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S T E L L I N G E N

I
Een onderzoek van de buiging van de fononenbundel door een nauwe

opening zou een onafhankelijke methode zijn om geheel uit te sluiten, dat z.g.
acoustische fononen een belangrijke rol spelen bij de in dit proefschrift be­
schreven experimenten over de voortplanting van warmtepulsen in het gebied
beneden 0.4°K.

II
Dit proefschrift, § 4.5.

De oplossing, die Z im a n  geeft van de differentiaalvergelijking, die de voort­
planting van warmtepulsen beschrijft in het gebied, waar de vrije weglengte
van de fononen groot is vergeleken met de diameter van de meetbuis, is niet
in overeenstemming met de fysische situatie in de gebruikelijke experimenten
over de voortplanting van warmtepulsen in vloeibaar helium.

J. M. Z iman, Phil. Mag. (7) 45, 360 (1954).

m
Bij de omrekening van oude waarnemingsresultaten op een nieuwe ver­

beterde temperatuurschaal, dient uitgegaan te worden van de oorspronkelijke
calibratie van de bij de meting gebruikte thermometers.

W. H. K eesom, Helium, Elsevier 1942, blz. 217.

IV
Voor een onderzoek van de geldigheid van de formules van H. L ondon in

het temperatuurgebied beneden 1°K, verdienen metingen van het mechano-
calorisch effect de voorkeur boven die van het fonteineffect.

V
D a n iels  en R obertso n  besluiten uit hun experimenten over de entropie van

ceriummagnesiumnitraat, dat voor molaire entropieën tussen 0.506 R en 0.1 R
de temperatuur constant is. Dit berust op een onjuiste interpretatie van de
waarnemingen.

J. M. D aniels, F. N. H. R obertson, Phil. Mag. (7) 44, 630 (1953).

VI
Bij het onderzoek van de paramagnetische relaxatie in het temperatuur­

gebied van vloeibaar helium zijn de verschijnselen veelal niet met één relaxatie­
tijd te beschrijven. Met behulp van een kleine uitbreiding van een methode
van B en z ie  en C ooke is het mogelijk de gemiddelde relaxatietijd te bepalen;
bovendien kan men een schatting maken van de grootte van het interval van
relaxatietijden.

R. J. Benzie, A. H. Cooke, Proc. Phys. Soc. 63 A, 201 (1950).



Het is mogelijk om voor lage tot zeer lage frequenties, met behulp van het
electrisch-mechanisch trillingssysteem van een galvanometer een tnllingskring
met grote kringkwaliteit te realiseren. Geheel analoog aan het gebruik van een
kwartskristal voor hoge frequenties zou men op grond hiervan een generator
voor lage frequenties kunnen construeren.

VII

VIII
Een van de beste methoden voor het op visuele wijze bepalen van de helder­

heid van kometen is de methode aangegeven door B e y e r . Voor uitgebreide,
maar zwakke kometen kan deze echter tot belangrijke systematische fouten
leiden.

M. Beyer, Astr. Nachr. 250, 233 (1933).

IX
Bij de beschrijving van de temperatuurafhankelijkheid van de electrische

weerstand, wordt veelal als enige parameter een karakteristieke temperatuur 0
ingevoerd, welke zijn fundering vindt in de theorie der roostertrillingen. Hierop
kan ernstige critiek worden uitgeoefend.

X
Het verdient aanbeveling bij de beschrijving van kristallen met anorganische

structuren, behalve tabellarische gegevens, ook een Debije-Scherreropname te
publiceren, teneinde het opsporen van isomorfieën te vergemakkelijken.

XI
Bij het natuurkundig practicum voor prae-candidaten in het eerste jaar zou

een systeem, dat meer het karakter heeft van een een-jaarlijkse cursus, de
doelmatigheid van dit practicum zeer ten goede komen. Dit geldt in het
bizonder voor hen, die natuurkunde als bijvak beoefenen.

XII
Bij het natuurkundig practicum voor prae-candidaten dient meer de nadruk

gelegd te worden op de methoden der experimentele natuurkunde dan op het
waarnemen van fysische verschijnselen.

XIII
De status van de z.g. wetenschappelijke staf aan de universiteit dient

duidelijker vastgelegd te worden.

XIV
Het verdient aanbeveling bij onderzoekingen, die zich daartoe lenen, mede­

werkers van verschillende wetenschappen in te schakelen.
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Teneinde te voldoen aan de wens van de Faculteit der Wis- en Natuur­
kunde volgt hier een kort overzicht van mijn universitaire studie.

Ik ving mijn studie aan in 1939 te Leiden en zette deze in 1941 voort
te Groningen. Na een onderbreking ten gevolge van de bekende oorlogs­
omstandigheden legde ik daar in 1946 het candidaatsexamen letter A af.

Vanaf Januari 1947 werkte ik op het Kamerlingh Onnes Laboratorium
te Leiden onder leiding van Prof. Dr C. J. Gorter .

In Juni 1951 legde ik het doctoraalexamen experimentele natuurkunde
af. De tentamens in de theoretische natuurkunde en de mechanica werden
mij afgenomen door Prof. Dr. H. A. K ramers en Dr. J. K orringa .

In 1947 werkte ik onder leiding van Dr. D. B i j l  aan een onderzoek
betreffende de paramagnetische relaxatie van enkele aluinen, welk werk
door mij werd voortgezet in het academiejaar 1947-1948 tijdens het
verblijf van deze te Oxford.

Vanaf October 1948 hield ik mij bezig met de opbouw van een opstelling
voor metingen aan vloeibaar helium beneden 1° K; van de eerste resul­
taten (de soortelijke warmte) kon mededeling worden gedaan op het
congres voor lage temperaturen te Oxford in 1951. Na de afsluiting van
deze experimenten werkte ik aan het onderzoek van de voortplanting
van warmtepulsen in vloeibaar helium in hetzelfde temperatuurgebied.

Na mijn doctoraal examen werd ik belast met een deel van de leiding
van het practicum, aanvankelijk nog als assistent, vanaf 1 Januari 1953
echter als hoofdassistent, terw ij 1 ik vanaf 1 Januari 1955 de rang van
wetenschappelijk ambtenaar kreeg. In deze functie werkte ik nauw
samen met Dr. M. J. Steen  land .

De soortelijke-warmte-experimenten werden verricht tezamen met
J. D. W asscher, de metingen aan warmtepulsen met achtereenvolgens
mevr. T. van P esk i—T in b erg en  en J. W ie b e s , terwijl de electronische
apparatuur voor dit laatste onderzoek tot stand kwam in samenwerking
met Ir. F. A. W . van d en  B urg .

De leden van de technische staf van het Kamerlingh Onnes Labora­
torium, die in het bizonder betrokken zijn geweest bij deze experimenten,
waren de cryogeen-technici D. d e  Jong en T. N ieb o er  en vooral de chef-
glasblazer A. R. B. Ge r r it se , die ook bij het ontwerpen van de glazen
apparatuur van advies diende.
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IN T R O D U C T IO N

Liquid 4He is probably the most remarkable liquid existing. I t  is in
equilibrium with its vapour under atmospheric pressure at 4.2° K  and is,
therefore, with the exception of its rare isotope 3He, the substance with
the lowest boiling temperature. Moreover, helium is the only fluid which
does not solidify under its saturated vapour pressure. Between 4.2° and
2.19 K, the so-called helium I  region, the liquid behaves in many ways
as an ordinary liquid, but in the realm of helium II-below  2.19° K ,
the so-called 1-point—it shows an abnormal behaviour. Many experiments
have been performed on the properties of liquid helium II  in the region
above 1° K . An exceptionally large conduction of heat, leading to the idea
of superfluidity, was observed. Moreover, the fountain effect and the
mechanocaloric effect were observed. The phenomenon of the fountain
effect is the existence of a pressure difference between two vessels con­
nected by means of a narrow slit and maintained at different temperatures.
The mechanocaloric effect is the production of heat (cold) in a vessel
when helium is flowing out (in) through a narrow aperture. Later on the
so-called second sound, showing the possibility of practical undamped
propagation of heat waves, was discovered.

The temperature region below 1° K, which cannot be attained by the
usual method of reducing the pressure above the liquid, has up till now
produced only few experimental results. The normal helium region could
be extended down to 0.8° K by using a diffusion pump with a very large
capacity, but this is a comparatively small achievement [1, 2]. The
obvious method for making experiments on the liquid below 1° K is, of
course, to bring it in contact with a paramagnetic salt and to use the
well-known demagnetization method for cooling.

In this way experiments on the specific heat, only above 0.6° K [3, 4]
and on second sound [5, 6] were tried. The latter were performed by
observing the propagation of heat pulses. Some preliminary results of
experiments on the fountain effect [7] and the heat conductivity [8] were
published. Recently some data on the attenuation of normal sound have
also appeared [9].

The experiments below 1° K have one annoying obstacle in common:
the temperature cannot be kept constant, but increases continuously
towards the temperature of the surrounding bath (1°K). Therefore, a
good insulation is required to preserve th e  tem perature-equilibrium
Moreover, the amount of heating used in making the observations should
be kept small as there exists no bath with a large heat capacity at these
low temperatures.



xn

Experiments on the specific heat and on the propagation of heat pulses
will be described in the following pages. The measurements on the specific
heat could be extended down to about 0.25° K by the use of a paramagnetic
salt with small heat capacity. With the apparatus employed it was also
possible to get new data on the specific heat up to 1.8° K.

The propagation of heat pulses was investigated in much greater detail
than in the earlier experiments mentioned above. On the basis of the data
obtained it could be suggested that second sound in the proper sense
exists only in the temperature region above 0.65° K.

This thesis consists of four chapters. In the first a review is given of
theoretical considerations required for an explanation of the experimental
results. Chapter II  contains the experimental arrangement and in chapter
III  and IV the results of the specific heat measurements [10] and of the
observations on the heat pulses [11, 12] are presented and discussed.
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CHAPTER I

THEORETICAL CONSIDERATIONS

1.1. Introduction. I t  is the purpose of this chapter to give a picture of
the theoretical background of the experiments under consideration. I t  is
not the object to give a full account of the large amount of theoretical
work done on the helium II  problem. Review papers [1, 2, 3, 4, 5] may be
referred to for a complete narration.

The present chapter contains mainly the part of the theory dealing with
the specific heat and the propagation of second sound. Moreover, the
considerations with respect to the latter are restricted to small amplitudes.
The phenomena occurring in the vicinity of the A-temperature only are
also excluded.

A very successful approach to the problem of liquid helium has so far
been made by means of the so-called two-fluid model. Curious phenomena
as the fountain effect and the mechanocaloric effect could be explained.
Moreover, on the basis of this model it was predicted that apart from
normal sound a second kind of wave propagation was possible in the
liquid. This effect, the so-called “second sound”, was actually found experi­
mentally by Peshkov [6] in 1944.

In section 1.2 some consideration is given to the two-fluid model and
on the basis of this model wave propagation in the liquid is considered in
some detail in section 1.3. No attention will be paid to effects of large
velocities; the hydrodynamical equations used will be restricted to the
so-called acoustical approximation, i.e. to first order terms in the velocities.
Included are, however, irreversible processes of this order as viscosity
and heat conductivity.

The microscopic background of the two-fluid model is discussed in
section 1.4. A microscopic theory is in any case required for an explanation
of the results of the specific heat experiments. I t  seems that in the
temperature region under consideration, i.e. not very close to the /l-point
and in particular below 1°K, the theory of excitations originally put
forward by Landau [7, 8] and improved especially by Kronig and
collaborators [9, 10, 11] and by F eynman [5, 12, 13] gives the most
promising approach. The connection between this theory and the two-
fluid model is discussed in section 1.5.

The irreversible processes occurring in liquid helium II  can be analysed
by considering the interactions between the excitations. A summary of
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the work of Landau and Khalatnikov [14, 15, 16, 17, 18] is given in
section 1.6.

In section 1.7 attention is paid to the influence of the mean free path
which becomes presumably very large on second sound propagation at
low temperatures. I t  is argued in the same section that below 0.6 K no
second sound in the proper sense can occur.

1.2. The tioo-fluid model. The two-fluid model describes the properties
of liquid helium below the A-point by considering the liquid as a kind of
mixture of two inseparable fluids. The first one behaves as a normal
liquid and is, therefore, called the normal fluid. There exists, for instance,
a normal viscosity. The second part behaves as an ideal non-viscous liquid
and is, therefore, called the superfluid.

At any point in the liquid the density is now built up of two parts:

(1.01) e= 6n+Sr

At the temperature of the transition to the normally behaving helium I
liquid, the so-called A-point, gn becomes equal to g and g, equal to zero:
the liquid loses its peculiar properties. At absolute zero it is supposed
that no normal fluid is left and, therefore, g„ becomes equal to g.

Historically the two-fluid model was first formulated by Tisza [19] in
1940. He based the model on the ideas of F. London [20] who gave as a
possible explanation of the liquid helium problem the analogy with the
phenomenon of the condensation in momentum space occurring in a
perfect gas, obeying Bose-E instein statistics. I t  proved, however, very
difficult to extend the theory of a perfect gas to the liquid, particularly
because of the large interactions between the molecules in the latter.
Certainly these interactions cannot be included by means of simple
perturbation methods. Independently Landau [7] developed his ideas
on a quantum hydrodynamics and arrived at a two-fluid model. At that
time, however, Landau’s ideas were considered to be rather obscure and
intuitive and did not contribute much to a clear picture of the microscopic
background of the two-fluid model. In  its present clarified shape this
theory will be discussed in a later section of this chapter.

In the meantime the two-fluid model was disconnected from any
microscopic explanation [21]. As a pure phenomenological theory it
contributed much to the explanation and description of the properties of
liquid helium II. The fountain effect and the mechanocaloric effect could
be expressed in terms of thermodynamical quantities. The conclusion of
the possibility of a second kind of wave propagation followed immediately
from the presence of two hydrodynamical equations, one for the normal
and one for the super-fluid. ..

The thermodynamic foundations of the two-fluid model were laid by
H. London [22] and by Gorter [23], who arrived at somewhat different
conclusions. H. London supposed the whole entropy to be carried by the



normal fluid. The equations of Gorter included the more general case
of a non-zero entropy of the superfluid and a possible entropy of mixing.
Finally de Groot, J ansen and Mazur [24] have considered the problem
on the basis of the thermodynamics of the irreversible processes. Their
conclusions are in agreement with Gorter’s. I t  is not the purpose to
discuss here the thermodynamic foundations in detail. In the following
the equations of the two-fluid model will be written in the general form
used by Gorter. The more special equations used by London must
also be mentioned, because they are in accordance with the formulation
of the two-fluid model on the basis of the theory of excitations described
m section 1.4. As will be seen in that case the entropy of the superfluid is

Effects of the first degree in the velocities will be considered only.
The mutual friction term of Gorter and Mellink [25] for instance is

(1 -02) = grad grad T +Vn (V2 vn+ 1 grad div v j

f1-03) =  -  y  grad P + 2^5 grad T

vn and vg are the velocities of the normal fluid and the superfluid, P  is
the pressure, rjn the coefficient of the normal viscosity and V2 is the Laplace
operator. As has been stated, the superfluid is supposed to have no
viscosity. The second term on the right in both equations is the diffusion
force which has, of course, the same magnitude but opposite sign in
equation 1.02 and equation 1.03.

x being the relative concentration of the normal fluid qJ q.
According to London and Landau,

8  being the entropy per gram of the liquid.
From these equations the dependence of the pressure gradient due to

the fountain effect on the temperature gradient can be shown directly by
T w f^ e ld f the Caae °f  Zer° Vel°Cities and accelerations (the steady state).

zero per definitionem.

omitted.
The equations of motion for the normal and the super-fluid respectively

description by Gorter
The quantity 8* has the dimension of the entropy, in the original

»n by Gorter

8*=1)8fix

S*=QSIen

(1.04)
which specifies to
(1.05)

according to H. London.

grad P= SnS* grad T

grad P = q8  grad T
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When a liquid is flowing into or from a vessel through a hole which only
allows the superfluid to pass, heat is absorbed or evolved in a reversible
way. This is the so-called mechanocaloric effect. This effect and the
fountain effect are in the general case connected by the relation

The amount of heat withdrawn or developed per gram of the liquid

Finally it should be remarked that Tisza [21] made the special assump­

Sx being the entropy at the A-point. This formula appears to be approxi­
mately realised in the temperature region above 1° K.

the liquid. To give the derivation extra equations determining the con­
servation of the quantities involved have to be added.

The first of these equations is, of course, the equation of continuity ot

grad P/grad T = qQ/T. [24]

flowing in or out is

(1.06) Q = qJS*Iq

according to the general theory of Gorter.
I t  reduces to

(1.07)
in H. London’s derivation.

Q=ST

tion

(1.08) x =8IS!l.

the total density,
(1.09) | |  + div (gn vn+ e„ vs) = 0.

As to the second equation different choices can be made [4], The
quation used here is that of the conservation of the entropy. I t  is suppose

Ly point in the liquid the quantity a; dependsthat at any time and at an;
only on the temperature. In that case

(1 10) d lv fv .-T ,,) -  i  P‘T-1).

Of the velocity of sound, only small linear deviations from the overafl
equilibrium values of the velocities, the pressure and the temperature are
considered. Moreover, thermal expansion can be neglected m this case.
Thus, for instance:

(7>PlDQ)8=(i>PlDQ)T-
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Taking these simplifications into consideration, using the second law
of thermodynamics on equation 1.10, introducing the relative velocity
w =vn- v g and the total current flow j = envn+£>gvs, one gets after a simple
transformation of 1.02 and 1.03 the set of four equations:

(1.11) ^ - S *  g r a d T '+ ^ (P 2+^graddiv) (j+ esw) =  0

(1.12) ! +  ̂ S™1 Q'—Y  (V*+ i  div) (j +  Qa w)=  0

(1.13) ¥ +<iiv j =  0

(1.14)

The fluctuations of T  and q from their equilibrium values are indicated
by a dash.

As a solution of these equations a plane wave in the z direction is
considered. The dependence of w, j, q’ and T ’ on t and 2  is now of the form
exp {ico(t—z/v)}. The result is

V2 w0+ vS* T'0+ \ i ^  (j0+ gB w0) =  0

(?o+e.«,o)=o

veó-?o=°

»2$T'0- V ^ S * W 0- * $ T '  =  0

the suffix 0 indicating the amplitudes.
By the elimination of TQ and w0 one gets two homogeneous equations

in j0 and q'0 compatible for

d.15) •

By first eliminating ƒ„ and g'Q two equations in w0 and T'0 result, yielding
in a similar way:

n  e* Cr e \ 3 e * Vn Cv)

V1 is the velocity of normal sound, vn that of second sound.
Quadratic terms in co are neglected in this derivation. Therefore, it is

only valid for not too high frequencies. More explicitly 16^gaco2/9g2ga
must be small compared to the “static” value of v\ and 4 ^ alw2/3p2?nc°
small compared to the “static” value of v^.

The nature of the two “sounds” is clear from this derivation. In the
first sound the energy is oscillating between the kinetic energy connected
to the total current j and the elastic energy connected to the local
deviations of q from its equilibrium value. This process is reversible apart
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from the damping caused by viscosity. Damping from the heat con­
ductivity does not occur, thermal expansion being neglected. In practice
this is fully justified.

On the other hand in the second sound the energy is oscillating between
the kinetic energy connected to the relative motion of the two fluids and
the energy connected to the local deviation of T  from its equilibrium value.
Because of the supposition that the local value of a; is always in equilibrium
with the local value of T, this latter energy behaves as an elastic energy of
the normal fluid (or the superfluid). Again this process is reversible apart
from the damping, to which this time both viscosity and heat conductivity
contribute.

In H. London’s description the static value of becomes

The general form of the complex dispersion equation of the velocities
can be written

the suffix 0 indicating the velocity at zero frequency.
Of course, real dispersion only occurs in the second approximation. The

absorption coefficient @ can be easily found; it is equal to the imaginary
part of co/v:

o I ®1
( 1. 19) * •

This gives, however, only a part of the actual attenuation. K halat-
nikov’s calculations which will be discussed later on lead to the intro­
duction of second viscosity. This means adding terms y1 grad div v8 and
y2 grad div vn to equation 1.03 and y3 grad div v„ and y4 grad div vn to
equation 1.02. The values of <x are consequently changed and become

(1.20) *i=-(i»7+yi+ys+y3+y4)

The /? values, of course, are changed in the same manner.
Absorption effects due to a finite relaxation time for the transformation

of the normal into the super-fluid and vice versa were not considered.
If such effects are to be included, a; is no longer a function of T  only.
These effects were discussed by Kronig et al. [26] and Gorter et al. [27]
and may be responsible for the high attenuation of first and second
sound near the A-point. Because this is out of the range of the present
experiments, they will not be discussed here.

I t should be emphasized that only effects due to absorption in the bulk
liquid have been considered. For a consideration of the extra attenuation
in narrow tubes (surface effects) may be referred to publications by

(1.17) Qn

(1.18) v*=v*+icoix,

( 1. 21) ( S (i,?+y4)~ (ya+y8)+riS l  + e^-
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Dingle [28] and by P eshkov [29]. In  those papers attention is also given
to the coupling occurring between the two sounds.

Large amplitude effects (shock waves) have also been omitted. These
have been considered by several authors (see Dingle [2]).

