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STELLINGEN

De berekening van de exchange constanten voor C0C12-6H20, zoals deze gege-
ven is door Shinoda et al., is aanvechtbaar.

Shinoda, T., Chihara, H. en Seki, S., J. Phys. Soe. Japan 189

(1964) 18637.

De conclusies uit de susceptibiliteitsmetingen aan LiCuCI3-2H20 van

Abrahams en Williams zijn aan twijfel onderhevig.

Abrahams, 8.C. en Williams, H.J., d. Chem. Phys. 39 (1963) 2923.

Magnetisatiemetingen in de buurt van het verzadigingsveld van een anti-
ferromagneet met antisymmetrische exchange kan belangrijke informatie
geven over de Dzyaloshinsky-Moriya vectors, welke deze exchange beschrijven.

blza. 69 van dit proefschrift.

Het begrip ''easy axis'' wordt in de literatuur over magnetisme niet
éénduidig gebruikt.

Zie bijvoorbeeld: Date, M., J. Phys. Soc. Japan 14 (1958

9
en Haseda, T., J. Phys. