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ERRATA
1. Fig. 1I-15 replaces fig. II-5 and fig. II-5 is discarded.

2. The figure underneath has to replace fig. I1I-15.
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N.B. The captions of both figures are correct.







According tothe wishofthe Faculty for Wis- en Natuur-
kunde of the Leyden University I give here a short des-

cription of my education.

After having finished mystudies at the AbbasiaSecondary
School in 1946, I studied at the University of Alexandria
from 1946 to 1950 and finished with my B.Sc. in pure
Mathematics. I got my masters degree in Physics in

1955 at the same University.

In the meantime I was employed by the Ministery of
Education and did some exploration research for the
Atomic Energy Commission in the Red-Sea Coast and
Sinai.

In 1955 I was seconded to the University of Khartoum as a
Lecturer in Physics, andin 1958 Prof. Dr. J. Kistemaker
invited me to join his research group in the F.O. M. -

Laboratory for Mass Separation in Amsterdam.







INTRODUCTION

CONTENTS

page

CHAPTER I

1

)

The thermal diffusion factor

- Introduction
- Solution of the Boltzmann equation
in classical mechanics
Solution of the Boltzmann equation
in quantum mechanics

- Numerical estimation of the conditions

of the experiment
- Approximate theoretical calculation of

the separation

6 - Classical calculation of the thermal
diffusion factor «
7 - The measurement of the thermal
diffusion factor a
List of references in chapter I
Liist of symbols in chapter I
CHAPTER 11 : Description of the experiments.
1 - Introduction
A. The krypton apparatus
2 - The two.bulb device
3 - The heating elements and the cryostat
4 - The gas thermometer
5 - Temperature regulation of the bath
6 - The counting method
B. The apparatus for tritium measurements
7 - The upper reservoir
8 - The measuring device for the
ionisation current
9 - Testing the ionisation chamber
10 - The pumping system
11 - Temperature measurement
12 - Method of performing the experiment
List of references in chapter II

of symbols in chapter 11

11




CHAPTER III : Measurements on gaseous mixtures of PP Kr
with “Ne, “He, °He and H,
1 - Introduction
2 - The 85Kr- 4[Ie experiment
3 - Algebraic representation of the
¥ Kr- *He measurements
4 - Comparison of thchKr- A"He
measurements with a ®Kr- 2Ne
experiment
5 - The t"_)Kx‘- 3He experiment
6 - The l‘aKr-HQ experiment
7 - Discussion
List of references in chapter III
List of symbols in chapter III
CHAPTER IV :  The thermal diffusion coefficients in hydrogen

helium mixtures from 10 - 300 °K.

1 - Introduction
2 - The measurements on ""H(:-—('l‘,z ,DT,HT)
3 - The measurements on H,-(T, ,DT, HT)
4 - The measurements on D,-(T, , DT, HT)
List of references in chapter IV
List of symbols in chapter IV
CHAPTER V : Theoretical considerations

Comparison of theory and experiment

1

= W N

w

List

List

SUMMARY

SAMENVATTING

- General introduction

- Classification of the collision integrals

Interpolation of the quantum curve
. : 85,

- Interpretation of the Kr-H, results
85 R

- Interpretation of the Kr- ‘He and

85, 3

Kr-"He results

- The tritium mixtures

of references in chapter V

of symbols in chapter V

page

68
72
73
74

79
81

82

92
94

97
98
100

102




INTRODUCTION

Since several years experience has been obtained with the separation
bythermal diffusion of radioactive gases from a carrier gas, by experts
like:

Harrison,?  using **2Rn

Mason, 2 using *®*Kr and ¥ ¢

Grew, ¥ using s Rn, 133 e and ®Kr and
Heymann,‘” using 288 Xe

with various gases like H,, He, Ne, Ar, etc.

They determined the elementary separation factor with an elementar?-
cell, contrary to people like Libbyand Arnold®), De Vries® andDickel?”

who studied the enrichment of C in various compounds like e, g. CO,
COg and CH4, using thermal diffusion columns.

The best method to determine the thermal diffusion factor is the method
with the elementary cell, and has therefore been chosen as the experi-
mental approach in this thesis.

The reasons for using radioactive gases are:

a. Theyare easilydetectable, and therefore avoid complicate volumetric
or mass spectrometric analyses.

b. They make it possible to work with a quasi-Lorentzian gas mixture,
being a mixture with only tracer quantities of a heavy, radioactive
molecule in it, and on which simplified calculations can be done.

c. Astracer quantities canbe used, this opens the possibility to proceed
the researchinlow temperature regions, if only the partial pressure
of the tracer remains below its vapour pressure.

Heymann‘sﬂ) measurements of the elementary separation factor, done
in our laboratory, gave between 300 and 700 °K, qualitative agreement
with classically calculated thermal diffusion factors. He used a Lennard-
Jones (12, 6) potential model. For the lighter carrier gases (Hg, D 2, He)
his deviations of maximum 10% gave rise to the question how the theérmal
diffusion factor would behave in lower temperature regions. Of course,
there were suspicionstopossible quantum effects and this lead us to
build a two bulb apparatus, using a Geiger. counter at room temperature
as a detecting device for the radiation of 8Kr. Moreover, we realised
the possibility to work between 10 and 800 °Kr using cryogenic techniques
This was the state of affairs in 1959. In the meantime Grew and Mundy?3)
did their beautiful work in England on analogous mixtures, which was not
known to us. Their publication came in 1961,

Because of the interesting results which we obtained with %°Kr against
“2Ne, %He, ®He and Hz, we decided in 1960 to do some determinations
on the thermal separation factor, in about the same apparatus, with
tritium (T2) as a radioactive tracer gas. The radiation of T2 having
about 10 keV energy, the counting techniques used with 85Kr had to be
left and to be replaced by an ionisation chamber, at room temperature
again, ontop of the cryostat. This gave us, moreover, a gain inaccuracy
of the determination of the separation factor, with a factor ten. We used
Tg, DT and HT with 4He, Hg and Dg as carrier gases and worked with
liquid hydrogen as a cooling agent.




The interesting experiments and calculations on comparable mixtures
done at about the same time by Waldmann c. s. gave us a great help.

The 3 Kr measurements should show a more or less classical character
till the lowest possible te%merature of 50°K, as the reduced wave length
A* for Kr against ('4He, He or Hy ) is about 0. 8 and the potential mini-
mum (Lennard-Jones ) between Kr and these various carrier gases ise¢/K
~44 °K and 78 °K respectively, according to Hirschfelder c.s. 10)

For the tritium mixtures the situation is very different however, where
in case of *He as a carrier gas A"« 1.75 and €/k ~=19.45 °K. Quantum
effects in the thermal diffusion factor can be expected below 50 °K in
the latter case.

The object of these two 8Kr and T3 experimental sequences was toob-
tain data on the temperature dependence of the experimental thermal
diffusion factor «. This factor « is, together with the normaldiffusion,
coefficient D, the most sensitive fundamental characteristic for the
interaction potential betweenunlike molecules, whereas theseaand D
coefficients are only indirectly and insensitively dependent on the inter-
action of like molecules. The measurement of @ and D is therefore of
high importance to learn more about the interaction between unlike
molecules, and becomes extremely interesting for mixtures with large
quantum parameters. The temperature dependent behaviour of @expr, for
very asymmetric molecules like HT against spheres like 4He in the
temperature region where heavy quantum effects can be expected, was
the last research object.

10




CHAPTER 1

THE THERMAL DIFFUSION FACTOR

PAR. 1. INTRODUCTION
Before we introduce the way in which the classical theory as well as the

quantum theory have performed their calculations for the transport

phenomena, we will discuss the basic integro-differential equation given
by Maxwell-Boltzmann. 10-12)

The expressions given by the above two theorems are solutions of this
equation. The Maxwell-Boltzmann equation is given by:

o, 3, =3 _ > - 28] k. dFd -1
Rte g+ F B’ ff[fltj-.“lfj] k; dkde, ()

where f = f((?,—r—, t) is the distribution function, or more simplyis analo-
gous to the number of particles per unit volume in the limiting case of
equilibrium. The differentterms of equation(1) can be explained physic-
ally as follows:

a. The lex*mg—{reprcsenls the partial time derivative. The physical
meaning of this term can be understood if we suppose that we havean
observer molecule fixed in position at the centre - for instance - of
the unit volume; then the rate of change of the number of molecules

: . 3 : : f
in the unit volume with respect to time is given by g_t

b. The second term Eg%is due tothe motion of the molecules themselves
[f we suppose that our observing molecule has a velocity € which is
exactlythe same as the mean random velocity of the molecules, then
when this observer molecule will register the variation of the distri-
bution function f, the effect of its motion will be reflected. The first

two terms can be regarded as the substantial time derivative which

can be written 'ls‘m
< L~ AS l)'
e = af = .
c¢. The third term F ac represents the effects of the external forces on
= - dc
the system. As F is the rate of change of momentum and equals d_tc

per unit mass, then we see that there is an extra change in the distri-

bution function due to velocity changes by applying external forces.

The left hand side of equation(I-1) can be written asg® , which represents
the total change in the unit volume.

The right hand side of equation (I-1) represents the net gain or loss in
the volume element due to collisions. This term is usually written as
J(f.f).

i
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The Boltzmann integro-differential equation can be written now as:
rate of change rate of change rate of change

of the distribution due toparticles due to external.| =
qunction w.r.t. time motion forces

net gain or loss
per unit volume due
to collisions

PAR. 2.|
SOLUTION OF THE BOLTZMANN EQUATION IN CLASSICAL MECHANICS

The Maxwell-Boltzmann integro-differential equation can be written in
the short hand form as:

Bt = I f) (1-2)

In order to solve this equation classically, 11-13) the following steps were
followed:

1. Classical mechanics has tried to find an expression for the angle of
deflection between two colliding particles. 11) This expression was de-
rived via the two conservation principles of energy and momentum
10, 14) and is given by:

©w© 2
x(g,b) = T - be " (1-3)

r

where ''g'" is the relative yelocity of the two colliding particles and "b"
is the collision parameter. If the potential field ® (r) between two
colliding particles is known, then the angle of deflection x(g,b) is
completely determined.

From the angle of deflectionx(g, b), the cross section of two colliding
molecules can be determined and is given by the expression: 10)

Qt (g) = 2"'./; (1= COS/‘H x) bdb (1-4)

where the index £ denotes the kind of cross section.

3. If the cross section is known, the so called collision integral can be
determined and is given by the expression: 10)

oo

- .
!zl's(’r) =\, ‘S.l;—“ﬁ « L 3Q"(g)d‘y (I-5)

where ¥ 2 = %Mgz/k'l'
The solution of the Boltzmann differential equation (I-2) without the ex-
ternal forces term has given the following expression for thermal diffus-
ion factor ina binary mixture, in the case one of the components is pre-
sent in small amounts ; 15)

3s 2 4aie
= M2+A—1—2 [M\(M\' Mz)] + 4sM M,

o=

8(C1q. = 1)
2

6 M3

+#5M2-4MzB,, +8 M MyAy,




In this expression for the thermal diffusion factor the temperature effect
appears in the factor (C,, - 1). The differentjsymbols in this expressionld
are:

2 2,2 %
('12 & (1 ]2)
8= 3 ,2 %
2 2M, @ '4T,)
%2 o % ¢ 1
Q2 ? 5 g LY. 4 gL Q1.2
P o 1 12 P
12 Q"’l,l 12 Q’:‘l, 1 12 Q*l,l
12 12 12
/ = 0 A" =0 6B oS0 o W o i
A,=0.4A], B,,=0.6B,, €t 0E
(I-7)

PAR. 3. SOLUTION OF THE BOLTZMANN EQUATION IN
QUANTUM MECHANICS

The solution of the Boltzmannintegro-differential equation in quantum
mechanics follows nearly the same way as the classical solution. The
main differences between the two theorems are the following :

a. In classical mechanics an expression was given for the angle of de-
flection by equation (I-3). In quantum mechanics this is not possible
due to the uncertainty principle. All what can be said is that, instead
of giving the angle of deflection, we give the probability!® that this
angle will lie within a solid angle d®
In this case the angle x is replaced by a(gi], -y

b. The second difference is that at‘very low temperatures - say below 1
or 2 °K- the statistics of the molecules play an important part. This
effect is called the symmetry effect; 10 16) and factors of the form
fi(l + 9f) must be introduced in place of f}, where "i'" represents

the ith ‘molecule. The factor " 9" depends on the statistics used. In

the case of Fermi-Dirac statistics:
3
3 = h s s . e . CTNTE P oo, = h
e /(;, and in Bose-Einstein statistics : ¢ = + = /G,

while in Boltzmann statistics ?; = 0. "G" is the statistical weight of
the particle. In this case the Boltzmann differential equation be-
comes : 10)

D=2 n lff[f'f‘(l FOL)(1 % 018 -

(I-8)
L (1+ 911y (1+ OJfB)Ja(gU, x )sinx dx dc,
where the summation extends over all molecules j.

PAR. 4. NUMERICAL ESTIMATION OF THE CONDITIONS OF THE
EXPERIMENT.
a. The influence of the concentration of the tracer gas.

13



The termal diffusion is given in first approximation by an equation of
the form : 10)

a(T,Y) =5[c(Ty - 1] B (T,Y) (1-9)

Inthe case of very small amounts of 8 Kr, which has been used as a
tracer gas in our experiments, g (T,Y) reduces to - %{:—and equation
(I-6) takes the form: 1% 3

S

«(T,Y)=-5 [c(T) - 1] (—i (1-10)

where £, and Q, are expressions given by (I-g

2a) and (I-32b).
2

From fig. I-1 we see that the variation L)i'Q— with temperature is
<2
o
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Sor @n as a function of the reduced
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D ¥ =
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Q, 5
variation of gy} as a function of temperature
is small, while most of the variations appear
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S

2 -Here L. J. stands for Lennard-Jones and R. E.S. for Rigid
Q2 R.E.S.

Elastic Spheres.

The constant C(T) is defined in general by the equation:

C(T) =

R G W (I-11)
S ¢ Sl 84 |

where inthe case of the R. E. S, , these Q 's are given by the relation:

¢
; , ‘ 14 (-1 z\[k'r .
f: . 3(s + 1) ! [1—; o ]wv 7 (I-12)

1.:2;

Substituting we find C

R.E.S.

For the rigid elastic spheres we have:
g

S S
2 2
s, b 1,201 — g fe— (I-13)
s [ 1 [cez]k.us [Q2]R,E.s.

Therefore equation (I-10) can be written in the form :

o (T &

!

'
o

ey
@)
(=

-

'

—
S
@ N,

i

o |
—
=

™

z

S I-14
v-5fc,, (Ty-1] azes St
or
= @
o = *5 |C -1 I-15
et ke (1-15)

b. The temperature region where quantum deviations can be expected.
According to the quantum theory, deviations from classical behaviour
exist dueto the wave nature of the colliding particles. The wave length
associated with a particle of reducedmass g is given by the De Brog-
lie wave equation;

T T

v Vzuk'l‘

When this wave length is comparable with the molecular dimensions
we have diffraction effects. 1¢, 16, 17) By dividing equation (I-16) by
g, we have:

(1-16)

A h
T g (I-17)
i o ukT




m llﬂz

where ¥ = ————ow— and ¢ is the molecular diameter.
m, + m,

To compare,quantum effects of different gases we measure the tem-
perature in as a unit. The reduced temperature corresponding to
T °K is given by:

T =T/ (‘5() (1-18)

where € is the depth of the Lennard-Jones potential)

Substituting in equation (I-17), we have:

B

A A

Y Y

o

e h
where A = T= and is used to compare the quantum deviations of
b Ko ? 17)

different gases at a reduced temperature T equal to 1.
If A\ =6 -thewave length associated with a molecule is equal to its

diameter -, then equation (I-19) becomes:

Using equation (I-18), we get:
(I-21)

Now the lowest temperature at which measurements can be done, using
85K » as a tracer gas, is determined by the vapour pressure. In our
counter we cannot have a reasonable number of counts when the
pressure of the tracer gas is less than 10" 8'mm-Hg. Substituting this
pressure in the vapour pressure formula :

T

o = o
In - K' (1 T (I-22)

where P, andT _are the critical pressure and temperature respectiv-
ely, P(T) is the vapour pressure as a function of T and K' is a cons-
tant.

