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INTRODUCTION.

Electrochemistry deals with two kinds of problems: thermodynamic
and kinetic. As far as the thermodynamical properties of electrolytic
solutions are concerned (e.m.f.’s of cells, osmotic pressure, boiling-
point, etc.) one has to restrict oneself to equilibria.

Introducing the “Lösungstension” N e r n s t succeeded in giving a
theory of galvanic cells in the case of ideal solutions. This theory has
afterwards been extended to non-ideal solutions, but it never went
beyond the case of equilibrium. The number of cells of this kind is
rather limited. Almost all measurements of pH, oxidation- and
reductionpotentials, etc., make use of cells which are essentially
irreversible because they contain liquid-liquid-junctions, so that
diffusion takes place and therefore a diffusionpotential can occur.
A thermodynamical treatment of these systems is in principle wrong.
W e wish to emphasize this point in spite of the fact that the contrary
is repeatedly affirmed. W'e shall return to this point on page 7.

These systems must therefore be treated by kinetic methods. One
can only expect to obtain an exact theory of cells with liquid-liquid-
junctions by studying the irreversible process of diffusion.

N e r n s t was the first to attack the problem of the diffusion of
electrolytes. As well known his theory restricts itself to the case of
ideal solutions. As in all practical measurements we have to deal with
solutions which are too concentrated to be treated as ideal, the original
theory will have to be corrected. There are two kinds of corrections
to be made. In the first place one must take into account that the
concentrations must be replaced by the activities. These activities
cannot be calculated for all concentrations, but as long as the concen
trations are small, the theory of D e b ij e and H ü c k e 1 yields a
good approximation.

It appears however, that a second correction must be introduced at
the same time. The diffusion is also changed by a h y d r o d y n a m i c a l
interaction of the ions. The motion of an ion is transferred to other
ions by the surrounding liquid. This has been called electrophoretic
effect *).

*) P. D e b i j e  and E. H ü c k e l ,  Physik. Z. 25, 49 (1924).
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This dissertation is divided in two parts. In the first part the
diffusion of a single electrolyte will be studied, particularly with
respect to the behaviour in non-ideal solutions. Both the activity and
the electrophoretic effect will be taken into account, but only for
concentrations where all effects are linear in V c and higher powers
of Vc can be neglected. The results of this theory will be compared
with experiments, some of which are already mentioned in the
literature, while others have been carried out by the author. In one
case the influence of the solvent has been studied; this influence is
predicted in first approximation by the theory. It may at once be
stated that the theory appears to be confirmed up to concentrations
varying from 0.01 to 0.03 N.

In the second part the diffusion of a mixture of electrolytes will be
discussed. Here we shall restrict ourselves to the case of ideal solutions.

I. The diffusion of a single electrolyte.
1. The theory of diffusion of an electrolyte, as given by

N e r n s t 1) leads to the following results. 1. The electrolyte diffuses
with a mobility which lies between those of both ions. 2. During
diffusion there exists a potentialdifference between every two points
of different concentrations cx and c2. This potentialdifference (the
“diffusionpotential” ) is proportional to log C j/c 2 , and independent of
the manner in which the concentration varies between both points.

N e r n s t ’ s treatment is essentially a kinetic one. Attempts have
been made to calculate the diffusionpotential by a quasi thermo
dynamical reasoning. This thermodynamical treatment leads to the
same result as the kinetic theory in the case of ideal solutions. This
has probably furthered the opinion that a similar thermodynamical
reasoning could also be applied to real electrolytic solutions 2). W e
shall show that this opinion is wrong; and it is very important to
insist on this point, because this wrong opinion has penetrated in
several books on thermodynamics and electrochemistry3), and has
led to the very far-reaching conclusion that cells with diffusion only
yield information about mean activities, and not about the activities
of the separate ions.

Suppose we wish to measure a diffusionpotential. W e then place

1 )  W.  N e r n s t ,  Z.  physik. Chem. 4, 129 (1889).
2) P. B. T a y l o r ,  J. Phys. Chem. 31, 1478 (1927).
3) E. A. G u g g e n h e i m ,  Modem Thermodynamics, London 1933, page 148;

G. N. L e w i s  and M. R a n d a l l , ,  Thermodynamik, W ien 1927, page 289;
M. L e B l a n c ,  Lehrb. d. Elektrochemie, Leipzig 1925, page 239; C. D r u c k e r ,
Handb. d. Exp. Physik 1933 XII 2, page 21.
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an electrode which is reversible with regard to one of the ions, in a
solution of concentration c±, another in a solution of concentration
c2, and join both solutions, taking care that the distance between the
electrodes and the diffusion layer is so large that the concentrations
in the neighbourhood of the electrodes remains practically constant
for a long time. W e have thus got a concentration-cell with diffusion.

Now the usual thermodynamical treatment of this cell leads to the
result that the e.m.f. is a function of the transportnumber of the
electrolyte and of the mean activity, while the activities of the
respective ions do not occur in it.

2. In order to understand what this means, we first shall consider
more closely the concept of activity. W e shall take as an example a
non-ideal gas. The energy of a molecule in this gas is altered by the
v. d. W a a l s  forces. The thermodynamic properties, which can be
studied by experiments, differ from those of an ideal gas.

An assembly of a number, say n, of molecules in a given volume,
shows the thermodynamic properties of an assembly of m molecules
ideal gas in this volume, and one can describe these properties as if
the gas were ideal, provided the concentration n is replaced by the
“activity” m. The ratio mjn = f  is called activity-coefficient. It is a
function of the concentration, while we have f  = 1 in the ideal case.
Now in a mixture of two gases the activity-coefficients of both
components need not be equal. For definiteness consider a mixture
of helium and chlorine. The activity of the chlorine is determined by
forces between helium and chlorine and by forces between chlorine
and chlorine. In the activity of helium, however, only the forces
between helium and chlorine enter, the forces between helium and
helium being comparatively small. The activity-coefficient of helium
in this mixture will therefore differ much less from unity than that
of chlorine.

In an electrolytic solution the activity of the anion can also differ
from that of the cation. Even if we only take into account the
C o 1 o u m b forces, the activity in any case depends on the radius of
the ion. Ions of opposite charge can approach much more closely
when the radius is small; the distribution of charge round a small
ion is therefore different from that round a large ion; so the activity
is smaller.

The above considerations are only qualitative. An exact definition of activity
must make use of the expression for the thermodynamic potential of the
mixture concerned. If one neglects the contribution of phase-boundaries to the
value of this potential, it can be written: Z =  2 .  n . . ïZj ïn(, where
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v —  =  <“ <crii
is a homogeneous function of degree zero of the numbers n j, i.e. depends only
on the concentrations.

N ow  in the ideal case:
Hi =  <Pi(pT) +  kT log Cj

c. being the molar concentration
In the non ideal case this equation does not hold and must be replaced by

another expression. Formally we can always write
Hi =  <ft(pT) +  kT log [ f t

where is a function of p, T, m. m . . .  The introduction of these coeffi
cients I * has proved to be advantageous for the classification of many
experimental results.

While it seems to be agreed that the activity-coefficients f and f
of both ionspecies are in general different, it is not so with the
question whether these quantities are accessible to experiment. It can
be shown4) that all measurements which are based on thermo
dynamical equations (e.m.f. of cells in equilibrium, vapour-pressure,
freezing point etc.) can only yield information about the mean activity
y, which is defined by the equations):

y=VW
This is connected with the fact that a potential-term which accounts
for the electric energy, must be added to the partal G i b b s  potential
u. =  u +  kT  log (fc) of an ion in a certain phase. For, if two phases
are in equilibrium with each other, their electric potentials will in
qeneral be different. As all thermodynamical methods make use of
the equilibrium between two or more phases, we have always to do
with partial thermodynamic potentials of the ions, in which the
electric energies are inserted. If is the electric potential of the phase
and e the charge of the positive ion, its thermodynamic potential
becomes p +  ei|n and for the negative ion: p' — ei|>. Is we wish to find
the partial thermodynamic potential of the electrolyte the unknown
potential \|> must be eliminated, and thus we only find the sum:

p + y  K  +  pV +  kT  log (fcf'c) =  P0 + P'o +  2 kT  log yc,
which apparently means that no ionactivities can be obtained.

3 If now, according to the thermodynamical treatment of cells
with diffusion, their e.m.f. were determined by the mean activity,
obviously we could never obtain information about the lonactivitie

‘ «  E  A  G u o a e n h e i m ,  J. Phys. Chem. 33, 842 (1929): 34, 1540, 1758 (1930).
5) L  convenience sake we restrict ourselves to the case of a binary electrolyte.
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from these e.m.f.’s. It has already been noted that the so-called
thermodynamical treatment of diffusionpotentials yields the same result
as the kinetic theory in the case of ideal solutions. The kinetic theory
for non-ideal solutions, which shall be considered in this dissertation,
however yields another result than the usual thermodynamical
reasoning. A closer examination by O o s t e r h o f f  and the present
author6) showed that this thermodynamical treatment is not
permissible. This is connected with the fact that there exists no
equilibrium in a cell with diffusion.

Consider a cell:
(A) . . . H 2jHCl c^AgCl, Ag, AgCljHCl c2\H2.

To calculate the e.m.f. of this cell we can apply thermodynamics as
long as there exists equilibrium. W hen we join the 772-electrodes by
a conductor, in other words: when the cell is short-circuited, this
condition is no longer fulfilled, and the thermodynamical calculation
of the potentialdifference between the / / 2-electrodes will have to be
reconsidered very carefully.

Now a concentration-cell with diffusion is nothing but an i n t e r 
n a l l y  s h o r t - c i r c u i t e d  cell of the type (A ). The positive ions
which move from the concentrated solution into the dilute one,
represent a current i. The negative ions which move in the same
direction, represent a current —i. So the diffusion can be regarded
as a closed current, and a cell with diffusion as:
( B )  ......................... H 2jHCl cxjHCl c2IH2
can therefore be compared with a cell of the type (A) in which the
Ho-electrodes are short-circuited. W ith the use of this parallel it
could be made clear in the cited article that the usual thermodynamical
treatment of the cell (B) is not permissible. It could also be seen why
the thermodynamical and the kinetic theory lead to the same result in
the special case of ideal solutions.

4. From the fact that the diffusion is a kinetic phenomenon, which
does not suffer a thermodynamical treatment, it becomes clear that
the statement, mentioned above, that no ionactivities can be determined
with the aid of diffusionpotentials, is not conclusive. Whether such
a determination will be possible in practice, depends on our knowledge
about diffusionpotentials, (cf. also page 25). So it becomes clear that
an exact theory of electrolytic diffusion in non-ideal solutions, will
become important in electrochemistry. In order to test the theory
experimentally we have restricted ourselves to cases where the

6) L. J. O o s t e r h o f f  and J. J. H e r m a n s ,  Phil. Mag. 23 (1937).
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assumption f  ■= f '  has a sense, but this treatment has to be considered
as a first step. One can only extend the theory to higher concen
trations with some confidence, if the first approximation is verified
by both theory and experiment. This extension to higher concentrations
has not been tried in this thesis because of the very uncertain
speculations which would have to be applied at present. The expression
for the diffusionpotential which will be derived in this dissertation,
has already been published7). Starting from it, S z a b ó 8) proposed
an extension to higher concentrations in a way which is very similar
to that of H i i c k e T s 9) extension of the Vc-law for the activity-
coefficient. In the case of HC1 the result was satisfactory, but until
now S z a b ó ’ s method could not be applied to other electrolytes.

5. An extension of the theory of diffusion to real solutions should
take into account the interionic forces, the forces between ions and
solvent, and even the variation of the interaction between molecules
of the solvent, due to the presence of ions *). As to the interaction
of ions we shall take the point of view of D e b ij e and H ü c k e 1.
The results of this theory are only reliable in the case of dilute
solutions, and consist of the introduction of a Vc-term.

W e know much less about the interaction of ions and solvent. The
results of the theories concerning the B orn-effect10) and the
solvatation are rather uncertain, but there are reasons to believe that
the dependence on concentration of these effects is only felt in higher
powers of Vc. The way in which solvatation depends on concentration
seems never to have been studied; that of the B o r  n-effect could,
however, be calculated 11). The influence appeared to be of the same
order of magnitude as that part of the D e b ij e - H ü c k e 1-effect
which is described by higher powers of Vc than the first.

Finally the interaction of solvent-molecules can be altered by the
presence of ions. In some respect the theory of H i i c k e l 12) who
took into consideration the alteration of the dielectric constant with
the concentration of the electrolyte, can be regarded as an attempt
to calculate this effect. Here also, there resulted an influence
perceptible in higher powers of Vc only. Thus only the Vc-effect of

T) J. J. H e r m a n s ,  Z.  physik. Chem. (A) 176, 55 (1936).
8) Z. S z a b ó ,  Naturwiss. 24, 539 (1936).
») E. H i i c k e l ,  Physik. Z. 26, 93 (1925).
*) An excellent summary has been given by G. K o r t ii m, Das opt. Verhalten

gelöster Elektr., Stuttgart 1936.
10) c.f. page 19.
11) J. J. H e r m a n s ,  Z. Physik. 97, 681 (1935).
12) E. H i i c k e l ,  Physik. Z. 26, 93 (1925).
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the C o 1 o u m b forces between the ions have been considered in our
analysis. In such cases where the theory can be applied (the concen
trations being small enough) the results in the quantities to be
measured may amount to several percent.

The results of the theory are compared with experiments mentioned
in the literature. Some experiments concerning diffusionpotentials of
NaCl and BaCl2 in water and HC1 in a mixture of alcohol and water,
have been carried out by the present author. The results are very
satisfactory and make it probable that the assumption f  =  f  holds
good up to concentrations 0.02 N or 0.03 N.

II» The diffusion of a mixture of electrolytes*
I» The mixtures are treated in a separate section. There exists

an important difference from the diffusion of a single electrolyte,
which is caused by the fact that the equations of motion, even in the
case of ideal solutions, cannot be integrated unless one makes a
special supposition about the structure of the diffusion layer. In fact
we shall have to make use of some very radical approximations. So a
correction for the interaction of the ions seems rather premature for
the present.

2. The diffusion of a mixture of electrolytes is a very important
problem. D u c l a u x 13) recently indicated the important part which
it plays in biological processes. Further the potentialdifferences which
occur during electrolytic diffusion, make themselves felt in a large
number of measurements, e.g. in the determination of pH from the
e.m.f. of cells. The knowledge of these pH plays in its turn an important
part in biology and soil science. Finally unknown diffusionpotentials
practically always occur in the measurements of Q u i n t i n 14),
concerning ionactivities of several electrolytes. On grounds which are
more or less plausible, these diffusionpotentials are estimated or
neglected.

3. Some very remarkable phenomena result from the diffusion of
a mixture of electrolytes. They can piny an important or even
determining part in many processes.

A r r h e n i u s 15) already deduced from N e r n s t ’ s theory, that
the diffusion of HOI must be accelerated considerably by the presence
of KC1 and found it confirmed by experiment. T h o v e r t 15)

13) J. D u c l a u x ,  Diffusion dans les liquides, Paris 1936.
14) M. Q u i n t i n ,  J. chim. phys. 33, 433 (1936); C. R. 202, 123 (1936).
15) S. A r r h e n i u s ,  Z. physik. Chem. 10, 51 (1892).
10) J. T h  o v e r t ,  Ann. Physique 26, 366 (1902).
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observed that in this case the potassiumchloride, though originally
having the same concentration everywhere, takes part in the diffusion
in a direction opposite to that of the HC1. Measurements of this
nature seem, however, never to have been done afterwards. In this
dissertation we partly returned to them, and examined some general
results of the theory, comparing them with experiment.

The most important results in this respect are: 1. The diffusion-
potential between two mixtures remains approximately constant.
2. During diffusion extrema in the concentrations can occur. This
latter result seems never to have been studied by direct experiments.
The character of T h o v e r ’ s observation, mentioned above, makes it
very probable that extrema of this kind played a part in it, but he did
not mention it explicitely.

In this thesis the existing theories have been submitted to a critical
examination. A theory for small gradient of potential has been added.
Some measurements of cells with diffusing mixtures have been carried
out. Moreover a direct experimental proof of the extrema, mentioned
above, could been given.



THE DIFFUSION OF AN ELECTROLYTE.

I. Theoretical part.

Introductory Remarks.

Suppose that a solution of an electrolyte is brought into contact
with a solution of this electrolyte in the same solvent, the concen
tration being, however, different. At large distances from the plane
of contact the concentrations remain unaltered, and their gradients
are zero. Between both spaces a diffusion layer is formed, in which
both ions diffuse from the concentrated solution into the dilute one.
On account of their different mobilities they will try to do this with
different velocities. As soon, however, as the ions with the largest
mobility "overtake” the slower ions, we get a space charge and there
fore a gradient of potential: grad qp, which slows down the rapid ions
and accelerates the slower ones, so that both ions move with the
same average velocity. In order to calculate this common velocity
and to find the potential difference between both spaces, one must
know the equations of motion for the ions.

Considering more closely an ion in the diffusion layer, it is now
clear that it is subjected to a gradient of both concentration and
potential. From the latter we immediately deduce an electric force,
and it will therefore be appropriate to describe the influence of the
concentration-gradient too, by a force of some nature if we wish the
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gradient of both concentration and potential to be involved in the
calculation at the same time.

This has already been done by N e r n s t 1), who found the
expression

— kT  grad (In n)
for this “force” in the case of ideal solutions 2). W e shall derive this
expression in a way which differs from N e r n s t ’ s treatment in so
far as we need not suppose with N e r n s t  that the osmotic pressure
as such is the force which acts on the dissolved particles.

The total force on an ion of charge e becomes:
— kT  grad (In n) — e grad cp.

On the other hand one can deduce the friction q on an ion, in the case
it moves with unit velocity, from its mobility. The velocity of the
ion under the influence of the force — kT  grad ( I n n )— egradcp
simply becomes equal to this force divided by 9.

The equations of motion thus arrived at are only valid in the case
of ideal solutions. Our purpose will be to correct them for the case
of real solutions, making use of the theory of D e b ij e and H ü c k e 1.
W e then have to make two different corrections. If we consider a
given ion, calling it “central ion” and placing it in the origin, we
know that it is surrounded by an ion-sphere which has an excess
of ions of opposite charge. Thus the potential energy of an ion
decreases when the concentration of the electrolyte increases. Besides
the pseudo force — kT  grad (Inn) a real electric force due to this
potential energy, acts on the ion, so that the “force” which drives
the ion to points of lower concentration, is smaller. Our first task
will be to derive a general expression for this total force.

Moreover the ion-sphere has still another, more direct, influence
on the velocity of the central ion. For the forces which act on the
ion-sphere have the result that the fluid at the origin gets a certain
motion (electrophoretic effect). The central ion therefore does not
move in a medium at rest, but in a medium which has itself a certain
velocity. In the theory of conductivity D e b i j e  and H i i c k e l 3)
calculated this electrophoretic effect by introducing the electric forces
on the surrounding volume-elements in the hydrodynamic equations
of S t o k e s .  Here we shall follow a shorter way by directly applying

*) W.  N e r n s t ,  Z. physik. Chem. 4, 129 (1889).
2) The reader who is not familiar with the notation grad, can replace it by d/dx.

In that case one must restrict oneself to the diffusion in one single direction: the
axis x.

3) P. D e b i j e  and E. H i i c k e l ,  Physik. Z. 25, 49 (1924).
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some results of hydrodynamics. It will appear that this method is a
very general one and can also be applied to other cases.

There exists a simplification of D e b i j e  and H i i c k e l ’ s ralcniation by
O n s a g e r 4). This author divided the space round the origin into spherical
shells. These shells contain a space-charge and therefore undergo an electric
force, say Kdt. For the contribution of such a shell at distance r  from the
central ion, to the velocity at the origin, O n s a g e r  simply writes: Kdrl6m\r.
The total influence of the ionsphere is found by integration over all r.

It is, however, difficult to see why this method is permissible, for the shells
considered are not rigid at all. From the general hydrodynamical equations,
to be given here, it will become clear why O n s a g e r ’ s calculation leads to
the right result.

Our analysis will consist of five parts:
1- The calculation of the “Penetrationsdruck” in ideal solutions.
2. The calculation of the “Penetrationsdruck” in non-ideal

solutions.
3. The application of hydrodynamics to the problem of the mutual

influence of motions.
4. The application of the results obtained to the diffusion of an

electrolyte.
5. Some considerations about ion activities in so far as these are

important for the theory concerned.
Finally the results will be compared with some experiments men

tioned in the literature.

“Penetrationsdruck” in ideal solutions.
W hen there exists a concentration-gradient of a dissolved substance,

its particles are impelled to move towards points of lower concen
tration. Following N e r n s t ’ s initiative one can describe this
tendency by a force, identified by N e r n s t with the osmotic
pressure, and called “Penetrationsdruck” by B r u s z 5). This
description becomes particularly clear by means of the following
artifice 6).

Imagine the concentration-gradient maintained by means of an
external field. If U  is the potential energy of a particle in this field,
the distribution is determined by the expression of M a x w e 11—
B o l t z m a n n :

n — A  exp(—UjkT)

4) L. O n s a g e r ,  Physik. Z . 27, 388 (1926).
B) B. B r u s z ,  Z . physik. Chem. A 162, 31 (1932).
8) A. E i n s t e i n ,  Ann. Physik (4) 17, 549 (1905).
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where A  is a constant, and n the number of particles in unit volume.
The presence of this field means a force —grad U  for each particle.
This very force is balanced by the “force” that drives the particles
towards points of lower concentration. Therefore this latter force is

+grad U — — kT  grad(ln n).
Applied to the problem of diffusion one must make the hypothesis,

that this force remains —kT  grad (In n), when there is no external
field, i.e. no equilibrium, so that the particles diffuse. Accelerations
can be left out of consideration, as the friction is so large that, under
the influence of a given force, each particle gets practically instant
aneously the maximum velocity which it can obtain from that force.
Finally the friction is proportional to the velocity, a point that has
been minutely investigated (cf. e. g. U 1 i c h 7) ).

Thus the equation of diffusion becomes:

( 1 )  .................... qv — —k T  grad (In n).
in which p is a frictional factor. W e thus have derived F i c k ’ s law:

—►
nv =  —fcT/p . grad n ~  —T) grad n.

The hypothesis that the “driving force” during diffusion has the same value
as when exactly balanced by an external field, can hardly be maintained other
wise than by assuming that the deviation from thermodynamic equilibrium,
though existing, is small. Considering an element of volume in the solution, one
must suppose the state of this element close to equilibrium: in other words: the
gradient of concentration must be small. Thus the expression —kT  gradfln n)
will be all the more valid the smaller the concentration-gradient. A  deviation
from this law also means a deviation from F i c k ’ s law. In experiments
concerning diffusion, a possible influence of the slope of the concentration-
gradient has, so far as we know, never been taken into account.

“Penetrationsdruck” in non-ideal solutions.
As has been said, the tendency of the ions to move towards points

of lower concentration is diminished by the interionic forces.
For the "force” which describes this tendency, O n s a g e r 8) used

the expression:
(2) . .....................................—grad g,

[x being the partial G i b b s  potential of the dissolved substance.
It can easily be seen that this expression becomes identical with the
expression —kT  grad (In n) if applied to the case of ideal solutions.
A real demonstration of formula (2), however, seems never to have

T) H. U l i c h ,  Hand- und Jahrb. der Chem. Physik 6, II (1933).
®) L. O n s a g e r ,  Phys. Rev. 37, 405 (1931); 38, 2265 (1931).
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been given. It can be proved by generalising the foregoing con
siderations. If we have a mixture of substances, all of them being in
some concentration-gradient or other, we can again suppose these
gradients maintained by external fields, which exert on each of the
components the necessary forces, leaving it out of consideration
whether such fields can be practically realised or not.

On account of these fields a particle of the i’th component may
have a potential energy U . If n, is the number of particles of this
component in unit volume and F  the free energy in unit volume of
mixture, one can find the cc" ’.ition for equilibrium as follows.

Divide the space occupied by the mixture into elements dx. If we
assume the free energy of the mixture to be independent of the
concentration gradients, this free energy can be written:

f(F +  2 tmU)dx

and the total amount of the component i: / n,dx. Varying the numbers
tii at constant temperature, leaving these amounts and also the total
volume unaltered, we must have bF = 0.

Tius; Kt,
which leads to:

UA drii .dx — 0; • dx =

+  Ui zp Ci =  const.
o n ,-

0

The force which drives the i’th component towards points of lower
concentration, becomes: +grad Ui = — grad (dF/dn,).

W e have, however 9), (*F\ = /dZ\
\9 riiJvT {drill, —  P i-

Z  being the G i b b s  potential; and thus the expression (2) has been
arrived at.

Of course here too the problem remains that we are not quite sure whether
it is possible unambiguously to define a “driving force” in the case of real
diffusion and if it has the same value —grad. p. Finally it may be noticed that
solvent and dissolved substance have been treated as completely equivalent, as,
of course, they should be.

Mutual influence of motions.
In general the motion of a dissolved particle will be influenced by

that of others. A general theory of this phenomenon seems never to
have been developed, and indeed such a theory would require a
complete knowledge of the way in which the movement of a body in

9) H. A. L o r e n t z ,  Thermodynamica, Leiden 1929, page 107.
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a viscous fluid is transmitted to another. This phenomenon can only
be described if we introduce some simplifying suppositions.

In the following calculation we shall make use of a result, obtained
by O s e e n 10). The form in which these equations are applied here,
originates with B u r g e r s * 11). O s e e n  studied the motion of a
viscous fluid due to certain forces. For our purpose we can restrict
ourselves to the case that a force F with components XYZ acts at
the origin, the original motion of the fluid being a motion with uniform
velocity V  in the direction of the x-axis. In that case there is added
to the original motion a velocity:

la = - L J xa
I 8jirj ( d2x  dxdy dxdz)

n\ J -  — _ M  v Atlf r  ' y d V  -y i
^ .....................I 8 nr\ ( dxdy dy2 dy dz ^

l t v = l \z±v>-X  -  Y ^ ~  - z m8n t](  dxdz dydz iz 2 )
Here is a function of the coordinates xyz, the density a, the velocity
V, and the coefficient of internal friction t):

aV(t—x)
2y [  2t] , l —e ~ aY> =  Yr / d CO -— r —  _

7 02 , where r2 =  x 2 -|- y2 +  z2.
txy> stands for d2y>ldx2 -J-dV/ity2 -f- dfy/dz2.
As an approximation for small values of oVr/r) (the so-called

R e y n o l d ’ s number), becomes: aji =  r —x. In fact, we have
for small values of aVYr — x)l2r\:

yj —  xp cr V(r — x)
2 T] =  v(0) + o V(r — x)

2 t] V'(0).

But ip(0) — 0 and y>'(0) =  2r]laV . lim(l—e- *)/s — 2^/aV.

Thus ff V  (r—x) 2 nw =  — — -  =  r - x .

In this approximation the density a does not occur in the formulae, which
means that inertia-effects are neglected. The results to be obtained might there
fore also be calculated from S t o k e s’ hydrodynamical formulae, in which
inertia-terms have also been neglected.

W ith the so simplified expression for i|>, the equations (3) can be
written:

10) C. W . O s e e n ,  Hydrodynamik, Leipzig 1927, page 28.
11) J. M. B u r g e r s  (Delft), private communication.
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(4) . . SxTrj (t  + %’where p = x X + y y +zZ-

8nr\ \ r r3/

This result does not contain the original velocity V  and is therefore
also valid if V  — 0. Further it can be proved that these considerations
hold good when the force F  depends on the time, provided the
alteration with time is sufficiently slow.

The problem, important for the diffusion, can now be formulated
as follows. Suppose the fluid divided into elements of volume eft, and
let certain forces act on these elements. W e ask what movement is
caused by these forces at a given point. If we choose this point as
origin, a force F('XYZ)d.x that acts on an element dx with coordinates
xyz, brings about a movement at 0 of the form (4), provided we
replace xyz  in (4) by —x, —y, —z. That is:

dx
8 n rj
dx

8 n y
dx

w =  a\ o n t]

X  Px)
r r3
y+r*
r tr
Z P z
r r3

The total velocity, generated at 0 by the forces Fdx on the sur
rounding elements, becomes:

“  =sLJ8 n •/1.
1

8 n t]
1

8 n rj

y + ? i
r
z
r

P z
r3

dx

d x

where the integration must be extended over the space round the
origin.

This result can be applied to the problem of diffusion, when we
take it for granted, that the forces, acting on the diffusing particles
and transferred by these particles to the element of liquid, in which
they are situated, can really be treated as volume-forces.

This holds good for particles which are at a comparatively large distance
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from the origin (that means: at a distance which is large compared with
molecular dimensions). For particles in the immediate neighbourhood of 0 it
can only be an approximation.

If we wish to examine closely the influence of such a particle on the motion
of the fluid at 0, we should have to pay close attention to its movement and
shape. Consequently we must restrict ourselves to small concentrations, where
the dissolved particles seldom meet at small distance, so that the influence which
they exert in that case on each others’ motion, may be neglected.

A particle at 0 now does not move in a medium at rest, but in a
liquid moving in consequence of the forces around 0; the velocity (6)
is simply added to the velocity of the particle.

W e shall return to equation (6) when calculating the electro
phoretic effect. Here we only mention the important fact that this
equation yields a velocity zero in the case of random distribution.
For, if n;d t stands for the number of particles of the i’th component
in the element of volume dr, ei for the charge of such a particle, the
force acting on this element becomes:

“ ■ f

F  dr — —2 t (n, grad m  +  n. e, grad cp) . dr

cp being the electric potential. In the case of random distribution we
have: =  0, because there exists no space charge. Moreover
SjH; grad p; =  0, on account of the theorem of G i b b s - D u h e m .
In fact, this theorem expresses that, whenever the numbers nj are
altered at constant p and T, maintaining the state of equilibrium, the
alteration of the partial G i b b s  potentials must satisfy the condition:
SjH; grad p; =  0. So it supposes the existence of thermodynamical
equilibrium, but it has already been stated that the deviation from
equilibrium must be supposed small. Thus we have F  0, and
therefore in (6): u =  v =  w =  0.

This result means that the dissolved particles do not disturb each
others movement when they have no influence on each others
distribution in space, that means: when there is distribution at random.
In that case the velocities need not be the same, of course, as in the
pure solvent, but can only be altered in so far as the internal friction
is changed by the dissolved substances.

Now imagine a charged particle at the origin 0. The distribution
round about 0 is no longer at random, and the forces on the
surrounding particles are therefore different from zero. As, however,
the deviation from random distribution rapidly decreases with
increasing distance r, we can restrict ourselves in the integrals (6)
to a volume which is small from a macroscopic point of view. In this
volume the force F  can be regarded as constant, which is the more
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so as this force is due to the gradients of n and <p which —  as we
know —  must be considered as small.

O n s a g e r ’ s method, mentioned in the introduction, c m , of course, only be
applied to the case of spherical symmetry. His expression Kdrl6m\r for the
contribution of a spherical shell at distMce r  to the velocity at 0, cm
immediately be derived from (5).

For, if we choose the axis x in the direction of K, (5) becomes:

U =  j ^ ( v  +  f ) 4nv2dr v = j ^ -  ? 4nt2dr w ? 4nr2dr
Integration over the whole spherical shell yields: v =  w — 0, and: u — Kdrl6m\r,
q. e. d.

Application to the diffusion of an electrolyte.
O n s a  g e r  and F u o s s 1!) have already taken up the calculation of electro

lytic diffusion, but have not applied it to the diffusion-potential itself. Their
purpose having been, to calculate the velocity of diffusion without restricting
themselves to the first power of the square root of the concentration, it is
necessary to make some remarks.

First we do not think it logically consistent to keep a quadratic term in the
expansion of exp(etylkT), while using at the same time for ij) the expression:
>1>= e/Dr . exp(—kc). For this y  is the solution of D e b i j e - H i i c k e T s
differential equation A y  — x2y  =  0, which arises from the equation

A  V =  4 w/D|eini exp  e2n2 exP ( l ^ ) ]  w^en omitting powers of V>
higher than the first.

In calculating the electrophoretic force the authors do not take into
consideration the motion of the solvent, which also diffuses. Its contribution
to the expression (6) can only be neglected so long as the restriction to the
first power of \ / c  is made.

Finally the ion activities are simply equalized; no distinction is made, not
even by a single word, between these and the average activity, this perhaps
under the influence of the T a y l o r - G u g g e n h e i m  opinion (compare
page 25), that such a distinction is purely conventional. Therefore it seems
to us that the terms, which are not linear in \ /c ,  cannot be regarded as
exact.

Besides these considerations there may be mentioned another influence, which
for the present makes an accurate theory of electrolytic diffusion impossible:
the B orn-effect of ion-mobility13). This is caused by the fact that the dipoles
of the solvent get a rotatory motion in consequence of the moving electric
field of the ions.

They are hindered in this rotation by the internal friction of the solvent,
and conversely this means a restraining influence on the ion. As the electric
potential in the neighbourhood of an ion changes with the concentration of
the electrolyte, the B o r  n-effect must depend on this concentrationl4) .
Fortunately this dependence does not make itself felt in the first power of
V c 15)> but it appears in the higher terms and thus renders these terms rather

12) L. O n s a g e r  and R. F u o s s ,  J. Phys. Chem. 36, 2689 (1932).
ls ) M. B o r n ,  Z . Physik 1, 211 (1920).
14) K. S i t t e ,  Z . Physik 79, 330 (1932).
15) J. J. H e r m a n s ,  Z. Physik 97, 681 (1935); 104, 100 (1936).
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uncertain. For the theory of the B orn-effect must make use of some very
radical approximations and its numerical results must needs be accepted with
great reserve.

Summarizing, we can say that, for the time being, the diffusion of an electrolyte
is hardly or not at all accessible to theory, unless we restrict ourselves to
concentrations which are so small that higher powers of V c can be neglected.

W hen the diffusing substance is an electrolyte, each separate ion
is submitted to a “Penetrationsdruck”. The ions however cannot
diffuse independent of each other, for as soon as the more rapid ions
overtake the slower ones, there originates an electric charge density,
and as a result a potential-gradient — grad cp, which slows down the
rapid ions and accelerates the slower ones, the result being that both
ions move with the same average velocity v.

If ej =  Zit is the charge of the first ion and e2 — z2e the charge
of the other, the existence of a potential-gradient means forces
—e1 grad cp and —e2 grad cp respectively; and these forces have
opposite sign because e  ̂ and e2 have opposite sign. They must be
added to the respective “Penetrationsdrucke”, so that the entire forces
acting on the ions, become respectively:

— grad ux — ex grad cp and — grad p2 — e2 grad cp.
One can also add the electric energies eicp and e2<p of the ions, to the partial

thermodynamic potentials |ii and p.2 ( G u g g e n h e i m 16) and so arrive at
potenials — P\ +  e;cp. The force, acting on the i’th ion, becomes —grad ft.
Formally this is perliaps more precise: the splitting up into two terms fits in,
however, more closely with the visualisation of the way in which the diffusion-
potential is brought about.

The velocities of the ions with respect to their immediate neigh
bourhood is now determined by the equations:
• f  —►

i 6l Vx =  — grad — ex grad cp.

>7 )  • • • •  -
\kq2v2 — — grad /*2 — e2 grad cp.

q is a frictional factor, being inversely proportional to the mobility I
of the ion concerned. One has:

~~s w
(8) . . . . q =  15.3.10. ~y
where w =  | z [ =  the valency of the ion and I its mobility.

In fact I is defined in the following way. If the solution contains 1 gram-
equivalent of the electrolyte between two parallel planes which are 1 cm

16) E. A. G u g g e n h e i m ,  J. Phys. Chem. 33, 842(1929): 34, 1540, 1758(1930).
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apart, and we apply a potential difference of 1 Volt between these planes, the
electric conductivity of the ion i is /. reciprocal Ohms. As each gram-equivalent
transports 96500 Coulombs, the velocity of the ion is /./96500.

On the other hand the force, acting on the ion, is 1/300. w . 4, 78.10—10
dynes, because 1 Volt =  1/300 e.s.u. and the charge of the ion is w . 4, 78.10—10
e.s.u. Thus:

0 =  3ÖÖ 4 -7S l °
- to  95500

I 15.3.10.

Of course the potential cp is connected with the concentrations
nx and n2 by the equation of P o i s s o n :
(9) . . . . &<p =  — 4 n lD .(e 1n1+ e 2n2)

If were exactly to n2 as — e2 is to e lf there would be no space
charge at all, and a potential difference <p can therefore only exist if
the ratio n1/n2 deviates from — e2le v  But, as an extremely small
deviation from this ratio is enough to yield a large space charge, (9) can
be replaced by:
(10 ) . . ■ . . ex nl -\-e2n2 =  0.

At first sight this may seem paradoxical, as the potential q> owes
its very existence to the presence of a space charge. And indeed one
cannot conclude from (9), on account of (10), that A cp would be
zero. One simply has to cancel equation (9) and to replace it by (10).
For (10) does not mean that A is small or even zero, but only
means that the expression e1n1 +  e2n2 can be neglected compared
with and e2n2. This point has been discussed already by
P l a n c k 17) and has once more been maintained in a later discussion
with S i t t e 18). An accurate analysis has been given by the author19).

Now the velocities vx and v2 are not velocities with respect to an
observer, because the solution in the immediate neighbourhood of an
ion gets a velocity in consequence of the electrophoretic effect. Calling

this additional velocity —Su* for the first ion, it is found by sub-
—►

stituting for the volume-forces Fdx in (6),  the expression:
— [nx grad fix +  n2 grad fi2 +  (n,e, +  n2e2) grad <p] dr

It has already been mentioned that this force is zero when there is
a random distribution. A result differing from zero, can therefore
only be obtained in so far as the distribution around the ion considered
deviates from the random distribution. Now the number of ions of

1T) M. P l a n c k ,  Ann. Physik (Wied.) 40, 561(1890); Z. Physik 93, 696(1935);
94, 469 (1935).

1S) K. S i t t e ,  Z. Physik 93, 698 (1935).
19) J. J. H e r m a n s ,  Z. physik. Chem. (A) 176, 55 (1936).
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Tli \ 1 ----

a given species i in unit volume is given in first approximation by
D e b i j e - H ü c k e l ’ s expression:

e ,e 2 e - *1-''
iD k T  7

n[ being the average concentration of the ions i, e1 the charge of the
central ion, r the distance from this ion, x is the reciprocal characteristic
length in D e b i j e - H i i c k e l ’ s theory:

4n
x2 =  ■ efn,

D k T '
Therefore the deviation from the uniform distribution is:

— e,e; e~*r
— n( D kT

et nj ^racf /*! +  e2n2 grad f*2 +  U2 n 2 ) pracf <p

and F becomes:
e, e-*<

D k T  r
If we abbreviate now:
(11) . . .  . e^n! +  e22n2 =
we have, on account of: e ^  +  e2n2
n-L and n2:

( 12)
e2 n

0, the following formulae for

— e2n
....................- 1 ei(e,—e2) 2 e2(ei—e2)

As we restrict ourselves to the first power of Vc, we write:

Mi — Mi0 +  k T  In Ct
e?x
2 D

The molar concenrtation c,- can be replaced by the volume concen
tration, the difference being linear in c and thus may be neglected.
Making use of (12) we then have:

e .2
(13) . . • grad [Xi ' =  k T . grad(ln n) — j ^ g r a d  x

Cl  " t~  e 2 n grad x  — n grad <p—  e i « 2 e~  * r

<14) . . . . . . . . . . . . . . . . . F  =  1 5 * 7  — r~  L 2 D
In the case of binary electrolytes the first term of the right hand
side is zero, because in that case et  +  e2 =  0. But for non-binary
electrolytes too this first term can be neglected with regard to the
second. For we have:

,  4 n  e2n , * .
* “  ~ D k T : 9rad * = 2 n  0rad *'
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And thus the expression in parentheses in (14) can be written:

(15) ei +  e2
4 D x grad n — n grad rp.

Now from the equation (7) it can be concluded that grad\i and
e 9rad  <p have the same order of magnitude. But grad \i™kT grad (In n)
— kTjn.gradn. Thus n grad cp has the order of magnitude kTj z . grad n.
The first term in (15) is therefore to the second as e^x/DkT is to
unity. This latter proportion is small as long as the concentration is

small. In (14) there only remains: .F — j , ----- ngrad(p. If now we

choose the x-axis in the direction of grad cp, we have in equation (6):

iv =  0; u (=  — dvi) — —1 e^s2n grad<P (  e ~ (1
8 nrj DkT

If we write 0  for the angle between r and the x-axis, this becomes:
C 71

*r dr I {1 -f- cos2 0) sin 0  d 0 .u = ete2n gradrp r

Or:

4 r] DkT
2 eiS2n grad <p

3 rj DkT x
C p  -

=  6mj 9rad V-

(16)  ....................... dvt — grad <P.
The equations of motion can finally be written:

I Pi (y — 9 rad <p) =  — grad —  e, grad rp

(17) * * ]  -4 ' e x
I^Q2(v —  grad y) =  — grad n 2 — e2 grad q>

The detailed calculation, given here for the electrophoretic effect, is advan-
tageous. in so far as it is quite general. It can also be applied in cases, where
the distribution of electric charge round about the central ion has not sperical
symmetry; and is even useful when the hydrodynamical equations do not hold
in the approximation here used, i. e. when the R e y n o 1 s’ number is too large.
In that case one need only replace the function \|> in the equation (3) by a
more exact expression20).

) Prof. H. A. K r a m e r s  (Leiden) to whom the author is indebted for many
criticisms, pointed out that the ions which contribute to the volume-force F, make
up part of the ion sphere round the origin. Here we meet with the difficulty whether
the partial thermodynamic potential p, of such an ion has a well-defined physical
meaning or not. Possibly one had to make a correction of some kind for the pre
sence of space charge. As, however, this space charge is in first approximation
proportional to y c ,  we probably only neglect terms of higher order. Further the
diffusion potential <p and the D e b i j e - H ü c k e  1-potential are assumed to be
merely superposed. This assumption can, however, be supported by a closer
examination.
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Before integrating the equations (17) we must investigate the
problem of ion-activities. In calculating the electrophoretic force we
restricted ourselves already to the first approximation (Vc-law).
Moreover we stated on page 19, why an exact theory of electrolytic
diffusion must for the present be regarded as impossible, unless one
restricts oneself to this Vc-law. Now we shall consider another factor
still, which stands in the way of the theoretical as well as the
experimental determination of diffusion potentials.

Ion-activities.
To determine the diffusion-potential between two differently

concentrated solutions of an electrolyte, one measures the electro
motive force of a concentration-cell with diffusion. In diagram:

electrode ^./solution (c^)/solution (eg)/electrode A.

Suppose the electrolyte to be a mono-mono-valent substance. Then we
have:

E i  — const. + k T / t . In fiCi
E2 =  —const. — kTje . In f2c2

Here f i  is the activity-coefficient of that ion, with regard to which
the electrodes A are supposed to be reversible, taken at the concen
tration d ;  f2 is the same coefficient at the concentration c2. The e.m.f.
of the element is:
(18) . '  . . . E  £= I  +  kTfe . In f a l f a j
The activities frc1 and f2c2 are ion-activities, as distinct from the
average activities Yici and Y2 C 2  which can be determined by experi
ments. These are defined by the formula:
(19) . . . .  2 lny =  ln f-\-In f ,
I' being the activity-coefficiene of the other ion.

The determination of y has been realised with great accuracy for
many substances 2 1 ). Starting from the Vc-law of D e b i j e  and
H ü c k e 1 semi-theoretical formulae 22) have been proposed, which
reproduce Zny within the attainable accuracy of measurements. And
it is also by pure theoretical extension of the original theory that one
has succeeded in conquering a larger concentration-domain 23). But

21) G. A k e r l ö f ,  J. Am. Chem. Soc. 54, 4125 (1932); E. G u n t e l b e r g ,  Z.
physik. Chem. 123, 199 (1926): U. B. B r a y ,  J. Am. Chem. Soc. 49, 2372 (1927).

22) E. H i i c k el,  Physik. Z. 26, 93 (1925).
23) N B i e r  r u m,  Kgl. Danske Videnskab. Selskab, Math.-fys. Medd. ^

(1926); M ü l l e r ,  Physik. Z. 28, 324 (1927); T. H. G r o n d  w a l l ,  V.  K. L a
M e r  and K. S a n d v e d ,  Physik. Z. 29, 358 (1928).
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from all this nothing can be deduced about the ion activities them
selves. The best thing to do is to suppose
(20) . . f = f '  =  y
for small concentrations of the electrolyte. But one cannot say, up
to what concentration this equation holds. The measured value E  in
(18) yields a different diffusion potential L for each special division
of Inf and Inf' over 2 Iny in (19). In the theoretical calculation of L,
however, one must already choose such a division. And thus one is
well on the way in a vicious circle. It is true that this circle is not
entirely closed, for in principle one could try any choice of Inf in the
theoretical formula for L  and in the experimental value (18) at the
same time. But this would mean that one had to accept the exactness
of the theoretical expression for L beforehand. And this very
expression is far from sure if one wishes more than the Vc-law.
Therefore we shall only examine this Vc-law, using the assumption
(20) for the ion-activities. A result is, that we must renounce trying
to trace up to what concentration the Vc-law is valid, because we
never know if differences between theory and experiment must be
imputed to errors in the expression for L or to an inaccuracy in the
assumption (20).

It will be proved that in this way the experiments in solutions with
water as a solvent can be reproduced up to concentrations of about
0.02 N. or even 0.03 N. W ith regard to the D e b i j e - H i i c k e l -
theory of electrolytes this is a rather considerable concentration;
generally the limit of usefulness of this theory for electrode-potentials
lies beneath 0.01 N. One must, however, bear in mind that diffusion-
potentials are relatively small compared with electrode potentials: the
same relative error sooner falls under the possible errors of experiment.

The search for ion-activities is one of the most interesting tasks of electro
chemistry, and has been taken up more than once in recent years24). Some
authors go so far as to express the opinion, that the determination of ion-
activity must be regarded as impossible and that the very concept has no
physical meaning at a ll25) . According to G u g g e n h e i m  its determination
can only be based on mere convention.

This opinion is partly due to a wrong formula for the diffusion potential26) .
Further it is evident from the above treatment, that an independent determination
of diffusion potentials can be used as a determination of ion-activities; and
such an independent determination of diffusion potenitals can certainly not be

24) Z. S z a b ó ,  Z. physik. Chem. A 176, 131 (1936); M. Q u i n  t i n ,  J. chim.
phys. 33, 433 (1936); Compt. rend. 202, 123 (1936).

26) E. A. G u g g e n h e i m ,  J. Phys. Chem. 33, 842 (1929); 36, 1758 (1930);
Phil. Mag. 22, 983 (1936); P. B. T a y l o r ,  J. Phys. Chem. 31, 1478 (1927).

26) c.f. L. J. O o s t e r h o f f  and J. J. H e r m a n s ,  Phil. Mag. 23 (1937).
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regarded as impossible in principe27). And indeed, others have not denied
the possibility of determining ion-activities, and have even tried to derive them
from experiments28). The problem is, however, still far from being solved.
Both practice and theory of the diffusion potentials will probably play an
important part in this respect, and therefore it seemed desirable to examine
more closely the limiting law for infinite dilution, because the extension to
higher concentrations will very likely have to originate with this limiting law.
An attempt in this direction has already been made by S z a b ó 29) .

Finally some words may be added about non-binary electrolytes. For we
must extend the equation (20) to this case.

If a molecule of the dissolved substance is ionised into v, ions of charge
z\e,'J2 ions of charge zse, one has: vjzi +  v2z2 =  0, while the average
activity-coefficient is defined by:

ln r _  vi Infi +  v2 Inf2
vj +  v2

In D e b i j e - H i i c k e l ’ s first approximation Inf. is proportional to z2;, say.

Infi =  z?. Inf.
Thus:

Iny =  v1z]2+_v2z22 lnf
vi v2

And therefore finally:

( 2 D ................................. tn f ,=  . Iny
»izi - r  *2Z2

The equally was introduced by G u g g e n h e i m 30) as a convention. Here
we shall use it as a hypothesis. For instance in the case of BaCb:

(22)  .............................Infci =  V l In 71 lnfBa = 2  Iny.

Vc-law for the diffusion-coefficient.

If one substitutes the expression (13) for p in the equations of
motion (17), then eliminating cp, one finds:

nv — (—gradn). kT e2 — e,
e 26 i  —

1 + e le2 x
4 D kT

_  exe2 (gi —  g2)2 ^
e2 —ei e2ei — 6 n rj

Here all powers of x, higher than the first, have been neglected.

2Ï) J. J. H e r m a n s ,  Z. physik. Chem. A 176, 131 (1936).
2S) M. Q u i n  t i n  (l.c.).
29) Z. S z a b Ó, Naturwissenschaften 24, 539 (1936).
30) E. A. G u g g e n h e i m ,  J. Phys. Chem. 33,842(1929); 34,1540, 1758(1930).
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Remembering the equations (8) for p, and substituting the valencies
w of the ions, this becomes:

nv =  (—gradn). k T 10s wt +  w2 1̂ 2
15,3 ’ W\W2 l\ +  li

j  _  u>\W2 e2x _  wxw2 (gi — p2)2 * |
4 D k T  w t +  w2 wxq2 +  w2Qi 6nr j \

Considering first the case of ideal solutions (x =  0), this result
expresses that the electrolyte as a whole diffuses with the diffusion-
coefficient:

(23) . . T) _  w \ +  w 2 h  l 2
° 15.3 u>, w2 /, + 12

The diffusion coefficient 2) for non-ideal solutions can to a first
approximation be expressed by the ratio:

® _j  tUj w2 e2x w 1 w2 (gi — q2)2 x
2)„ 4 D kT  wx +  w2 ' W\ q2 -f- w2 p, 6n t]

The last summand is rather small in all cases that occur in water. For
instance it has a value of about 0.18.10—8x for HC1 in water at room-
temperature, in opposition to a last-but-one term of about 1.8.10—8x. For most
other electrolytes in water the electrophoretic term is still smaller, being almost
zero for KC1, pi and Q2 differing very little in that case.

