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ST ELLLENGEN

Voor een paramagnetische stof die aan de wet van Curie voldoet volgt uit
de gemeten waarde van Xad/xo rechtstreeks b/C. Om van een stof welke be-
schreven wordt met de wet van Curie-Weiss b/C te bepalen, dient een
temperatuur afhankeli jke correctie te worden aangebracht. Deze kan een-
voudig thermodynamisch worden afgeleid.

Dit proefschrift, hoofdstuk 1, §4.

Indien voor een paramagnetische stof bestaande uit een spin-systeem, een
systeem van laagfrequent fononen en een vast aan het bad gekoppeld rooster-
systeem de energieuitwisseling tussen de systemen evenredig is met het
temperatuurverschil, treden in een lineaire benadering twee niet eenvoudig
te herkennen relaxatieti jden op.

Dit proefschrift, hoofdstuk 4.

Herzfeld, K.F. and Litovitz, T.A., Absorption and Dispersion of

Ultrasonic Waves.

Tussen de theoretische voorspellingen van de spin-spin relaxatietijd in
een paramagnetische stof van Mazur en Terwiel enerzijds en Sauermann
anderzi jds bestaat in velden groot ten opzichte van het inwendige veld
een discrepantie van een faktor die ongeveer gelijk is aan (1 - Xéet/xad)z
Dit proefschrift, hoofdstuk 3, §4.

Bij de berekening van de spin-spin relaxatietijd verwaarloost Caspers ten
onrechte termen welke belangrijk kunnen zijn.
Caspers, W.J., Physica 26 (1966) 798.
Caspers, W.J., Theory of Spin Relaxation, Interscience Publ.,
New York (1964).

In resolutie 3 en 4 van de 13de Conférence Générale des Poids et Mesures

(1967-1968) komt onvoldoende tot uiting dat 1 °C = 1 K.

13de Conférence Générale des Poids et Mesures (1967-1968)
Metrologia 5 (1969) 35.




De conclusies welke Emori et al. trekken uit het feit dat de gemeten en
berekende susceptibiliteit in Diisothiocyanatobis (thiourea) nickel (11)
en analoge complexe verbindingen overeenstemmen zijn aanvechtbaar.
Emori, S., Inoue, M. and Kubo, M., Bull. Chem. Soc. Japan 4}
(1971) 3299.

Bij het meten van de verandering van de viscositeit van gassen onder in-
vloed van een uitwendig magneetveld dienen de zogenaamde Knudsen correcties
in rekening te worden gebracht. Een duidelijk onderscheid moet gemaakt
worden tussen de efficientie waarmee moleculen reoriénteren bij gas-gas

botsingen en die waarmee zij reoriénteren bij botsingen met de wand.

Om een Internationale Praktische Temperatuur Schaal tussen 4 en 14 K vast
te leggen met een nauwkeurigheid van 0.5 mK, zijn minstens drie vaste
punten nodig. Het verdient aanbeveling te onderzoeken of magnetische over-
gangspunten hiervoor in aanmerking komen.

Temperature, |ts Measurement and Control in Science and Industry,

Instrument Society of America, Pittsburg (1972) Vol. 4, Part 2,

page 815.

Het valt niet te verwachten dat bij vergroting van het aantal beschikbare
cardiogrammen, een zuiver statistische analyse van deze cardiogrammen
alléén een bruikbare methode zal opleveren voor een bevolkingsonderzoek

naar hartafwijkingen.

Het door Alonso en Finn bij de behandeling van een inductieverschi jnsel
van de 2de soort ingevoerde begrip equivalente veldsterkte doet afbreuk
aan de overigens fraaie behandeling van de electromagnetische verschijn-
selen.

Alonso, M. and Finn, E.J., Fundamental University Physics, Vol. II,

Chapter 17.4, Addison-Wesley Comp., Massachusetts, USA.

De aanduidingen 'voor' en '"achter' op perrons van de Nederlandse Spoor-
wegen zijn onduidelijk als men niet weet in welke richting de trein zal

gaan rijden.

Stellingen behorende bij het proefschrift van J.G.A. Hillaert.

Leiden, november 1973.
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CHAPTER |

SURVEY OF THE THEORY

1.1 Introduction
By paramagnetic relaxation is meant those phenomena which occur when the
magnetization of a paramagnetic substance tends towards equilibrium after a
disturbance in the external magnetic field. The phenomena comprise a number of
different processes, such as parallel field resonance, spin-spin relaxation,
spin-lattice relaxation, and lattice-bath relaxation, from which in the fol-
‘lowing only spin-spin and spin-lattice relaxation will be discussed.
1.2 Static susceptibility
Normal paramagnetics are those substances for which the magnetization M
induced by the magnetic field H varies approximately inversely with the temper-

ature T, according to Curie's law

(1.01)

=}
1
—i|on
14
xy
1
2
~

C is called the Curie constant and :0 the static susceptibility. In general,

the vectors M and H are not in the same direction, and IO is thus a second

Xo is a diagonal tensor if the principal axes of ?0 are chosen as

the reference system, and ZO reduces to a scalar if the magnetic field is ap-

order tensor.

plied along one of these principal axes, which will be called z axis. In that

case, M and H have the same direction, and we may write

Ho. (1.02)
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Normal paramagnetism occurs in salts involving elements of the so-called
transition groups in the periodic system, which possess a not completely
filled inner shell.

If we consider a large number N of free paramagnetic ions each with a

permanent magnetic moment h, placed in a magnetic field H, in thermal equili-

brium at a temperature T, then the magnetization is given by




M= NngJBJ(x) 3 (1.03)
where
BJ(x) - 24t chh(2J < ]x) - — ctgh(=—)
2J 2J 2J 2J
and
S g,‘BJH
X =
kT
In this expression g is the Landé factor, Mg is the Bohr magneton (“B -
0.9271 erg Oe_]), and J the total angular momentum quantum number.
If x << 1, we can simplify expression (1.03) and write
gz.,.éJ(J -1}
M=N —————————m—H , (1.04)
3kT
which we can identify with Curie's law
C
M= -
\OH T H ’
so that
gz;.éJ(J + 1)
C = N —m—m™mm— . (1.05)
3k

Van Vleck 1 has given a quantum mechanical derivation of (1.04), assuming
that the energy spectrum of the ions consists of a group of low lying energy
levels with spacings between consecutive levels small compared to kT, and a
group of high energy levels at a distance large compared to kT. Besides the
temperature dependent susceptibility, he obtained an expression for the temper-
ature independent contribution.

The paramagnetism of the rare earth ions is caused by the not completely
filled inner shell of the 4f electrons. The influence of the crystal field on
the paramagnetic fons in the crystal is rather small, and we deal with almost
free ions.

Apart from a few exceptions, Curie's constant is given by (1.05). In the ions
of the iron group, the paramagnetism originates from the 3d electrons which are
not shielded by outer electrons. The crystal field has a great influence on the
electrons, and causes splittings of about IObcm-l. The orbital angular momentum
is quenched, and only the spin remains free. This means that Curie's constant

is given by

10




c =N —mm™ (1.06)
3k
in which S is the spin quantum number, and g has a value of about the free
spin value 2.
Only a few salts follow Curie's law down to very low temperatures. A

better description of the susceptibility is given by the Curie-Weiss law,

' (1.07)

in which can contain, besides a contribution due to the crystal fields,

terms caused by interactions between the ions.

From a paramagnetic system in equilibrium (for which the magnetization is
given by Curie's law or the Curie-Weiss law) the field is varied a little
during a certain time, which will result in a variation of the magnetization.

For the magnetic field H along the z axis, we write
H(t) = H_ + AH_(t) , (1.08)
and for the magnet{zalion M along the z-axis

M(t) = M_ + AM : .09
(t) 5 ,(t) (1.09)
HZ and MZ are the equilibrium values, &HZ(L) is the variation of the magnetic
field and LMZ(t) the resulting variation of the magnetization.

Linearity

It is assumed that the field variation LHz(t) is small enough to give a
description in a linear approximation.

Regponse funcetion

A é-peak like variation in the magnetic field at the time t = 7

:LHz(t) = §(t = t)h , (1.10)

will cause a variation of the magnetization at the time t > t which we canwrite as



:;Mz(t) = Rzz(t - 7)h = Rzz(t - 'i)i‘nHZ(’[)

R t) will be called the response function. It is the zz element of the

zz( =
response tensor R(t).

FrineLp Le

Yy

As a variation in the magnetic field at the time T cannot cause a varia-

tion of the magnetization at times t < T, one has

RL.(E = ) =20 for =< . - (1.12)

This is called the principle of causality. Furthermore, we demand that a finite

disturbance produces finite after-effects in time as well as in amplitude.

This implies that lim RZZ(L) = 0. An arbitrary field variation at the time t

may be written as a sum of é-functions:
(=
AH_(t) = ) - 1)AH_(1)dt . i
(0 = | 8(c - D8 (0) (1.13)
The contribution to the variation of the magnetization of one §-function is

given by (1.11), and because all contributions may be added due to linearity,
the variation of the magnetization as response to an arbitrary field may be

written as

I

:xmz (t)

A contribution due to diamagnetic effects has been omitted.

1:3:1 Relaxation funection
The relaxation function ;zz(t) is, except for an additive constant, defined
as
- g (8 =R ) (1.15)
dt "zz zz

4

The additive constant is determined by the value of v7z(t) in the limit for

large t.

If we consider for instance the response of the magnetization to a negative

12




field step
H+ h for t <0

H for t> 0. ,

then the variation of magnetization is given by
AM_(t) = M _(t) - M7(L = 0,H+h) = - R._(t = t,H+h)hdT . (1.17)

In a linear approximation, this can be written as

‘MZ(O’H) (= =
M ( - = —_— 4+ F 1 U 4‘_ ," At 6 &5 )
M, (t) = M_(0,H) o )Lazz( ,H)d ) R__(z,H)d}h 1.18)
If, as is frequently done, ;yz(L) is defined as
M_(t) - M_(0,H) = ¢__(t)h , (1.19)
z z zz

by which the additive constant in (1.15) has been fixed, we have

M_(0,H)

6 (t) = {—F—+ | R__(1,H)dt - | R__(t,H)dt} . (1.20)
2z oH . 2ZZ )y 22

The value of ‘MZ(O,H) ”

Luu:zz(t) e ijZZ(:.H)dT; (1.21)

is in general different from zero.

R Complex susceptibility

Let us consider the response of the magnetization to an oscillating field

of amplitude h and frequency

AH_(t) = Re h e'” : (1.22)

then the variation of the magnetization is given by

Rcl(h)he'




x (w)

is the compl

' (w)

O (w)
The Laplace trans

R“tp)

so that

If we define ¢(t)

gives (as LEﬁ(L)

X(w) =
or

"(w) =
and

"' (w) =
x(0) is the limit

for spin-lattice
spin-spin relaxat

The Fourier trans

ex frequency dependent susceptibility

(W) - ix'(w) = | dtR__(t)e '“f (1.24)
zz
function, we have
| dtR__(t)cosut and (1.25a)
J ZZ
dtR__(t)sinwt (1.25b)
zz
form of the response function R77(L) is defined as
S0 7 "2 gLAT Wl ) (1.26)
J . 2z
Rzz(l,) 3527
= ;ZZkL) - llm:zz(t)’ then partial integration of (1.24)
= 0)
((0) = i : dté(t) -lwt (1.28)
(0) - dté(t)sinwt (1.29a)
& ;
| dté(t)cosut (1.29b)
ing value of y(w) for w > 0. In section 1.4, we will see that
relaxation, x(0) = (o the static susceptibility, and for
ion x(0) = Xod? the so-called adiabatic susceptibility.
form of #(t) is defined as
1 -jut

dte d(t)

(1.30)




1.3.3 Kramers-Kronig relations
According to formulae (1.25a) and (1.25b), x'(w) and x'(w) may be derived
from one function R._(t). Elimination of RZ,(L) leads to the Kramers-Kronig
zz

relations

: Pt X (wy)
' (w) = x'(=) = —'P| TS d-l (1.32)
and . ]
y o xe) - x¥(e)
) i PJ et it : (1.33)
-0 =

where the symbol P stands for taking the principal value of the integral. A

more practical form of the Kramers-Kronig relation is

@ wx (@) = wx"(w)
il =n T ) g | 1 ; 5 du, . (1.34)
) 2 -
2 (X' () = x' (w) ,
(i) =R —eae—dy . Wi
Ll ¢ nl ~ W

If we take w = 0 in relation (1.34), we obtain the useful relation

x'(0) = x'(=) ; (1.36)

which tells us that the total intensity of X' (w)/w over the frequency range

(including the negative frequency range) in which spin-spin relaxation takes

place equals ™ aq if x'(») = 0,
1.3.4 Moments of x''(w)/w
If o(-t) = ¢(t), then the reciprocal relation of (1.30),
I/éx'n. 2 .
o(t) = | due™fo() (1.37)

o(t) = | due'et Xlo) (1.38)

The moments of x'"'(w)/w can be derived from this relation by differentiation




+o
[ (X" (w) /w) " dw

0

+o0
{ (x"(w)/w)dw

-00

1.3.5 Debye formulac
If we consider a relaxation which takes place according to a single ex-
ponential decay
for t

then the susceptibility is given by (see relations (1.29a) and (1.29b))

x' (=) + {x(0) = x' (=)} ———= (1.41a)

x'"' (w) ix )l L —_— . (1.41b)

These are the formulae of Debye, which will be used frequently in this thesis.
=]

x(0) is the value of x(w) at frequencies w << 1 ', and (=) the value of x(uw)
|

at frequencies w >> 1 x'(w)/x(0) has been plotted versus w on a logarithmic
scale in fig. 1.la and x''(w)/x(0) versus w on a double logarithmic scale in
fig. 1.1b. The relaxation time t is the inverse of the frequency for which

' (w)/x(0) has a maximum and x'(w)/x(0) is halfway between its initial and
final value. If we plot x"(w)/x(0) versus x'(w)/x(0), we obtain a semicircle,
symmetric around the point wt = 1. This so-called Cole-Cole diagram has also
been used to determine the relaxation time. The variations of x'(w) and wx"(w)
are called dispersion resp. absorption which names are also used for x' (w) and

x""(w) itself.

Lrneory

2)

In the theory of Casimir and Du Pré for spin-lattice relaxation, the
paramagnetic salt is supposed to consist of two thermodynamic systems: the spin
system determining all the magnetic properties of the sample, and the lattice
system describing the remaining properties. Internal equilibrium in both systems
is assumed, each with a characteristic temperature TS or TL' Equilibrium in the

whole system is established by spin-lattice interactions, by which energy is

16




Debye curves for

transferred from the spin system to the lattice. In the simplest model, the
contact between lattice and surrounding heat bath is so effective that the
lattice temperature is constant. The first law of thermodynamics for the spin

system reads

dQ = dE + MdH , (1.42)

in which E is the magnetic enthalpy, called by Gorter the spectroscopic energy.

17




| f one compares this equation with the standard form of the first law

dQ = dU + pdV , (1.43)

one sees that M and H take the place of p and V if the spectroscopic energy E

is identified with the internal energy U. By using the relations

dQ oE
c, = ), = ) (1.44)
H dTS H nTS H
and
= _ﬂ. = { -'_E_ } '_H = _rj_ H
CM i (dTS)M CH iy s (iH)TS (iTS)M cH * TS(':TS>H(~T,)M Y
x (1.45)
the first law can be written as
uTS vTS
= —_— —— ]
dQ cH( V'M)HdM - cM( T )MdH ; (1.46)

If the spin system is completely isolated from the lattice, one deals with the

so-called adiabatic susceptibility

L)
o

=, ! (1.47)

2 ARSI 211 M
S CH oH TS CH ‘0

- (73; —

Aad
Casimir and Du Pré suppose the energy transfer between the spin system and the

lattice to be proportional to the temperature difference

so that the first law can be transformed to
aT
o (e = ) Cp () o SR G (—T—J -_ . (1.49)

In the measuring procedure the total field consists of a constant part and a
small oscillating part of some fixed frequency w. In a linear approximation,
M and T will fluctuate with the same frequency around their equilibrium values

M 5P . :
0 resp TL

Substitution of




in equation (1.49) gives

e s
-0 = |A_CH(T)HFH + I,CM(T)MH - (ISO)
On the other hand,
T 3T
S S,
o 3 e i (1.51
( 'M)Hm+ ( -H)Mh 51)
Elimination of from these two equations gives for the complex, frequency de-

pendent susceptibility

X + fwC
(w) =P = 4 (1.52)
A w f‘ '.O o + iAC ’ .,
H
which can be written as
(@) = Xyq * (g = X y) T : (1.53)
8 st
where the spin-lattice relaxation time 1SL= CH/l-

Splitting x(w) into a real and imaginary part, we obtain

L(w) = 5 Ny sl (1.54a)
X' (w) Xag * (,.O ,ad) 2 and (1.5k4a)
U KSL
RO = e “TsL
') = (g = xog) —— (1.54b)
=

The static susceptibility Xo is the value of x(w) at frequencies so low that
the spin temperature is constant and does not follow the field variation. Xad
is the value of x(w) at frequencies where the spin system follows the field
variation without exchanging energy with the lattice.

For many salts, the magnetic specific heat in a high temperature approxi-
mation can be written as CM = b/TZ. For a substance obeying Curie's law M = %H

one finds then with the aid of (1.45)

2
- CH
CH = CM e (1.55)
T
SO that
2. _b (1.56)
0 b+ CH




For a substance obeying Curie-Weiss law

one finds

b + CHZ(T/T - :)3

The susceptibility in the case of spin-lattice relaxation is given by
Debye formulae, which implies that the spin-lattice relaxation takes place
according to an exponential decay. |f the spin-spin relaxation also decays ex-
ponentially, the susceptibility for the spin-spin relaxation process is given
by the Debye formulae as well

V[ 1
X' (w) ‘bet

'(6) = Gtag = Xpoe) ——

in which Teg is the spin-spin relaxation time.
Combination of equations (1.54a and b) and (1.59a and b) gives

(1.60a)

Mw) = . L SRe U (21 4 yaly SELLESLIRERE (1.60b)

“;'L is the value of y(w) at frequencies so high that the spin system is not
e -

in thermal equilibrium. decays via parallel field resonances in the spin

|
Abet
system at the Larmor frequency

u.H
= h

and twice w, .
L
The whole has been sketched schematically in fig.




Fig. 1.2 Dispersion and absorption as a function of the frequency

for some fixed field H/ # 0.

To describe the spin-lattice and the spin-spin relaxation in a paramagnetic
crystal one tries to split its Hamiltonian into a Hamiltonian describing the
spin system only, a Hamiltonian describing the lattice, and a term for the

interaction between both systems,

= HS + 5L + e, : (1.61)
The subscripts S and L refer resp. to the spin and the lattice systems.

If the spin-lattice relaxation time is much greater than the spin-spin
relaxation time (as is often experimentally found), then the spin system is
isolated from the lattice during the spin-spin relaxation process. The Hamil-
tonian for the isolated spin system can be written as a sum of single ion

Hamiltonians and a sum of interactions between the single ions

2]




ol o ij \
An 2ot * gk, 4 . 3
S i Tl JF K 62)

3,4)

The single ion Hamiltonian is replaced by the so-called spin Hamiltonian
This is an explicit expression in an effective spin operator S determined by
equating 2S5 + | to the number of energy levels of the lowest group. The eigen-
values of the spin Hamiltonian coincide with the ground state of the actual
magnetic ions.

The spin Hamiltonian can be written as

E S I i
H = H, + H W+ H (1.63)

(B : - — -
Here 4, is the Zeeman energy, i.e. the energy of the magnetic ion in an exter-

nal magnetic field

Ay e e i
> H +ugH-g 51 (1.64)
~;1 the energy of the ion in the electric crystal field
i i iy2 | s i ezaly2 iy2
H = { ) o } { - N SESET Wi
4. D {(S.) 3 SESw 1)) =E _(Sx) (Sy) ) (1.65)
and :;fS the interaction energy between the electron and nuclear spin
| o I - o y
Egg =9 /s JE (1.66)

The interactions between the single ions are the dipole dipole interaction

ORIt | R T SR L3 ) I - (5 4
“dip T Tiyj# dip T B i 3 ({g"=5")+(g"=5")
i
. =i2iy 2 =i (1.67)
-3(ru'9 '§)(rij'9' );
2
5o
1)

" As definition of the Bohrmagneton we use

= A=l

B 2mec




> . . . . . . . .
(where r.. is the vector connecting the equilibrium sites of ions i and j and
b
i ) and the exchange interaction
g

s =

ij

. gld = (-281.344%dy | (1.68)

Tex  fiTiF Yex. Gj#

If the principal axes of the exchange tensor J coincide with the reference

axes, the exchange interaction may be written as

H_ = 4.2 {-2(39s'sd + yldslsd 4 4liglglyy : (1.69)
ex i,j# XX KX YY ¥y zz 2z

i _i = 2s r
13 = 31" and ') = gld = gld,

XX Yy zz
isotropic, Heisenberg exchange which in many cases gives a satisfactory descrip-

then we deal with the so-called symmetric,
tion:

Ho = %2, (<2055580) (1.70)
ex iy]
I f J;i = J;J = 0, then we have as special form of the symmetric anisotropic

exchange, the so-called Ising exchange:

H = l._‘(-ZJijSiSj) ; (1.71)
ex bod zZ 2z

The summation over pairs in the exchange interaction may often be restricted to

the nearest neighbours or nearest and next nearest neighbours.

1.5.2 Decomposition of H,. and H__ into eigenoperators of I
The greater part of the theories on spin-spin relaxation dealswith S =
which according to a theorem of Kramers implies Hel = 0.