We find that our minimum temperature Tmn is equal to 50 °K togive
the minimum allowed vapour pressure of the krypton gas. Therefore
the mixtures which are favourable for measuring the quantum effects,
are those mixtures, which have not a too low A" together with an
£ exceeding as much as possible the minimum value 50 °K. This
means that ourtemperature region should lie between :

T e <}f( (1-23)




85
To satisfy this equatiox} "Kr and anotherlight gas H, whose
* 12 o .
A = w g .
A e 0.8 and Wi 80 'K v:'ere chosen. The mean value
of our temperature range is about 65 "K.

In this region of temperature the deviation of the interpolated quantum
curve from the classical one might be two to three times the classical
value as shown in Fig. I-2.

Fig. I-2.

The relation between 5 (C-1) as a function
of the reduced temperature T*. The curve
for A*=0 was obtained from Hirschfelder, 1)
while for A* =1, 5 it has been obtained from
the theoretical quantum calculations with
the Lennard-Jones (12,6) model by De
Kerf (see chapter V).

The dotted curve has been interpolated for
A¥~ 0.8 for the ® Kr mixtures.

PAR. 5.

APPROXIMATE THEORETICAL CALCULATION OF THE SEPARATION

The thermal diffusion factor « as a function of the separation Q _ is given
by:1%)

@3 rr——— (1-24)

Integrating this relation, after performing the required differentiation,
we get:

T a
In Q, f T dT (1-25)
Th

o
In ogder to perform this gntegration a graph of T  against 7 was plotted;
by varying T from 25 °K to 800 °K as in fig. I-3. The area under this

17
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-0002
-000¢

Method of calculation of the separation Q_.

g @ '

-0008 T'he curve shows the m (the thermal diffus -

sion factor divided by the variable tempe-

rature) as a function of the variable tempe

raturel. The area under the curve repre-

rithm of

sents the log the separation Q .

The dotted curve is classically calculated
for the Lennard-Jones (12,6) potential,
while the continuous one is obtained from

the interpolated curve of fig. 1-2.

curve ﬁ,;ux‘n-spmuls to the logarithm of the separation Qs, 3y fixing PR
at 375 °K. 360 °K, 300 °K, 200 °K and 100 °K and varying T to 25 °K in
each case, several graphs of log Q¢ against T were obtained as in fig.
I-4. These graphs have been obtained from the classical and the approx-
imated quantum curve shown in fig. 1-3. From these graphs we see that
the ratio:

J | : ¢
[ | In (25 f A (23 f min ] classical

max

finQ, | - {nQ |
[‘ n )$ ‘lll 2“ st ]q:ml““”

max

does not increase much by lowering the temperature of the top reservoir.
Therefore the temperature of the top reservoir was adjustedat room
temperature.

PAR. 6. CLASSICAL CALCULATION OF THE THERMAL DIFFUSION
FACTOR « ,
The calculation of the thermal diffusion factor » was classically per-

formed by using the Lennard-Jones potential which is given by:1°

18




Log Qs

075

Fig. I-4.

’ The logarithm of the separation Q, as a

025 function of the variable temperature T for

different values of the fixed temperature
b 360 K, curve 2
for 'l"h = 300 °K, curve 3 for Ty 2-200: K
and curve 4 for Th = 100 K. The dotted

Tye Curve 1 is for T

curves la, 2a, 3a and 4a are the same as
the curves 1, 2, 3 and 4, only calculated
quantum mechanically with the help of the

interpolated curve in fig. I-2.

®(r)=4e ({—)] (70)( (1-26)

This potential shows that at very small distances repulsion prevails and
the potential energy decreases with increasing distance; then the attrac-
tive forces become more important. As a result of this a minimum in
the potential energy curve appears.

The thermal diffusion factor for this model can be obtained from tabulat-
ed values of the collison integrals !9 as follows:

1. We have to calculate "12 and ¢H from the values al, ¢, and .1' 42,

which are given by the following approximations: 10)
g
5 LA =]
12 2 (1=2%a)
and
€ e] .
"(2 = : (I-27b)

19
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We have to calculate the reducedtemperature T, and T] _using the

relations :

l2 =T/(e,/ k) (I-28a)

and

Tyg = T/( € 5/k) (1-28b)
3. We have to find the numerical values of QV-A”’]:('I‘,;). g L[T‘;-_:),

etc. using the tableI-M, p. 1 126 in Hirschfelder, CURTISS and Bird. 10)

4. We have to find the values of ,»\'('1.1._' )» BV:('I‘:.;”) and ("('1"1'») from

the same book table I-N, p. 1128, The values of A 19 (T l‘J)‘ l-‘»l.‘('l')_, )
and C l"(T 19 ) @re obtained from the relations: 19)
% '\13 “\}_5
r\ = B S — - - (1‘293)
& [A‘r_' ]f E.S f—
Bio B,
B = p b g (1I-29b)
12 3 3
P e |
5
sk C 12 Cl,
C - = = : (I-29¢)

—
no

12 [( 12 ]!I,E.\.

These quantities are insertedin the expression for «® which will be now
given.

n

. A 3 : 15) . -
The first approximation for the thermal diffusion factor °’ ))15 given
by the relation:
S, Y - S,(1 - Y)
a =5(C-1) , - (1-30)
Q,Y” +Q,(1 - Y)y+Q,Y(1-Y)

where Y is the molar fraction of component one and .‘S‘), Sg: Qi Q. and
@,, are quantities independant of concentration. (See equations I-32a
12 I 1

and I-32b).

By using a tracer gas we put ¥ = O, and equation (I-32) reduces to:

S_
a=5C-1) |-gc (1-31)
where
M, E :
Sy = T - M, [3(m, - M) + 4 MoA,, ] (1-32a)

20




o =
at y=0

where

PAR. 1.

THS MEASUREMENT OF THE THERMALDIFFUSION FACTOR «

The therma

_din Qg
—

dln =
Ih

By performing these substitutions, equation (I-31) reduces to:

3s

-M, +A, [M;(M, - Mp)] +4s MM,

12

6M, +5M,-4M;B, +8MMA,

: : 1
|l diffusion factor « is given by the well known relation:

where Qs is the separation factor and is given by:

3(C o - 1)(1-33a)

(I-32b)

(1-32d)

(I-33b)

(I-34)




where n denotes the number density.

Our activities are always measured at the top reservoir, at the same
pressure and the same temperature. We can say that|n, is the

n
as ”2 T sincethe l\lu)mcnl;.nlonls-\ppr\.nmul\ /oxo ¢

h
The above formula reduces to:

["K' ] T

Q, # (I-36)
nKr T

But since the specific activity is proportional to the number density,
the above relation becomes

Cc

(A)y ; :
Q. = h _ activity ol the hot or top reservoir 4
s (A = activity of the cold or bottom reservoir
c (1-37)
number of counts/minute in the top reservoir Iy D
" number of counts/minute in the bottom reservoir i TL

St : 18)
This number of counts has to be corrected for the dead time of the
counter 7 , using the formula:

R\)

R X TN

where R = andR , are respectively the real and observed number of counts

and 7 is the dead time. Then the above formula for Qs becomes :

(1-38)

I-R.7|p

where R and R} stand for n, and ng

Once Q  has been determined, « can be obtained as the slope of the
tangent at the required temper rature from the graph of ln-I—‘-dLamb! In Q,

A refined method for drawing the tangent will be (lxs(.ubs( »d later

22
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CHAPTER I

DESCRIPTION OF THE EXPERIMENT
PAR. 1. INTRODUCTION

The purpose of this work is to study the thermal diffusion factor for
mixtures of gases in temperature regions where the classical theory can
be applied, as well as in the low temp.rature regions where quantum
deviations become important. In order to do such research we have to
answer the following questions experimentally:

a. What is the order of magnitude of the deviations? Are they actually
of the same order as it is predicted by the quantum theory for trans-
port phenomena?

Are the discrepancies from the classical calculations in qualitative
agreement with the quantum calculations for transport phenomena ?
Moreover, are the experimental results in quantitative agreement
with the quantum calculations ?

If these discrepancies really exist, can the quantum theory account
for them by choosing a specified interaction potential - from the large
number of potential models available - and what is the best potential
model that will either account for or minimize these discrepancies?
As a special case we have to investigate the Lennard-Jones model
- which is valid at high temperatures - also on its validity at low
temperatures and what are the force constants for this model?

Twoapparatuses have been built for measuring the elementary thermal
diffusion effect, using the two bulb techniques. In the first one 85Kr was
used as a tracer gas in the carrier gases Hz, He and Ne and a GM-
counter was used as a detector for measurement. Inthe second one tritium
has been used as a tracer gas and an ionization chamber for the measure-
ment.

It was found from our experimental results that quantum effects are
appreciable andthat theyare nearly of the order as predicted by theory.

Unfortunately, few actual precise calculations have been done quantum
mechanically inlow temperature regions for transport phenomena, This
is due the fact that these calculations are long and tedious. So we have
only a rough comparison with our experimental results.

Comparing experimental and theoretical results we notice that the detect-
ion of discrepancies is not possible on our early experiment, because
the exact quantum curve for the thermal diffusion phenomena is not
available, while the comparison with an interpolated quantum curve is
not reliable. In our later experiments using tritium as a tracer - for
much lower temperatures - this might be possible, however.

Even if exact quantum calculations - for the thermal diffusion phenomena -
are available, such a comparison is not possible in the earlier experi-
ment, as this experiment is not accurate enough due to several factors
affecting the result, which will be discussed later. Nevertheless in our
later experiment - using more refined techniques for measurement -
this may be possible.

But the new technique, used in the earlier measurements, has given us
aninsight inthe way of attacking the problem, which has lead to the re-
fined method in our later experiment.
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At any rate our earlier experiment has shown clearly that the classical
calculations for the transport phenomena are not reliable at low tempe -
ratures. It may also be that this region - the low temperature region -
may decide which of the molecular models is the best and more realistic
for the whole range of temperature, whether high or low.

A) THE KRYPTON APPARATUS :
PAR. 2, THE TWO BULB DEVICE :

The two bulb apparatus consists of top and bottom reservoirs connected
by a tube.

The topreservoir in the first apparatus is made of Pyrex glass. It has a
circular opening covered with an aluminium foil 0. 06 mm thick, which
has an absorbing thickness for 8 - particles of about 16 mg/cm?2. This
opening is used as a counting window for the counter. This aluminium
foil was adhered to the glass by means of warm setting Araldite resin,
by heating the whole apparatus in an oven at 130 °C for 24 hours, which
is the required period for adhering. A cylindrical glass tube fixed to the
circular opening and having the same diameter as the counter - as shown
in figure II-1 - is used for adjusting the positionofthe counter. The top
reservoir is surrounded by another glass cylinder to form a cooling
jacket. Through this jacket water is allowed to pass from a thermostat,
thus keeping the top reservoir at a fixed temperature of about 30 °C. The
fluctuations in this temperature will never exceed 0,06 °C. The total
volume of this reservoir, with the connecting tubes till the valves, has
been determined with water, which was introduced from a calibrated
burette at 18 °C. This volume was found to be14.4 + 0.1 c.c.

We must notice that during the evacuation of the apparatus, the aluminium
foil was bent inside the apparatus. This gives a slight deviation from the
measured volume for the top reservoir, which was, however, of the or-
der of magnitude of the inaccurancy in the total volume.

The top reservoir has three valves : "a", "b" and "¢". "a" is used for
pumping the complete apparatus, when "b" is also open; or, for pumping
the top reservoir alone, when "b'" and "¢" are both closed. "b'" is used
for connecting the top and bottom reservoirs and allowing for thermal
diffusion between them, when "¢" is closed. "c¢" is used for filling the
upper reservoir from the bottom one. It is also used for taking samples
from the bottom reservoir.

The connecting tube between the top and bottom reservoirs is made from
stainless steel. It is connected to the top glass reservoir by means,of a
Kovar joint, and with the bottom copper reservoir through cadmium silver
solder.

The cylindrical bottom reservoir consists of Cuand is 20 ¢cm long and has
an internal diameter of 5.95 em. The thickness of the copper wall is
0.1 mm. A stainless steel capillary tube - reaching the centrs of the
bottom reservoir - is joint to the upper reservoir through the tap 'c".
The inner diameter of this tube is chosen in such a way that no fraci:.ona-
tiontakes place, when the upper reservoir is filled from the bottom one.
The diameter has to be 2 mm for that purpose.

The lower part of this copper cylinderis used as a gas thermometer.

Its length is 4.5 c¢m and its volume is 125,06 ¢.c¢. The bottom of this
volume is connected to the rest of the gas thermometer, at room tempe-
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Fig. -1 W“E

Schematic drawing of the two bulb apparat-
us. The upper part of the apparatus is made
of Pyrex glass and the lower part of cop-
per. Valve "a" is used for evacuating the
top reservoir alone when b'" and "¢ are
closed, or the whole apparatus when 'b
is open. Valve'"c¢" is used for taking samples
from the bottom reservoir to the top.

rature, bya stainless steel capillary of 0.5 mm internal diameter. The
dead volume due to this capillary is less than 0.6 c. c.

Both the bottom reservoir and the gas thermometer cylinder are grooved
on the outer side with a pitch of about 3 em. These grooves serve for
the winding of a heating element.

PAR. 3. THE HEATING ELEMENTS AND THE CRYOSTAT

Two heating elements have been used in our first apparatus. The first is
used for heating the copper bottom reservoir and the copper cylinder of
the gas thermometer. The heating element consist of an insulated con-
stantan wire of 0. 15 diameter. The wire is further insulated by pushing
it througha glass insulating tape of 0. 2 mm inner diameter. This heating
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sment is doubly wound along the grooves of the copper cylinders

from

e top to the bottom. The two terminals pass through the cap of the
cryostat. This is done to avoid heat conduction to the reservoir from the

cap of the cryostat.

The other heater is situated at the bottom of the cryostat and is used for
evaporating the liquid. The total resistance of this heater is about 50 Q

(See fig. II-2)

The cryostat is a large dewar vessel of Pyrex glass about 80 cm long,
10 em outer diameter and 7.5 c¢m inner diameter. At the top of the
cryostat is a cap of germanium silver having several holes for the heating
terminals. A long nickel tube of 3 mm inner diameter and of the same
length as the cryostat is also fixed in the cap and is used for filling the
cryostat with the cooling liquids. Through this cap also passes the con-

necting tube of the two bulb thermal diffusion apparatus.

PAR. 4. THE GAS THERMOMETER

The gas thermometer consists of the copper reservoir and the capillary
mentioned above in par. 3 and the regulating device. From fig. II-2 we
see that this device consists of a glass bulb "'e' fitted with two valves
"f"and "g'". Joined tothis bulb there is also a ""U" tube, on the other arm
of whichare fixed two photocells. A direct reading open mercury mano -

meter is joined to the bulb through "f'. By opening "'f" and "h"

thermometer from the helium cylinder.

the gas
thermometer can be pumped high vacuum. "g'" is used for filling the gas

f

scale!:l

scale 1:50

Fig. 11-2

Schematic drawing of the whole apparatus.
From the drawing we see the lower part of
the two bulb apparatus fitted in the cryostat
together with the two heating elements for
temperature regulation. At right 'of the
cryostat we see the regulating device of the
gas thermometer together with the direct
reading manometer.
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The gas thermometeris the device for measuring and regulating the
temperature ofthe bottom reservoir of the thermal diffusion apparatus.

To get the best results from the gas thermometer, {irst the cryostat is
filled with the cooling liquid - e.g. liquid air or liquid hydrogen - so
that the bottom reservoir is cooled by the liquid. Then after a reasonable
time, helium gas from the cylinder is introduced via the valves '"'g" and
""" into the gas thermometer at a continuous slow rate to the required
filling pressure P;. The tap ''g" is closed. Now, by evaporating the
cooling liquid till its level is a few centimeters below the copper cylinder
the temperature of the bottom reservoir begins to rise. Accordingly the
pressure rises until it reaches the required value, then the stop cock
"f' is closed. Let the new pressure be Py. Then, since the number of
helium atoms inside the gas thermometer does not change and applying
the gas equation: )

PV = nkT
we get:

(IT-1)

P
-
o2

PV
¢ 2 = 4 B

T t+ 273.3 t+ 273.3

where k is the Boltzmann constant; Py the pressure at the required low
temperature T; t the room temperature in °C; V. and V, the volumes of
the copper cylinder and the glass bulb "e" respectively; Tf and Pj the
temperature of the copper cylinder andthe pressure at the time of filling.

We must notice that the volume of the copper cylinder of the gas ther -
mometer was measured at room temperature and that at.any other tem-
perature its volume is changed. So V_ is not constant in the above for-
mula (II-1) and it must be replaced by the equation:

-
Tyt (11-2)

where ¥is the mean coefficient of volume expansion - inthe temperature
range considered - of copper, equal to 0.48 x 10-%, and V the volume
of the copper cylinder at room temperature, which is equal to 125,06
c.c. at 295.3 °K.

Substituting in equation (II-1) we have:

{1+9T | )1 +7T |
» T —— 5 7 > 17 CEST a8 -
PrVe 11+, 1 Vs PeVh L+, | FeVs
l = +
4 t +273.3 Tf t+273.3
which reduces to : (11-3)
-4
93 ¢ 8 w T

Py [1..3.511 (1-;‘ 0.48 x 10 'T) + 0. 25()'] = 1.803 Pf (11-4)
and
= [1:).3.311 (1+0.48 x 10°*T) + 0.256 } = 6.428 P, (11-5)
% T
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Nederlands Meteorolog
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pressure is always given at 0 °C and sea level.
corrected for the temperature and the height,

sssures P~ and P, must be corrected. Everytime an experi
i f
was

(K.N.M.1.)

asked from the Konink <
by telephone. This
This pressure must be

These corrections are

respectively 0.123 mm Hg per decree centrigrade and - 0.09 mm - Hg

per meter height above sea level,
since our experiment was done at sea level.
by:

TABLE 1II - 1.

We took no correction for the height
The total pressure is given

Ratio of the pressure of the gas in the gas thermometer al temperature
T to the initial filling pressure for different temperatures.

For liquid air temperature region :

Temp. T. l’_-,_ Press. at temperature 7!4
P, filling press. at 80 °K
80 y ~ 1.00000
90 1.10475
100 1.20599
110 1.30376
120 1.39820
130 1.48951 l
140 1.57782
150 1.66329 ‘
160 1.74606 ‘
170 1.82624 l
180 1.90394 1
190 1.97931 ‘
200 2.05243 ‘
210 2.12339 |
220 2.19323 ‘
el e e e e )
For liquid hydrogen region :
PT Press. at temperature T
Temp. T = o =5
f filling press. at 20.3 'K
50 2.35619
60 2,77415
3.17667




P _+0.123 t mm-Hg (11-6)

0

2 : 0
where Pv) is the atmospheric pressure at sea level and 0 C.
0

By this way our zero shift can be determined. It was found to be of the
order of 1 mm.

Another correction is due to the rising of the mercury level in the left
leg of the manometer (see fig. II-2) from £ to another position 2'. This
is due to the fall of the mercury column on the capillary side of the
manometer. As this correction is proportional to the ratio of the inner
diameters of the capillary and the left side large container, it was found
that the level of the mercury at £ rises by 0.0025 mm for every mm
fall of the mercury level in the capillary.

As our copper bottom reservoir was long (40 cm), a temperature differ-
ence between the lower part and the upper part was observed in the in-
termediate temperature region between 20 °K and 80 °K. This tempe-
rature difference was due to the fact that the lower part of the bottom
reservoir is directly cooled by the flow of vapour, while the vapour has
to travel the whole length of the cylinder to reach the top. Moreover,
the cap of the cryostat radiates heat of the order of one calory per second
at a reservoir temperature of about 80 °K, which causes a heat influx

T bottom —»

2

=3
o

150

100

50

P s 10 temp. diff. Tbott.~ Ttop. —e
Fig. II-5.

Experimental curve showing the temperat-
ure drop along the bottom reservoir at dif-
ferent regulating temperatures., The curve
gives the relation between the lower part
of the bottom reservoir as a functionfor
the difference in temperature between the
lower and upper parts of the bottom reser-
yoir.




on top of the copper reservoir. We were forced to make our bottom
reservoir so large due to the fact that we take samples from this reser-
voir, which would cause pressure changes and disturb our equilibrium.

The temperature difference over the length of the reservoir was measured
by means of an iron constantan thermocouple and a Kipp. A 70 galvano-
meter. This thermocouple was calibrated. The temperature dxfference
between the lower part and the upper part of the cylinder is about 6 K!

A calibration curve of thistemperature difference against the temperature

of the lower part of the copper cylinder was drawn, whichis approximately
astraightlineas shown in fig. 1I-5. The accuracy of these gas thermo -
meter readings is about half a degree Kelvin.

PAR. 5. TEMPERATURE REGULATION OF THE BATH.

The complete electrical circuit used for regulating the temperature of
the gas thermometer is shown in fig. II-6. To understand the working
of the circuit, the simplified circuit in fig. II-7 will be discussed.

The photocell ORP60 is a very sensitive cadmium sulphxde photocell.
The sensitive part lies between the two plates "a' and ''b". It has an
allowable dissipating power of 100 mW. anda maximum voltage of 100 V.
Whenno light falls on this cell, it has a very high resistance of several

MQ . But when light falls on it, its resistance drops to a few ohms.

lC 1
At

SRy

I
or

Ty SRa

Cs

W ——0-
~

i

Fig. 11-6

3 ——O-

~

Electrical circuit used for regulating the
temperature of the bottom reservoir.

T, transformer, primary 220V
secondary 12 V.

SR,, Sr, selenium half wave rectifier
AR SR 250 Y 50.

Vs Ve thyratron tubes PL2D21.

P, P, photocells ORP60.

R, Ry, R,,

R,, Ry, Ry,

R, Ra' R, resistances of 47 k2, 10k

1 MQ, 1 M2, 10kQ 1 k@2
220 k@, 100 kR and 100k®
respectively.

C,, Cy, C, capacitances of 1¥F, 1uF,

34 k=

A, ;\2 Haller relays, 10k Q

100 ' and 100 KF respectively




When the level of the oil rises to L.;, no light passes through the photo-
cell and its resistance is very high. So, the current passes through the
potential divider R;RyR sand the voltage drop across the points A and B
is practically equal to the voltage drop across R, as Ry (“Rg,, which is
far below the cutt off voltage of the thyratron PL2D21.

Hence, no current through the thyratron will pass and the relay contacts
of A, will remain open.

Photocel
ORP 60

L
:{j%“' L2

Oillevel

B
Fig. 1I-7.
A simplified circuit of the regulating device.

v thyratron PL2D21.
A, Haller relay, 10k Q

C, electrolytic condenser 14F

R, 47kQ, 7 watt.

R, 10 k2

Rg 1MQ

L one branch of the glass U tube filled

with silicon oil, blackened with

Nigrosine
When the level of the oil falls down to Ly, light is communicated to the
photocell, and its resistance will become very small. So a high current
will pass through A and B. The voltage dropacross R, will rise sufficient-
ly so that the thyratron becomes conducting. Then, the relay contacts
of A, are closed, and the heating of the bath via the heating coil in the
cryostat is started.

The condenser C, shunted across the relay coil A; is of importance. The
reason for connecting this condenser C, is that the selenium rectifier
SR 250Y50 is a half wave rectifier. (See fig. 1I-8). During the periods
bes tderh u i sEs etc., no current will pass through the circuit and the
thyratron will not be conducting in these periods. If the relay is closed
nominally, it would chatter heavily and it would disturb the regulation.
But by inserting the condenser C, in the circuit, then during the period
ab, the thyratron is conducting and the condenser is charged. Hence,
during the period be the condenser discharges through A, and keeps it
closed.

By this method of regulation a change of oil level in the tube L of less
than 0. 3mm was observable with a filling pressure of 50 ecm-Hg helium
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Fig. I1-8

Wave form at the input of selenium half wave
rectifier SR 250Y50.

gas in the thermometer with the reservoir at liquid air temperature; a
rise of pressure of 20 cm-Hg corrt-s;’%onds to a rise in temperature of
40 °K. Thereforearise in pressure of 0 cm-Hg corresponds with a rise
of one degree.

To convert this into ecms of oil we must multiply by the conversi;m factor

15. Thus, the change in pressure per one degree absolute is - 15 cm

oil, Thus the fluctuation in the temperature of the copper c?‘lmder is
0.03 o

30 x 15 = 0.004 K.

40

In this way it was found experimentally that the average fluctuations in

the temperature of the bottom reservoir are0. 006 °K in the temperature
region between 80 and 210 "K and 0.002 °K in the region between liquid
hydrogen and liquid air.

We must notice that, although our regulation of the temperature is of
this accuracy, our measurement of the temperature was not of the same
precision. The reading accuracy of the mercury manometer was only

half a mm-Hg, corresponding to an uncertainty in temperature of about
0.5 K.

It was found experimentally that, whether the photocell was at a small
distance from the wall of the glass tube L or just touched it, it was always
conducting. This was due tothe fact that the glass wall of the tube L. work-
edas a condensor lens; even though the outer wall of the glass tube was
blackened and only a small aperture for the light was used.

Toavoid this we made a hole in the glass tube L of the same diameter as
the photocell. The photocell was inserted in this hole and fixed with
kaoline and sodiumsilicate.

The photocell worked then in a magnificient way. No leak was detected
in the gas thermometer,

It is a difficult process to colour oils. Only fews substances can do this.
As our photocell is sensitive to red light, we must colour the silicon oil
dim black. This can be accomplished by Nigrozin, which works in a satis-
factory manner.

PAR. 6. THE COUNTING METHOD

The evacuation of the apparatus and the introduction of the gas samples
are done in the usual way. When introducing the radioactive substance,
the Geiger-Muller counter is coupled to a counting rate meter., The radio-
active gas is introduced in small doses until the required activity is ob-
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tained. The other gas is forced into the apparatus through a capillary
until we obtainthe required pressure. The apparatus containing the mix-

ture is left over night so that mixing occurs.
The radioactive 85Kr originates from the fission process of uranium and
is obtained as Kr gas from A.E.R. E. in Harwell (England),

According to the specifications it contains 5% radioactive ¥ Kr, It is
supplied in a small glass bulb of about 5 c.¢. at N. T. P. This bulb was
connected to a flask of about one litre fitted at the top with two stop cocks
enclosing a small volume of about 3 c¢.c. as a dozing volume for intro-
ducing the active gas. The 85Kr gas is a g emitter with a particle energy

of about 0. 78 Mev.

a. Correction for the background,

The two bulb apparatus was highly evacuated and all radioactive gases
are removed away. The measured background with its standard de-
viation was found to be 69 + 5 kicks per minute.

. Correction for the half life

As our radioactive gas has a half life of about 10 years, and the time
needed for our experiment does not exceed a few hours, the correct-
ion for the halflife is negligible, and was not taken into consideration.

. Correction for the dead time of the counter

The dead time r of the counter was measured using the twosample
method. !) The following formula was used for the calculation of 7

§\+§B_§A*B-ﬁb

T =
g g g
Ry ~ Ry - Rpg

where Rp, and Rp are the activities of samples A alone and B alone
and Ry 4 is the activity of the two samples when combined together.
Rp is the background.

The result obtained from our measurement was compared with that
from the graph of the manufacturer. Good agreement was found, The
accepted value of the dead time is taken as 200 micro-seconds.

This dead time introduces in our experiment an uncertainty of about
3%. So we think that this method must be rejected if we want to
measure small discrepancies from an accurately calculated quantum
curve.

. Mutual interaction of the reservoirs

The activity of the Kr gas at our working pressures is only due to the
first few cms behind the counting window. We wanted to be sure, how-
ever, that no interaction of bottom reservoir activities with the top
reservoir activity took place. An experiment was done by evacuating
the top reservoir, whereas the bottom reservoir was filled with the
radioactive gas mixture. We tried todetect a change in the background.
No effect of thiskind was observed, which shows that such interaction
does not exists.

. Absorption of the activity in the gas.
In order tomeasure the absorption of the g particles by the gas mole-
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cules, a certain amount of activity was introduced in the top reser-
voir. The other gas was pushed in the top reservoir through the ca-
pillaryto different pressures varying from 2 mm to about 50 mm, No
change in the activity was observed. So we can conclude safely that,
up to 50 mm-Hg pressure, no correction for absorption is needed.

Fractionation effect.

By transferring a sample of gas through a capillary (See fig. II-1)
from the bottom to the top reservoir, fractionation takes place-

In order to study this fractionation process, the following apparatus
was used. (See fig. II-9).

to pump counter

capillary

Fig. 11-9

Apparatus used to study the effect of

fractionation in a two component gas mixt-

ure.
The top reservoir is exactly the same as mentioned before, and the
bottom reservoir is a glass flask of one litre capacity.
The capillary tubes of different lengths and different diameters are
connected in two glass joints by means of black wax as shown in fig.
I1-9.
The bottom glass bulb was filled with 85K r as a tracer gas and hydro-
gen to a pressure of 1 cm-Hg. The activity of 85Kr was measured
first by connecting the two reservoirs via a short wide bore tube.
The top reservoir is pumped high vacuum and gas is expanded from
the bottom reservoir to the top one via the capillary.
The activity of the sample was measured every 5 seconds.
instantaneous activity in top
real activity in the bottom

A plot of the time against the ratio




LEServoll .. different tube lengths and different tube diameters at
reservoir
different pressures has been made.

From these graphs we saw that:

a. Fractionationincreases byincreasing the length of the tube at fixed
diameter and fixed pressure.

b. Itdecreases by increasing the inner diameter at a fixed length and
fixed pressure.

c. It decreases by increasing the pressure at a fixed length and a
fixed diameter.

The length of our capillary is determined by the dimensions of the
apparatus. At the same time we cannot increase the pressure much
beyond 1 cm-Hg, since our relaxation time would become too long
introducing experimental difficulties,The only variable left was the
diameter of the tube. This was chosen to compromise with the volume
of the top reservoir and at the same time to give us a large safety
margin against fractionation. We chose a diameter of 2 mm. The
volume of the capillary compared with the top reservoir was'5%.

The relaxation time for this capillary was found to be several hours,
which means that diffusion via this capillaryis negligible in comparison
todiffusion via the wide connection (9 mm diameter) between the two
reservoirs.

B. THE SECOND APPARATUS FOR TRITIUM MEASUREMENTS.
PAR. 7. THE UPPER RESERVOIR.

The upper reservoir is an ionisation chamber which will be treated later.
It has a volume of about 3 ¢. ¢. and is maintained always at room tempe-
rature. This reservoir is supplied with three glass tubes and three valves
as in the previous apparatus. The glass tubes are connected to the
brass material of the ionisation chamber with araldite.

-9)

The design of an ionisation chamber is extremely simple. We can say that
nearly any dimension and shape are good, provided that the electric
field between the cathode and collector does not exceed the value re-
quired to produce ionisation at any point of the chamber. The simplest
design that fulfils this requirement is a cylindrical chamber with a centre
rod of fairly large diameter.

Design conditions.

The most important thing in the designis the insulation of the collector.
The limitation to this insulation is not the bulk resistance, since several
insulation materials have good bulk insulating properties. To reduce sur-
face conductivity the humidity is kept as low as possible, but neverthe-
less the main problem is that of stress currents which are not yet com-
pletely understood up to date.

Stress currents appear across an insulator after it has received either
electrical or mechanical stress, These currents appear to die away with
a halflife of the order of 15 minutes, while the magnitude of these currents
depends on the magnitude and duration of the stress. It is supposed that
these stress currents are due to the fact that charges within the in-
sulator are moved from one place to another, when the stress,changes.

