waardoor de verhouding tussen de werkzame doorsneden voor creatie- en
annihilatie-processen wordt bepaald. De gestoorde transversale fononen en
gemengde excitaties zijn goed waarneembaar in creatie-processen, daaren-
tegen niet of nauwelijks in annihilatie-processen. In dit resultaat kan mo-
gelijk een aanwijzing gezien worden dat de aangeslagen excitaties gedurende
het verstrooiingsproces niet in thermisch evenwicht met het omringende roos-
ter komen. Dit zou zich voor kunnen doen als de relaxatietijd groter is dan

de tijd gedurende welke het verstrooiingsproces plaats vindt.




NAWOORD

Velen hebben op verschillende wijze medewerking verleend tijdens het in
dit proefschrift beschreven onderzoek, en daarna bij de totstandkoming
van het proefschrift zelf. Gaarne wil ik mijn dank en erkentelijkheid

hiervoor uitspreken.

De grote belangstelling van Dr. B.0. Loopstra voor het onderzoek heeft
mij sterk ik mijn werk gestimuleerd. De gesprekken met hem en met
Dr. P.F. de Chatel zijn van grote betekenis geweest voor de voortgang

van de experimenten en het uiteindelijke resultaat ervan.

Dr. J. Bergsma en Dr. C. van Dijk dank ik voor hun bereidheid de

drie-kristalspektrometer geruime tijd ter beschikking te stellen.

De vliegtijdspektrometer werd ontworpen door de heer S. Slagter, die
bovendien, in samenwerking met de heer P.H.J. Disseldorp, veel steun
heeft verleend bij het oplossen van technische problemen die zich tijdens
het onderzoek voordeden. De bouw en het onderhoud van de elektronische
apparatuur werden verzorgd door de heren Th.H. Terwisscha van Scheltinga,
H. Ames en P. Borst. Bovendien is bij de uitvoering van de experimenten

medewerking verleend door de reactorbedrijfsgroep.

De directie van het Reactor Centrum Nederland ben ik erkenteliik voor

de mogelijkheid de tekst tegelijkertijd als proefschrift en als extern
rapport (RCN-185) te laten verschijnen. De figuren werden op zorgvuldige
wijze vervaardigd door de heer F. de Jong. Veel waardering heb ik voor
de uitvoering van het typewerk, dat in nauwe samenwerking werd verzorgd

door mevr. Ph.Y. de Boer-Heiliegers, mej. M.J.M. Ligthart en

mej. G.E. Mdls. De reprografische dienst onder leiding van de heer

E. van Rooy dank ik voor de druktechnische uitvoering.

Tenslotte dank ik mijn vrouw voor de steun en hulp die 2zij mij tijdens

de totstandkoming van dit proefschrift gegeven heeft.




CURRICULUM VITAE

De auteur van dit proefschrift werd in 1934 geboren te Edam.

Hij bezocht de Rijks Hogere Burgerschool te Purmerend waar hij in 1953
het eindexamen B aflegde. Na vervulling van zijn militaire dienstplicht
begon hij in 1955 met zijn studie aan de Rijksuniversiteit te Leiden.
In 1958 legde hij het candidaatsexamen A' af in de natuur- en wiskunde
met bijvak sterrekunde. Gedurende de studie voor het doctoraalexamen
nam hij deel aan experimenteel onderzoek op het gebied van de
magnetische susceptibiliteit van éénkristallen, onder leiding van

Prof. Dr. J. van den Handel. Daarnaast verleende hij assistentie bij het
natuurkunde practicum. Bovendien was hij tijdens het studiejaar 1961/62
werkzaam in de groep Neutronenfysica van het Institutt for Atomenergi
(IFA) te Kjeller, Noorwegen, waar hij als stagiair gedetacheerd was
door het Reactor Centrum Nederland (RCN). Tenslotte legde hij in juli

1962 het doctoraalexamen natuurkunde met bijvak klassieke mechanica af.

In augustus 1962 trad hij als wetenschappelijk medewerker in dienst van

het RCN. Van 1962 tot 1965 was hij gedetacheerd bij het IFA te Kjeller,
waar hij onderzoek verrichtte op het gebied van ferromagnetische
metalen. Vervolgens zette hij zijn werkzaamheden voort in de groep
Neutronenfysica van het onderzoekcentrum te Petten, waar.gedurende de
periode 1969-1972 het in dit proefschrift beschreven onderzoek werd

uitgevoerd.
