There do not exist many reliable data about the dependence of T  on c, as
most experiments have been carried out at too large concentrations. The
measurements of S i 11 e 31) indicate indeed a linear relation between 2) and
\ /c .  but the factor of \ / c  would be almost twice the theoretical one.

(24)

Vc-law for the diffusionpotential.

If we eliminate the velocity v in (17), always omitting higher than
first powers of x, we find:

grad<p =  ^ - — / ƒ  +  fr-TT. 3  _  9™ dfi2\
Ü !_Ë-2 ( e1 _ e 26 n r ] \ \  p, p2 )
01 0 2  V 01 0 2  /

Using (13) for grad p and integrating:
h h ( 1 hw\ — l2w2 e2x w, -(- w2 15.3.10~sx

const k T Wt ) C 2 D k T  U + h  ~ 3 n r [ ~
e  /1  - f  f 2 (  m »i  w 2

Here we have also used the equation (8) for p.

31) K. S i t t e ,  Z. Physik 91, 622 (1934).
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The electrophoretic effect, which finds expression in the last term,
obviously always means an enlargement of the absolute value of the
diffusion potential; the last but one term can be positive as well as
negative. It is, of course, negative in the case of binary electrolytes
(w1 = iv2) , but it can become positive for other substances, e.g.
Na2SC>4 and BaClo in water.

In (24) we have-*
4 ns
D kT

and thus x is proportional to Vc. If we take together both terms in
(24) which contain x, in the form A\/c, the diffusion potential between
two solutions of concentrations 04 and c2 takes the form:

h _____ (2

(25) . Vl — gj, =  L =  — kr/e . X + f  j  ln ^  +  A ( ^ i ~ ^ 2) J
A being negative, when the electrophoretic term does not cancel the
other (electrostatic) term, e.g. HC1 in water, but being positive (and
rather large) when both terms are positive, e.g. BaCl2. And finally,
when both terms have the same order of magnitude but opposite sign,
the electrolyte shows a diffusion potential practically given by the
classic formula of N e r n s t 32), for instance NaCl and LiCl.

Comparison with experiment.
As for measurements, mentioned in the literature, only HC1, NaCl,

LiCl and BaCl2 receive consideration. The rare statements concerning
other electrolytes have this fault that the examined concentrations are
too large.

W e shall always suppose, that (21) holds. To calculate Iny we
shall make use of empirical formulae; the electrode potential, indicated
as Ee, can be calculated from such y with an accuracy of about
0.1 mV. The total e.m.f. of the element shall be denoted by E, the
difference E—Ee is the empirical diffusion potential. It will always
be compared with the theoretical value L(th), calculated from (24),
and often with L (N ) ,  this latter being the diffusion potential as given
by N e r n s t ’ s classical formula.

All potentials are expressed in millivolts, all concentrations in
grammolecule per I.

32) W . N e r n s t ,  Z . physik. Chem. 4, 129 (1889).
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HCl in water 18°. H. J a h n 3 3 ) .
Ag/AgCl/HCl cx/HCl c2/AgCl/Ag.

* o / o p  j ,  —  —  0.352 I / 2 c  Q080 2 c
1 +  0.782 | / 2  c

ZH  =  315.1 35) ZC I  =  65.5 36) ri81 =  0.01056 37

^ =  37.55 | I0Zog c,/c2 — 0.344 (|/C i — ( / c2)(

T a b l e  I.
HCl in water 18°.

C1 c2 E E . E — Ee L (th) L (N).

0.003329 0.01665 64.28 38.79 25.49 25.50 26.43
0.001665 0.03342 119.55 72.24 47.31 47.40 49.25
0.001665 0.01665 92.35 55.74 36.61 36.66 37.81
0.001665 0.01113 76.64 46.13 30.51 30.36 31.20
0.001665 0.008315 64.87 39.12 25.75 25.75 26.41
0.001665 0.006686 56.14 33.87 22.27 22.29 22.83
0.001665 0.005561 48.84 29.40 19.44 19.36 19.88
0.003329 0.03330 91.62 55.18 36.44 36.00 37.82
0.003329 0.01113 48.17 29.16 19.01 19.20 19.82
0.003329 0.008308 36.59 22.14 14.45 14.58 15.02
0.003329 0.006661 27.78 16.82 10.96 11.08 11.39

A 0.038 0.83

A * 0.0107

All experiments agree completely with theory, accept one at the concentration
0.0333, which is perhaps too large for application of the formula.

33) H. J a h n ,  Z. physik. Chem. 33, 554 (1900); 41, 288 (1902); cf. also J. J.
H e r m a n s ,  Z. physik. Chem (A) 176, 55 (1936). For the case: HCl in water at
25°, S z a b ó extended the theoretical formula (25) to higher concentrations: Z.
S z a b ó ,  Naturwissenschaften 24, 539 (1936).

34) E. H i i c k e l ,  Physik. Z. 26, 93 (1925).
35) F. K o h l r a u s c h  and H. H o i  b o r n ,  Leitv. Elektr., Leipzig 1916, p. 214,

mention a value Z =  315; A. A. Noyes and K. G. F a l k ,  J. Am. Chem. Soc.
34, 479 (1912): 1 =  314.5; C h . A. K r a u s  and W.  P a r k e r ,  J. Am. Chem. Soc.
44, 2449 (1922): 1 — 315.6. Taking this average value 1 =  315.1 we obtain a trans
port number 0.172 which is in excellent agreement with the value mentioned by
C. D r u c k e r ,  Z. physik. Chem. 62, 742 (1908) and by H. R i e s e n f e l d ,  Z.
physik. Chem. 68, 455 (1910).

36) F. K o h l r a u s c h  and H. H o l b o r n ,  Leitv. Elektr., Leipzig 1916; Z.
Elektrochem. 13, 333 (1907).

3T) H. U l i c h ,  Hand- und Jahrb. d. chem. Physik 6, II (1933).



30

NaCl in water 18°. H. J a h n 38).
Ag/AgCl/NaCl Cj/NaCl c2/AgCl/Ag.

— 0.500 l/V
io/o0 y — ----------- — = +  0.0308.2 c 39)

1+0.810 \ / 2 c
Transport number =  0.397 40).
Sum of the ion mobilities Xq =  108.8. t]18 =  0.01056 41).

L — 12.00 \10log c,/c2 — 0.100 ( J / Cj — 1 / c2)|
The largest concentration, up to which the limiting law is valid,
probably lies beneath c =  0.03. For this concentration the difference
between L(th) and L(N) is 12.0,1 . V 0.03 = 0.21 mV. In general
these differences lie therefore within the limits of experimental errors:
the diffusion potential practically follows N e r n s t ’ s formula.

T a b l e  II.
NaCl in water 18°.

Cl c2 E E* Ee - E L (th) L (N)

0.001674 0.006686 26.52 33.69 7.17 7.17 7.22
0.001674 0.008364 30.73 39.08 8.35 8.32 8.38
0.001674 0.01117 36.08 46.00 9.92 9.82 9.90
0.001674 0.01673 43.60 55.62 12.02 11.90 12.00
0.001674 0.03344 56.14 71.92 15.78 15.44 15.61
0.01000 0.02000 12.93 16.48 3.55 3.56 3.61
0.01000 0.03003 20.56 26.04 5.48 5.64 5.73
0.02000 0.05007 16.70 21.48 4.78 4.68 4.78

The differences between Ee — E  and L(th)  are never more than 0.12 mV., except
at the concentrations 0.03344 and 0.03003, which are perhaps somewhat too large.

NaCl in water 25°. M c. I n n e  s and B r o w n 42).
Ag/AgCl/NaCl 0.1 /NaCl c/AgCl/Ag.

r+0o f ^ l +oom2c',)
One of the concentrations was always 0.09956, thus being too large

3S) H. J a h n ,  Z. physik. Chem. 33, 554 (1900); 41, 288 (1902).
39) H. S. H a r n e d  and L. F. N i m s ,  J. Am. Chem. Soc. 54, 423 (1932).
40) D. A. M c. I n n e s ,  J. Am. Chem. Soc. 37, 2301 (1915).
41) Vide No. 37.
42) D. A. M e. I n n e s  and A. S. B r o w n ,  J. Am. Chem. Soc. 57, 1356 (1935).
43) Vide No. 39.
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to apply the limiting law. Taking /Na =  50.10 44), /C1 =  76.32 44),
t)25 =  0.008937 45), this limiting law would run:

I  =  12.26\'°log 0.1 lc — 0.096 {y'O .l — i/c ) (
As could be expected, this expression yields values for L, which are
smaller than those actually found. A complete agreement can be
reached with the expression:

L =  K —  12.26 (H>log c/0.1 — 0.096Vc).
In table III we have chosen the value —0.09 mV. for K.

T a b l e  III.
NaCl in water 25° ci =  0.09956; C2 =  c.

C l c 2 E Ee Ee — E L(th) A
0.09956 0.004983 56.46 72.46 16.00 15.94 +  0.06

,, 0.006978 49.91 64.15 14.24 14.18 4- 0.06
0.009966 43.03 55.37 12.34 12.38 — 0.04

„ 0.01994 29.80 38.45 8.65 8.65 +  0.00
0.02988 22.19 28.65 6.46 6.51 — 0.05

„ 0.03988 16.81 21.77 4.96 5.02 —  0.06
M 0.04983 12.69 16.43 3.74 3.86 — 0.12
M 0.05977 9.31 12.09 2.78 2.92 —  0.14
M 0.07967 4.06 5.26 1.20 1.43 — 0.23

0.09956 0.00 0.00 0.00 0.28 —  0.28

It is seen, that systematic errors begin to occur at c =  0.04. Of course L could
also have been reproduced by a formula of N e r n s t :  L =  La — 12.26 . l0log c/0.1.
This has not been carried out in the table.

LiCl in water 25°. M c .  I n n e s and B e a t t i e 46).
I: Ag/AgCl/LiCl c^LiCl c2/AgCl/Ag

II: Ag/AgCl/LiClCi/Liamlg/LiCl c2/AgCl/Ag.
Supposing f  =  f '  =  y, we have for the electromotive forces:

Ex =  kT/e . In Y iC i /Y 2c i  —  L
Eu =  2kT\e . In y ic1/y2c2

Obviously: L =  % E 2 —  E v
The ratio cl/c2 was always the same, namely 10. Although the

number of measurements at sufficiently low concentrations is too small
to draw reliable conclusions, it is striking, that L increases with c:

44) D. A. M e. I n n e s ,  S h e d l o v s k y  and L o n g s w o r t h ,  J. Am. fhom
Soc. 57, 1356 (1935).

45) Vide No. 37.
46) D. A. M e. I n n e s  and J. A. B e a t t i e ,  J. Am. Chem. Soc. 42, 1117 (1920).



32

Cl = 0.01 0.03 0.1 0.3
C2 = 0.001 0.003 0.01 0.03
Ex = 39.06 37.60 35.89 35.21
Eu = 113.90 112.75 110.55 111.17
L = 17.89 18.78 19.39 20.38

This behaviour does not agree with the theoretical law (25), taking
here the form:

L — 19.34 | 10log Cj/c2 — 0.056 (X/C j  — V 'c2) |
The correction is however very small, so that perhaps terms, which
are not linear in \/c, soon play a part, and these of course can have
another sign. Moreover measurements with amalgam-electrodes are
usually badly reproduceable when the electrolyte-concentration is
small, and finally LiCl does not occupy a very favourable place
among electrolytes, in so far as it shows hydrolysis at high
dilutions 47).

BaCl2 in water, 25°, Jones and Dole 48) .
Ag/AgCl/BaCl2 c/BaCl2 0.05/AgCl/Ag.

l0log y —
— 1.734 \^ c
1 +  2.331 l / c +  0.132 . c 49)

In (25) the absolute values of the ion mobilities are only important
for the Vc-correction. Far more important for the diffusion-potential
is the ratio between these mobilities. Accurate measurements of the
transport number have been carried out by J o n e s  and D o l e 50)
from c =  0.01 to c =  1. These authors found the empirical formula:

(2 .....................tBa — 1 +  0 07010 \S c
Thus at infinite dilution: t0 = 0.4476. W ith a mobility 76.32 51)

for the chloride-ion, which certainly does not differ more than 0.2
from the real value, one would find for the mobility of Ba the small
value 61.84, which is rather unlikely. For this would mean l 0 = 138.16,
while on the other hand J o n e s  and D o l e 52) reproduce the
conductivity of BaCl2 by the formula:

l = W M - T T j i m ^ - ,5-56c>2)
valid from c =  0.001 to c =  1.0. Moreover these measurements of

47) G m  e l  i n ’s Handb. Anorg. Chem., Berlin 1927, 20, 143.
48) G. J o n e s  and M. D o l e ,  J. Am. Chem. Soc. 51, 1081 (1929).
49) S. A. T i p p e t s  and R. F. N e w t o n ,  J. Am. Chem. Soc. 56, 1675 (1934).
B0) G. J o n e s  and M. D o l e ,  J. Am. Chem. Soc. 51, 1081 (1929).
51) Vide No. 44.
52) G. J o n e s  and M. D o l e ,  J. Am. Chem. Soc. 52, 2248 (1930).
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conductivity agree well with those of K o h l r a u s c h  and Gr i i n -
e i s e n 53) and those of Re  my  and R e i s e n e r 54). The formula
(26) has apparently been adapted too much to higher concentrations.
Neither does it yield the theoretical slope for c =  0. 55). W e therefore
use for the mobility of Ba the value: 141.06 — 76.32 =  64.74. Thus
we find:
(27) . . . L =  18.42 J 10log c,/c2 +  2.00 ( l /c ,  — ] / c 2) J
As the concentration 0.05 g/mol. per I is too large, we must use the
expression:

L =  K +  18.42 (*°log 0.05/c — 2.00 i /c )  =  K + X(c)
T a b l e  IV.

BaCl2 in water 25°.

c E Ee Ee —E y.( c ) K

0.001 58.4 94.5 36.1 30.1 6.0
0.005 33.3 54.8 21.5 15.8 5.7
0-01 22.8 38.1 15.3 9.2 6.1
0.025 9.4 16.2 6.8 — 0.3 7.1

Choosing K =  5.9 mV. the first three measurements can obviously be satisfactorily
reproduced. The electrode-potential Ee was calculated by using formula (22), page 26
Of course the choice of the constant K has altogether been adapted to the expe
riments. One can however convince oneself, that the formulae are rather’’sensitive”.
For it is not possible to reproduce the first three experiments with the aid of a
N e r n s t-formula : L — Lo -f- 18.42 log 0.05/c. To that end Lo would have to be
taken successively as 4.8, 3.1 and 2.4 mV.

There exist some experiments of D r u c k e r 56) concerning BaCl2
in water. W e tried to reproduce them with formula (27). It appeared
however, that large experimental errors must have crept into his
measurements, for his values are scattered very irregularly round
about the theoretical ones. If these deviations had to be imputed to the
formulae, they would of course have shown a regular nature.
Recapitulating it can be said, that the theory is confirmed up to a
concentration 0.03 g/mol. per I in the case of HC1 and NaCl, and
0.01 g/mol. per I in the case of BaCl2. Other experiments will be
mentioned in the next part.

B3) F. K o h l r a u s c h  and E. G r i i n e i s e n ,  Ber. Berl. Akad. 1216 (1904).
54) H. R e m y  and H. R e i s e n e r ,  Z. physik. Chem. 124, 43 (1926).
55) L. G. L o n g s  w o r t h ,  J. Am. Chem. Soc. 54, 2741 (1932).
5e) C. D r u c k e r ,  Z. Elektrochem. 19, 803 (1913).



THE DIFFUSION OF AN ELECTROLYTE.

II. Experimental Part.

The experiments will be discussed in two parts:

A. NaCl and BaCl2 in water.
B. HC1 in a mixture of alcohol and water.

As has been noticed before, the electrolytes HC1, BaCl2 and NaCl
represent three particular cases with respect to the theoretical limiting
law. According to (24) page 27 the diffusion potential of HC1 is
smaller than N e r n s t predicted, that of BaCl2 is larger and that
of NaCl is nearly equal to it, because the electrophoretic term is
nearly cancelled by the electrostatic one.

A. NaCl and BaCl2 in water.

Only the cells with AgCl-electrodes were studied, according to the
scheme:

Ag/AgCl/electrolyte ^/electrolyte c2/AgCl/Ag.

The electromotive force was determined with the aid of the usual
compensation-method (Student’s potentiometer), with a cadmium-
normal element as a standard cell and a ballistic galvanometer of
K i p p  (Delft).
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Por the preparation of the AgCl-electrodes a prescription of E l e m a 1)
was followed. For 24 hours a platinum electrode is silvered in a solution of
potassium silver cyanide by a current of 0.1 milliampere; the other electrode is
of silver. After careful washing, the electrode is left in distilled water for one
night. It is then chlorinated for 5 hours with a current of 0.2 milliampere in
0.1 N. HC1; an electrode of platinized platinum serves as cathode. During
this process, and also after it, the electrodes are not exposed to the light.

Such electrodes very often show a potential difference when placed opposite
one another in a solution, a potential difference which can even amount to more
than 0.5 mV. It disappears, however, after the electrodes have been left short-

circuited in the solutions. In the rare cases that this
difference maintained itself, the electrode concerned was
again silvered and chlorinated. Each electrode was always
kept short-circuited with others in the solution, in which
it had to serve afterwards, for several hours or if
possible for one night. As E l e m a  states, the colour of
such AgCl-electrodes is light brown, slightly reddish.

The measuring tube. Because of the comparatively
small sensitiveness of the galvanometer we chose a tube
of the simplest type, so as to give the electrolyte the
smallest conceivable resistance.

The tube in question is represented in fig. 1. The
cock K  has the same width as the U-shaped tube itself,
viz. 4 mm diameter. This diameter of 4 mm is purposely
taken so large, so as not to increase the resistance
unneccessarily. W e always filled the right hand tube
with that solution, which had the greatest density. In
that case it remains beneath the specific lighter fluid
during the diffusion, so that disturbing currents are
avoided.

Procedure in the measurements. After having placed
the AgCl-electrodes with fitting corks at both ends, we
fastened the filled-up tube in a thermostat. After some
time, when the electrolyte could reasonably be supposed
to have reached the temperature required, the tap K
was opened. Diffusion sets in and after some minutes
the potential difference between both electrodes reaches
a constant value.

After having measured this value several times, with intervals of 10 minutes,
we replaced one of the electrodes by another and repeated the measurement.
Thus, if one has prepared p electrodes for the first and q electrodes for the
second solution, these can be combined to pq pairs. The differences in the
measured potential difference never amounted to more than 0.2 mV.
Example: 1. NaCl 18°, ci =  0.009987 c2 = 0.02997

B  =  26.8 26.6 26.7 26.7 26.7
26.6 26.8 26.9 26.6 average: 26.7

2. NaCl 18°, C! =  0.001248 c2 = 0.01997
E  =  68.6 68.7 68.9 68.8 . 68.7

68.7 68.6 68.7 average: 68.7
1) B. E l e m a ,  Dissert. Utrecht, 1930.

Fig. 1.
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W hen an e.m.f. deviated more than 0.2 mV from the average, it was not
taken into account. If the electrode concerned showed the same deviating
behaviour after having been short-circuited once more with another, we silvered
it over again.

The method described here has the advantage, that an electrode, made unfit
by some cause or other, can immediately be detected. The simultaneous use of
more, mutually short-circuited electrodes in the measuring tube lacks this
advantage. A disadvantage is, of course, that the solution is momentarily
exposed to the air during the changing of electrodes.

Henceforth only the average potential differences will be recorded. The
number of observations, from which such an average was determined, varied
from eight to twelve.

The solutions. Weighed quantities NaCl resp. BaCh K a h l b a u m ,  dried
by glowing, were dissolved in distilled water, which had been rendered free
from carbonic acid by leading COï-free air through it for seven hours. All
other solutions were prepared by careful dilution in calibrated flasks.

NaCl in water, 18° ±  0.05.
For the calculation of the electrode potential Ee we made use of the

formula:

'“**=l+yZV2
assuming that the ion activities are equal. The limiting law for the
diffusion potential reads:

(28) . . L =  12.00 \ i0log — 0.100 ( l / c ,  -  l / c 2)\
C2

(compare page 30). E  is the total potential difference, Ee•—E  the
experimental L, and L(th) the diffusion potential as calculated from
(28). Within the limits of accuracy there is no difference between
L(th) and the N  e r n s t-formula L (N ):  Table V.

BaCl2 in water, 25° ±  0.02.

10log y =
— 1.734 l / c

1 +  2.331 l / c
+  0.132. c 2 3)

L — 18.42 l'°log -  +  2.00 ( l /c ,  — l^ c2)(
' c2 ’

For this limiting law compare page 33. It seemed desirable, to extend
the measurements of J o n e s  and D o l e  with BaCl2 (compare page
32) to smaller concentrations, and to examine at the same time more
closely, at what concentrations the limit of usefulness for the formula
lies. The lowest concentration at which observations of some

2) H. S. H a r n e d  and L. F. N i m s ,  J. Am. Chem. Soc. 54, 423 (1932).
3) E. A. T i p p e t s  and R. F. N e w t o n ,  J. Am. Chem. Soc. 56, 1675 (1934).
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T a b l e  V.
NaCl in water 18°.

C l C2 E , E Ee -  E L(N) L(th)

0.009987 0.05004 — 38.1 — 29.6 — 8.5 — 8.4 — 8.2
N 0.02997 — 26.7 — 20.9 — 5.8 -  5.7 -  5.6
,, 0.002497 34.4 (22.8) . (11.6) 7.2 7.2„ „ 27.4 7.0„ 27.3 7.1 ••
„ 0.001248 51.8 41.2 10.6 10.8 10.7

0.01997 0.002497 51.3 40.9 10.4 10.8 10.7
„ 51.3 40.7 10.6 m
„ 0.001248 68.7 54.1 14.6 14.5 14.4

0.02997 0.01997 98 8.0 1.8 2.1 2.1
n 0 005002 43.8 34.3 9.5 9.3 9.3„ 0.002497 61.1 48.3 12.8 13.0 12.9
„ 0.001248 78.5 (55.3) (23.2) 16.6 16.5

„ „ (57.8) (20.7) „ M
w „ „ 62.1 16.4 „ „
„ w 62.0 16.5 „
- .. . - 62.1 16.4 ..

A2 = 0.034 0,035

0.05004 0.02997 12.3 9.3 3.0 2.7 2.6
0.005002 56.0 43.7 12.3 12.0 11.8

„ 0.002497 73.3 57.1 16.2 15.6 15.4
0.002497 73.3 57.0 16.3 15.6 15.4

A2 = 0.26 0.44

The table confirms, that the limiting law can be used up to a concentration of
0.03 N. At 0.05 N. distinct deviations begin to occur. For some unknown reason
some experiments proved to be failures. These are mentioned within parentheses.

importance could be carried out, was 0.000823. As irregular deviations,
however, still frequently occur here, we repeated the observations at
c =  0.01 and c =  0.001. These measurements were carried out several
months later, and are reproduced in table VII (c in mol/1).

On purpose the table VI has been written in four parts, according
to decreasing cx. If we take into consideration the possible errors in
Ee, the agreement with the theoretical limiting law can be regarded
as complete in part 3 and 4. Above c =  0.01 systematic deviations
begin to occur, amounting to several millivolts at c =  0.03.

B. HC1 in a mixture of 40 mol. °/0 C2H5OH and 60 mol.
°/o H20 ,  25°.

Whereas the diluted solutions of numerous electrolytes in water
show an electrochemical behaviour, which is in good agreement with
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T a b l e  VI.

BaCl2 in water at 25°.

Cl c 2 E e E Ee  —  E L ( t h ) L ( N )

0.03310 0.01004 28.4 16.8 11.6 12.6 9.6
0.03310 0.002498 62.2 39.2 23.0 25.6 20.7
0.03310 0.001316 78.0 48.0 32.3 35.1 29.5
0.03297 0.000824 89.8 57.5 30.0 31.2 25.8

A 1.9 —  2.8

0.01648 0.001316 61.6 38.4 23.2 23.6 20.2
0.01648 0.001316 61.6 38.6 23.0 23.6 20.2
0.01648 0.001645 56.1 35.0 21.1 21.6 18.4

A 0.5 —  3.0

0.009988 0.00200 39.3 24.7 14.6 14.9 12.9
0.009988 0.001007 56.5 35.8 20.7 20.9 18.4
0.009988 0.000823 61.3 (41 .2) (20 .1) 22.6 20.0
0.009988 0.000823 61.3 (36 .2 ) (25 . 1) 22.6 20.0
0.009988 0.000823 61.3 38.6 22.7 22.6 20.0
0.009988 0.000823 61.3 39.1 22.2 22.6 20.0

A 0.2 —  2.2

0.005012 0.002002 22.5 14.5 8.0 8.3 7.3
0.005012 0.001011 39.7 25.4 14.3 14.3 12.9
0.005012 0.000824 44.6 28.9 15.7 15.9 14-4

A 0.2 -  1.0

T a b l e  VII.

BaCl2  in water at 25°.