Toreduce these stress currents toa minimum, we must take the follow-
ing points into consideration.
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. We must keep the volume of the insulator to a minimum.

2. Thecontactarea between the insulator and the metal should be mint
mized as much as possible. Also the insulating material should not
be sandwiched between metal if that can be avoided.

Polysterene and teflon appear to have the same stress currents.

. As the stresses are mainly produced by evacuation and filling, it is
advisable, that these procedures should be done as quickly as possi-
ble. It is also advisable that the pumping and filling lines should be
long enough to reduce sudden mechanical shocks.

. Electrical stress of high-ohmic insulators can be diminished by the
use of guard-techniques.

. It is advisable to ground the collector when it is disconnected from
the electrometer, in order to obviate charging up.

Constructional details (See fig. 1I-10)

The main principles which should be followed in the design especially
those of guarding as mentioned above under number 5, were taken into
consideration in the construction. The brass part "3" is used as the
cathode and is maintained at a negative potential of 135 volt. It is highly
polished internally to facilitate evacuation to a high vacuum, and at the
same time to reduce surface adsorption of the gases. This brass cylinder
is approximately closed, except for the insulating teflon piece "5" fixing
the collector. The brass ring''6" has been installed, in order to keep the
field inside the cylinder as homogeneous as possible. This brass ring
is fitted with a teflon ring ""10" at the top to keep the cylinder vacuum
tight. The brass cylinder has a diameter of 15 mm and a length of 25
mm and a total volume - including the gaps etc. - of 4 c.c.

The collector is a brass rod ''4", shaped in such a way that we can fit a
standard plug at its end. This rod has a diameter of 2 mm and working
length inside the chamber of 2 ecm. This rod passes through a teflon in-
sulator "5'" shaped in such a way, that, first it prevents the leakage
currents from the cathode to the collector by increasing the leakage path;
second it can adapt a teflon ring for making the apparatus vacuum tight.
On the plug side the collector rod thickens and is kept short to avoid
mechanical vibrations.

The teflon insulator "5" is surrounded by an earthed shield "9" joined
with the cap and holding another teflon insulating ring, which centers
the collector.

An ebonite plate "7'" was used as a secondary insulator between the
shield ""9" and the cathode cylinder. This avoids sandwiching the teflon
between brass pieces according to design conditions. Moreover, any
leakage current via the ebonite plate "7" will go to earth via the brass
cap "9", and so it will never reach the collector.

The bottom reservoir

The bottom reservoir is a Pyrex glass cylinder of 50 mm internal dia-
meter and 60 mm length. At the bottom of this cylinder there are four
Kovar tubes for the four leads of the platinum resistance thermometer.
This platinum resistance thermometer is a platinum wire wound over a
glass holder of 5 mm diameter and 30 mm length. The thermometer is
supported in the middle of this reservoir by means of a thin glass stem.
The top part of this reservoir holds two glass tubes of about 40 cm length,
and with internal diameters of 3 and 1 mm respectively, The narrower
tube extends till the middle of the reservoir. Both tubes are joined to the
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Fig. 1I-10

The two bulb thermal diffusion second ap-

paratus.
1. cryostat
2

o IS L

—

12.

oW

bottom reservoir made of Pyrex glass,
inside of which the platinum resistance
thermometer is fitted. The leads of
the thermometer emerge from Kovar
glass joints,

the cylindrical part of the ionisation
chamber - cathode - made of brass
and mirror polished from inside
anode

teflon insulator (main insulator)
brass ring for maintaining the homo-
genity of the electrical field inside the
ionisation chamber

ebonite insulator

shield made of brass

standard plug with teflon insulation
teflon 0-ring for high vacuum

glass tube 3 mm internal diameter for
thermal diffusion

cork
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ionisation chamber at the top of the cryostat - in small brass tubes -
with araldite,

Another platinum resistance thermometer hangs in the cryostat at the
same height as the bottom reservoir.

PAR. 8. THE MEASURING DEVICE FOR THE IONISATION CURRENT.

The sensitivity which can be obtained with a D.C. amplifier, depends
on its stability. Soto attain a high sensitivity we must decrease the slow
drifts and random fluctuations as much as possible.

The drift is caused by:

Slow changes in the supply voltages.
Changes of circuit resistance, because of changes of the ambient
temperature.
Slow changes in the characteristics of the tube, due to a geometrical
change of the electrodes when the temperature changes,

The random fluctuation causes are:

1. Improper shielding

2. Bad contacts

3. Mechanical vibrations

4. Changes in the emission of the thoriated tungsten filament (Johnson
noise), and the thermal noise of the input resistance (Shot effect).

3t VTR L 5L
¢ §oYs

By designing the apparatus properly "a ¢" and "'2" can be
N g g PF prop :

eliminated sufficiently.

Of the remaining causes of instability, changes in supply voltage are
predominant. These can be eliminated by a special compensating circuit,
In this circuit (see fig. II-11) all the necessary potentials for the elec-
trometer tube are taken from a single battery, while the current drawn
from such a battery is small.

100 KQ. 1 KQ

&
7

Fig. T-11

The electrical circuit used for measuring
the ionisation currents. All resistances
except the high ohmic one are wire wound
and verystable. The 10 KQ potentiometer is
a_high resolution one with a resolution of
5 ohm and a linearity of 0.1%. This po-
tentiometer is shunted across a reference
element of 1.5 V. The electrometer tube
used is a Philips 4066,

The high ohmic resistance is a Victoreen
1011 @ with a tolerance of + 10 %.




The balancing of the circuit can be understood from the following dis-
cussion. As the first grid operates at a positive potential, it collects
electrons, the currentto it being from 5 - 20 times as large as the plate
current., Now if the filament emission changes for any reason, then it
would be expected that the currents tothe plate and to tlie first accelerating
grid change in about the same ratio. But, as these two currents cross
the galvanometer in opposite directions, they may balance each other
by choosing suitable resistances. In that case the galvanometer will
not be affected.

This circuit is in fact a balanced bridge circuit, which can be drawn as
in fig, II-12.

-

Fig. T-12

Coacept of the bridge circuit used in the
D.C. amplifier.

From fig. II-11 we see that the potential across the galvanometer i
given by:

73

0"s b p (I[’?)

provided the current through the galvanometer is very small compared
to Ip and I;. To have no deflection in the galvanometer e must be zero.
Hence,

Rl

(II-8)

which is the first condition to be satisfied. We must notice that once re-
lation (II-8) is satisfied,then the galvanometer deflection will remain
zero, inspite of the fact that there may be small fluctuations in the
emission which change Ip and Is in the same ratio.

Moreover, we have not stabilized the voltage drop''e'' across the galvano-
meter from changes in the battery voltage. As the power supply is common
for both the filament current and the electrode voltages, we may consider
the supply voltages to be a function of the If. The condition for stabilisation
can be found by differentiating equation (1I-7) with respect to the heating
current I¢. In this case we have:
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TSR LT L
dl, dl¢ b dl (11-9)

which is the second condition to be satisfied for neutralisation,

It can be shown that in case that the conditions II-8 and II-9 hold for a
fixed value of Ry/Ryp, the tangent lines of the curves Ip(I¢) and I4(I¢)
intersectina certain point on the Iy axis. Of course this will not be true
in general, but only over a small part of both curves where the required
insensitivity (neutralisation) for I; exists. This condition is illustrated
in fig. II-13).

T - — -
120}
2100
c
2
>
E 80
3
® 80
S
g o
= 40
2
v
20
5 8 10 12 Iy mA
Fig. 1I-13
Graph showing the relation between the
space charge grid current I; and the plate
current [p as a function of the filament
current Iy. The slopes of the two tangents
at the neutral point meet on the Iy axis
Constructional details The neutral point was foundtobe at ~ 9 mA

The D.C. amplifier circuit shown in fig. II-11 has been constructed in
the following way.

The input circuit which consists of the high ohmic resistance and the
electrometer tube with the bandwidth determining capacitor is all arranged
inside a heavy wall brass cylindrical box as shown in fig. II-14. A con-
denser has been inserted in the circuit in parallel with the high ohmic
resistance giving a time constant of about 10 seconds. The measuring
partoftheD. C. amplifier was built in an aluminium box, which was well
earthed. All resistances are wire wound and of good stability.

A separate balancing circuit consisting of a high quality potentiometer,
shunted across a reference voltage and opposing the voltage developed
by the ionisation current across the input resistor, is inserted in the
grid circuit of the electrometer valve.

. . i spata =Bisr2
The galvanometer used is a Kipp. 70, having a sensitivity of 10  V/mm
approximately and is introduced between the plate and the accelerating
grid.
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Fig. 11-14

Arrangement of the electrometer tube anu 5

the high ohmic resistance inside the brass g
shield. 7.
1. Standard plug with teflon joint 8.
2. Rubber 0O-ring
3. Brass cap 9,
4. The Philips electrometer tube no.4066 10.

Adjustment of the circuit

galvanometer is returned to zero.

Perspex discs.

Metal glass joints,

Brass container

The Victoreen high ohmic resistance
10119 (+ 10%).

A trimering condenser of ~ 100 pF.
Brass screws.

First, all the variable resistances are adjusted to give the necessary
voltages and currents for the different electrodes of the electrometer
tube. Then the filament current is varied with the aid of the rheostat R
(see fig. II-11) togive a parabolic galvanometer deflection as a function
of the filament current. If the galvanometer deflects outside the scale,
it can be returned back to scale by adjusting Ry. Finally with the highest
sensitivity of the galvanometer a last adjustment is performed and the

This minimum value

:
2
300
200
100
0
0 5 10
temp diff. Toote=Top. ———
Fig. 1I-15
The adjustment of the filament current for
minimum value of galvanometer deflection 45

is seen to be 9 mA.




Adjustment and drift curves

The graph in fig. 1I-15 shows the variation of the galvanometer current
as a function of the filament heating current. From this graph we see
that the minimum occurs roughly at 9 mA which is the nominal value for
the filament current.

By keeping the galvanometer at this minimum, we see some changes in
the first 20 minutes of warm-up period. After the warm-up period very
minute changes - which are easily corrected for - occur. The galvano-
meter deflection as a function of time can be seen in fig. II-16. We see
that it runs nearly parallel to the time axis after 20 minutes.

galy, defl in mm
o
i

0 50 100 150 minutes
Fig. 11-16

"he galvanometer drift as a function of
time. From the graph we seethat less than
| mm drift occurs in about an hour, which
is sufficient for our experiment.

PAR. 9. TESTING THE IONISATION CHAMBER.

The function of the ionisation chamber has been tested in the following
way :

1. Determination of the plateau

To determine the plateau of this ionisation chamber a known amount
of tritium is mixed with hydrogen. The concentration of tritium was
about 10”2 curie/c.c. The ionisation chamber was filled with this
mixture to a pressure of 12.6 cm-Hg, and the ionisation current
measured at varying cathode voltages from a few volts to 1000 volt as
shown in graph II-17, From the graph we see that the plateau begins




(5%

fixed pressure 12.6cm Hg.

current x 10.’34

g e = —

0 250 500 750 Volts
Fig. 11-17

1 of the ionisation
h we see that the

Determination of the plate:
chamber. From the graj
plateau begins at about 50 V. The slope of
the plateau is less than 0.5%. The voltage
of the cathode is kept always at 135 V.

at about 50 volts and that its slope to the voltage axis is negligible.
In our ionisation chamber we always fixed the cathode voltage at about
130 volts.

Saturation current

The ionisation chamber was filled with a fixed activity of a Tg-Hjy
mixture of a pressure of 5 em-Hg, and the ionisation current was
measured. After this pure hydrogen was forced through a capillary
to the ionisation chamber (this reduces back diffusion), and the
ionisation current was measured at different pressures. From fig.
[I- 18 we see that the maximum ionisation occurs at about 50 cm-Hg.

L.inearity of the ionisation current.

The ionisation chamber was filled with a Hs-Ty mixture to a certain
pressure. Then the pressure is increased from the same mixture to
about one atmosphere in steps. The results are shown in fig. II-19,
from which we see that at pressures below 1 cm the ionisation current
is not porportional to the pressure. But above 1 ecm-Hg the curve is
approximately straight.
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Fig. 11-18

Curve showing the ionisation current with

a fixed activityas a function of the pressure

of the pure gas. The gas used was Hp. The

increase in the ionisation current for

pressures above 50 cm-Hg is very small.
Other mixtures have been tested, which give approximately the same
results. The reproducibility of the results was extremely good.

PAR. 10. THE PUMPING SYSTEM. (See fig. II-20).

The cryostat is the same as before. The only change is that the cap of
the cryostat is fitted with a pumping line with two connections. One
connection for the rotary pump via the valves "1'" and "2" and the other
to the atmosphere. The needle valve "2'" is joined in parallel with "1"
and is used for fine regulation. The regulation is facilitated with the
regulating oil devices "a", "'b"' and "c¢'". When the manometer "4" reads
the required pressure the tap ''b" of the regulating device "3" is closed
and the needle valve "'2" is turned clockwise or anticlockwise to maintain
the oil level LL in a fixed position.

The manometer "'4" is used for the rough measurement of the pressure
and hence the temperature, Moreover, it is used as a safety valve for
the cryostat.

The exact measurement of the temperature is done withthe platinum
resistance thermometer.
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Fig. 1I-19

Graphshowing the linearity of the ionisation
current in arbitrary units as a function of
pressure. From the graph we see that above
about 0.5 cm-Hg the ionisation current is
directly proportional to the pressure.

PAR. 11. TEMPERATURE MEASUREMENT.

The temperature is measured by means of a Diesselhorst compensation
bank,which is an instrument of extremely high accuracy. Inthis instrument
changes in the power supply have been prevented by measuring with very
small currents. Besides, the instrument has a low internal resistance
of only 159 , which makes it suitable to be matched to a high sensitive
galvanometer. This galvanometer gives 1 mm deflection on the scale
corresponding with approximately 2.4 x 10~ 7 volts. The compensation
bank can be read to 5 digits.

In our measurement of the temperature we have not standardisedthc
current, but we have measured relative values. The principle of the
measurements is as follows : The compensator resistance is fixed at
a certain position. Then the compensation voltage is adjusted with Ry until
we get no deflection in the galvanometer. In this case we get : (see fig.
11 =21)-

i R, = K.Rcomp. (11-10)
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where i is the current that flows through the circuit.

Next, we switch to connect the platinum resistance thermometer (R pt)
(position 2) and the compensator resiatance is varied until we get no

deflection of the galvanometer G again, Then:
ixBRpt = K. R

comp. ),

By dividing equations (10) and (11) we get:

R pt R'c.:omp. o R pt r"::omp. R 10 R<':omp.
L et & e B e or = .
R st R comp. 10 R o':omp. S Rcomp.
atmosphere
3 | 1 pump
[ P =
" =
a@ O
2
L
"9 U
Fig. 1I-20

Schematic drawing for the pumping system
with regulation for adjusting the temperat-
ure of the cooling liquid in the cryostat.
The valve ''2" is a by-pass for regulatin

the pump speed. The device, g e

and """, is an oil manometer to facilitate
the regulation of the pump speed.

(1I-11)

(11-12)

From equation (12) and the calibration table of R the temperature of

the bath is known.

The temperature was always measured in two ways; inside the bottom
reservoir, which means that we measure the temperature of the gas,

and outside the bottom reservoir, giving the temperature of the bath. In
all cases we have found no differences between these two temperatures.

The temperature of the upper reservoir was measuredby an ordinary

mercury thermometer accurate to 0. 1 ue

PAR. 12. METHOD OF PERFORMING THE EXPERIMENT,

The way in which we have done our experiment
follows :
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slide
comp. resist.

e —

1
Fig. 11-21

A schematic drawing of the compensator
showing the way of temperature measure-
ment

. The apparatus is pumped high vacuum and the tracer gas " Kr and
the other gas - e.g. Hp, *He, 22Ne or 3He - is introduced. The
apparatus is left at least 24 hours for mixing. Complete mixing was
checked by closing taps "a'", "b'" and'"c" (see fig. 1I-1) in the top
reservoir, and the activity was measured. Thentap'a' is opened, and
the top reservoir is pumped high vacuum. This can be checked by
counting the background. A sample of gas from the bottom reservoir
is obtained by closing "a' and opening "¢ for about 15 seconds, If
we measure the same activity, then we have complete mixing. It
was found that 24 hours is enough.