1.4. The theory of elementary excitations. As has already been mentioned,
a microscopic explanation of the helium II problem has been tried along
two lines, both ways of attack leading to the two-fluid model. At first
sight the theory of the Bose-E instein condensation appears to be the
most promising one, especially in view of the apparent absence of a A-point
in 3He which obeys, per force, F ermi-D irac statistics. Unfortunately,
however, only little progress could be made with respect to quantitative
conclusions, although the recent approach by F eynman to this problem
appears somewhat more promising [30],

Instead of starting with an explanation of the A-transition the theory
of excitations considers the problem beginning at absolute zero. I t  is not
intended to give a complete account of the development of this theory
from the original quantum-hydrodynamics of Landau [7], via papers by
H. A. K ramers [31] and Kronig et al. [9, 10, 11] to the recent work of
F eynman [12, 13, 14]. The only purpose is to give a very short summary
of this theory as it stands now.

At absolute zero 4He is, of course, in its quantummechanical ground
state. Since the zero-point energy is very large, the small attractions
between the atoms are not sufficient to form a crystal-lattice as occurs
with all other substances (with the exception of 3He). Helium remains
therefore a liquid down to absolute zero [32].

If internal friction would occur in this liquid, the kinetic energy of
helium flowing through a tube would gradually be diminished, the energy
being transferred to the wall. Such a process should have to start by first
exciting the internal motion of the liquid in the neighbourhood of the
walls. This can easily be seen by considering the situation with respect to
the coordinate system of the moving liquid. As has been pointed out by
Landau, these excitations cannot be created, unless the velocity of flow
is very large and consequently for moderate velocities the liquid is a
frictionless superfluid. Its motion is of a potential kind, i.e. the curl of its
velocity is zero.

When the liquid is heated, excited states are occupied. The obvious
possibilities for those low energy states are standing sound waves. By
appropriate linear combination of these, progressive waves can be formed
and by quantization the so-called phonons are produced. Certain locali­
zation can be ascribed to them by forming wave-packets in the usual way.
Thus one can form a picture of “particles” moving in the underlying
superfluid liquid. For the phonons applies, of course:

(1.22) co =  Vjk.
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The energy attributed to one phonon is

(1.23) e=h(o

and it carries a momentum

(1.24) p=fck.

Consequently also

(1.25) e=Vjp.
k is the wave vector, i.e. the vector with the direction perpendicular to
the planes of equal phase and with a magnitude of 2ji over the number of
wavelengths per cm. is the velocity of the phonons, i.e. the velocity of
sound.

The energy of a phonon at a temperature T  is of the order xT, x being
the Boltzmann constant. Thus at 1° K m 10u  Hz. The average wave­
length y  of a phonon is, therefore, of the order of 10“*, i.e. about 30 times
the atomic distance. For this reason in a theory of phonons no attention
has to be given to the atomic structure, in other words the liquid can be
considered as a continuum.

The procedure of quantization, roughly indicated here, has been placed
on a sound quantum mechanical base by Kbonig and Thellung [9].

A second kind of excitation may occur with wavelengths of the order of
the distance between the atoms (about 3 x 10~8 cm), i.e. k of the order of
2 x 108 cm-1. The energy of these short wave excitations is much larger
than that of the long wave phonons. On the other hand it can be argued
that exciting a state with wave vector of the order of the reciprocal of the
atomic separation is easier than states with somewhat larger or smaller k.
Consequently a minimum may be supposed to occur in the e(k) plot of
these excitations.

The energy of the short wave excitations may then be written, in any
case as a first approximation,

.  « * ( * • - . <p * - po)(1.26) e=A + 2„- - = J + — 2—

where n is an effective mass, A the energy gap with the ground state of
the liquid. To these new excitations the same “particle”-like behaviour
can be assigned as that of the phonons.

The exact nature of the short wave excitations is as yet not completely
understood. Landau concluded to similar excitations by quantizing vortex
motion in the quantumliquid. He called them “rotons . This name is
now in common use, so it will be used here, though it is by no means sure
that rotation is characteristic of these excitations.

The nature of the rotons was more closely considered by F eynman. Of
course, for a calculation of the parameters of equation 1.26 from first
principles a more exact picture is required than that given above.
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Feynman’s treatment has not been completely successful in this respect.
The difficulty is to find the right wave function. He shows that several
possibilities lead to an equation of the form 1.26. They involve, however,
always a close consideration of the atomic structure of the liquid. Landau’s
procedure of quantizing vortex motion without taking account of this
appears now to be dubious.

Feynman [13] and also H. A. K ramers [31] were the first to emphasize
the importance of the atomic structure for an explanation of the rotons,
although A. Bijl [33] just in considering the motion of one atom with
respect to others, arrived at excitations of a similar character even before
the introduction of the name “roton”.

Because A/x is experimentally found to be about 9° K, at temperatures
of the order of 1° K only those rotons with wave vector just about
k r* *0=2.0 x 108 cm-1 are excited. This is perhaps the reason for the
good results with the simple s(k) dependence of equation 1.26.

The s(k) curve of the excitations in helium II  is shown in fig. 1.1.
Normally only phonons just near the origin are present. (At 1.5° K the
average wave number of a phonon is about 107 cm-1.)

cm IO

Fig. 1.1. Energy spectrum of the elementary excitations in He IT.

The particle-like excitations thus formed can “collide” with each other.
If the density of the excitations and their interaction is not too large,
they can be considered as a gas” in thermodynamic equilibrium to which
normal statistical methods can be applied. The difference with a real gas
is that the number of particles in general is not preserved. The interaction
of the phonons is a consequence of the non-linearity of the equation of
state of the liquid [9]; the interaction between phonons and rotons and
rotons with each other is a more difficult problem, the nature of the rotons
not being specified. Some kind of interaction, however, will certainly
occur. The excitations can also collide with the walls of the container,
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thus being responsible for the transport of energy and momentum to the
walls. Consequently friction will occur and the liquid will, for instance,
show viscosity. A relation of the excitations with the normal part of the
liquid presented in the two-fluid model becomes evident.

The condition of not too many excitations together with not too large
interaction puts a limit to the applicability of this theory. With rising
temperature the amount of excitations increases rapidly. What exactly
occurs to them at the A-point is as yet rather unintelligible, but in any case
it is evident that near this point the density of the excitations becomes
too large to conserve the picture of a gas of weakly interacting single
“particles” . Probably there is no sense in talking of single excitations in
this region. As will be seen, deviations pointing to this appear to occur
in the region of a few tenths of a degree below the A-point only.

F eynm an  [5] considered the reason for the scarcity of the number of
excited states in the whole temperature range not too near the transition.
This scarcity, as has been said, is essential for the formation of a gas of
single excitations. He concludes that this scarcity is a natural consequence
of the B ose- E in st e in  statistics obeyed by the 4He liquid. In a F ermi-
D irac liquid probably a large amount of low energy states is present. This
would give a simple explanation of the different behaviour of 8He.

Another explanation of this has been proposed by d e  B oer  [34], He
considers a roton to be represented by the motion of two atoms in a cell.
Then, of course, the statistics plays an important role in the behaviour
of a roton.

Accepting now the notion of a gas of weakly interacting excitations
(weak meaning in the usual sense that the interaction makes no appreciable
contribution to the total energy, but only preserves the internal equi­
librium), it is possible to calculate, for instance, the specific heat. I t  is
obviotfs that only the excitations contribute to the energy, the specific
heat, the entropy etc. of the liquid. Each one of these quantities is the sum
of contributions of the phonon and the roton gas separately. The phonon
gas obeys B ose- E in st e in  statistics, the roton gas probably also, but in
view of the large minimum energy one may just as well apply B oltzmann

statistics in the latter case.
The energy of the phonon gas per gram of the liquid is consequently

(1-27) =  Q (2ji)* ƒ exp (s/xT) —1 ^
By inserting the expressions 1.24 and 1.25, integrating and differentiating
with respect to T  the specific heat can be calculated. The outcome is a
simple low temperature D e r ije  term, proportional to Tz. I t  can be written

1ft v* I T z

( 1-28)

The only difference with the usual D e h u e  specific heat occurring in
crystals is the absence of transverse waves.
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The calculation of the roton contribution can be carried out in a similar
way. The total energy of the roton gas per gram of the liquid is

(!-29) ^ w / eeX p( “' e/*2’>d*k-

This yields for the specific heat

(1.30) 2^> p*A* 1 r  hT
1 e(2j»),/*x1/»ft‘ T ‘1» |_1 *1~ ó m 0 - J / x T

The free energy and the entropy can, of course, be determined in the
same way, using well-known thermodynamic expressions.

At low temperatures expression 1.28 should give the main contribution
to the total specific heat, at higher temperatures expression 1.30 pre­
dominates and the temperature dependence is much steeper.

1-5. The derivation of the two-fluid model. The derivation of the equations
of the two-fluid model from the theory of excitations is given in several
papers (e.g. Kronig [11]). A short review is given here.

The first problem is to get a notion of gn. For the time being inter­
actions between the excitations and the walls of the container are neglected.
One has now firstly the whole liquid moving with velocity vg. Secondly
the excitations may “drift” in the liquid with average velocity w with
respect to the liquid.

Due to the motion of the background liquid the energy of an excitation
of wave vector k (i.e. momentum p) is modified by the Doppler effect:

co' = «o -)- k • vg.
Consequently also
(1-31) c' = c+p-Vg.

The distribution function of the excitations at rest with respect to the
liquid (i.e. w = 0) is
(1*32) fo(p)= 1/exp (ejxT — 1).
This is modified to
(C33) /(P) = l/{exp (e—w-p)/xT—1},
if the excitations have a drift velocity.

In the latter two formulae it is supposed that Bose-E instein statistics
are obeyed, but this has no influence on the resulting general formulae.
Also e and p are chosen as variable instead of o> and k, because this is
somewhat more illustrative.

Developing /(p) in a series of ascending powers of w gives

( L 3 4 ) / ( P ) = / o ( P ) - ^  w-p-K...

I t  is easy now to calculate the total momentum, i.e. the total mass flow
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of a unit of volume of the liquid. The total momentum of the excitations
in the z direction is

-P,=^i//(P)^d3P-
Using the relation 1.34 and neglecting all but the first power in wz yields

00

(1.35) P , = ^ X ^ J ^ P * d p = e B«;,.
0

This can be considered as the definition of the normal density gn. By
adding gva one finds the total current of the flowing liquid
(1.36) j= ev(,+enw =envn+e9va
with vn = w + vg i.e. the mean velocity of the excitations in the laboratory
system and ga= g -  gn. This is in complete agreement with the two-fluid model.

In the same way taking into account also the squares of the velocities
one finds for the total kinetic energy

Pidn=kX + M -
I t  is now easy to find the equations of the two-fluid model from the

laws of conservation of energy and momentum. They can be expressed in
gn and thermodynamic quantities. The latter can he found from statistical
formulae analogous to 1.27 and 1.29. An additional assumption is made
by putting curl v8=0. Only potential movement is supposed to be possible
in the superfluid [12].

The law of conservation of energy, only involving the excitations, of
course, yields
(1.37) ^ ^  +  div(gSvn) =  0.

This equation shows clearly that the entropy is only connected with the
normal fluid and is identical with equation 1.10 in H. L ondon’s inter­
pretation of the two-fluid model, except for the heat conductivity term
which is neglected in the present derivation.

Secondly the law of conservation of momentum of the excitations gives

(1.38) HQnW)l*t=  -Q8  gradT-
This equation is analogous to 1.11.

Equations 1.37 and 1.38 give together the wave equation for second
sound, irreversible effects being neglected. The interpretation of second
sound in the excitation theory is now also clear. On the one hand one has
the movement of the excitation gas with respect to the underlying liquid.
On the other hand one has the local density fluctuations of the energy of
the excitation gas. These density fluctuations are analogous to density
fluctuations of the gas itself. Thus there is a close resemblance between a
second sound wave in the excitation gas and an ordinary sound wave in a
gas of molecules. This analogy is not quite exact, because the motion of
the background liquid plays an essential role.
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Finally the law of conservation of momentum applied to the entire
liquid yields the expected equation

Together with the law of conservation of mass 1.13 the relations 1.37,
1.38 and 1.39 form the four equations of the two-fluid model. 1.13 and
1.39 together give the wave equation of first sound. I t  should be stressed
again that these derivations are only correct, if one can neglect other than
linear terms in the velocities. Otherwise quantities as qb and S  are
dependent on the velocities and consequently lose their simple meaning.
This is, however, not the only complication, not even the most important
one occurring at large velocities (see section 1.8).

A few words must be added about the velocity of second sound according
to this theory. As the equation of state of the phonons is known (formula
1.25), the due to the phonons can be calculated by means of formula
1.35. Moreover, as has been seen, Svh, cnh can also be calculated. All
quantities of equation 1.17 are now known and the velocity of second
sound in the temperature region below 0.5° K, where only phonons are
important, can be computed. At absolute zero it is found that v2n =
This means % =  137 m/sec. Since Tisza [21] had predicted a value of
%  decreasing with temperature below 1° K and finally becoming zero at
T=0, it could be considered as a great triumph for Landau’s theory,
when experiments revealed that indeed a rapid increase of velocity below
1° K occurred. As will be shown, however, complications arise at these
low temperatures.

At higher temperatures, where rotons play an important role, equation
1.17 can be employed to calculate qd from measurements of %. Also by
using equation 1.35 information can be gained about the constants
occurring in the equation of state of the rotons. Formula 1.35 yields for
the roton contribution of gn:

This equation and a similar equation of cv (formula 1.30) make it possible
to calculate A, p0 and [i from experiments on the second sound velocity
and the specific heat together.

In the derivation of the four equations of the two-fluid model irre­
versible effects were neglected. This is equivalent to the assumption that
the quantities are in thermal equilibrium, though they may still be
functions of coordinates and time. This is only true, if the times required
for establishment of equilibrium in the gas of excitations is negligibly
small compared to the times characterizing the change of the macroscopic
conditions (e.g. the reciprocal of the frequency of a wave of first or second
sound), or, what is essentially the same, if the mean free path of the
excitations is negligibly small compared to the distances over which the

(1.39) <> (&vn+g8vs)/ö< = grad P.

(1.40) (Pae n r = f ( 2 7 T )  ,/l
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macroscopic conditions change appreciably (e.g. the wavelength). If this
condition is no longer fulfilled, hut the ratio of tunes or distances is still
small, effects of deviations from equilibrium occur, but can be treated
as linear deviations. These have been considered in the theories of Landau
and Khalatnikov. The result of this theory is the introduction of extra
terms in the equations of the two-fluid model. These are the terms of first
and second viscosity and heat conductivity already mentioned in section
1.2 and section 1.3. In section 1.6 some attention is given to Khalatnikov’s
calculations.

If the mean free paths are of the order of the wave lengths, a quantitative
description of the phenomena is practically impossible. The extreme case
of very large mean free paths gives again the possibility of a quantitative
theory, if the dimensions of the experimental vessel are small compared
to them. The latter two cases are discussed in section 1.7.

1.6. The theory of Khalatnikov. Essentially Khalatnikov tries to solve
the problem of the coefficients of the irreversible effects in helium II  by
considering the interactions or collisions between the excitations in a way
very analogous to that of the kinetic theory of gases [35].

In  a formal way [17] one can start with the general Boltzmann

equation for the gas of excitations,

(1.41) | [ + | j ( / r )+^(/p)=-7(/)-

ƒ is the appropiate non-equilibrium distribution function and J(f) is the
so-called collision integral, dependent on the interactions of the particles
in question. For small effects in the sense of the last part of section 1.5,
i.e. for small velocities and small deviations from equilibrium, the first
order of approximation is sufficient. This means that in the left hand side
of equation 1.41 the equilibrium function ƒ„ of equation 1.33 can be
inserted. In a formal way the Boltzmann equation can now be solved for
ƒ_ƒ which proves to contain terms proportional to div vn and div va,
grad T  and a term with a tensorial character. This new value of ƒ can now
be inserted in the conservation laws for energy and momentum in a way
analogous to the procedure followed in section 1.5 with respect to ƒ„. The
first two terms of ƒ—/0 give rise to second viscosity terms, the third term
to the heat conductivity term and the last term to first viscosity only
connected with vn. The result is the set of equations 1.11 to 1.14 of section
1.3 in which the second viscosity terms mentioned in section 1.5 are
inserted. # _

In this way K halatnikov indicates the formal introduction of the
effects mentioned. For an actual calculation of the coefficients mentioned,
however, one has to know the nature and magnitude of different kinds of
interactions occurring. This is a very difficult problem especially because,
particularly with respect to the rotons, the nature of the excitations is
still an open question. This problem has been attacked by Landau and
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K halatnikov in a number of papers [14, 15, 16, 18]. A very short
summary of the results will be given here (see also W ilks [45]).

Firstly the normal viscosity and the heat conductivity will be con­
sidered. These effects are determined by the transport of momentum and
energy. This transport can be achieved by rotons as well as by phonons.
For this reason the coefficients of the viscosity (rj) and heat conductivity
(A) are the sum of a roton (rjt, A,) and a phonon (??ph, AjJ contribution.
The suffix n of rjn will be omitted from now onwards.

To calculate the viscosity K halatnikov starts by writing down two
separate Boltzmann equations, one for rotons and one for phonons, only
t.a.Ving into account a velocity gradient. The procedure for the calculation
of the heat conductivity is similar, now using the appropriate Boltzmann
equations with a temperature gradient. The rotons behave as heavy
particles compared to the phonons. (The value of p0 at T — 1 K is about
50 times the average momentum of a phonon.) Therefore, the influence of
the phonons on rjt and A, is negligible. The interaction of the rotons is
unknown. The best approach which can be made to the solution of the
problem is by taking the interaction energy to be proportional to a <5-
function of the distance between two rotons. This is very similar to the
case of a gas of solid spheres. The result is, of course, a value of r\T inde­
pendent of temperature and a value of Ar proportional to 1/T. A common
constant has to be found from the experiment. Khalatnikov uses for
this the rather constant value of rj measured between 1.4° K and 1.8° K[36].
The phonon viscosity (rjDh) is supposed to be relatively small in this region.

The calculation of rjph and A,* is much more complicated. Three different
interaction processes have to be taken into account. Firstly the elastic
scattering of phonons, secondly collision processes of phonons accompanied
by the creation or annihilation of a phonon (inelastic scattering) and
lastly the scattering of phonons by rotons. The first problem is to find
the distribution function ƒ in the case of the inequilibrium conditions due
to the gradient in question.

The mentioned processes are each characterised by a characteristic time
dependent on temperature. This time indicates the rate of restoration of
equilibrium by each process and is closely connected with the collision time.

In the calculation of the phonon elastic scattering an important role
is played by the nonlinear terms in the energy momentum relation of a
phonon. Khalatnikov has to make a very rough guess as to its magnitude
and, therefore, the results in this case are in general rather uncertain. I t
is, however, not unreasonable to accept with Khalatnikov that this
process has by far its largest probability (i.e. its largest cross section) for
small angle scattering. This results in a very rapid exchange of energy in
one direction of motion of the phonons.

The inelastic scattering processes cannot be calculated. The most
important one is a 5-phonon process, i.e. 3 phonons are reverted into
two or vice versa. K halatnikov has to adopt the magnitude of the
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appropriate time constant 0j,hph to experimental data on the absorption
of first sound. 0 ^ ph is proportional to T9. (The upper index i stands for
“inelastic” , e will indicate “elastic” .)

The process of scattering of phonons by rotons again is calculated by
Khalatnikov. He assumes that phonons and rotons interact, because
the heavy rotons influence the local value of the density and, inasmuch
a phonon is a density wave, collisions can take place.

As the energy spectrum of a roton is known, if data are available on
quantities as —, — , the cross section of this process can be calculated.

Also the value of y* is required.
The time constant 0^h proves to be proportional to l/A/T4, Nt being

the number of rotons per cm3. As the above mentioned quantities are
not very accurately known (they can be found from experiments on the
pressure dependence of vn [46, 47] and v1 [48, 49], the non-temperature-
dependent factor of 0£,h is only approximately determined.

The main function of the elastic scattering of phonons, as has been
mentioned, is a rapid exchange of energy for phonons moving in a certain
direction. For this reason ƒ has the form of a simple equilibrium distri­
bution function, but with a temperature T', in general not equal to the
local mean temperature of the phonongas. T '—T  is a function of the
direction with respect to the direction of the gradient (in the viscosity
case also of the direction of the macroscopic velocity).

General equilibrium within the phonon gas is opposed by the process of
scattering of phonons by rotons. This latter process proceeds much slower
than the small-angle phonon-phonon scattering just mentioned, but faster
than their large-angle scattering.

The main influence of the 5-phonon process is a tendency to attain the
equilibrium number of phonons belonging to the temperature of the phonon
gas. Moreover, the rapid non-elastic process in which two phonons are
converted into one and vice versa, noted by H. A. Kramers [31], con­
tributes probably also to this. Owing to the conservation laws it can only
occur without change of direction. This process has been excluded by
Khalatnikov. The cross section of the 5-phonon process has a large
maximum for small angles.

At temperatures below 0.9° K it is found that 0 phph ̂  anc ’̂ there­
fore, the equilibrium with respect to the number of phonons is actually
established in the phonon gas. At higher temperatures these time constants
appear to be of about the same order of magnitude and the non-equilibrium
of the number of phonons has also to be accounted for in the evaluation
of /.