The Hamiltonian of the spin system is assumed to consist of a Zeeman term iy

and an interaction term which is taken to be the sum of a dipole dipole inter-
action #,. and an isotropic exchange interaction #
dip ex
H = A;.' + L :v . - f‘.“ + .;.'V ' + . . l . 2
Z int Z dip ex (1.72)

For identical ions and the magnetic field applied along one of the principal

axis of the g tensor (z axis), the Zeeman term can be written as
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interaction term hin[ is decomposed into eigenoperators of the Liouville

operator

corresponding to the Zeeman term H,, i.e. into operators A satis-
Z

Z

fying the equation

A

L, %[;:’Z,A] = AA (1.74)

for some scalar

For that purpose we write out #,. and # into 5! S} and the step up and
; : dip ex 0 z
step down operators S, = Sx + is; in the following way:
H,. .= H# + H ol Ve + H, + H 5
dip -2 -1 dip 0 1 Ol 7 (1.75)

; AT ijgici ijgicd

Hyip o= g 1534 (Cop%o%o * C+25452)

= e 20 L ol Jatzd

e Mg 24 L-OS'SO , and

. = A% 3 clglg (1.76)
£2 =UB T EEECL

: ij 5 S . 5
The C'J's are functions of the local coordinates and components of the g tensor

ij s R Y S
COO rijjzﬁl 3"ij) i
ij ] =3E 2 o A 2 L i NS
i L x(l B,ij) + gy(l 3 ij)v 3
&) S A D r ¢ - &
¢ 0 Brv qL IJ(ngiJ * Igy J)' and
SRR L e N et :
= ~%r o, ~ig 3(9Xuij + g, ij)} ; (1.77)
which £.., n.. and z,, are the direction cosines.
1] L L
is written as
R e U b (.98
“ex “i,j# A <stz . S*S-) \ (1.78)

is easy to see that

( H ) =0

44 - +
Z dip 0 ex
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and
Al S R AN B S L I T B (1.79)

w = ggBH/h is the Larmor frequency.
That part of Hint which commutes with JZ is called the secular part of the
interaction, and the remainder the non secular part. The Hamiltonian may thus

be written as

(1.80)

ApProxImation
The starting point in theories on spin-spin relaxation is the relaxation
function, mostly in a high temperature approximation. Therefore one considers
the response of the isolated spin system to a disturbance in the magnetic field

applied along the z axis:
H+ h for t < 0

H for t > 0

At time t < 0, the equilibrium state is described by the stationary density

operator
-BH(H + h)
©
p(-w) = ——T Y : (1.81)
Tr el

in which #(H + h) is the Hamiltonian at time t < 0,

HH + h) = =(H + h)MZ Helfes s (1.82)

and

=

B KT

The mean value of the magnetization for t < 0 is given by

Mz(t) =Tr u(-w)MZ : (1.83)

After the disturbance in the magnetic field, Mz(t is given by

MZ(L = Tr p(==)M (t) , (1.84)
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in which MZ(L) is the Heisenberg operator of Mz'

| ol
M (1) = e WHRIL, - g H(H)L eIy (1.85)
z z z
and #(H) the Hamiltonian for t > 0
H(H) = -HMZ + 'ziﬂL (1.86)

L(H) is the corresponding Liouville operator.

In a linear approximation in h, and a high temperature approximation, one finds

h.(Minp + H“<M§>> for < 0
f
M,(L) -8 { : (1.87)
4 h<<M M_(t) + H<<M">> for t > 0,
r AR z

where we have used the notation

A - Tr A
1A i
As
T L ST S s, o e |

<M>> = g7ug : LJZ) >> = Ng_ g 3 s(s+1) , (1.88)

we have for the mean value of the magnetization for t < 0,
2
q;..gsw 1)
M_(t) =N LH )R (1.89)

z ~ 3kT

by which Curie's constant is determined.

Defining for t > 0 the relaxation function by

= L ey - aHe<M®s>)
.ZZ(L) o - (M_(t) BH<<M 2 : (1.90)
it follows that
; = R<<M M (t)> 1.91
., (t) = B<<M_M_(t)>> (1.91)
1.5.4 A formal expression for the relaxation time in a high temperature

YT mier 1 ¥
iacLon

A formal expression for the spin-spin relaxation time, characterizing the
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approach to equilibrium of the isolated spin system after a disturbance in the
external magnetic field, has been derived by several authors in different
5,6,7,8,9)

ways . One usually starts from a Hamiltonian of the spin system con-

sisting of a Zeeman term HZ, a dipole dipole term # , and an isotropic

dip
Heisenberg term #
ex

- . = H _ +-H + H
dip ex Z sec n sec

8)

In analyzing the relaxation function, Mazur and Terwiel distinguished two
limiting cases for which the Hamiltonian can be separated into a large unper-
turbed part and a small perturbation. The first, which they call the weak
coupling case, is that for which the secular part of the interaction is much
larger than the non secular part. The Zeeman term and the secular part of the
interaction constitute the large unperturbed Hamiltonian and the non secular
part the small perturbation. The results are valid for all magnetic fields in-
cluding zero field. The second, which they call the strong coupling case, is
that for which the secular part of the interaction is comparable to or weaker
than the non secular part. In that case the sum of the Zeeman term and the
secular part of the interaction constitute only for a strong external magnetic
field a large unperturbed Hamiltonian, and the non secular part can be con-
sidered as a small perturbation, The results are thus restricted to large fields.

Weak coupling theory

0)

Using Zwanzig's elegant projection operator technique, M and T derive
an exact integral equation for the time derivative of the relaxation function,
assuming that after the disturbance in the magnetic field the spin system
reaches a new thermodynamic equilibrium for large t.

The relaxation function which they consider is the function defined by (1.90)

which in a high temperature approximation is given by
¢ = R<<M M >> o .
S B M, (t) (1.91)

The limiting value of mzz(t) in the limit for large t is different from zero,

and thermodynamically one can show that

2
: H
g (=)= Jim¢ (t) =y, - x , = ————= |, (1.92)
zz l*w zz 0 ad HZ x EHZ

27




where b )i 5 o

5 =
<<MT>> kC
z
The non vanishing part of the relaxation function is taken into account by
defining

a(t) = ¢ () - i{B ¢ (=)} = g<<up(t)>> . (1.94)

With the aid of the formalism of Zwanzig, M & T derive the time derivative of

2(t)

= _J diG(zt)a(t = ) , (1.95)

where the kernel or memory function

i + 1C) il ~=P )“n cert
n sec 5 S n sec”
G(t) = . (1.96)
2
<<p>>
Lyy Lgeer and ;n e are the Liouville operators corresponding to LZ’ &sec’
and ﬁn SoE resp. P is a projection operator defined by
'~'»_‘0 t)>>
P O(t) = L2 (1.97)

with 0(t) an arbitrary Heisenberg operator.
In the weak coupling case, the memory function can be written as a sum

of damped oscillations

s ot
G(t) = —————E—J—355~ £ e L° G (t) , (1.98)
3H k=+],+2
i sec
with
q2 2 23] el'secl~ =
v A oo “k
6 (1) = —5= k& —= . (1.99)
h <<M >>
z
The Fourier transform of the kernel or memory function (called by Verbeek 13)
memory spectrum) is given by
T
Glu) m i X G, (w = kuy) (1.i00)
IHS k=+],%2
i sec




The memory spectrum consists of four lines at frequencies ku R b D

L!
whose shape does not change if the field is varied. The lines have an intensity
2 2 Py
G 9 Mg 9 SSHAL>?
O 5 k 3 b (1.101)
R <<M >>
z

and a second moment

|
> B oe— 2)
K ﬁz R T = (1.102)
#4H >

The lines are multiplied by a field dependent factor

H2 + 3H? 1%
i sec
2
i sec
The spin-spin relaxation rate ._] is given by
1 _| H + : f sec
= =|d = : = 6! lus'= Ru
— =[de6(t) = [6(w)] _, - | [6, (w = kw )] __
H k=%],+2
i sec
(1.103)
If a Gaussian line shape is assumed for Gk(‘ - k‘L)' determined by the moments
of zero and second order,
Lo \2
G, (0w - kw,) = <AO> —————l———~r exp{=-3% }-;———:;Ei—ﬁ (1.104)
k L k NI = 2. ‘ g
{27 > s
K k
then : HZ 5 EH? i : :
— = __.‘5___ﬁkk,(7_ + —) - (1.105)
L .\H_ EI ~2
i sec
with
L gugH
Lias > l' ] '2 exp{-4(—2—) 2 L ' (1.106)
1 fi S»S(S FN) 2 >|; h 0>
H.H . >> 2gu_H
-‘—=8 7_]2 k ]2 = expl=4(——B)? ;_ - (1.107)
B = <w> 32 T
2 ) 3 S(S + 1) {2n<w | h 2
and STy 7 1
o) 1 \‘t”sec’ 1,2][”-|,-2’“5ec]>>
<> = — (1.108)
1,2 h2 By < 3
1,227=1,-2
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LLrong coupeing tvneory

In the case of strong coupling, the time behaviour of 2(t) is investigated

by M &€ T on the basis of an analysis of the Fourier transform of Q(t), related

to the absorption by

(1.31)

For sufficiently large fields, the spectrum of Q(t) (called absorption spectrum)

consists of five lines centered around 0, W and ‘ZWL

1(t) itself is given by

g(t,H)

with

<<d_, ;k>
ThE e D RN 3 ie
9y LtoH) T (1.110)
“int
The Liouville operator L in the exponent is the sum of ;Z and :inL' For k # 0,
M & T assume that L may be replaced by ;Z + Ck;sec' where cL is a real constant

not only of the order unity, but exactly equal to 1, which has been later proven
by Verbeek and independently by Terwiel. Thus it is assumed that the real in-
teraction may be replaced by the secular interaction. In that case g(t,H) con-
sists of damped oscillations given by

_ S ke, t
gkk(L’H) = 5 ; Dk(t,ck)c L " (1.111)

where
Dk(t,ck) is a damping function:
<<H kei~sec[5k>>
D, (tie,) = (cf. 1.99)
5 < H >
k' =k
g..(t,H) satisfies a similar integral equation as in the weak coupling case

00
(equation 1.95). For sufficiently large fields, the kernel of this integral

i 0 5 2
equation G (t,H) consists of four components.

et = 2 GEk(t,H) , (1.112)
k=%],%+2




with - iLt,

0 T LA,
G, (t,H) = . ! (1.113)

If the Liouville operator in the exponent is replaced again by :Z + dh:sec'
then the relaxation rate, analogous to the case of weak coupling, is given by
2

2
2 y 9 ug ﬁ

L (1.114)

M & T show that 1 is much larger than the decay time of the damped oscillations.
~ : s : 0 \

The damped oscillations describe the parallel field resonances and G (t,H) the

long time relaxation behaviour. |If a Gaussian line shape is assumed for

Dk(& - k,L,dk), determined by the moments of zero and second order, then

2
Lo O kel ' (1.115)
1 P ) 2
i sec
with
<< gu.H .

| ] 17°=1 1 i B \2 1

—= 27 — exp{-%(——)
3 21 2 3 2 2 .

| dy B 3 s(s + 1) {2 | b d 1 (1.116)
_L 1o J_ s I T IZQLBH)Z |

. ST e 2_ (L %3 2_ 2‘ !

2 dy B 3 5(s + 1) {2n<w®s,) B QU2 (1.1

2 : : ;
and <u 1. 9iven by equation (1.108).
’
The result of Mazur and Terwiel in the weak coupling case is the same as

that found by Hartman and Anderson, Tjon and Sauermann but differs by the fac-

: : N7y a2 3 - 21
tor (HZ + QH? } / (%H ) from Caspers' result. Therefore, 1 s T is
i sec i sec 1 2
sometimes abbreviated as IE]
1.5.5 Expressions for <<H. >>, <<H _‘..".'_ S>> >>, << >

<<[H, ,H.,] [.":'_ ol ] > and <<[# ;H, 1[H . H.]>>.

If we assume that the Fourier Lraﬁsform of the kernel or memory function
consists of Gaussian lines, the relaxation time is given by (1.106) and (1.107)
in the case of weak coupling and by (1.116) and (1.117) in the strong coupling
case. For the calculation of the relaxation time we need explicit expressions
for <H\H_,>>, «»ﬁ25_2v>, "<[JO,5}][H_I,HO]>>, and <<[ﬁ0.ﬁ2][:_2,ﬂo}»» in terms
of the local coordinates of the crystal lattice and the components of the g

tensor. For the calculation of b/C (cf. 1.93) we need an explicit expression for
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22>
dipole dipole interaction and isotropic Heisenberg exchange interaction. The

The expressions have been evaluated for an interaction consisting of

results are

2 | 4.2 R e
H™>> = e b { 4 2( J }
“o Fie s ma i e i e B
i,J#
e 2 ij2
171 =75 HgS (S + N2l '
_2 k.2, 2 ij2
22 =g vg SN gl N ’
2 S vt e s <l >
“int el il e 1 e o o 2ipne
19 w82y 2
[Hy 2, 118 JHQ1>> = 5 ugs™(S + 1) x
|
x | 3sUs+) & 22 + 13
| i,j.0# ¢ U+0! 00 g
(
.. . . |
+ 8lctd ZC'lCJI
+0! k=it
P Tty s Nl LU 2 DR
*“00"00 00"+~ +=“4-74pb-0 T “-0"40
Lo T K T A Y TSI o (v | (e S (1)
2(CoaCss + Cople- *+ 2(C,2)° + 20,2, ) (€ 000 + C 4030 |
v 2 5 [1c2easis + 1) - 1)(eth? - 202 + 1) + HelicH
A TR O 00 o ' 00"+~

o
+10(25(s + 1) - 1)(c; )"}

x | 2stsn vz o [leldPaiel? o e
QU iyd,1#Y
SR
R o AR T T S
(céécif + cééci{)(cilcfl + cflcii)?
+ E% (4s(s + 1) - 3)itj#{ cii‘za(cgé)z + 2(cif)2:¥j (1.118)
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The CIJ's have been defined in section 1.4.2 with one modification:

12 Y P % i
; { 1 = 3p ) + ;
‘0 7 fgip ot fex T Mg I (CopSoSp + €,I8,S0)
l,_]#
with
1J
A g2 s el J
“00 l)gZ( 3’iJ) ‘ 20 2
and B
o P i
1J 1."3, 2 A 2 2 i /
= S e 1 = Es - 3Ny, )}k = 2 — . 1.11
Qi hrij.gx(l 3.EJ) + gy(l 3 ,J) 2 ¥ ( 9)
"B
The summation sign I 14 means a summation over the three mutually different
|YJ‘

indices i, j, and 1.
The results are written in a form suitable for a computer calculation. Our
results are the same as evaluated by Grambow*ll) for an effective spin 1/2 and
pure dipole dipole interaction. The results of Caspers for an isotropic g value
differ slightly from those of Strombotne and Hahn 12) and both differ in some
terms from our results.

In the evaluation of the traces, extensive use has been made of the fol-
lowing expressions for the trace of the product of two, three, and four spin

operators:

<*SIS;>> =0 unless a + = 0, where z 0,
SlS_SV- = 0 unless o + B + y = 0,

<<S(SFS'S_ =0 unless a + B + y + § = 0,

<-S§»» = % S(s +1),

<<5,8 >> = % S(s + 1),

<<5,5,5 >> = -<<5.§ § >> = % S(s + 1),

«52» - T'g-s(s + 1){38(s + 1) - 1} ,

<«s?ss >> = T% S(s + 1){25(S + 1) + 1} ,
<555 §_>>= {% S(S + 1){s(s + 1) - 2} ,

\ <<S$,S_§ .S _>>= l)—‘s S(S + 1){2s(s + 1) + 1} . (1.120)

In formula (22) on page 256 of Grambow's paper, a factor 2 is missing,

4 ]
in formula (25) on page 257 in the first line R JK should be replaced by
jk! :
D 5
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CiH- AP TE R: 2

THE TWIN T BRIDGE FOR MEASURING THE COMPLEX
SUSCEPTIBILITY BETWEEN 100 kHz AND 30 MHz

Synopsis

Both components of the complex susceptibility, x = x' - jx'" can be
measured with the aid of a twin T circuit.
By means of frequency modulation of the signal generator, and phase

sensitive detection of the AM demodulated output signal, the generator is
locked on the minimum of the twin T bridge, allowing continuous registration
of signals proportional to x' and %' as a function of the external magnetic

field parallel to the r.f. field.

2.1 Introduction

The block diagram of the experimental set-up is given in fig. 2.01.

. — 1 r -

signail :tv\,,m’;‘cr‘d' @ receiver
|generator [——— ——ie—=-yraceng
—— — L

Tauar—

Fig. 2.01 Block diagram of the experimental set-up.

The twin T bridge is a modified General Radio, type 821-A. The generator
is a General Radio, model 1003, and the receiver a modified Rhode & Schwartz
selective microvoltmeter, type USVH. The twin T bridge forms a notch filter;
the attenuation curve in the vicinity of the bridge minimum is symmetric, and
a linear function of the frequency (fig. 2.02). The twin T circuit itself is
given in fig. 2.03.

The measuring coil L, with a parallel condensor C, forms one branch of

the bridge. |f the paramagnetic sample with susceptibility x = x ix" is
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lEg.‘i
2y |
|

nggr_, — N
W We

Fig. 2.02 Attenuation curve of the twin T bridge in the vicinity of
the bridge minimum. el and e4 are resp. the input and output

voltage, @0 is the frequency of the completely balanced bridge.

pa— .‘r_,, BV V.V, S—
o 2 ] ¢ — O
‘ |
1 5 + ’ {5
2, ﬂ‘if —— 24
Cote g L
’ # 3R
3
' = 1
(o3 — y S 0

Fig., 2.03 Twin T circuit.

inserted into the coil, with original impedance Z = R + juwL, the impedance will

change to

Z. = R, + jwL, = R(1 + 4mqQy'") + juL(1l + brgx') »

where g denotes the filling factor and Q the gquality factor of the coil:

Q = (wL/R).
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From this expression one can see that the change of the inductance of the coil
is proportional to ', and the change of the series resistance of the coil is
proportional to x'. Starting from balanced bridge conditions, Verstelle N

has given an expression for the output voltage of the bridge due to a small
change of L, R and w.

If we change only w, and leave L and R unchanged, we obtain curve a of
fig. 2.04. If L and R are changed, due to the insertion of the paramagnetic
sample into the measuring coil, the output voltage will vary according to curve
b of fig. 2.04.

Verstelle has shown that the change in frequency of the bridge minimum and
the change in amplitude of the minimum are proportional to x' and x" resp.

If one would try to lock the generator frequency onto the minimum of the
completely balanced bridge by means of frequency modulation (FM) (curve a of
fig. 2.04), there would be no central frequency component or carrier left in
the output voltage of the bridge. To overcome this problem, we disturb the
balance of the bridge a little by changing Cg' giving curve ¢ of fig. 2.04.
There is now always a carrier in the output signal of the bridge, so we can use
this carrier to lock the receiver onto this incoming signal too. In section 2
we will show that the frequency difference between the two bridge minima is

still proportional to x', and the difference in output voltage to )

46 . .

W t)) e

Fig. 2.04 Output voltage of the bridge, starting from balanced
bridge conditions:
a. due to a small change of w,
b. due to the insertion of the paramagnetic sample,

G due to a small change of Cg.
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For the analysis of the twin T bridge we refer to Verstelle loc.cit. and to
fig. 2.03. Starting from a balanced bridge, the output voltage of the bridge

ey due to a small change of L, R, w, and Cg is given by

1 du dL 1 dR | dc
e, = -e,F[2(l + =) —+ —+ —5 — + — +
4 1 =2 % 2
Q 50 L Q R Q C+Cg
2de 1dL 1 dR 1 dC
¥l —t m— = = — = )] , (2.1)
Q Eh) S I Q R Q C+Cg

where € is the input voltage, F is a complex factor ghich is eliminated in

the calibration,Q = (WOL/R), and %9 is the frequency of the balanced bridge.
By differentiation of the expression for eb' with respect to dL/uO, we

find for the relative frequency variation of the bridge minimum as a function

of dL/L, dR/R, and ng/(C+Cg):

Z vdt 1 dR | I dC
(] + —7) —+ ) e + (2 + =) = —g.
dwy gc 1 o''n Q_Q° c+c
(ZBJmin_ B | 2 ] 9
2k —7) + —7] -
Q Q

and for the change in the amplitude of the bridge minimum:

1 d "
— = 4nqy', TR bmgx's

=

and in practice we choose

| dC
e

C+C
¢ 9

of the same order of magnitude as bwngy'" inorder to stay well within the lineari-

ty region of the bridge.
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As Q is at least 20 (typical value 50) we have within 1%:

1 dC
(EL_ = -2mqy' + = g
W, min \ Q C+C 5
Y g
1 dC
ylmin = 151 Fl Awax' + Q c+C ]
g
] dC
During the measurements T ore remains unchanged, so we have
g
{ e ol — and
27q 90

. N il
T S Z‘CI‘iF‘ ”‘Lh‘min

A calibration is required to eliminate the factor Z‘e]{'F‘. Starting from a
completely balanced bridge, the output voltage is measured as a function of

dw (with dL = 0, dR = 0 and ng = 0).

This gives
’eb‘ca] = 2{e; ‘F‘(u )cal
0
The only unknown factor in the equations of Ay' and A" is still the filling

factor q. This may be determined at low frequencies and zero field by moving a
sample with a well-known static susceptibility into and out of the measuring

coil, for then Ax' = X0 *
In studying paramagnetic relaxation, however, it is often sufficient to deter-

mine the ratio x''/x' or the ratios ‘|/*O and A“/QO.

2.3 Frequency modu on

If we modulate the frequency of the signal generator sinusoidally as a
function of time with an audio frequency signal W around the unmodulated

value We» the output voltage of the generator can be written as

E(t) = Acos(w t+ =2 sin w t),
C w m

m

with — = 8, the modulation index.

Using the trigonometric formula for cos(a+8) we may write
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E(t) = Alcosw tcos(Bsinw t) = sinw tsin(Bsinw t)]
[ m [ m

cos(psin¢mt) and sin(;sinumt) can both be expanded in Fourier series, whose

coefficients are Bessel functions of the first kind with argument g (e.g.

3,4,5),

cos(Bsinu t)
m
sun(rsnnwmt)

with

( 4G

2

If the modulation index B8 < 0.04, the amplitude of the higher order sidebands
J”(f) with n > | is smaller than 1% of the amplitude of Jl(n), so that we may

write in good approximation

% cos(J:C + wm)[ - %cos(wc - ¢m)t]
The amplitude spectrum of the FM wave consists of a carrier at . and two
sidebands at a distance w. on each side of the carrier. The amplitude spectrum
has been sketched in fig. 2.05a, and the phasor representation is given in
fig. 2.05b.