2. The pressure fromtheK.N. M.I. is asked and corrected as in Par. 4.

Then the gas thermometer is filled to the required pressure. The
apparatus is left inthis condition for some time to attain equilibrium.
After that the cooling liquid is evaporated by the lower heater, by
short circuiting the photocell till the level of the coolingliquid is a
few cms below the copper cylinder.Then the heater is switched off.The
copper cylinder is then heated gently by the upper heater till we
obtain the required pressure in the gas thermometer. At that moment
the heating current is switched offandtap''f' is closed. (See fig. II-2)
The lower and upper heaters are adjusted so that the rate of change
of the oil level in"L' is slow. It was found experimentally that the
best results will be attained by letting the lower heater work con-
tinuously at an extent such that the cooling due to the flow of vapour
is slightly greater than the heat gained by the copper cylinder due to
heat radiation and conduction via the cap. We leave the apparatus in
this situation for a sufficient time to obtain equilibrium,

"o (UL

. The valves "b'" and "c¢'" in the top reservoir are closed, while "a
is openedand the top reservoir is pumpedhigh vacuum. A sample of
gas is taken from the bottom reservoir by closing "a" and opening e
for 15 seconds, and the activity is measured. This is repeated till we
obtain the same number of counts. Thetap "b" is opened for thermal
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diffusion, and the activity recorded every two minutes during one
hour. In most of our experiments an equilibrium time was obtained
after about 19 minutes, but the thermal diffusion is allowed to take
place for about one hour. Then the tap "'b" is closed and the activity
measured. The top reservoir is pumped again in the same way, and
a sample from the bottom reservoir is taken. The activity of this
sample was checked with the first determination at the beginning of
the experiment. Usually we obtain the same result withinthe statis-
tical fluctuations.

. The thermal diffusion process is repeated again at the same temp-

erature for several times.

. Thenthe temperature is varied by adjusting the gas thermometer and

the whole process repeated in the same way.

. The separation is calculated as mentioned in Par., 7. of Chapter I.

LIST OF REFERENCES FOR CHAPTER II

L,

oo

6.

10.

11.

52

Wright Wilson, D. and Nier, A.O.C.,
Preparation and measurement of isotopic tracers,
a symposium prepared for the Isotope Research Group (1948).

. Gordon, L. Brawnell and Helen, S. Lochart,

Nucleonics, 10, 26 (1952),

. Rossi, B. B. and Staub, H.H.,

Ionization chambers and counters,
National Nuclear Energy Series V-2
McGraw-Hill Book Co., Inc., New York (1949).

. Wilkinson, D.H.,

Ionization chambers and counters,
Cambridge University Press, Camvridge, England (1950).

Bearden, T.A.,
Rev. Sci. Instr., 4, 271 (1933).

Henriques, F.C. and Marghetti, Ir. C.,
Ind. Eng, Chem. Anal. Ed., 18, 417 (1946).

Janney, C.D. and Moyer, B.J.,
Rev. Sci. Instr., 19, 667 (1948).

Robley, D.Evans,
Rev. Sci. Instr., 6, 99 (1935).

Bearden, J. A.,
Rev. Sci. Instr., 4, 271 (1933).

Penick, D. B.,
Rev. Sci. Instr., 6, 115 (1935).

Harnwell, G. P. and Voorhis, S.N. van,
Rev. Sci. Instr., 5, 244 (1934).

Turner, Louis A.,
Rev. Sci. Instr., 4, 665 (1933).




13. Bridge,
Phys. Rev., 37. 392 (1931).
LIST OF SYMBOLS USED IN CHAPTER II.
potential difference, volts

I plate current

I space charge current

filament current
current in the unknown resistance x

Boltzmann constant

K constant of proportionality

number of molecules

atmospheric pressure, cm-Hg

P filling pressure for the gas thermometer

Py pressure of the gas thermometer at the unknown
temperature T

P pressure

R resistance

R, plate resistance

R, resistance in an arm of a Weatstone bridge

R st standard resistance, 102

R comp, resistance of the compensator

R pt platinum resistance

R A activity of sample A

Rp activity of sample B

I_(A* B activity of both samples A and B when put beside each
other

Ry background activity

t temperature, o

T unknown temperature, °K

T¢ filling temperature for the gas thermometer

Th temperature of the hot reservoir

Te temperature of the cold reservoir

A volume, c.c.

Ve volume of copper cylinder of gas thermometer

Vg volume of glass bulb for regulating pressure of gas
thermometer

Y coefficient of volume expansion for copper

dead time of counter



CHAPTER III

o

R 22 .. 4
MEASUREMENTS ON GASEOUS MIXTURES OF %Kr WITH = Ne, "He,
3

He AND H,.

PAR. 1. INTRODUCTION

Inthe temperature region from room temperature to 1000 °K the theore-
tical values for the different transport coefficients agree very well with
the measured values, provided that we use one of the more sophisticated
molecular models like the Lennard-Jones model or the Buckingham
exp. -6 model. However, the agreement for diffusion and viscosity is
better than for the thermal diffusion.

We choose in our calculations the Lennard-Jones model, this being a
very realistic model, while most of the quantum calculations have been
done for this model.

This will not nullify the fact that the other models - e, g. the Buckingham
6-exponent or a Lennard-Jones (4,8) potential model - can be used in
the quantum calculations in the low temperature region later as refine-
ments for getting better agreement between experiment and theory.

; 5 > B
In this work the force constants in the Lennard-Jones model - ¢and ¢ -
which we have used in the calculation ofe ‘_~ , were taken from
irg R ! theor, ‘.
Hirschfelder. 1)

- 4 85 5
PAR. 2. THE He- °Kr EXPERIMENT
. 2 : . : 5 8
Some importance will be given to this mixture, since 5Kr as well as *He
are both spherical molecules, fulfilling the requirements for the classical
calculations,

The experimental results as well as the theoretical ones are shown in

table III-1. In this table the In Q. is the logarithm of the separation,

var, - . T
while In 3533 isthe logarithm of variable temperature - the oven temp-

erature T or the low temperature T, - divided by the fixed temperature.
e

C
By plotting a graph of InQ ,against in [03.3 @S in fig. III-1 and measuring

the slope of the t;mgonts* at the different temperatures, the values of the

'.lhc above results have been obtained by a refined way of drawing the tangent. The method consists of a rectangular
parallelopiped piece of hard material the sides of which are optically flat. One side of the parallelopiped s 8 mirror. To
draw the tangents first we have to draw the curve; this is drawn by means of a flexible piece of plastic fixed in positionby
heavy weights. The piece of plastic was adjusted symmetrically between the points as much as possible; then a curve is
drawn. By facing the mirror side of the parallelopiped to the curve, the image of the curve is seen, The curve and its
image are adjusted to be parallel as much as possible and then the slope is measured. The best results were obtained when
the mirror face of the parallelopiped was not in contact with the curve,
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Fig. II-1,

The logarithm (")If the separation In Q, as a

function of In §T)T"§ for the ¥Kr-

ure form 50 “K to 800

@

.

"He mixt-
o

K.

Experimental points

Theoretical points calculated according to

the classical theory with the Lennard -
Jones (12,6) potential using the best para-
meters ¢, = 44,1 K and #ic ™ 3. 085,
Theoretical points calculated acoording to
the classical theory with the Lennard-
Jones (12, 6) potential by decreasing the

parameter ¢, of the ~ He molecule by 10%.
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thermal diffusion factor a as a function of temperature are obtained.
These values are shown in table III-2.

TABLE III - 2.

Experimental and theoretical values of the thermal diffusion

: . ¢ - 4 e
factor for the mixture ¥®Kr-*He at different temperatures.

from 14 tang. calc. from 14
> w0l

expt.




From this graph we see that there are appreciable deviations from the
classical curve, even at room temperature.

These deviations are attributed to diffraction effects due to the wave
nature of the particles which become noticeable at low temperatures.

To interpret these deviations as quantum deviations, it is necessaryto
show inasatisfactoryway that the classical theory does not account for
the experimental curve by any means below a certainregion of temperature
and that it holds above this temperature.

] . € 2-5)
To do this we must notice that ¢ and ; are not very well known.
Surely we have taken the best known values for these parameters, but
this does not guarantee their absolute acuuracy. So an allowable deviation
in each of them of about 10% could be considered. Therefore we have
tried to fit our experimental curve by varying the parameters
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Fig. MI-2.
The reduced theoretical thermal diffusion
factor ¢ as a function of the logarithm of
the temperature with ¢ as a parameter ;
7, is fixed at 3.093 .
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First we have examined the effect of the variation of s Fig. III- 2

; 1 €12
shows a family of curves for different values of K From this figure
we see that all curves are parallel to each other. This suggests an easy

way to find an vnknown value - or to check a known value - of ‘12

By considering the relation;

B

and taking the logarithm of both sides we get

log T =log T - log § (ITI-1)

Relanon (1) is of considerable importance It shows that the logarithm
of % can be obtained from two curves, viz. an experimental and a theo-
r‘etzcal one, showing respectively the relation between oo, = against
log T and aexp, againstlog T by mere sliding one curve over the other
along the temperature axis, as has been indicated in fig. III-3.

By measuring the amount of sliding - or in other wo¢1~ds the difference

12

between the two origins - the value of (50 + 2) °K for khas been found,
which is somewhat higher than the value used for the theoretical cal-

culation (44.1 °K). As the whole experimental curve cannot be fitted

€12
with the theoretical curve, the above value of khas been obtained by

fitting the high temperature portion of the curve only, as shown in fig.
ITI-3.

The next step was to try to varyod, by + 10% and - 10%. As 85Kr is a
rather heavy gas, the De Broglie wave length associated with it is ex-
tremely small. We can say safely that most of the quantum deviations
are dueto the quantum nature of the “He. For this reason we have changed
only ¢,. By drawing a family of curves of a™ 2. against log T* as in
fig. 1I1-4 we see that the effect of changing ¢ - while keepmg = constant -
is to turn the curve through an angle.

At the same time the curve stretches due to the increasing value of

o theor. - This will become clear by considering the relation between
a ando:

3s 2 T
= A A—lz[Ml(Ml - M,)] +4 sM; M,

> = 3 (III-2)
6M, +5Mj;-4MB, +8MMA,,

where:

%22, %
(”12\2 1 Q (Ty2)
> P %
2 | \Bewm, 2% (T}

Hence, s will increase if LN decreases.

Correspondingly a will increase if ¢, decreases.
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Fig. IM-3.

The reduced theoretical thermal diffusion
factor ¢ as a function of the logarithm of
the reduced temperature log T"; together
with the reduced experimental values °c‘xpl.
as a function of the logarithm of the temper-
ature logm 1 1A

By such a change of ¢, it was possible to fit the theoretical curve with

o
the experimental one between 100 °k and 800 'K for the new values ofthe
€ 0
pax‘amewrs—% =50 Kando, = 2.3 A, instead of Hirschfelder's values
o 2
of 3% =44,1 °Kand g, = 2.576.1.

We mustnotice that sucha fitting was only possible over the temperature
range from 800 °K till about 100 °K. Below 100 °K a large discrepancy
appears betweenthe theoretical curve and the experimental one as shown

in fig. III-1 in the second calculatedcurve with the decreased ¢ value
(see subscript ). This discrepancyat low temperatures can never be ex-
plained by changing the parameters of the Lennard-Jones model. We

can say in principle that the classical theory is not valid below 100 °K.

For the sake of completeness we have considered still two other potential
fields, viz. :




Fig. 1I-4.

The theoretical thermal diffusion factore
as a function of the logarithm of the temp-
erature log,, T; f9r different valyes of

é1g = 2.965 &, o], = 3.0034, iz =3.225
A) and fixed value of * =44.1 K.

1, the Lennard-Jones (4, 8) potential
2. the Buckingham 6-exponent potential
in order to compare them with our experimental points.

The Lennard-Jones (4,8) potential was published in 1940 and 1941 by
Clark Jones®)and afterwards represented by Waldmann? in the same way
as we have treated in this thesis. We have represented Waldmann's
graphs for the a” (Lh'e{‘,,_ for both the (12,6) and the (4, 8) model in fig.
(1I1I-5a). We must remark, however, that Waldmann's two curves were
calculated for heavy isotopic mixtures which fact means that deviations

from a” oo for Kr-He mixtures can be expected. The character of
the curves is quite the same. however, as indicated by the extra curve
for a™ tLh'uér. (12, 6) for our ( 8Kr-4He) mixture as calculated by us and
shown in the same fig. III-5a.
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Fig. II-5a

The reduced thermal diffusion factor * as

a function of the reduced temperature T,

theoretical classical curve cal-
culated for heavy isotopes with the
Lennard-Jones (12, 6) potential.

-.=.=.= theoretical classical curve cal-
culated for heavy isotopes with the
Lennard-Jones (4, 8) potential.

-..=..~ theoretical curve calculated for
r-He mixture with the Lennard-
Jones (12, 6) potential.

< s - tlgg]gretical curve calculated for
r- ‘He mixture with the exp-6
potential using Kihara's second ap-
proximation. 85
experimental points for the Kr-
He mixture.

The Buckingham 6-exponentl) which we have used for our calculations
has the shape:

6
-~ x‘
& (r) =—F 5|8 exp. %d(l Fa - )%( “;”‘> (III-3)
1'{; a min .,

7,1012)

where rp;, was obtained from Mason's tables; T ot holds
for the distance of the minimum in the potential curve, whereas € is the
energy depth of the potential well at that point. The factor "a' gives the
steepness of the potential well, which we took equal to 12 toget the
closest approach to our experimental results (see also Grew and Mundy 1V
fig. 1). All force constants for our Kr-He mixture were taken from
Mason's tables 7,1012) and are in table III-3, together with the results
of our first and second order Kihara approximation. 13-16 ) . The second
Kihara approximation of «*geo, is indicated also in fig. I1I-5a. We see
that this a™meqr, behaves inmuchthe same way as the o ‘l‘ﬁé.or. with (12, 6)
potential. It is therefore not able to explain our experimental results
below T™ = 4,




TABLE III-3

Thermal diffusion coefficients calculated with Buckingham exp ( 6)
potential for "'a' = 12,

Force constants
Component R oK

Ry 4.056 158. 3
He 3.135 9,16
4 85, =

He -Kr 3.596 39.4

4

Chapman- Kihara Kihara
Temp. Cowling

in °K g i ! [as exp ]1 [a 6 exp ] 2

10 - 0.3302 - 0.325
25 . 2555
50 . 0517 0.062
75 . 3170
100 . 4628 .463
125 . 5725
150 . 6204 . 628
175 . 6625
200 . 6845 . 700
250 . 7209 . 730
300 . 7299 . 748
400 . 1379 . 760
500 . 7343 .762

["‘R.s.s. ] [aR‘E_S. ] = 1.16

with exp. -8 with L. J.
force const. force const.

[ > SR > T = M <= TR = R = = T <~ |

O O 0 O C 0O 0O O O O O o O

In the same fig. III-5a there is also a fifth curve indicated for our
experimentally determined o expt. ( 85Kr- 4HQ\Q using the €/k value of the
Lennard-Jones potential, We see thatabove T™ = 4 our results agree with
the Lennard-Jones (12, 6) model, whereas for T" < 3 we observed an
approach of the experimental curve to a Lennard-Jones (4,8) model,
This result is interesting so far it indicates that the collisons between
Kr and He for the temperature region below 120 °K (T* = 3) get a softer
character than for the higher temperature region. This same fact was
observedalready by Clark Jones® \who made in 1940 the remark: "It can
hardly be doubted that the decrease in a expr, is due to the increased
"softness' of the repulsive force at low temperatures. "
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ALGEBRAIC REPRESENTATION OF THE “He-%Kr MEASUREMENTS
T
against lnﬁ - as in fig. III-5 —,we see

If we plot a graph of a

expt.

that for the hightemperatures a can be approximated by the follow-

xpt.

ing formula:

S
= M lngp55 +C (I11-4)

expt.