At the lower temperatures (T < 0.7° K) 6£,h becomes very large, because
the number of rotons decreases very rapidly with decreasing temperature.
In the case of viscosity the phonon-phonon scattering process then
replaces the phonon-roton process in the limitation of the momentum
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transport. According to K halatnikov this process cannot affect the heat
conductivity. A similar situation exists in the theory of the heat con­
ductivity in non-metal solids [37].

In the final part of the calculation the computed values of ƒ are inserted
in the equation for transport of momentum and energy respectively.
After integration over the directions rjvh and Aph are readily found.

The main temperature-dependent factor of is T~l,teA,*T, of Aph:
y-Vie /̂xr. Neglecting the contribution from the phonon-phonon elastic
collisions to the reciprocal viscosity (only occurring at the lowest tempera-
times) one finds
(1-42) 5*%T.
Comparison of rjvh and t)t shows that the latter contribution is the main
one above 1.4° K (actually this has been adapted in this way), but that
at lower temperatures rjI is negligible. A, and Aph are of equal magnitude at
2° K, but again at lower temperatures \  rapidly loses its importance.

For an analysis of the absorption of second sound it is important to
compare the viscosity and heat conductivity contributions. The ratio of
these two according to equation 1.21 and using 1.42 is

(1.48) °-05Érn'

independent of temperature. This is true, if rjt and A, can be neglected
(certainly below 1° K).

The second viscosity coefficients are calculated by K halatnikov along
a somewhat different fine. He argues that inequilibrium conditions of
numbers of excitations are responsible for the anomalous high attenuation
of first sound. Therefore, processes involving annihilation and creation of
excitations play here an important role. Only the already mentioned
5-phonon process and a process in which 2 rotons are transformed into 1
roton and a phonon or vice versa contribute appreciably. Other processes
have too small a probability. These processes are characterised by the
relaxation times <9phph and 0 ^ .

The approach to equilibrium numbers in the roton and phonon gas can
be described by the equations

u )  ( Ar+ div (vn Nt) =  - A „  d[it+ A ^  6/ivh
i 'Aph div (vn A„h) = Apbp Apjjpj, <5//ph

dfiT and ó/uvh are deviations from equilibrium of the partial Gibbs functions
for the roton and the phonon gas respectively. The coefficients A  are
directly connected with the relaxation times.

From the equation 1.44 together with the four equations of the two-
fluid model the laws of propagation of the “sounds” can be deduced, again
only for the case of linear deviations. [j,t and [ivb are considered as a
function of t and z of the form exp ia> (t — zjv) and one can proceed with
the six equations in a way analogous to that of section 1.3.
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I t  is also possible to express pt and fish in terms of div vn and div v8.
By appropriate elimination one gets in this way the four equations of the
two-fluid model now including the different second viscosity coefficients
mentioned in section 1.3. I t  should be emphasized that this procedure of
introducing the second viscosity terms is a very formal one. The advantage
is that only four equations are required for describing the wave propagation
in liquid helium II. Moreover, those equations only contain normal
thermodynamic quantities. In the way of description with six equations
the quantities fit and /iBh which are directly connected to the phonon-roton
picture still occur.

As has been mentioned, the two fundamental scattering processes cannot
be calculated exactly. Both effects contain a numerical factor which has
to be deduced from the experimental results on the absorption of first
sound. The main contribution of this absorption is due to the “second
viscosity” effect, only a small term originates from the normal viscosity.
R halatnikov uses experiments of P ellam and Squire [18] to evaluate
the numerical factors. They have been recalculated by Chase [39] on the
basis of his latest experiments.

The contribution of the second viscosity effect to the absorption of
second sound is only a small one compared to the heat conductivity term.
I t  is of the same order as the contribution from the normal viscosity.

The conclusion to be drawn from all this is that although many uncertain
points exist in the theory of R halatnikov, the general tendency of the
absorption of first and second sound to increase towards low temperatures
is explained rather well. The main effect, however, is the decrease of the
phonon and especially the roton density with decreasing temperature.
Therefore, details of the theory of interactions may be wrong without
very much affecting the results. I t  is clear that especially measurements
below 1° K can give a good check on the theory, because the coefficients
of the irreversible processes increase appreciably with decreasing tempera­
ture. In any case Khalatnikov’s theory is the only one available at
present. Finally it should be remarked that five independent irreversible
coefficients are introduced (of the four second viscosity coefficients only
three are independent), but that only three combinations of them are in
principle measurable, i.e. 17, oq and <%. The heat conductivity cannot be
measured independently, because convection effects always occur m
helium II.

Here it should be emphasized that the introduction of these coefficients
for an explanation of the absorption effects of first and second sound
makes only sense, when the absorption coefficient is proportional to ft)2.
This is equivalent to the assumption of small frequencies compared to the
reciprocal relaxation times of the fundamental processes mentioned. If
this assumption is no longer valid, the only approach to a solution of the
absorption problem can be made by considering those processes directly.
This should be a very difficult problem to solve exactly. In practice this
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may occur at low enough temperatures, because all relaxation times
increase with decreasing temperature. In the case of first sound Chase
and H eulen [40] find indeed two maxima in the absorption curve as a
function of temperature. Below those the absorption decreases with
temperature, i.e. the frequency of sound is now larger than the reciprocal
relaxation times. The two maxima can be contributed to the relaxation
times of the two inelastic processes mentioned. The original K halatnikov
picture is only valid for the high temperature slope of the absorption
curve. With second sound the situation is somewhat more complicated
(see section 1.7).

This theory can, of course, not explain the high rise of the absorption
near the 2-point. As this effect is beyond the scope of the present experi­
ments, it will not be considered here.

Finally for a comparison with experiments reference is made to
chapter IV.

1.7. The mean free path and second sound. As has been pointed out,
K halatnikov’s theory can only lead to the simple introduction of coeffi­
cients for viscosity etc., if the deviation from equilibrium conditions is
small. Restricting ourselves from now onwards to the case of second sound
this condition means that the time of establishment of equilibrium at
ordinary temperatures (mainly determined by 0Lh) should be small
compared to the reciprocal of the frequency of the wave; or, what is
essentially the same, the mean free path of the phonons has to be small
compared to the wave length. K halatnikov himself estimates the mean
free path at 1° K to be of the order of 10~* cm, but at 0.6° K of the order
of 0.1 cm, increasing very rapidly (proportional to T~9) below that tempera­
ture. The low temperature estimates are, of course very uncertain, because
the effect of phonon-phonon interaction, dominating in this region, is not
adequately dealt with. The number of rotons is very small below half
a degree.

A second sound wave at 0.6° K of frequency say v = 20000 Hz has a
wave length also of a few mm and so one sees that the propagation of
such a wave becomes very difficult; the condition mentioned above is no
longer fulfilled. At still lower temperatures the damping is so large that
there is no trace left of a periodic exchange of energies characteristic of
second sound. In other words, second sound can no more exist. In contrast
to first sound the absorption of second sound does not decrease again at
very low temperature. The reason of this is the fast decrease with tempera­
ture of the density of the gas of excitations. The situation is rather
analogous to that of the propagation of sound in a very diluted gas, i.e.
only some kind of diffusion process of phonons is left. In chapter TV the
results of experiments on the propagation of heat pulses will also be
described for this region. An explanation of these results is very difficult,
because many effects are contributing. Firstly a heat pulse contains a
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broad band of second sound wavelengths. The long waves will survive
over a longer distance, the shorter ones are damped away immediately.
Secondly the mean free path of a phonon is a much more complicated
conception than that of a molecule in a gas. High frequency phonons will
have a much shorter “mean” free path compared to the low frequency
phonons. As the phonons are subject to a Planck distribution, again a
smearing out of the effects occurs. Thirdly, it is seen, that the mean free
paths become easily of the order of centimetres, i.e. of the order of the
dimensions of the experimental vessel. This may again seriously affect
the picture.

When indeed the mean free path increases rapidly with decreasmg
temperature, this last effect becomes predominating at low enough
temperatures. In  that case the path of a phonon is no longer limited by a
collision with a roton or another phonon, but only by the walls of the
vessel. The general picture is now again a very simple one and is essentially
that of a phonon gas in Knudsen conditions. As will be seen in chapter IV
the results of measurements on heat pulses below 0.4° K indicate such a
behaviour.

The possibilities of the effects noted in this section have been first
pointed out by Gorter [41] and also by Atkins [42]. Gorter especially
emphasized the non-existence of second sound at a low enough tempera­
ture for normal second sound frequencies and normal dimensions of the
experimental space. Possibly second sound would still be found in experi­
ments on a very large volume of liquid and with very small frequencies.

There is one last effect which may influence the phenomena at the
lowest temperatures. Helium normally used for experiments contains a
very small concentration of 3He atoms (for helium from wells about 1 m
107). I t  is not unreasonable to suggest that these atoms may limit the
free path of the phonons, when the other effects of roton-phonon or
phonon-phonon collisions give no more an effective limitation. One could,
for instance, imagine an interaction of phonons with sHe atoms in a
aimilflr way as that of phonons with rotons, i.e. by means of the local
disturbance of the density hy the 3He atom.

Such a limitation of the mean free path is in agreement with experiments
on second sound in mixtures of 3He and 4He in which the amount of 3He
is much larger [43]. In  these experiments second sound indeed exists
down to the lowest temperature values without any appreciable attenu­
ation. As will be shown, the present experiments also indicate an influence
from the presence of a small amount of 3He.

1.8. Final remarks. In the present state of the theory of excitations it
is not possible to explain adequately large amplitude effects, the possible
existence of a critical velocity of flow or the mutual friction introduced
by Gorter and Mellink on the basis of experiments. As has been pointed
out by Onsager [44] and by F eynman [5], some kind of turbulence
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occurring in the superfluid may be responsible. This implies that curl vg is
no more zero. A complete solution of this question, however, appears to
be very difficult.

The second limitation has been noted already. No explanation can be
given of the phenomena near the A-point nor of the A-point itself.

The conclusion as to the reliability of the theory within the limits set
by these remarks has to be postponed till the discussion of the experimental
results.
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CHAPTER n

THE EXPERIMENTAL ARRANGEMENT

In this chapter the arrangement for the experiments which are the
subject of this exposition will be described. A large part of the cryogenic
arrangement to which sections 2.1 to 2.5 will be devoted is common to
both the experiments. Section 2.1 contains the general set-up of the
cryostat and some details of the construction; in sections 2.2 and 2.3 the
magnetic cooling and the thermal insulation are considered; section 2.4
gives a short survey of the well-known method for measuring the tempera­
ture magnetically, while section 2.5 contains some details of the per­
formance of an experiment.

In sections 2.6 and 2.7 the special apparatus respectively for the
specific heat and the heat pulse experiments is described. Finally section
2.8 reviews the electronics needed in the heat pulse experiments.

1.1 General set-up and construction. The central part of the apparatus
consisted of a glass vessel part of it being occupied by the paramagnetic
salt for the cooling process by demagnetization and part serving as a
helium reservoir (see fig. 2.1). I t was connected to a pumping tube (Pj)
by means of a narrow glass capillary which served as a mechanical support.
The capillary and the inner vessel were surrounded by a vacuum jacket
which could be evacuated by means of a second pumping tube (P2).
The vacuum jacket was immersed in the helium bath. The helium dewar
and the hydrogen dewar which surrounded it were of the normal “tail”
type used for experiments with a magnet, i.e. its lower part had a small
diameter to allow not too large a distance between the poles of the magnet.
The temperature of the helium bath could be regulated in the usual way
by adjusting the pressure. This pressure was read on a mercury mano­
meter for values above 3 mm Hg and on a carefully calibrated Mac Leod
gauge for lower values.

The pumping tubes which connected the inner vessel and the “vacuum”-
jacket were fixed to the head of the cryostat. They could be connected
separately to the main high-vacuum tube leading to the diffusion pump
(see fig. 2.2). Because for filling at the liquifier the cryostat had to be
transported, the flat ground joint d was inserted. The high-vacuum part
up to the pump was entirely made of glass. An advantage of this con­
struction was the considerable reduction of the possibility of leaks. A three
stage mercury diffusion pump of iron construction, with a Leyboldt
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rotation pump as backing pump, was used as the high vacuum pump.
The small auxiliary tube b with a valve served as a connection to the

high pressure vessel from which helium could be condensed into the inner

Fig. 2.1
Fig. 2.1. The cryostat (internal).

P„ P, =  pumping tubes; G =  helium dewar; B =  helium bath; V =  platinum-
glass seals; X =  capillary; =  primary coil; E =  vacuum jacket; p -  para­
magnetic salt; C8 =  secondary coils; S =  one of the three glass supports; He -
helium reservoir; f  =  safety fuse; m =  inner helium level; W -  superconducting

wires for the electrical connections.

D
b
G

Fig. 2.2. The cryostat (external).
lain high vacuum tube; e =  manometer connection; d =  ground joint;
ling tube; c =  auxiliary tube; P„ P, =  pumping tubes; r =  radiation traps;
ïebum dewar; Gn =  hydrogen dewar; M =  pole pieces of the magnet (the

upper part of the dewars is much longer than indicated).
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vessel after the helium dewar had been filled at the liquifier. The second
pumping tube was also provided with an auxiliary connection which
could be used for filling the vacuum space with a small amount of helium
gas for heat exchange with the bath.

The shape of the inner vessel depended on the special conditions of
the experiment in question, while the part of it which served as a container
for the salt was always ellipsoidal in shape.

The inner vessel was further provided with three very thin glass tubes
(fig. 2.1 : S) drawn out in points which were bent in such a way that the
apparatus fitted tightly into the outer wall of the vacuum space. Finally
a safety device consisting of a thin-walled glass tube was connected to
the inner vessel. Its purpose was to prevent a large scale explosion in
case the capillary was blocked after filling the inner vessel.

Electrical leads to the inner vessel had to pass two walls. This problem
was solved in the usual way by means of platinum wire melted in lead
glass. To reduce heat inflow the wiring in the vacuum space was made
of superconducting metal. In the earlier experiments spiralled lead wire
was used; later on, because of its suitable mechanical properties, tantalum
proved to be more convenient. Since tantalum allows of much thinner
wires, spiralisation was not necessary.

2.2 Cooling. The temperature region below 1° K  is only attainable by
means of the magnetocaloric effect of paramagnetic substances. Only
above 0.75° K it is still possible to use the common method of pumping
on liquid helium, but a large capacity diffusion pump is required and
some special precautions have to be taken. In the experiments under
consideration measurements had to be made down to about 0.1° K and
consequently the magnetic method was employed.

The principle is to have an amount of liquid helium in contact with a
paramagnetic salt, keeping both in a vessel which can be insulated
thermally from the surrounding helium bath. The bath should be at a
temperature as low as can possibly be attained by the normal method of
pumping (about 1.05° K in the present case). To start with, the thermal
contact is made between the inner vessel and the bath in the usual manner,
by means of an exchange gas introduced in the interspace. The salt is
now magnetized isothermally and consequently the entropy of the system
is decreased. After evacuating the interspace the salt is demagnetized
adiabatically as a result of which the temperature goes down.

Some details of the demagnetization process will now be considered
more closely. The entropy balance of the process is
(2.01) 8f-°-Sf-B = (Sf-°—Sf’°) + (8^e—S f e) + dSln,

S  indicating the entropy. The indices p, o and p ,H stand for paramagnetic
salt in fields 0 and H, He for helium, i and f indicate the initial and
final temperatures of the demagnetization process. The last term on
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the right is introduced to allow of a possible entropy production during
the process which may arise when the salt and helium in the vessel are
not permanently in thermal equilibrium.

The left-hand side of equation (2.01) represents the gross cooling effect.
This can be calculated easily from the initial temperature Tx and the
field H. I t  has its largest value when the salt is completely saturated by
the magnetic field. In that case the value per mole is
(2.02) S[-°-S^-B = Eln(2«+1)

a being the total spin quantum number of the magnetic ion. Clearly the
cooling effect is larger when a salt with larger «-value is used. Moreover
with larger s the saturation value is easier to attain. For instance, in a
specific case with Tx= 1.08° K  and t f=  12000 0  the cooling effect is only
38 % of its saturation value when «=1/2 (Cu Kj(S 04)2- 6 H20), but 54 %
if «=3/2 (CrK(S04)2-12H20) and 62 % if « = 5/2 (Fe(NH4)(S04)2 • 12H20).
In this evaluation the LANDÉ-factor is assumed to be 2 except for the
copper potassium sulphate for which it equals 2.18 [1].

The first bracketed term on the right contains the entropy change of
the salt. As is well-known for not too low temperatures

(2.03) (Sj-0 =  - i - - t - i a T 8+constant

b being the coefficient of the specific heat originating from electric and
magnetic interactions and a that of the crystal lattice. The latter of
these two contributions can be neglected; the l/T2 term may have an
important influence on the cooling. The l/T2 term is no more a good
approximation at the lowest temperatures (e.g. for KCr-alum below
0.2° K).

The second bracketed term in (2.01) contains the helium entropy
change. I t  is clear that because of the large entropy increase of liquid
helium with temperature it is very important to have an initial tempera­
ture as low as possible. For instance, the amount of liquid which can be
cooled with T,= 1.0° K as the initial temperature is about twice that
with T,= 1.1° K, using the same magnetic field.

If  the vessel is not completely filled with the liquid, an amount of
vapour present as a consequence at the initial temperature may contribute
to the entropy content which has to be removed. A calculation of this
contribution gives (T,= 1.08° K):

(2.04) ^ = 0 .0 7 ^ 5 1

where Sj  en $} are the entropies of the amounts of vapour and liquid
and Ft and F, their respective volumes. If FT/F,=0.2, the largest value
used in the experiments, this contribution is less than 2 %. Owing to
the fact that the vessel is not closed, but connected by means of a capillary
to the upper pumping tube, however, this contribution may be larger
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although this upper tube is pumped continuously during demagnetization.
The coefficient in the expression (2.04) increases with T, but not rapidly.

The term óSlTI is probably not very large. A large contribution would
result in a marked influence of the time of demagnetization on T(. No
appreciable effect was found. A bad thermal contact between salt and
helium may indeed be expected at temperatures of the order of a few
tenths of a degree. In that region, however, this cannot have large
influence because of the very small heat capacity of the liquid.

Fig. 2.3 shows for T,= 1.08° K and H=  12000 0  the calculated number

O T Q5 lO °K

Fig. 2.3. The num ber of moles o f the  param agnetic sa lt required for cooling one mole
of liquid to  Tf  as a function of Tt . (T j=  1.08° K ; H  =  12000 0 ) . U pper curve:

copper potassium  tu tto n  salt. Lower curve: chrom ium  potassium  alum.

of moles of the salt which are necessary for cooling one mole of liquid
helium as a function of T{. Two curves are drawn the upper one being
that for CuK^SO^a- 6 HaO («=1/2) and the lower one that for
CrK(S04)2-12 HaO (« = 3/2). In both curves the part down to 0.7° K
shows a rapid increase with decreasing temperature. This is the region
where the helium entropy has the main influence. Below 0.7° K the
curves are rather flat: the entropy of the liquid has become almost
negligible. At the lowest temperature one observes again a fast increase,
due to the influence of the salt entropy. The cause of the intersection of
the two curves just below 0.1° K is the comparatively much smaller
value of 6 in the case of the copper salt.

Data on the entropy of the salts published by D e  K l e r k  [4] and
Ca s im ir  et al. [13] were used for the calculation of the curves. For the
copper salt a 1/T2 dependence was assumed. The L a n d  É-fact or was again
taken equal to 2.18 in the latter case.



28

2.3 Heat insulation. In all experiments below 1° K  the thermal insulation
is a very important problem. Usualy the vessel or sample is suspended
in some way in an evacuated space with provisions for high heat resistance
of the mechanical connections with the outer space. The usual precautions
against radiation must also be taken by silvering the glass parts of the
apparatus and inserting radiation-traps in pumping tubes. All this was
done in the present case.

In  an experiment involving liquid helium below 1° K  the situation is
somewhat more complicated because the helium has to be brought in.
In this case it would be convenient to have an inner vessel connected by
means of a filling tube. One must keep in mind, however, that liquid
helium II  produces a film which creeps up along the walls of this tube.
The film evaporates somewhere in the upper parts of the cryostat, the
vapour condensing back into the vessel, producing heat of condensation
which is relatively large compared to the heat content of the vessel. In
practice this would give a very short warming-up time.

There are three methods to overcome this difficulty. In the first one
the vessel is closed, the helium being brought in as gas under high pressure
at room temperature [2] or condensed at liquid helium temperature [3].
Because of the high pressures involved the container must be a metal
one which may seriously affect magnetic temperature measurement. In
the second method the connecting tube is closed by means of a plug after
the condensation of helium into the vessel. The demands made upon this
plug are very high, as it should prevent the film from going through.
This has indeed been achieved in some experiments [4],

In the present experiment a third method which is much more con­
venient from the point of view of construction is used. The connection
with the inner vessel is made by means of a narrow capillary. The film
creep is thus reduced considerably, as it is proportional to the perimeter
of the capillary. Recondensation would be largely prevented by the
resistance of the capillary to gas flow and by pumping the upper part of
the filling tube with a diffusion pump. A high resistance offered by the
capillary to gas flow is of course essential, because the vessel itself at low
temperature acts as an ideal high vacuum pump. The heat leak of the
apparatus would then mainly be determined by a small residual con­
densation of the vapour. As will be shown, however, the actual situation
in the capillary may be more complicated.

The heat leak, defined as the amount of energy increase of the vessel
per second without extra heating, can easily be deduced from the experi­
mental results. A typical example is shown in fig. 2.4. This plot shows a
minimum at about 0.6° K. The increase towards low temperature might
be attributed to magnetic heating due to the primary a.c. field used m
the temperature measurements (see section 2.4). Unfortunately only one
amplitude (about 15 0) of this field was employed, but a similar though much
larger effect was observed in recent experiments on CuRb2(S04)2 • 6H80.



29

In that case it could be reduced by lowering the a.c. measuring field.
Taking this into account there still remains the explanation of the heat

inflow of about 12 erg/sec at low temperatures and its appreciable increase
from 0.5° to 0.9° K (the value of the heat leak did not reproduce very well

O T QS 10°k

Fig. 2.4. The observed “natural” heat influx
( Q o )  as a function of temperature for one of
the measuring runs with CuK2(S04)2. 6H20 .

in this latter range; its maximum varied from 50 to 200 erg/sec). I t  is
rather difficult to explain without ambiguity the observed values of the
heat leak, because little is known about the actual situation in the
capillary. Moreover no data are available on some of the possible con­
tributing factors in this temperature region and have, therefore, to be
estimated by extrapolation.

The heat leak may be determined by the following processes:

a. the recondensation effect,
b. the heat conduction of the glass,
c. the heat conduction of bulk liquid which might be present in the

capillary,
d. conduction by the residual gas in the vacuum space,
c. conduction by means of the electrical connections.

The length of the capillary (kl) is 7 cm, its inside diameter an 0.02 cm,
its outside diameter «a 0.2 cm. Furthermore, jk an 6 cm and the distance
from the lower end of the capillary to the level of the liquid in the vessel
is of the order of 1 cm (see fig. 2.1). The pressure in the pumping tube is
between 10~3 and 10~2 cm mercury.

Firstly the conduction along the glass is considered. The coefficient of
heat conductivity in this temperature region is not known, but it can
be expected to vary as T3 at very low temperatures. B i j l  [6] finds above
1.3° K a T1-3 dependence. A reasonable compromise seems to be to accept
a T3 law below 1° K and to adapt its magnitude to B i j l ’s extrapolated
value for soft glass at that temperature. The result is AgIaas = 3 x 103 T3
erg/deg cm. In this way one finds for the glass leak Q0 an 4 erg/sec, when the
temperature of the vessel (T2) is 0.5° K and that of the bath (Tx) is 1.1° K.
This value does not change very much with temperature.

Secondly the recondensation effect is considered. Using P o is e u il l e ’s
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law on the gas flow through the capillary and taking the vaporization
heat to be 20 joule/g, one finds for the heat input Q0 «« 2x 10® -y jjy, jr^p
taken at any point of the capillary; p is expressed in cm mercury. I t  can
be seen that the recondensation effect is only able to account for the
observed heat leak at low values of T2, if the entire temperature jump
from the bath to the vessel occurs in the lower few millimetres portion
of the capillary. At temperatures higher than 0.7° K  the flow may be
somewhat larger but by no means enough to account for the steep increase
of the heat leak.

An alternative possibility is the presence of bulk liquid in the capillary.
This may be due to the capillarity or the fountain effect. The contribution
of the former to the height of the helium in the capillary above the level
in the vessel is only 0.4 cm [7] and is, therefore, of minor importance,
unless some constriction occurs in the capillary (e.g. due to impurities in
the liquid). The latter is, however, not very probable because no very
large deviations between runs on different days were observed.

A fountain height may exist, if the temperature gradient is large enough.
At low values of Tt a temperature gradient is probably located between
the helium in the vessel and the lower end of the capillary. The film
contact would in that case act as a super leak connection and the capillary
might at any rate partly be filled with liquid. The temperature gradient
is mainly determined by the heat transport through the glass. At tempera­
tures above 0.6° K, however, heat transport from the liquid in the vessel
to the capillary mainly occurs by means of the vapour and the gradient
can only be very small. .

Secondly if the heat conduction of the liquid in the capillary itself is
small enough, a temperature gradient might be set up and a fountain
height maintained in it. Explicitly if at a certain point dT/da: < (dT/da;)f,
the latter being the reciprocal of the differential fountain height, the
situation may be stable. The level of the liquid can not rise above the
point where the equality sign holds good. The heat conductivity of the
liquid is approximately known; below 0.7° K it is roughly proportional
to T3 (the constant of proportionality can be estimated, see section 4.3).
Above that temperature one may perhaps use a formula derived by
K eesom, Sakis and Meyer  [15] from their experimental data. I t  yields

AHe= 0.6 x 107 T5 (dTIdx)-'1'.
Working along these lines one finds that with values of Tt smaUer than
0.7° K  it is just possible that the observed heat leak is compatible with
a partly or wholly filled capillary. Above that temperature the temperature
gradient which would exist in the liquid appears to be too small for the
maintenance of a fountain height. For instance with Ta= 0.8° K a heat flow
of 200 erg/sec would be necessary to keep the capillary full. The quanti­
tative agreement of these evaluations with the experimentally observed
heat leak may perhaps be improved by a slight adjustment of the para-
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meters (e.g. the inner diameter of the capillary or the magnitude of the
heat conductivity of glass).

If the explanation involving liquid in the capillary is true, the small
leak below 0.6° K is determined by the heat resistance of the glass just
below the capillary; the much larger heat leak above this temperature is
determined by the heat resistance of the liquid in the capillary. The fast
decrease above 0.9° K is perhaps due to the decrease of the fountain height.

The conduction of the exchange gas might also account for the increased
heat leak at higher temperatures. Before demagnetization the pressure is
reduced to about 10~® cm of mercury. Most of the residual gas is adsorbed
during demagnetization, but above 0.6° K it probably begins to evaporate
again. According to a formula of K nudsen  [16] a pressure of 10~7 cm
mercury gives a heat leak of the order of 150 erg/sec, when the bath has a
temperature of 1.1° K and the inner vessel is at a temperature of 0.7° K.
Unfortunately nothing definite can be said about the actual pressure.

The conduction along the electrical wires can be completely neglected.
They were made of superconducting material (lead or tantalum).

The conclusion which has to be drawn from all this is that the data
available are not sufficient to obtain a clear picture of the actual cir­
cumstances responsible for the observed heat leak. Firstly one has the
explanation involving liquid in the capillary. Secondly the heat leak can
be explained by a combination of the recondensation effect, heat con­
duction along the glass and the effect of the exchange gas. Moreover the
phenomenon d may easily also contribute to the leak in the first mentioned
possible situation. No definite solution of the problem can be given until
more data become available on the course of the temperature at different
crucial points.

One final remark should be made on the influence of pumping on the
capillary. As is seen, in both explanations this makes not much difference
especially at low temperatures. With the recondensation effect the resistance
of the capillary proves to be so large that in any case only a small amount
of gas may pass through it. At higher temperatures the leak may only be
slightly diminished. In the other explanation only a small decrease of the
temperature at the upper end of the capillary may occur by a reduction
of the vapour pressure. No explicit observations were actually made with
and without pumping, but a rough determination gave about a 50 %
increase of the heat leak in the latter case.

2.4 Temperature measurement. The temperature was measured magnetic­
ally , i.e. by determination of the susceptibility of the paramagnetic salt.
This was done by means of a Hartshorn mutual inductance bridge which
is a common method followed in many Leiden experiments and has been
described in numerous papers and theses [8, 9]. Here it will be briefly
reviewed. The bridge consists of two sets of coils each forming a mutual
inductance. One of these is fixed around the salt in the cryostat, the
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other is variable. By adjusting the latter the current in the secondary
circuit can be reduced to zero, the primary current being constant. In
this simple way, however, it is not possible to get an exact zero reading,
because usually the difference of the phases of the voltages of the two
parts of the secondary circuit is not exactly 180°. This difficulty is over­
come by introducing into the secondary circuit a small voltage, which is
in phase with the primary voltage thus having a shift of 90° with respect
to the inductance voltage in the secondary. A vibration galvanometer
with pre-amplifier is used as a null detector. For further details of the
bridge may be referred to D. B i j l ’s Leiden thesis [9], The circuit diagram
is shown in fig. 2.5. The frequency used was about 200 Hz.

P S

200Hz

Fig. 2.5. The m utua l inductance bridge,
p  =  p rim ary  circuit; S =  secondary cir­
cu it; C =  cryosta t coils; N  =  calibrated
m utual inductance; V  =  calibrated vario­
m eter for continuous ad ju s tm en t; R j, Pi>
R , =  phase com pensation c ircu it; comm
=  com m utator for adjusting  th e  sign of
th e  phase; P , =  sensitivity  po tentio­

m eter ; G =  v ibration  galvanom eter.

The primary coil in the cryostat is wound on the helium dewar; thus
it is immersed in liquid hydrogen. The advantage of this is a considerable
reduction of its resistance. The secondary coil is wound on the outer
surface of the vacuum jacket of the inner cryostat. I t  consists of 3 sections,
the middle one surrounding the salt, and two outer ones each having
half the number of turns of the middle coil wound in the opposite direction.
In this way the empty coil has a coefficient of mutual inductance near
zero (the constant A  of formula 2.07 is reduced), moreover, the pick-up
from stray external fields is reduced considerably.

The coefficient of the mutual inductance of the cryostat coils is

(2.05) M  = A + B ' ^T n
A and B' being constants, Ha the external field and a the magnetic
moment of the salt. Further

d<r B
(2.06) dH * ~ T * - 0

B  being the Curie constant, T* the “magnetic” temperature and <5 a
constant which depends not only on the magnetic properties of the salt
but also on the external shape of the sample. The latter contribution
to Ö can be calculated exactly, if the shape chosen is an ellipsoid. For a
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sphere the contribution is zero. With the paramagnetic salts used here
for all temperatures above 0.2° K T= T*  holds good. At lower tempera­
tures this is no longer true, but the difference is small for the temperatures
in the present experiments which were never extended much below
0.1° K. If necessary, corrections were made by making use of the data
from the literature. The magnitude of corrections will be given with the
results.

So the measured coefficient of mutual inductance becomes

(2-°7)

The constants A  and B" are determined by plotting M  against 1/T—d
for a few temperatures in the normal helium region. T  is found by measuring
the vapour pressure of the bath and using the agreed vapour pressure
— temperature data of the van D ijk -S hoenberg tables [10]. The
geometrical part of d is calculated, the part of it due to the properties of
the salt itself taken from the literature.

2.5 The performance of an experiment. Before starting an experiment
the inner part of the apparatus had to be freed from all kinds of material
such as air and water which could block the capillary during the cooling
process. Straightforward pumping was not advisable, because the water
in the crystal of the salt might be pumped off. Moreover, it proved not
to be very effective, probably resulting only in the closing of the capillary
by the solidification of water. Washing the system several times with
pure helium gas proved to serve the purpose nicely. Afterwards it was
pumped at liquid air temperature for a few hours. At this temperature
the vacuum space was filled with helium gas exerting a pressure of about
one centimetre of mercury.

The cryostat was disconnected before filling and transported to the
helium liquefier where the helium was also condensed into the inner vessel.
After condensation the bath was filled up again. The cryostat was then
installed in the experimental room and the pressure of the bath reduced
in a few steps calibrating the magnetic thermometer simultaneously.

After reaching the lowest pressure (about 0.02 cm mercury) the magnet
which was movable on rails was pushed around the lower part of the
cryostat and the field turned on. About 5 minutes were needed for
re-establishment of temperature equilibrium after which the interspace
was evacuated down to a pressure of 10-6 cm. The pumping tube con­
necting the interspace was then closed and that of the inner vessel opened.
Finally the field was turned off, the magnet pushed away and the experi­
ment could be started. Measurements were always made during the
warming-up of the apparatus which lasted usually about one hour, of
course depending on the amount of extra heating. The temperature was
followed continuously.
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2.6 The specific heat experiments. In the specific heat measurements the
choice of the salt is very important because of the large heat capacity it
may contribute to the total heat capacity of the calorimeter at the lower
temperatures. The term of the specific heat which counts m this
respect is that arising from magnetic and electric interactions and is
proportional to 1/T2. Iron ammonium alum which was used in earlier
experiments [11,2] gives a contribution which is too large a correction
for temperatures below 0.5° K. For this reason copper potassium tutton
salt was chosen in the later experiments. This salt has no specific heat
arising from electrical splitting, in fact its specific heat per mole is only
1 /20 of that of the iron alum. As has been shown in section 2.2 the cooling
effect of the copper salt is much less, but the salt correction can still be
reduced by a factor 5, if the best salt-helium ratio is chosen. Fig. 2.6 gives

0.6 °K

Fie. 2.6. Fully drawn line: the total heat capacity of the calorimeter.
_ _ _ _ _ _. the heat capacity of the helium liquid.
_______________ _ the heat capacity of the copper salt.

the relative values of the heat capacities of the salt and of helium as a
function of temperature in one of the experiments.

Not much had to be added to the basic apparatus for a measurement
of the specific heat. A carbon resistor was inserted as heater, the energy
developed being measured in the usual way by reading voltage an
current. Heat was applied for 10, 20 or 30 sec., automatically controlled
by a clock device which has been described elsewhere [12].

An experiment was performed in the following manner. After demag­
netization the temperature was measured by means of a bridge reading
at an average rate of 7 points per minute. In this way the natural
warming up was observed. Every few minutes a heating period was
inserted. The heating curves which were the result of this procedure
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not show any aftereffects, so it can be concluded that temperature equili­
brium was re-established within a few seconds. Fig. 3.1 gives a typical
example of such a curve. The amount of helium in the inner vessel was
determined after the experiment by collecting it into a calibrated volume
and measuring the pressure and temperature after the apparatus attained
room temperature. The amount of helium pumped away by the diffusion
pump during an experimental day was negligible.

2.7 The heat pulse experiments (cryogenic). For the heat pulse experiments
there is no sense in choosing a salt with a small specific heat. I t is even
of some advantage to have a salt with a large specific heat, because in
that case a heat leak has less influence on the heating-up time, at least
below about half a degree Kelvin. Potassium chromium alum was pre­
ferred, also because the magnetic temperature scale is the best known
for this salt.

The measuring tube which contained two flat resistors, one for generating
the heat pulse into the liquid (heater) and another for detecting the signal
(thermometer) was fixed in the inner vessel of the cryostat. The tube was
made of a caseine product called “lorival”. Its construction is shown in
fig. 2.7a. Over the top and bottom of the cylindrical tube tightly fitting
covers were pushed.

Several types of resistors were tried. A carbon resistor made by painting

a

b

Fig. 2.7. a. Construction of a tube for the
propagation of heat pulses. T =  tube;C =
covers (the upper one is lifted); R =  resistor
(heater or thermometer), b. Construction of

a home-made carbon resistor.

aquadag on a circular paper sheet proved to be the best among the lot.
The leads were provided for by fine platinum wire tightly wound round
two small symmetrical wings of the sheet (see fig. 2.7b).

In some experiments commercial resistor strips cut in the same general
shape were used. The leads were soldered to the coppered wings.

A third kind of thermometer resistor was made by winding a phosphor-
bronze wire (45 p) on a flat ring in zigzag fashion. The corresponding
heater made of constantan wire was of a similar construction. The metal
thermometer, however, was rather insensitive and its small resistance
inpracticable. Later on the constantan heater was also used in com­
bination with an aquadag thermometer.
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Thermometers and heaters were fixed on the rim of the lorival tube by-
pressing on the covers. r

Tubes of different lengths and diameters were used; a review is given
in table 4.1 (chapter IV). In the tube and covers many holes were bored
to provide for the entry of the liquid and for maintaining a good thermal
contact during the experiments.

Since tubes had to be exchanged several times and the dismounting
and re-assembling of the cryogenic apparatus was a very troublesome job,
especially for the glassblower, the outer wall of the vacuum jacket was
made of a separate piece. I t  could be connected to the main part of the
apparatus by means of a conical ground joint, lubricated with silicon
grease. This connection proved to be vacuumtight even at low tempera­
tures and when it was in direct contact with liquid helium II. This arrange­
ment simplified the problem of the exchange of the measuring tube to a
large extent. At the same time the secondary coil of the mutual inductance
which was wound on the separate piece, could be kept intact during such
an exchange.

2.8 The heat pulse experiments (electronic equipment). In this section
after a general survey of the electronic equipment some details of the
essential parts are given. Fig. 2.8 contains the block diagram to which
will be referred in the following lines.

3h

Fig. 2.8. Block diagram.
K  =  key; R =  relays; DCS =  direct current switch; MS =  mercury switch;
D =  delav- PG =  pulse generator; AC =  attenuator and earth-point adjustor;
H =  heater; At =  attenuator for testing the amplifier; TCS =  thermometer
current source; Th =  thermometer; Am =  amplifier; Ot =  oscilloscope trigger;

O =  oscilloscope; TM =  time markers generator.

2.8.1. P rin c ip le  and  general se t-up.  Since it was necessary to
keep the heat input as low as possible the method employed was a so-called
single pulse method as contrasted to the usual one in which the pulse is
repeated periodically. For the same reason the direct current which is
needed for the detection of the change of resistance of the thermometer
was only switched on for a few seconds. For the sake of convenience all
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switching was automatised in such a way that a simple pressing of a key
was sufficient for starting and completing the succession of events for
one observation. By pressing this key (K) a relay was operated which
switched on the direct current through the thermometer. After a delay
of a few seconds the necessity of which will arise later, a second relay
which broke a mercury switch was brought into operation. This latter
produced a positive pulse of an arbitrary shape the first purpose of which
was to start the horizontal motion of the beam on the oscilloscope. The
normal position of this beam was just to the left of the screen. The second
task of the pulse was to excite the pulse generator. Before this occurred,
however, the pulse was delayed by a delay (D) which could be adjusted
from 50 to 500 ^sec. This was necessary to introduce the signal which
coincided with the heating pulse at a convenient spot on the screen.

The pulse generator (General Radio 869A) produced a rectangular 50 V
pulse over a resistance of 20 kfi. The pulse width could be adjusted from
0.3 to 70^860; in the experiments described 10, 20 or 40 ^sec pulses
were almost exclusively employed. Before being put on the heater the
50 V pulse could be attenuated. At the same time an arrangement was
made for adjusting the earthpoint of the pulse voltage, the purpose of
which will be described separately.

The receiver part of the apparatus consisted mainly of an amplifier
(Am) which carried the signal from the thermometer to the oscilloscope.
After amplification by the oscilloscope-amplifier this signal was fed into
one of the sets of vertical deflection plates of the Cossor double beam
oscilloscope (model 1035). The second beam was used for either 10 or
100 fisec time markers which were produced by a crystal calibrator.

'■ v  " 7

2.8.2. D elays (fig. 2.9). The sequel of events was started by pressing
a key which worked a relay Si. The first purpose of this relay was to
switch on the thermometer current. As the thermometer current needed
a few seconds to become constant (this was mainly due to the influence
of the a.c.filter in the circuit described below), the generation of the
driving pulse had to be postponed for this period. This was accomplished
by the circuit Dx in fig. 2.9. Its main parts are a Wheatstonebridge and a
thyratron. Rj is a resistor with a large negative temperature coefficient
(Philips N.T.C.). After the closing of the circuit by one of the contacts Sx,
this resistor is heated by the current and consequently decreases in value.
By this the bridge balance is changed which results in a delayed switching
off of the current through the thyratron. This current works a relay with
a mercury switch (S2) which is broken. The voltage of point P is suddenly
raised to about 20 V and a pulse with a sharp onset is generated. The
use of a switch with mercury-mercury contact was essential because this
proved to be the only switch which broke the contact instantaneously,
thus producing only one single pulse.

A similar delay D2 of somewhat larger time constant served for switching
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off the thermometer current again and bringing the apparatus in its
initial position. ' ^ ’

A third delay of much shorter time constant had to be introduced
between the time of triggering the oscilloscope and the time of the heater-
pulse.

The main part of the circuit is a so-called monostable multivibrator,
consisting of two triodes and B2b. B2a is originally open, but is closed

K

Fig. 2.9. Delays.
K =  k e y  T =  to thermometer d.c.switch; Sj =  first relay; S, =  mercury switch;
Tr =  thyratron (PL21); R j =  N.T.C. resistance; tr  =  oscilloscope trigger connec­
tion; PG =  pulse generator. For further details see the text. The double-tnodes

Ba and Bs are 6SN7 valves.

by the positive pulse introduced at point P. At the same time B2b is
opened. After a period, depending on the fixed product R2C2 and on the
grid bias of B^, which can be adjusted by the potentiometer (in fig. 2.9
below on the left), the original situation is re-established. The result is a
positive square pulse with variable length at point Q. After differentiation
by means of C3R3 the signal is inverted by BSa and the result is a delayed
narrow positive pulse which can be used for driving the pulse generator.

2.8.3. A t t e n u a t o r  and pick-up compensation.  Since the pulse
generator was not equipped with a calibrated attenuator at its output,
this had to be built separately. I t  was combined with an arrangement for
reducing the pick-up on the thermometer circuit, that occurred mainly m
the cryostat. Efficient screening could perhaps be attained, but the
method used here was much more convenient.

The simplified equivalent circuit is drawn in fig. 2.10. As the coupling
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proved to be capacitive, it is represented as such. CD is the thermometer
resistance, AB the resistance of the heater. As will be shown, the essential
thing was the adjusting of the earthpoint in the heater, the thermometer
being earth-connected at one of its ends. One can now consider the Wheat-
stonebridge ABCD. No pick-up will occur from AB on CD, when the bridge
is balanced. This is approximately realised, if üW -^db= GBCjGCA, because
the parallel capacitances of and i?DB have large impedances compared
to those resistances and can be neglected.