If we compare this expression with the expression for an amplitude modu-
lated wave (AM), the latter differs only in the sign of the low frequency side-
band.

The phasor representation of an AM wave is given in fig. 2.05¢c.

tne measuring system

The complete block diagram of the measuring system is given in fig. 2.06.
For small dw and ng (with dL = 0 and dR = 0), expression (2.1) for ey reduces

in a l/QZapproximaLion to
dw s dc
ce Fl2 —+ jE42 4 L 9]

e
4 5 @y 3
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Fig. 2.05a Amplitude spectrum of the FM signal.

G—

W

Wm
. wr{ | 2

Fig. 2.05b Phasor representation Fig. 2.05¢c Phasor representation

of the FM signal. of an AM signal.

If arg F varies but little with the frequency around Wy » the corresponding

ampl itude characteristic is as sketched in fig. 2.02, and the phase charac-

teristic as sketched in fig. 2.07. |f the carrier frequency We equals u both

0’

first order sidebands of the FM wave are attenuated and shifted in phase to the

same extent, but in opposite direction with respect to the carrier, so that no

AM component will result (fig. 2.08). If, however, the carrier frequency W, is

different from Wy» ©:9. W, > Wy then the upper sideband of the FM wave is

attenuated less than the lower sideband, and the phase shifts are different, so

that an AM component results (fig. 2.08c). In the output signal of the bridge,
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Fig. 2.06 Complete block diagram of the measuring system.

Fig. 2.07 Phase characteristic of eu/el.

the sidebands are partially of FM nature and partially of AM nature.

In the receiver, the incoming signal is mixed with a local oscillator

signal with preservation of amplitude as well as phase information. The inter-

mediate frequency signal (i.f.) is then amplified and finally amplitude demo-

dulated. The resulting AM component is amplified and fed to the phase sensitive

which uses the modulating audio frequency signal as reference signal.
e radio frequency (r.f.)

detector,
With the DC output of the phase sensitive detector, th
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Fig. 2.08 Phasor representation of the signal:
a. at the bridge input,
b. at the bridge output if the carrier frequency @, equals
the frequency of the bridge minimum bg s
c. at the bridge output if W, B Wy
generator is locked onto the frequency of the bridge minimum.

Since the selective voltmeter operates in a linear mode, the DC output of
the amplitude demodulator is proportional to the output voltage of the bridge,
and therefore can be fed directly to the recorder as a measure of the variation
of ¥''. In order to record the very small relative variations in the frequency
of the bridge minimum caused by the x' of the sample, the frequency of the
signal generator is mixed with a multiple of the 100 kHz time base of the coun-
ter. The low frequency (1.f.) output of the mixer in the range of 1-5 kHz is
converted to a DC signal by means of a one shot type frequency to voltage con-
verter. The counter is used to adjust the frequency of the General Radio gene-
rator to a value in the neighbourhood of the desired multiple of 100 kHz.
Typical measuring frequencies were 100, 200, 300, 500, 700 kHz, | MHz, 1.5,

2, 4, 8, 16 and 30 MHz for which we used three different coils because of the
limited range in frequency in which the bridge could be balanced with each coil.
At the lower frequencies an external variable Cq in the range of 0-5000 pF was
needed to balance the bridge. In order to suffice with three coils, we used at
1, 1.5, and 16 MHz an extra condensor in series with the coil, and at 2 MHz an

extra coil in series with the measuring coil. At 30 MHz, an extra E-coaxial

cable in series with the coil was needed to balance the bridge. As FM modulation
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frequencies we used four fixed frequencies at 500, 1100, 2000 and 3000 Hz. The
modulation index was adjusted so that the sidebands just exceeded the noise of
the amplitude demodulator of the receiver. The sensitivity of the bridge can
be shown to be maximum when the imaginary part of the output admittance of the
bridge is tuned out and with no resistive load connected to the output terminals
of the bridge. Therefore we used the highest input impedance of the receiver
(500 k@ parallel to 20 pF) and tuned the imaginary part of the admittance with
a set of coils (TF).

he measuring system

The measuring coil is located in a metal can in a cryostat and connected
by means of a coaxial conductor to the top of the’cryostat. The coil is wound
on a rexolite tube, in which a Faraday screen has been fixed, to prevent di-
electric effects caused by movements of the sample, because these would be in-
distinguishable from magnetic effects.

The metal can is filled with helium gas providing a good thermal contact
with the bath. The temperature within the can is measured with a calibrated
Germanium thermometer mounted close to the coil. The metal can and coil contain
solder points. The commonly used solders become superconductive at liquid helium
temperatures. |f the external magnetic field is increased, the superconductivity
is suppressed, resulting in a varying impedance in series with the coil. To
minimize this effect, we have kept the number of solder points as low as pos-
sible, and have used solders which are not superconducting at liquid helium
temperatures, i.e. zinc-cadmium solder with a melting point of 265°C and
bismuth-cadmium solder with a melting point of 140°C.

The overall sensitivity is mainly determined by the sensitivity of the

bridge (given by the slope of curve a in fig. 2.04), the filling factor q of

[} "

the coil, and the sensitivity of the detectors for x' and x
It is limited, however, by other factors such as frequency noise of the
signal generator, detector noise, the high frequency isolation between in- and
output of the bridge (better than 120 db), mechanical vibrations in the coaxial
conductor from the coil to the top of the cryostat, and especially at higher
frequencies by the effect of thermal drift in the impedance of the coaxial
conductor which then forms a relatively large part of the measuring coil circuit
impedance. The sensitivity of the bridge is slightly frequency dependent, and

6 ] at high fre-

/2n Hz-‘ at low frequencies to 10-6/27 Hz

varies between 0.5 Xx 10°
quencies. The filling factor q of the coils was about 0.12 in the frequency

range from 100-700 kHz and 0.042 between 4 and 8 MHz. At 1, 1.5, and 16 MHz,

il




condensor

than 0.042.

the filling factor was greater than 0.12 and 0.042 resp., due to the
in series with the coil, and at 2 and 30 MHz correspondingly smaller

The frequency stability of the signal generator during a measurement lasting

a few minutes was about 0.1 ppm. The sensitivity of the detector was such that

a frequency shift of about 0.1 Hz in the bridge minimum could be detected. A

voltage variation of 0.05 uV at the output terminals of the bridge could be

£ These factors, limitations, lead

7

detected by the x'' detector. together with the

for x'

to an overall sensitivity of about 2 x 10 as well as for x'". The sensiti-
vity of a single measurement at a constant field (fig. 2.09a and c) was about a
factor 10 higher.
As an illustration, we give a complete set of measurements of a single
CoCs_Cl
35

r.f. and static field at a measuring frequency of 16 MHz and at a temperature

of 3.06 K (fig. 2.09 a, b, ¢, d and e). First yx'

crystal with the tetragonal axis parallel to the mutually parallel

is measured in relative units

in zero field and as a function of the external field. Then x'' is measured in

relative units in zero field, and as a function of the static field too, and
finally the units of X' are calibrated in the units of x'. In the evaluation of

the measurements, a correction is taken into account for the thermal drift. At
about 600 Oe one sees the remaining influence of superconductive solder junc-
tions. As long as we stay within the linearity of the bridge, the effect is not
serious, because it is the same for the two positions of the sample. At 3758 Oe,
holder is noticed which we used as a calibration

proton resonance in the coil

of the magnetic field (fig. 2.10).

Co.Cs3Clg// C

T
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oc X
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—
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2.09a

Dispersion

in zero field.
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Fig. 2.09b Dispersion as a function of the external magnetic field.

—_——
Time

Fig. 2.09c Absorption in zero field.
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Fig. 2.09e Calibration of the units of x'" in the units of x'
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Fig. 2.10 Calibration of the magnetic field.
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CHAPTER 3

LONGITUDINAL SPIN-SPIN RELAXATION IN CERIUM
MAGNESIUM NITRATE

3.1 Introduction

The magnetic susceptibility of cerium magnesium nitrate (CeZHQB(NOB).

24 HZO’ called CMN hereafter) obeys Curie's law down to the very low temper-
atures l). It can be used as a thermometer from about 2 mK, and as such it has
been extensively used in the centi-Kelvin and milli-Kelvin region. The mag-
netic specific heat CM can be written as CM = b/TZ, where for b, values between
4,2 and 7.5 x IO-6K2 have been found. According to Mess 2), above 0.15 K one
must make use of the higher values. Since the magnetic interaction between
the cerium ions in CMN consists of only the dipole-dipole interaction (Ce has
no hyperfyne splitting), and the magnetic equivalent cerium ions have a well-
known simple g factor, and are arranged in a well-known simple Bravais lattice,
the magnetic specific heat can be calculated as well 3'h).This leads to a theoreti-
cal value for b which is slightly larger than the values measured at higher
temperatures. At 1.3 K we have accurately measured the magnetic specific heat
and have compared our experimental results with a computer calculation where

we have taken into account a large number of neighbours.

The secular part of the interaction in CMN is comparable with the non-
secular part, so that, considering spin-spin relaxation, one deals with a case
of strong coupling. In relatively small fields, the spin-spin relaxation time
has been measured by Grambow 5), who compared his results with theoretical

o 6 . . : .
predictions of Sauermann ). We have measured the spin-spin relaxation time
over a large field region and compare our results in large fields with the

theoretical predictions of Mazur and Terwiel 7). The differences are discussed.

3.2 Crystal structure and Ha nLan

CMN crystallizes in the trigonal system. The crystal structure has been de-

8)

: : T : :

termined by Zalkin et al. The Ce3 ions constitute a simple rhombohedral
lattice, the long diagonal of the rhombohedron coincides with the trigonal axis
of the crystal. If the crystal is described by the alternative hexagonal unit

cell, the dimensions are
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a=11.004 + 0.006 A, and
c = 34.592 + 0.012 A,
where the c axis of the cell is parallel to the trigonal axis of the crystal

fig. 0 1 ) . T
(Fig. 3.01) CMN

Le
6
|
1
—C
| 1
| ! \ Egk
|a 3
Fig. 3.01 Rhombohedral unit cell of CMN. Only the Ce” ions have been drawn.

The 2F5/2 ground state of the cerium ion is split by the crystal field
into three Kramer doublets. The splitting, A/k, between the lowest two doublets
is approximately 35 K, so that effectively at liquid helium temperatures only
the lowest lying doublet is populated, and we are concerned with an effective
spin %. The splitting of the lowest doublet is described by an anisotropic g
factor:

g perpendicular the trigonal axis 9, = 1.84, and

g parallel the trigonal axis = 0.024.

g
/A
We have only dipole-dipole interaction in CMN, so that for an external magnetic
field perpendicular to the trigonal axis, the isolated spin system has the

following Hamiltonian:
with

In section 3.4 we shall show that the secular part of the interaction is com-
parable with the non-secular part, so that we have a strong coupling case for
spin-spin relaxation. In strong external magnetic fields, we therefore compare
our experimental results with the theoretical predictions of Mazur and Terwiel

(section 3.4.2).
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3.3 Experiment

Both the components of the complex susceptibility y = y' - ix"' of a single
crystal CMN have been measured with the aid of the twin T bridge, described in
chapter 2. The mutually parallel r.f. and static fields were perpendicular to
the trigonal axis. To eliminate the influence of the spin-lattice relaxation,
the measurements were performed at 1.3 K. Fixed frequencies between 200 kHz and
30 MHz were used and x' and ¥'' were recorded directly as a function of the ex-
ternal magnetic field up to 500 Oe. Both components become vanishingly small

at higher fields.

3:3%) b/C value and the ratic A
The real part of the complex susceptibility is given by
| 1
' = i = 1 -y
' (@) bet ad ~ X bet]l 27 (g ad)l e
'SS SL

(1.60a)
The frequencies equal to the inverse of the spin-lattice and spin-spin relaxa-
tion time will be called spin-lattice resp. spin-spin relaxation rate. The
ratio y' /X will be abbreviated as a.
bet’ “ad
In CMN, the spin-lattice and spin-spin relaxation rates are well separated
in frequency. In that case, x'(w) reaches the value Xad for frequencies in the

range between these two rates, and the b/C-value can be derived from the adia-

batic susceptibility Xad according to

% = - (see formula 1.56)

At fields for which H2 >> %, this becomes

}.O
=

for frequencies w >> 1 Ss*

x'(w) equals héet

For H® >> b/C, ab/C can then be derived from \.be[ by

x bet 2

. : . 1 ; v .
Starting from the situation TsL << @ << Tgg » @n increase of the static field
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will reduce the spin-spin relaxation rate in such a way that the situation

'ss
function of the external magnetic field up to 500 Oe. A typical graph of

is reached. At different fixed frequencies, x' has been measured as

nz/aio/k' < 1) i5 given in Fig. 3:02:

%10 - T* T
A A )
2} =
[=1.3K
: ¢ & N -
BE————_eS, POt o Ta NN v
6+ N {
\ |
>
N 2
oY oV Vol i, U o Vi B S e\
|
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-

Fig. 3.02 Typical graph of HZ/(nO/g' - 1) versus H in CMNL c axis as de-
rived from from a measurement at 1.3 K and 1.5 MHz. The lines

have been drawn through the experimental values.

The result of about twenty measurements is

b/C = 1615 + 20 0e’
and
=yt /X :.2:.14
‘bet/'ad 07 0.9
3.3.2 Spin-spin relazation time

The imaginary part of the susceptibility is given by

I I e o i U N, (. Y (1.60t
Hw) = x4 ‘bcl)‘ 27t X " Xadd T 22 }.60b)
g V' * witey

At frequencies around the spin-spin relaxation rate,

: > " - ! o =]
Starting, for a fixed frequency w, from T > w in zero field, Tgs becomes

SS
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) BB S v 1
"'SS/(l + W ‘SS) reaches its maximum value 5 at

in high fields. The function
= 2 . =] = iy
the field for which w = 1... If for this field H
SS max

b/c, then in the neigh-
bourhood of this field i,
with that of .1CS/(1 + wet&.). The maximum value of x''/x fs=(] =
9

5 X X ).

ad 2 “bet” “ad
Some graphs of x'/x 4 versus H at different frequencies are given in fig. 3.03
ac '

/x_, is constant, and the maximum of ¥''/x
‘ad ‘ad

t
5

Fig. 3.03 Some graphs of {”/“ad versus H at different fixed frequencies

in CMNL ¢ axis at 13K

and some graphs of *“/‘ad versus the frequency f on a double logarithmic scale

at different fields in fig. 3.04. In the latter figure, we see that the ex-

perimental values can be fitted by Debye curves, which implies that the spin-

spin relaxation process takes place according to a single exponential decay.

The graph of :SS“ad/“O on a logarithmic scale versus H2 is given in fig., 3.05.

From the absorption measurements we conclude that

e = +
% ,bet/ﬂad 0.67 + 0.02

coincides
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Fig. 3.04 Some graphs of "”/’ad versus the frequency at different fixed
fields in CMNL ¢ axis at 1.3 K. The drawn lines are Debye curves
fitted by the measured points. ® = 81.4 Oe, &= 122 Oe,

A= 163 0e and ¥ = 203 Oe.
3.4 Discusstion
The normalized traces, needed for the computation of the spin-spin relaxa-
tion time (see section 1.6), have been calculated for the rhombohedral unit
At 1.84 and g, =9 9y = 0.024. The
calculations have been carried out on the |BM 360/65 of the Centraal Reken

1)3

cell of CMN with the g-factors g_ = g

Instituut at Leiden. (2 x n + - 1 nearest neighbours (with n = 3) have been
taken into account. The results for N (Avogadro's number) times the contribu-

tion per magnetic ion are given in table 1.

Table 1
I |
‘:(.4;'2>;- 30.5 x IO-]S crgz |
v S s 15
<<g H_y>> 17.0 x 10 '~ erg ‘
bt -15 2
<<HpH-2>> 5.09 x 10 erg |
<g-. >> 74.8 x 10-15 ergZ\
uip =51 |
<<[g., 8, 1 H 1,8 ]>> | 81.9 x 10 erg |
il e ks i

48.6 x 10—51 erg J

54




=1

Fig. 3.05 Tsg *ad/lO Versus H2 in CMNL ¢ axis at 1.3 K. Horizontal bars cor-

respond with spin-spin relaxation times determined from the

maximum of x''/x versus H (w constant), and vertical bars with
a

d
spin-spin relaxation times determined from the maximum of
*”/*ad versus w (H constant). Full lines are theoretical curves,

the dotted line represents the experimental results of Grambow.

3.4.1 b/C value and the ratio x! /X ;= «

In the literature, b/C values are given between 1100 and 2000 Oez. A list

of b/C values has been compiled by Mess 2). The list has been supplemented and

is given in table 2.
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Table 2

Experimental ists Method ?—Oe2
Cooke, Duffus and Wolf 3) a.c. adiab. susc. 1767
Daniels and Robinson 1) adiab. demagnetization 1676
Hudson and Kaeser 9) a.c. adiab. susc. 1650
adiab. demagnetization 1440
adiab. demagnetization 1545
Hudson and Kaeser 10) adiab. demagnetization 1508
Abel, Anderson, Black, 1) specific heat 1100
and Wheatley 1519
Abraham and Eckstein 12) specific heat 1100
Mess T3> 0.15 K 2) a.c. adiab. susc. 1623
T < 0.02 K adiab. magnetization 1257
Grambow 5) a.c. adiab. susc. 1656
Flokstra, Verhey, Bots 13)
Van der Marel and Van de Klundert a.c. adiab. susc. 1571
Abraham, Ketterson and Roach 14) a.c. adiab. susc. 1613
Hudson and Pfeiffer 15) 1597
This research 1615

The following conversion factors have been used: R = 8.317 erg mole_ldeg-‘ and

C=3.176 x l0~“erg deg mole-lOe_z, which gives R/C = 2.619 x IOI'Oezdeg-2
2)

Mess has already noted that b/C has a constant value 1257 Oe2 below 20 mK
and increases to another constant value 1623 Oe2 above 0:15 K. Theoretically,

b/C is given by formula (1.93)

HE S5 LS
b int 3 Iint
i oY A l. 2‘2 i ’
H >3 N 3 gz,.BS(S + 1)

where it is assumed that the substance obeys Curie's law. This is certainly the
case for CMN at liquid helium temperatures. The calculated b/C value, together
with the calculated values of other authors, is given in table 3.

The b/C value measured by us, just as the most recent and probably most accurate
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Table 3

Authors g used %(Oez)
Cooke et al. 3) 1.84 1767
Daniels L) 1.84 1728
Grambow 5) 1.8264 1735
This research 1.84 1706

values reported by other authors, is smaller than the calculated one. This dis-
crepancy of about 5% cannot be accounted for by the experimental uncertainties.
b/C is proportional to éi , SO that if we try to explain the discrepancy by

the g factor, we need a gy value of 1.89. The only g

4 8
1.84 is the value as given by Stapleton 16). g = 1.8264 + 0.0013, so that it

value different from

is not very likely that the discrepancy is caused by the g factor. Another pos-
sibility to explain the discrepancy in the b/C value (between theory and ex-
periment) is that at liquid helium temperatures, the dimensions of the unit cell
are slightly different from the dimensions reported at room temperature. |f we
calculate for instance the b/C value with the a axis 1% smaller and the c axis
2% larger than the value reported at room temperature (leaving the volume of
the hexagonal unit cell constant in this way), we obtain a b/C value of 1684

| Oe2 thus 1.3% smaller.

So the discrepancy is most likely to be explained by either some unknown de-

formation of the crystal or by some unknown interaction term which then has to

give a negative total contribution to b/C.

From the dispersion measurements, we conclude that ¢« = 0.72 + 0.04 and from

the absorption measurements that a = 0.67 + 0.02. Theoretically, a is given

by

Xpet  <Hine>> S 5
X = - = 0.60

\ << H_ >>
*ad int

: - . .
} The discrepancy of about 15% cannot be accounted for by the inaccuracy in the
| measurements, and the same arguments as given above for b/( apply in this case

even more strongly.




3.4.2 Spin-spin relaxation time
If the Fourier spectrum of the kernel G° (t,H) in the case of strong
coupling consists of Gaussian lines, then the relaxation time is given by (see

section 1.5)

N
N

1 H ] | | H 1 |\
- - (—*—) = ——7'(7— T (1.115)
SS  3HT =] "2 I - a 3H, 1 Az
i sec i
with
2n<< H H .>> U H
1 1 %=1 1 Al A i
T T3 1 o 5 T exp {-%( ) 5= ¢ N (1.116)
" dn=S(S + 1) 2m<w” > }* * di<w >
I* 3 ] 1 1
2n<<H H 2gu H
[ 6dd 2 72 1 L ahg B B2 1
ok 5T €XP {-%( ) =it (1.117)
2 doh gs(s + 1) {2m<w™>,}° h dy<w™>,
and
<<[H ., H ] [# H. ]>>
2 1 01,2 =]5=2250
(0 ’]’2 =—2- ) . . (l|08)
P R L
If we write
G e | H2
i —*3* *——(BTGXD(- —2——) and
| d 1 d)y
] 1"
S W b el i)
2 D : 2 ’
2 d2 2 dzv

then substitution of the numerical values of table 1 gives the values of table
4, in which the values calculated by Grambow have been given as well.

From the table, one sees that the values for 1, are in good agreement, but that
2

the value of Grambow for Yo is a factor (%) larger than our value, and that

the value of Grambow for 11(0) is a factor % larger than our value. This indi-
cates that the value of Grambow for 'u2>] is a factor % larger than our value.

The theoretical curves l/T] and l/(2 for dl - d2 = | are drawn in fig.
3.05.