Fig. III-5,

The experimental thermal diffusion factor
a as a function of the logarithm of
T

o is the variable temperat-

g i— , sre T

303. 3 where 'l

ure, andthe temperature ofthetop reser-

voir was kept always at 303. 3 "K.

T
By plotting lnm against In Q; as shown in fig. III-6 we see that the
experimental points lie nicely on the classical, calculated curve. This
fit of the experimental points with the classical curve extends over the
2 e ssbes SN . A

temperature region from 80 "K till 800 °K. This is consistent with the
fact that this mixture has aA™ = 0. 28 and an ¢ = 77 K which means that
the deviations from the classical behaviour at 77 °K are not appreciable.
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Fig. I1-6.

The logarithm of the experimental separat-
1011_1 Q, as a function of the logarithm of

. 85 5 :
Eﬁ_‘i forthe ~ Kr- Ne mixture, from room
temperature till about 80 U'K, together with

the classical curve calculated for the Len-
nard<Jones (12,6) potential, with para-
meters 7, = 3.22 A and ¢3=77.1 K.

© Experimental points

» Theoretical points

This experiment. 'shows that in a mixture of two components, with
small quantum parameters, good agreement between theory and experi-
ment is found. Nevertheless, by x-cpl'miug one of the components - e. g. Ne
- byanother component having large quantum parameters - e. g. 4He-

il give us a mixture with an appreciable quantum parameter (5Kr-*4He
'.-\:m A¥=0.777 and - € 44 °K) for which appreciable deviations from
the classical behaviour occur even at room temperature, The lower the
temperature, the more these deviations inc"n'usu. This is what we see
from the ®®Kr-4He graph(see fig. I1I-1). The deviations in the separat-
ion near the room temperature amount to roughly a few percent (1—29
and increase continuously till they reach about 30% at 50 °K. These
deviations have been calculated according to the relation:

classical value - -*\pvumxmal value

yercent deviation = —
PEES g “classical value

By fitting the experimental results with the least square method 17, we
obtain the values 0. 0604 and 0. 88 for m and C respectively and equation

I11-4 takes the form

0.0604 In —= - 0. 8¢ (111-5)

[+ 4
expt.

This formula is valid in the temperature range from 425 °K to 800 "K.
Heymann!8) in his thesis has suggested the formula:

(111-6)




which is the same formula suggested by Heymann, and which he supposed
to be valid from 300 °K to 700 °K. At 300 °K the curve of In
against obends a little and is nomore linear. The error at 300 °K between
the value calculated according to equation(III-6) and the wvalue obtained
by drawing the tangent, is not due to the drawing of the tangent, but to
the unvalidity of equation (III-8) at 300 °K.

From the same plot of Jai .y, against 1m—T—_303,3 , we see that - in the low
temperature region - the thermal diffusion factor a can be estimated by
the following formula:

Te

W oksars " m' 1“?3—0;3_.3 + C! (ITII-7)

By evaluating the experimental results with the least squares method,
the values of .m'andC'are respectively 1. 09 and 1. 42 and equation (III- 7)
becomes :

T,
& ept. = 1-09 In 7537 3033

+ 1.42 (I1I- 8)

This formula is valid in the range of temperature from 130 °K to 50 °K.
The validity of equation (III- 8) in the temperature region below 50 °K
cannot be considered, since we have no data below this temperature. -

As a way of checking these formulae table ITI-2 gives the calculated

values of @ according to equations (III-5) and (III- 8), together with the
values obtained from the tangent method with the corresponding deviation.

PAR. 4. COMPARISON OF THE *Kr- *He MEASUREMENTS WITH A
85Kr- 22Ne EXPERIMENT.

Another experimenthas been done using 3°Kr- 2Ne as our mmturu As
g

it is well known that *’Ne nearly has no quantum effects ( ‘\\, e =0.593),
as well as %Kr \K,_K,— 0.192), we can consider the mixture 5Kr -
22Ne having a AK,.NL = 0. 28 as being a classical mixture. Compamson

of the aexpt, and a o, forthis mixturethereforegives avery valuable
control on the measuring method.

The experimental results together with the classical calculated values ,
according to the Lennard-Jones (12, 6) model, are given in table III-4.

PAR. 5. THE ¥Kr-°He EXPERIMENT,

As it is well known that isotopes of the same element hayve the same
force constants, it is interesting to use an analogous binary ml\(tmo
having %Kr as a tracer, and with approximately the same A" and 3 B
This mixture is of interest as it might have roughly the same quantum
deviations as the preueﬂdmg one. Fortunately the mixture B85Kr-S2He
having a A¥=0.89 and an 5 = 44 "Kwill give us the required properties

The experimental separation results of such a mixture together with the

calculated classical ones for the Lennard-Jones (12.6) potential are
given in table III-5.
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TABLE III - 4

Separation of 39Kr- 22Ne as a function of T.

TC
T var. 1“m In [QS] expt. In [Qs] theor.

1.110 0.332 + .015 - 0.345
110 1.010 - 0.326 + .015 - 0.335
120 0.930 - 0.314 + .015 - 0.320
130 0. 840 - 0.300 + .015 - 0. 300
144.5 0.720 - 0.260 + .01 - 0.275
155 0. 670 -0.252 + .01l -0.26 |
166 0. 600 -0.228 + .01 - 0.24
180 0.548 - 0.216 + .01 -0;22.
183 | 0.500 - 0.208 + .01 - 0.205 |
190 0.470 - 0.192 + .008 - 0.195 1
200 0.420 -0.484 + .008 ~0,18 |
210 0.370 - 0.164 + .008 -0.16 |
216 0.345 - 0.148 + .008 - 0.15 1

The calculated classical values will not differ much from those for °Kr
- 4He, since the only difference is the mass difference. By plotting the
experimental values as_well as the classical ones in a graph showing
the relation between ln--r-c— and In Qs as in fig. III-7 we see that there
are deviations even at room temperature and that these deviations increase
continuously from a few percent at room temperature to about 30% at
50 °K.

If we compare the experimental values of both mixtures SKr-%He and
85 Kr- 3He we see that the two results are nearly the same within the
experimental error.

In general we can say that the deviation of the two mixtures 8Kr-*He
and 85Kr-%He from the classical behaviour is the same over the whole
range of temperature from room temperature down to about 50 K.

PAR. 6. THE 551(1'-112 EXPERIMENT.

This experiment has been done to see if the deviations from the classical
behaviour of a mixture, if one of the components is known to be non-
spherical - e.g. Hy in a 85Kr-H, mixture -, will show the same order
of magnitude as in the mixture %Kr- *He and 85Kr- °He, since it has
nearly the same parameters A” (for Kr-Hgy; A" =0. 76).

The experimental séparations as well as the classical ones according to
the Lennard-Jones (12, 6) model are given in table III-6.
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TABLE 111 - 5

. A5
of Kr as a function of temperatur

theor,

05




@

TABLE Il

"
4 e,

T vae. 3033 o ’.Qv ] expt, |
H ! 4 !
389, 2 D.2491 0 0,24
0.
0
$12.9 0. 308 0 0. 275
D
0
426.1 0. 3399 0 0.30
0.3134
451, 5 0, 39¢ 0. 355
464. 7 0.4267 39
490.9 0.4817 0.43
000 195 0.46
533. 5 0. 5644 0.51
48. 5 ). 5822 ). 53
580 8 0, 644¢ 0,58
04, 3 0D.6724 0, 60
627.3 ), 7267 0,65
643.3 0.7 ). 875
not 0,787 0.7
) J ) 148 ). 73
710 0.8510 ). 785

fwe plot the experimental values as well as the classical ones in a graph

of In %"]“] against In Qs as in fig. III-8, we see that there are deviations
from the classical behaviour even not far below room temperature, and
that these deviations increase in magnitude as we go to lower temperature .
In the temperature region from about 100 °K to room temperature, there
exists an extra deviation from the smooth experimental curve. This
due to the rotational energy levels of the hydrogen molecule which will
contribute toa certain extent to the collisionprocess. In this temperature
region, whenamolecule collides with another, some energy can be ex-
changed with rotational energy. The probability of such an exchange at

room temperature is about 300 -
200

At much lower temperatures the Hy molecule is in the ground state and
the measured points appear to match the extrapolated high temperature
curve. We can say in general that the deviation from the classical
behaviour is of the same order of magnitude for our three mixtures having
roughly the same A", and that this deviation must be due to diffraction
effects accompanied with the wave nature of the molecules. For a hydrogen
atom the wave length associated at 300 °%K is 0.4 R which is in fact
appreciable.
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Fig. III-7

The logarithm of the experimental values
of the separation Q, as a_function of the
logarithm 01"1\/10«1- 3for the ®°Kr-“He mixt-
ure, from 50 °K to about 800 °K, together
with the theoretical classical curve for the
Lennard-Jones (12, 6) potential, with para-
meters ¢y5 = 3,093 A and ¢, = 44.1 °K.

O experimental points

© theoretical points.




Fig. 10-8

The logarithm of the experimental values
of the separation Q, as a function of the
logarithm of T /303.3for the 85K r- H, mixture
from 50 °K to about 800 °K; together with
the theoretical classical curve for the Lien-
nard-Jones (12,6) potential, with para-
meters %, = 3.29 A and ¢, = 78.34 °K,

O experimental points

+ theoretical points

PAR., 7. DISCUSSION.

From these experiments we see that some deviation exists from the
classical behaviour slightly below room temperature, moreover, that
these deviations increase if the temperature decreases.

These deviations can be interpreted in the mixtures 8 Kr-*He and 8 Kr -
3He as to be due to diffraction effects, while those deviations for the
mixture 85Kr-Hs areduealso to diffraction effects over which is super-
imposed another effect viz. the rotational motion of the molecule which
will transform a fraction of the collisional energy into rotational energy.
These rotational effects decrease as the temperature is reduced and the
molecule approaches its ground state.

For the other two mixtures 8 Kp-4He and % Kr- *He, the increasing of
the deviation from the classical behaviour means that the diffraction
effects become more and more pronounced the lower the temperature is.
This is a simple consequence of the fact that the wave lengths associated
with the %He, ®He and Hg also increase for lower temperatures.
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We have controlled the correctness of our measurements by studying
the 85Kr- 22Ne mixture. The wave lengthassociated with a 22Ne molecule
at300 °Kis 0.09 A, while the wave lengths associated with Hg, 2 He and
4He are 0.4 A, 0.25 A and 0. 2 & respectively. In the case of Hy, 3He
and *He these wave lengths are appreciable as compared with the mole-
cular dimensions, while for ?2Ne they are small,

By lowering the temperature to 100 °K, the wave lengths of Hy, ®He and
%He, become appreciable ()‘Hz = 0,14, Agye = 0.4 Aand Mgy, = 0.36 &) ,

so also the deviations. For %2Ne the wave length is~ 0,15 & at 100 °K
which may become noticeable. In fact if we compare the experimental
points at this temperature with the classical curve, we see that some
deviations appear and become more pronounced at 80 °K. Although these
deviations are of the order of magnitude of the experimental error, this
does notnullify the fact that all the experimental points below 100 °K lie
above the classical curve(see fig. I1I-6), which might confirm that these
deviations exist although they are extremely small.

Unfortunately, no quantum calculations have been performed in this in-
termediate temperature region, due to the extremely difficult nature of
the problem. Nevertheless these experiments may encourage some
pioneers toperform them and an,possible, check will be available at that
moment. '
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CHAPTER IV

« THE THERMAL DIFFUSION COEFFICIENTS IN HYDROGEN-HELIUM
MIXTURES FROM 10-300 °K,

PAR.1. INTRODUCTION.

In the experiments described in chapter III, we noticed some influence
of quantum mechanical diffraction effects on thermal diffusion.? How-
ever, the disadvantage of these measurements was that the quantum
mechanical calculation of the collision integrals was difficult for the
mixtures used. So no comparison could be made between theory and ex-
periment.The temperature region from room temperature till 50 °K-where
the experiments were performed - is too high to do quantum mechanical
calculations.

In order to do some measurements more accessible to comparison with
quantum theory, we investigated another set of mixtures, viz.:

‘He - T, Hg - Ts Dy - Ty
‘He - DT Hg - DT Dy - DT
‘He - HT Hs - HT Dg - HT
(See fig. IV-1) (See fig. 1V-2) (See fig. IV-2)

using tritium as a tracer. These mixtures could be investigated down
to a temperature of about 10 °K, using a liquid hydrogen bath. Because
of the small mass difference and hence the minute separation, these
experiments had to be performed with the utmost accuracy.

For this reasonthe second apparatus, described in chapter II, has been
built, for which the accuracy in the measurements of the ionisation
current is better than 0,1%.

PAR. 2. THE MEASUREMENTS ON‘;l'Ie',(Tg. DT, HT)
The quantum parameters for the above mentioned mixtures are:

Mixture A" [%] [’12
*He -1, 1.65 19. 45 2, 74
‘He - DT 1.75 19. 45 2,74
‘He - HT 1.88 19. 45 2,74

so that quantum effects can be expected.

All mixtures were measured in general at pressures of approximately
5 cm-Hg at any temperature. The exact values of the pressure at the
corresponding temperature will be given in table IV-1,

The tritium used is of high purity - 99, 9% Ty, as given|inthe manufacture's
data - and is preserved in small bulbs containing about 2 c. ¢. of Ty at
N.T.P. The activity of this amount of tritium is about two curies  The
activities used in these mixtures are less than 10~9 curie/c.ec., which
corresponds to a measured current - in our ionisation chamber and at
room temperature - of about 1073\ A, This current decreases in the
low temperature region - 10 °K to 20 °K - to about 10:~15) A, as most of
the gas goes to the low temperature reservoir,




TABLE

IV -

IL‘IYI[)(‘I‘{UUZ'('

T var. ¥
‘ In 5525 m[(QlJ i
|
|
|
| -3.170 - D.032

| - 0,040
14.0 w3 3 + 0.068
+ 0, 049
| 15.7 - 2.937 + 0.053
+ 0,049
+ 0,058
+0.0
20.3 - 2,674 0.0000
0.0000
58,0 - 1.630 - 0,030
58.5 - 1.619 - 0.033
- 0.030
- 0.034
77.3 - 1.34% - 0,035
- 0,028

| 3 | - 0.449 ). 016
| - 0,017
+ + 4
. |
HT-"He
14.0 - 3.06 | +0.012
+ 0.013
+0.011
15.7 2.937 + 0,026
+ 0.0
+ D1
20.3 -2 + 0.015
i +0.013
+ 0.016
60.5 o + 0. 000
| 0. 000
17 5 - 1 4] Y00
0, 000
188. 3 - 0.449 0. 000

000

1

Experimental and theoretical values - according to the Lennard - Jones
(12, 6) model - of the logarithm of the separation as a function of the
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TABLE IV-1
Experimental and theoretical values - according to the Lennard - Jones
(12,6) model - of the logarithm of the separation as a function of the
temperature.

[ | [ 1
d T \ | Pressure of|
'emp. In - VAL, ‘ in I'Q ] ln[(»e ] lhu‘- 'L':'(H‘- )
n O 293.0 [ L " 5] expr, s | classical | mixture in
I K : :
cm - Hg ‘
+ ‘
HT - Hj ‘
|
12. 5 - 3.17 - 0.2 - 0.271
- 0.
- 0. 166
14.2 - 3.037 0.000 - 0,275
0. 000
17,1 - 2.8417 + 0,049 - 0.279
+ 0.039
+ 0. 049
20. 3 - 2.674 - 0,066 - 0.280 5
| - 0.056
‘ - 0.056
1 | - 0.053
- 0,053
54 - 1,698 - 0,052 - 0. 247
‘ - 0.046
63 - 1.542 i - 0, 045 - 0.234
‘ - 0.035
- 0.038
77.5 -:1:336., | - 0,037 - 0.215 8
‘ - 0.045
188. 3 - 0.449 - 0.016 - 0.081
‘ - 0.017
‘ - 0.019
[ l
[ DT-Dz2
| 193 - 2. 013 + 0.022 -'0.13%
\ + 0,020
| + 0,010
| 20. 3 - 2,688 - 0,038 - 0,135 10
- 0.036
- 0,043
\ ‘ - 0.045
| 53 - 1.720 - 0.034 - 0.10
w } - 0.032
717.5 | -1.34 - 0.030 -~ 0.07 10
1 - 0.028 1
T

. . . . 1 S . Ll . .