Cl c2 E e E Ee  - E L  (th ) L (N )

0.01000 0.001006 56.5 35.6 20.9 20.9 18.4

0.01000 0.001006 56.5 35.4 21.1 20.9 18.4

0.01000 0.001006 56.5 (42 .5) ( 14.0 ) 20.9 18.4

0.01000 0.001006 56.5 35.8 20.7 20.9 18.4

0.01000 0.001006 56.5 (29 .8 ) (26 .7 1 20.9 18.4

0.01000 0.001006 56.5 35.7 20.8 20.9 18.4

0.01000 0.001006 56.5 35.6 20.9 20.9 18.4

A 0.02 —  2.4
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the electrostatic theory — with regard to both the thermodynamic
properties and the electric conductivity (see for example H. F a l k e n -
h a g e n 4)) — the results in other solvents can as yet by no means
be regarded as a general confirmation of that theory. First of all this
applies to the slope dljdVc (X being the conductivity and c the
concentration). It often shows large deviations (100 % or more) from
its theoretical value. In many cases the thermodynamical behaviour
could not be explained either. In connection with our work, only
some observations in alcohols and in mixtures of alcohol and water
may be mentioned, out of the vast material that has been compiled
in this domain.

N o n h e b e  1 and H a r t l e y 5) hold that the thermodynamic behaviour of
HC1 in CH3OH is in better agreement with the theory of M i l n e r 6) than
with that of D e b i j e  and H i i c k e l .  L a  M e r  and C a r p e n t e r 7),
B r ö n s t e d ,  D e l b a n c o  and V o l q u a r t z 8) and also H a n s e n  and
W  i 11 i a m s 9) examined several inorganic salts, in CH3OH and in C2H5OH
with respect to the thermodynamic properties. The limiting law of D e b ij e-
H ü c k e 1 is regarded by them as invalid for these solvents. H a w k i n s  and
P a r t i n g t o n 10) go even further; according to these authors the thermo
dynamic behaviour of some salts in C2H5OH do not in the least agree with
D e b i j e - H ü c k e l ’s theory.

As to the conductivity, according to H. D e s a i ,  N a i k  and B. D e s a i 11)
the formula of O n s a g e r  cannot be applied to various salts in CH3OH,
C2H5OH and C3H7OH. Thus M u r r a y - R u s t  and H a r t l e y 12) state,
that —dXIdyJc for HC1 in C2H5OH is nearly twice as large as theory predicts.
On the other hand C o p l e y ,  M u r r a y - R u s t  and H a r t l e y 13) mention
for a series of inorganic salts in C2H5OH a slope of the conductivity, which
deviates a good deal less from the theoretical value, than is the case in the
experiments of H. D e s a i ,  N a i k  and B. D e s a i .  According to T h o m a s
and M a r u m 14) the conductivity of NaCl, NaBr and NaJ in CH3OH and
C2H5OH is in agreement with theory; and C o n n e l l ,  H a m i l t o n  and

* )  H. F a l k e n h a g e n ,  Electrolytes, Paris, 1934.
®) G. N o n h e b e l  and H. H a r t l e y ,  Phil. Mag. (6) 50, 729 (1925).
8) S. R. M i l n e r ,  Phil. Mag. (6) 23, 551 (1912); 25, 743 (1913).
7) V. K. L a  M e r  and E. L. C a r p e n t e r ,  J. Phys. Chem. 40, 287 (1936).
8) J- N. B r ö n s t e d ,  A. D e l b a n q u o  and K. V o l q u a r t z ,  Z. physik.

Chem. A 162, 128 (1932).
9) L. A. H a n s e n  and J. W.  W i l l i a m s ,  J. Am. Chem. Soc. 52, 2759

(1930).
10) F. S. H a w k i n s  and J. R. P a r t i n g t o n ,  Trans. Faraday Soc. 24, 518

(1927).
11) H. D e s a i ,  F. N a i k  and B. D e s a i ,  Chem. Zentr. 1934, II, 1901.
12) D. M. M u r r a y  R u s t  and H. H a r t l e y ,  Proc. Roy. Soc. London

(A) 126, 84 (1929).
13) E. D. C o p l e y ,  D. M. M u r r a y  R u s t  and H. H a r t l e y ,  J. Chem.

Soc. London 1930, 2492.
14) L. T h o m a s  and E. M a r u m ,  Z. physik. Chem. A 143, 191 (1929).
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B u t l e r 15) mention for LiCl in water-alcohol-mixtures an alteration of
conductivity with concentration, which agrees within attainable accuracy of
measurements with the formula of O  n s a g e r. The conductivity of AgNC>3
in some organic solvents (including C2H 5OH) confirms the theory too.
( M ü l l e r ,  G r i e n g e l  and M o l l a n g 16)).

But the thermodynamical properties too are considered by more than one
experimentor to be ' in accordance with D e b i j e - H ü c k e l ' s  theory.
L u c a s s e 17), and S c a t c h a r d 18) too, reproduce the activity of HC1 in
water-alcohol-mixtures by the half empirical, half theoretical formula of
H ü c k e 1:

a 1 /  c „
— log y — -------— ~  — B . c

u l  +  A l / c
in which u is calculated from the theoretical limiting law. The same course was
adopted by M e. I n n e s 19) for HC1 in CH3OH. Other experiments with
electrolytes in alcohols or alcohol-water-mixtures are mentioned by H a r n e d
and F l e i s c h e r 20), N o y e s  and B a x t e r 21), B a r a k  and H a r t l e y 22),
W  o o l c o c k ,  H a r t l e y  and H u g h e s  23) , D r u c k e r and S c h i n g-
n i t z 24), W o o l c o c k  and H a r t l e y 25), P r s h e b o r o w s k i 28),
I l l a s k o ,  C a d e n a c  and S a l i t 27), C l a r k ,  G a t t y ,  H u g h e s  and
H a r t l e y 28), K r e i d e r  and J o n e s 29) .

Sometimes diffusion potentials were studied. It is, however, impossible to test
the theoretical limiting law (page 27), the examined concentrations being too
large, and the transport number being moreover not known accurately enough.
W e may mention: 1. H a r n e d  and F l e i s c h e r 20), HC1 in C2H 5OH and in
alcohol-water-mixture. Only two concentrations below 0.01 N. 2. E  r d e y-
G r u z 30) , HC1 in water-alcohol-mixtures. Concentrations too large. 3. W o o l 
c o c k ,  H a r t l e y  and H u g h e s 23), HC1 in C2H 5OH. Concentrations too
large. 4. D r u c k e r  and S c h i n g n i t z 24), NaBr and LiCl in C2H 5OH.
Some of these measurements have been carried out at sufficiently low concen
trations, to make a comparison with theory possible. The transport number of

15) L. C. C o n n e l l ,  H a m i l t o n  and B u t l e r ,  Proc. Roy. Soc. London
(A) 147, 418 (1934).

le ) R. M ü l l e r ,  F. G r i e n g l  and J. M o l l a n g ,  Monatsh. 47, 83 (1926).
17) W . W . L u c a s s e ,  Z. physik. Chem. 121, 254 (1926).
18) G. S c a t c h a r d ,  J. Am. Chem. Soc. 47, 2098 (1925).
19) D. A. M e. I n n e s ,  Chem. Rev. 18, 335 (1936).
20) H. S. H a r n e d  and M. H. F l e y s c h e r ,  J. Am. Chem. Soc. 47, 82, 92

(1925).
21) A. A. N o y e s  and W.  P. B a x t e r ,  J. Am. Chem. Soc. 47, 2122 (1925).
22) M. B a r a k  and H. H a r t l e y ,  Z. physik. Chem. A 165 272 (1933).
2S) J. W . W o o l c o c k ,  H. H a r t l e y  and B. H u g h e s ,  Phil. Mag. (7) 11,

222 (1931).
24) C. D r u c k e r  and R. S c h i n g n i t z ,  Z. physik. Chem. 122, 149 (1926).
25) J. W . W o o l c o c k  and H. H a r t l e y ,  Phil. Mag. (7) 5, 1133 (1928).
28) J. S. P r s h e b o r o w s k i ,  J. Russ. Phys. Chem. Soc. 62, 313 (1930).
2T) M. I l l a s k o ,  C a d e n a c  and S a l i t ,  Chem. Zentr. 1930, I, 2851.
28) D. N. C l a r k ,  G a t t y ,  H u g h e s  and H a r t l e y ,  J. Chem. Soc. London

1933, 658.
29) H. R. K r e i d e r  and H. C. J o n e s ,  Am. Chem. J. 45, 282 (1911).
30) T. E r d e y - G r u z ,  Z. physik. Chem. 131, 81 (1928).
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these salts in C2H 5OH is also known with an accuracy of 1 to 2 %
by the experiments of B a r a k  and H a r t l e y 22) and W  o o 1 c o c k.
H a r t l e y  and H u g h e s 23). As, however, D r u c k e r  and S c h i n g n i t z
measured only with AgCl-electrodes, the diffusion potentials cannot be calculated
with sufficient accuracy from their experiments, as long as no activities are
known.

W e have examined the electrolyte HC1 in a mixture of 40 mol. %
alcohol and 60 mol. %. water at a temperature of 25°. The dielectric
constant <?f this solvent amounts to D  =  41.0 31). The coefficient of
internal friction is rj =  0.0221 32).

To apply the limiting law (24 page 27) we must know the
transport number at infinite dilution and the sum of the ion mobilities
at infinite dilution, that is, X0. It is clear that the first of these
quantities is the most important, as X0 only occurs in he correction-
term. A correction of N e r n s t ’ s formula has only sense, if the
proportion (l± — 1%) : (l\ +  l2) is known with an accuracy of at
least 1 %.

The solutions. Weighed quantities of absolute alcohol, distilled
from quick lime were mixed with weighed quantities of distilled water.
The specific conductivity of the alcohol amounted to 0 ,6 .10-6 ; the
specific conductivity of the water was 2,7.10 6, that of the mixture
1 ,7 .10—6. Diluting on the other hand a solution of HC1 in water with
absolute alcohol, we obtained a solution of HC1 in the mixture in
question, the concentration of which was determined by titration.

This titration was carried out with NaOH and methyl orange as
an indicator. To the liquid, which was used to compare when titrating,
we always added as much alcohol as the examined mixture contained,
for the colour of methyl orange depends in some degree on the
percentage of alcohol. All other solutions of HC1 were obtained by
accurate dilution with the alcohol-water-mixture in question.

Determination of \ 0 (25° ±  0.02). Measurements of conductivity

T a b l e  VIII.
Equiv. conductivity of HC1 in alcohol-water, 25°.

* 0  =  1.7.10- 6 7 — eq. conductivity, c =  cone, in grmol/1

c = 0.0335 0.0201 0.0151 0.0134 0.0100 0.0067
X /  c = 0.1830 0.1418 0.1158 0.1230 0.1000 0.0819

X S 3 83.10 86.41 87.98 88.65 90.07 91.70
c = 0.00335 0.00165 0.00100 0.000670 0.000335 0.000165

I /  c = 0.0597 0.0406 0.0316 0.0259 0.0183 0.0128
y = 94.05 95.55 96.48 96.77 97.0 96.8

31) G. A k e r l ö f ,  J. Am. Chem. Soc. 54, 4125 (1932).
32) L a n d o l t - B o r n s t e i n ,  Physik. Chem. Tab., Hauptwerk I, 140.
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were carried out in a bulb with capacity 0.0651. The apparatus used
by us will be described by S. c h r ij v e r 33).

.04 .06 .06 .07  .08  .0£> .10 .11 .12. 13 .14 .15 .16 .17 .18 y —

Fig. 2.

In fig. 2 the equivalent conductivity X of table VIII has been
compared with Vc. A straight line is found with slope

J j

- r —  =  — 92.9 while K  =  99A. * *)d l ^ c
This slope is in excellent agreement with O n s a g e r ’ s formula:

0 818 106 82 0
l = l 0- Xl / c ,  with x  =  { D T f i r - k  + r ^ q f T

W e find namely with 10=99A  D —41.0 T =298 r]=0.0221 :x —93.7.
At concentrations below 0.001 X deviates from the straight line. The
cause of this deviation could not be traced.

Determination of the transport number fci (25° ±  0.1). The trans
port number was determined analytically by measuring the alteration
of concentration, caused by an electric current. The vessel used for
it is represented by fig. 3. At both ends an electrode of platinized
platinum is placed. For some hours a current goes through the
apparatus. The electrodes are then removed, and the cock K  is closed
after having taken care that the liquid in the right tube rises as high
as line a, which has been indicated on the outside beforehand.

S3) L. A. S c h r ij v e r, Rec. trav. chim. Soon to be published.
*) Calculated by the method of least squares, leaving c < [  0.00067 and c >  0.015

out of account.
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The volume V  from K  to a had been determined by weighing the
equal volume of water:

V  =  34.94 cm3.
Now the contents of this right hand tube are titrated with NaOH
or B a(O H )2 and methyl orange as an indicator; again we add to the
liquid, with which to compare (during titration), the same amount
of alcohol as is present in the titrated mixture itself (compare
page 31). The solutions, which contained 0.15 tot 0.03 g/mol. per I.

Fig .  3.

were thus titrated with B a(O H )2 0.1 N., free from carbonic acid.
The solutions with concentrations below 0.03 N. were titrated with
NaOH 0.02 N. If the original concentration is c g/mol. per I, the
strength of the current i . 10—3 Ampere, the time t  seconds, and the
number of g/mol. HC1, found in th volume V : s .  10-3 , the transport-
number is:

( 2 9 ) ..........................ta =  ~  (34.94. c — s)
where F (=  1 Faraday) =  96493. For there disappeared at the right
hand side £ci*. 10~3 . t . F~i g/mol. There was originally 34.94 . c . 10~3
g/mol., and s . 10- 3 is left. This immediately leads to (29).
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Now, in our case, the accuracy of a titration can be estimated at
about 0,002.10“ 3 g/mol., which means that the number of g/mol.
HC1 in the volume V  can be determined with an accuracy of
0 ,002 .10~3 g/mol. In fact this is equivalent to one drop of 0.05 N.
solution, which generally causes a change of colour which is just
perceptible. As s lies in the neighbourhood of 30c, an error of
0 ,002 .10—3 g/mol. means a relative error in s of 0,002/30c. That is
0.1 % for c about 0.1 and a little more than 1 % for c =  0.01.

The strength of current, supplied by anode batteries, was measured
by means of a sensitive milli-ammeter, which gave i with an
accuracy of 0.2 %. The small decrease suffered by i during the
experiment, was noted down, so that the product ix =  2 i(x) .  A t
was obtained in a direct way. The error that can now occur in it,
amounts to 0.3 % at the utmost. In principle one can therefore
determine the transport number with the aid of the method described
with an accuracy of 0.3 to 0.4 % for concentrations of about 0.1 N.
and 1 % for concentrations of about 0.01 N.

As both ends remain open, and gas is developed at both electrodes,
it is probably impossible to avoid a small shifting of the liquid as a
whole. For small alterations of volume at the electrodes can disturb
the hydrostatic equilibrium. As one takes care, however, to get the
liquid on the right hand side on a level with mark a, it is only of
importance to know, how much HC1 has totally been transported from
the left to the right hand side. A small shifting of the liquid as a
whole plays no part in this respect, as long as the alterations of
concentration that occur, are restricted to the extremities of the vessel
and do not become perceptible in the neighbourhood of the cock K.

An irregular vibrating motion, such as that caused by stirring the
thermostat in which the vessel has been fastened, appeared to exert
considerable influence. Therefore we always gave up stirring, never
theless easily maintaining the temperature at 25° ± 0 .1 . Changing the
current i and the time t, fci was not altered, as can be seen in table IX,
Moreover, we determined in exactly the same manner the transport
number of HC1 in water at 25° at a concentration c — 0.01112.
Taking i =  6.86, t  =  193 min, we found s =  0.248. Thus t =  0.171.
K o h 1 r a u s c h 34) mentions a value 0.169 at c =  0.01, L o n g s -
w o r t h  35) : 0.175.

The values t of table IX are plotted against c and Vc in fig. 4.

34) F. K o h l r a u s c h  and H. H o 1 b o r n, Das Leitverm. d. Elektr., Leipzig,
1916, p. 213.

35) L. G. L o n g s  w o r t h ,  J. Am. Chem. Soc. 54, 2741 (1932).
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At infinite dilution f0 =  0.231 ±  0.001. Therefore the ion mobilities
are: /H =  76.4 and /Cj =  23.0. (l-y — 1%) '■ (l\ +  I2) 0.358 ±  0.002.

T a b l e  IX.
Transport number t of HC1 in alc.-water, 25°.
i . 10—3 =  average strength of current,
c =  original concentration in g/mol. per /.
s . 10—3 — number of g/mol. HC1, found in volume V.

c i t  in min. s t average

0.1427 29.22 283 4.090 0.1744
0.1427 18.15 412 4.174 0.1750 0.1747

0.0714 15.30 336 1.824 0.2099
0.0714 12.26 375 1.892 0.2109 0.2104

0.0335 7.25 432 0.736 0.2225
0.0335 7.32 392 0.771 0.224°
0.0335 7.28 380 0.787 0.223* 0.2232

0.02856 7.20 412 0.585 0.224
0.02856 5.96 440 Q.629 0.226 0.225

0.01430 2.225 350 0.389 0.227
0.01430 2.250 360 0.384 0.228 0.2275

0.00715 1.605 272 0.187 0.232
0.00715 1.006 238 0.216 0.228
0.00715 2.005 396 0.137 0.229 0.229

Fig. 4.
Transport number of HC1 in alcohol-water,

c in g/mol./l.
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The theoretical limiting law, as derived by L o n g s w o r t h 35) from the
theory of D e b i j e - H i i c k e l  does not hold for this transport number. This
limiting law prescribes, that the slope at infinite dilution must satisfy the
equation:

('* /d  l^ c )c
_  2 U —  1 82.0

° ~  L  i / l /D T
This would be —0.182, while the absolute value of the experimental slope
at most 0.05.

is

The diffusion potentials of HCl in alcohol~water, 25° ±  0.05.
W ith the values t0 = 0.231 and A0 =  99.4 the limiting law for the

diffusion potential becomes:

(30) . . . L =  31.8 \ "log 1.06 ( i / 7  — l / 7 j {
'  C2 )

W e measured the cells with both anion- and cation-electrodes, while
one of the concentrations was chosen constant: 0.0335. Thus:

Pt/H2/HCl 0.0335/HC1 c/H2/ P t ...............................EI
Ag/AgCl/HCl 0.0335/HC1 c/AgCl/Ag.....................En

c varied from 0.00134 to 0.01675 g/mol. per /. It was impossible to
choose the other concentration so low, that a direct comparison with
the formula (30) could be carried out, as the resistance of the solutions
would become too large, to allow a reliable measurement. Instead of
(30) we must therefore examine a formula:

(31) : 31.8 j l0log +  1.06 j — K

L is calculated from the potentials E1 and En so that we need no
activitycoefficients *), that are more or less reliable (compare
L u c a s s e 17) or S c a t c h a r d 18)).  W e have:

En — L K T  a f c, (a)
e cfci (c)

where a =  0.0335. As usual we suppose: f%(c) =  fci(c)- It is of no
importance, if this equality holds up to c =  a, for anyhow we find:

Ei =  L +  —  ln
e cffi (c)

L — i (Ei7~ En) +  kT/s . logfH(a)//c/(a).
The last term can only change the constant K  in (31).

The observations have been summed up in table X. Comparison
with the formula (31) has been made by calculating the function

F(c)  =  31.8 (10log a/c +  1.06 y/c)

*) The use of both anion- and cation-electrodes seems to have been proposed
for the first time by E. C o h e n  and W.  T o m b r o c k ,  Z. Elektrochem. 13, 612(1907).
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and the difference: K  — F (c )-—L. In the same way we have
compared the results with the formula of N e r n s t ,  which would
run here:

L — F n(c) — Ktf, with F$(c) =  3 1 .8 .10log a/c.

T a b l e  X.

Diffusion potential of HC1 in alcohol-water, 25°. c i =  a  =  0.0335; C2 =  c. For
convenience we have always written the absolute values of the potential

differences, so that L  is found as */ï (El — E h) instead of l/j (E* -(- Ell).

c F(c) Fn (c ) Ei Eli L K Kn

0.00134 45.7 44.5 116.2—116.6 33.0—33.3 41.4—41.8 3.9—4.3 2.7—3.1
0.C01675 42.8 41.4 108.0-108.3 30.6 38.7-38.9 3.9—4.1 2.5—2.7
0.00210 39.8 38.3 99.6 28.2 35.7 4.1 2.6
0.00335 33.8 31.8 82.6 22.8 29.9 3.9 1.9
0.00672 25.0 22.2 57.3 15.3 21.0 4.0 1.2
0.00837 22.2 19.2 49.2 13.2 18.0 4.2 1.2
0.01675 13.9 9.6 24.3 6.5 8.9 5.0 0.7

From the values K and it can be seen, that the formula (31) can reproduce
the observations up to a concentration of about 0.009 N., while the formula of

N e r n s t  obviously would not hold beyond 0.0025 N.

Technique of the measurements. As we used hydrogen-electrodes
it was necessary, to wait till the electrode potentials had adjusted
themselves. It was therefore easier, not to exchange the AgCl-
electrodes during the measurements, and therefore three AgCl-
electrodes, prepared as described on page 35, were shortcircuited
with each other. This is more favourable for the precise adjustment
of the electrode-potential, and moreover it renders the resistance of
the cell smaller. In the same way we always used two hydrogen-
electrodes, shortcircuited with each other in one and the same solution.
They consisted of platinized platinum, polarised cathodically in diluted
sulphuric acid for two hours after having been platinized. Along
these electrodes a stream of hydrogen was conducted, obtained from
zinc and sulphuric acid and washed successively with solutions of
K M n04, A gN 03, Pb-acetate and finally with distilled water.

Before being admitted to the tubes, this hydrogen bubbled first, at
a temperature of 25°, through a similar solution to that in which the
electrode in question was placed.

Fig. 5 represents graphically the vessel used. W e always passed
hydrogen through it for two hours, before opening the cock. After
these two hours the measured potential differences had always reached
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their constant values. They were measured eight times at intervals of

Fig. 5.

about 15 minutes, and they never showed greater fluctuations than
0.2 mV. In table X we only mentioned the average value.

The experiments with HC1 in a mixture of 40 mol. % alcohol and
60 mol. % water at 25°, have been carried out in order to study a
solvent with a smaller dielectric constant than that of water. From
c =  0.0008 to c =  0.008, the equivalent conductivity agrees with
O n s a g e r ’s formula. The transport number does not agree with
the formula of S h e d 1 o v s k y, cf. page 46.

The diffusion potential can be calculated from the theoretical
limiting law up to a concentration 0.009, while this law could be
applied to the diffusion potential of HC1 in water up to a concen
tration of about 0.03. This difference in behaviour is probably due
to the small dielectric constant (41 in the mixture concerned instead
of 78 in water).



DIFFUSION OF A MIXTURE OF ELECTROLYTES.

I. Theoretical part.

A. A SUMMARY OF T H E  EXISTING THEORIES.

Introduction.
If there are more than two ionspecies, we have for each ion an

equation of motion like (7) page 20. W e restrict ourselves to the
case of infinite dilution, so that:

QiVi — — k T  grad (In n,) — e, grad <p.
The diffusion may take place in one single direction, namely in the

direction of the axis x. The charge e; may be replaced by z;e. If we
multiply by nv the equations become:
/ n \  u t  n̂ ‘ W(32) . . . . .  QintVi =  — k l  -------eZjOi —dx ox

Instead of (10) page 21 we now have to add the condition:
( 3 3 )  ................................................. • =  0.

An exact integration of the system of equations obtained in this
manner, has never been attained. It is true, that the approximations
of P l a n c k  and of H e n d e r s o n  yield values for the diffusion-
potentials, which have the right order of magnitude, but neither of
the two theories is very convincing in itself. W hen criticizing the
formulae of P l a n c k  and of H e n d e r s o n  one must bear in mind,
that all observations concerning mixtures of electrolytes have been
carried out at too large concentrations. The theory supposes ideal
solutions, and all experiments have been carried out at concentrations
0.1 N. or more. Therefore one cannot even e x p e c t  an exact
agreement with theory. Moreover electrodepotentials play a part in
almost all observations, and this always involves unknown ionactivities.
It is true, that attempts have been made 1), to take into account the

*) K. J. P e d e rse n , Math. Fys. Medd. Kgl. Danske Vid. Selsk. XIV 9 (1937).
E. A. G u g g e n h e i m  and A. U n m a c k ,  Math. Fys. Medd. Kgl. Danske Vid.

Selsk. X 8 (1930). 14 (1931).
P. B. T a y l o r ,  J. Phys. Chem. 31, 1478 (1927).
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interionic forces; yet this would only mean a correction for concen
trations under 0.05 N., and such calculations seem rather premature
as long as there exists no well-founded theory for ideal solutions.

Finally it may be noted, that the theories, given so far, aimed
exclusively at calculating the diffusionpotentials, while the picture of
diffusion itself was thrust into the background or was even left out
of consideration. Here we shall submit the calculations of
H e n d e r s o n ,  P l a n c k ,  S i t t e  and T a y l o r  to a more detailed
discussion.

Conditions at the boundaries.
The diffusion takes place in the direction of the axis x. The usual

conditions are:

at — <» : nt =  c< <p =  0 ünildx =  0 ünildt=0 dq>ldx =  0
at + 00 : ni =  c', <p — L dntlix — 0 ünildt=0 D<p)dx=0

L is the diffusionpotential between — oo and +  oo. The condition:
3<p/3x =  0 at the boundaries, expresses that no electric current exists.