Grambow compares his results at relatively low fields with theoretical

predictions of Sauermann.
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Table 4

Grambow This research
xl(O) 3.9 x IO_9 sec 2.55 x 1077 sec
:2(0) 3.0 x IOhgasec 3.02 x IO-9 sec
' 7225 e’ 3270 0Oe?
Y, 1521 0e? 1620 0e?
1 R
=Gl =t .,
°SS EH st i2
where
! = 1 =
‘9 Y for dl ]l and
1 = -
T, =T, for d] !
s . Ll mijing . . 5
In large fields, for which H® >> }H;, one finds a discrepancy of a factor
(1 - 4)2 between Sauermann's result and that of Mazur and Terwiel for d‘ =
= 1,
d2

In order to compare our experimental results with the theory of Mazur and

Terwiel, the theoretical curves 1}' and z;I should be shifted upwards to obtain
=] =1

(1 - o) '1 and (1 - J)Tgl (fig. 3.05). If d) roughly equals d the experi-

2 >
mental results should be compared with (1 - a) III] only. Looking at fig. 3.05,
one sees that for d] = 1, this gives indeed a more or less reasonable descrip-

tion. As the experimental points cannot be fitted by a straight line, we cannot
determine dl more precisely.

In conclusion, we may say that the line in the memory spectrum, G° (w,H)
at o, is roughly Gaussian. The broadening is of the order of the secular inter-
action, as is proposed as a working hypothesis by Mazur and Terwiel. In order
to make a comparison between our results and the theory of Sauermann as used
by Grambow, the theoretical curves I-I and I—I should be shifted downwards to

] 2
obtain (1 - J)[‘I and (1 - 4)12]. The experimental results at high magnetic

fields should be compared with (1 - w)rll and this is less in agreement with

the experiments.
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CHAPTER 4§

SPIN-LATTICE RELAXATION IN CMN

Since 1961 many experiments have been reported on spin-lattice relaxation

g S ’ : 2, - s 2
in CMN, first by Finn, Orbach and Wolf y using the Casimir-du Pré method and
A7 - 2) .
later on amongst others by Leifson and Jeffries , and Ruby, Benoit, and
- ] 3; . . . ? ?
Jeffries y using the microwave transient method. Practically all experiments

have been carried out i low fields (up to 5 kOe). Recently Breur

has done measurements at 1.4 K and 1.7 K in

47 kOe. The over-all data in relatively low

f a bottlenecked direct process and an Orbach process.

U, H
l = A~ ,‘nzAg B ) + Bexp(- ._\ (L 0l1)
ACOLg \ZkT/ exp( KT’ ’ (4.0
with — = 34 K.
K -
The factor A in the bottlenecked direct process is proportional to Hz, and
= - : - S S .
the field dependence of B is given by the Brons-Van Vleck 2 formula.
2 2
H™ + u'3H,
= i /1 -
B(H) = 5(7 3 - (4.02)
H™ + ZH]
]
6) ‘ : »
Hoffmann and Sapp have calculated u' = 2.2, and we have measured ;Hi =

ol - o 30 ~
b/C = 1706 0e”, thus for fields above a few hundred Oersteds we expect B to be

field independent. Experimentally however, we have found B to be field depen-

dent up to high fields.
the spin-lattice relaxation time

We have measured the field dependency of

in the liquid helium range with the aid of three different types of equipment.

o]

In the frequency range from 30 MHz down to 100 kHz, we used the twin T-bridge

described in chapter 2, from 100 kHz to 2 kHz we used the bridge designed by
7)

and from 2 kHz to 10 Hz a direct measurement apparatus which will

8)

De Vries

be published by Soeteman

£
i

2r two pieces of low frequency equipment has been kindly

~

The use of the lat

put at our disposal by Dr. van Duyneveldt and his group in our laboratory. In

61




the low frequency region, the measurements were performed in magnetic fields

to 34 kOe; at higher frequencies the magnetic field was restricted to 5 kOe.

The observed spin-lattice relaxation time as a function of the magnetic
field at eight different temperatures is shown in fig. 4.01. At 4.22 K and
3.97 K we found in low fields (up to 500 Oe) that the relaxation process can

be described by two relaxation times

or in complex notation

Yl w . a
‘ F+F(l+i..m]+l
Xo

As an illustration the measured values of x'/x 0 at 4.22 K are plotted in fig.
4.02 as a function of the frequency (on a logarithmic scale) at different
fields.

From a computer analysis to fit the measured data to the formulae given

above, values for T and T, are found as plotted in fig. 4.01, together with

values for F, Fa and F(1-a) (fig. 4.03). The same procedure has been followed

for the data at 3.97 K.

For a description of the relaxation process at 4,22K and 3.97 K, we can
use the simple thermodynamic model of fig. 4.04, which has been used in the

9) 0) 1)

same context by Gorter et al. Van der Marel , and Stoneham . The model
consists of three systems, each of which is in internal equilibrium: the spin
system, the phonons responsible for spin-lattice relaxation (phonons on speak-
ing terms), and the bath, which is also thought to contain the rest of the
phonon system and has an infinite heat capacity. | f we suppose that the energy
transfer between the systems is proportional to the temperature difference, and
we make use of the first law of thermodynamics for the spin system, the energy

balances for the spin and phonon system can be written as:
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Spin-lattice relaxation time of CMNL ¢ axis as a function
of the magnetic field at different temperatures.

The lines have been drawn through the measured points.

63




\
|
[
\ ‘
| hzo
= | lac
X
4 |
¢ )
Fig. 4.02 "“/‘O as a function of the frequency at different low fields in
CMNL ¢ axis at 4.22 K. The lines have been drawn through the
measured points.
dQ T, dM T dH
— = =q - ) = ¢, (=), —+ C,(—=),, — , and 4.05)
dt (e = e C“W'om’n gt T " TR Tt r L3932
C ks (T 1) IS ) PRSI )
P dt SMUS P RN B’
For a total fie

ve may write in a

Id consisting of a constant part and a small oscillating part,
linear approximation.




b o
g ANA
B
/'/ -/" ~
v‘ \ -+
/ Vol
4 \
} / 3
/o \.
/
j /
/ \
7 7 iy
/~ \

/ N\
% Y
| \
|
:

0 H 2C 5C e

-

Fig. 4.03 The intensities of the two relaxation processes in CMNL c axis at

|
dil 5.

N
N

together with the total intensity as a function of the maanetic

field. The lines have been drawn through the calculated values.

S 7 2SN 7k '@ ; R
[ SpINn system ~H\“M!g

phonons on Cp T;
speaking terms

8
bath | Ts

Fig. 4.04 Thermodynamic model for the description of the relaxation in

CMNL ¢ axis at 4.22 K and 3.97 K.
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Substitution gives

On the other h

Elimination of

(see ref. 10)

and

+ Re(h

i
e

/ i
+ Re(me

+ Rel

+ Re(
N re
p’
t s
S

»
s
’
S} m+ i
n
M H
P
h

which can be written as

S

ldentifying th

0
gives
‘.]'
152
r. +
1

iM“H H
and gives for the frequency dependence susceptibili
+ i EP
¢ = + jwC
i + fwC M
+ iwcp 2
2 +
3T+ B+ 1uC oty
C
| + s
1 EidE
C C
{ 7P . 1 P
1 - —Lf'*t.[(']_*f)t *'_-]

is equation with

iR
T
c
T—
ST

X

H

(4.04) which we write as

1 + T dt‘l T,

] = 1T ¥ iw(t, + )
C
P

%C 3
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Fig. 4.05 The spin-lattice relaxation time, CH/x, of the non-bottlenecked
Orbach process as a function of the magnetic field in CMN Lc axis
at 4.22 K and 3.97 K. Drawn lines according to the Brons-

|

Van Vleck formula, with equal to the theoretical value 2.2.

In these equations, we substitute the data of T Ty @, and CH' and we

obtain CH/" Cp/s, and CH/; as a function of the magnetic field. The results
are plotted in fig. 4.05, fig. 4.06, and fig. 4.07. CH/L can be described by

——

.,,i
\
,

Fig. 4.06 CP/r as a function of the magnetic field inCMN L ¢ axis at 4.22 K and

&N

3.97 K. Drawn lines through the calculated values.
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For fields H >> 500 Oe, we have VCP/; << 1, and formula (4.12) transforms into

X0 |+ jwl+ e

So we have a single relaxation, with

CH CH
AU )

b

S - . é 11 poras - :
This is the same formula as derived by Stoneham %CH/( Is the spin-lattice relaxa-
tion time of an Orbach process in the absence of a bottleneck, and CH/‘ des-
cribes the influence of the bottleneck.

The two temperatures at which we were able to determine a value of € /«

H
are too close together to derive a value for B as well as for A in the absence
of a bottleneck.
JU A A - = =i
With — = 35 K, we find B. = 1.0 x 10" sec .
K Orb.
I we extrapolate the field dependence of CH/' measured in low fields to
: =7 l. e i
high fields, we expect v « H 3. Above 2 K we found a practically temperature
independent field dependence of 1: 7 = H 7, which indicates that C,./8 increases

H
less rapidly as a function of H in large fields.
A possible explanation of the field dependence of the phonon bottleneck

< 2 ol , . : - 12) g ) oW )
In the Orbach process has been given by Gill . He associates the phonon re-
laxation time with the finite lifetime of the broadened excited levels. This

relaxation time decreases if the Zeeman splitting of the ground doublet is re-

[
duced. In intermediate fields, he predicts 1 o HO'). The temperature dependence
- =] % / g o
of 1 described by formula (4.01) and sketched in fig. 4.08.
We find i =35+ 1 K, just between 34 K, the value given by earlier para-

magnetic relaxation experiments, and 36.25 K, the value derived from infrared
16)

absorption experiments At 2 K we see the influence of the bottlenecked

direct process. From our measurements, we could not determine the value of A,

but if we take the value as measured by Breur on concentrated CMN A = 3.4 x
lO_Zstec_IkOe_z, then the measured data fit the theoretical line quite well.
(The slight curvature in the graph of % VErsus % at 4 kOe between 2.5 and 2 K.)
For B in the presence of the bott{eneck, we find B(] kOe) = 4.3 x IOgseC-]
and B(4 kOe) = 1.80 x 1095cc_]. A comparison of our results with results ob-

tained by other authors is given in table 2.
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Table 2
57 G
authors method A/k(K) B(107sec ')
Finn et al. ) Casimir and du Pré 34 5 (1 kOe)
Cowen and Kaplan 13) spin-echo 34 1657
L |
Hudson and Kaeserl‘) Casimir and du Pré | 36.27 62.7(50 Oe)
Hudson and MangumlS) Casimir and du Pré | 34.0 +0.5 2.8(900 Oe)
Ruby et al. 3) pulsed microwave 34 2.7(3.8 kOe)
) |
Thornley 16) infrared absorption 36.25+0.4
Breur 47) pulsed field 3.6
] s
Giauque et al. 7) specific heat 35.5 #0.5
This research Casimir and du Pré 35 + 4.3 1 kOe
thermod. model 100
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At 4.22 K and 3.97 K we have observed that the relaxation process can be
described by two relaxation times which correspond with the two times that
follow from a simple thermodynamic model. From the measured values of the
relaxation times and the intensities, we derived values for the non-bottle-
necked Orbach relaxation time CH/" and the phonon relaxation time CP/; and
CH/;. For large fields, the two step relaxation process transforms into a single
relaxation, with 1 = CH/: + CH/:. The values derived from our measurements are

in good agreement with results obtained by other authors.
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C HA PF B R 5

EXPONENTIAL TEMPERATURE DEPENDENCE OF THE LONGITUDINAL

SPIN=-SPIN RELAXATION TIME IN CoC53C|r AND CoCsBBrr
> 2

The magnetic specific heat and longitudinal spin-spin relaxation time of
single crystals of C0C53C15 and CoCszBr5 has been studied in the liquid helium
and liquid hydrogen temperature regions. The complex susceptibility y = y' -
ix'' along the tetragonal axes has been determined as a function of the exter-
nal magnetic field up to 5 kOe with the aid of a twin T bridge.

The observed magnetic specific heat in the chloride can be described by
b/C = (550 Oc)2 and = -0.31 K, and in the bromide by b/C = (1070 Oc)z and

0.05 K.

In both salts, the spin-spin relaxation time depends exponentially on the

temperature, i.e.7=exp(A/kT), with A equal to the splitting between the two

Kramers doublets.

An explanation of the exponential temperature dependence is qgiven.

5.1 Introduction

At liquid helium temperatures mainly the lowest Kramers doublets in
CoCs3C15 and CquBBrSare populated. This doublet is described by a very aniso-
tropic g value with gl = 0. Hence the non secular part of the interaction is
much smaller than the secular part, and we expect weak coupling properties. |f
we consider only the lowest doublet, the non secular part is actually zero
(section 5.5.1), therefore one may expect influence of the occupation of the
upper doublet on the spin-spin relaxation process.

C0C>3CI5 and C0C538r5 although crystallographic isomorphous, are mag-
2

>
netically inequivalent 1,2), The b/C values as determined from the magnetic

specific heat are considerably different, and both differ from values determined

from the adiabatic susceptibility. This was reason enough for us to measure
b/C once more. The difference in magnetic behaviour of COC53C|r and EoCsBBr5

is reflected in the relaxation times, which below 2.5 K show a quite dif-

ferent field behaviour.




5.2 PYstae Svruct

The crystal structure of CUC>3C15 has been determined by Powell and
) ; ; S iy “ = ; S
Wells ", and in more detail by Figgis et al. ). The unit cell, containing

four molecules CoCs,Cl_., is tetragonal and has the dimensions
Rl
S LD

As far as the cobalt ions are concerned, a primitive orthorhombic unit

be constructed from the tetragonal unit cell, which then has the dimensions

(fig. 5.01)

Fig. 5.0]1 Primitive orthorhombic unit cell of CoCsBC 5" Only the
have been drawn.
CUC>38r5 is isomorphous with ") 0 dimensions of its tetragonal unit
cell are
0.003

0.003

which for the dimensions of the orthorhombic unit cell follows:

groundstate of the free cobalt ion is split i tetrahedral




crystal field into an orbital singlet and two triplets, the singlet being

fourfold spin degeneracy is removed by a tetragonal distortion

n rs doublets. The two doublets can be described with
S = 3/2 and by the following spin Hamiltonian
i 5 ol ol - 2 } v .
=g H,S, + g g (HS + H S ) + Df =SS 1) 5.01
7 e A = BT ROX Y Y 3

ere hyperfine interactions have been neglected. The z

the tetragonal axis of the crystal (c axis), giving the

£

ror

the lowest. The experimental values the energy d

Kramers doublets and g factors are given in table |

Table |
2D, .\ ,
l —k { ?\/ g / "‘i ;‘vl
CoCs.Cl | - 12.4 ¢ 1 2.30|7.20 | 0
b
CoCs.Br_| - 15.4 + 2% | 2.24 | 2.32] 7.26 | o
> 2

The value of 2D/k indicates that in the liquid helium temperature range, the
population of the lower doublet S = #3/2 is very much larger than the popula-
tion of the upper doublet. Only the lowest doublet may be described by an ef-
fective spin S' = 1/2 and a very anisotropic g' value, which is given in table
1 as well.

The Hamiltonian for the whole spin system consists of the sum of

Hamiltonians of the single ions and of interaction Hamiltonians bet

single ions. These are the dipole dipole interaction,

2 ] =i =i =] =] (Fi}'g )
= Ju. 3 {(g +5")+(g7+5")-3 .
Bi j# r?

»J7 i ij (1.67)

and the isotropic Heisenberg exchange interaction

At very low temperatures, we have
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2.2 1 2 Ny rel
HY - = &g L — A X ( ! 5
dip 89y F 3 (1= 350(5,)(s) (5.02)
i3 T3
1]
(in which 'ii is the direction cosine with respect to the z axis), and an ani-
sotropic Isiﬁg exchange:
38 /
B wmdo=e B0 (SYENT ; (5.03)
= 8% fiLdf. 5 5
with J* =972 4 %
7) 2+

Van Stapele et al. have measured the exchange interaction between Co

pairs in ZnCS3C]5' They have found that the exchange interaction between two
nearest-neighbour cobalt ions in the a-b plane is antiferromagnetic, with
J/k = -0.0204 K, and that the exchange between two nearest-neighbour cobalt ions

along the ¢ axis is ferromagnetic, with J/k = 0.0154 K.

5.3 Preparation of the cerystals
BlGte has prepared for us crystals of CoC>38r5 and CUC53C15 by slow
evaporation of an aqueous solution of CocsﬁBr5 and CoCsBClS, with supersatura-
3

tion necessary in the latter case.
At our request, van den Broek had an analysis performed of a typical sam-

ple of CoC>38r at the Philips Research Laboratories, Eindhoven, Netherlands.

5

Special attention has been given to metal ion impurities. The result of the

spectrochemical analysis is given in table 2.

Table 2

C0C538r5 Co l CuAAT Mn Ni Fe Cr

weight % | 5.5 | 0.003 l- 0.002 [ < 0.005 | < 0.006 | < 0.002

”

From table 2 one can conclude that the sample was rather pure; only a trace of
copper could be detected. One may expect that this does not influence the

spin-spin relaxation.

5.4 Experiment

Both the components of the susceptibility x' and x'" of single crystals

CoCs_,Cl. and CoCs.Br_. have been measured with the aid of the twin T bridge,

375 31D

described in chapter 2. Small crystals of about 500 mg were used, and the
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oriented

with the tetragonal axis (¢ axis) parallel to the

nutually parallel radiofrequency and static fields

neasurements were per-

formed in the liquid hydrogen and liquid

m temperature range. We used

and 30 MHz, and x' and yx'' were registered

requencies between |00

magnetic field up

1. and CoCs
]

-~ at liquid helium
5

law

3 ooty
1e-weiss

2gative

law is given by (1 .58)

The by va | ue the liabatic sus¢ tibility g to
H § 3 c
0 = ——— ——— . \5.04)
- X~/ X =yl T
0 “ad
Defining g
H™ - >
. = — 5 (5.05)

it follows that

b T

(9%}

th to b/C in order to distinguish it from

eX|
The real part of the Frequency dependent susceptibility is given by

! ' ) ) ] ]
X (w) = x + (x a2 ) —~ e Y = A )’—_,,—- .
bet ad bet” , , 22 0 i 202
'SS SL

peratures,

the spin-lattice relaxation process in

and CoCs_Br_ is much slower than the spin-spin relaxation process




x'(w) equals ¥ at frequencies between the spin-lattice and spin-spin

¥
TSS)'

ad
relaxation rate (1

w <<

|
SL

5.4.2 b/C value of CoCs,Cl

Experimental b/C values have been derived from yx according to formula

ad
(5.05). Starting, at a fixed frequency w, from the situation in which x'(w) =

X the relaxation rate decreases if the magnetic field increases. Spin-spin

ad’
relaxation takes place, and finally yx'(w) becomes \ée[' We have measured yx' as
a function of the external magnetic field up to 5 kOe, using different fixed
frequencies. A typical graph of HZ/(go/h' - 1) (for z;i << gy <« :;; equal to
(b/c)exp) is given in fig. 5.02.
s O —— e : P
W [ ]
022 CoCs,Clsllc
A0 R 6 0000000000 A AAK —
5O =
\Cl\-’ f ’--'A\:I:KF'1:
=l \\ ]
5 \bgl
H* a
L A =
¥ ) o
%
l
0 H 1 2 3 kOe 4
e

Fig. 5.02 Typical graph of HZ/(.~ /x' = 1) versus H in CoCs,Cl. /¢ axis,

0 35

derived from a measurement at 3.06 K and 500 kHz. The line has

been drawn through the experimental values.

The experimental values of b/C at liquid helium temperatures are collected in

table 3.

1/3
exp
straight line. Indeed, the experimental values can be fitted by a straight line

(fig. 5.03), determined by b/C = (550 Oe)2

According to formula (5.06) a graph of (b/C) versus 1/T should show a

and = -0.3] K. If one calculates
(b/C) using these values, the difference between the experimentally found

exp
values and the calculated values is less than 2%.
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)
45.52

49.00

Fig. 5.03 Temperature dependence of (b/C) in CoCs,Cl. //c axis. The
EXE S
drawn line corresponds to Kb/C)lh = (550 Oe)? and

5.4.3 J

Above 2 K in the liquid helium range, the experimental b/C value is con-

stant within the experimental accuracy of a few percent and is equal to

2
(1070 Oe)”. Below 2 K, our measuring frequencies were too high to measure

“ad
directly. We could only measure the high frequency tail of the spin-spin

= /

T X. /X~ and x_./x
SS *ad” 40 ad" %0

termined as follows. For wt >> | (see section 5.4.4)

relaxation process. At 1.98 K and Vo755 K have been de-




B e S . (5.08)

On the other hand, for all frequencies

- |
ST s (5.09)
SS
SO that " "
ad
== —x = (5.10)
0 0

From our measurements, we conclude that also at 1.98 K and 1.75 K b/C is equal

to (1070 0e)? (fig. 5.04).

10 CoCs3Brg/l/c -
>\"\ 01.98K
08 | — \ o .75 K =

0.0 }— _
Xag b~ .
X | H a A
b ! | l | | it
[ | 2 \) l\‘~._ )2
Fig. 5.04 *ad/xO versus H in C0C53C15 // ¢ axis at 1.98 K and 1.75 K. The

drawn line is a theoretical one for b/C = (1070 Oc)z.

5.4.4 Spin-spin relaxation times

The imaginary part of the frequency dependent susceptibility is given by
(1.60b)

In the region of spin-spin relaxation,
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) e B - is valid. (5.11)
X X twT
ad ad : SS
The meimum value of ."'/._ad is 0.5 (1 - *écl/*ad> and this is reached for
W= T
5.4.5 Spin—-spin relaxation time in i

The spin-spin relaxation times at liquid helium temperatures have been
determined from the graphs of x''/y y versus frequency on a double logarithmic
o <
scale. At each field, the observed values can be fitted by a Debye curve, which

implies that the spin-spin relaxation process takes place according to a single

exponential decay. y''/yx g reaches a maximum value of 0.5 at all field strengths,
(5

which means that y! = 0. This is the case at all tempe

e atures in the liquid
el

helium range.