If we plot the logarithm of the separation as a function of In T for the
i )

above mentioned mi

xtures, we obtain the graphs shown in fig. IV-1.
raphs we see that all the three mixtures have shown a mini-

From thes

mum and a maximum for the separation, which means that the thermal
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of the separation Q; as a function of the
T

logarithm of: TC . from room temperature
1
to about 10 °K.

O Experimental values for DT-*He
mixture.

® Experim ental values for Tg~ *He
mixture.

© Experimental values for HT- *He

F

mixture

-.-. Theoretical classical curve for T2-"He
mixture only, with the inner scale for
In Qs. The Lennard-Jones potential
(12, 8) was used with 92=19.45 °K and
010=2.742 &, X

diffusion factor a shows a reversal of sign two times. This change of
sign of «a in the mixture 4He-Tg appears to occur at about 20 °K and 13
°K, while for 4“He-DT this happens at about 21 °K and 14 °K, which
corresponds toa reduced temperatureof 1 and 0. 8 respectively. For the
iHe-HT mixture, the reversal of sign of @ occurs at about 15 °K in the
positive part of the separation, while in the negative part no such change
was detected.

For 4!(()-']‘2 mixture, the calculated classical curve has been also shown
in the same figure for which the force constants have been taken from
Hirschfelder.l) By comparing the experimental results with this classical
curve we notice the large discrepancy whichamounts from some percents
at room temperature to about 100% at the low temperature region from
20 °Kto 10 °K. These measurements show reasonable agreement in the
neighbourhood of 300°K with the measurements done by Slieker and De
Vries above 300 °K? .The inclination of the curve is about the same.

The *He-DT mixture shows the same general behaviour as 41[9-'1’2. The
only difference is in the magnitude of the separation, which is due to the
mass difference, and in our belief to a large extent to the unsymmetry
of the DT molecule, as the centre of mass of the DT molecule is not in
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the middle of the two atoms. Our measurements do not agree with recent
measurements done in this Laboratory by Slieker. He finds a separation
with his Trennschaukel experiment between 100 °K and 300 “K which
come very close to the measured “He-Ty curve of us.

For the mixture"He-HT, no separation was detected from room tempe-
rature till about 30 °K. This is due to the fact that both *He and HT
molecules have the same mass and'if there are some differences between
them, this will be due to the mass distribution, which has contributed
to the separation in the temperature region from 20 °K to 10 °K.

PAR. 3. THE MEASUREMENTS ON;Hz-(T3, DT, HT).

Unfortunately the results of the experiments Hg-Tg and Ho-DT cannot
be trusted due to the fact that some exchange takes place - even in-
stantaneously - in the metal part of the ionisation chamber at room
temperature according to the relations :

Te+Hy =2HT and
Hy + DT = HD + HT or
Hg + 2DT =2 HD + Ty

which leads to a large uncertainty.

By checking the experimental results of the Hg -T2 mixture with those
of H2-HT, we have found that the two sets of values are approximately
the same within the experimental error confirming the above supposition.

The activities and the pressures used for these mixtures are roughly
the same as mentioned in Par. 2 of this chapter.

If the logarithm of the separation - for the Ho-HT mixture - is plotted
as a function of ln._Tr'S_, we obtain the curve shown in fig. IV-2.

h
Our Hg-HT measurements between 50 °K and 100 °K do not agree with
recent measurements done by Slieker in this Laboratory and by Wald-
mann c¢.s."done above 300 °K. The derivative of our curve is smaller
than of these mentioned research workers.

From this figure we see that the experimental curve for this mixture
follows the same behaviour as for the *He mixtures discussed in Par. 2.
For this mixture, the thermal diffusion factor changes sign at about
25 °K and 16 K, which corresponds to reduced temperatures of about
0.67and0. 43 respectively. Inthe temperature region between 11 °K and
13 °K the separation changes very abruptly. This may be due to adsorption
of the HT molecule in the cold reservoir or to condensation. Another
important reason is that the hydrogen pressure at this region of tempe-
rature is too small so that we may get pressure dependence as will be
discussed now.

To deal with the condensation problem we notice that at 12 °K the vapour
pressure of HT is 0. 73 mm, while that for Hg is 12.7 mm. As our activ-
ity has a partial pressure of about 10/™% atmosphere, then the radioactive
pressure inside our apparatus will be 1072 mm-~-Hg, which is far below
the saterated vapour pressure of HT at 12 °K., No condensation is likely
to occur,

There remains the problem of adsorption. As the geometrical area of our
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lower reservoir is about 100 cm? and if we suppose that this area is
completely covered with one tenth of a monolayer of adsorbed HT mole-
cules, which seems reasonable at a partial HT pressure so very far
away from the saturation pressure, then the number of necessary HT
molecules that will cover this area, will be 10 17, The number of HT
molecules per c.c. in the Hg-HT mixture is about 5.10% , This means
that the number of HT molecules contained in the bottom reservoir is
5,108 which is much more than the supposed one tenth monolayer
contains. The adsorption therefore seems to be of minor influence,

Moreover, the measuring technique described in chapter II indicates
that each time small quantities of gas are taken via the bypass from the
cold reservoir to the ionisation chamber.

The only fear which remains is that the insufficient pressure of Hp at
12 °K will cause a pressure dependance of the thermal diffusion factor.
For temperatures above 12 °K this is not possible since then our working
préssure has always been about 5 ecm-Hg. Below 14 °K we are limited
by the vapour pressure of hydrogen and our working pressure is of the
order of 1 em-Hg. According to Kotousov's 4) publication at room
temperature a rapiddecrease in the thermal diffusion factor occurs below
pressures of 1 or 2 cm-Hg.
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Here in our case the last three experimental points at about 12 °K lie
verylow, but correspond witha very large a, which can never be under-
stood from the Kotousov effect.

PAR. 4. THE MEASUREMENTS ON D2+Tg, DT, HT).

From the mixtures Dg-Ty and Dg-HT, although measured, the results
will not be given for the same reason as mentioned in Par. 3 of this
chapter, viz. because of disturbing exchange effects.

The only remaining mixture is Do-DT which has a quantum parameter
of 1,16,

The thermal diffusion factor « for this mixture shows a change of sign
at about 21 °K. The measurements for this mixture have not been ex-
tended to 12 °K because of the low vapour pressure of Dgat this temperature
(0.73 mm-Hg). If we plot the logarithm of the experimental !separation
as a function of ln%& , we find the graph shown in fig, IV-2.
h

From the graph we see that the general behaviour of this mixture is
roughly the same as the above mentioned ones. The problem of condensat-
ion and adsorption in case of this mixture does not play any role except
for the last measured point only
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CHAPTER V

THEORETICAL CONSIDERATIONS
COMPARISON OF THEORY AND EXPERIMENT

Par.1., GENERAL INTRODUCTION

As we have mentioned in chapter I, in order to calculate the thermal
diffusion factor @, weare inneedof collisionintegralsas'@ 1,1, @ 1,2 |
etc. Forthe calculation of these collision integrals the knowledge of the
phase shiftsnt(k) for every type of abinary mixture is necessary. These
phase shifts can be calculated by solving the radial Schrodinger equation
numerically. This exhibits an enormous amount of work beyond our
existing ability.

Togeta somewhat rough estimation - though not bad - avoiding the tre-
mendous numerical work, we have found that it may be fruitful to inter-
polate the calculations from the existing theoretical work done by other
people, These existing calculations are not complete. They have been
done for different mixtures at very low temperatures from nearly zero
till T* = 0.6. This means from nearly zero to about 5 °K for “He.
Nevertheless by reasonable interpolation we hope that we are not too far
from reality for those mixtures which will mainly be of interest to us in
this chapter, viz. for Kr- 4He, Kr- %He and Kr-Hs.

Par. 2. CLASSIFICATION OF THE COLLISION INTEGRALS

In order to perform such approximations, we have classified firstly the
collision integrals available in the form of a table (see table V-1) as
well as in graphs to give the required impression for the approximation.

Before discussing the interpolation procedure, we must mention that
there are two ways of reducing the different quantities in classical and
in quantum mechanics. Inclassical mechanics the normal way of reducing
the cross section as well as the collision integrals, is to divide these by
the corresponding regid sphere values. In quantum mechanics the re-
duction appears in a logical way by reducing the Schrodinger equation in
the form:4)

d? = «2 L 1 16 x> 1 1 *
:::-]_(rxw ) * [kx -1( %2 J + \*‘2 ( 12 - Tﬁ )] (r *) = 10
dr r é r r

h
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From this equation the cross section was derived and is given by:
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FABLE V-1.

iation of the collision integra
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for which the first and second approximations are :

(1) = of2 Y
Q 2(‘( )2_012 (£+ 1) sin* (Mp4q = ne) and

(2)af2%) S L+1) (£ 42
N (k‘l)lzzo‘l.-z,.‘.i_(z_}f);lsm ""p)‘ "ﬁ)-

These are the cross sections when the two colliding particles are not
identical. However, when the two colliding particles are identical, they
obey either Fermi-Dirac statistics or Bose-Einstein statistics. 2 4)

In the first case only summation over odd values of £ should be taken,
in the second case only summation over even values of £. So for two
identical particles, taking the spin s into consideration, the cross sections
become :

(n) _ S*1 (n) + S (n)
2o 55+7 Qse ' 25+1 Qb Rag
S+ S
~(n) A e (“) e | nlnt)
QF.D. 2S+1Q ¥ 28+ 1 QB.E.
The reduced cross section is written as Q)‘( -9

2
g

and the collision integrals are given by:

T 4R 2r+3
) =VEE [ e Y a2+ ol M) ay

which when reduced, become :

0 n,r
2
L ¢/m

So the relation between the reduced quantum collision integrals and the
reduced classical collision integrals, given by Hirschfelder, is :

2
+,£s X yuil S Q‘Z' 2N
L € 0~ 13

Q*n, 0 _

- £ $ &
After these reductions have been made, the graphs of Q i as a function

of T" were plotted as shown in fig, V-1,

In the case that we plot C (see 1-32d) as a function of T the following
reductions were pezformcd
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To perform the interpolation of the quantum curve, we have to discuss
the curves in fig. V-1. For the curves in fig, V-1a, the collision integrals
between like molecules 2*]'! have been drawn as a function of the
temperature T, In evaluating these collision integrals, the statistics of
the molecules - i. e. not only the wave function, but also the spin function
have been taken into consideration.

Whereas these statistical effects differ from one atom to another, we
see the strange behaviour of the collision integral cruves differing con-
siderably from the classical behaviour which should give a limit. Accor-
ding to these curves we see that the more the quantum parameter A*
decreases, the more these curves deviate from the classical curve,
Moreover, the °He-°He curve goes in the opposite direction from the
classical curve.

As is well known the more the quantum parameter A* approaches zerqg
the more the quantum curves approach the classical ones. For a true
comparison of mixtures obeying different statistics, the different para-
meters occurring in the calculations must be the same. In our mixtures
we lack such a correspondence, For this reason we think it much safer
that the interactions between identic particles are not taken into consider-
ation. For the interaction of unlike particles we have only one sort of
statistics which encouraged us in that case to try further calculations.
So we have found it safer not to interpolate the curves for @ ! .

1,1

Another reason that makes these interpolations very difficult is that these
collision integral cruves have been calculated for only small values of
T* - viz, T* <0, 6. Tofind values for these integrals at T*x 2, holding
for our mixtures Kr-*He, Kr-?He and Kr-Hg, is subject to a large un-
certainty which will introduce a large error in the interpolated curve,

The curves of fig. V-1b of the collision integrals Q"?‘? betweenlike
particles as a function of temperature, are more reasonable. The deviat
ions of these curves from the classical one increase as the corresponding
values of A* increase. As >ur quantum parameter A~ for most of our
85Kr mixtures*has a mean value of about 0. 8, the collision integ;als for
this value of A” must lie between the curve corresponding to A = 1. 22
for either pD2-pDs2 or oDg-oDy and the classical curve corresponding
to A” = 0. If we examine these graphs carefully, we can see how difficult
and unreliable such an interpolation will be.




Fig. V-1la.

The reduced values of the collision integral
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Fig. V-1b.

T'he reduced values of the collision integral
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Fig. V-1c shows the large discrepancies between the collision integrals
Q" 1.2 ofdifferent species (like ortho-para) and those of the same species
(Ortho-ortho or para-para) for the hydrogen isotopes.

The curves of fig. V-1d show the collision integrals 2* 1! between
different particles as a function of temperature, together with the classical
curve, The reasonable behaviour of these curves submitthem to a certain
kind of mte1 polation. For large values of T™ - which are needed for our
Kr«*He, ®He, H,;)mixtures - this interpolation represents .difficulties
and unrehabxltt,y The same is true for the curves of fig V-le. (Q™ "l? )

The curves of fig. V-1f show the relation between CT; and T*.

These curves show only the effect of collisions of unlike particles, And
in case of our mixtures the whole thermal diffusion effect will be assum-
ed to be due to such collisions. Although this assumption is not strictly
true, we hope that this will not be too far from the truth. Of course the
collisions between similar particles will affect the result to some extent,

According to this last asaumptlon the total thermal diffusion effect
should be found from the factor (6 C*-5) whichis equivalent approximately
toRt or a® values. We must notice that these Rt values vary with con -
centration and care must be taken when comparing the Rt values of
different experimentalists. We decided to perform our interpolation from
the curves of fig. V-1f1.

Todo the required interpolation we notice that the curve of fig. V-1f has
certainminima and that these minima are shifted somewhat to the right
with decreasing values of the quantum parameter 4™, The values of these
minima together with the corresponding A™ are given in table V-2a.

TABLE V-22

A *»

T fef T
2.89 0,025 0.575
1:%93 0.165 0.720
1,50 0. 250 0.739
1,22 0.390 0, 765
0,00 0.600 0.820

Here T repx esents the tcmpu ature of the minimum value and [C ]mm
represents the value of C at this minimum,

By plotting a graph between A* and Cx,, we see that at a A™ = 0.78 we
have a minimum value for C - of 0,792,

Moreover, by plottmg a graph between A" and T*, we see that this
minimum value of C - for A"~ 0. 78 - occurs at a reduced temperature
0.85.

Some extra points have been interpolated according to the fact that the
ratio of the distances between any pair of points on the curves af fig. V-1f
must be proportional to the ratio between their corresponding A™, In this
way another set of points yas demved giving the required interpolated
curve for our mixtures (A™ .0, 8).




In this way the corresponding curves of a* were obtained, as was shown
in chapter I, fig. I-3.and fig. V - 2 in this chapter.
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Par. 4. INTERPRETATION OF THE ° Kr-H, RESULTS.

By drawing the tangent to the experimental curve showing the relation
Ty
4 Var.

303. 3

mined as mentioned in chapter III. These thermal diffusion factors have

against In Q,, the thermal diffusion factor was deter-

between In

been given in table V-2 as a function-of temperature.

The thermal diffusion factor for the *"Kr-H; mixture is given by:

[_'.\lf (M, - Mp)] +45 M, M,

+ 8 A\l]_\l,_.,:\l



TABLE V-2

The experimental values of the thermal diffusion factor and the reduced
thermal diffusioh factor as a function of temperature for the 8Kr - Hy
mixture.