Fig. 2.11 shows the practical arrangement of the earth point adjuster.
Normally no current passes through the triodes owing to the large negative

C

Fig. 2.10
Fig. 2.10. Simplified diagram,

+150 V
-150 V

-300V

Fig. 2.11
showing the capacitive coupling between heater
and thermometer.

Fig. 2.11. Combined earthpoint-adjuster and attenuator.
FG =  pulse generator; Tj, Ts =  EL 34 triodes; A =  double attenuator (only one

section is shown); H  =  heater.

bias of the grids. I t  flows only during the time of the pulse from the pulse
generator. This results in a positive pulse on the cathode of the upper
valve and a negative pulse of equal magnitude on the anode of the lower
one. These pulses may be attenuated in two identical attenuators one
section of which is shown. The last part of the circuit consists of four
500 Q potentiometers mounted along one axis and connected in such a
way that the cathode resistance of Tĵ  and the anode resistance of Ts are
maintained at 250 Q, while at the same time the impedance the heater
“sees” in looking backward is a constant 500 Ü. The adjusting of the
earthpoint was performed by means of these potentiometers.

The double attenuators provided for attenuation in steps of 4 db from
0 to 60 db by means of two switches in series, each having four positions:
the first one for 0, 4, 8 and 12 db, the second for 0, 16, 32, 48 db. The
attenuation was performed by double it sections which were at in- and
output adapted to 2 x 250 Si.

The pick-up compensation as described proved to be a very pleasant
solution of difficulties with pick-up at the start of the investigation, when
sometimes the pick-up was so large, that it even blocked the amplifier
by overloading. By adjusting the earthpoint the pick-up signal could be
eliminated almost completely, if the intercapacities of the wiring in the
cryostat were not very unsymmetrical. What was left of the pick-up
signal conveniently served as zero point for the time measurements.
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2.8.4. T herm om eter c u rre n t c irc u it (fig. 2.12). To keep the
current constant a high resistance in series with the thermometer was

s< Aux. A tt.

Fig. 2.12. The circuit of the direct current through the thermometer and the
pre-amplifier. Sx =  relay contact (see fig. 2.9); Th =  thermometer; Aux.Att. =
auxiliary attenuator; Osc. =  oscilloscope. For the amplifier 6AK5 valves were used.

necessary. This resistance was at the same time part of a RC-filter which
prevented a.c. signals from entering the thermometer. A disadvantage of
this filter was that the thermometer current needed a few seconds to
become constant. For this reason delay 1 had to be inserted.

With a potentiometer the current could be adjusted from 10 to
1 m A in steps by a factor of about 1.5. By means of a series resistance
the current could still be reduced by 1/5. The magnitude of the current
could be read on a small [xA meter.

2.8.5. A m plifier (fig. 2.12). The amplifier used was a three stage
one of common design with a bandwidth ranging from 300 Hz to about
30 kHz, amplification decreasing only slowly beyond that. The ampli­
fication was about 3 X 10s which could be increased up to a factor 10®
by using the oscilloscope amplifier. The noise level was of the order of
5 fiV, mainly originating from the so-called flicker effect at low frequency
in the first amplification valve. No special attempt was made to reduce
this. To test the performance of the amplifier the pulse from the pulse
generator could be fed directly into the input after large attenuation. The
original purpose of this arrangement was also to have a signal on the screen
simultaneous with the heater pulse. In practice, however, the pick-up
signal proved to be more convenient for this.

As will become clear later, signals with long and almost horizontal
tn.ila had to pass through the amplifier undistorted. To test the performance
of the amplifier in this respect a so-called step function was introduced
at the input, i.e. on the thermometer, and the output observed on the
screen of the oscilloscope. The decay proved to be approximately expo­
nential with a decay time of 45 x 10-4 sec. When the correction is small,
it is even possible, if necessary, to correct the observed signals for this
decay. If the observed signal is represented as a function of time by
y=m(t0), the corrected signal is

y(t9) = - * » ( g + i  ƒ »»(<)&,(2.08)
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D being the decay time. Actually this correction had to be introduced in
many cases.

2.8.6. Screening and g round ing . Since the voltage level of the
thermometer signals was low and the bandwidth of the amplifier had to
be rather large, a lot of trouble could arise from pick-up of stray fields.
In this respect contributions may be expected from the 200 Hz field
used in the temperature measurement, the mains (50 Hz and overtones)
and radio-frequency fields. The latter might cause a very annoying
broadening of the line on the oscilloscope.

The 200 Hz pick-up could be compensated easily by introducing a small
counter signal in the thermometer circuit, using a magnetic coupling with
the circuit of the primary coils of the bridge.

By the use of co-axial lines for all connections to the cryostat and
careful earthing, the other effects could also largely be eliminated. A large
amount of experimenting was required to get adequate earthing; loops
had to be avoided by bringing all earth-connections to one point only.
This point was found by trial.

2.8.7. R ecord ing  of observations .  An observation was recorded
by photographing the screen of the oscilloscope. A Southern camera was
used; no shutter was necessary because of the single stroke operation of
the oscilloscope. The films were developed afterwards and were stored for
further inspection. For the purpose of making observations the pictures
were enlarged by projecting on a white wall. Time measurements could
easily be made by comparison with the time-markers and the shape of
the signals could be analysed.
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CHAPTER III

THE SPECIFIC HEAT

In  this chapter the evaluation of the specific heat from the experiments
will be described. The corrections required are investigated in some detail.
The data obtained on the specific heat are presented and discussed.
Finally values of the entropy, computed by the integration of the experi­
mental data, are given and discussed.

3.1. Determination of the heat capacity of the calorimeter. As was men­
tioned in section 2.6, the heating curves, resulting from a plot of the
temperature against time, were of a very simple shape. In  practice it
was more convenient to plot the directly measured coefficient of mutual
inductance n; of course, this makes no difference, n was expressed in
number of turns of the secondary of the calibrated mutual inductance
which was used for the compensation. No appreciable after-effects were
found in these curves (see fig. 3.1) and the temperature course before
and after the heating period follows practically straight lines. Also,

T . OSIS 'K

Fig. 3.1. A typical example of a heating point.

except for the lowest temperatures, the slopes before and after are almost
parallel. Consequently averaging of these slopes gives a reliable deter­
mination of the “heat leak” during the heating period.
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The temperature increase during a heating period was usually of the
order of a few hundredths of a degree. For this reason the heat leak and
the heat capacity could always be considered as linearly dependent on
n and T  dining the heating period, although the heat capacity may
change rapidly with temperature.

The experiment gives directly the quantity dn/dt and (dn/di)0, the
latter being an average of the slopes of fore- and after-period. The dif­
ference gives the change due to heating only:

A, B" and d being known constants. No appreciable deviations from t.hia
Curie-Weiss law occur in the region above 0.2° K. So

If the heat input per second = dQ/dt, the heat capacity is equal to

all quantities on the right being known. There is, however, one difficulty
concerning the value of ó in the calibration formula 3.02. The part of ó
arising from the shape correction is 0.002°. There is, however, a much
larger contribution arising from the difference between the field working
on the magnetic ions of the salt and the external field Hc. Since it was not
possible to determine d with sufficient accuracy from the calibration
curve, the value of the latter contribution, represented by 0, had to be
taken from the literature. This will be discussed in the next section.

3.2. Corrections
3.2.1. The sal t  correct ion.  The correction arising from the heat
capacity of the paramagnetic salt becomes quite large at low tempera­
tures, its contribution being proportional to 1/T2. In fact, as has been
shown in section 2.6, it sets a lower limit to the temperature range for the
determination of the specific heat of helium by the method employed.
In fig. 2.6 the heat capacities of the calorimeter, the salt and the helium
are plotted together against the temperature. I t  is clear from this picture
that with the present set-up no reliable values of the specific heat of
helium can be obtained below 0.25° K.

Since the construction of the apparatus did not allow of large variations
in the amount of helium, it was not possible to determine the salt correction
experimentally. Therefore, its value together with the value of 0  had
to be taken from data in the literature. This gave rise to a difficulty,

(3.01) (dw/dfjcor= dn/dt—(dn/dt)0.

The temperature calibration yields

(3.02) n — A + T —Ö

(3.03)
cor

B“ dT  {n—A)a dT
(!T - d )* <fc ~  B" df *

(3.04) dQ idT dQ /fdn
dtl dt (n—A)* d t / \ d t
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because the various values published were not consistent. Some of them
are given in table 3.1. The quantity 6 is again the coefficient in the 1 jT^
law which is valid for the specific heat of the salt in the temperature
region concerned.

TABLE 3.1

D ata on 00X2(804)2 • 6HaO

Author @(°K) b/R per mole Temp, region

D e  K l e r k .
G a r r e t t . .
B e n z i e  a n d
B r o e r  a n d

C o o k e  ........................
K e m p e r m a n . . .

0.052
0.035

0.035 ±  0.005

6.8 X 10-‘
6.1 X 10-«
6.0 X 10-‘
6.4 X 10“*

T  <  1° K
T  <  1°K

1° K  <  T  <  4° K
liquid air

I t  is seen that there are roughly two sets of data, one with somewhat
larger values of 0  and 6 then the other. The uncertainty of these constants
has, however, not a very large influence on the resulting specific heat
values of the liquid. Above 0.7° K this influence is even negligible: the
salt correction is very small and the temperature scale is only slightly
affected, since it is adapted to the real temperature in the calibration
region. Below 0.7° K the final results actually depend on the choice of
the constants. On one hand the extrapolation of the temperature from
the calibration points gives a temperature scale depending on the value
of 0  used. On the other hand the correction of the heat capacity of the
salt depends on the chosen value of 6. Fortunately, however, both effects
largely compensate each other, as the larger value of 0  corresponds to
the larger value of 6.

An illustration of this “compensation” is given in the following lines.
I t  was not possible to deduce the salt data with sufficient accuracy from
measurements of the heat capacity in the region below 0.25° K, where
the h elium  contribution is negligible. I t  was not even possible to make a
decisive choice between the sets of data given in table 3.1. All combinations
fit equally well. The reason of this can be seen by calculating from the
experimental data the heat capacity at some specific point, using first
the low value of 0, then the high value. In the first case a smaller
value of T  (i.e. a larger value of 1/T2) results than that in the second
case. Consequently, since dQjdT is not appreciably affected, the first
calculation gives a smaller coefficient of the 1/T2 term than the second
one. This is just what should be expected from the corresponding 6-values.

On the whole the value of D e  K l e r k  should perhaps be given preference,
because a salt sample from the same source was used (impurities may
affect the data). Moreover, there was just an indication that his 0  value
agreed somewhat better with the temperature calibration of the present
experiments. For the sake of completeness calculations were also carried
out on the basis of Ga r r e t t ’s data (see fig. 3.2). All further discussion
is, however, based on d e  Kl e r k ’s values.
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3.2.2. The vapour correction . If only part of the volume of the
calorimeter is filled with the liquid, a correction is necessary for the heat
of evaporisation and the heat capacity of the vapour. This correction was
only small in the present case, because 90 % of the calorimeter was
usually filled with the liquid. The correction which can easily be calculated
amounts to

(3.05) (dQ/dt)nv =  13300 ( ( g |-  -fr) + \ j r } ergs/deg cm3;

cv»p is the heat of evaporation per mole, p  is expressed in cm of mercury.
This formula is valid only, if the pressure is so low that the vapour can
be considered as an ideal gas. The ratio of this correction to the heat
capacity of the liquid is, of course, decisive. The evaluation shows an
increase with temperature which is not very large. Although the experi­
ments were extended up to 1.8° K this ratio never exceeded 1.5 %.

There remains to be considered the role played by the volume above
the capillary in the evaporation process. In the temperature region below
1° K the contribution can be completely neglected, but at higher tempera­
tures this volume might have an appreciable influence.

The experimental conditions for the measurements in the upper
temperature region differ in some respects from those below 1° K. The
helium bath was always maintained at about 1.05° K. The heat leak has,
therefore, a negative sign. The pumping tube of the calorimeter is now
closed to prevent the pumping away of helium from the calorimeter.
Only the part of the upper pumping tube at liquid helium temperature
may give an appreciable contribution to the correction of formula 3.05,
the density of the vapour at higher temperatures being too small. As is
well-known, the temperature in a cryostat rises sharply just above the
bath, so the level of the bath determines the volume under consideration.
Two cases have now to be considered which were actually observed in
the course of the experiments.

In the first case there is a good thermal contact between the bath and
the pumping tube. This occurs, when the bath level is high enough. In this
case the vapour pressure in the pumping tube cannot exceed its saturation
value (about 0.02 cm of mercury). The helium in the calorimeter may
evaporate and the gas would flow through the capillary. This current is
wholly governed by the difference of pressure according to P oiseutlle’s
law. The negative heat leak arising from this evaporation process increases
rapidly with the temperature; it amounts to 2 x 10* erg/sec at 1.8° K.
It gives, however, straight lines for the fore- and after-period of a heating
point and consequently the average heat flow from the calorimeter can
easily be evaluated. An extra correction for the heat of evaporation is,
therefore, not required. Its effect is completely accounted for by correcting
for the heat leak”. The influence of the helium condensed in the pumping
tube can be neglected. It will probably return into the calorimeter by
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means of the capillary and in this way increase the negative heat leak,
but this is only a small effect.The amount of helium in the calorimeter is
certainly not changed appreciably during the experiments. The heat leak of
2x10* erg/sec occurring at 1.8° K corresponds to a mass transport of vapour
of only 0,0006 gr/min, the content of the calorimeter being about 1.8 gr.

The second case occurs with a low bath level (below point j in fig. 2.1).
Now there is no equilibrium between the pressure in the tube and the
bath. The negative heat leak is much smaller (see table 3.2), because the
low pressure in the upper tube is not maintained at the saturated vapour
pressure of the bath and consequently the pressure difference can be
much smaller than in the first case. At a heating point the relative change
of this pressure difference during the heating, however, is much larger.
An estimate of the gas flow through the capillary shows that during the
time of the heating an appreciable part of the pressure equalisation should
take place. Consequently it is possible only for a part of the correction
due to evaporation to be included in the heat leak evaluated by means
of averaging the slopes of the fore- and after-periods. The other part
cannot be corrected for, because the exact temperature in the upper tube
is unknown. On the other hand, since probably only a small portion of the
upper tube tube is at low temperature, the average density of its vapour
content is low and consequently the amount of gas to be transported
through the capillary for attaining pressure equilibrium is small too.
Thus the correction involved is probably negligible. To give a specific
example: if the part of the upper volume at low temperature is 2 cm3, its
total contribution to the heat content of the calorimeter would he about
4 % at T — 1.6° K. About one fourth of the amount of vapour responsible
for this passes the capillary during a heating period of 30 sec. The in-
correctible part would, therefore, give an error of 1 %. Probably the
situation is even more favourable in a real case.

The argument with respect to the second case is certainly not completely
conclusive. The best proof of the reliability of the experimental results is
perhaps the absence of any systematic difference between the measured
specific heat values in both cases. The first case usually occurred with the
first series of measurements on a measuring day. In the latter two or three
series the second, case was observed.

3.2.3. O ther co rrec tio n s. The calorimeter consists of glass and
contains, apart from paramagnetic salt and helium, a few platinum wires.
The heat capacities of the glass and the wires can be completely neglected
compared to the joint contribution of the salt (about 14 g) and the
liquid helium (1.7 to 1.8 g). Accurate values of the specific heat of glass
are not known, but the temperature dependence is almost certainly a
third power law with an absolute value of the coefficient well below 1 %
of that of helium in the “phonon” region (the Debije temperature is
certainly larger than 100° K).
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TABLE 3.2
Two series o f m easurem ents.

T
° K x  10s

A T
°K x  10s

dQ/dt
erg/sec

10s

(dQ/dt)0
erg/sec

10»

At
se

ctot
3 joule/deg

caalt
joule/deg

cyap
joule/deg

cBq
joule/deg

G
joule
g deg

125 3.3 0.039 0.038 10 0.0123 0.00117
150 5.3 0.039 0.035 10 0.0076 0.0081
229 35.1 0.040 0.023 30 0.0035 0.0035
324 13.2 0.040 0.023 10 0.00313 0.0017 0.0014 0.00082
377 13.3 0.040 0.020 10 0.00309 0.00128 0.0018 0.00106
448 36.3 0.162 0.021 10 0.00526 0.00091 0.0044 0.0026
518 26.0 0.159 0.019 10 0.00621 0.00068 0.0055 0.0033
558 22.3 0.158 0.018 10 0.00718 0.00057 0.0066 0.0039
592 19.5 0.156 0.021 10 0.00894 0.00052 0.0084 0.0050
622 15.1 0.156 0.023 10 0.0105 0.0005 0.0100 0.0059
656 12.4 0.154 0.029 10 0.0135 0.0004 0.0130 0.0077
687 19.0 0.151 0.038 20 0.0156 0.0004 0.0152 0.0088
726 14.8 0.151 0.046 20 0.0208 0.0003 0.0001 0.0204 0.0120
764 29.3 0.851 0.061 10 0.0295 0.0003 0.0002 0.0290 0.0172
817 36.0 0.852 0.080 20 0.0480 0.0003 0.0003 0.0474 0.0279
860 26.4 0.852 0.096 20 0.0649 0.0002 0.0005 0.0642 0.0378
901 32.3 2.79 0.091 10 0.0874 0.0002 0.0007 0.0865 0.0503
962 60.0 2.77 0.091 30 0.140 0.001 0.139 0.082

1015 41.1 2.75 0.071 30 0.202 0.002 0.200 0.118
1052 31.8 2.74 0.017 30 0.259 0.002 0.257 0.151
1080 22.8 6.87 —0.063 10 0.301 0.002 0.298 0.175
1099 19.8 6.86 —0.075 10 0.346 0.003 0.343 0.208
1118 17.7 6.88 -0 .1 3 0 10 0.388 0.003 0.385 0.226
1142 27.0 12.22 - 0 .3 0 10 0.453 0.004 0.449 0.264

1165 27 12.19 -0 .3 1 10 0.456 0.004 0.452 0.270
1185 24 12.17 —0.47 10 0.501 0.004 0.497 0.296
1212 43 12.15 —0.57 20 0.573 0.005 0.568 0.332
1240 36 12.20 —0.51 20 0.674 0.006 0.668 0.398
1265 25 19.0 -0 .4 9 10 0.753 0.006 0.747 0.445
1284 24 18.9 —0.48 10 0.801 0.007 0.794 0.473
1303 21.5 19.1 —0.5 10 0.891 0.007 0.884 0.526
1321 19.6 19.0 - 0 .5 10 0.979 0.008 0.971 0.579
1344 40 43.1 - 0 .4 10 1.069 0.008 1.06 0.632
1380 35 43.1 - 0 .6 10 1.23 0.01 1.22 0.725
1409 32 43.1 —0.8 10 1.35 0.01 1.34 0.800
1438 28 43.0 —0.6 10 1.52 0.01 1.51 0.902
1473 50 43.1 - 0 .7 20 1.74 0.01 1.72 1.03
1516 42 43.1 —0.8 20 2.03 0.01 2.01 1.20
1553 38 43.1 —0.8 20 2.30 0.02 2.28 1.36
1592 54 43.0 - 0 .8 30 2.38 0.02 2.37 1.41
1627 26 76.1 - 1 .0 10 2.89 0.02 2.87 1.71
1660 49 76.0 — 1.6 20 3.09 0.02 3.07 1.83
1700 43 76.3 - 1 .8 20 3.55 0.02 3.52 2.12
1730 30 121.0 — 1.1 10 4.06 0.03 4.03 2.40
1769 55 121.4 - 2 .0 20 4.39 0.03 4.36 2.60
1817 49 122.2 - 3 .0 20 4.99 0.03 4.96 2.96
1860 47 136.0 —1.0 20 5.76 0.04 5.72 3.41
1922 48 152.3 —3.0 20 6.34 0.04 6.30 3.76
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TABLE 3.3
Measuring points below T  =  0.75° K.

T G T C
° K  X  10s j/gdeg  X  101 0 K  X  10s j/gdeg  X  104

A I 414 17.2 B I I I 248 3.7
476 26.3 286 6.6
524 34.0 337 8.4
566 43.6 434 20.3
614 53.1 465 28.3
673 95.1 497 29.6
737 127 528 35.4

554 51.0

A l l 306 6.4 586 50.7
401 17.0 627 70.1
475 25.2 673 90.1
523 35.8 716 122
575 47.0
649 63.0 C l 324 8.2
750 150 377 10.6

448 25.6

B I 281 4.9 518 32.6
357 11.1 558 38.9
423 19.0 592 49.5
467 23.5 622 59.0
501 29.8 656 76.6
546 32.5 687 88.3
595 55.3 726 120
654 71.8

C I I 246 4.3

B  I I 274 4.4 319 8.5
323 8.0 402 15.1
395 14.7 476 25.2
428 19.8 552 38.4
460 25.5 611 52.5
491 28.1 660 73.5
515 33.4 693 102
536 37.1 739 137
559 45.0
585 49.0
606 53.3
627 67.2
652 72.1
678 90.3

3.3. Results. The results are shown in the tables 3.2, 3.3 and 3.4 and in
the figures 3.2 and 3.3. Table 3.2 contains a review of two series of measure­
ments, the first one for temperatures below, the second one for tempera­
tures above the temperature of the bath. Apart from the actual results,
the heat input per second, the average heat leak per second and the
corrections for the salt and the vapour, discussed in section 3.2 are also
given. The second column contains the temperature increase during
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Fig. 3.2. The specific heat below 1° K as a function of temperature.