The spin-spin relaxation rates Teg @S found, multiplied by x have

/‘,)
2 § R ad “0
been plotted versus H® in fig. 5.05. These graphs at different temperatures are
at first sight only shifted with respect to each other. This indicates the same
temperature dependence of the spin-spin relaxation time for all fields, as
‘ad/"o is almost temperature independent. At liquid hydrogen temperatures,
spin-spin, as well as spin-lattice, relaxation was measured as a function of
the magnetic field. The spin-spin relaxation in zero field was so fast that we
could only measure the low frequency tail *”/‘O' Assuming that in the liquid
frydrogen temperature region the spin-spin relaxation process is exponential as
well, we determined the spin=spin relaxation time from this low frequency tail.

The temperature dependence of the spin=spin relaxation time is given in
fig. 5.06, where we have plotted the relaxation rate 1-é on a logarithmic scale
versus the inverse temperature T-', in zero field and for 2 kOe. From this
figure it is evident that the temperature dependence of the relaxation time can

be described by

| |
e—— Th—XT -y exp (-A/KT) : £5:.12)
O "SS
The values of A and ‘;;(T = «) are given in table 4.
5.4.6 Spin-spin velazation time in Cols Br.
On account of the exceptional field dependence of y''/ in this salt

“ad
at temperatures below 2.5 K, the spin-spin relaxation times have been determinec

from the graphs of *”/10 versus the frequency. For all fields it is possible to
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-1 p 2 i ey ;
t.o %_./x~ versus H° in CoCs,Cl_./ c axis in the liquid helium
SS "ad” "0 3

range. Drawn lines through the experimental values.

fit the experimental results by Debye curves, so we deal with an exponential
2 is found to be zero. The maximum value of
‘bet -1

was used to determine b/C in an alternative way. The graphs of Teg Xgg/?

p
versus H in the

spin-spin relaxation process. X

0

liquid helium range are given in fig. 5.07.
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Fig. 5.06 Exponential temperature dependence of the spin-spin relaxation

rate in Cquzclsﬁ/c axis in zero field and for 2 koe.

Table 4

(K) [toa(T==) in sec V] field
/K Tgg | o) 1IN Ssec 1eld

) 9 =
CoCs ,C1 b Sttt b
1343 7.8 x 10° 2 kOe
15.4 2.2 x lO9 0 Qe

CoCszBr5 o

: 15.4 1.0 x 107 3 koe
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lowest three temperatures (1.98 K, 1.75 K, and 1.3 K) are clearly different. As

mentioned before, below 2 K we could only measure the high frequency tail of the
-1 .
Teq ‘ad/to has been determined
in the way as described in section 5.4.3. The absolute accuracy in the deter-

. : ot : - : ; .
mination of tss “ad/“O In this way is not very high (especially at 1.3 K), but

spin=spin relaxation process, and consequently

the relative accuracy is nevertheless a few percent.

At 20.3 K and 15.3 K, the spin-spin relaxation time in zero field has been
determined from the low frequency tail {”/10, assuming that g“/\o is described
by a Debye formula. The temperature dependence of the spin-spin relaxation time
is given in fig. 5.08 (tgé logarithmic versus T-I linear). From this figure,

it is evident that above 2 K the temperature dependence is exponential

= - — exp (-A/kT) . (5.12)

- =1 Al s 2y 2 F ;
The values of A and ISS(T = «) in zero field and for 3 kOe are given in
table 4 as well.

Below 2 K, the temperature dependence becomes smaller and the spin-spin

relaxation might become temperature independent.

b5 Introduction

At liquid helium temperatures, the population of the lowest doublet in
C0C53C15 and COCSBBFS is considerably larger than the population of the upper
doublet, as already mentioned. The lowest doublet is described by an effective
spin S' = 1/2 and an anisotropic g' factor of which gi = 0. Such a description
implies a fully secular dipole dipole interaction, and consequently, one might
expect weak coupling theory to be applicable. For the dynamical spin-spin
relaxation process however, we cannot restrict ourselves to the lowest doublet
only. This may be seen in the following way. If we neglect the upper doublet

- . -1 i =
and consider the relaxation rates 3 and 0, of the lowest doublet, then these

are proportional to the non secular contributions «-xlf_|>>5 and <-ﬁ2x_2>
(formulae (1.106) and (1.107)). <«ﬁihi|*n ':Zﬁr are given by formulae

(1.118), in which (Cfé)' and (Cf{)' are given by formulae (1.77). For g; =

1

(7L S 2
>

‘ 2 - -1
g; = gi = 0 they all vanish. The relaxation rates :ll and Ty become zero as

well, which means an infinitely long spin-spin relaxation time (or no spin-spin
relaxation process at all). This remains true for all higher order processes

which could cause relaxation in the ground doublet without taking into account
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Fig. 5.08 Exponential temperature dependence of the spin-spin relaxation
rate in CoCsBBrsﬂ’c axis in zero field and for 3 kOe.
the higher levels. Thus we have to involve the upper doublet, even at very low
temperatures. Both doublets are described by S = 3/2.
For an analysis of the spin-spin relaxation time we cannot make use of the
theory as given in section 1.5, which was restricted to S = 1/2, and where a
high temperature approximation was used as a starting point. Verbeek 9)_ in the

theoretical part of his thesis, did not proceed from a high temperature
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approximation, and we shall use his notation in this part of the thesis.

5:5.2 Decomposition of H. . into common Lgenoperators o,
In the theory of spin-spin relaxation for S = 1/2, the non secular part
of the interaction B cdc is treated as a small perturbation to a large unper-
c

turbed Hamiltonian consisting of the Zeeman term ;Z and the secular part of

the interaction # o For that purpose, Hint is decomposed into eigenoperators
sec

of the Liouville Zeeman operator (section 1.5.2). Here the large unperturbed
Hamiltonian is chosen to consist of the Zeeman term 4., the electric field term
L

I and the secular part of the interaction & and we decompose iint into
- e X P

: S
’ Vresi] == : 2 i
common eigenoperators of L uL_ and 1 LL' |, where L, and L are the
Z i Z el i el Z el
Liouville operators of a single ion. So we decompose H, into eigenoperators

A, satisfying the equations

,Al = AA and

for A and u scalars.

Common single spin eigenoperators of the single ion Liouville operators
Lé and “;I are Si(” Sé) and the operators Alf; the latter correspond in the
Sz-representation to the 4 x 4 matrices (At;)‘ of which only the element A‘; =
1, and all other elements are equal to zero.

For instance

(5.14)

300

©c O O o

o O O o
————

The eigenvalues of the sum :Z + L,y may be deduced from the equation

g g g f]?[(’"‘z tig)h 'A‘_il;.‘] = *-*;.rAi‘, .
with
and

= - % gzpBH +D ,

€, = % gzpBH Sl )

87




|
g = = -m B, H =D and
3 2 98 »
3
g, = ==g u.H+D
4 2 %2%8
- i
We do not need all eigenoperators A to express # ..
8 8% a
operators of the sum b, gl | are the two-spin operators A
Z e
Y, = 1,2,3, 4, with
; j il
(L, +L A Al = ( ; JA' A
Z el 1By { Y %
The decomposition of 4, ¢ into two-spin eigenoperators of
n

3 : i i -
spin eigenoperators S+, S is well

i
and SO,

from the single

15524

section

and Si

. 5 i ; . al
If we write SL as a combination of A _'s,
| 8%
Si = Si + is! = Vglﬂi + 2H| + ~§'Ai and
+ X y 12 23 34
sl =l - st w3l ¢ ). w B
> X y 21 32 43 ?

then we automatically obtain the desired decomposition of
A
A MJ_.

eigenoperators

The decomposition reads:
= ) = =2 (
int T pq 2 P 25,0, 2
P»9 q=-2, -1, 0, 1, 2,
with
= Iu” j \ Al pd
“00 = ¥ J¢[ 005050 T By 3*17 21+ BAy3h,
. Gy ij J
1= fug I [c. 2A)3501 ’
i, ]#
2 y
= - J L J
150 dug , [C 6A|2 34 + on73A23 IS
o = du’ [c}d (2/3a + 2/3A) Al ) c"*
)2 "B iAj# l2 32 23743
B A Eian b
‘ol = 2Hg [C+_)l\|2/‘\u3] s
i, Jj#
g i j
1, = dug T [Cov3A,50]
i,0#

(5.15)

MorL complicated eigen-

2

A i#j and «,8,
|
(5.16)
7 alone, constructed
known and given in
(5.17)
into the common

3A ) i I

3’“[‘3

’




o ,['Liilngf'\
1, JF

following property

=@ )" . (5.19)
Pq -p-q

Therefore it

t is sufficient to give only half the number of terms. The meani g
of the symbols p and q is explained by the eigenvalue equation:
( %] ) = (p¢ + ; o (5.20)
Z el”“pq L J Pq Pqg pq ’ -
- \JLHBH
with = e » the Larmor frequency.
5.5.3 ne relaxation function without high temper 7 7

A formal expression of the relaxation function without making use of a

S , ) o N > > 10)
nigh temperature approximation has been derived by Kubo

in which the scalar product in operator space is

with




and p = - (5.21)
Tr e
In a high temperature approximation, the scalar product changes into
TrA B }
A - - A
(A,B) T \ B ’ (5.22)
so that in that case we obtain for the relaxation function
(t,H) Me “tH
0] = << o >>
Pz b : z- 2 (5.23)

The non vanishing part of the relaxation function in the limit for large t is

taken into account as follows. The time average of the relaxation function,

defined by

| 1 (T >
;ZZ(H) = 1im T | ;ZZ(L,H)dt (5.24)
T ' Jg

exists and is equal to 9)

LZZ(H) - :i(PlMZ.P[MZ) + (P, M ’Ph Mz) (5.25)
where | = identity operator and #' = 4 - PIE
The projection operator P is defined by

_ (A,B)

7 el 7 Yy A (5.26)
The function which will be studied is

o(t,R) = ¢ (t,H) - ¢ _(H) (5.27)
5.5.4 The absorption spectrunm

At high temperatures C0C53C15 and CoCs Br5 possess a nearly isotropic g-

3

tensor and Heisenberg exchange interaction. We can tell little about weak or

strong coupling properties a priori. Hence we try to extend the method as given

by Mazur and Terwiel for S = 1/2 in a high temperature approximation to the
present case, without using the high temperature approximation as starting
point., The function which will be studied can be written as

B S P o B = P (5.28)

v (t,H) = g{(1 - PI H z | H 2
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in the simple S = 1/2 case, when 4 = H_ + 2o oo this may be written as
L

Z i
. > =2 1Lt 5
d(t,H) = BH “{(1 - PI - P ,);Z,c (1 - FI - P ,)HZ
= \ 1Lt
= {(1 -pP, -P g (1 =P, = 3 » (5.2
7 ] | v/ int’c ; I vESint (5.29)
which allows a simple analysis.
In the present case however, # = H_ + H + H, , so that only
Z el int
(1= = P V(B Y SN <5 B Y g )
I ; Z el | q Z el
is still easy to analyse.
As we may expect that
(=P P )4 ,e B8 (1=p -p_ )& }, ((1-P.-P. )H & ZS1=p oP.. )7
: i CHYSZE JER: S | HY a2 el” ?’
and the cross terms are equally complicated, an analysis of
iLt
U =aR = P M e (1 =P =P, )M
| z | z
cannot be obtained in this way.
The strength of the analysis of
: iLt :
{1 =P, -P )H e 1 =P, = P.)H. }
( | ) int’© ( | H' " int
lies in the fact that the replacement of L by L_ and ! in the exponent of

"7 el
the scalar product and in the projection operator does not completely destroy

the dynamics of this function. The same can be said about the second derivative

of &(t,H)
y & > ,2 > it
2 e gL i £ T et - )
'LZ b(t,H) ,Lz .ZZ(L.H) ‘(A.MZ,L .Mz) ; (5.30)

\ which moreover shows no complications due to the presence of b (H).

zz
The second time derivative can also be written as
2 r+ (we
j > | i oy >
= ¢(t,H) = - dige i% wx(w) (1.38)
2 =
ot -
- 0"
Hence the Fourier spectrum of (ZM ,e‘“iﬁM ) equals wx(w)
z z m

9l




5.5.5 Analysis of th

Using the decomposition 4,

we have

z (5.31)
P>QsF,s

Now we make the approximation in which # is replaced by 4 + A T Fol lowing
Z e :

Verbeek, this approximation will be called the zero interaction approximation.
In the zero interaction approximation not only is L Hermitean, i.e. (A,LB) =

(LA,B) but also L, + L becomes Hermitean:
c

(A’(“Z 4 e H. +H 2z - ‘e])H'B)“ oy (5.32)
Z ‘el

Eigenoperators of L, + L belonging to different sets of eigenvalues become

Z el

orthogonal, i.e. ( = 0 for p,q # r,s.

pq’ rs Hytie|
In the zero interaction approximation, only the autocorrelation terms remain.

Thus

2
9,48

The autocorrelation terms are undamped oscillations

2. 2
9% 2,

5 P (4 g
h P

(5.33)
In the zero interaction approximation, apart from the zero frequency band,
"y
3JA7L;L consists of sixteen 8-lines at frequencies qu(p = =-2,-1,1,2 and q
=2 2050 NS 2 ) [ PR

‘II'A lI| w . Ill(.A
wx!' (w) = hz X Lh—L—l . The absorption spectrum =— )

apart from the region around w = 0, can be constructed by dividing wy''(w)/w
by J2. As wx"(w)/m consists of d-lines it is sufficient to divide each 6-line
by the square of its own center frequency. The intensities of the 8-lines of

the absorption spectrum are thus given by

" The index 4, + 2, indicates that in the scalar product # has been replaced
e
by i, + Jel as well.




H ) 5 g (5.34)
PQ H +i

el

Explicit expressions for these are given in table 5. The absorption spectrum
is symmetric around w = 0, and so we need to give only half the number of terms.
We want to compare the intensities of the absorption lines in the liquid helium

range with y i being the total intensity of the absorption spectrum, including
ac ; :
)
: ) G 4 BD
the zero frequency band. At liquid helium temperatures, we may neglect e

‘ BD s o :
relative to e and 1, and for fields of a few kOe we may neglect g u_H rela-

B
tive to D. The expressions for the intensities, using these approximations,

are also given in table 5. Finally are mentioned in table 5 the numerical values

of the intensities of the 6-lines of CoC%BClr at a temperature of 3 K and for
5

a magnetic field of 2 kOe. For that purpose, we have performed a computer cal-

2 bl 2 : 3 B L *

culation of the sums ! €7 and Z ¢’ for the primitive orthorhombic
i,j# 10 gkt

unit cell of CoCsBCI . The results for N (Avogadro's number) times the contri-

5

bution per magnetic ion (including the interaction with 742 neighbours) are

e s S &
% |ei2|5=6.62 x lOb] and ] c'J :
PRAR +0 o gV ek

by J# i,j#

" 9.88 x 10

Formally the temperature dependence of ¥ , is given by
ad :

(5.35)

but a straightforward calculation for low temperatures is tedious. On the other
hand the influence of the temperature on X2d is described by the thermodynamical
-

relation

tad _ b (1.58)
0 b+ CH (T/T -

in which for the chloride b/C = (550 Oc)z, C=4.99 erg K 0Oe “ and = = 0,31 K.
With the aid of these data, we calculate for a temperature of 3 K and a field
of 2 kOe: ¥ = 6.1 x 10-2.
ad

Hence a comparison of Xad and the non zero frequency part of the absorp-
tion spectrum teaches us that the non zero frequency part constitutes a neg-
ligible part of the total intensity. As a matter of fact, all intensity is
contained in the zero frequency band. This confirms the experimental results
that in the low frequency (relaxation) region, x''(w) attains the maximum value

1/2 Xad® This intensity distribution has led us to an important conjecture about
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Table 5

—

Explicit expressions for the intensities of the absorption spectrum

e

g I'Bue"éﬁz'(l_e'h.‘uulo)

-BH: ]
Tr e J(SO) ij2
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kR

35
“10
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|C

L, jéTre " irr e J

Tr e 2

<77 8 j
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Table 5 continued

Approximate values

X

(center freq.)Z

J22

2 (uo))3  i,j#

2 6. R2D
9 g U, Be o P
——8—2 > jclé?z = 5.3 x 1078
8 (gugH) i,i#
9vg
9926.EZD
Hg* i -3
'(—252—'..'# C++ i ].6)( IO
g.. I,J
8
2 6
27 qg'u s v
—————Jig z 'clgz 5.1 x 102 |
32 (2|o])? i,j#
<] qzbg ij2 -9
:  |ed]F = 5.0 % 10
32 (zlo])? i,¢ YO
2 6 82D
12 g u e < =
298 M2 gk 1077
(2]p])® i, T
2 6 2D
12 gu e Nis o
e B S S R S e 10
@lopy> g T
2.6
9 g e .
S r  |eHd|? 5.1 % 10 7|
2 wop3 i T
|
2 6
9 g v "
2 IcH|2 = 5.1 x 10 7!
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the relaxation rate in the low frequency region, to be used in the next section.
In chapter 3on the spin-spin relaxation in CMN, it was shown that in the
case of strong coupling, the discrepancy between the predictions of Mazur and
Terwiel, and those of Sauermann, mainly consists of a factor (1 - 4)2 for the
relaxation rate in large fields. This is probably due to the fact that Sauermann
essentially applies the weak coupling approach to the strong coupling case,
and one may doubt whether this procedure is justified. However, as in the
present case (] - 1)2 ~ |, such a discrepancy is not to be expected, and we

may use with some confidence the Sauermann approach.

ton. The weak coupling limit
may thus be sanctioned here through a proper choice of the temperature. This
is in accordance with the intuitive approach, as given in the introductory
section 5.5.1, on account of which we expect weak coupling properties.
For a small but finite interaction strength, we may expect that the absorp-

tion lines are still narrow, with approximately the same intensities as given

in table 5, and correspondingly we may expect narrow lines for the Fourier

; iLt e -
spectrum (ZM_,e VMZ). For a sufficiently strong field, we may hope that the
4

overlap of the lines (and thus the contribution of cross-correlation terms)

is still negligible.

5.5.6 Low frequency region
Up to now the low frequency region could not be considered. The conjec-

tured applicability of the weak coupling approximation allows us to study the

3 t g - 1Lt
relaxation behaviour by means of the kernel or memory function (.M?,e LM,

o 2 >
(A,A) in the integral equation:

3o (t,H)

— (5.36)
3t "0 (A,r/\)

Here, é(L,H) is the relaxation function after deducting the non vanishing

part of the relaxation function in the limit for large t,




In this presentation of the integral equation, the high temperature approxima-
tion has not been used.

The derivation of the relaxation rate in the weak coupling approximation,
as given by Terwiel and Mazur for high temperatures and spin 1/2 systems, can
easily be adapted to cover the present situation. (vrrss)_l is given by the zero
frequency value of the memory spectrum (Fourier transform of the memory func-

tion). In the weak coupling approximation, the memory function is proportional

i(Lytlaitlca - : 4 . ~ :
to (uMz.e'( Zi=ed SLC)tQM ), which has the same zero interaction approximation,

. ot 0 A2 s . x %
as was derived for g '37¢(t,H)/3t° in the preceding section. Hence with
weak coupling and zero interaction, the memory spectrum is also seen to con-
sist of sixteen narrow lines at frequencies wpq' The sum of the low frequency
=]

tails of these lines at w = 0 divided by ¥ gives (7:55) . The intensities

ad
of these lines are obtained by multiplying the intensities of the absorption
lines by the square of the center frequency and dividing them by 8. The numeri-
cal values for the intensities of the narrow lines of the memory spectrum (in
the same approximation as used earlier in table 5) have also been added to the
table. Assuming that all lines have a width of the same order of magnitude, the
relaxation rate is almost exclusively determined by the lines of the memory

spectrum at tw, and = lZmL (see table 5). The lines at *w. are

i e gt 11 L

caused by Am = = | transitions in the upper doublet. The lines at :ZmL are

caused by the Am =12 transitions between the upper and lower doublet, as

schematically given in fig. 5.09.

Fig. 5.09 &m = =2 transition in C0C53C15 e axis,
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The intensities of these four lines are proportional to leD (Cf. JIO and JZO
in table 5). Assuming the width of these lines to be roughly temperature inde-
pendent in the liquid helium region, one obtains for the temperature dependence

of the relaxation rate

28D
e

aT
% p2ad

|
T

For temperatures a few times larger than -0, is proportional to T i

“ad
that we arrive at the observed exponential temperature dependence of the

spin-spin relaxation time:

g7

5.6
5.6.1 b/¢

The ratio of the occupation numbers of the upper and lowest doublets
nu/nI in CoCsBCI5 and C0C538r5 is given by the Boltzman factor, exp (2D/kT)

the values of 2D as given in table 1, this ratio has been calculated for a

few temperatures in the liquid hydrogen and helium ranges (table 6).

Table 6

n /n final b/C
gl

chloride bromide chloride
.538 0.463 2.506
438 0.358 2.572

.016 0.006 -993

0
0
0.045 0.021 -953
0
0 5

.002 0.000 .013

From the table, one can conclude that at liquid helium temperatures, only a few
percent of the total number of spins is in the upper doublet. With our radio
frequency field, we can in fact only cause transitions within the doublets. So
the ratio of the occupation numbers of the doublets remains unchanged. The
splitting of the lower doublet is about 0.5 x IO-Q Oe_‘K-l (of the upper doublet
a factor 3 smaller), so that for a field up to a few kOe, above 2 K, the tem-

perature is large compared to the splittings, and we may apply for each doublet
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a high temperature approximation. The total b/C value for temperatures high

compared to the splittings but small compared to |2D|/k is thus given by

b/C = nu/(nu - nl)(b/C)u +n /(nu (5.29)

| - n])(b/C)]

in which (b/C)u is the b/C value of the upper doublet,
and (b/C)l

The b/C value of each doublet consists of a contribution of the dipole dipole

is the b/C value of the lowest doublet.

interaction, a contribution of the exchange interaction, and a dipole ex-
change cross term.
The values of bd /C for the upper and lowest doublets in CoCsBCI5
C0C53Br5 have been calculated on the computer. (2n + ])3 neighbours
= 3) have been taken into account, and the results are given in table 7.
and (b/C)I

doublet we have used an isotropic Heisenberg exchange with J/k =

(with
In
For the upper

- 0.0204 K in

For the lowest doublet we have

the same table we have given the values of (b/C)u
the a-b plane and J/k = 0.0154 along the c axis.
used as well in the a-b plane as along the c axis an anisotropic lIsing exchange
with J'/k = 9/2 J/k (Cf. section 5.4.1).