S it " 1n§0"3°_'-3 s a®- ::_"z"g
50,0 0.64 - 1,80 0,23 - 0.22
54.2 0.69 - 1,70 - 0.18 - 0.17
60.0 0.77 - 1,62 - 0.15 -0.14
70.8  0.90 - 1,45 0. 00 - 0.00
76.8 0,98 - 1,35 +0.07 +0.06
80.0 1,02 - 1.33 +0.13 +0.12
| 8720 1.11  -1.25 + 0. 15 +0.14
; 96,0 1.23 - 1.15 +0.16 + 0,15
| 104,0 1.33 - 1,07 ¢ 0,17 +0.16
| 105.0 1.3¢ - 1.06 +0.18 +0.17
130.0 1.66 - 0.85 +0,24 +0,23
140.0 1.78 - 0.77 + 0,27 + 0,25

ot 0
0 0. 0
195.0 2.49 - 0.44 + 0,42 +0, 39
203.0 2.59 - 0,40 + 0.43 + 0,41
303.3 3.86 - 0,00 + 0.50 +0, 47
€12 :
Fres - L06 [ Kk :l " 78.4 'K ["12]85Kr_H =3.20 R
_<°12 . 1@ *E'Z(Txfe) = g _
where 8 = — e Al T and A 11—0.4, B., =0.6,C ,=1.2,
2 2M @ 2 %(T,) i

x!
For rigid elastic spheres allQ s are put equal to 1. The values taken
for the parameters gare the Lennard-Jones values 9, = 3.29 and 7, =
2.93 from Hirschfelder. a

From these values it was found that « REs - L 06

By dividing the experimental value @ oxpt. by the above value Qpg.s
’ - 3 * M =) o pv] 2 \J Do

we get what we will call % expt, OF [R T] L These experimental values

of Ry - as shown in table V-2 - have been plotted as a function of g
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together with their standatd deviations.

By comparing these results with the interpolated quantum curve, we see
that there is some agreement between the experimental and the inter-
polated values. (A" = 0.8).

Par. 5. INTERPRETATION OF THE %Kr-*He AND ®Kr-?He RESULTS

The same process as used in par. 4 has been used for the #Kr-%He and
the %5Kr- ’He measurements. The plot of the experimental values of Ry
against T*, as tabulated in table V-3, has been shown in fig. V-3.

W% Fig. V-3
The reduced values of the thermal diffusion

¥ 85 : <
factor a for —° Kr-He* mixture as a function

of the reduced temperature.
- —-— classical curve forA =0

Ll experimental points

By comparing the experimental curyve for this mixture with the classical
calculated Ry = 5(C1z - 1) curve, we see that the zero value of the ex-
perimental thermal diffusion factor occurs ata T™ value of about 2. This
is in contradiction with the classical thermal diffusion factor which
equals zero atabout T* = 1. Moreover, the position of this zero value of
a.expl. nearly occurs at the same absolute temperature as for the mix-
ture 83Kr-Hj,.Above this temperature the experimental R values deviate
appreciably from the classical curve and approach it asymtotically at
about room temperature,.

The behaviour is very strange. Some trials have been done - as mentioned
in chapter 111 - to explain the 85Kr-%He results on a completely classical
basis. We showed in fig. III-5a that at high temperatures the Lennard-
Jones (12, 6) potential fits nicely, whereas inthe lowtemperature region
the softer Lennard-Jones (4, 8) potential model gives better agreement.

The same difficulties rise if one wants to explain the %5Kr-®He results.

Par. 6. THE TRITIUM MIXTURES.

By using the same interpoiation technique, we have not succeeded to
interpret the positive separation in the low temperature region for the
tritium mixtures. Moreover, the large discrepancies between the theo-
retical classical curve - according to the Liennard-Jones potential -and
the experimental one cannot also be explained by such an interpolation.
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TABLE V-3

The experimental values of the thermal diffusion factor and the reduced
thermal diffusion factor as a function of temperature for the 3 Kr - *He
mixture.

B
50 1.13 -.0,55 - 0.47
60 1. 36 - 0.34 - 0,29
70 1.59 - 0.16 -0,137
80 1.81 - 0.00 0. 000
90 2.04 + 0. 10 0.086
100 2.21 0. 24 0. 206
110 2.50 0.33 0. 283
120 2. 72 0. 41 0,352
130 2.95 0. 45 0.386
140 3.18 0, 54 0.463
150 3.40 0.58 0,498
160 3.63 0.62 0.532
170 3.86 0. 66 0.566
180 4,08 0. 69 0,583
190 4,31 0.72 . 618
200 4.53 0,74 0, 635
250 5,67 0.81 0. 695
300 6. 80 0. 85 0.73
350 7.93 0.87 0. 747
400 9.07 0. 88 0. 755
450 10,02 0.89 0,764
500 11.33 0.89 0. 764

€12 Y
= 5 U = 7’4 = = Q- s
%K. 3, 1.165 y [ - 44 K| o,, 5 4 3.093 §

Ifwe keep in mind that the quantum calculations - all the collision inte-
grals - have been calculated according to the Lennard-Jones spherical
potential field, then some doubt might exist as to the validity of these
calculations for non-spherical molecules. This leads us to try some
other field which may explain these experimental results in the future.
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For the interaction of two Hs; molecules which is calculated from first
principles by de Boer?, there is clearly a temperature dependent part
in the averaged potential. De Boer showed that for the interaction of
two Hs molecules this temperature dependent part can be neglected.
However, when working with asymmetric molecules, it might be that
the linear azimuthal terms in the potential would not cancel out as is the
case with the symmetric Hy-molecule. We therefore applied a method,
developed by Kihara, Midzuno and Kaneko 8)for estimating the influence
of nonsphericallity of symmetric molecules to asymmetric molecules.
The scheme followed is outlined here.

We will assume with Kiharas)t_hat within each diatomic molecule there
is a distribution of chargesg (s)» 0 and that this distribution satisfies
the normalised volume integral :

fq () ds=1 ' (V-1)

wheres is the radius vector from the centre of the molecule to the source
element. The centre of the molecule will be defined as the mean value
of the distribution, so that :

2 o symmetric
=1 g o 7-2
s o(s) d§ const. x $%antisymmetrical (¥=2)

where b is half the distance between the two molecules.

We will also suppose that the interaction between the molecules 1 and 2
will be given by :

V(r) =/o (s,) d's-lfq (sp)u(/r +38, - 8,/) ds, (V-3)

Now, by assuming that the charge distributions inside the molecule,can
be approximated by anet point charge situated at the ""mean centre" then
the deviation of the real distribution from the assumed one is given by:

) - 32 symmetrical
s (s) ds = (V=-4)

2 3 ;
const. x § © antisymmetrical

We will assume also that the effective potential field Vg will be given
by Kirkwood's equation:

Vi(r)
Vir)y e *F do, do,

Verr. (T) (V=5)
v(r)
— KT
e dow, dwh
V(o)
~ KT

where the factor e is a Boltzmann weighing factor to account for
the fact that statistically the molecules spend more time in those orien-
tations for which the energy is small.

When evaluating equation (V-5), we get:

7 1 2 o 2
Ve S5VARI2 + 38T KV, - 1v-6)

average average average
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Taking these equations and as§umptions into consideration we have found
for the effective field of Te~-*He the following expression:

é |
Ver, (1) =ulr) +15 [ 38+ u] (V=1)

and for HT-"He mixture :

98"‘[5u'
48 r

63 2
2rr (@Y

Ven. (r) =u(r) + +u']
from which we see that with antisymmetrical molecules a temperature

term appears in the potential field. This may contribute to some extent
to the discrepancies between the different mixtures.

As we see alsoin the case of asymmetric molecules only a second order
correction appears as well in the temperature dependent part as in the
temperature independent part. The influence of these corrections is very
small however.
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where m
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gth approximation in the cross section

andm, are the masses of the two particles

reduced distance between two colliding molecules
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radius vector from the centre of the molecule to
the source element

absolute temperature
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potential field between two colliding particles

probability of finding a particle within a solid angle dp

9
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equals half the distance between the two atoms of a
molecule

depth of the potential field in the Lennard-Jones (12, 6)
model
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particles
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wave function of two colliding particles
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SUMMARY

The aim of this work was to study the thermal diffusion factor as a
function of temperature in binary mixtures of the quasi-Lorentzian type.
For this purpose we used ¥ Kr as a heavy radioactive tracer molecule
inthe successive gases “2Ne, “He, °He and Hy. The research was done
with the purpose:

a. tocheck the Lennard-Jones collision parameters given by Hirschfelder
for a classical Chapman - Enskog description of the thermal diffusion
factor.

b. to seeifbelow 100 °K quantum effects would become noticeable which

can be expected according to the quantum parameters A™ and the

(¢/k) values of the above mixtures.

The temperature range was taken from 800 °K till 50 °K. The lower
limit was determined by the vapour pressure of the krypton gas, although
very minor quantities of this gas could be used because of its radio-
activity. We used counting technics, and the so called two-bulb method
The experiments with 22Ne were only done to check the measurin% method
as this gas mixture certainly should behave classically (A™=10.28,
¢/k= 77 °K and 9= 3. 22 R). Indeed, perfect agreement was found be-
tween experiments and theory (Chapter III), down till 80 °K.

The measurements done with *Kr in respectively *He and %He show a
completely similar behaviour. Above room temperature the description
is classical, with a Lennard-Jones (12, 6) potentail with ¢;y/k = 44 °K
and d,, = 3.095 . Below 100 °K the description would fitmuch better
with a L. J. (4, 8) potential, One might say that the decrease in the re-
duced experimental thermal diffusion factor a:xp is due to the increased
softness of the repulsive force below T" = 3.

The % Kr- Hs;measurements(Chapter III) showed good agreement inthe
high temperature region(100 °K < * T <800 °K)with classical calculations
on basis of a L. J. (12, 6) potential model with ¢4, = 3. 29 R and ¢3/k
78 °K. The quantum deviations below 100 °K down till 50 °K are of the
same order of magnitude as in the Kr - He case, which, perhaps, can
be expected from A" being 0. 76 for Kr-Hj;. Moreover, we observe an
extra deviation between 100 °K and 300 °K, which probably has to do with
the excitation of the first rotational energy level in the Hy; molecule.

In Chapter V we have tried to*classify all known quantum collision inte-
grals. We think that the (Cjj, T*) curves are the most importantas
they give the o™ due to collisions between unlike-particles. It was possible
to interpolate a curve between the various theoretical (C}j, T™ curves
for the (Kr-Hj) case with A™ =0, 8. A comparison with the experimentally
found a™exp gives qualitative agreement within the experimental uncertain
ties (15% at 50 °K ). For Kr-He such a comparison was not possible.

Toget experimental data in a temperature region where more complete
quantum calculations are available we studied alsohydrogen - helium
mixtures between 10 °K and 300 °K, using tritium H® as a radioactive
tracer-gas.We had to use ionisation chamber technics now, We investigat-
ed the following mixtures,
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He - T, with A"

He - DT with A” =

1
—
~3
()]

*He - Ht with A = 1.88
with o,, =2,742 4

and ¢, /k=19.5 °K

H, - HT with A" = 1.52
D, -DT withA = 1,16
with o ,, = 2,5128%

12

and €., /k=37.0 °K

All of these mixtures show two zero values for the thermal diffusion
factor @, one at about 20 °K and the other one at about 15 °K. There

are big quantum effects.
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SAMENVATTING

Het in dit proefschrift beschreven werk heeft betrekking op de thermo-
diffusie-factor van quasi Lorentz-mengsels, Als zware component werd
het radioactieve B85Kr-isotoopgebruikt, terwijl de lichte dragergassen
respectievelijk®?Ne, *He, 3He en Hj waren. De thermodiffusie-factor
voor deze mengsels werd gemeten in een groot temperatuurinterval van
50 °K tot 800 °K.

Het doel van deze metingen was, om enerzijds in het hoge temperatuur-
gebied de overeenstemming van de experimentele waarden en de uit de
Chapman-Enskog theorie berekende theoretische waarden na te gaan,an-
derzijds om in het lage temperatuurgebied de grootte van de quantum-
effecten te kunnen bepalen.

De metingen werden gedaan in een twee-bollenopstelling, waarbij voor
het meten van de scheiding de #Kr-concentratie bepaald werd met be =
hulp van een proportionele teller. :

Bij de botsing van twee moleculen zullen de quantummechanische dif-
fractie-effecten invlioed gaan uitoefenen, indien de De Broglie golflengte
van dezelfde orde van grootte wordt als de diameter van de moleculen.

Een maat voor deze quantumeffecten is de quantumparameter A ™ gede-
finieerd door A ™ = h

g m ¢

* *x
Indien A gedeeld door VT van de orde van grootte van 1 is, kunnen
quantumeffecten optreden. Hierbij is T de gereduceerde temperatuur,
T* = k T/e. De grootte van de afwijkingen wordt bepaald door A &

Voor het mengsel *’Ne- %K zijn de bepalende parameters A " 0,28,
¢/k = 77 °K en ¢g = 3,22 &. De metingen met Ne zijn uitgevoerd tot
80 °K en, zoals te verwachten valt, zijn hierbij geen quantumeffecten
gemeten. De overeenstemming metde klassieke theoretische thermodif-
fusie factor is uitstekend.

Voor de mengsels “He- 8Ky en ‘He- ¥Kr zijn de guantumparameters
respectievelijk 0,89 en 0, 78. Voor beide mengsels is 912 = 2. 095 A en
e/k=44 °K. De overeenstemming tussen de experimentele en theoretische
waarden is boven kamertemperatuur uitstekend. Hieronder treden afwij-
kingen op, welke evenwel niet verklaard kunnen worden met de quantumme-
chanische theorie van de transportverschijnselen. Een vergelijking van
de experimentele thermodiffusie factor met de theoretische waarde, wel-
ke volgt uit het door Clark-Jones gebruikte 8,4 Lennard-Jones-model,
geeftin de buurt van 100 K een redelijke overeenstemming. Mogelijkis
dit afwijkend gedrag te verklaren met een potentiaal, die als functie van
de temperatuur varieert,

De parameters voor Hy- ®Kr.mengsels zijn A =0,76,%,9 = 3,29 R en
¢,/ k=78"K. Totcal00"K is de overeenstemming tussen theorie enex-
periment uitstekend te noemen. Tussen 100 °K en 300°K is er een
geringe discrepantie tussen de theorie en het experiment, welke waar-
schijnlijk het gevolg is van de excitatie van het eerste rotatieniveau van
waterstof, Beneden 100 °K is er een discrepantie tussen de klassiek be-
rekende waarden van de diffusiefactor en de experimenteel gemeten
waarden.,
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In hoofdstuk V hebben wij de voor diverse quantumparameters berekende
waardenvanC ;j getabelleerd als functie van T*, Het is nu mogelijk ge-
bleken om grafisch te interpoleren tussenkrommenimet verschillende
quantumparameters, hoewel bij deze methode grote voorzichtigheid ge-
boden is. Op deze wijze hebben wijlde kromme voorhet Hz- Kr.mengsel
met A® = 0.8 geinterpoleerd. Het bleek dat de overeenstemming tussen
het experiment en de theorie nu zeer bevredigend was.

Teneinde meer experimentele gegevens omtrent de quantumafwijkingen
te krijgen, hebben we vervolgens de thermodiffusie factoren gemeten van
verschillende mengsels van waterstof en helium. Hierbij werd gebruik
gemaakt van een tritiumverbinding in sporenhoeveelheden, teneinde schei-
dingsfactoren te kunnen meten met behulp van ionisatiekamers, Gemeten
werd in een temperatuurinterval van 10 °K - 300 °K. We onderzochten
de volgende mengsels :
‘He-T,, A" =1,65 H, - HT, AT =1,52

9

‘He - DT, A =1,175 D, - DT, AT =116

‘He-HT, A =1,88

mete  =2,7428 met ¢ =2,9288%

<

o

€. /k=19,5 °K ¢« /k= 37 °K

Bij al deze mengsels bleek de thermodiffusie factor cp 2 punten nul te
worden. Het ene nulpuntligt bij ca 20 °K, het andere bij ca 15 "K, De
quantumafwijkingen blijken bijzonder groot te zijn. Een vergelijking met
de theorie bleek voor deze mengsels weinig zinvol te zijn,
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