Full line: calculated with d e  K l e r k ’s data of 6  and b.
Dotted line: calculated with G a k rb tt’s data.

heating, the fourth column the time of heating. These two series give an
idea of the relative magnitude of heat leaks, external heat input and
different corrections. They include only about 20 % of the total amount
of data obtained.

In table 3.3 the results of measurements below 0.75° K are compiled.
Fig. 3.2 shows a logarithmic plot of the specific heat as a function of
temperature for the lower region. Fig. 3.3 represents the same semi-
logarithmically for the higher region. Again only part of the measured
points are plotted to avoid confusion. The full line corresponds to the
“smoothed” values which are tabulated in table 3.4. For temperatures
above 1.8° K  the data of K eesom and K eesom [5, 6] were used.

The graphs give a good impression of the accuracy. Deviations above
0.75° K may amount to 2 to 3 %. In the lower temperature range this is
somewhat larger, due to the relatively large influence of the salt correction
and the heat leak. Moreover, some small systematic differences between
the results of different series were found, due to some uncertainty in the
dependence of n on temperature. The temperature scale is after all an
extrapolation of the curve through the calibrated points in the normal
helium temperature region. Therefore, rather small ambiguities in the
absolute value of the temperature may affect the results more seriously as
the temperature dependence of the phenomenon under consideration is
very large. The scattering of the points between 0.75 and 0.4° K amounts
to 5 to 10%; below 0.4° K the scattering increases rapidly, the salt
correction becoming predominant.
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Fig. 3.3. The specific heat in the temperature region between 0.75° K and the
A-point (1949 temperature scale).

O measuring points from the present investigation.
A points of Keesom and Miss Keesom.
V points of Keesom and Cltjsius.

3.4. Comparison with other experiments. Several experimental data in
the temperature region attainable by pumping on liquid helium had
already been published. The points of K eesom and Clusius [7] and
K eesom and K eesom [6] are plotted in fig. 2.3. There are only a few
points available between 1.25 and 1.9° K which are in reasonably good
agreement with the data of the present investigations. These results had
partly to be recalculated to the 1949 temperature scale of the vapour
pressure of helium. The scattering of K eesom and K eesom’s points above
1.9° K is much less, so they could be used for computing the smoothed
values of the specific heat given in table 2.4.

Other published data are those of K eesom and Westmijze [8] in the
temperature region from 0.6 to 1.6° K. Their values are represented by
the formula c„t= 9.6 x 10-2T6 joule/g deg; these values are on the average
about 8 % too low. The authors did not claim, however, a great accuracy.

The same applies for the values compiled by Gorter et al. [9], because
they used the K eesom and Westmijze formula in the region between
1.0 and 1.6° K.
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The agreement with the results of H ull , W ilk in so n  and W ilks [10]
is much better. Their formula c„t=10.0 x 10-2T8-2 (0.6-1.4° K) can be
considered as a good average over the quoted temperature range, if one
wants to represent the results by a single power of T.

TABLE 3.4
Smoothed values of the specific heat and the entropy of helium II.

T
° K

C
joule/gdeg

8
joule/gdeg

C'r
joule/gdeg

T
° K

C
joule/gdeg

S
joule/gdeg

c t
joule/gdeg

0.60 0.0051 0.00169 0.0 1.45 0.944 0.162 0.872
0.65 0.0068 0.00215 1.50 1.127 0.197 1.048
0.70 0.0098 0.00276 0.0017 1.55 1.330 0.238 1.243
0.75 0.0146 0.00358 0.0047 1.60 1.572 0.284 1.476
0.80 0.0222 0.00475 0.0102 1.65 1.83 0.336 1.72
0.85 0.0343 0.00644 0.0199 1.70 2.11 0.395 2.00
0.90 0.0510 0.00885 0.0338 1.75 2.46 0.461 2.33
0.95 0.0743 0.0122 0.0541 1.80 2.80 0.535 2.66
1.00 0.1042 0.0168 0.0807 1.85 3.19 0.617 3.04
1.05 0.142 0.0227 0.115 1.90 3.63 0.709 3.47
1.10 0.191 0.0304 0.160 1.95 4.27 0.812
1.15 0.250 0.0402 0.215 2.00 4.95 0.929
1.20 0.322 0.0523 0.282 2.05 5.82 1.061
1.25 0.410 0.0672 0.364 2.10 6.92 1.215
1.30 0.516 0.0853 0.464 2.15 8.61 1.40
1.35 0.634 0.1069 0.576 2.18 11.6 1.53
1.40 0.780 0.132 0.716 2.186 14.3 1.57

The more recent experiments of H ercus and W ilks [11] which were
published after the original publication of the experiments discussed
here [12] gave, however, values about 10 % higher in the temperature
range from 1° to 2° K.

The results of experiments by D okoupil et al. [13] which were performed
in the Leiden laboratory, using a completely different technique, are
once more in good agreement.

3.5. Comparison with theory. According to the theory of excitations the
specific heat should be built up out of two contributions, one due to the
phonons, the other due to the so-called rotons. As was stated in chapter I,
this division makes only sense for temperatures which are not close to
the A-point, since in that region the density of the excitations becomes
too large. In fact, the applicability of the theory of excitations breaks
down near the A-point.

The phonon part of the specific heat is proportional to T3. Assuming
that no transverse waves are possible in liquid helium, it is only dependent
on the velocity of sound vl :

(3.06)
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The roton part of the specific heat, assuming the energy spectrum of a
roton to be represented by formula 1.26 is given by

m indicating the mass of one helium atom.
The roton contribution has a very large temperature dependence, so

it is to be expected that at low enough temperatures only the phonon
contribution will survive.

Returning now to the experimental results, the inspection shows that
this actually occurs below 0.6° K. The data in that region are in good
agreement with a T3 law and can be represented by
(3.08) Cph= 0.0235 (± 0.0015) x T3 joule/g deg.

Using a value of Vj = 237 m/sec, obtained by extrapolating the measure­
ments on the velocity of first sound [14, 15] in the normal helium region,
one gets from formula 3.06

cph= 0.0212 x T3 joule/g deg.

The agreement is not bad; the difference, however, just exceeds the
accuracy limit claimed for the specific heat experiments. On the other
hand, it is not to be expected that there is a large error in the measure­
ments on the velocity of sound. The extrapolation to lower temperatures
cannot introduce any large uncertainty either, since just above 1° K the
velocity is already practically constant. If there is any ambiguity here,
it points to an even lower value of the specific heat. So the difference has
to be explained by a systematic error in the present experiments or by
an unforeseen complication in the theory. The first supposition can only
be justified by making new measurements. These are actually in progress
in the Leiden laboratory. The ambiguity of the data on the salt mentioned
in section 3.2 is certainly not responsible for the deviation.

As to the second supposition, one is tempted at first sight to suppose
a dispersion of the velocity of sound at the high frequency of the “thermal”
phon ins. (The measurements of Atkins and Chase were performed at
1.4 x 107 Hz; the average frequency of the thermal phonons at 0.5° K
is of the order of 1010 Hz). The velocity of sound corresponding to the
experimental value of the specific heat is 226 m/sec. I t  should be pointed
out, however, that this supposed dispersion has the wrong sign. In normal
sound the dispersion, due to relaxation effects, gives an increase of the
velocity with the frequency. On the other hand, some kind of “resonance
dispersion may perhaps occur, if the phonon wave length is no longer
very large compared with the atomic distance (see fig. 1.1).

Turning now to the higher temperatures, where the specific heat should
be represented by c=Cph+ cr, one can compare cr, found by subtracting
cph from the total specific heat, with formula 3.07. The experimental values
of cr are also compiled in table 3.4.
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Formula 3.7 has the form cT—Bf(T)e A/*T, B  being a constant and ƒ (7)
a function which changes only slowly with temperature (practically
/(71)=77~,/i). The main dependence on temperature arises from the expo­
nential factor. By plotting the experimental values of cr/(7) against 1/7
a straight line should be obtained. This is actually the case in a large
region: between 0.8° and 1.6° K the deviations are less than 4 %. Below
0.8° K the roton specific heat seems to decrease even faster with tempera­
ture. Because of the uncertainty of the phonon specific heat, not much
importance should be attached to this observation. The former is still a
major contribution in this region. Above 1.6° K the dependence on
temperature is also somewhat faster, probably due to the influence of
the neighbourhood of the ^-point as discussed at the beginning of t.hia
section. From the slope of the straight line found in this way, the magni­
tude of A/x can be deduced. I t  is found to be 9.1° K (± 0.15) (see also
section 4.7) *).

The constant B  still contains two unknown quantities: the “effective
roton mass” p and p0, the momentum of a roton of the smallest energy.
For an evaluation of p and p0 yet another function connecting these two
quantities has to be found from experiments. The specific heat data lead
to (pJK)* x (^/m),/,=2.4 x 1016. In these calculations the difference
between the specific heat at constant volume considered in theory and
the actually measured specific heat at the saturated vapour pressure can
be completely neglected.

The conclusion is that there exists a reasonable agreement between the
experiments and the predictions from the theory of excitations. The
latter gives in any case an adequate description of the specific heat below
1.6 K. Experiments seem to show a somewhat sharper bend in the curve
of figure 2.2 at 7=0.6° K than was expected from the theory, but the
accuracy of the measurements is not sufficient in this region to make a
definite statement.

3.6. The entropy. The entropy can be calculated from the specific heat
by means of

(3-09) S(T) =  ƒ £  d7.
0

The results of this integration can be found in table 3.4. The smoothed
values of the specific heat were used.

The integration of formula 3.8 yields for temperatures below 0.6° K :

__________  <$U=0.0078 (± 0.0005) x 7 s joule/g deg.

*) In  th e  original publication o f these experim ents [12] a  value of abou t 8° K
was given. The difference w ith the  present value is due to  th e  use of L a n d a u ’s
first proposal o f th e  energy spectrum  of a  ro to n : er =  A +  p*l2^,.which a t  th e  tim e
seemed to  be the  best representation. The m ain te rm  of f(T)  to  th a t  case is T~7.
and  th is ju s t causes th e  difference.
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The previously published entropy data [9], based on a similar calculation
by making use of other measurements of the specific heat show deviations
of the same order as those mentioned in section 3.4.

The computed entropy data can now be compared with the entropy
calculated from measurements on the fountain effect and the mechano-
caloric effect, provided the formulae of H. L ondon are accepted. At the
same time, this comparison furnishes a test to those formulae. H. L ondon’s
formula for the fountain effect is

(3.10) dpldT=QS

and for the mechano-caloric effect

(3.11) Q=8T.

In the latter Q is the heat production in a vessel per unit mass of super­
fluid helium flowing from the vessel.

Consider now first the entropy calculated from K apitza  s measurements
on the mechano-caloric effect [16]. The values are about 4 % higher at
temperatures below 1.5° K and 10 % higher above this temperature than
the present results.

The experiments of Me y er  and Mellin k  [17] yield values in agreement
between 1.4 and 1.7° K, but a few percent higher below this region and
up to 10 % lower above it. The scattering of their points is, however,
rather large especially near the A-temperature.

New experiments on the fountain effect by P eshkov  [18] in the tempera­
ture region from 0.82° to 1.59° K  are in excellent agreement with the
entropy values given in table 3.4.

Finally the recent indirect measurements of the fountain effect by
van d en  Mey den berg  et al. [19] are within the limits of accuracy of
both the experiments in agreement with the present data.

3.7. Conclusion. I t  should be noticed that results of experiments on the
specific heat of helium II  may depend very much on the temperature
scale used for the vapour pressure of helium. This is due to the rapid
change of the specific heat with temperature. Particularly in the region
between 1.5° and the A-point an uncertainty still exists. For instance,
the scale proposed by K istem aker  [20] brings down the A-temperature
by 0.014 degree Kelvin compared to the 1949 scale of van D ij k  and
Sh o en berg . At 1.5° K the two scales agree, in the intermediate zone the
differences change about linearly 1).

The effect on the specific heat and the entropy results mainly in a

i) Since this text has been written, a new temperature scale was accepted at
the Paris conference on Low Temperature Physics in September, 1955. In the
temperature region under discussion this scale is practically in agreement with
the Kistemaker scale. The data given in table 3.4 for temperatures larger than
1.8° K  must, therefore, now definitely be recalculated.
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shift of the temperatures of the values mentioned. The values themselves
are hardly effected (less than 0.5 %).

On the other hand, this can only have an influence on the data of
K eesom  and K eesom  and those of K eesom  and Clttsitts, which were
used to fill the gap between 1.8° K and the A-point. The magnetic thermo­
meter used in the experiments described in this chapter was usually
calibrated against the vapour pressure at about 2.6°, 1.4° and 1.08° K
and not in the disputed region. So these results are independent of such
a change of scale.

A few final remarks may perhaps be made on the reliability of the data
of the present experiments. The agreement with other reliable experiments
is usually good. A serious difference exists, however, with the results of
H ercus and W ilks [11]; this situation has yet to be cleared. The indirect
measurements on the fountain effect of van  d e n  Me y d e n b e r g  et al. [19]
and the latest experiments of P eshkov  [18] give a good support for the
calculated entropy values as well as for the validity of H . L o n d o n ’s
formula for the fountain effect. The older direct measurements on this and
the mechano-caloric effect show poor agreement. The mutual agreement of
these experiments, however, is still worse. The conclusion is that there is as
yet no reason to distrust the values of the entropy based on the experiments
described in this chapter, nor in fact the formulae of H . L o ndo n .
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CHAPTER IV

THE HEAT PULSE EXPERIMENTS

In this chapter the results of the experiments concerning the propagation
of heat pulses in the liquid are given and discussed. Section 4.1 contains
a mere statement of the results. In section 4.2, 4.3, 4.4 and 4.5 they are
analysed in more detail for different temperature regions and discussed
with respect to experimental and theoretical considerations. Section 4.6
contains the result of a preliminary experiment in which atmospheric
helium was used instead of helium from wells. In connection with it the
possible influence of extremely small amounts of 3He is discussed. Section
4.7 is reserved for some final remarks and conclusions.

To avoid confusion the nomenclature used in the description of the
results is first given here. The experiment always concerns the behaviour
of a heat pulse after travelling through the liquid over a certain distance.
The path length is indicated by z, the diameter of the tube through which
propagation takes place is called d. The zero point of the time of pro­
pagation is always put at the start of the transmitting signal. Because in
general the pulse changes its shape while passing through the liquid, the
time of propagation cannot be defined unambiguously. ^ indicates the
time of arrival of the front of the detected signal, tz the time of reaching
its half-height and tA the time corresponding to its top. The corresponding
“velocities”, i.e. zft are called %, u3, uA respectively. The pulse energy is
indicated by e and the pulse width by r.

4.1. Review of experimental results. Table 4.1 summarizes the different
tubes used in the experiments. An indication of the construction of the
heaters and the thermometers is given and lengths and diameters are
tabulated. The most reliable measurements were made on tubes 8, 9 and
10; therefore, the main part of the discussion will be devoted to them.
Deviating results obtained in experiments with other tubes will be
mentioned at the end of this section.

Fig. 4.1 contains eight typical photographs taken from the total amount
of a few thousand. In all the pictures the time-scale is shown on the
second beam. The distance of the main time markers is 100 ^sec, in some
of the pictures the subdivision of 10 jusec markers is also shown. In the
upper two photographs the time scale is three times less than that in the
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TABLE 4.1.

Measuring tubes
A. =  aquadag on paper
C.B.S. =  commercial resistance strip (carbon)
Const. =  constantan wire
Ph.br. =  phosphorbronze wire

No. heater thermometer length
cm

diameter
cm

1 A. A. 2.99 0.40
2 C.R.S. C.R.S. 6.02 0.40
3 C.R.S. C.R.S. 1.63 0.40
6 Const. Ph.br. 3.0 0.80
7a Const. A. 1.60 0.95
7b Const. A. 4.72 0.95
8 A. A. 1.60 0.95
9 A. A. 3.05 0.95

10 A. A. 6.4 0.95

remaining ones. The transmitting time is indicated by the pick-up signal
at the left on the main beam.

Fig. 4.2 depicts for comparison the shapes of signals for the three main
tubes. The fully-drawn lines are direct reproductions from the photo­
graphs. The dashed lines were produced in the following way. First the
signals from the three tubes at the same temperature were adjusted to
equal energies of the input pulse and also as far as possible to the same
thermometer-sensivity. The amplifier correction, mentioned in 2.8.5, was
then made. This is an important correction especially in the case of the
very long tail signals of the 6 cm tube. The amplitudes obtained in this
way should not be taken too seriously, because the thermometers used
were not always the same, moreover, their sensitivity is by no means
linearly dependent on the direct current. The table underneath figure 4.2
gives the data on the input-pulses.

Fig. 4.3 gives the results of the time measurements for the three tubes
as a function of temperature. The points plotted are only a part of the
total number obtained. To avoid confusion they have been omitted alto­
gether for the 3 cm tube. Because of the poor accuracy the curves for the
<4 values below about 0.5° K have not been drawn.

All the data summarized in the first part of this section are obtained
from pulses with “normal” energies and pulsewidths. Normal means in
this respect as small as possible but well defined above the noise level.
Of course this depends very much on the temperature and the tube length,
thermometer sensitivity, specific heat and pulse-spreading changing
within large limits. Table 4.2 contains a review of these “normal” values.

A general survey of the results gives the following picture.

4 .1 .1 . T  > 1.0° K (region A). This is the region of normal second
sound, i.e. the pulses remain well-bunched, apart from some aftereffects
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1msec

Fig. 4.2. Shape of the detected signal a t different temperatures (T) and different
tube lengths (z).

Fully-drawn line: actually observed signal; dotted line: normalized signal (see text).
e =  energy of actual input pulse.
t =  width of input pulse.
e„ =  energy of normalized pulses.

1 2 3
z =  1.60 cm z =  3.05 cm z =  6.4 cm

T e T T € T T e T en
°K erg fi sec °K erg jusec °K erg fj, sec erg

A 0.172 0.146 20 0.154 0.162 20 0.156 0.88 20 1.2
B 0.402 1.26 20 0.370 9.55 20 0.417 11.5 40 15
C 0.506 1.27 20 0.548 19.3 40 0.532 11.6 40 18
D 0.691 3.34 20 0.674 9.9 20 0.675 11.9 40 30

perhaps due to spurious reflections. No appreciable difference is found
between the pulse shapes of the three tubes.

4 .1 .2 . 1.0° K > J T>0.7° K. (region B). Going to lower tempera­
tures one observes firstly a shift of the signal to the left on the oscilloscope
screen, i.e. the velocity is increasing as should be expected from other
experiments. Moreover the pulsewidth is not preserved, but shows an
appreciable spreading (see fig. 4.1. e, f, g, h). There is a marked dependence
of the amount of spreading on the tube-length. A good parameter for
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8  h
Fig. 4.1. Some typical photographs.

a. tube 10 (z =  6.4 cm ); note th e  sharp edge a t  th e  s ta rt.
b. tube 7b (z ■— 4.72 cm ); constantan  heater, no sharp edge.
c. tube 10 (z =  6.4 cm ); fron t of th e  very  flat signal.
d. tube 10 (z =  6.4 cm ); typical exam ple of the  in term ediate region.
e> f> g» h. tube 8 (z — 1.60 cm ); th e  pulse shape in  the  higher tem perature region.
The num ber in  the  centre o f each picture gives th e  tem perature belonging to  i t  in

millidegrees Kelvin.
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5 0 0 0

6.40 cm

2000

3.05 cm

K500
0  /

1.60 cm

1.0 K

Fig. 4.3. Tim e-interval m easurem ents for the tubes 10, 9 and 8 (z =  6.4, 3.05 and
1.60 respectively).

O ---------------- s ta rt of the signal (<,)
A ----------------half height (<,)
□ ---------------- top (<4)

3a. Review of th e  measured tim e points.

TABLE 4.2
Norm ally used pulse energies (e) and pulse w idths (r)

T
z  =  1.60 cm z  =  3.05 cm z = 6.4 cm

°K e T e T e T
erg /usee erg ix sec erg fx sec

0.15 0.15 10 to  20 0.15 20 0.5 20
0.3 0.5 20 1.3 20 3.5 20 to  40
0.5 1.3 20 3.4 20 7.0 40
0.7 3.4 20 3.4 20 18 40
0.9 3.2 20 to  40 6.4 20 to  40 30 40 to  (70)
1.1 10 40 19 40 35 40 to  (70)

this spreading is the value ofi4—£a; i.e. the difference of time between top and
half-height of the front part of the signal. For constant temperature this
time interval is within the limits of accuracy proportional to z 1' (see fig. 4.6).