The differential equations.

For convenience’ sake we introduce the quantities:

<3 4 > • ............................................................ £ = &

(35) ...........................................................* = i r (p
Obviously A; is proportional to the ionmobility divided by the

valency of the ion (compare page 21).
Now (32) becomes:

( 3 6 )  .....................

If now we consider a small space dx =  Sdx  between two planes
at x  and x  +  dx (S  being the area of the planes), the number of ions
i in this space amounts to SnfLx. In unit time Snlvi ions enter this
space dx at the left hand side and S[ mvi +  (B ^v jd x jd x]  leave it at
the right hand side. So the increase of Sn-^x in unit time amounts to
—S(dnivildx)dx. Thus the so-called equation of continuity:

dn, dfu/Uj) _
df dx  —  '(37) . .
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and the equations (36) can be written:

(38) . . 1 dnt  d2n{ d
It dt dx2 Z‘ dx n<

d$ \
dx)

Multiplying by ZjXj and adding, we get, on account of: 2^/1; =  0,

* * * ? + * * & (« ■
Henceforth we abbreviate:
( 3 9 ) ...................u =  ZiZiXitii v =  2 tZt2Xint
The values of these quantities at —  oo and +  oo respectively may
be written U, V , and U', V '. Thus:

U = 2 lz,llci V  =  2 tz tn ici U ' — 2 iZlXfit V ' =  2 iZl2W
W ith the aid of these definitions we find by integration:

du . d<5 . . .

On account of the conditions at the boundaries: [ (t) =  0, so that:

( 4 0 ) ........................... du
dx dx

In connection with (36), remembering the definitions (39) of u and v, we see
that (40) is nothing more than another way of saying that there is no electric
current.

General Remarks.
1. From the equations (38) one can at once draw the conclusion,

that none of the concentrations n; can be constant, unless $  =  0.
W hen therefore, at the beginning of the diffusion, we have given to
one of the n; the same value for all x, this constant concentration
cannot maintain itself, unless $  =  0. This latter condition, however,
generally gives rise to contradictions in the equations.

2. The equation (40) cannot be integrated without further
assumptions, as was the case with the diffusion of a single electrolyte.
Therefore one cannot say, if the potentialdifference between — oo
and +  oo remains constant or not.

3. If two mixtures are joined by a third one, the sum of the new
diffusionpotentials need not be equal to the diffusionpotential between
the two original solutions.

Formula of Henderson 2).
H e n d e r s o n  simply supposed all concentrations linear in x.

Then u and v are linearly related, so that
^  P. H e n d e r s o n ,  Z. physik. Chem. 59, 118 (1907), 63, 325 (1908).
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d u _ U — U ' ï»
dx V  —  V' dx

This can be integrated to:

, and (40) becomes II' —  LI t)V
W = V V x + ', -te = 0-

=  const. U —  U' .
V — V ' ln v’

and the diffusionpotential becomes:
. . . .  r k T U — U ' .  V

.......................................... e V _______________ V'^n V '
Independent of H e n d e r s o n ,  G o u y 3) has afterwards found this
same formula a second time.

A linear dependence on x  does not seem to agree too well with
the usual picture of diffusion. For at — oo and at +  oo the concen
tration-gradients must become zero. P l a n c k 4), however, already
pointed out, that it is not necessary for H e n d e r s o n ’s formula,
that the concentrations are linear in x. It is sufficient if they are
related by a linear equation. And here we even saw, that it is already
sufficient if there exists a linear relation between u and v (cf. also
page 59). Of course the initial distribution can be chosen in such
a way as to satisfy the condition of linearity. It can, however, easily
be proved that it does not maintain itself, so that the H e n d e r s o n -
diffusionpotential need not maintain itself either.

K r a m e r s * )  proposed the following derivation of the formula. First write
(40) in the form:

?<t> \ dv 1 d  -

ïbc =  7 ^ - T ^ (x,, +  u)
where A is a constant: and now determine X  so as to make the last term as
small as possible. It is plausible that we choose for X  such a number that
2v +  u has the same value at the left (—co) as well as at the right hand side
(+00). Doing so, and then neglecting this term with regard to the other terms,
one can easily be convinced that in this way the formula of H e n d e r s o n
is arrived at.

Formula of Planck 5).
The approximation of P l a n c k  interferes very radically with the

nature of the equations (38). For P l a n c k  replaces (38) by:
d2n, d (
^  +  Z i ï i \ n i ^ )

=  0 .

*) Prof. H. A. K r a m e r s  (Leiden), private communication.
3) M. G o u y ,  ]. Chim. physique 14,  185 (1916).
4) M. P l anc k ,  Sitz. Ber. Berlin (1927) 285, (1929) 9, (1930) 367, (1931) 115, (1933)362.
5) M. P la n c k ,  Wied. Ann. 40 , 561 (1890).
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This means that the process is supposed stationary (3n/3t =  0), a
supposition which does not agree with our boundary conditions which
are those of the usual experiments. Integrating one finds:

dnt d&

where a; does not contain x. With the aid of the conditions (33) and
(40) one can derive a transcendental equation for L, which must
be solved by successive approximation. In case that all ions are
univalent, P l a n c k  finds:

U = —  Ini
(42) V- . . ! , *

jln c'lc  +  lni V +  U  — (V' +  U')£ c — c'f
\lnc'lc — ln£ ' (V  — U)S — (V' — W) ~ c £  — c'

An extension to ions of different valency has been given by
P 1 e y e 1 *), j o h n s o n 6), P l e t t i g ? ) ,  C h a n g 8), G u y o t 9),
G o u y  10). The formula supposes a stationary state, a condition which
has not been fulfilled in the usual experiments. It is however valid
in cases where the stationary state is guaranteed.

In some special cases the formulae of P l a n c k  and H e n d e r s o n  lead
to the same result, e. g. when two electrolytes with a common ion diffuse into
each other, provided the concentration of this common ion is the same in
both electrolytes. The formulae are also identical when all concentrations at
the left are proportional to those at the right, i. e. when the left hand solution
can be obtained from the right hand one by a simple dilution only.

Formula of Sitte u)«
As was explained on page 21, we take the condition (33) as a

substitute for P o i s s o n ’ s formula:
d2<P_ 4 ns

IT 2iZin,‘
and we also proved why this is permissible. Now S i t t e  drew the
wrong conclusion, that one could write as well:

o r : d<p
dx =  f( t )

*) H. P l eye l ,  Z. physik. Chem. 72, I (1910).
6) K. R. J o h n s o n ,  Ann. Physik (5) 5, 735 (1930), 14, 995 (1904).
7) V. P l e t t i g ,  Ann. Physik (5) 5. 735 (1930).
8) S h u  T s u  Ch a n g ,  Ann. Physik (5) 16, 513 (1933).
9) J. G u y o t ,  J. Physique 6, 530 (1907), 7, 27 (1908).
10) cf. 3).
n ) K. Si t t e ,  Z. Physik. 91, 622 (1934).
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Supposing all ions univalent, we have:
ZiXitii — ZiZ^i-itii =  v

The equations (38) therefore yield:

(43) . . A (2 ’,n,) =  g + ^ ( 0 ^ ) ,  in which ^  =

For further calculation S i 11 e supposed the existance of a stationary
state. It is, however, sufficient if the left member in (43) is zero. This
can e.g. be approximately fulfilled if 2 ^  has the same value at oo
as at +  oo. This leads to

,  k T  , V + U + V ' — IT
(44) . . . . • L — —  . In y _  u +  v , +  u , ■

Properly speaking, the supposition 3$/3x =  K(t) ,  means that the
potentialgradient is approximated by a straight line. Notwithstanding
the loosely founded theoretical background, the formula can therefore
very well represent a useful approximation, especially in such cases,
where 2 jdn-Jdt is small.

The process of diffusion.
The calculations, mentioned so far, only occupied themselves with

the diffusionpotential. It was entirely left out of consideration, how
it is brought about and how it maintains itself. P l a n c k  and S i 11 e
even renounced the common boundary conditions expressing that
3<p/3x must become zero in infinity. So we get a quite different picture
of the diffusion. H e n d e r s o n  avoids all these difficulties by
assuming u proportional to v. One does not even know, however, if
one can expect a relation between u and v, let alone a linear one
(cf. page 59). In dealing with a single electrolyte, we already saw,
how the velocity of the first ion is changed in a very radical way by
the second. The electrolyte as a whole diffuses with a diffusion-
coefficient, which lies between those of both ions (page 27). Likewise
the average velocity of an ion in a mixture of electrolytes is strongly
influenced by the presence of other ions, and this influence largely
depends on the concentrations n, of those ions. All this might only be
traced by a more accurate integration of the equations (33, 38, 40).
In this direction attempts have been made by S i t t e 12) and by
T a y l o r 13). Both authors imagine two mixtures, brought into
contact in the plane x  = 0 at t 0.

13) p. b ! T a y lo r ,  J. Phys. Chem. 31, M78 (1927).
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The equations (38) can also be written:

(45) . .
d2n( d$>dn,
dx2 Z‘ dx dx

1 drii .
x ~ » +Zi

Now S i 11 e first solves the zero-order-approximation:

(46)
d2nt°   1 dn°
dx2 3),- dt

where are coefficients, which must be determined afterwards. With
the aid of P o i s s o n ’s equation the solution n°j yields a value for
324>°/3jc2. Integrating one finds 3<&°/3jc. One can put these values
d2<P0jdx2 and d$°ldx into the equations (45):

(47) . . dtli
dx dx

I  dn, d2$°
7/ dt Zt dx2 nt =  0.

and so obtain a first approximation for the nj. T o solve (4 7 ) ,  S i t t e
makes use of a theory developed by G e v r e y 14). To obtain this
first approximation, some very radical simplifications must be used
already. To support his method, S i t t e  mentions the fact that the
charge-densities, obtained in first approximation, are smaller than
those obtained in zero approximation, but on closer examination it
turns out that this is only the case for small t, as S i t t e  too admits.
Because of the very circumstantial calculations we must refer to the
literature concerned. S i t t e  does not proceed beyond the first
approximation, and therefore his calculations are only important with
respect to experiments, which only deal with the very first phase in
the diffusionprocess.

It is, however, not at all certain whether his results have a physical
meaning or not, because quantities such as dni/dx do not exist at the boundary
for t  —  0; and it remains to be seen, whether they will soon be so small, that
the differentialequations hold (cf. page 14). On the whole the initial
distribution, here described, must be regarded as a schematic arrangement.
The fact that this schematic arrangement yields a good reproduction of the
process after a longer time, does not prove that it does so for very small
times in the neighbourhood of the boundary.

As has been said, T a y l o r 13) starts with the same initial
distribution: two mixtures are brought into contact in the boundary
x = 0 at time t =  0. The concentration of the ion i may be ci at the
left hand side, c\ at the right hand side. If we abbreviate:

x

U) F. G e v r e y ,  J. Mathém. (6) 9, 305 (1913).
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we should have in the case of independent diffusion of all ions:
r<M»

(48)
c/ +  c. , c / — c,

2 \Xn
u>2 .

(49) . . . .  —  —  Ci c<e— « *3.v ' i t  i/ n  ‘ i t
a2; being a reciprocal diffusioncoefficient.

In the case of real electrolyte-diffusion T a y l o r  writes, instead
of (49):

(50) . . . . .  =  I ,  {«tyY e ~ ^  *

where api are coefficients, which must be determined afterwards.
Integration yields:

rii =  bi -f- I p api [  ‘y wn e- ®’ d w .
J  °

3<I>/dx is determined by the equation: 3$/3x =  —l/v.3u/3x, and we
must have:

(51) • ,
1 fx ini j  dn,T  d x =  —----h z,n, —

—oo
as can immediately be derived from (38). The left member can be
obtained from (50), while the value found for 3$/3x and the values
of dn-Jdx, obtained from (48), are written on the right hand side. The
equation, arrived at, must be an identity in y. An expansion of the
various functions in (51) in powers of y can therefore yield conditions
for the numbers api and a;. It appears, that the identity (51) contains
t and x  only as powers of y = xjly/t, as can indeed quite easily be
proved. T a y l o r  rightly concludes that a system of numbers api, Oj,
which satisfies once, will always satisfy. In other words: in that case
the concentrations ni and the electric potential can be written as
functions of y only. An important sesult is, that the diffusionpotential
is independent of time. For, eliminating y, one obtains the diffusion-
potential between two points as a function of the concentrations in
these points. As these concentrations do not alter at — oo and +  oo,
the diffusionpotential too must remain constant.

This is the only real proof for the independence of time of the
diffusionpotential, mentioned in literature, although this proof is
restricted to the case of a very special initial distribution of the
concentrations. On closer consideration, however, one cannot accept
this proof either. For the whole theory is based upon the supposition,
that the numbers api and a; are determined by the identity (51), and
even determined in a single-valued way. T a y l o r  does not prove
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that this is the case, and perhaps this cannot be proved at all. One
must namely bear in mind, that the conditions, from which the
numbers apj must be calculated, are quadratic in these numbers,
because 3<I>/3x: is a fraction, which contains the api in both the
numerator and the denominator. It is still worse with respect to the
ci;, for these enter in all possible powers. Therefore, we are not at
all sure that a system of coefficients, which makes (51) an identity,
can be found *).

Types of diffusion.
The question arises, whether it is possible, to choose the circum

stances so as to guarantee the validity of the theories. This leads to
a distinction in diffusion-types, a distinction which has first been
made by G u g g e n h e i m 15).

1. Continuous mixture layer 16). In this case the mixture in each
point of the diffusion layer between both solutions which diffuse into
each other, can be obtained by simply mixing these solutions. This
is nothing but a simple way to effectuate a linear relation between
u and v. Because, if q  and c'j are respectively the concentrations of
the ions i at the left and right hand side, we have, in a continuous
mixture layer, on account of the definition itself: nt =  ac\ +  (1 — ajq ,
where a changes from 0 to 1. In other words: the concentrations are
linearly related, and therefore u and v also. Thus the formula of
H e n d e r s o n  holds for the diffusionpotential.

One must, however, raise serious objections to this opinion. The boundary
is namely replaced by a series of solutions and consequently one is concerned
with the sum of many small potentialdifferences. If the difference between
the concentrations of these solutions is small, the potentialdifference concerned
is also small, and it cannot differ much from H e n d e r s o n ’ s value. One
should, however, choose the more terms, in proportion as one wishes to
satisfy the condition better. And we have no reason at all, to suppose that
the sum of these small potentialdifferences is exactly that of H e n d e r s o n ,
for the errors too are added together.

*) Notwithstanding our criticism of T a y l o r ' s  treatment, it can readily be
agreed that the possibility of writing <; m m ........ as functions of y, is a  very
important principle, which is closely connected with the fact that the differential
equations (38), when substituting y  =  xl2 \/t, reduce to:

—  2 y dm  _cPm . d /
l i  dy dy2 Zl dy '  ‘ dy'"

which do not contain x  or t explicitely. If it will be possible at all to
demonstrate that L  is independent of time, this demonstration probably will
have to start from this principle.

,5) E. A. G u g g e n h e i m ,  J. Am. Chem. Soc. 52, 1315 (1930).
16) She so-called flowing junction where the two solutions flow along each other,

is left out of consideration here (cf. page 76).
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2. Constrained diffusion junction. The concentrations ni are kept
constant; the state is therefore stationary and the formula of P l a n c k
is valid. To realize this stationary state, B j e r r u m 17) proposed the
use of membranes; along the outside of these membranes solutions of
constant composition are made to flow.

3. Free diffusion junction. The solutions are brought into contact
at time t =  0 in a plane x = 0; afterwards the ions diffuse in an
undisturbed way. Of course one cannot entirely avoid a small mixing
in the beginning, but in course of time the situation changes so that
it looks as if one had started with a mathematical plane as boundary.
It is the type of diffusion, to which T a y l o r ’ s theory refers.
Whereas from an experimental point of view this type has great
advantage, and the concerning diffusionpotentials can be pretty well
reproduced and are rather constant, the theory is as yet at an early
stage.

B. THEORY FOR SMALL GRADIENT OF POTENTIAL.
W e shall now examine, to what results the differential-equations

lead when the gradients of potential and concentrations are supposed
to be small. Motives are, in the first place the fact that the diffusion-
potentials which occur, are as a rule rather small, and in the second
place the reflection that, in the long run, the diffusionprocess will
bring about a more and more flat slope of concentration. The results
will then probably be best applicable to the so-called free diffusion,
provided the process has been taking place for a long time; that
means: a considerable time after both solutions have been brought
into contact. For convenience’ sake we shall write out the differential-
equations once more.

Here Xj is proportional to the mobility divided by the valency, <P
equals z/kT times the electric potential; u and v are determined by
(39) page 51.

The boundary conditions are:
at x — —oo :ni =  Ct inij()x =  0 i)nil()t=0 d& jix— O <P =  0

(52) . .

(53) . .

(54) . .

1 dni d2Ui

2iZiUi — 0

at x=x -f-oo m — c! in il^ x = 0  })nil<)t =  0 d ^ / d x = 0  & —

17) N. B je r ru m , Z. physik. Chem. 53, 428 (1905).
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Differentiating (54) with respect to t, we find:

+  =  0
dxi)t dt V dx /

which can be written in the form:
d (du d<P\ _ d v  d<P d y d $

^  ' ‘ ' ‘ dx \df ' V dt ' dx dt dx
The right hand member consist only of terms which are quadratic

in the derivatives. The supposition, that these derivatives are small,
may now be expressed in such a way, that the right hand member is
neglected with regard to the left hand one.

So we have approximately:

t e  \dt ^  dt I
— 0, or :

Substituting the condition at the
g(t)  — 0, in other words:

left hand boundary we

(56) =  0

find:

From this equation we can immediately draw some important
conclusions.

1. Substituting the condition at the right hand boundary, we find:
dLjdt =  0

In other words: the diffusionpotential remains constant in so far as
our approximations hold.

2. From (54) and (56) taken together one can conclude, that
u and v can be written as functions of $  (and conversely) or also:
u as a function of v. And the following relation holds for these
quantities:

du =  — vd<S>.
So we know, that there exists a relation between u and v, which does
not contain x  or t explicitly. If we knew this relation, we could
calculate the diffusionpotential by a simple integration. In the special
case, that u and v are related by a linear equation, the formula of
H e n d e r s o n  is found.

3. In consequence of the result thus obtained, the right hand
member in (55) is not only small, but even zero. For this right hand
member is nothing but the functional determinant (u$, xt). This result
is not immediately evident, for the boundaryconditions were needed
to arrive at it. W e did not equate this right hand member to zero,
but only neglected it with regard to the left hand one: and. (56) could
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only be arrived at afterwards by making use of the boundary-
conditions. In the meantime one must not forget that all this is only
a consequence of the proposed approximation. It is therefore only
approximately true that u(v) does not contain x or t explicitly. In
other words: when x and t are changed, the functional relation
u =  u(v) remains n e a r l y  the same.

4. From the fact that a functional relation 0  — 0(u) exists, one
would be inclined to conclude, that the diffusionpotential L is not
altered, when a third solution is added between two original ones.
For one would think it does not matter how the value of a is arrived
at 0  must always be determined by 0  (u). (The case that <P(u) is a
many valued function may be left out of consideration). One
must, however, not forget that $(u) can contain the boundary-
conditions. We may write 0 —0  (u, c', c), where c is an abbrevation
for c2, cx........etc., q being the concentration of the i’th ion at the
left (— co) and c\ this concentration at the right hand side (+  oo).
Conforming to this, we may write L(c', c), for the diffusionpotential,
so that:

L (c', c) — 0  (W , c', c) — 0  (U, c', c)
for U is the value of u at — oo, U' is its value at +  oo. If we now add
a third solution (with concentrations c'\) between the original ones,
we have to deal with the sum of two diffusionpotentials L(c", c)
and L(c',c"), and this sum need not be equal to L(c',c).

5. Some special attention may be paid to the case of three ions,
that is: two electrolytes with a common ion. In this case we have:

Z \ n \  +  z 2n 2 + . Z 31l3 — 0
zl^lnl +  Z2̂ 2n 2 +  Z3i3n3 — a

Z \ 2h n \ +  Z 22^2n 2 " 1“  Z 23X3n 3 =  V

From these three equations n1n2n3 can be found as linear functions
of u and v. If it is true that both u and v can be written as functions
of 0, it follows than all n K can be regarded as functions of 0, and
vice versa. From this general conclusion we can deduce some
particular properties of the diffusion layer. It means i. e. that several
(at least two) extrema must occur in 0  after some time.

For definiteness, the concentration n 3 may be larger at — oo than
at +  oo, n2 however larger in +  oo than in — oo. No matter how
the diffusion takes place, the result will be at all events, that a given
concentration n l  is found farther to the right after some time, and a
given concentration n2 farther to the left.
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b

Fig. 6.

Suppose 0  has a form like fig. 6a, without a maximum or a minimum.
W hen after some time the concentration nx(A )  is now found in A',
the value 0  (A ) must also be found in A', because 0  can be written
as a function of nj. A similar consideration holds for the concentration
n2(B). Obviously 0  must show a maximum and a minimum. On
account of the equation: dtiildx =  dnild0  . deP/dx, the concentrations
too show an extremum, unless by coincidence d^/dri; =  0. So it
appears, that the diffusion soon offers a rather irregular picture: the
concentrations do not remain monotonie in x. And the direction, in
which an ion of a given species moves at a given time, need neither
be the same for all x. Temporary accumulations of some ionspecies
can occur, which will disappear afterwards. And, of course, it can
be expected, that these considerations are all the more effectual in the
case of more than three ions.

For the special case of two electrolytes with a common ion, — provided the
concentration of this ion is the same at — oo as at' +  00 —, P l a n c k 18)
and T  a y 1 o r 19) already predicted these extrema. P 1 e 11 i g 20) also
calculated from P l a n c k ’ s theory, that the concentration of the chlorine-ions
shows a maximum when 0.01 N. HC1 diffuses into 0.1 N. KC1.

C. "LOGARITHMIC” SOLUTION FOR THREE IONS.

I. Simplification of the equations.
For three ions, that is two electrolytes with a common ion, one has:

18) cf. 4).
19) cf. 13).
20) cf 7).
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(58) . . . z xnx +  z2n2 +  z3n3 =  O
W e now introduce new variables:

+2Aé("'5?) i — 1, 2, 3.

( 5 9 ) ......................................Vi — Inrit
a t —oo : Vi =  InCi; d<Pildx =  0, d<Pij d t = 0
at +oo : <Pi =  Ine/ ; d<Pildx =  0, d<Pildt =  0

In introducing these variables we must exclude concentrations which
are zero.

The derivatives of these functions (p, have just the same order of
magnitude as those of Therefore, with our usual approximation,
all expressions which are quadratic in these derivatives, can be
neglected compared with these derivatives themselves. From a physical
point of view this approximation is based on the same assumption as
that on which we based our calculations on page 59, i. e. the
assumption that the gradients of concentrations and potential are
small. This does not involve, however, that both approximations are
entirely equivalent. For on page 59 we started from the equation (54):

dufdx +  vd$ldx  =  0,
while here all equations of motion are approximated separately.

Dividing (57) by n; we get:
1 dnt _h d2nt . /  /  dn,- d<p 2̂<p\

n, i t  rit dx2 Z‘ ' In* dx dx dx2 /
which can easily be reduced to:

dt ' dx2 +  "  dx2 +  h  (;

VPi
dX

2 I j
+  *  dx dx

Here the two last terms are quadratic while the remaining terms are
linear. Therefore approximately:

d2<&
(60) dtp, _  d2<P, .

—  4‘ r i  +  z ‘- ‘ ïdt dar oX2
Compared with (57) these equations have the great advantage that
they are linear and homogeneous in (Pi<f2 <P 3 ^- A disadvantage, how
ever, is that now (58) takes the form:

( 6 1 ) ......................Zie9’1 +  z2e<f>2 +  z^e^ — O
Therefore we wish to replace this latter equation by another, which is
approximately equivalent to it. To that end we differentiate (61) two
times with respect to x, neglecting Oq)/3x)2 with regard to 32cp/3*2.
So we find:
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; , e « g + 2!e« g + 2je « g = 0

In view of (61) this can only be satisfied if:

That is:

1 1 1
d<P, d ^ d <P3
dx dx dx
dV, d 2<p 2 d2<p3
dx2 dx2 dx2

a(y, — <p3) d2(<p2 — p 3) _  9(^2 — ? 3) WPi— vs)
dx * dx2 dx " dx2

And by integrating: q>x —  <P3 =  a ( t)  • (< P 2—  ^ 3 )  +  $ ( 0 -
This can be written in a symmetric form:
(62) . . .  . . A, 9> i +  A 2<P2 +  A 3<P3 =  K.
(63) provided A\ +  A 2 +  A 3 — 0.

According to this deduction the quantities A 3A 2A^K might depend
on t. It will, however, be proved that this is not the case. K  is
determined directly by means of the boundary-condition at the left
hand side:
( 6 4 )  ..................... K =  A tlnci +  A 2lnc2 -f- A 3lnc3
A similar condition can, however, be deduced from the other boundary-
condition, and therefore the numbers A t must satisfy the condition:

Z i j n e t  =  ZiAilnci
Henceforth we abbreviate:
(65) .................................0i =  In Cilc/
And so we have for A;:
(66)  ......................A,©! -f- A 20 2 -(- A 30 3 =  0.