Table 7

2 2

b,. /C(0e) b, ./c(0e”)

dip

tot

upper doublet

lower doublet

upper doublet

lower doublet

2:971 x IOL

2.351 x 10

6.789 x 10° | 1.557 x 10°

i 5.375 x 100 | 1.472 x 10°

5
5

3.016 x 10
2.680 x 10

// cas

C0C53CI
CoCsBBrsb’cas

With the aid of these values, we calculate the final b/C value in CoCs_Cl

as

5 0
a function of temperature, according to relation (5.29). The values have been
added to table 6. At liquid helium temperatures, the value is nearly constant,
= 3.025 x 10°. This

constants as reported by Van Stapele for pairs of cobalt

and almost equal to (b/C)th implies that the exchange

ions in ZnCs CI5 give

3

a good description for the observed b/C value in undiluted CoCs_.Cl,. as well.

3555

in CoCs_Br the exchange constants

B 52

If we assume that the different

To describe the observed b/C value

should be several times larger than in CoCs.Cl

3i15°
exchange constants are enlarged with the same factor,
J'/k = =0.27 K (J/k = 0.060 K) in the a-b plane and J'/k = 0.20 K (J/k =

+0.044 K) along the ¢ axis.

then we should take




In table 8 we compare our results with results obtained by other

experimentalists.

Table 8
i (b/c) (0e2)

Experimentalist Method CoCs3Cl5 C0C538r5

5
6 *

Wielinga et al. | specific heat 4,00 x 10 | 6.50 x 10
Mess adiab. susc 3.28 x 10 1.199 x 10
This research adiab. susc. 3.025 x 10

from relax.times | 3.025 x 10 1.144 x IO6

From the table it is to be seen that the agreement between the adiabatic
susceptibility measurements is fairly good (within 8% in the chloride and 5%
in the bromide). The b/C value determined from specific heat measurements,
however, is in CoCs,Cl_. considerably larger and in CoCs,Br. considerably

35 345
smaller. The © derived from our b/C measurements in CoC53C15 (-0.31 K) is
somewhat smaller than the value reported by Mess (-0.24 K). Recent measurements
of the adiabatic susceptibility in this salt by Van Duyneveldt lead to a some-

what smaller © as well (0 = -0.35 K).

5.6.2 Spin—spin relaxation times

In section 5.5 we have given an explanation of the observed exponential
temperature dependence of the spin-spin relaxation time. The field dependence
= ’ > . X
of Tgg xad/*o in C0C53C15 can be characterized by straight lines at all temper
atures in the liquid helium region, and in CoCs_Br. at the higher liquid helium

temperatures. This indicates that we observe thz siift of only one line of the
memory spectrum as the magnetic field is increased. On account of the intensity
as given in table 5, it is probably the line at ZuL. The width of this line

is characterized by the square root of the slope of the straight lines of

T;; Xad/xo versus HZ. The roots are about 1000 Oe in CoCsBCI5 and 1800 Oe in
COCSBBFS' As we expect, the widths are of the same order of magnitude as the
secular interaction, which is greater in the bromide than in the chloride

(550 Oe in CoCs.Cl. and 1070 Oe in CoCs.Br.).

3755 3

The field dependence of 1 lad/XO in CoC538r5 below 2.5 K is totally

SS

K reanalysis of the measurements of D.A. Curtis and A.J. Van Duyneveldt

learns that Mess should have given this value.
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different from that in the bromide above 2.5 K and from the field dependence
of the chloride in the whole helium range. This confirms the different magnetic

behaviour of these salts at very low temperatures.
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CHAPTER 6

LONGITUDINAL SPIN-SPIN RELAXATION IN COPPER BENZENE
SULPHONATE HEXAHYDRATE

Synopsis

The b/C value and longitudinal spin-spin relaxation time of single crystals
of Cu(C H SO ) 6H20 in the direction of the magnetic axes have been determined
as a functlon of the external magnetic field up to 3 kOe.

Comparison of the calculated b/C value, taking into account the dipole
dipole interaction, together with an estimate of the hyperfine interaction,
indicates a considerable exchange interaction. The experimental results are

therefore compared with the weak coupling theory.

6.1 Introduction

Single crystals of copper benzene sulphonate hexahydrate (to be called
CBS) grow in light-blue plates parallel to the b-c plane. The g tensor, mag-
netic axes and line widths have been determined by Zimmerman et al. ]). They
report a considerable exchange narrowed Lorentzian resonance line in the b
axis, as opposed to a Gaussian line in the c axis.

We have measured the b/C values and the longitudinal spin-spin relaxation
times. Insection 3 we will show that the secular part of the interaction is
much larger than the non secular part. An analysis of the results, on the

basis of the weak coupling theory, is made difficult by the presence of in-

equivalent copper ions, twinning in the crystal and hyperfine interactions.

6.2 Crystal structure, g values and Hamiltonian

To our knowledge, the crystal structure of CBS has not been determined.
However, we expect CU(CBHSSOB)Z 6H 0 to be isomorphous to Zn - and Mg(C gh SO3 o
6H20 The latter structures have been determined by Broomhead and Nicol 2
The monoclinic unit cell contains two molecules Zn-, Mg-, or in our case Cu-
benzene sulphonate hexahydrate. On the basis of the morphological description
of CBS as given by Groth 3), one can derive the following dimensions for the

unit cell (fig. 6.01) l): a=23.1A, b=26.32A, c=7.04 A and g = 93°22'.
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Fig. 6.01 Monoclinic unit cell of CBS. Only the Cu2+ ions have been drawn.

The measurements of Zimmerman et al. show that the copper ions in the unit
cell, the corner ion (0,0,0) and the body centered ion (%,%,%), are not equi-
valent and that twinning occurs on a submicroscopic scale. This leads to four
g tensors with different orientations.

The magnetic axes (principal axes of the static susceptibility tensor)
appear to be the crystalline b and ¢ axis and the a' axis, perpendicular to
the b-c plane.

Besides dipole dipole interaction, we expect in CBS exchange and hyperfine
interaction. For the magnetic field parallel to one of the magnetic axes, the

isolated spin system has the following Hamiltonian

- b % i
= g.JBHAi.SZ X (6.01)

The exchange and hyperfine interaction in this salt are unknown. At most we

can give an estimate of the hyperfine interaction from comparable copper salts.

6.3 Experiment

With the aid of the twin T bridge of chapter 2, x' and x'" of CBS have
been measured as a function of the magnetic field up to 3 kOe. At higher fields
both components become vanishingly small.

The measurements have been performed with the radio frequency and static
field parallel to the magnetic axes of the crystal. No temperature dependence
was observed at liquid hydrogen and liquid helium temperatures.

The frequencies were chosen between | and 30 MHz.

104




6.3.1 b/C values
The spin-lattice relaxation time in CBS at 20 K is of the order of magni-
tude of IO_A sec and increases if the temperature is lowered. The spin-spin
relaxation time is of the order of magnitude of 10-8 sec, so that the region of
spin-spin relaxation is well separated from the region of spin-lattice relaxa-
tion at these temperatures.
-] ]

x' (w) becomes Xad for frequencies Tg << w << Tgq -

The ratio Xad/ko is given by

X
_ﬂ:__b__z y (1.56)
X0 b+ CH

The values of b/C have been determined from the slope of the straight lines of

2
lo/had versus H™.

The results are given in table 1.

Table 1

b/C(10° 0e?)

4.9

4.9
4.1

b is isotropic and C is proportional to g2 (formula 1.93), so that b/C is pro-
portional to g-z. Therefore we have added to table 1 the g values in the
direction of the magnetic axes (ref. 1) and the product (b/C) gz. This product

is found to be constant within a few percent.

6.3.2 Spin—spin relaxation times
If the spin-lattice and the spin-spin relaxation processes do not in-

fluence each other (such as is the case), the latter process is described by

1
L Xbe:) “Tss

2
Xad Xag. | * @ Tgg

The graphs of x“/xad versus the frequency can be fitted by Debye curves for
all fields up to 3 kOe, for the a' axis as well as the b and c axis.

The spin-spin relaxation time has been determined from the frequency for
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which the Debye curve has a maximum value. The ratio Xad/ko to be denoted by

a, has been determined from the value of this maximum itself. The ratios in the
three different directions of the axes are also given in table 1. The relaxa-
tion rates T;é multiplied by [1 + HZ/((I - a)b/C)]-] (see section 6.4.2), have
been plotted in fig. 6.02a (a' axis), fig. 6.02b, (b axis) and fig. 6.02c

(c axis):

6.4
6.4.1

We have for b/C in a high temperature approximation the following ex-

pression =

o, >>
int

(1.93)

where it is assumed that deviations of Curie's law are negligible. Hi " consists
n

10" W S

|
Py

8 (kOe)*

|
|

Fig. 6.02¢c
Figs. 6.02a,b,c

5 versus HZ in CBS. a: a' axis

H b: b axis

(] - u)(b/C) C: G axls
The drawn lines are theoretical curves.

I;] + r;] has been abbreviated as TE]
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of H ., H H -
dip’ “ex &l hfs

rms <<H, H >>, <<H .. H >
*S Idlp ex ' dip hfs

For equivalent ions with an isotropic g value, the cross

> and <<H H >> vanish, so that
ex hfs

<<ﬁ?nt>> = <<53ip>> R <<ﬁzx>> + <<Hﬁfs>> (6.03)
Consequently
b b, b b
f
_ = dip . "ex _hfs ; (6.04)
C € c C

The unknown way in which twinning occurs makes exact calculations impos-
sible. Therefore no attempt has been made in this direction. The inequivalence
of the copper ions and the twinning dre neglected. We take as g value the
5Oez.

A computer calculation has been performed for bdip/c' 322 ;eighbours have
been taken into account and the result is bdip/c = 1.93 x 10 0e

b /C+ b . /C is thus 4.4 x 10°0e>.
ex hfs

average value of 2.21 and as b/C value 4.6 x 10
. The sum

We estimate the hyperfine interaction in this salt to be the same as in
the copper Tutton salts, in which bhfs/c is nearly constant and equal to 2 x
lO“Oe2 h). In this way there remains for bex/C = 4.2 x 1050e.
| f one compares b /C with b,, /C one sees that b >> b,, and weak
ex dip ex dip
coupling properties are to be expected. This is supported by the fact that
! << .
“bet *ad
|f we assume only nearest neighbour interaction along the crystallographic

axes, the exchange constants Ja" Jb and Jc are related to bex/c by

2
ex . ey’ s(s+1) 5, WS+, 2 2
TS = I Y sl R A I
C <<Mz>> g -,JB J(;é|) g ;JB
(6.05)
Thus
Jz, F Ji 5.9 % 10 Parg® = 3,0 x WK | (6.06)

A crystal of CBS can be thought to consist of layers parallel to the b-c plane.
The distance between copper ions in the layers (6.32 A along the b axis and
6.96 A along the c axis) is much smaller than the distance between the layers
(about %a = 11.2 A). We expect that due to this large distance and the inter-
nal structure of the crystal, the exchange interaction between copper ions of

different layers can be neglected with respect to the exchange within the
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6.4.2 Spin—spin relaxation times

If the memory spectrum consists of Gaussian lines, the spin-spin relaxa-

tion time is given by

.]_—_—___+L)
T T
SS i 2

with r;l and r;] given by (1.106) and (1.107).

The hyperfine interaction is of the same order of magnitude as the dipole
dipole interaction, but small compared to the echange interaction. The exact
influence of the hyperfine interaction on the relaxation time is uncertain. |f
we treat it in the same way as we did for the dipole dipole interaction, we can
split it into a secular part and a non secular part. The secular part is small
compared to the exchange, but the non secular part is of the same order of
magnitude as the non secular part of the dipole dipole interaction.

We compare our experimental results with calculations in which only the
exchange term is taken into account. There are indications however that we have
to involve the hyperfine interaction in our discussion.

b
tions of the magnetic axes have been calculated with the aid of a computer.

For J,_ = JC obeying relaxation (6.07), the relaxation times in the direc-

The best fit between these calculations and our experimental values is obtained
for Jb/k B Jc/k = +0.0394 K.

If we write

— L exp (-

Y 11(0)

T

(0), v, and Y., are

then the results of the calculation, in terms of r](O), T

2 ] 22

given in table 2.
6.5 Discussion 2

If we neglect the hyperfine interaction, application of the weak coupling

theory for Jb = Jc = +0.0394 K gives a particularly good agreement between
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Table 2

t](O) in IO_Ssec TZ(O) in 10~losec Y, in(kOe)2 Yy in(kOe)2
a' axis 3.65 5.90 0.881 0.302
b axis 2.04 15.2 1.91 0.332
c axis 2.05 10.2 1.93 0.371

theory and experiment in the c axis. The values computed from theory, come
close to the experimental values for low and high fields in the direction of
the b axis. In the a' axis there is only agreement for low fields.

The relaxation rate at low fields is mainly determined by r;l and at high
fields almost exclusively by 1}' (fig. 6.02). Therefore the assumptions made
seem to be plausible to describe the experiments with respect to the calcula-
tion of Ty o

The deviations between theory and experiment originate from T The non
secular part of the hyperfine interaction gives only extra terms to H] and 5_]

and influences in this manner only T‘] and not r;l. The second moment of the
line in the memory spectrum at (proportional to Y]) has the smallest value
in the direction of the a' axis (see table 2). In this direction we may thus
expect the largest influence of hyperfine and possibly other interactions which
can give a non secular contribution to the total interaction. This could be a
Dialoshinsky-Morya exchange term in the Hamil tonian.

The difference between theory and experiment in the b axis for intermediate
fields, indicates that the lines of the memory spectrum at W and ZwL are not

exactly Gaussian.

6.6 Conelustion

It is more or less surprising that we find a reasonable agreement between
theory and experiment in the b and c axes, in spite of the simplifications made.
The agreement is reasonable, in the ¢ axis even good, concerning the magnitude
as well as the field dependence of the relaxation rate. In the direction of the
long magnetic axis, the a' axis, the agreement is poor. This is caused by the

interactions which we have not taken into account and which mainly influence
ot |
1

T
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APPENDIX

We suppose the Hamiltonian of the isolated spin system to consist of the

following terms

+ H
“hfs

The decomposition of ﬁdip and Hex into eigenoperators of the Liouville operator
;Z corresponding with HZ’ has been given in section 1.5.2.

H + H - = =2 =

Biip H H k 2,-1,0,1,2 and

= H .. + A
0 “dip 0 ex

i

: +i =i oz, 5 ST
We decompose dhfs =i 'A% into eigenoperators of Ly in the same way:
i

Ho. =8 + H -
“hfs -1 hfs 0 hfs

Here it has been assumed that the magnetic field is applied along one of the

principal axes of the A tensor.

<H H _>> <H, . >>
1 v Int ?
<<[:o,x]][x_],no]>> and <<[no,n2][3_2,n0]>> for the dipole dipole and exchange
interaction have been given in section 1.5.5.

SN . 3] -
Explicit expressions for <<x0>>, <<H

ﬁ_|>>, <

If the principal axes of the g

and A tensors coincide, it is rather easy to take into account the hyperfine

interaction. The expression becomes

'ige>> - %—l(l + 1)S(S + 1)

de de
= <<H H

=]




14 vl R e R s 111 oy v AP 4 ST ) b o 2| |

+ g ugl (141)s (5+1) i..,J_#Lt(coo) +(C,2)"H(A) +(Ay) H[Col (A) yEe
:

+ 785 | (1+1)5(s+1) [25(5+1)421 (141)-3] (A)*+(a )% and

AR 5 2 1ss = <<[gd€ pdeyr.de pder
<<[dy, 8, H_,,H4,]> <[Hy oy 1IH 5,0y 1>> +

y 4o 2 2 )12 b2
t 57 -..Bum)s (s+1) i“j#}c++‘ (A)

An Algol program has been written in order to calculate these expressions.
The program is suitable for a crystal containing two equivalent ions in a unit
cell. The principal axes of the anisotropic g and A tensors should coincide.
Nearest neighbour exchange interaction along the crystallographic axes and
between the two ions in the unit cell is assumed. The ions may contain, besides
even isotopes, two odd isotopes.

The program reads:




//kaoni502 job (4010Zha,0009),'hillaert relax3',
// time=3 =jines=j
//staf exec algodclg,szc=108k, region,algol =204k, szg=i10bLk,
// opt=opil,tst=nt,region.go=204k
//algol.sysin dd =
‘begin'
'comment '
programma ter berekening van de nulde en tweede momenten yan de kern-
funktie,de b/c-waarde en de relaxatietyd voor een gaussiche kern-
funktie.
de berekening is voor een triklien kristal {(assen a,b en c) met twee
magnetische ionen per eenheidscel (afstand tussen de ionen rl) en een
anisotrope g-tensor., nemen we het coordinatenstelsel langs de hoofd-
assen van de g~tensor dan is deze diagonaal (dlagonaalelementen gx,gy
en gz). het magneetveld nemen we steeds evenwydlg de z-as.
de exchange-constanten in de kristalasrichtingen geven we aan met
ja,jb en jc,de spinwaarde van het ion met s en het aantaj kristal-
afstanden waarover we de berekening uitvoeren met n.
de kriscalassen worden opgegeven in a.e. en de exchangeconstanten in k
(dus eigenlyk j/k);
'integer'n,i,j,k,t,u,v,p,4,r;
'real'ax,ay,az,bx,by,bz,cx,cy,c2,rlx,rly,rlz,rl0,
4X,8Y,62,ja,jb,jc,bj,gammal, gamma2,alx,aly,alz,alx,aly,a2z,gl, 82,
bk,bm,hstr,an,wn,gbk,gbm, jambk, jbmbk, jcmbk, b jmbk,ex, bex,
bix,biy,blez,b2x,b2y,blz,bxek,byek,bzek,
surl, sumZ,sum3, sumé , sumS, sumb, sum7, sum8 ,sum9,suml0, sumll,suml2,
soml, somz, som3, somb, somb,somb, som7 ,som8, sond,soml0,somll,soml2,
sumil,sum23,sum33,sumbi,sumly, sum2b,sum3l,sumbk,
sumls, sum25,sum35, sumk5,sumlb, sum26,sum36, sumkb,
subsl,subs?,subs>,subsy, cstl,cst2,
s,x,11,y1,12,y2,
del)0,de01,de02,de0t ,de21,de22,hf00,hf01, hfot, hf2l, hf22,
omeg00,omegll,omeg02,0omeglt, omeg2l,omegsz2,mom21,mom22,
bdegc, bhfgc,bgc,bscgc,
ai,bl,cl,d1,a2,b2,c2,d2,mal,ma2,rol,ro2,roc,ro,0ori,or2,0orc,or,
h, hstep,endh;
sysact(i,8,060);sysact(1,6,132);sysact(1,12,1);sysact(0,12,1);
return:
ininteger(0,n);'if'n ©996"'then''goto"'stop;
inreal(0,s);inreal(0,il);inreal(0,12);
inreal(0,aix);inreal(0,aly);inreal(0,alz);
inreal(0,a2x);Inreal(0,a2y);inreal(0,a2z);
inreal(0,g1);inreal(0,g2);
inreal(0,ax);inreal(0,ay);inreai(0,az);
inreal(0,bx);inreal(0,by);inreal(0,bz);
inreal{0,cx);inreal(l,cy);inreal(0,cz);
inreal(0,rix);inreal(0,rly);inreal(0,rlz);
inreai(0,gx);inreal(0,gy);inreal(0,g82z);
inreal(0,jaj;inreal{0,jb);inreal(0,jc);inreal(0,bj);
inreal(0,hstep);inreal (0U,endh);




‘begin'

‘real''arvay'rx,rv,rz,r0,azz,apm,rapz, iapz,rapp,iapp,dx,dy,dz,du,
bzz,bpm, rbpz, ibpz,rbpp, Ibpp(/=n:n,=n:n,=n:n/);
suml:=0;sumz:=0;sum>:=0;sumb:=0;sumb;=0;sumb:=0;sum7:=0;sums:=0;
sumY:=0;sumi0:=0;sumll:=0;suml2:=0;somi:=0;som2:=0;som3:=0;somk:=0;
somb:=0;somb:=0;som7:=0;somb:=0;somI:=0;somid:=0;s0mil:=0;soml2:=0;
suml3:=0;sum23:=0;sum>3:=0;sumb3:=0;sumlb:=0;sum2bk:=0;sumdb:=0;
sumsb:=0;sumlb:=0;sum25:=0;sum35:=0;sumb5:=0;sumlb:=0;sum26:=0;
sumib:=0;sumbu:=0;subsl:=0;subs2:=0;subs3:=0;subsk:=0;
'for'i:==n'step'l'until'n'do’

'for'j:=-n"step'l'until'n'do"

'for'k:==n'step'1l'until'n'do’

'begin'
bk:=1,38026"-16;bm:=0.92712"~20;hstr:=1.054206"'~27;an:=6.0248"+23;
wn:=1,96574"'~106;gbk:=1.330206;gbm:=0,92712;

jambk:=ja=bk;jbmbk:=jb*bk; jctabk:=jc*bk;bjmbk:=bj*bk;
blx:=alx*wn;bly:=aly+wn;biz:=alz+wn;
b2x:=a2x*wn;biy:=a2y*wn;b2z:=a2z*wn;
"IF'(i=1P=1)&]=0&k=0"then'ex:=4xjavgbk/ (gbm*gbm) 'else"
Tif'i=0&(j=1lj==1)&k=0"then"ex:=k*jbrgbk/(gbmegbm)'else'
Yif'i=0&j=0a(k=1k==1)"then'ex:=4=*jcegbk/(gbm*gbm)'else'ex:=0;
'if'i=0&j=0&k=0"then"

'begin'

azz(/i,j,k/):=0;apm(/i,j, k/):=0;rapz(/1,],k/):=0;iapz(/i,], k/):=0;
rappl/i,j,k/):=0;iapp(/i,j,k/):=0;

'end''else!'

'begin'

rx(/i,j,K/)s=ixax+jabx+kecx;

ry(/i,j,k/)t=ivay+jeby+keacy;

rz(/i,j,k/):=i=az+j=bz+kwcz;

r0C/i,j.k/)e=sqrelrx(/i,j, k/)eex(/0,],k/)+ry(/i,i,K/)wry(/1,],k/)*
rz(/i,j. K/ *rz(/i,j.K/));
azz(/1,j,k/):=2«(3%rz(/i,5,k/)*rz(/1,],k/)/CrOC/1,], k/)*r0(/i,], k/))=1)
wgzegz/(r0C/i,J,k/)*r0C/0,j,k/)*r0(/1,],k/))*ex;
apm(/i,j,K/):=((32rx(/1,],k/)*rx(/0,],k/)/Crd(/1,],k/)*r0(/1,],k/))=1)
wgxwgx+(3wry(/i,J,k/)*ry(C/i,i,k/)/CeGC/T,5,k/)*rGC/T,j,k/))=1)
wgyegy)/(r0C/i,j,K/)*rb(/0,),k/)*r0(/1,],k/))*ex;
rapz(/i,j,k/)s=rx(/0,j,k/d*rvz(/1,], k/)I*gxege/Cru(/i,j, k/I*r0(/1,],k/)
«r0(/1,],k/)*xr0C/0,],k/)er0(/1,5,k/));
iapz(/i,j,k/)e=ry(/i,),k/)*rz(/i,] ,k/)"gy*gz/(r0C/1,],k/)*r0C/T,],K/)
*r0C/1,5,k/)*r0C/1,5,k/)*e0C/1,5,k/));

rapp(/i,j, k/)s=((3orx (/1,5 ,k/)%rx(/0,],k/)/Ce0C/1,],k/)=r0C/i,],k/))=1)
wpxrgx=(3erv(/1,],k/ ey (/1,5 ,k/)/CP0C/1,3,k/)*r0C/0,],k/))=1)
wgyegy) /(r0(/0,],k/)=r0(/i,),k/)*r0C/1,]) ,k/));
Tapp(/1,],k/)e=berx(/1,],k/)ery(/1,], k/)*gx=gy/(r0(/i,] k/)I*r0(/1,],K/)
xr0(/1,j,k/)*r0C/0,),k/)*r0C/1,]),k/));

‘end';

ri0:=sqro(rix*rix+riyerly+rizeriz);

dx(/i,j,K/):=rix+ivax+jebxekecx;
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dy(/i,j,Kk/):=rly+inay+jrby+krcy;

de(/i,j,K/):arizeinaz+jebzrkncz;
dU(/i,j,k/):=sqrt(dx(/i,j,k/)'dx(/i,j,k/)’dy(/i,j,k/)'dy(/i,j,k/)*
de(/i,j,K/)=dz(/1,]),k/));
YTF'dOC/T,j,k/)>08d0C/T,],k/)<(r10+0,00L*r10)" then'
bex:=4*bivghk/(gom=*ygzbm) ' 'eise'bex:=0;
bzz(/i,j,K/):=2%(3xdz( /1,5, k/)*d2(/T,],K/V/CA0C/T,],k1)=d0(/T,],k/))=1)
gz g2/ dU(/i,]j,k/)=d0{/1,),k/)=d0(/i,j,k/))+bex;
bpm(/i,j,k/}:-((s'dx(/i,j,k/)'dx(/i,j,k/)/(dU(/i,j,k/)'dU(/l,j,k/))-l)
'gx'gxo(‘ivoy(/i,j,k/)'dy(/i,j,k/)/(db(/i,j,k/)'dd(/i,j,k/))‘l)

*gy*gy) /(dC(/T,],k/)=d0(/i,],k/I*d0(/1,],k/))+bex;
rbpzx/i,j,k/;:=dx(/i,j,k/)'dt(/i,j,k/)';x'gc/(du(/i,j,k/)'du(/i,j,h/)
*d0(/i,j,k/I*d0(/i,],k/I*d0(/i,i,k/));
ibpz\/i,j,k/):-dy(/i,j,k/)'dz(/i,j,k/)-gy'gz/(du(/i,j,k/)'dO(/i,j,k/)
*d0(/1,5,k/=d0(/i,j,k/)*d0(/i,i,k/));
rbpp(/i,j,k/):=((S'dx(/i,j,k/)'dx(/i,j,k/)/(du(/i,j,k/)-db(/i,j,x/))-l)
*gxwgx=(owdv(/1,j,k/)*dy(/i,i,k/)/(d0(/i,],k/)*d0C7i,],k/))=1)
*gy*gy)/(dO(/i,j, K/)*d0(/i,j,k/)I*d0(/i,],k/));
ibpp(/i,j,k/):=o'dx(/i,j,k/)'dy(/i,j,k/)‘gk'ay/(dO(/l,j,k/)'dU(/i,j,x/)
*d0(/i,5,k/)=d0(/1,),k/)*d0C/i,],k/));
suml:=sumi+azz(/i,j,K/)%azz(/1,],k/);
sum2:=sumz’Apm(/i,j,k/)-apm(/i,j,k/);
sum3:=sum30(rapz(/l,j,k/)*rapz(/l,j,k/)*lapz(/i,j,k/)'iapz(/l,j,k/));
sumb: =sumb+(rapp(/i,j,k/)=rapp(/1,],k/)+iapp(/i,],k/)*lapp(/i,j,k/));
sums:=sumb+azz(/i,]j, k/)*rapz(/1,j,k/);

sumb : =sumb+apm(/i,j,k/)*rapz(/1,],k/);
sum7:=sum?+azz(/1,j , k/)*iapz(/1,],k/);
suma:=sum8¢apm(/i,j,k/)'idpz(/i,j,k/):
sum9:=sum9¢(rapz(/l,j,k/)vrapz(/l,j,k/)*lapz(/i,j,k/)'Iapz(/i,j,k/))
'((1z's-sv12's¢b)'azz(/l,j,k/)'azz(/i,j,k/)-(a-s-503-5-6)'azz(/i,j,k/)
-apm(/l,j,k/)0(20-5-5620'5015)'dpm(/l,j,k/)'apm(/i,j,k/));
sumlO:=sumlO+apm(/i,j,k/)*rapp(/1,]j.k/);
sumll:=sumil+apm(/i,j,k/)*iapp(/1,]j,k/);
sum12:-sum12~(rapp(/i,j,k/)-rapp(/i,j,k/)oiapp(/i,j,k/roiapp(/i,j,k/))
'(azz(/i,j,k/)-azz(/i,j,k/)*z-apm(/l,j,k/)'apm(/i,j,k/));
soml:=somi+bzz(/i,j,k/)*bzz(/i,j,k/);

somz:=somZ+bpm(/i,j k/)*bpm(/1,],k/);
somi:-somJO(rbpz(/l,j,k/)*rbpz(/l,j,k/)olbpt(/I,j,k/)'ibpz(/l,j,k/));
somh:-somk*(rbpp(/l,j,k/)'rbpp(/l,j,k/)‘lbpp(/i,j,k/)*ibpp(/l,j,k/))
soma:=somb+bzz(/i,j,k/)*rbpz(/i,j, k/);
somb:-sombObum(/l,j,k/)-rbpz(/i,j,k/);
som7:=som?+bzz(/1,j,k/)*ibpz{/i,], k/);
somB:-somBObpm(/l,j,k/)'lbpz(/l,j,k/);
som9:-som9¢(rbpz(ll,j,k/)-rbpz(/l,j,k/)'lbpz(/i,j,k/)-ibuz(/l,j,k/))
-((12-5'5012'506)'bzz(/l,j,k/)'bzz(/l,j,k/)-(K-s'sos-s-ﬁ)'bzz(/i,j,k/)
'bpm(/i,j,k/)0(20's-s+20's¢lb)'bpm(/l,j,k/)'bnm(/i,j,k/));
somlO:-somIOObpm(/l,j,k/)-rbpp(/l,j,k/);
somll:=somil+bpm(/i,j,k/)*ibpp(/i,],k/);




somlZ:=somiz+(rbpp(/i,j, k/)*rbpp(/i,j,k/)+ibpp(/i,j, k/)=iopp(/i, i, k/))
-(bzf(/i,j,k/)*bzz(/i,j,k/)+2nbpm(/i,j,k/).bpm(/i,j,k/)};

'end';

"for'ti=-n'step'i'until'n'do'

'for'u:==n'step'1'until'n'do’

"for'vi=-n'step'l'until'n'do’

'for'i:==n"step'1'until'n'do’

'for'j:==-n'step'l'until'n'do’

'for'k:==n"step'l'until'n'do’

'begin'

pi:=i=-t;q:=j=u;r:=k~-v;

'if'abs(p)>nabs(q)ynabs(r)yn'then''goto'next;
suml3:=sumis+{rapz(/p,q,r/)*rapz(/p,a,r/)+*iapz(/p,a,r/)>iapz(/p,q,r/))
*apm(/t,u,v/)*apm(/i,i,k/);
sum23:=sumn2i+(rapz(/p,q,r/)*rapz(/p,q,r/)+lapz(/p,a,r/)*iapz(/p,q,r/))
*hpm(/t,u,v/)*bpm{/i, ], k/);
sumd3:=sum3i+(rbpz(/p,q,r/)*rbpz(/p,q,r/)+ibpz(/p,a,r/)*ibp2(/p,q,r/))
*apm(/t,u,v/)*bpm(/i,i, k/);

sumbS:=sumb 3+ (rbpz(/p,a,r/)*rbpz(/p,q,r/)+ibpz(/p,q,r/)=ibpz(/p,q,r/))
*bpm{/t,u,v/)*apm(/i,i,k/);
sumlb:=sumib+(azz(/p,q,r/)*apm(/p,q,r/)*azz(/p,q,r/)*apm(/t, u,v/)
+apm(/p,q,r/)*apm(/p,q,r/)+apm{/p,q,r/)*apm(/1,j,k/))*(rapz(/t, u,v/)
*rapz(/i,j,k/)+lapz(/t,u,v/)=lapz(/i,j,k/));
sumzb:=sumt+(azz(/p,q,r/)*apm(/p,q,r/)+azz(/p,q,r/)*bpm(/t, u,v/)
+apm(/p,q,r/)=apm(/p,q,r/)+apm(/p,q,r/)*bom(/i,],k/))*(rbpz(/t, u,v/)
wrbpz(/i, ., k/)+ibpz(/t,u,v/)*ibpz(/i,j, k/));
sum3b:=sumsb+(bzz(/p,4,r/)*bpm(/p,q,r/)+bzz(/p,q,r/)*apm(/t, u,v/)
+bpm(/p,q,r/)*bpm(/p,q,r/)+bpm(/p,q,r/)*bpm(/1,j, k/))I*(rapz(/t, u,v/)
wrbpz(/i,j.k/)+iapz(/t,u,v/)*libpz(/i,j, k/));
sumbb:=sumbi+(bzz(/p,q,r/)*bpm(/p,q,r/)+bzz(/p,q,r/)*bpm(/t, u,v/)
+bpm(/p,a,r/)*bpm(/p,q,r/)+bpm(/p,q,r/)*apm(/i,j,k/))*(rbpz(/t,u,v/)
srapz(/i,j, k/)+ibpz(/t,u,v/)*iapz(/i,j,k/));
sumlb:=sumib+(rapp(/p,q,r/)*rapp(/p,q,r/)+iapp(/p,q,r/)*iapp(/p,q,r/))
*azz(/t,u,v/)*azz(/i,j.k/);
sum25:=sum25+(rapp(/p,q,r/)*rapp(/p,q,r/)+ilapp(/p,q,r/)*iapp(/v,q4,r/))
*bzz(/t,u,v/)*bzz(/i,],.k/);
sum35:=sum3S+{rbpp(/p,q,r/)*rbpp(/p,q,r/)+ibpp(/p,q,r/)*ibpp(/p,a,r/))
*azz(/t,u,v/)*bzz(/i,j,k/);
sumb5:=surntS+(rbpp(/p,q,r/)*rbpp(/p,q,r/)+ibpp(/p,q,r/)*ibpp(/pP,q,r/))
*bzz(/t,u,v/)*azz(/1,j,k/);
sumlG6:=sumlG+apm(/p,q,r/)*(azz(/p,q,r/)+azz(/1,],k/))=(rapp(/t, u,v/)
srapp(/i,j,k/)+iapp(/t, u,v/)*iapp(/i,],k/));
sum26:=sum26+apm(/p,q,r/)*(azz(/p,q,r/)+bzz(/1,j,k/))*(rbpp(/t,u,v/)
=rbpp(/i,j,k/)+ibpp(/t,u,v/)=ibpp(/1,j,k/));
sum36:=sum36+bpm(/p,q,r/)*(bzz(/p,q,r/)+*azz(/i,j,k/))*(rbpp(/t, u,v/)
*rapp(/i,j.k/)+ibpp(/t,u,v/)*iapp(/1,],Kk/));
sumbG:=sunbb+bpm(/p,q,r/)=(bzz(/p,a,r/)*+bzz(/1,j.k/))*(rapp(/t,u,v/)
*rbpp(/i,j, k/)+iapp(/t,u,v/)*ibpp(/i,j, k/));

)
1
]
1
'
]
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next:

‘end';

X:=gwes+s yli=llwileia;y2:=i2=i2+i2;

cstl:=(b.024B8"=9)*gbmewlwexwx;cstl:=(b.U248"=41) mgbmweBuxwx;

de00:=(1.38889"'=2)wcstl*(suml+soml+2*sumi+2=som);

de0l:=0,5%cstl*(sum>+somj);

de02:=(1.38889"'=2)*cstl=(sumb+soms);

delt:=del0+2+de01+2+del2;

bxek:=0,0i#(gl*ylebix*blx+g2nys*b2x«bix);

byek:=0,01*(gleyl#biy*bly+giwy2«b2y*bly);

bzek:=0.0iw(glwyl#bizeblz+g2uy2xblzebiz);

hf00:=0.1111llvan*x=bzek;

hf0l:=0.U555b00b an=x*(bxek+byek);

hfOt:=hfu0+2«hf01;

omegOO:=deuu~hf00;omegu1:Hdeul#thl;omegUl:-deuﬁ;omcht:udeOtOtht;

bdegc:=dedt/(an=*0,35333*xugzxgz=bm*bm) ;

bhfgc:=hf0t/(an*0,553353*xwgzxgzxbm=bm) ;

bgc:=omeglt/(an%0.33353xxwgz*gz=bm=bm);

bscgc:=omegl0/(an*0.55333wx*gz*zz*bm*bm) ;

subsl:=sumi*(suml+3*sum2)+sum>*(soml+I*somZ)+som3*(suml+3*sum2)
+som3*(soml+>~somZ);

subs2:=sumb*sumb=sumnb*sumb+sumb=sumb+sum7 *sum7 =sum7 *sum8+sumg «sums
+sumb=somS=-sumS*somG+sumb*somb+sum7*som7 -sum7*som8+sums*som8
+50Mb*sumb=somS*sumb+somb=sumb+som? *sum7 -som7 *sum8+somé ~sum8
+sombrsomb=sombs*somb+somb*somb+som/*som7 =som7 *som8+~som8*soms ;

de21:=(4.1606067"=2)*cst2*(x~(subsl+2vsubsZ+2*suml3+2+sum23+2+sum>3
+2%sumbs=2=sumll=2%sum2b=2wsumilb=2«sumsb)=U, lesum3~0,1*som9);

subsi:=sumb*(suml+sums)+sumb*(soml+somz)+somb*(suml+sumz)
+somk*(soml+somZ);

subsy:=sumlO*sumil+sumllissumli+sumiO*somlO+sumll*somll
+somif=sumlO+somli*sumil+somlO*somlO0+somll«somll;

de22:=(2.3i461"=3)wcst2o(x*(subs3+subsb+sumlS+sum2b+sum>S+sumiS=-2»
SUMib=2wsum26=2*sumi>6=2%sumi6)=0,05%(8*ses+8=s+9)=(suml2+somiz2));

hf2l:=csti*((4.062962"'=5)*(bxek+byek)*(suml+soml+sum2+som2)+
0,.1666L7*bzek*(sum3+som3))+
(5.55556"=5)wansx*(gloyle(2ox+2%yl=3)wblzebizw(blxvblx+bly*biy)+
glwylw(2wx+2ny2=3)wb22z#bZzw(b2x*b2x+b2y*b2y));

hf22:=(9.25925"=5)*cstlsbzeke(sumb+somb);

omeg2l:=de2l1+hf21;omeg22:=de22+hf22;

momZi:=omegl2l/omegli;

mom22:=omeg22/omeglZ;

outstring(i,'('de eindantwoorden voor het kristal:')"');sysact(1,14,3);

outstringil,'('n="')");outinteger(1l,n);sysact(1,2,33);

outstringil, gx=")");outreal(1l,gx);sysact(1,2,66);

outstring(l, ja/k=')");outreal(l,ja);

outstring(l, k dus ja=')');outreal(1l, jambk);

outstring(l, erg')');sysact(1,2,33);

outstringl(l, gy=')");outreal(l,gy);sysact(1,2,66);

(
(
:

(
(

' '
1 '
| )
' '
' '
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outstringi{l,'('jb/k=")");outreal (1, jb);
outstring(i,'('k dus Ju=')') outreal (1, jbmbk);
outstringi(i,'('erg')');sysacc(l,14,1);
outsuringix,'('s=' ') outreal(i,s); sysact(1,2,35);
outstringii,'('gz=")");outreal(1,5z);sysact(1,2,06);
outstringii, ('Jc/k-‘)');outreal(l,jc);
outstring(l,'('k du> Jc=') );outreal(l, jcmbk);
outstringi{l,'('erg')');sysact(1,2,60);
outstring(l,"' ("' '/k-')') outreal(l bj);
outstringl(i,'('k dus j'=')");outreal (1,bjmbk);
outstring(i,'('erg'’)'); sysact(l 14,2); |
outstring{i,'(' il=' )'),outreal(l,Il);sysact(l,Z,MO); I

'

]

]

)

1

1

'

outstringii, alxﬂ')') outreal(l,alx);

outstring(l, crawwx=1" )') sysact(1,2,80);
outstring(l,
outstring(i,
outstringil,

a2x="')");outreal(l,a2x);
cn'--l')');sysact(l,lu,l);
i2e')");outreal(1,i2);sysact(1,2,40);
outsctringil, a‘y=')') outreal(l,aly);
outstring(l,'('cmes-1" )'),sysact(l 2,80);
outstring(i,'('a2y=")"');outreal(l,a2y);
outscring(l,'('cm-'-l')');sysact(l,lu,l);
outstring(l,'('gew.perc.1="')"');outreal (1,gl);sysact(1,2,40);
outstring(l,'('alz=")");outreal(l,alz);
outstring(l,'('cax==-1"')"');sysact(1,2,80);
outstring(i,'('a2z=")"'");outreal(1,a2z);
outstring(l,'('cms*=1"')"');sysact(1,14,1);
outstring(l,'('gew.perc.2=')");outreal(1,52);sysact(1,14,2);
outstring(l,'('ax-')');outreal(l,ax);
outstriug(l,'('a.e.') );sysact(1,2,33);

(
(
(
(
(
(
(
(
(
.
(
(

outstring(i,'("bx="')"); ouureal(x,bx),
outstring(l,'('a. e.')') sysact(1,2,66);
outstring(i,'(" cx-')'),oqueal(l cx);
outstring(i,'('a.e.')');sysact(1,2,99);
outstring(l,'('rix="')");outreal(l,rix);
outstring(l,'('a.e."')");sysact(1,14,1);
outstring(l,'(' ay-')'),ou;real(l,ay),
outstring(l,'('a. e.’)') sysact(i,2,33);
outstring{i,'('by=" l'),outreal(l by);
outstring(l,'('a.e.")');sysact(1,2,66);
outstring(l,'(’ cy-')'),o treal(l,cy);
outstring(l,'('a.e.")');sysact(1,2,99);
outstrlng(l,'('rly-')'),outreal(l,rly),
outstring(l,'{'a.e."')');sysact(1,14,1);
outstrlng(l,'('az-')'),ou;real(l,az),
outstring(l,'('a.e.")');sysact(1,2,33);
outstring(l,'('bz=")"');outreal (1,bz);
outstring(l,'('a.e.')");sysact(1,2,66);
outstring(l,"'('cz="')"');outreal (1, cz),
outstring(l,'('a.e.")');sysact(1,2,99);
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outstringdl,
outstring(i,
outstr9ng(l,

'('rlz="')');outreal(1,riz);
'('a.e.')");sysact(1l,14,2);
'('afgedrukt wordt het getal van avogadrorhet gemiddelde re

sultaac per fon')');sysact(1,14,2);

outstring(l,

'('het resultaat voor alleen dip=dip. plus exchange interac

tie')');sysact(1,14,1);

outstring(i,
outstringil,
outstring(l,
outstring(i,
outstringlii,
outstring(i,
outstring(i,
outstring(l,
outstring(i,
outscring(1i,
outstring(i,
outstring(i,
outstring{i,
outstringii,
outstringil,
sysact(1,14,
outstringii,
outstringl,
outstring(l,
outstring(i,
outstring(l,
outstrin/{l,
outstring(1l,
outstring(i,
outstring(1,
outstring(1,
outstring(il,
outstring(1l,
outstring(1l,

'('<<h(0)*h(0)yy =")");outreal(1,de00);

"(lerg*=2')"');sysact(1,2,50);

'('<<(h(0),h(-l))'(h(*l),h(ﬂ))))-')');outreai(l,deil);

'('erge=t4')');sysact(1,14,1);

'('<<h(-1)-h(v1)>>=')');ou[real(l,deﬂl);

'"(lerg«=2')');sysact(1,2,50);

'('a<(h\0),h(-z))*(h(*:),n(d))>\='J');nutrea:(1,de22);

'('erg*=4')");sysact(1,14,1);

N (=2)*h(#2)0> =) ") ;outreal (1,den2);