In  earlier publications [1, 2, 3] the velocity of second sound was
supposed to be equal to The value of %, however, appears to be
dependent on the length of the tube. This is clearly seen in fig. 4.4; iq is
plotted as a function of T  for the 6 cm and the 1.6 cm tube. A unique
velocity has to be defined in another way (see section 4.2).
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4.1.3. 0.7° K > T >  0.5° K . (region C). In this region a sub­
stantial change of shape of the detected signal takes place. Near 0.7° K
the symmetry is lost and a large tail develops rapidly while passing to
the lower temperature. The definition of tt becomes very difficult; the top
of the signal cannot be defined very well. There is a rather curious effect
which is especially well indicated with the longest tube (z=6.4cm). I t
appears that the front part of the signal, instead of continuing its flattening
with decreasing temperature, becomes steeper again. This can be seen
clearly by comparing the t3 and curves for the long tube in fig. 4.3 (see
also fig. 4.1.d). The steepest front is found at a temperature of about
0.55° K. Below this the flattening is again increasing with decreasing
temperature. The same effect, but less marked, is observed with the
3 cm tube.

The values of % are still increasing with decreasing temperature in
ahis region, appreciably slower, however, between 0.6 and 0.5° K than
t t  higher temperatures.

4 .1 .4 . T <0.5° K. (region D). A very flat signal survives when
the temperature is lowered still further. The value of ^ is not very well
defined, because the front of the signal starts in a very concave manner
(see fig. 4.1.c). The result is a rather large spreading of the measuring points.
In this region the introduction of the amplifier correction is very essential
(see fig. 4.2.B3). The 1.6 cm tube is not very suitable for analysis, because
the direct signal is probably intermingled with the first vice versa reflection
(just a trace of a second top can be seen in fig. 4.2.B1). The results of the
other two tubes indicate that £4 is probably proportional to z2, although
the accuracy is rather poor. The time of the first top of the shortest tube
also fits rather well in this assumption.

At about 0.36° K with the 3 cm tube and 0.22° K with the 6 cm tube a
new effect appears. The front of the signal becomes very sharp, so is
again well defined (see fig. 4.1.a). For the 1.6 cm tube no clear demarcation
between a sharp edge and the rest of the signal can be observed. The main
part of the signal is rather sharp, so that the sharp edge may not easily be
distinguishable from it.

The corresponding % values are
z= 1.60 cm tt1=215m/sec
z = 3.05 cm %=220 m/sec
z=6.4 cm ^= 231  m/sec

I t  should be noted here that these values are very near to the velocity of
first sound.

4.1.5. The in fluence  of large energies. Some experiments have
been carried out with larger energy input (between 20 and 200 times larger
than the “normal” values). The following deviations from the above
mentioned phenomena were observed:
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Fig. 4.4. Velocities in the high temperature region.
V tube 8: v,v
A tube 8: corrected velocity of the top.
□  tube 10: uv
O tube 10: corrected velocity of the top.
Dotted line: V j j  according to De K l e r k  e t  a l .  [3].

a : an increase of % with increasing energy for T >  0.9° K.
b: the existence of slightly larger values below 0.6° K, especially

between 0.4° K and 0.6° K.
c: the appearance of the sharp edge in region D at somewhat higher

temperatures (up to a few hundredths of a degree higher).

Moreover, for very large energies (more then 100 times the “normal”
values) were observed:

d: an increase of the velocity of the sharp edge nearer to the expected
value of vI (237 m/sec) (temperature region D).

e: an increase of the ratio of the amplitude of the sharp edge to the
maximum amplitude of the signal (region D).

a is probably a large amplitude effect of the kind also noted by Osborne

[4]; a detailed discussion is out of the scope of this exposition. I t is curious
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O T Q1 Q2 0.3 Q4 QS Q6 *K

Fig. 4.5. Velocities in the low tem perature region.
Fully-drawn lines: upvalues for tubes 8, 9 and 10.
Dotted line: “i)n ” according to De  K leb k  et al. [3].

to note, however, that no such effects appear to occur at lower tempera­
tures. b and c can probably be explained by considering the marking
effect of the noise. In case b, because of the concave shape of the signal
front, with small input energy (i.e. relatively large noise level) the start
of the signal is suppressed by the noise. The same applies to the very
small sharp edge signal at its first appearance in case c. e is probably due
to non-linearity of the amplifier for large input voltages; d will be discussed
in section 4.5.

4 .1.6. The o the r  tubes .  The first three tubes (no. 1: z=3cm,
no. 2: z = 6 cm, no. 3: z = 1.5 cm) had about the same lengths as the tubes
mentioned above. The diameters were, however, about twice as small.
With tubes 2 and 3 the spreading occurring below 0.5° K was observed
to be about twice as large as that of the corresponding tubes 10 and 8.
The results were, however, not very reliable, probably because of the
relatively small sensitivity of the commercial resistance strips used. In
the experiments on tube 2 the sharp edge occurred in exactly the same
manner as in tube 10. At higher temperatures the results from tube 2
were not very satisfactory. The signals were much more spreaded than
in the other tubes and the sensitivity partly for this reason not very good
so that pulses of moderate energy did not give adequate results.

Tube 1 was investigated with an amplifier not suitable for low frequency
amplification. Therefore, the results from the temperature region with
flat signals cannot be considered as reliable. By introducing the amplifier
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correction results similar to those later observed with other tubes are
found. In this case, however, the correction is so large that these results
cannot be used for further analysis. In one respect this tube gave more
reliable data than the corresponding tube 9. The appearance of the sharp
edge could be analysed much better. The reason for this is the relative
smallness of the flat “main body” effect. This is partly due to the reduced
amplification of the latter and partly because of the larger spreading
probably occurring in narrow tubes. A better differentiation can, therefore,
be made between the sharp edge and the main body effect. Actually the
results from tube 1 have been used for the estimate of the mean free path
(section 4.5).

Tube 6 contained a phosphorbronze thermometer which had a very low
sensitivity and also a low resistance (2 Q). Because the amplifier was
adapted to large input resistance, the results were very meagre, although
a step-up transformer was used. The only notable difference with the
other tubes was the absence of the sharp edge effect.

This effect was also not observed with the tubes 7a and 7b (home-made
thermometers). The sensitivity was again good. No appreciable deviations
in other respect were found.

As the common feature of tubes 6, 7a and 7b was the use of a constantan
heater, this was probably the cause of the absence of the sharp edge.
This question will be discussed in section 4.5.

4.1.7.  The de te rm ina t ion  of the  t e m p e ra tu re .  All tempera­
tures given are magnetic temperatures, i.e. no corrections have been
introduced for the ellipsoidal shape of the salt or for deviations from the
Curie law. The errors thus introduced are small and for the most part
either well within the accuracy of the measurements or in a region of
practical independence on temperature of the phenomena.

For temperatures above 0.3° K the correction is less than —0.002 of a
degree, at 0.2° K. it is about —0.004 of a degree; only at 0.1° K. it may
become of the order of —0.01 of a degree.

4.2. The temperature range from 0.7° K to 1.0° K. In this region the
shape of the original pulse, although spread out substantially, preserves
more or less its original character. I t  will be shown that the experimental
results are in agreement with the supposition that second sound still
exists but is rather heavily damped. I t  appears, however, that this
absorption is probably still of the kind described in section 1.3, i.e. only
relatively small deviations from local equilibrium occur in the gas of
excitations and a description using common irreversible processes is
adequate. According to equation 1.19 the absorption coefficient in this
case is proportional to cu2. The following analysis has first been made by
D ing le  [5],

When the original input pulse has approximately the shape of a (5-
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function, the response can in general be written as a Fourier-integral:
+ 00

(4.1) xpa[z, t) = (2^)-1 ƒ exp {io)(t — z/w(co))}dco.
—  00

The phase velocity v depends on the frequency in the way indicated by
equation 1.18, i.e.

(4.2) vi =i%1+i(o<x.

In this chapter vn always indicates the second sound velocity for the limit
of zero frequency.

Introducing (4.2) in (4.1) and expanding in rising powers of a  yields:

(4 3) \  ̂=  < ^ 2™ 2)V* 6XP ~ 2/t’n)2/(2azM i)M z> 0
( 9o(z, t) = 1 + terms of the order (a/zifa) '̂-

In first approximation this is a Gaussian curve. The top is determined by

(4.4) <mm=zwn 1 {1 — terms of the order <*lzvn}.

Returning now to the experiments and identifying the observed sym­
metric “pulse” with the Gaussian curve of this calculation, the first con­
clusion which can be drawn concerns the velocity vn . As has been pointed
out, the velocity %, accepted to be the second sound velocity by earlier
investigations [3], actually depends on z. On the other hand, according to
equation 4.4, the proper value of %  should be equal to zltm„, i.e. z/#4.
Indeed z/tt proved to yield a unique velocity for all tubes down to 0.7° K.
Below this temperature the curves for the different tubes deviate (see
fig. 4.4).

In view of the very short pulses used, no attempt has been made in
this and the next calculation to take into account the finite width of the
heating pulse. Merely, the ^-values used have been corrected in such a way
that the zero point of time lies in the centre instead of at the start of the
original pulse.

The Vjx curve from reference [3] is also shown in figure 4.4; it was
obtained from the %-values for a 5 cm tube. I t  is curious that this curve
lies below the %-curve for the 6 cm tube in the present investigation. One
would expect it to be situated just above but very near the latter. This
can perhaps be attributed to a somewhat different definition of the start
of the signal or to the characteristics of the amplifier employed.

The second conclusion which can be drawn concerns the value of <x or
of /9/<w2, in which p is the absorption coefficient at frequency to. /?/<u2 is
supposed to be independent of the frequency. According to equation 1.19

(4.5) P =

A very simple calculation yields

(4.6) & —h)2lz= 2.8(/?/ot)2),
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being the difference of time of the top and the half height of the
leading part of the signal. Indeed it is found that t^-t^  is, in any case
approximately, proportional to zv* at constant temperature. Figure 4.6

1.0 K

Fig. 4.6. Reduced width of pulses.
O tube & (z — 1.60 cm).
□  tube 9 (z =  3.05 cm).
A tube 10 (* =  6.4 cm).

gives the values of (<4—ta)lz^‘ as a function of temperature. The accuracy
of this kind of measurements seems to be rather small so that not a very
good accuracy can be expected for the resulting data on /3/cu2 either. The
main cause for the substantial spreading of the points is that the experi­
ments were always performed in such a way that the heating signn.1 and
the detected signal appeared both on the oscilloscope screen. For this
reason especially with the longest tube the time scale had to be small.
In the case of the 1.6 cm tube the time scale was usually three times as
large as that employed with the two other tubes. Consequently the largest
weight is given to these results. Again, below 0.7° K the values from the
different tubes deviate from each other and this calculation has no more
any sense.

From figure 4.6 it appears that at the high temperature end the spreading
becomes constant. The width of the signal is, however, still much larger
than the width of the heating pulse (20 to 40 /uaec). This spreading may
be due to the amplifier characteristics at high frequencies, the transfer of
energy from the heater to the liquid and from the liquid to the thermometer
or to an extra absorption or reflection by the surface of the walls. Probably
all those effects are present but it is not easy to decide which is the most
important one. Since also for this constant part the value of (i4 —i3)2/z
appeared to be about the same for the three tubes, this part was just
subtracted. The value of /8/co2 was calculated from the corrected data on
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( h ~ h ) 2lz - In view of this large extra spreading it is of no use to apply a
correction for the finite width of the original heating pulse.

The same calculation was made with data from tube 3 (1.5 cm length,
0.4 cm diameter). The accuracy of these early experiments was not very
good, but within the experimental limits the same values of
were obtained. One may, therefore, perhaps ^conclude that, in view of
the insensitivity of the spreading to the tube diameter, surface effects do
not play an appreciable role.

Figure 4.7 contains the data obtained on P/co2, together with the curve

0.0010.001
1.0 °K 12Q6 T , Q8

Fig. 4.7. P /(o *: reduced absorption coefficient of second sound.
A: heat conductivity coefficient (see text).

calculated by K halatnikov  [6]. The theory and the experiment appear
to be in good agreement. It should be mentioned here that experiments
on the absorption of second sound above 1° K  performed by Atkins  and
H art [7] and by H anson and P ellam  [8] lead to the same conclusion.
The value of oc can be calculated directly from p/co2, using also the data
obtained on vn.

In table 4.3 the smoothed values of %, Pico2 and oc are tabulated1).
It is now possible to investigate the validity of neglecting the higher

order terms of the equations 4.3 and 4.4. ocjzvjj had to be small compared
to 1 for the evaluation of vn . It proves to be equal to 0.02 and 0.07 with
the 6 cm and 1.5 cm tubes respectively at J7=0.7° K. The square root of
oc/zvji determines the limit set to the validity of the calculation of P/co2
and oc. It is equal to 0.14 and 0.26 in the corresponding cases at T =  0.7° K.

1) In  the original publication [9] somewhat different data on oc are given, because
the correction just mentioned was not introduced.
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TABLE 4.3
(Values in brackets are extrapolated)

T
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0.65 (61) (Ö) (2.3 X 10») (200) (2 x  10») (2) 1.3 0.3 1.2
0.675 53 (3.7) (1.1 X 10») 100 (1 X 10») (1.2) 0.65 0.15 1.75
0.7 42.8 2.9 450 40 410 0.57 0.40 0.06 3.0
0.75 34.1 1.41 112 12 100 0.21 0.20 0.019 5.6
0.8 28.1 0.71 31.4 3.7 28 0.087 0.072 0.0065 10.3
0.85 23.8 0.33 9.1 1.3 7.8 0.038 0.042 0.0023 18.0
0.9 21.1 0.15 2.8 0.5 2.3 0.017 0.018 0.0009 32.7
0.95 19.5 0.067 0.9 0.2 0.7 0.007 0.011 0.0003 50.3
1.0 18.7 (0.03) (0.4) 0.09 (0.3) (0.004) 0.0071 (0.0001) 82.5
1.05 18.4 0.0045 112
1.1 18.2 0.0031 161

In view of the accuracy one sees, that the procedure used is just adequate
down to 0.7° K (for the evaluation of vn  even somewhat lower). At these
temperatures the largest importance was given to the data from the
longest tube (smallest high order terms). This does not conflict with the
poor accuracy for this tube noted before, since the spreading is very large
at T=0.7°K.

As has been explained in chapter I, tx is supposed to contain contri­
butions from first and second viscosity and from the heat-conductivity.
As neither of these have been measured or even can be measured separately,
for the following some conclusions of the theory have to be used. The
largest contribution, according to the theory of Khalatnikov [6], is that
from the heat-conductivity. His calculation gives a contributing term ex
from the first viscosity, which is about 5 % of the contribution from the
heat-conductivity term (see equation 1.43). K halatnikov’s value of r)
is a reasonable extrapolation of measurements above 1° K. The second
viscosity contribution has been deduced by K halatnikov from the
absorption coefficient of normal sound. This is a very complicated cal­
culation which cannot be repeated here. In table 4.3 the total contribution
to a. from both the viscosity terms is given according to these calculations.
After subtracting it from the experimental value of <x the remaining part

should be due to the heat-conductivity. This procedure has some sense,
because the other terms are supposed to be relatively small (together
up to 20 %).

One sees from equation 1.21

(4-7) «A=^/ec„

so that X can be evaluated. These data are also given in table 4.3 together
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with K halatnlkov’s values. The agreement is fair. The experimental
values of A are shown in fig. 4.7.

Finally it is possible to get an estimate of the mean free path of the
phonons (Zph) by using the well-known formula:

(4.8) A = ïecn*ZPtvI ;

cwh is the phonon part of the specific heat. The data on Zph are given in
fig. 4.11 and in table 4.3.

4.3. The low temperature region (main body effect). The next part of the
discussion will be devoted to the region below 0.5° K , the phenomena at
intermediate temperatures being postponed until the next section. Also
the sharp edge effect is overlooked for the time being.

The main shape of the detected signal shows, at any rate for the longer
tubes, a very flat front and a long tail. The time corresponding to the top
is roughly proportional to z2 but, due to the large spreading of the signal,
the accuracy of this determination is rather poor. Moreover, as has been
pointed out, the amplifier correction has an appreciable influence on Z4.
The quadratic dependence suggests a phenomenon very similar to diffusion
or heat conductivity.

As has been discussed in chapter I, it may be expected that the mean
free path of the phonons in this region is large compared to the diameter
of the measuring tube. In that case the phonons collide mainly with the
walls and not with rotons or with one another. As these collisions are
probably diffuse (the mean wave length of the phonons is of the order
5 x 10~® cm), one faces with a problem which is essentially the same as
that of the heat conductivity in solid crystal rods at low temperatures,
considered by Casimir [10]. For a long narrow tube this “random walk”
problem can be considered as one-dimensional. The appropriate differential
equation is

(4.9) 'bTj'bt=%vlr d2T/dz2!

r is the radius of the tube (see also [11]). This is indeed a similar equation
to that of the normal heat conductivity, only the temperature conduction
coefficient X/qcv is replaced by 2 ^ /3 . Incidentally, comparison with
equation 4.8 shows that these quantities are identical if the mean free
path is taken to be equal to 2r.

W ith the initial condition of a heat pulse of vanishing length but finite
total energy, i.e. (1>T/Iz)^ d(z) one gets the well-known solution

(4.10) T(z, t)=A (z)t-11' exp ( - 3 zi/SrvIt).

The dependence on z of the tim e of the maximum of this long-tailed signal
is indeed quadratic:

(4.11) <t0p=3z2/4rwI.
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As one sees, the shape of this signal is completely determined by r and
t>! which are known quantities. Therefore, it is possible to compare the
theory with the experimental results.

The condition of a long and narrow tube is, however, not very well
fulfilled. The best comparison can be made with the 6 cm tube (no. 10).
Figure 4.8 contains the theoretical curve for this tube together with four

2 msec

Fig. 4.8. Shape of the signal detected in the long tube (z =  6.4 cm).
Fully-drawn line: theoretical curve (formula 4.10).
Dotted lines: experimental results.
O T  =  0.16° K V T  =  0.40° K.
A T  =  0.26° K Q T  =  0.65° K.

experimental curves at different temperatures. Especially around 0.25° K
the agreement is satisfactory. At lower temperatures the sharp edge
disturbs the picture, while at higher temperatures (0.4° K) the front of
the signal has been shifted to a larger time delay. The rear part of the
curve, including the top, however, is still in close agreement. The curve
at T —0.55° K shows a quite different character and fits no more with the
theoretical curve.

In section 4.5 it will be shown that the mean free path of the phonons
is probably not very much larger than the tube diameter. This may perhaps
account for the “pushing back” of the front with increasing temperature.
I t is not unreasonable to suggest that a limited mean free path has indeed
a relatively larger influence on the front of the signal. The phonons
responsible for building up this part can only have collided a few times
with the walls. By passing obliquely with respect to the walls they may
easily be diverted by a collision in the liquid itself and so the front may be
seriously affected. Similar collisions occur, of course, with the phonons
which undergo a larger number of collisions with the wall. The collisions
occurring in the liquid with these phonons are even more numerous than
with the former ones, because the total path length is longer, but it is not
unreasonable to suggest that the relative importance of these collisions
is much less. Consequently, only a small change of shape of the rear parts
of the signal may occur.

The results from the shorter tubes cannot be used for a similar analysis.
Firstly, the condition of a long and narrow tube is by no means fulfilled.
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This means a relatively large effect of phonons having collided only once
or a few times with the walls and it is no longer a unique problem of one­
dimensional “random walk”. Secondly, the original signal is reflected by
the thermometer and again by the heater and so on. Though these reflec­
tions are heavily damped, the detected signal may be built up out of the
direct signal together with several of these reflections. Actually a second
top can be traced with the 1.6 cm tube (see fig. 2, Bl). Thirdly, the “sharp
edge” effect is of relatively larger importance with the shorter tubes. For
the shorter tubes the only conclusion which can be drawn is that equation
4.11 appears to be satisfied approximately.

Finally one can easily calculate the value of A which should be found
from stationary experiments on thermal conductivity in this temperature
region. For a very long and narrow tube with circular cross section, this
yields
(4.12) A=§ rvIQCv=53rT3 watt/cm deg.

This result is, up to 0.6° K, in approximate agreement as to temperature
dependence and order of magnitude with experiments of F airbank  and
Wilks [12]. They used a capillary of 0.029 cm inner diameter i.e.
the condition mentioned above is much better fulfilled than in the
present case. A is of course no real heat-conductivity coefficient, because
it depends on the geometry of the measuring vessel. The deviations from
formula 4.12 found by these authors may be due to the influence of
specular reflections.

4.4. The intermediate region (0.5 -  0.7° K). In this region the change
from second sound at the high temperature to the phenomena described
in the last section at the low temperature takes place. This is just the
region mentioned in section 1.7. When the temperatime is decreased, the
local equilibrium, characteristic in second sound, is established with
increasing difficulty. This can be attributed to the rapid decrease of
interaction between the excitations. Finally one may expect, that at low
temperatures only some kind of diffusion of phonons is left and all trace
of second sound is lost. This picture, however, may be expected to be
seriously affected by the influence of the walls, because the mean free
path of the phonons becomes at the same time comparable to the diameter
of the experimental tube. For this reason it is not easy to give a quantitative
analysis of the phenomena in this region.

The most remarkable effect is that of the relatively steep front observed
with the longest tube at about 0.55° K (see fig. 4.1.d and fig. 4.8). At that
temperature the rear part of the signal has already developed its long tail.
The corresponding value of iq is about 150 m/sec. Since this is not very
different from the hypothetical second sound velocity in the phonon
region (vn =vI/3,/*= 137 m/sec), it is not unreasonable to suppose that this
effect represents the last trace of second sound. Moreover, a pure phonon
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diffusion effect without any second sound would give a signal even flatter
than that occurring in the lower temperature range.