Together with (63) this suffices for the calculation of the ratio of
the numbers A ;, and apparently these ratios do not depend on t. If,
however, all A; are proportional to one and the same function of t,
K  is also proportional to it (on account of 64), and therefore we
can divide (64) by this function, the result being that there remain
numbers A {, K, which do not depend on t.

As only the ratios matter, we write:
(67) . . . A l =  0 2— 0 3 A 2 =  0 3 — ©! A 3 =  0 1 — 0 2



64

II. Expression for the diffusionpotential.
With the aid of (62) we easily deduce from (60):

2 ‘XiAi dx2 S ‘z‘ 'iAi ^ 2  == °-
Integrating, and taking into account the boundary-conditions:

0  ~  Ziz'ihA, ^  Ailn Ci ~
Using (65) and remembering (35, page 50) we then find for the
diffusionpotential:
/gg\ t __k T  2jkjAi&j

s SiZ^-iAi
W e shall postpone the discussion of this expression for L and first
proceed with the equations of motion.

III. Further examination of the differential equations.
For convenience’ sake we introduce the symbols:

The equations (60) then run:
(D' —  XiD2'.<pt =  ztl lD2$

Henceforth we shall apply the notation which is usual in the theory
of symmetric functions. So an expression like stands for
ZjAj +  z2 ^2  +  Z 3 A 3 ,  2 z  1  A 2 ^ 3  for z xl 2̂ i +  z2̂ 3 î +  z 3̂ 2> and so on.
Then, with the aid of (62) we can deduce the following differential
equation for 4>:
(69) . . . .  2 z ll lA l(D’ — X2D 2)(D ' —  23D 2) D 2« p = 0 .
W e abbreviate:
(70) . . P  =  2 z ll lA l Q  =  2 z ll l(h +  ^ )A l R  =  2 z lW iA l
and can therefore write (69) in the form:

(PD’ 2 — QDT>2 +  RD*)D2$ =  0.
W e now integrate twice with respect to x, taking into account the
fact that =  constant =  0 at — 0 0 , and find:

(PD' 2 — QDT>2 +  RDi)<t> =  0.
In non-symbolic notation:

(71) . . . P — — Qdt2 dt dx
W -  +  R * * .2 ~  A 9jC4

If a and (3 are the roots of the quadratic equation:
72) . . . . .  . Ps2 — Qs  +  R  =  0,
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we can also write:
(73) . . . .  (D' — <xD2) (D ' — /5D2J<P =  0
If we apply this result to the equations of motion (D'—X;D2)qpj =
=  ziA.iD 2$, we find:
(74) . . . (D' — W iH D '  — ocD^fD' — p D ^ v ^ O .
The solution of (74) is a sum of the solutions of the following three
equations:

(D '— W 2)<Pi =  0 (D' — aD 2)<Pt — 0 (D ' — i}D2)<P, =  0.
As to the solutions of the first of these three equations, only the

trivial solution <p; =  constant can be used, because the functions cp;
must satisfy (62). This can readily be seen if one writes down the
solutions of (D' —  Ï.J) 2) cpj =  0 in the form exp(px  +  hjp2t). It is,
of course, impossible that an expression of the form:

2 i2 pai (p) . exp (px -j- 2,p2f)
would disappear for all x and t, unless all a; are zero. Only in the
special case that two “mobilities” X; are equal, does this break down.
This case will therefore be discussed seperately.

So one can conclude that each of the functions <̂ 1^2 9 3 ^ “diffuses”
according to (73). The whole motion is a superposition of two
diffusions, one with a diffusion-coefficient a and the other with a
diffusion-coefficient p. These a and P are the roots of the quadratic
equation (72), and thus, on account of (70), functions of the ratios
between the numbers Aj. According to . (63) and (66) these ratios
are, however, determined by the boundary-conditions.

IV . The case
As has already been said, the theory must be modified, when two

of the are equal. For instance ^  =  X2 =  X.
W e need not take into consideration, the case that they are also equal to A3, for

in that case we have in (40) page 51: u =  0, and thus =  0; and all ions diffuse
as if they were uncharged.
Now write [x for the third “mobility” A3([x ^  X). The equations of
motion become:

(D' — lD 2)<Pi — ZlW 2$
{D, — 1lD 2)<P2 =  z2W 2$
\d ' — p D 2)cp3 =  z3p D 2(&

With the aid of (62) one can easily deduce:
(D ' —  oD 2)<1> =  0 (D ' —  ID*) (D ' —  aD2)(p1 =  0
(D ' —  W 2) (D ' —  oD2)<p2 = 0 (D ’ —  \iD 2)(D ' —  0D 2Jcp3 =  0
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Here:
_  U \A X 4- z2A 2 +  z3A 3)Xfi

(z\A\ +  z2A 2)X +  z3A 3fi
Now, by a similar consideration as mentioned before it is easily

understood that cp3 and 0  carry out a “simple diffusion” with
diffusioncoefficient a while the diffusion of and q>2 is a superposition
of two diffusions with diffusion-coefficients X and a. For again the
solutions of (D' — uD2J(p3 =  0 cannot be used, because they can
never satisfy (62). Not so the solutions of

(D' — XD2) iPi — 0 and (D' — XD2) ip2 =  0,
provided one takes care that these solutions satisfy the condition:
Ai<pi +  A 2tp2 — 0.

W e can easily indicate the physical meaning of this result. Suppose
first that z3 =  z2 =  z. As far as the electrolytic diffusion is concerned,
the ions 1 and 2 do not differ in this case. As A 1 + A 2 =  — A 3, we
find:

_  (z3 — z)A 3kfi __ (»>i +  w3) i-n
—zA 3X -f- z3A 3(jl w2X +  w3ju

Here the valencies w =  | z | have been introduced. Obviously a is
nothing but N e r n s t ’ s diffusioncoefficient (page 27) for the
electrolyte [1.3] or [2.3], In other words: we have a superposition
of two diffusions, the first is an ordinary N e r n s t diffusion, the
other is a diffusion with diffusion-coefficient X, which means nothing
but a continual exchange of ions 1 and 2, which can take place
because they do not differ from the point of view of electrolytic
diffusion. W hen z3 and z2 are different, this exchange remains
possible provided the ions 3 take part in it. Therefore a is no longer
equal to the N e r n s t diffusion-coefficient, while nevertheless $  is
uneffected by this exchange and “diffuses” with the diffusion-
coefficient o only.

V . The case of a single electrolyte viewed in retrospect.
The theory of the diffusion of three ions, developed in this

dissertation makes use of two different approximations. The first
replaces (57) by (60): the other (58) by (62, 63). Both make use of
the supposition that the gradients of potential and concentrations are
small. If there are only two ion species, we can again approximate
(57) by (60), and find:

2 =  X2 r - ^ r  +  z 2
i 2<P d2$(75) . .



67

The condition (62, 63) can here be written:
(76) . . . . . . . <px =  cp2 +  K
In this case, however, (76) is not an approximation for (58), but
exactly the same equation in another form. With the aid of (76) we
easily deduce from (75):

— k*0: (<P2 — In c,)
Z \h  —  z 2i-2

This is nothing but N e r n s t ’ s equation for the diffusionpotential.
Apparently the approximation (75) doet not change this result in the
case of a single electrolyte.

On the other hand, eliminating <5, one finds:

it
Z2 — Zj

Z2i 2---- Z i * i  * 1 ’ Ö2JCi

This is an equation of diffusion for the logarithm of the concentration
instead of the concentration itself. The meaning of this approximation,
which replaces the concentration by its logarithm, will now be
submitted to a closer investigation.

(77)

VL The replacement of the concentration by its logarithm.
An equation of diffusion

i t  ix 2
can be reduced to the form:

i n _i 2n
it  ix 2

by a convenient choice of the independent variables, e.g. by introducing
a new variable t' — Dt. If u(x,0) is the initial distribution, the
solution of (77) runs:

1 r<*>
(78) . . . .  n (x ,t)= — - I  u(x-\-2co  i / t ,  0) e—"2 dm.

—  00

In particular, when u(x,0) = p for — oo < x < o  and u(x,o) =  q
for o <  x  <  oo one finds:

n (x,t) = q + p
l / j i

jc/2 \ y  t
e—0,2 dm

Henceforth we abbreviate:

e—<a2 dm
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And so:
(79) . . . n(x,t) =  il2 (q +  p ) + 1l2(q — p)x(xl2i^'t)
If now a new variable qp =  In ri is introduced, one finds instead
of (77):

W  _  fW\2
dt ix 2 \dx)

With the approximation for small concentration-gradient, which has
been proposed in this dissertation, this becomes:

(80)
d<p _  a2y
df dx2 ’

which has entirely the same form as (77).
Now we also wish to compare the integral of (80) with that of

(77), and want to prove that both integrals practically lead to the
same result if the circumstances are chosen appropiately. This
demonstration cannot be regarded as superfluous, for even if (80)
represents a good approximation of (77), one should not forget
that the interval of integration where this approximation is applied,
is extended from x — — oo to x — +  oo. Moreover, there are
certainly points where the approximation (80) is bad, namely those
points where 32qp/3x2 is 2ero or does not differ much from zero.
Now we must take into account that (80) represents an approximation
for small concentration-gradient. Therefore, we must choose an initial
distribution which satisfies this condition. In that case we can prove
that the integral of (80) represents an approximation to the integral
of (77), for times which are not too large.

Now the original distribution which is easiest and most plausible,
is the one which has come into existence by bringing two solutions
with concentrations p and q into contact. Suppose therefore, that this
diffusionprocess has begun at time — t0. The distribution at time
t — 0 is then determined by (79):

(81) . . . n(x,0 ) =  V2 (q +  p) +  V2 (q — p) X

(82) <P(x,o) ■■ q + p  , q — p
2 +  2 ^

So that:
/ x
\2 l / t j

t0 is supposed to be large so as to guarantee a small concentration-
gradient. N o w i t  c a n  b e  p r o v e d  t h a t  t h e  i n t e g r a l  of
(80)  w h i c h  s a t i s f i e s  t h e  c o n d i t i o n  (82) ,  i s  i n d e e d
a n  a p p r o x i m a t i o n  t o  the i n t e g r a l  o f  (7 7) w h i c h
s a t i s f i e s  t h e  c o n d i t i o n  (81) ,  p r o v i d e d  o n e  r e s t r i c t s
o n e s e l f  t o  t i m e s  w h i c h  a r e  s m a l l  c o m p a r e d  w i t h  t0.
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<P(x,t)

If one substitutes the expression (81) for n(x,o)  in (78), the
solution of (77) becomes:

n(x,t) _ q + p  | q — p
2 l / n f -CO2 lx  +  2 co i/t\

\  2 l / t a ) da)

As, however, n(x,t) has come into existence by means of a diffusion
during the time t0 + t, after the solutions with concentrations p and q
have been brought into contact, one also has:

n(x,t) ■ q +  p x.q —  p J
2 2 A \ 2 1 /  to +1

This yields a relation which shall be used later:

(83) . . f ,—ö)2 x  -f- 2 a t/  i\
2 1 / 10 / dm — l /n \2 i/ to + 1

On the other hand the solution of (80) runs:

<p(x,t):
1

\ /  n f \ i ± p x  +  2 co 1/ 1
2 / to . er -<°2 . dm

As t is here small compared with to,Cu\+~t/t0can only differ much from
zero when o is large. On account, however, of e ~ " 2 in the integrand,
such terms practically do not count. Therefore, when we write

x  +  2 c o l /1 \   /
~ 2 / t 0 ) ~~X \Y l / t o ) f

we are only concerned with small absolute values of s, an approx
imation which is allowed because e—0,2 very rapidly becomes zero
when co increases. Now expanding the logarithm under the integral-
sign in powers of s and breaking off after the first power, we find:

q + p  q — p
~ 2 ~ + ~ ~ 2~ X

x
.2 / t o .

q —  p
2 /  n

q + p
2

On account of the definition of s we have:

ƒ  s(cu) e—0,2 d(D = f  e - " 2 *
— oo _oo

W ith the aid of (83) this can be reduced to:
x

Y X

\2 I/ to )

dm —  \ /  n.%

f°°-  / s(cö)e dm.

2 / t J

/ nX  (
2 / t o  +  t
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Finally we get:

<P(x.t) =  In q +  p , q — p
. 2  ' 2 '2 l^tj\ + q — p ;) x 2̂ i / t0)

g + p  q — p f x  \
2 T  2 *\21/ to)

The numerator of the last term is small, and therefore, calculating
e<P, one can expand to powers of this numerator. This leads to:

.  =  „  =  =)•

This, however, agrees exactly with the solution of (77).

VII. The diffusionpotential.
W e shall now discuss the expression (68) for the diffusionpotential.

Substituting the values (67) for the numbers A v we find:
. . . .  r -  * 1  . - A  3) 6>20 3 +  (A3 -  At) ©3©, +  (A, -  12) &i©2
' ' e (z2+  — 23̂ 3) @1 +  (23̂ 3 — +*i) ©2 +  (z^i — z2A2)©3
In discussing this formula one must always bear in mind that the quan
tities @1©2@3 are connected with each other. For one has:

2iZiCi — 0 and 2& £' =  0.
Some particular properties of the formula (84) shall now be examined
in detail.

a. When the concentration-ratios cjcfi are the same for all ions,
one has: © ,=:©2= @ 3= @ .  In that case the expression (84) for L
becomes indefinite. This is connected with the fact that the condition
(66) page 63 for the numbers A ; becomes identical with (63), so
that these numbers remain undetermined. Nevertheless one can easily
ascertain to what limit L approaches when the concentration-ratios
become equal to each other.

Suppose at the right hand side: n± — c \ ,  n2 =  c'2. This determines
n3 to o'3 =  — llz3(z lc \  +  z2c'2). The fact that the proportions Cj/c',
are nearly equal, can be expressed in the following general way: At
the left hand side: n2 =  — ac'1; n2 — c2 =  (I +  p)ac'2; p small,
and thus n3 =  c3 =  —nlz3[z1c \  +  ( \  +  p )z2c'2]. If we neglect
powers of p, higher than the first, we find:

©! — In C i/c/ — In a.
©2 =  In c2lc2' =  lnx  +  p

©3 =  In c3jc3' =  In « +  p 2]Cf J  z— ,
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Substituting in (84), and’again neglecting all powers of p except the
first, we find:

t  ____ i r p i  t  (^1  -------^ ï ) z l c l '  ~ l~  ( ^ 2 ---------^ i ) z 2c 7

' M i -  z ^ t r C , '  +  (z2l 2 -  z3X3)z2c2'
This can also be written:

L =  kT/z .In oi. Z \X \C \  +  Z2k2c2 +  z3X3c3
Z\2h c \  +  z22X2c2 +  z3 X3c3

This is exactly the same expression as yielded by the formula of
H e n d e r s o n  (page 52) in this case. Moreover, P l a n c k ’ s
formula (42, page 53) yields the same result here.

b. It is, of course, impossible that the diffusionpotential should be
considerably altered if a very small number of ions in a single
electrolyte is replaced by a third species. Yet c/c' can differ considerably
from unity while n is small. And to all appearances the formula (84)
would lead to entirely wrong conclusions.

W e meet this circumstance, for instance, in the diffusion of an acid
in water. Besides the ions H  and Z  of the acid there are also O H -ions.
And, when e. g. the acid-concentration on the left is ten times as large
as that on the right, the OH-ion-concentration on the left is about
ten times as small as that on the right, owing to mass-acion. W e have
something similar in the case of the diffusion of a base. Therefore,
we must prove that the formula (84) reduces in such cases to the
formula of N e r n s t for two ions.

Suppose at — oo : nx =  c n2 =  pc (p very small)
n3 =  — l /z3 . ( z 1 +  pz2)c.

at +  oo : n3 =  c? n2 =  qc' (q  very small)
n3 =  — l jz3 . ( z x +  pz2)c'.

As p and q are small, 0 3 and ©i practically become equal to In c/c'.
So:

Ir kT (2) — A3) (02 — ®i) _kT X3 . c i
e (z,A,— z3X3) ( 0 2 — &i) e Z j A j — z3X3 c"

c. Finally one might wonder if the denominator in (84) can
become zero. It can, however, easily be proved that this denominator
can only be zero when 0 X — 0 2 — ®3* a case which has already
been discussed. To prove this, we have only to reduce this denominator
to a slightly different expression. W e shall assume that two of the
three ions (e. g. 1 and 2) have a positive charge, the third ion a
negative. This does not impose any restriction, for L only changes
its sign when z 3 and z2 are supposed negative and z3 positive. W e
have:
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0, =  In c,ICi' 02 =  In c2lc2' 03 =  In

And we notice that all three 0; must equal each other as soon as two
of them do so. W e can reduce the denominator of (84) to

N  =  (zih  -  z3k3) l n —, —  +  (*1*1 -  *2*2) In '̂ c\>

If now we introduce the symbols:

N  becomes:

N  =  (z2i 2 — Z3X3) In — +  (*1*1 — *2*2) In ~ q ~

This is zero for p =  a. In that case, however, 0 ! = 0 2 and so equal
to 0 3. Therefore we only need to prove that N  cannot become zero
unless q = a. If we define the function

l (x)  =  (z2\ 2 — z3‘k3)lnx + (z 3X3 — z2l.2)ln (z3x  + z2)
we have: N  — f ( g ) — f (a) , and it can easily be shown that f (x)
cannot have the same value for two different values of x. This is
evident from the fact that f (x)  is a monotonie function as long as x
is positive (and negative x  need not be taken into account). In fact
we have: f ' (x)  — (z2h2 — z^K3)/x +  ZjA, — z2X2)l(z ix  “b z2) • This
expression vanishes only when x  — — z2(z2\ 2—z3l 3)jz l (z{kx—z3~k3).
As, however, z t and z2 are supposed to be positive and z3 negative,
this value of x  is negative. Negative x  having no physical meaning,
it follows that f ' (x)  has always the same sign, in other words: f (x)
is monotonie, q.e.d.

VIII. Calculation of the diffusion-coefficients a., (i (a).
It may be demonstrated by some examples that the theory leads

to plausible values for the diffusion-coefficients a and (3 (or a in the
case that two are equal). W e need no absolute values for these
diffusion-coefficients; it will suffice if we compare them with the
quantities hv and therefore we shall simply write the mobility divided
by the valency for these X;( compare page 58).

a. A mixture of HC1 and NaCl in water at 25°. Mobilities:
1H =  350; /C1 =  76.3; ZNa =  50.1. Suppose to simplify calculations,
that the concentration of the Cl-ions at the left hand side is the
same as at the right hand side. For instance on the left: cH =  a,
cNa =  b, ccl =  a +  b. On the right cH =  b, cNa =  a, ccl =  a +  b.
Thus: 0 !  =  In a/h; 0 2 =  In bja; 0 3 =  0. The numbers A; become (as
only the ratio is important):
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—  1 A 2  —  1 A 2 —  — 2.
In the quadratic equation Ps2 — Qs +  R  — 0; P  = 552.7; Q =  126652;
R  — 5351700. And therefore a =  173.3; (3 =  55.9.

In pure HC1 the diffusion-coefficient, if expressed in units of
mobility, would have been (23, page 27):

ln ,a  — 125 3
/h +  /ci

and, in the same way, in pure NaCl: 60.5. So we have the very
plausible, and even symmetric, sequence

N a m ixture N aC l Cl HC1 mixture
50.1 P  =  55,9 60.5 76.3 125.3 a =  173.3

b. If a small amount of the ion 1 in an electrolyte [1.3] is replaced
by the ion 2, the diffusion-coefficient must be approximately equal to

Wl +  W3 j .--- r j —s
Wi>*| -f- W3/3

Here one hase: on the left n1 =  c n2 — pc (p very small)
on the right n3 =  c' n2 =  qd  (q very small)

And so:
@1 =  In c/c' 02 — In c/c' +  In p\q 03 ~  In c/c'

Therefore the numbers A i become: A 3 fy 1, A  2 ~  0, A 3 =  —1.
For the coefficients P, Q , R  we find:

P  — z xl x — z3l3 Q =  z xl x{l2 +  23) — z3l3(lx + 12) R  =  M 2A3(z!—-23)
And finally the roots of the quadratic equation for s are:

: =  h g _  z x — z2
Zj2j — z3l * 1 ^ 3

WX +  w3
W xl-i  - f -  w 3l

2^3 . q.e.d.

c) Also in the case ©x =  0 2 — 0 3, the coefficients a and /S are
entirely determined. In that case one has, as has already been pointed
out: on the right n3 =  c'3 n2 — c'2

on the left n3 =  a c \  n2 — (1 + p)ac72,
where p is very small and approaches zero. Expanding in powers of p
we get:

@1 =  Inx ; 0 2 — In* +  p ; 0 3 — Ina -]-------Z}°2 ^ — -..
ZlCi +  z 2c 2

A x= z xcx'p t  A  2 =  z2c2'p ; A 3 =  — (zx cx' +  z2c2)p.

As only the proportions of these numbers is important, we can divide
by p, and the numbers are obviously entirely determined for p -*■ 0 .
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A. on
on

the left
the right

‘1

all at 18c

d. To get an idea of the influence of the ion-charge, one can e. g.
compare the following cases:

n2 — b
n2 = a
z2 — — 1
X2 =  34

c 2h 3o 2
1 A3 =  — 2

n2 =  ib
n2 =  ia
z2 — —2
l 2 =  34
S 0 4 K , all at 18c

1 A3 == —2

a
nx — b
zx =  —1

=  34
ion: J 0 3

One finds A4 =  1 A2 =
B. on the left nx =  a

on the right nx — b
zx =  — 1
Xj. =  34

ion: J 0 3
A4 —r 1 A2 —*One finds

n3 =  a +  1
n3 =  a +
z3 = 1
X3 =  64.4

K
o =  44.5.

n3 =  a +  6
n3 =  a +  6
z 3 =  1
X3 =  64.4
K , all

o =  47.4.

(For convenience’ sake we have chosen X4 =  X2 =  X ).
The second case is different from the first insofar as the acetate-

ions have been replaced by an equivalent quantity of S 0 4-ions. The
double charge of the S 0 4-ion results in a greater diffusion-coefficient
a. This was to be expected because K2S 0 4 also diffuses more swiftly
than KC2H30 2. The diffusion-coefficients of these salts are namely
49.6 and 44.5 respectively, as can readily be calculated from the ion-
mobilities.

IX. Critical review of the theory.
Zero concentrations had to be excluded from the logarithmic

solution for three ions. The theory would lose all sense, if one tried
to apply it to the diffusion of one electrolyte AZ into antother BZ.
The expression (84) for the diffusionpotential would even become
infinite. Therefore one must expect that deviations will occur in the
case of large concentration-ratios, i. e. large 0 ;. Considering more
closely the approximation introduced, this becomes quite clear. For if
the diffusion extends itself over a distance I, the quantity 3^/3* has
the order of magnitude ©j// and 92<PiIdx2 the order Q-Jl2. So, if one
neglects (3cpi/3x^2 with respect to 32qpi/3x2, this means properly
speaking that one neglects ©i with respect to unity. In the limits of
very small 0; the expression for L becomes identical with that of
H e n d e r s o n .  From a theoretical point of view our theory has no
advantages over H e nd e r s o n ' s  for the present, except insofar as
H e n d e r s o n ’ s theory does not yield any information about the
diffusionprocess, while our theory does.
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It is possible that in the case of larger 0  the results of this theory
agree better with experiments than those of H e n d e r s o n ’ s.
(Compare for hat purpose the observations which will be discussed
further on). The fact that the formula lead to right conclusions in
special cases where, however, 0  is not small, speaks in favour of this
possibility. Moreover it may be remarked that the above estimation of
the quantities 3<Pj/ 3 jc and 3 2cpj/3x2 is only provisional. In reality there
are points where 32cpj/3jc2 is small or even zero and others where
32qj;/3jc2 is large. The solution of an equation of diffusion like (77)
page 67 with the boundary conditions of page 67, is represented

and one can easily convince oneself that the ratio: . „ j

has the order of magnitude x y / t . exp (x*fit) . This is small for small
| x  | but increases very rapidly for increasing | * |. Thus the approx
imation is bad for small values of | x  |, but much better as soon as | x  j
becomes larger. Now the question remains, what part of the axis x
is most important. The fact that the potential shows two or more
extrema might possibly mean that the slope at small x  contributes but
little to the whole diffusionpotential L. In the end the experiments
will have to decide, and they will indeed show that the formula (84),
(page 70) reproduces the observations better than H e n d e r s o n  s
formula for concentrationratios which are not too large. It could not
be seen, what L does when the concentrationratios become larger and
larger, because L  no longer reaches a constant value in such cases.