'(lerg*=2")");sysact(1,14,4);

"("<<hintehint>) =')");outreal(1,deot);

'(lerg#=2')");sysact(l,14,2);

('b dip=ex/c="')");outreal (1,bdezc);
gauss**2') ') ;sysact(1,14,2);

het resultaat voor de hyperfynbydrage')"');

erg**2')");sysact(1,2,50);
'<<(h(0),h(-1))'(h(*l),h(o))>>")');outreai(l,hfZI);
‘erge=4')');sysact(1,14,1);
('"<<h(=1)*h(+1)>>=")");outreal (1,hf01);
'(‘erg*=2')');sysact(1,2,50);
'('(((h(O),h'-2))'(h(02),h(0))))")');outrea?(l,hfZZ);
'(‘erg*~4')');sysact(1,14,1);
'('<<hintwhintd> =')");outreal (1,hf0t);
'('erg**2')');sysact(1,14,2);
'('b hf/c «')");outreal (1,bhfgec);
'('gauss**2')');sysact(1,14,2);
'('het resultaat voor dlip-dip. plus exchange plus hyperfyn

(

(

)7

('<<h(0)=h(0)2> =')');outreal(1,hf00);
( 1

(

(

4
'
'
'
'
'

')')isysactil,14,1);

outstring(1l,
outstrin7{i,
outstring(1l,
outstring(l,
outstring(l,
outstrin7(i,
outstring(l,
outstring(i,
outstring(i,
outstrin’(1l,
outstring(l,

'('<<h(0)*h(0)>> =")');outreal(1l,omeg00);
'(Terg*+2')"');¥ysact(1,2,50);
:(:<<(h(03,?(-1))‘(h(*l),h(O))))-')');outreai(l,omegzl);
(‘ergw=4')');sysact(1,14,1);
'('<<ch(=1)*h(+10> =') 1) outreal (1,omeg0l1);
'('erg«=2')');sysact(1,2,50):;
:(:(((h(OE,?(-2))'(h(’Z),h(O))))}')');outreal(l,omezZZ);
(Terge=4')');sysact(1,14,1);

'('<<h(=2)*h(+2)>> =")");0outreal (1,omeg02);
'('ergw=2')");sysact(1,2,50);
'('<<(h(0),h(-l))'(h('l),h(O))>>j<(h(-1)'h(’l)>>-')');
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outreal (1,mom2l);outrstring(l,'('erge*2"')"');sysact(1,14,1);
outstring(l,'('<hint*hint >> =')');outreal(1l,omegit);
outstring(l,'('erg*=2')"');sysact(1,2,50);
outstring{i, ' ("<<(hi0),h(=2))*(h(+2),h(0) V> /<<h(=2)*h(+2D> =')");
outreal (1l,momzZ);outstring(l,'('erg*=2"')"');sysact(1,14,2);
outstring(i,'('b/c «')");outreal(1,bgc);
outstring{l,'('gauss**2')");sysact(1,14,1);
outstringi(l,'('b sec/c «')');outreal(1l,bscgec);
outstring{l,'('gauss*=2')");sysact(1,14,2);
outstrlng(l,'('suml-')'); outreal(l,suml); sysact(1,42,33);
outstring(i,'(' sumh=')')' outreal (1,sumbd); sysact(1,2,66);
outstring(l,'('sum7=")" outreal(l,sum7); sysact(1,2,99);
outstring(l,'('sumlu- joutreal (1,suml0);sysact(1,14,1);
outstring(l,'('sum2= outreal (1,sum2); sysact(1,2,33);
outstring(l,'('sumb= outreal(l,sumb); sysact(1,2,66);
outstring(l, sumg = outreal(l,sum8); sysact(1,2,99);
outstrlng(l,'( sumll= ;outreal(l,sumll);sysact(1,14,1);
outstrinZ(l, '('sumJ-: outreal (1,sum3); sysact(1,2,33);
]

)
)
outstring(l, '{'sumb= ; outreal(l,sumb); sysact(l1l,2,06);
outstring(l,'('sumy= ; outreal(l,sum8); sysact(1,2,99);
outstring(l,'('suml2 );outreal(1l,suml2);sysact(1,14,2);
ou[strlng(l,'('somlﬂ ; outreal(l,soml); sysact(1,2,33);
outstring(l,'('somu= ; outreal(l,somk); sysact(1,2,66);
outstring{l,'('som/= ; outreal(l,som7); sysaci(1,2,99);
outstring(i,'('somlo= );outreal (1,soml0);syvsact(1,1i4,1);
outstrinZ(1l,'('somz= ; outreal(l,som2); sysact(1,2,33);
outstring(l,'('soms= ; outreal(l,som5); sysact(1,2,66);
outstring{l,"'('somu= ; outreal(l,somé); sysact(1,2,99);
outstrnng(l,'('>om11 );outreal(l,somll);sysact(1,1i4,1);
outstrinZ(l,'('som3= ; outreal(l,somd); sysact(1,2,53);
outstrlng(l,'('somb* ; outreal(l,somb); sysact(1,2,66);
outstring(l,'('som9= ; outreal(l,som9); sysact(1,2,99);
outstring(i,'('soml2= );outreal(l,soml2);sysact(l, lh 2);
outstring(l,'('suml3= );outreal (1,suml3);sysact(1,2,33);
8 )
)
Y7
¥3
) 5
Y3
)
);
)
)
¥}
);
) I
)5

outstring(l,'('sum23= outreal (1,sum23);sysact(1,2,66);
,oucrpal(l >um3>),sy>act(1 2,99);
outreal (1,sumi3);sysact(l, lh A),
outreal (1,sumly);sysact(1,2 5>L
outreal (1,sum24);sysact(1,2,66);
outreal(1l,sum34);sysact(1,2,99);
,outreal(l sumbl);sysact(1l, lk 13
outreal(l,sumlb);sysact(1,2, 3:),
,outreal(l sum25);sysact(1,2,66);
;outreal(1l,sum3b);sysact(1,2,99);
outreal(l, sumhb),sysact(l,;b,A),
outreal (1,suml6);sysact(1,2,33);
outreal (1,sum26);sysact(1,2,66);
outreal (1,sum306);sysact(1,2,99);

outstring(l,'('sum:;-
outstring(l,'('sumki=
outstring(l,'('sumly=
outstring(l,"'('sum2y=
outstring(l,'('sum3y=
outstring(l,"'('sumbly=
outstring(l,'('sumls=
outstring(l,'('sum2b=
outstring(l,'('sumis=
outstring(l, '( sumys =
outstring(l,'('sumlo=

outstrlng(l,'( sum26=

'
)
)
)
L}
)
)
)
'
)
)
)
1
)
)
)
'
)
)
)
1
'
'
'
L)
L
L}
]
L]
'
L
'
'
'
'
outstring(l,'('sum3b="

)3
1
);
)
);
'
);
):
);
'
)2
):
);
'
);
)3
);
i
);
);
);
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

)
'
'
'
)
'
'
'
)
'
'
'
)
'
'
'
)
'
'
'
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
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)');outreal (1,sumbb);sysact(l,14,2);
)');outreal (1,subsl);sysact(1,2,33);
outstring{(i,"'('subs2= )‘) outreal(1l,subs2);sysact(1,2,6606);
outstring(l,'('subsi="')");outreal (1, subs;),sysact(l 2,99);
outstrlng(l,'('5ubsu=')'),outredl(l,subsu) sysact(1, lk 2);
a;:-hscrta.jjjjj-x~squ(u.zsﬁlgimomzl)'an/omegol;cl:-1/31:
bl:=gzwyzabr*bn/(2*momil);dl:==bl;
3:=20.25%hstr=0.33355»x*sqrt(6,28319*mom22)*an/omegl2;c2:=1/a2;
b2:=2#gz*gzxbm*bm/mom22;d2:==b2;
sysact(1'2’50);oug5[r[ng(1,'("ﬁ.n'nn-"nt-..nonn'-nn-taw.-.------'t-'i
tn.'----'i--.'tntt-'t--'--'t't----')');sysact(llz'BU);
outstring(l,"'('* dus voor een gaussische kernfunktie:
*')");sysact(1,2,30);

outstring(l,'('s roi=(')");outreal(l,al);outstring(l,"'(")*exp((')");
outreal(1,bl); outstrlng(l,'(')'h"2) sec, *')'");sysact(1,2,30);
ou:string(l,'(" ro2=("')');outreal (1, aZ),out:trlng(l,'(')'exp((') 23
outreal (1,b2); outstrlng(l,'(')'h-'Z) sec, =')")

sysact(1,2,30); outstring(i, "-'tt-t--'-'--'t'na-n----'-«'-t.t.-n'o---.
"ttt""'l't".t'tt."'.t't'l!..l')') sysact(1,14,2);
'if'n<2'then''goto'cont;

sysact(1,2,11); outstrlng(l,'('h )');sysact(1,2,37);

outscring\l,'( rol' '),sysact(l 2,63); outstring(l,'( roz')');
sysact(1,2,89); outstring(l '('roc')');sysact(1,2,115);

outs:rlng\I '"('ro')');sysact(1,14,1);

'begin'

'for'h:=0'step'hstep'untii'endh'do'

'begln'

mal:=blshwh;ma2:=b2«h*h;

'if'mal<85ama2<35"'then''begin'

rol:=al+exp(mal);ro2:=a2+exp(ma2);
'end''else''begin'rol:=1;ro02:=1;"'end";

roc:=rol*ro2/(rol+ro2);

ro:=1/(h*h/bscgc+1l)*roc;

outreal(1l,h);sysact(1,2,27);
outreal(l,rol);sysact(1,2,53);outreal(1,ro2);sysact(1,2,79);
outreal(l roc),sysact(l 2,105); outreal(l ro);sysact(1l, lh 2);

'end';'end'

cont:

sysact(l 2, 30); ou(strlng(l '( ."t’...."..'".tlt't'..ttt'.."""t't.
.ti.""'.'t'.'.'t"'.".'i.'tttt.'.'..' ) ); svsact(1,2,30);
outstring(l,'('~ ofwel voor een gaussische kernfunktle.

') );sysact(1,2,30);

outstring(l,'('s 1/rol=(")"' ),outreal(l cl),outstrlng(l,'( Yrexp((')');
outreal(1l, dl),outstrlng(l '( )*hex2) seceas=1 »')! ),sysacl(l 25 30),
outstrlnz(l,'( * 1/ro2=(")");outreal(1,c2); outstrlng(l,'( )'exp(( )');
outreal (1,d2);outstring(l,"(')*he*2) secew=1 «')');

sysac((l 2,)0);°uts[rlng(1"('tt'.".tt't'tt.'..'t..tt"-I"'ttt..'.'..
t".t"tt'ln""lt"'it.'tiiﬁtl..-t""")');sysact(l,lblz);

outstringil, '('sumkb=
outstringi{l,'('subsi=




'If'n<2'then''goto'akain;
sysact(i,2,1i);outstring(1,'('h"')'");sysact(i,2,537);
outstrlng\x,'('l/rnl')') sysact(l 2,63);outstring(l,'('1/ro2')");
sysact(1,2,39);outstring(i,'("1/roc')"');sysact(1,2,115); !
outstring(x,‘('1/ro')');sysdct(l,lu,l);
'begln
'for'h 'step'hstep'unti!'endh!
"begin'

mal:=blixhwh;maZ:=blxh=h;
'if'mal<dbamaz2<85'then''begin'
ori:=cliwexp(=-mal);or2:=c2xexp(=ma2);
'end''else''begin'orl:=1;or2:=1;'end’;

orc:=orl+or?;

or:=(h*h/bscgc+l)*orc;

outreal(l,h);sysact(1,2,27);
outreal(l,orl);sysact(1,2,53);outreal(l,0r2);sysact(1,2,79);
?utreal(1,orc);sysact(1,2,105);outreal(l,or);sysact(l,lb,Z);
end';'end';

agaln:

?utifrlng(l,'('elnde van de opgave')');sysact(1,15,1);
end';
‘goto'return;

stop:

'end';

//g0.5ysin dd =

cxplanation of the notation

n is the number of lattice-distances for which the calculation is performed,

S is the spin value,

il and i2 are the nuclear spin values,

alx, aly, alz, a2x, a2y and a2z are the values of the hyperfine constants
incm -

gl and g2 are the weight percentages of the odd isotopes,

ax, ay, az, bx, by, bz, cx, cy and cz are the components of the crystal axes
(in A), along the chosen x,y,z frame,

rix, rly and rlz are the components (in A) of the distance between the two
ions in the unit cell,

gx, gy and gz are the components of the g tensor,

ja, jb and jc are the exchange constants (in K) along the crystallographic axes,

bj is the exchange constant (in K) between the two ions in the unit cell,

h step is the value with which the external field is increased,

end h is the end value of the magnetic field,

azz(|i,j.k|) = A;i zcéé,

All = -2cli,

Al = -1/3 cid, and

]

apm(|i,j,k|)

apz(|i,J.k|)

124



app(|i,i,k|) = Aii = *QCii.

For calculation of the relaxation time it is uncertain whether the hyper-
fine interaction should be decomposed in the same way as we did for the dipole
dipole and exchange interaction. Moreover we do not know whether for ions con-
sisting of different isotopes it is allowed to take into account an average

contribution of the hyperfine interaction.
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SAMENVATTING

De magnetisatie van een paramagnetisch kristal komt na een plotsel inge
verandering van het uitwendig magneetveld trapsgewijze tot evenwicht. Als bij
lage temperaturen de tijden, welke de verschillende trappen kenmerken, voldoende
uiteenlopen, onderscheiden we:

1) snelle processen, dat zijn de parallel veld resonanties en de spin-

spin relaxatie, en

2) langzame processen, dat zijn de rooster-bad relaxatie en de spin-

rooster relaxatie.
Bij uiteenlopende tijden kan men het kristal opgebouwd denken uit twee thermo-
dynamische systemen: het spinsysteem, dat de magnetische eigenschappen van het
kristal beschrijft en het rooster waaraan de overige eigenschappen worden toe-
gekend. De wisselwerkingstermen in de Hamiltoniaan van het spinsysteeem zijn
veel groter dan de termen welke de interacties tussen het spinsysteeem en het
rooster en het rooster en het bad beschrijven.

De karakteristieke tijden van de verschillende processen zijn veelal te
snel om het verloop van de magnetisatie rechtstreeks waar te nemen. Daarom
wordt de Fourier getransformeerde van de funktie, welke dit verloop beschrijft,
gemeten. |s het relaxatie-proces te beschrijven met één exponentiéle funktie
dan wordt de karakteristieke tijd daarvan de relaxatietijd genoemd. De Fourier
getransformeerde leidt dan tot de Debye formules voor het reéle en imaginaire
deel van de dynamische susceptibiliteit.

In de hoofdstukken 3, 5 en 6 worden spin-spin relaxatieprocessen beschreven.
Centraal daarbij staat een vergelijking van de theoretische en de experimentele
resultaten. Met het oog hierop wordt in hoofdstuk 1 een overzicht gegeven van
de spin-spin relaxatie theorie. De resultaten zijn geschreven in een zodanige
vorm dat ze met de computer verwerkt kunnen worden.

De veldafhankelijkheid van de spin-spin relaxatietijd en de magnetische
soortelijke warmte van een éénkristal CeZMg3(N03)]2-2hHZO loodrecht op de
trigonale as wordt in hoofdstuk 3 beschreven. De gemeten spin-spin relaxatie-
ti jden worden vergeleken met de strong coupling theorie van P. Mazur en
R.H. Terwiel en theoretische voorspellingen van G. Sauermann. Een redel i jke
overeenstemming wordt daarbij gevonden. De gemeten magnetische soortelijke

warmte is iets groter dan de theoretisch berekende. ——
In hoofdstuk 5 worden temperatuur afhankelijke spin-spin relaxatietijden

in éénkristallen CoCs,Cl_ en CoCs_Br_ parallel aan de tetragonale as beschreven,

35 533
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tezamen met de magnetische soortelijke warmte. Een verklaring van de exponen-
tiéle temperatuur afhankelijkheid van de spin-spin relaxatietijden wordt gegeven
door de theorie, zoals gepresenteerd door P.W. Verbeek in zijn proefschrift,
uit te breiden tot deze zouten. De magnetische soortelijke warmte in het
chloride is in overeenstemming met de gegevens omtrent de exchange wisselwerking
van paren cobalt ionen in ZnCsBCIS. Voor het bromide echter moet een aanzienlijk
grotere exchange interactie worden aangenomen.

Het verschillend karakter van deze twee zouten bij lage temperaturen komt
in het veldverloop van de relaxatietijden tot uiting.

De spin-spin relaxatietijden en de magnetische soortelijke warmte van
éénkristallen Cu(C6H5503)2-6H20 in de richting van de magnetische assen worden
in hoofdstuk 6 beschreven. De magnetische gegevens van het zout zijn ontleend
aan N.J. Zimmerman c.s. Berekening van de magnetische soortelijke warmte, waar-
bij alleen rekening is gehouden met de dipool dipool wisselwerking, wijst op
de aanwezigheid van een aanzienlijke exchange interactie.

Toepassing van de weak coupling theorie geeft, ondanks de gemaakte vereen-
voudigingen, een goede overeenstemming tussen de experimentele en theoretisch
berekende resultaten in twee asrichtingen. Een mogeli jke verklaring voor de
afwi jkingen in de derde asrichting wordt gegeven.

De spin-spin relaxatiemetingen zijn verricht met behulp van een twin T
brug. Deze wordt beschreven in hoofdstuk 2. De mogelijkheid om met een twin T
brug van deze vorm beide componenten van de susceptibiliteit te meten is reeds
door Verstelle aangetoond. De meetmethode is uitgebreid en vervolmaakt waardoor
de brug automatisch in evenwicht wordt gehouden en in een frequentiegebied van
100 kHz tot 30 MHz de twee componenten van de susceptibiliteit continu als
funktie van het magneetveld tot 5 kOe kunnen worden geregistreerd.

Voor de spin-rooster relaxatiemetingen aan CMN, zoals deze worden
beschreven in hoofdstuk 4, is ook gebruik gemaakt van de door A.J. De Vries
ontworpen brug.

In lage velden werden by 4 K de twee relaxatieprocessen, corresponderende
met de twee tijden welke volgen uit een simpel thermodynamisch model bestaande
uit het spin systeem, de laagfrequent fononen en het bad, duidelijk waargenomen.
In hoge veiden wordt één relaxatieproces waargenomen, waarvan de relaxatietijd
in een groter wordend veld steeds toeneemt tot in relatief grote velden (30 kOe).
De temperatuur afhankelijkheid van deze relaxatietijd wordt voor alle velden

beschreven met behulp van een z.g. Orbach proces.
In een appendix wordt het computer programma gegeven waarmee de magnetische

soortelijke warmte en de spin-spin relaxatietijden zijn berekend.

128




Op verzoek van de faculteit der Wiskunde en Natuurwetenschappen volgt

hier een overzicht van mijn studie.

Na het behalen van het eindexamen H.B.S.-B aan het Jansenius Lyceum te
Hulst, waar mijn belangstelling voor de exacte vakken werd aangewakkerd door
K. van den Ende en Drs. A. van Hecke, begon ik in 1959 mijn studie aan de
Rijksuniversiteit te Leiden. Het kandidaatsexamen met de hoofdvakken wiskunde
en natuurkunde en bijvak sterrekunde legde ik in 1963 af.

Sinds november van dat jaar ben ik verbonden aan de werkgroep para-
magnetische spin-spin relaxatie, welke onder supervisie staat van Prof. Dr.
C.J. Gorter en waarvan Dr. J.C. Verstelle de dagelijkse leiding heeft. Aan-
vankelijk assisteerde ik Dr. K. van der Molen en Drs. H. Lieffering.

In 1966 legde ik het doctoraal examen experimentele natuurkunde af. Na
verhuizing naar de nieuwe vleugel van het Kamerlingh Onnes Laboratorium
werd een begin gemaakt met het experimentele werk.

Sinds 1965 ben ik als assistent verbonden aan het natuurkundig prakticum
waarbij het accent heeft gelegen op de praktica, welke op electronica gericht
waren. Na mijn doctoraal examen werd ik aangesteld als doctoraal assistent en
in januari 1968 benoemd tot wetenschappelijk medewerker.

Dit proefschrift is tot stand gekomen met steun van vele medewerkers van
het Kamerlingh Onnes Laboratorium. Op de allereerste plaats Dr. J.C. Verstelle
waarmee vrijwel dagelijks over de problemen werden gesproken, vaak zelfs op de
fiets, onderweg naar huis. Vervolgens Dr. P.W. Verbeek en Drs. H. van Noort
welke belangrijk hebben bijgedragen tot de theoretische en electronische in-
houd van dit proefschrift.

Hoofdstuk 6 is tot stand gekomen in samenwerking met Drs. P. van Tol.

Bij de metingen werd ik geassisteerd door Drs. C. de Lezenne Coulander, H. van
Tol en W.L.C. Rutten. Bij de metingen in hoofdstuk 4 is gebruik gemaakt van de
apparatuur in de groep van Dr. A.J. van Duyneveldt. In het theoretische hoofd-

stuk is dankbaar gebruik gemaakt van: '"'Seminar liber Fragen der Magnetischen

Relaxation'', Darmstadt 1965/1966, dat welwillend ter beschikking werd gesteld

door Prof. Dr. G. Weber. Met Prof. Dr. G. Weber, Prof. Dr. G. Sauermann en
medewerkers van de Technische Hochschule in Darmstadt is een vruchtbare dis-
cussie gevoerd. De technische apparatuur is vervaardigd in de werkplaats van
J. Turenhout en de glazen apparatuur in de werkplaatsen van B. Kret en C.J.
van Klink. De kristallen werden vervaardig door Mevr. M.A. Otten-Scholten en
Dr. H.W.J. Blote. De tekeningen werden in een vlot tempo vervaardigd door

W.J. Brokaar en de foto's werden afgedrukt door W.F. Tegelaar. De Engelse tekst
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werd gecorrigeerd door Dr. R. Thiel en het manuscript werd getypt door

Mevr. E. de Haas-Walraven. Tot hen allen zeg ik: bedankt
