At first sight the increase of the steepness of the front of the observed
signal, when the temperature is lowered from 0.7° to 0.55° K, is very
curious. As has been shown, the reverse effect occurring from 1.0° to
0.7 K can be explained by the increase of damping due to irreversible
effects. In a more kinetic language this means that, when the temperature
is decreased, the excitations diffuse increasingly away from the travelling
second sound pulse which, therefore, is spread in the forward as well as
in the backward direction. The simple quantitative analysis of section 4.2
can, however, no longer be used, if the second sound velocity becomes of
the same order of magnitude as the velocity of the individual phonons
(vi) which actually is expected to occur in the region below 0.6° K. I t  is
quite conceivable that in the latter case the front of the pulse cannot
travel much faster than the velocity of second sound. This may be an
explanation for the observed increase of the steepness below 0.7° K I t
should be mentioned, however, that in this region the quantitative
analysis of section 4.2 breaks down in any case because of the large
magnitude of the spreading effect, which makes the series development
inadequate.

I t  would be very interesting to make observations in this intermediate
region without the presence of the walls. When there is time enough for
establishment of some kind of local equilibrium, i.e. for large enough z,
one would actually expect a fairly well defined second sound pulse. For
short distances no such establishment of equilibrium may be possible, in
fact the diffusion effect would predominate. An increased relative sharpness
of the second sound pulse with larger values of z is actually observed in
the region above 0.7° K, the spreading being proportional to z1'* only.

This remark may furnish an explanation for the fact that the steepening
of the front at about 0.55° K was well established in the 6 cm tube, but
not at all in the 1.5 cm tube. The influence of the walls, however, tends
to confuse the whole picture, the observed long tail is probably mainly
due to that. More experiments are required for a confirmation or a rejection
of the remarks of this section, especially experiments of the kind just
mentioned, i.e. care should be taken that the influence of the presence
of walls is reduced as well as possible.

4.5. The sharp edge effect. This effect, occurring at the lowest tempera­
tures, is especially pronounced for the longest tube. With the 3 cm tube
it can just be detected, while the 1.6 cm tube does not show it. As has
been pointed out in 4.1.4, it is highly probable that, owing to the pretty
sharp front of the main effect in the latter case, it cannot be distinguished
from it.

The velocities tq are not the same for the three tubes, but all are very
near to the expected velocity of first sound (237 m/sec). The difference of
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the Wj-values can be explained by assuming a constant delay of 8 ±  2 ^sec.
The corresponding unique velocity is

1̂ =236 ±  4 m/sec

and this corresponds indeed to % within the limits of accuracy.
The cause of this constant retardation is not very clear. It is certainly

not due to the electronics. Perhaps an explanation would be the combined
influence of the K apitza  thermal resistances at the surfaces of the heater
and the thermometer. The heat transfer from the heater to helium is
characterised by a quantity having the dimension of time which is the
product of this resistance (K) and the heat capacity (C) of the heater. The
same occurs to the heat transfer from helium to the thermometer. If one
considers only one of these effects, a time delay can never occur. The
result is only a rise of temperature which is not instantaneous but shows
a linear ascent. The combination of two such effects (in this case at the
heater and the thermometer), however, causes indeed a horizontal tangent
at the starting point. An apparent time delay is now found in the experi­
ments, because the noise and the finite line width of the oscilloscope beam
prevent the observation of the real starting point of the signal.

By extrapolation of the K apitza  resistance from the normal helium
region, assuming the 7,-3-dependence found there [13, 14] to be valid also
at low temperatures, one finds at 0.2° K: K  ^  2500 deg/watt. The value
of the heat capacity of the carbon resistance corresponding to the noted
time delay should be of the order of a few hundredths of an erg per degree,
which is not unreasonable.

In section 4.1.5 it was mentioned that with higher pulse-amplitudes %
was much nearer to Vj. This is in agreement with the explanation just
given, because the relative influence of the noise is much reduced. More­
over, the temperature of the heater is during the time of the heat transfer
almost certainly much higher than the surrounding liquid, so the K apitza-
resistance much lower than that with small pulses. Because the heat
capacity of carbon is proportional to T2 a smaller time delay should come
out. It cannot, however be proved that this is the right explanation.
Nothing is actually known about the K apitza  resistance at low tempera­
tures and the heat capacity of the carbon resistors could not be determined
either.

The obvious explanation of the sharp edge effect, being due to thermal
phonons (i.e. with to xTjh) travelling directly from the heater to the
thermometer, will be discussed later on in this section. It is, however, first
necessary to investigate the other possible explanation ascribing the sharp
edge to low-frequency (acoustical) phonons. According to this picture the
heater would generate normal sound observable at the thermometer by
means of a microphonic effect of the latter.

In an attempt to arrive at a decision between the two possibilities the
different kinds of thermometer were used. Unfortunately, however, the
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results do not lead to a conclusive answer. If a constantan heater was
used, the effect did not occur indeed but, as will be explained now, this is
probably due to its large heat capacity. The specific heat of a metal at
these low temperatures is almost exclusively due to the electrons and so
proportional to T. Actually for the heater used the heat capacity was of
the order of lO-7 x T  joule/deg. This means that the “AC-time”, de­
termining the heat transfer to the liquid is proportional to T~2, if one
assumes the same extrapolation as before of the K apitza  resistance. The
result is KG 4 x 10-*T~2, i.e. about 100 gsec at 0.2° K and even
400/isec at 0.1° K. (The magnitude of K  is taken to be twice as large as
that in the former case, because the effective area is smaller by a factor 2.)
This large AC-time causes the front of the signal, departing from the
heater, to rise only slowly, the tangent at the start being proportional to
1/AC, assuming an original instantaneous rise. So the sharp edge is
completely drowned. Moreover, it has been proved that also the overall
shape of the signal is seriously affected. I t  is “rounded off” appreciably,
especially with the 1.5 cm tube no. 7a (see also fig. (4.1.b).

The ^-values of these tubes in this region appear to be slightly smaller
than those with the tubes no. 8, 9 and 10, but this may be attributed to
the combined effect of noise and slow ascent. The conclusion of this
discussion is, that the non-existence of the sharp edge in experiments on
tubes with constantan heaters is no proof for a sound pulse in the case of
carbon heaters. As has been pointed out earlier in this section, no direct
evaluation can be made of the heat capacity of the carbon resistors. The
amount of carbon and the behaviour of the paper background is unknown
but in any case the temperature dependence of the heat capacity is
certainly much larger (probably ~  T2 for the carbon and ~  Ta for the
background paper). The AC-time is, therefore, only increasing with l/T,
while going to lower temperatures. This points to a much smaller effect in
the latter case, compared to that of the constantan heaters.

The observations of the sharp edge with commercially made carbon
resistors show exactly the same behaviour as those made with the home­
made ones. This is an argument for the phenomenon not to be due to
normal sound, because these resistors might be expected to be much less
liable to produce sound.

The next part of the discussion will concern the second possibility
which attributes the sharp edge to the propagation of thermal phonons.
I t will be shown, that this hypothesis completely fits into the picture of
the liquid at these temperatures.

One has to start with a consideration of the phenomena below about
0.15° K, where the edge is fully developed. Firstly, the elevation of the
sharp edge is roughly proportional to the solid angle looking from the
heater to the thermometer (i.e. ~  1/z2) as should be expected. Secondly,
the observed ratio of the height of the sharp edge to the finally reached
almost constant value of the corrected signal can be compared with the
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computed ratio of the temperature rise due to phonons going the direct
way and the final temperature rise reached, if all energy input is used
for heating the helium content of the tube. Again only a rough estimate
can be given, especially because the height of the tail cannot be measured
with much accuracy. In any case the first ratio is found to exceed the
second one probably by a factor 3 or 4. This appears at first to be discon­
certing. However, phonons which have only once or twice reflected with
the walls and pass almost parallel to them, may also contribute to the
sharp edge. Moreover, one has to keep in mind that an appreciable amount
of heat may escape through the holes in the walls, thus tending to reduce
the after-effect. This is in agreement with observations with earlier tubes
(no. 1, 2 and 3), where the excess factor was still much larger. The whole
surface of the walls of these tubes was perforated with many holes, while
in tubes 8, 9 and 10 only four rows of holes were bored.

One must turn now to the curious phenomena of the disappearance of
the sharp edge already at about 0.2° K  with the 6 cm tube and at about
0.34° K  with the 3 cm tube. Actually one would expect from an extra­
polation of K halatnikov’s predictions the mean free path to be much
larger than z in the whole region below about 0.45° K. If this was true,
the sharp edge would exist everywhere below 0.45° K. Moreover, the
increase of the mean free path would be so fast with decreasing tempera­
ture, that the appearance of the edge would occur at practically the same
temperature for different values of z. According to K halatnikov lph is
proportional to J1® in this region [18].

The appearance is, therefore, that in reality the mean free path is much
more limited than would be expected from K halatnikov’s deductions.
One can try to calculate the mean free path from the observations in the
following way. At extremely low temperatures, i.e. with very large mean
free path, all phonons starting from the heater within a certain solid
angle will reach the thermometer along the direct way. At higher tempera­
tures only the relative amount F = exp (—z/lDb) will accomplish this.
For F  equal to 0.5

(4.13) lvh= 1.65 z.

As it is not possible to determine the height of the sharp edge in absolute
measure, because the thermometer sensitivity changes in an unknown
way with temperature, this method could not be used directly. The best
procedure appeared to be to calculate the ratio of the height of the sharp
edge (hj) and the height of the signal at t3 = 2^ (Aa). The result for the
tubes 1 and 10 is shown as a function of temperature in fig. 4.9. Tube 1
(the narrow 3 cm tube) was used instead of tube 9, because the sharp
edge was much better observable in the former. The reason for that has
already been mentioned in 4.1.6. I t  may be noticed here that the larger
spreading occurring with narrower tubes is in complete agreement with
what has been said about the main body effect. From equation 4.11 it is
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immediately seen, that the signal is much flatter with small r, because
ttop is inversely proportional to r.

Equation 4.13 was now taken to be valid at the temperature, where
was reduced to one half of its value at the lowest temperature. I t  is

clear, that the accuracy is not very good. Moreover, the procedure used

Fig. 4.9. The relative sharp edge effect as a function of temperature.
A tube l ( z =  2.99 cm); O tube 10 (z =  6.4 cm).

here for determining the mean free path is very much open to criticism,
because the heat leak through the holes in the wall will also change
considerably with temperature (compare equation 4.12). This effect may
be supposed to have a much larger influence on h2 than on At any rate
it can be expected, that the order of magnitude is right. One finds
1 =  5 cm at T =  0.34° K and I =  10,5 cm at T — 0.210 K.

An explanation for this curious extra-limiting of the mean free path
will be discussed in the next section.

4.6. The influence of very small amounts of ®öe. The experimental results
of section 4.5 show, that the mean free path of the phonons probably
undergoes yet another limitation of its magnitude apart from the processes
discussed by K halatnikov. Firstly it may be that K halatnikov  has
misinterpreted the phonon-phonon interaction processes. His treatment
of this part of the theory appears to be not quite satisfactory as has
already been mentioned in chapter I. On the other hand in the analogous
case of phonons in a crystal one has also concluded to a very large mean
free path.

Another possible explanation is that noted in the last part of section
1.7, i.e. a limitation of the mean free path due to interactions with the
very small concentration of 3He atoms always present in the liquid which
is used in the experiment. The concentration of 3He in helium from wells
is probably about 1.4 x 10-7 [20], To investigate this influence one
experiment was done with atmospheric helium (3He concentration about
10-8). Unfortunately in this experiment the 3 cm tube 9 was used so that
the sharp edge could not be observed properly. An appreciable change
was, however, observed in the behaviour of iq. Figure 4.10 shows a com­
parison between the results of both kinds of helium for this tube. With
the atmospheric helium ?q is seen to be practically constant between 0.35
and 0.6 K. Its magnitude in that case is about 150 m/sec. In the liquid
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with the smaller 3He concentration such a constant region perhaps exists
between 0.5° and 0.6° K, but below that temperature tq is increasing again.
Such an increase occurs with the atmospheric helium only below 0.35°.
Moreover, in that case the final vI value is reached just below 0.2° K
instead of in the neighbourhood of 0.3° K. All this points to a considerable
decrease of the mean free path. The intermediate zone of section 4.4

Fig. 4.10. The influence of the ®He concentration on uv
Full line: helium from wells; dotted line and points: atmospheric helium.

appears to be extended down to 0.35° K and the sharp edge region with
%-values very near to v1 is probably also shifted to lower temperatures.
In view of the result of these measurements it is quite plausible, that in
the case of a 3He concentration which is about 10 times less, i.e. in the
normal experimental helium, the mean free path will be limited in the
way explained in the last section. In pure 4He one may perhaps expect
the sharp edge actually to occur already near 0.45° K.

From a general point of view it is evident, that an interaction of phonons
with 3He atoms should indeed exist. I t  is perhaps allowed to compare
the latter in this respect with the rotons. Actually the number of rotons
and the number of 3He atoms in the same volume are of the same order of
magnitude at about 0.5° K. The same applies for %T=QmlQ and the 3He
concentration at about 0.45° K (see fig. 4.11), therefore, it is quite feasible,
that somewhere near this temperature the 3He atoms begin to take over
the role of path-limiters from the rotons.

In contrast to that of the rotons the 3He concentration is independent
of the temperature. Therefore, the dependence of the mean free path on
the temperature should indeed be much smaller below the temperature
quoted. At first sight one would expect a temperature-dependent factor
of Tl as in the R a y leigh  type of scattering of phonons by impurities. The
experimental values given indicate even a smaller power of T, but it should
be emphasized, that neither the accuracy not the number of experimental
data (two points on the I (T) curve) is sufficient to draw a definite con­
clusion.
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One may wonder perhaps, if the heat-flush effect does not have a
large influence on the actual 3He concentration. Due to this effect, as has
been observed in the normal helium region, the main part of the 3He
might be swept by the normal fluid to the coldest spot of the vessel, i.c.
the paramagnetic salt. Because of the very small value of gn or, in other
words, the small amount of excitations at this temperature it is not
unreasonable to suppose this effect to be relatively small.

4.7. Some final remarks and conclusions. The expositions of the foregoing
sections are, in general, well in agreement with the picture proposed in
the first chapter. The behaviour of second sound in the region above
0.7° K finds a reasonable explanation in the theory of elementary excita­
tions combined with K h a l a t n ik o v ’s considerations of the interactions.
The proposed picture at lower temperatures is a logical extension of the
latter and appears to be well in agreement with the experiments. The
influence of a very small concentration of 3He is probably also established,
although more experiments are required to get more exact information.
I t would give a sufficient explanation of the deviation from K h a l a t n ik o v ’s
original hypothesis with respect to the mean free path at temperatures

Fig. 4.11. x  — Qd/q and  lph as a  function of tem perature.
O  points calculated from  the  present experim ents;
<•> points calculated from  P eshkov’s experim ents.
F or fu rther details see th e  tex t.
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below half a degree. There is, therefore, as yet no reason to distrust his
deductions for the case of pure 4He.

If one accepts equation 1.17 for the velocity of second sound

4 '

es&r
Qn Cv

qu or x —qJ q can be calculated from the experimental data on %  and cr
The obtained values can be compared with the theoretical predictions of
the theory of excitations.

The latter yields for the phonons

(4.14) Zph =  QnvJQ =  è  Cph/v? =  14 X 1 0 -s  X Tl

using a value of v1 equal to 237 m/sec together with the experimental data
on the specific heat of chapter III.

One can now compare x —xph with the theoretical formula for xT (see
equation 1.40). Proceeding in a way analogous to that used for the specific
heat one finds: A /x= 8.7° K and (/ilm)l,‘ (pJh)*=QA x 1032 c.g.s. units.
These values are within a few percent in agreement with the data cal­
culated from the experiments between 0.8° K and 1.5° K. For the tempera­
ture region above 1.1° K the data on %  of P eshkov  [15, 16] were used.
These results can now be combined with those obtained from the specific
heat data: A /x= 9.1°K and (film)'1' (pJh)2=2A  x 1016 c.g.s. units (see
section 3.5). The Ajx values are unfortunately not the same. I t  should,
however, be remembered, that especially in the calculation of Qm errors
of a few percent in the experimental data on vn and cv may easily be
emphasized. On the other hand, the difference appears to be just some­
what too large for such an explanation. This might be attributed to a
small complication in the theory. The roton spectrum may contain
higher order terms giving a slight correction. Perhaps this can be described
by a temperature dependence of one or more of the parameters. The
experimental data are, however, not sufficiently accurate to come to a
definite conclusion.

The best fit one finds for the parameters of the roton spectrum is

(4.15) Ajx= 9.0 ±  0.2° K, p jh  = 2.0 ±  0.1 A-1  and fi\m=0.3 ±  0.15

plm is only approximately determined, because (p/m)v* occurs in the
equations.

The data given here are in agreement with those of K ttat.atnikov [6]:

A/x = 8.9 ±  0.2° K, p0/S = 2.0 ±  0.05 A-1  and p\m =0.32 ±  0.13.

The gn-values obtained in this way are too large above 1.2° K. Perhaps
there the values of the parameters proposed by F eynman  [17] give a
better agreement.

In  figure 4.11 x, calculated by means of the equations 4.14 and 1.40,
using the data on the rotons 4.15, is plotted as a function of T. The points



shown are calculated from the experiments as explained in this section.
In the same figure are also given the data obtained on the phonon mean
free path.

The conclusion which can be made from the work of this chapter is that
many of the observed phenomena can be explained rather well in a
qualitative way by means of the theoretical considerations put forward
in chapter I, together with the supposition of the influence of a small 8He
impurity in the lowest temperature region. Some phenomena have even
found a more or less quantitative foundation, but in this respect quite an
amount of work remains to be done. Also, more experiments are required
on the influence of 3He; these have actually been started in the Kamer­
ling Onnes Laboratory 1).
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SAMENVATTING

In dit proefschrift worden twee reeksen experimenten beschreven, die
tot doel hadden nadere gegevens te verkrijgen over het gedrag van
vloeibaar helium in het temperatuurgebied beneden 1° K. In de eerste
groep experimenten werd de soortelijke warmte gemeten. Aangezien deze
metingen werden uitgevoerd tussen 0.25 en 1.8° K, konden ook nieuwe
gegevens verkregen worden over de soortelijke warmte in het helium-
gebied boven 1° K. De voortbeweging van korte warmtepulsen in de
vloeistof werd onderzocht in de tweede groep experimenten.

In hoofdstuk I  wordt een overzicht gegeven van de theoretische achter­
grond van deze experimenten. Het twee-fluida model wordt besproken,
waarbij bizondere aandacht wordt besteed aan het z.g. second sound
en de absorptie van deze onder invloed van irreversible processen. Voorts
wordt een korte samenvatting gegeven van de theorie van de elementaire
excitaties (fononen en rotonen), welke, althans in dit temperatuurgebied,
een adequate basis vormt van het twee-fluidamodel. Tenslotte wordt de
theorie van K halatnikov besproken; op grond van beschouwingen over
de wisselwerkingen tussen de elementaire excitaties blijkt het mogelijk een
nadere analyse te geven van de irreversibele processen in helium II.

Hoofdstuk II  bevat een overzicht van de gebruikte meetopstellingen
en experimentele methoden. Enkele daarmee samenhangende problemen
worden bovendien aan een nader onderzoek onderworpen.

In hoofdstuk III  worden de resultaten van de soortelijke warmte
experimenten uiteen gezet en gediscussieerd aan de hand van de theorie
van de elementaire excitaties. Geheel in overeenstemming met deze blijkt
de soortelijke warmte in het laagste temperatuurgebied (beneden 0.6° K)
evenredig te zijn met T3 en dus geheel bepaald door de fononen. Als men
de temperatuur laat toenemen, gaat de soortelijke warmte van de rotonen,
welke evenredig is met exp {—A/xT), de overheersende rol spelen. Theorie
en experiment stemmen ook hier binnen de meetnauwkeurigheid goed
overeen.

Hoofdstuk IV bevat allereerst een opsomming van de experimentele
gegevens, die verkregen werden uit de waarnemingen aan de warmte­
pulsen. Deze worden daarna uitvoerig besproken en voorzover mogelijk
getoetst aan de theorie. Het blijkt, dat boven 0.7° K de warmtepulsen
zich gedragen als gedempte second-sound-pulsen. De experimenteel
gevonden demping stemt goed overeen met de voorspellingen van
K halatnikov. Beneden 0.5° K kan het gedrag van de pulsen niet meer
verklaard worden met behulp van second sound. De gevonden resultaten
wijzen erop, dat de vrije weglengte van de fononen in dit gebied groot
wordt ten opzichte van de doorsnede van de meetbuis. Dit moest ook
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op grond van de theorie van K halatnikov  verwacht worden. Er zijn
echter sterke aanwijzingen, dat de vrije weglengte toch minder snel
toeneemt met afnemende temperatuur dan deze theorie voorspelt. Als
een mogelijke verklaring van dit verschijnsel wordt de invloed genoemd
van zeer geringe hoeveelheden 3He. Voorlopige resultaten van nieuwe
experimenten zijn hiermee in overeenstemming. Het gebied tussen 0.5
en 0.7° K tenslotte vormt een overgang tussen beide bovengenoemde
gevallen. De resultaten van de metingen zijn daar nog weinig toegankelijk
voor een quantitatieve analyse.
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