Recapitulating, it can be said that (84) represents an expression
which surely does not hold in all cases and which, from a theoretical
point of view, cannot be regarded as more exact than H e n d e r 
s o n ’ s formula, but which seems to yield a better reproduction of the
observations in a certain interval. And finally the fact that the theory
is able to picture in a very plausible way the diffusionprocess, can be
regarded as a great advantage.

by (79):

n(x.t) =  lh  (q +  p) +  lJ 2 ( q ~ p ) x  (2 ^ )
Thus

dn_q — p 1
ï x ~  I/ n  2 l / f

0 it

q — p e it<Uc2 1/ n 4 t  t
L ^
n t)x2



DIFFUSION OF A MIXTURE OF ELECTROLYTES

II. Experimental Part.
Introduction.
The various opinions mentioned in the literature, about the

reproducibility of measurements and the usefulness of the theoretical
formulae, diverge very much.

M e. I n n e s  and Y u  L i a n g  Y e h 1) give a review of older
measurements, remarking that their predecessors rarely found a
constant diffusionpotential. Generally the largest value of L was
considered as the "right one”. W a l p o l e 2) was the first to state
that more reproducible values of L could be obtained, when both
solutions flow along each other (flowing junction). The conditions
which hold for this diffusion, are, however, difficult to formulate
theoretically. For instance, one is not sure if there exists a well-defined
concentration-gradient everywhere, and if it does, whether it is small
enough for the application of the differential equations (compare
page 14). Obviously some stationary state will occur, but will it be
similar to that of P l a n c k ’s theory or will the diffusion layer show
a structure which resembles that of H e n d e r s o n ’s theory for the
mixing of both solutions?

Further L appears to be independent of the velocity of flow within
rather restricted limits only, and the rather complicated technique of
the measurements is, of course, a serious objection too. Moreover
S c a t c h a r d  and B u e h r e r 3) found that the diffusionpotential
of flowing junctions differs from that of ordinary diffusion in the case
of a single electrolyte (where the structure of the diffusion layer
should be of no importance for the value of L) and is less reproducible.

*) D . . A. Me.  I n n e s  and Y u  L i a n g  Ye h ,  J. Am. Chem. Soc. 42, 229
(1920); 43, 1217, 2563 (1921).

2) G. S. W a l p o l e ,  J. Chem. Soc. London 105, 2501, 2521 (1914).
3) G. S c a t c h a r d  and T.  F. B u e h r e r ,  J. Am. Chem. Soc. 53, 574 (1931).
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The difference is not large and is attributed by H a m e r 4) to the
heat of mixing. It is, however, also possible that the differential
equations of the process or their integration have to be reconsidered.
Anyhow it seems clear that one cannot be quite sure about the
significance of the measured potential-differences in the case of
flowing junctions. In this dissertation the flowing junction may be left
out of consideration. One can find literature about it in D o l e 5),
B r i g h t o n 6), Me.  I n n e s 7), M a r t i n  and N e w t o n 6).

Another method to obtain values which are more constant, has
recently been indicated by S z a b ó 9), who makes use of a closed
cock to avoid convection. The diffusion itself and the boundary-
conditions remain unaltered. S z a b ó ’s experiments, however, have
only been carried out at large concentrations and generally the
diffusionpotentials can be reproduced much better in that case. An
extension of his method to smaller concentrations seems desirable.

Most authors have compared their results with the formulae of
P l a n c k  or H e n d e r s o n  or both. Sometimes they agree very well,
sometimes very badly. For instance, six out of eight observations,
mentioned by L o v é n 10), agree with the formula of P l a n c k  with
an accuracy of 1 to 2 mV (that is 3 to 7 %), while two other
observations show deviations of 20 %. W i 1 ke and K i e n i n g e n 11)
reproduce L by experimental formulae which cannot in the least be
brought into accord with the theory of P l a n c k  or H e n d e r s o n .
An entirely deviating result was also obtained by L o o m i s  and
A c r e e 12), and by F a 1 e s and V o s b u r g h 13). The observations
of these experimentalists have been repeated and confirmed by
Ch a n o z ,  F l o r e n c e  and P e r r o t t e t 14). S z a b ó 9) found values
for the diffusionpotential which are much larger than H e n d e r s o n  s.

* )  W . I. H a m e r ,  J. Am. Chem. Soc. 52, 662 (1935).
5) M. D o l e ,  J. Am. Chem. Soc. 54, 2120, 3100 (1932).
6) D. A. M e. I n n e s  and T. B. B r i g h t o n ,  J. Am. Chem. Soc. 47, 994 (1925).
7) D. A. M e. I n n e s ,  J. Am. Chem. Soc. 45, 2249 (1923), 53, 1357 (1931).
8) F. D. M a r t i n  and R. F. N e w t o n ,  J. Phys. Chem. 39, 485 (1935).
9) Z . S z a b ó ,  Z. physik. Chem. (A) 174, 22 (1935).
10) J. M. L o v é n ,  Z. physik. Chem. 20, 593 (1896).
xl) E. W i l k e  and O. K i e n i n g e n ,  Z. physik. Chem. 116, 215 (1925), 125,

421 (1927), 160, 39 (1932).
12) N. E. L o o m i s  and S. F. A c r e e ,  Am. Chem. J. 46, 585 (1911).
13) H. A. F a l e s  and W.  V o s b u r g h ,  J. Am. Soc. 40, 1291 (1918).
14) M. C h a n o z ,  G. F l o r e n c e  and P. P e r r o t t e t ,  Arch. Phys. biol. 12,

238 (1935).
1B) E. A. G u g g e n h e i m ,  J. Am. Chem. Soc. 52, 1315 (1933). E. A. G u g 

g e n h e i m  and A. U n m a c k ,  Math. Fys. Medd. Kgl. Vid. Selsk. X 8 (1930),
14 (1931).
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On the other hand G u g g e n h e i m 15) mentions values which
fairly well agree with theory. As the diffusion here involved is that
of HC1 into KC1, while the concentration of the chlorine-ions is the
same at the left as at the right hand side, the formulae of P l a n c k
and H e n d e r s o n  yield the same result. B ü c h i 16) found
H e n d e r s o n ’s formula confirmed for a short time after he had
brought both solutions into contact. After some time the diffusion-
potential decreases and sometimes reaches a minimum value, to mount
slightly afterwards. P l a n c k  supposes that this minimum value would
agree with his own formula, and thinks this verified by experiments
of C h a n g 17). It must, however, be remarked that the minimum
value does not always occur. Moreover, the experimental differences
between the maximum and the minimum value do not agree with its
theoretical value EH — EP. In C h a n g ’s experiments, for instance,
they amounted to 10.0; 13.5 and 7.3 instead of 5.3; 6.3 and 4.0 mV.

Finally, at a suggestion of E i n s t e i n ’s, P l e t t i g 18) worked
out a method to decide between the formula of P l a n c k  and that
of H e n d e r s o n .  To that end he replaced the diffusion layer by
a “H e n d e r s o n-series” of solutions as described on page 57. As
one can calculate from P l a n c k ’s theory how the concentrations
vary in the diffusion layer in the case of the stationary state, one can
do the same for a “P 1 a n c k-series” of solutions. P l e t t i g  now
compared the e.m.f. of such chains with the potential-difference of
“free” diffusion. As only the difference is important, the electrode
potentials play no part at all, which, of course, is very important
when judging the results. On the other hand these differences are
rather small (in the cases examined by P l e t t i g ,  never more than
3 mV) and therefore it is difficult to know whether concentration-
effects (which, of course, occur in the diffusionpotentials too) play a
part in the results or not. Moreover, we already stated on page 57,
that a series of solutions, as described here, cannot without more ado
be compared with a diffusion layer of similar structure. In any case,
P l e t t i g  concluded from his measurements, that the potential-
difference of free diffusion is in better agreement with that of a
“H e n d e r s o n-series” than with that of a “P l a n e  k-sèries”.

Observations.
The object of our observations was, to see whether the formula (84)

page 70 yields better values than H e n d e r s o n ’s. W e therefore
deliberately examined cases, where the results of both formulae show

18) F. B ü c h i ,  Z. Elektrochem. 30, 443 (1924).
17) S h u  T s u  C h a n g ,  Ann. Physik (5) 16, 513 (1930).
1S) V . P l e t t i g ,  Ann. Physik (5), 5, 735 (1930).
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a large difference. In the formula (84) we had to restrict ourselves
to the diffusion of two electrolytes with a common ion, none of the
concentrations becoming zero. All measurements are therefore
restricted to such cases.

W e examined mixtures of NaCl and HC1, and sometimes mixtures
of KC1 and HC1. Solvent: water at 25°. Ionmobilities:

ZH =  349.7 ZNa =  50.1 la  =  76.3 lK =  73.5*).
Besides the tube described on page 35, we often used another of the
same form and dimensions, except for the junction of both ends,
which had a diameter of 1 mm. Similar tubes were used by C h a n g 17).
The run of the potential was, as a rule, observed for about six days,
sometimes even longer. The electrodes were AgCl-electrodes, prepared
as described on page 35. They were not replaced by others during
the measurements. W e always took care that the solution with the
greatest density remained beneath the other.

1. An attempt to extrapolate to infinite dilution.
In both electrodepotential and diffusionpotential concentration-

effects due to deviations from the behaviour in ideal solutions, can
occur. In calculating the electrode-potential from the N e r n s t
formula and the diffusionpotential from (84) page 70 or (41) page
52, one can therefore expect errors. In a special case, namely
0.1 HCl/0.1 KC1, G u g g e n h e i m 15) estimated this error at about
1 mV, but it can, of course, be greater in other cases. W e therefore
tried to eliminate this error in the following way.

W hen all concentrations are reduced in the same proportion, the
concentration-effect decreases, while the calculated electrode- and
diffusionpotentials remain unaltered. Possibly one might be able to
find the accurate diffusionpotential by extrapolating to infinite
dilution. This appeared, however, to be impossible with our experiments.
For the uncertainty in the measured potentialdifference itself amounted
to 1 or 2 mV, and seemed even to increase at higher dilutions.

The concentrations were (g/mol per I):
at the left: cH — 0.0111 CNa — 0.0816 cci =  0-0927
at the right: c„ =  0.0997 cNa =  0.00906 cci =  0.1088

According to N e r n s t  the electrodepotential becomes: 51.1 log10
1088/927 =  4.1 mV. From H e n d e r s o n ’s formula one finds a
diffusionpotential of 25.0 mV. The sum is 29.1 mV. On the other
hand (84) yields 31.2 mV. Sum: 35.3 mV.

*) D. A. Me. In n es , T h . S h e d lo v s k y  and L. G. L o n g s w o r th , J. Am.
Chem. Soc. 54. 2758 (1932).
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The potential-difference showed the following course:
f i r s t  o b s e r v a t i o n .

t in hours: 0 0.5 1.0 2.0 4 6 10
E  in mV. 46.0 40.5 37.0 36.6 36.0 36.6 37.2
t in hours: 23 28 33 48 73 98 120
E in mV 36.2 37.6 380 36.0 38.2 38.2 38.0

s e c o n d o b s e r v a t i o n .
t in hours: 0.5 1.0 3.5 5.5 9.5 10.5
E in mV. 43.9 44.1 41.6 40.8 39.1 38.8
t in hours: 12.0 16 24 40 52 72 85 97
E in mV. 38.5 38.0 37.6 36.2 36.8 37.0 37.0 37.1
t in hours: 125 144 150
E in mV. 33.2 30.8 29.6
According to the first observation E  has the value 36.0—38.0.
According to the second: 36.2—37.6 mV. Now both solutions were
diluted five times, so that the following solutions diffuse into each
other:

at the left: c„ =  0.00222 cNa =  0.01632 cCi =  0.01854
at the right: cH — 0.01994 cnb — 0.00181 cci =  0.02175

t in hours: 2 6 8 12 24 52 72 120
E in mV. 51.2 47.8 47.0 42.0 39.6 38.5 37.0 36.2
t in hours: 145 148 156
E in mV. 38.8 36.0 36.2 Thus E =  36.0—38.8.
Finally ten times diluted:

at the left: cH =  0.00111 cnb =  0.00816 cci — 0.00927
at the right: cH — 0.00997 cnb — 0.000906 cci — 0.01088

t in hours: 2 5 8 24 28 37 48 62
E in mV. 40 8 40.8 40.2 39.6 39.0 39.0 38.0 36.0
t in hours: 75 96 120 128 134 144 146
E in mV. 37.2 39.0 39.0 38.2 37.1 33.8 33.0

Thus E  =  37.0—39.0 mV.

It can be concluded from these measurements, that the concentration-
effect practically remains within the limits of attainable reproducibility,
so that an extrapolation to infinite dilution, as aimed at above, is
impossible.

After some time the e.m.f. reaches a rather constant value. This
value does not agree with H e n d e r s o n ’s formula but rather well
with the formula (84). In opposition to B ii c h i ’ s experience, L
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deviates, even more from H e n d e r s o n ' s  value in the beginning
than at the end. Finally it may be remarked that, according to
Si t i e ’s formula (44) page 54, the diffusionpotential in this case
would be L = 34.5 mV, E — 38.6. This value agrees still better with
the experimental E.

2. Mixtures of NaCl and HCl.
To facilitate a comparison of the theoretical formulae, we hence

forth only examined the case where the concentration of chlorine ions
was the same both on the left- and on the right hand side. In that
case the formulae of P l a n c k ,  H e n d e r s o n  and Si11e all
simplify to:

Lh =  kT/e . log V \V '.
That is, at 25°:
( 8 5 ) ................... Lh =  59.1 log10 V jV ' mV.
The N e r n s t electrode-potential is now zero. Further in formula (84)
we have 0 Oi =  0, so that:

J , __ c q  J  _________( 4 f ----  I n b )  @ h  _________

(In* +  Ici) @h —  ( / «  +  lei)
Instead of Inc/c', 0  here means: log10 • c/c'. Finally this expression for
L' can be simplified by taking the //-concentration at the right hand
side equal to the Na-concentration at the left hand side, and vice
versa. Thus:

on the left: c« == a cn» =  b Cci =  a +  b
on the right: ch — b CNa — a cci =  a +  b

&H =  —  —  logio a/b.
With the ionmobilities, mentioned above:
(86) .......................................L ' =  33.9 log.xo ■ alb
On the other hand we have in (85): V  = (7H +  /a Ja +  (7Na +  lc\)b
and V '  = (ln +  lCi)b  + (7Na +  lc\)a. And therefore (85) can be
written:

(87) Lh — 59.1 logio
426 +  126.4 a/b
426 alb +  126.4

L' increases much more rapidly with a/b than LE and should even
become infinite (logarithmically) when a/b becomes infinite. This
cannot be true, of course, but the question is, if there exists an interval
where (86) is better than (87).

In fig. 7 the theoretical values of L' and LH have been reproduced.
The observations are also represented in it.
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E '

Fig. 7.

The concentration a + b always amounted to 0.1108 g/mol. per Z.
All the times are expressed in hours, E in mV.

a/b =  2 E ' =  10.2 Eh =  9.4
t : 0 2 4 24 28
E : 11.6 10.6 10.6 9.9 9.8
t :  96 99 120 145
E : 10.2 10.0 9.7 10.5

a/b = 5 E' = 23.7 EH = 19.5
t : 0 2 4 6 24 36 72 84 88 96
E : 30.6 28.2 26.0 25.0 23.9 24.2 24.7 24.5 24.5 24.5

Result: E =  24.0 — 24.6

a/b = 5 E' = 23.7 EB =  19.5
t:  1 7 25 28 37 48 75 84 100 104 124
E: 24.2 22.7 23.8 23.8 24.0 24.2 24.2 24.6 24.4 24.2 24.2
t:  134 146 150 154
E : 24.8 24.7 23.0 22.2 Result: E =  24.0 — 24.6.

a/b — 9 E' =  32.4 EH =  23.9
t :  8 24 28 32 46 60 76 101 122 144
E : 22.2 28.4 28.6 33.0 32.9 33.2 34.2 34.0 34.0 33.0
t :  148 150 156
E : 33.0 33.0 33.7 Result: E =  33.0 — 34.0

48 52 56 73 77 80
9.8 10.2 10.6 9.8 10.0 10.0

Result: E = 9.8 — 10.6
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alb = 12 E' =  36.6 EH =  25.5
t :  0 2 4 8 26 52 84 120 146 172
E : 40.1 42.1 40.3 38.2 34.0 31.8 32.2 32.6 35.0 35.9
t :  192 244 268 270 272 284
E : 35.2 32.8 33.7 32.8 30.0 24.5 Result: E =  32.5 — 35.7

a/b =  12 E "=  36.6 E e = 25.5
t :  0 2 8 10 24 28 30 32 36 38
E : 26.0 26.7 26.7 26.9 27.3 27.5 28.9 30.3 32.2 32.7
t :  48 62 68 80 98. 120 126 146
E :' 34.8 :34.6 35.2 32.3 34.2 :35.0 34.8 34.0

Result:: E = 32.3--34 .8

a/b =  15 E’ =  39.9 E q =  26.5
t :  0 4 8 24 30 49 52 74 96 125
E : 22.0 24.6 27.8i 28.2 28.5 33.7 35.8 29.1 33.5 36.0
t :  146 168 200 104 206 207
E : 28.2 28.5 26.4 i25.6 25.6 25.0 Result:: E = 28.2--36 .0

a/b = 15 E' =  39.9 E h =  26.5
t :  2 8 26 50 52 56 75 79 96 124
E : 41.2 40.3 35.6 35.1 33.0 33.0 30.3 28.7 27.9 34.5
t : , 144 168
E : 35.7 35.2 Result:: E = 28.0--35 .7

a/b = 20 E' =  44.1 E e = 27.6
t : 0 24 28 32 50 72 96 120
E : 51.2 40.8 44.5 48.0 38.2 35.5 30.2 39.6 Result: E =1

a/b =  20 E' = 44.1 E r = 27.6
t :  0 2 4 24 32 50 72 96 120 144
E : 22.2 26.8 35.1 40.2 48.0 52.3 45.1 40.2 40.6 34.6
t :  168 192 240 244 248
E : 34.6 46.7 44.8 30.0 25.6 Result: E =  ?

3. Mixtures of KCl and HCl.
Some observations with HCl and KCl in water at 25° yielded

similar results. W ith the mobilities /H =  349.7, ZC1 =  76.3 and
ZK =  73.5 the formulae for the diffusionpotentials become:
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L h — 59.1
, _ 426 +  150 a\b
10910 426 a\b +  150

L ' — 28.4 logl0 ajb

ajb = 1 0  E ' =  28.4 E n =  21.3
t :  0 4 8 24 49 73 99 120 124 168
E : 25.4 27.0 28.8 29.0 29.5 28.5 28.5 28.7 28.9 29.4

Result: E  =  28 .5—29.5

a/6 = 1 0  E ' =  28.4 E n =  21.3
t :  26 49 75 98 124 168 192 240 248 266
E :  27.8 28.0 28.0 29.2 29.0 28.7 28.4 28.0 27.8 29.0

Result: E  =  28.0 — 29.2

ajb = 1 5  E ' =  33.4 E H =  23.0
t : 0 1 20 24 43 66 71 72 95 163
E : 26.0 27.8 28.3 28.5 31.2 38.8 38.7 39.2 41.8 40.7

t : 169 186 188 240 244 248
E : 29.5 43.0 33.5 25.2 24.0 22.6 R esult: E  =  ?

General Conclusions.
1. From ajb =  2 to a/6 =  10 a rather constant diffusionpotential

is found, and its value can be pretty well reproduced. In proportion
as the concentrationratio a/b increases, E  becomes more and more
uncertain. A t ajb =  15 or 20 no plausible value of E  can be deduced
from the measurements. In such cases E  sometimes changes more than
5 mV. in the course of a few hours. W e do not know whether this
fact in due to accidental (experimental) errors or to a real property
of these e.m.f.’s. It may be reminded that E  is not at all constant in the
case of small ajb neither, only the deviations are much less important
in that case. It is very remarkable that the course of E  with time
resumes its normal behaviour when we pass to the diffusion of pure
HC1 into pure KC1 (a/b infinite), as can be seen from the following
experiment.

on the left: HC1 0.1108 n.
on the right: KC1 0.1108 n.

t :
E :

0
26.2

8
29.3

24
30.1

26
30.3

30
29.6

32
29.1

38
28.7

48
29.2

52
28.8

58
28.7

t :
E :

78
29.2

80
29.3

98
29.2

122
28.7 Result: E  = 28.7 — 29.2
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In view of this result it seems most reasonable to suppose that the
above mentioned deviations in the case of large ajb are due to
experimental errors. Perhaps the influence of small convections (e. g.
caused by small changes in temperature) is particularly large when
small amounts of an electrolyte are added to the solution of an'
other one.

2. Generally the run of the potentialdifference in time cannot be
reproduced. The manner in which the constant value of E  is reached,
is always different. Sometimes E  decreases, sometimes it increases,
and the time required to attain the constant value, varies between
6 or 8 hours and 24 hours or more. To be sure, one gets more or less
the impression that it generally takes a little longer in proportion as
a/b is larger. This would be in accordance with theory, because, in
the case of larger difference in concentration, a state which satisfies
the condition that gradients of potential and concentrations are small,
can only be arrived at after a longer time. In this respect, however,
the measurements are not convincing at all.

3. In several cases E  shows a small decrease towards the end.
C h a n g 19 and S z a b ó 20) too, attribute this phenomenon to the
fact that the diffusion begins to extend outside the capillary. Whether
this conception is true or not, probably cannot be concluded from
potential-differences only.

4. The measurements concerning mixtures of HC1 and NaCl are
recapitulated in table XI.

T a b l e  XI.
Diffusionpotentials In mixtures of HC1 and NaCl, in water at 25°.

a/b E ' E„ E (exp)

2 10.2 9.4 9.7—10.5
5 23.7 19.5 24.0—24.6
9 32.4 23.9 33.0—34.0
12 36.6 25.5 32.5-35.7
15 39.9 26.5 7
20 44.1 27.6 7

5. As to the immediate practical importance of the theory and
measurements, mentioned in this thesis, about the diffusion of a
mixture of electrolytes, we may make the following observations.

1B) S h u  T s u  C h a n g ,  Ann. Physik (5) 16, 513 (1930).
20) Z. S z a b ó ,  Z. physik. Chem. A 174, 22 (1935).
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Apparently the diffusionpotential reaches a rather constant value only
after a long time (even amounting to 24 hours or more). Generally
this time is too long to have direct applications in such measurements
where the diffusionpotential has only importance as a disturbing,
unknown factor. In such cases one must be satisfied with devices
which further a more rapid adjustment of a constant potential, such
as a concentrated solution of potassiumchloride 21). In that case one
will, of course, have to be content with an unknown value of the
diffusionpotential.

In case a long time would be no paramount objection, the result
of the theory remains nevertheless rather uncertain, as was the case
with all preceding theories, except that of P l a n c k .  In this thesis
it may be especially pointed out that, in cases where the knowledge
of diffusionpotentials is of great importance, one had best make use
of stationary diffusion for the time being. For P l a n c k ’ s theory
is the only one which integrates exactly the differential equations
under the supposed conditions. It cannot yet be judged if such
measurements will be practically feasible. Perhap one might use
two tubes, joined by a capillary, provided the electrodes are placed in
the immediate neighbourhood of the ends of this capillary. Whether
a layer of gelatine can render service, depends a.o. on whether the
ionmobilities are influenced by the gelatine. In this respect experiments
of F r a n c e  and M o r a n 22) and of R i c h t e r 23) too, may be
mentioned. These authors found transportnumbers in gelatine, which
differ from those in water.

In this thesis the possibilities of direct application, in so far as the
diffusion of a mixture of electrolytes is concerned, are provisionally
thrust into the background. W e only tried to throw some light on the
general problems of electrolytic diffusion, and to give a solution of
some of these problems.

Experimental Proof for the extrema in the concentrations.

On page 61 we obtained, in a very general way, the result that
the concentration of a given ion-species can in the course of time show
extrema if this ion participates in the diffusion of a mixture of elec
trolytes. It is evident that this conclusion can be of great importance
for processes in which the diffusion of electrolytes plays a part.

21) n , B j e r r u m ,  Z.  physik. Chem. 53, 428 (1905).
22) W . G. France and W . H. M o r a n ,  J. Am. Chem. Soc. 46, 19 (1924).
23) P. R i c h t e r ,  Z. physik. Chem. 80, 449 (1912).
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1. It is, for instance, very well possible that this phenomenon is
an important or even determining factor in the formation of L i e s e-
g a n g rings during the diffusion of electrolytes into each other. For
the present we must restrict ourselves to this indication. Whether this
supposition holds can only be settled by a further examination both
theoretical and experimental. On the one hand, the fact that L i e s e-
g a n g rings have also been observed in the case of diffusion of
(entirely dry) gases into each other1), and in the case of reactions
between organic substances2), where ions do not occur, would
indicate that the extrema which occur during electrolyte diffusion, do
not play a determining role. On the other hand the experiments of
K i s c h 3) and of S h i k a t a  and H u k u w a t a r i 4) point to a
great influence of external electric fields on the formation of Li e s e-
g a n g rings in electrolytic mixtures.

2. S t r a u b 5) suggested that this formation of maxima and
minima — which might rightly be called “anomalous diffusion” —
might be akin to the so-called “anomalous osmosis”, the only
difference being that in the latter case the diffusion takes place
through a membrane. By anomalous osmosis is meant the motion of
certain substances through the membrane from lower towards higher
concentration; it would then have to be considered as caused by the
potential-difference across the membrane, just as the “anomalous
diffusion” is caused by the diffusionpotential. According to S t r a u b
the anomalous osmosis has indeed only been established in solutions
of electrolytes.

If one succeeded in giving an experimental proof for the existence
of extrema, this would mean a direct confirmation of the theory, and
moreover one would then have more confidence in applying its
results. As far as we know, no experiments which describe such
extrema, have been mentioned in the litterature. There only remained
an experiment of T  h o v e r t to be called attention to, which has
already been done in the introduction of this thesis (page 10). W e
have tried to give a convincing proof for this phenomenon with simple
means. It is clear that one can expect the best results in cases where

1) K o e n i g ,  J. Phys. Chem. 24, 466 (1920); H e d g e s ,  J. Chem. Soc. London
(1926 ) 2580, (1929) 1028, 1849, (1927) 1077. Roll. Z. 52, 219 (1930).

2) H a n d o w s k y  and d u  B o i s  R e y m o n d ,  Roll. Z. 33, 347 (1933); S.
V e i l ,  C. R„ 195, 781 (1932).

3) K i s c h ,  Roll. Z. 49, 433 (1929).
4) S h i k a t a  and H u k u w a t a r i ,  J. Soc. Chem. Ind. Japan 35, 25 (1932).
5) J. S t r a u b  (Amsterdam); this suggestion was made at a meeting of the

Nederl. Chem. Vereen. 29 Dec. 1936.
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the diffusionpotential is large. Now this condition is best fulfilled
when the concentrationratios are large, and when, moreover, the ions
which take part in the diffusion, differ much in mobility. Therefore,
we must examine the diffusion of a rather concentrated solution of a
salt into a much dilute solution of an acid or a base, or conversely:
the diffusion of a concentrated acid or base into the dilute solution
of a salt. In both cases a positive result was obtained.

I. The diffusion of concentrated NaCl into dilute NaOH.
A tube of 60 cm with a diameter of 4 mm was half-filled with a

solution of NaCl in a 1 % solution of agar-agar. The concentration
of the NaCl amounted to 0.1 g/mol. per L; to this solution phenol-
phtalein had been added (0.1 gram per L). After cooling down, a
solution of NaOH in water was poured on it. This solution contained
0.1 gram phenolphtalein per L and 10“ 3 to 10~4 g/mol. NaOH per L.
Then the upper end of the tube is sealed air-tight; the diffusion of
the NaCl into the NaOH (and vice versa) sets in. After a few days
one observes a red layer in the upper solution, some centimeters above
the agar-agar. This layer is distinctly more intense in colour than the
original solutions above it. It slowly moves upwards, broadening in the
meantime; it can maintan itself for four or five days but it finally
disappears. W e even succeeded a few times in choosing the
circumstances so that we attained a discolouring of the whole upper
solution with the exception of a red layer in the middle.

The circumstances in which the experiments takes place, can be
varied within wide limits.

1. The phenomenon could also be established in tubes of about
100 cm with a diameter of 10 mm.

2. W ith a concentration 0.01 n. of the NaCl a similar result was
observed though less distinctly.

3. As a matter of course the concentration of the phenolphtalein
had little or no influence.

4. The agar-agar was only used to avoid disturbing currents.
5. W e never took particular precautions with respect to tem

perature. The diffusion took place at roomtemperature, but this tem
perature slowly varied, being somewhat lower at night than by day.

6. Finally the concentration of the NaOH was so chosen as to
obtain a colouring suitable for observation. W hen this concentration
is too large the effect does not occur. This does not prove, of course,
that the concentration of the OH-ions does not show a maximum in





Diffusion of NaCl 0.1 into NaOH ± 10 "*
with phenolphtalein (0.3 gram per 1) as an
indicator.

The photograph has been made by W . K. L. Rameau,
photographer at the Library of the University, Leiden.
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that case. It only means that one is too far at the alcaline side to
observe differences in the concentrations. On the other hand, when
the concentration of the NaOH is chosen too small, the colouring
is too weak even in the maximum to yield a clearly visible difference
from its surroundings. A photograph of the phenomenon is printed
here. It was taken with transmitted light obtained from an incan
descent lamp behind a milk-glass plate. The photographic plate was
sensitive to green light; the exposure was made with the aid of a
yellow filter.

IL The diffusion of concentrated HC1 into dilute
indigo-carmine'

When a solution of indigo-carmine in water (2.10—4 g/mol. per L)
is poured upon a cold solution of HC1 in 2 % agar-agar (0.1 g/mol.
HC1 per L), a distinct minimum in the concentration of the blue
coloured ion 6) of indigo-disulfonic-acid is observed after a few days.

It can easily be seen that t h e  d i r e c t i o n  i n  w h i c h  t h e s e
p h e n o m e n a  t a k e  p l a c e ,  is indeed as was to be expected. W e
shall show this for both cases separately.

I. The diffusion of concentrated NaCl into NaOH. For difinite-
ness suppose the NaCl at the left and the NaOH at the right hand
side. The first question which we must answer is the question at
which side the potential is the largest, in other words: is L positive
or negative? W e cannot use the formula (84), page 70, because zero
concentrations have not been excluded. The formula of H e n d e r 
son,  however, yields a very large negative diffusionpotential, and it
is therefore practically excluded that some other theory would find a
positive L. Indeed, the concentration of the NaCl is large compared
with that of the NaOH. In the beginning the diffusion of the NaCl
is therefore the determining factor for the potentialgradient. The
chlorine-ions have greater mobility than the sodium-ions, and thus a
potentialgradient originates which slows down the chlorine-ions and
accelerates the sodium-ions, in other words: the potential at the left
hand side becomes higher than that at the right hand side ( L  is
negative).

In the first phase of the diffusionprocess the form of the potential
$  is, therefore, that of fig. 6a, page 61, reflected in the ordinate.
Instead of fig. 6b we get after some time a potentialgradient with a

6) The author is indebted to Dr. J. v a n  A l p h e n  (Leiden) at whose sugges
tion this ion was chosen.
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minimum at the left hand side (in the agar-agar) and a maximum at
the right hand side (in the solution of NaOH in water). It is clear
that the diffusion of the OH-ions will be disturbed by this maximum
of O in such a way as to yield a maximum in the concentration. For
the negative OH-ions will show a tendency towards points of higher
potential.

II. The diffusion of concentrated HCl into indigo-carmine. Again
we shall imagine the agar-agar at the left hand side. Here the course
of potential is reversed because the rapid H-ions overtake the slower
Cl-ions. The picture of $  becomes that of fig. 6a, page 61. It is true
that the theory of page 60 cannot be applied here without more
ado, because we have to deal with the ^diffusion of four ions (H, Cl,
Na and indigodisulfonic acid). Nevertheless we may very probably
conclude that a distribution of potential will originate after some time,
with a minimum at the right hand side (in the solution of indigo-
carmine), in analogy with fig 6b, page 61. The negative ions seek
points of higher potential and will therefore show a tendency to form
a minimum in the concentration.



SAMENVATTING.

L

Wanneer twee verschillend geconcentreerde oplossingen van een
electrolyt met elkaar in aanraking worden gebracht, treedt diffusie in
en ontstaat een potentiaalverschil tusschen de beide oplossingen: de
diffusiepotentiaal. Men heeft veelal gemeend, dat deze diffusiepoten-
tiaal thermodynamisch kon worden berekend op een wijze die analoog
is aan de manier waarop de E.M.K. van een electrolytische cel-in-
evenwicht door thermodynamische redeneering kan worden verkregen.
Deze thermodynamische behandeling leidde tot de onjuiste gevolg
trekking dat in de uitdrukking voor de E.M.K. van een concentratie-
element met diffusie, de aktiviteiten der respectieve ionen slechts in
den vorm van de gemiddelde aktiviteit voorkomen, zoodat men door
metingen van zulke elektromotorische krachten nooit iets over de
ionenaktiviteiten zou kunnen te weten komen.

In de inleiding van dit proefschrift wordt aangegeven waarom de
thermodynamische behandeling van diffusiepotentialen niet geoorloofd
is, en dat dus ook de bovengenoemde conclusie niet dwingend is. De
diffusie is in wezen een kinetisch probleem, en slechts van een nauw
keurige kinetische theorie kan men een goede beschrijving van het
diffusieproces en een juiste berekening van de diffusiepotentiaal ver
wachten.

Voor ideale oplossingen is door N e r n s t 1) (1889) de kinetische
theorie der elektrolyt-diffusie ontwikkeld. Nu men, vooral sinds het
werk van D e b i j e  en H ü c k e l ,  een goed inzicht heeft verkregen
in de structuur van verdunde elektrolytoplossingen, is het mogelijk
om N e r n s t  s theorie tot het geval van niet-ideale oplossingen uit
te breiden. Aan deze taak is het eerste theoretisch gedeelte van dit
proefschrift gewijd (p. 11—28).

Twee correcties moesten worden aangebracht. Eenerzijds moest in
rekening worden gebracht, dat de neiging van de ionen om zich naar
punten van lager concentratie te begeven, geringer is in niet-ideale
dan in ideale oplossingen. Elk ion is n.1. omgeven door een D e b ij e-
H ü c k e l s c h e  „ionenwolk”, en bezit daardoor een negatieve elektro
statische energie t.o.v. zijn omgeving, waarvan de absolute waarde des

1) W . N e r n s t ,  Z . physik. Chem. 4, 129 (1889).
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te grooter is naarmate de concentratie van de elektrolyt grooter is.
Als een ion zich naar een punt van kleinere concentratie beweegt,
wordt zijn energie dus grooter; m.a.w. er zullen elektrische krachten
zijn die zich tegen de beweging verzetten.

Anderzijds wordt de beweging van elk ion beïnvloed door die der
andere ionen. In eerste benadering kan men dit effekt aldus beschrij
ven, dat de (osmotische en elektrische) krachten die op de ionenwolk
aangrijpen, een hydrodynamische strooming veroorzaken. Het door
de ionenwolk omgeven ion beweegt zich dus in een medium, dat een
eigen snelheid bezit; deze snelheid wordt eenvoudig op die van het
ion gesuperponeerd. Dit hydrodynamische effekt is reeds eerder be
rekend door D e b ij e en H ü c k e 1 2) en later door O n s a g e r 3). In
dit proefschrift is echter direkt gebruik gemaakt van eenige algemeene
resultaten der hydrodynamica, een methode die tegelijk aanschouwelijk
is en zeer algemeen.

Berekeningen over de diffusie van een elektrolyt werden reeds
eerder uitgevoerd door O n s a g e r  en F u o s s 4). Men vergelijke
daartoe echter de opmerkingen op p. 19. De bovengeschetste theorie
kan volledig worden doorgevoerd, wanneer men zich beperkt tot de
eerste macht van Vc (c =  concentratie). De theorie van andere eigen
schappen der elektrolytoplossingen (geleidingsvermogen, aktiviteit,
inwendige wrijving, oppervlaktespanning) moet zich evenzeer tot de
eerste macht van Vc beperken. De eenige uitzondering tot nu toe
vormt de berekening der aktiviteit, welke door G r o n w a l l ,  La  M e r
en S a n d v e d 5) met succes in hoogere benadering is doorgevoerd,
terwijl trouwens ook hier nog verschillende onzekerheden bestaan.
Voor de andere eigenschappen is men er veelal in geslaagd de
experimenten tot aanzienlijke concentraties (soms tot 1 n. of hooger)
door half-empirische formules weer te geven, die zich voor kleine
concentratie aan de theoretische grenswet aansluiten. Een overeen
komstige werkwijze stuit echter in het onderhavige geval der diffusie-
potentialen voorloopig op onoverkomelijke moeilijkheden. De meting
van diffusiepotentialen kan n.1. niet direkt geschieden. Men moet
gebruik maken van concentratie-elementen met diffusie, en in de
E.M.K. van zulke elementen treden de potentialen oplossing/electrode
op, die bepaald worden door de aktiviteit van het ion ten opzichte
waarvan de betreffende elektrode omkeerbaar is. Empirisch is echter

2) P. D e b i j e  en E. H ü c k e l ,  Physik. Z. 25, 49 (1924).
3) L. O n s a g e r ,  Physik. Z. 27, 388 (1926).
4 ) L. O n s a g e r  en R. F u o s s ,  J. Phys. Chem. 36, 2689 (1932).
5) T. H. G r o n w a l l ,  V.  K. L a  M e r  en K. S a n d v e d ,  Physik. Z. 29, 358

(1928).



93

slechts de aktiviteit van de elektrolyt als geheel, d. i. de gemiddelde
aktiviteit der beide ionsoorten, bekend. Men vindt de discussie van
deze moeilijkheid op p. 25. Voor het oogenblik zou dan ook de uit
breiding van de formule voor de diffusiepotentiaal tot grootere
concentraties op al te speculatieve grondslagen moeten geschieden,
zoodat in dit proefschrift slechts de Vc-wet werd onderzocht.

Een vergelijking met in de literatuur vermelde waarnemingen (dit
proefschrift p. 28—33) bewijst, dat de theoretische formule voor de
diffusiepotentiaal binnen de bereikbare nauwkeurigheid der waar
nemingen wordt bevestigd, en wel tot aan een concentratie van bijna
0.03 N. bij NaCl en bij HC1 in water, en vermoedelijk 0.01 N. bij
BaCl2 in water. Bij deze laatste elektrolyt waren de beschikbare
waarnemingen echter zeer onvolledig. Enkele weinige metingen be
treffende LiCl, die eveneens in de literatuur vermeld zijn, blijken niet
met de theorie in overeenstemming. Deze metingen werden echter bij
te groote concentratie verricht om goede overeenstemming te mogen
verwachten, terwijl de theoretische Vocorrectie in dit geval bijzonder
klein uitvalt, zoodat wellicht spoedig termen van hoogere orde een
rol gaan spelen.

Eigen metingen (p. 34—48) zijn toegevoegd. Zij betreffen de elemen
ten: Ag . AgCl/NaCl Ci/NaCl c2/AgCl.. Ag. Oplosmiddel: water bij 18°.
Ag . AgCl/BaCl2 Ci/BaC^ c2/A gCl. Ag. Oplosmiddel: water bij 25°.
Ag . AgCl/HCl cj/HCl c2/AgCl. Ag. (Oplosmiddel: 40 mol.% alkohol
P t . H2/HC1 Ci/HCl c2/H2 . Pt. ) en 60 mol.% water bij 25°.

De gebruikte AgCl-elektroden bestonden uit verzilverd platina, dat
daarna werd gechloreerd volgens een voorschrift van E l e m a 6). In
het alkohol-water-mengsel werden bovendien elektroden van ge-
platineerd platina gebruikt.

Daar de loopsnelheden /H en /C1 in het betreffende alkohol-water-
mengsel niet bekend waren, werden tevens het geleidingsvermogen
en het transportgetal van HC1 in dit mengsel gemeten. Het geleidings
vermogen werd bepaald voor concentraties varieerend van 0.00016 tot
0.0335 n., het transportgetal (volgens een analytische methode) van
0.007 tot 0.14 n. Van 0.0008 tot 0.01 n. bleek het geleidingsvermogen
te kunnen worden voorgesteld door de uitdrukking: X=99.4—92.9 Vc,
in goede overeenstemming met de theoretische formule van
O n s a g e r. Het transportgetal is niet in overeenstemming te brengen
met de formule die L o n g s w o r t h * 11) uit de theorie van D e b i j e
en H ü c k e 1 afleidde. Een grafische extrapolatie leverde voor het
transportgetal bij oneindige verdunning: fCi° =  0.231.

6) B. E l e m a ,  Diss. Utrecht 1930.
11) L. G. L o n g s w o r t h ,  J. Am. Chem. Soc. 54, 2741 (1932).
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II.

Bij de toepasisng der kinetische theorie op de diffusie van een
mengsel van elektrolyten stuit men reeds in het geval van ideale
oplossingen op een moeilijkheid, die tot nu toe slechts in een bijzonder
geval (n.1. het stationnaire), en wel door P l a n c k 7) volledig kon
worden opgelost. De theorie van P l a n c k  kan echter niet worden
toegepast op het diffusieproces met de gebruikelijke randvoorwaarden,
waarbij twee oplossingen vrij in elkaar diffundeeren, terwijl op grooten
afstand van de diffusielaag de concentraties praktisch konstant blijven
en de gradiënten dier concentraties evenals het potentiaalverval nul
zijn. Dit probleem kon tot nu toe slechts met behulp van speciale
benaderingen worden behandeld.

In dit proefschrift zijn de methoden van H e n d e r s o n 8) en van
S i t t e 9) aan een kritiek onderworpen, terwijl ook de Plancksche
theorie der stationnaire diffusie werd besproken (p. 49—54). Terwijl
deze theorieën zich uitsluitend toeleggen op de berekening der diffusie-
potentiaal en het diffusieproces zelf buiten beschouwing laten, zijn
daarnaast eenige berekeningen uitgevoerd door S i t t e 9) en door
T a y l o r 10), die zich met het diffusie-beeld bezig houden. Een
kritiek van deze berekeningen (p. 54—57) toont aan, dat men aan de
resultaten van deze onderzoekers slechts geringe waarde kan hechten.

Op grond van de overweging dat de meeste diffusiepotentialen die
in mengsels van elektrolyt-oplossingen optreden, tamelijk klein zijn,
en het diffusieproces tot gevolg heeft, dat het concentratie- en
potentiaalverloop steeds meer vervlakt, werd nu in dit proefschrift
getracht een theorie der diffusie van elektrolyt-mengsels te ont
wikkelen, die gebruik maakt van het feit, dat de genoemde gradiënten
klein zijn. Dit gebeurt in dien zin, dat quadraten van potentiaal- en
concentratie-gradienten worden verwaarloosd tegenover uitdrukkin
gen, die in deze gradiënten lineair zijn (p. 58). Voor zoover deze
benadering geldt, blijkt de diffusiepotentiaal tusschen twee elektrolyt-
mengsels onafhankelijk van den tijd te zijn. Tevens kan men uit de
algemeene theorie eenige belangrijke gevolgtrekkingen maken omtrent
de struktuur der diffusielaag. Het blijkt n.1., dat na verloop van tijd
maxima en minima in de concentraties zullen optreden. Het ontstaan
van dergelijke extrema kon experimenteel worden aangetoond (zie
beneden).

7) M. P l a n c k ,  Wied. Ann. 40, 561 (1890).
8) P. H e n d e r s o n ,  Z. physik. Chem. 59, 118 (1907), 63, 325 (1908).
°) K. S i t t e ,  Z. physik. 91, 622 (1934).
10) P. B. T a y l o r ,  J. Phys. Chem. 31, 1478 (1927).



95

Een overeenkomstige benadering kon worden toegepast op het
speciale geval van twee elektrolyten met één gemeenschappelijk ion,
waarbij echter concentraties nul moesten worden uitgesloten. Deze
theorie (p. 61—70) leidt tot een uitdrukking voor de diffusiepotentiaal
en geeft tevens een zeer plausibele beschrijving van het diffusieproces.
De formule voor de diffusiepotentiaal werd aan de hand van
experimenten getoetst (zie beneden). Een nader onderzoek van de
theoretische resultaten (p. 70—75) leert, dat men in bijzondere
gevallen tot plausibele uitkomsten geraakt.

Experimenten betreffende de diffusiepotentialen die in elektrolyt-
mengsels optreden, zijn dikwijls in de literatuur vermeld. In dit proef
schrift vindt men een korte bespreking van deze experimenten (p. 76).
Al deze waarnemingen zijn bij tamelijk groote concentraties verricht
(0.1 n. of hooger), terwijl de theorie de oplossingen ideaal onderstelt.
De experimenteele moeilijkheden zijn echter ook bij deze concentraties
reeds zeer aanzienlijk, en de verschillende onderzoekers zijn het
zelden geheel eens.

Eigen experimenten werden verricht met mengsels van HC1 en
NaCl in water van 25°, en eenige malen met mengsels van HC1 en
KC1. Deze metingen zijn beschreven op p. 78—86. In die gevallen
waarin de concentratieverhouding der elektrolyten in de beide in elkaar
diffundeerende oplossingen niet te groot is, bleken de experimenten
beter in overeenstemming met de in dit proefschrift verkregen formule
dan met die van H e n d e r s o n .  De elektromotorische kracht van
de betreffende elementen is echter steeds slechts bij benadering
konstant, en de waarde der diffusiepotentiaal kan dan ook niet zeer
nauwkeurig worden bepaald.

Naarmate men de genoemde concentratieverhoudingen grooter kiest,
vertóonen de gemeten potentiaalverschillen hoe langer hoe grooter
schommelingen, en tenslotte is geen betrouwbare waarde meer uit de
metingen af te leiden.

Tenslotte konden in enkele gevallen de bovenbesproken extrema
in de concentraties worden aangetoond (p. 86). En wel kon een
zichtbaar maximum worden verkregen bij de diffusie van NaCl 0.1 n.
in zeer verdunde NaOH-oplossing, waarbij phenolphtaleine als
indicator dienst deed, terwijl een zichtbaar minimum optrad bij de
diffusie van HC1 0.1 n. in een verdunde oplossing van indigokarmijn.





STELLINGEN.

De meening van G i l m a n  en Mar p l e ,  als zou het intermediair
optreden van organo-aluminium-verbindingen bij de synthese van
F r i ed e l  en C r a f t s  zeer onwaarschijnlijk zijn, moet worden ver
worpen.

H. G ilm a n  en K. E. M arp le , Ree. trav. chim. 55, 134 (1936).

II.
De uitwisselingssnelheid van chloor tegen radioaktieve chloorionen

is aanmerkelijk grooter dan de snelheid waarmee acetanilid met
chloor reageert.

F. A. Long en A. R. O lson , J. Am. Chem. Soc. 58, 2214 (1936).

De gebruikelijke wijze waarop de regressievergelijkingen eener
empirische twee-dimensionale frequentie-verdeeling worden bepaald,
is niet van een zekere willekeur vrij te pleiten, en is niet in over
eenstemming met de historische beteekenis van het begrip regressie.

Vergelijk: A. A. T schuprow , Grundbegriffe und Grundprobleme der
Korrelationstheorie, Leipzig — Berlin 1925, p. 68. J. B. D. D erksen,
Inleiding tot de correlatie-rekening, Acad. Proelschr., Leiden 1935, p. 21.

IV.
De door K o e n i g  aangegeven groepentheoretische klassificatie

der thermodynamische vergelijkingen heeft slechts gering didactisch
belang.

F. O. K oen ig , Chem. Physics 3, 29 (1935).

V.
Hoewel de gelijktijdige meting van het Maxwell-effect en het

Kerr-effekt in oplossingen van hoog-molekulaire stoffen een middel
kan zijn om uit te maken of men met eigen dubbelbreking dan
wel met deformatie-dubbelbreking van de opgeloste deeltjes te doen
heeft, wordt dit verschijnsel door minder eenvoudige regels bepaald
dan T a y l o r  aangeeft.

A. M. Taylor ,  Trans. Far. Soc. 32, 307 (1936).





VI.
De dampspanning en de osmotische druk van zeer verdunde

oplossingen wordt niet bepaald door specifieke oplos-krachten.
K. Freden hagen, Z. Elektrochem. 43 , 28 (1937).
K. F. Herz fe ld ,  Physik. Z. 38 , 58 (1937).

VII.
De golfmechanische theorie der Liesegangsche ringen, zooals die

is ontworpen door N i k i f o r o v  en door C h r i s t i a n s e n ,  kan een
nauwkeurige kritiek niet doorstaan.

J. A. C h r i s t ia n s e n  en Inger  W u l f ,  Z. physik. Chem. B 26, 187 (1 934).
W  K. N ik i fo ro v ,  J. Chim. physique 32, 585 (1935).

VIII
Het is ten zeerste gewenscht, dat de theorie der detonatiegolven

van J o u g u e t  — H u g o n i o t  met behulp van nauwkeurig geschifte
experimenteele gegevens wordt getoetst.

IX.
De experimenten van G r i b n a u ,  Krom en K r uy t  kunnen

niet als een dwingend bewijs gelden, dat een directe invloed van
de lichtdruk bij de photophorese in colloidale oplossingen, afwezig is.

F- G r i b n a u ,  C. J. Krom en H. R. Kruy t.  Ree. trav. chim. 56 , 565

x.
De afwijkingen van de Debije—Hückel-grenswetten in elektrolyt-

oplossingen treden op bij ongeveer dezelfde ionale concentratie als
waar de optische eigenschappen van de concentratie afhankelijk
beginnen te worden. K o r t ü m ' s  conclusie, dat daarom deze ver
schijnselen aan dezelfde invloeden moeten worden toegeschreven,
behoeft een nader bewijs.

G. Kortüm, Das opt. Verh. gelöster Elektrolyte, Samml. chem. und chem.
techn. Vortrage 26 , 97 1936); Z. Eletrochem. 42 , 287 (1936).

XI.
Het is onwaarschijnlijk, dat het individueele gedrag van elektrolyt-

oplossingen in zoo hooge mate door de polariseerbaarheid der ionen
wordt bepaald, als Lan g e  dit aannemelijk tracht te maken.

J. Lange, Z. physik. Chqm. A 168, 147 (1934), 177, 193 (1936).

XII.
Aan de practische opleiding in qualitatieve analytische chemie

dient vooraf te gaan een korte vooropleiding in enkele eenvoudige
manipulaties der quantitatieve analyse.
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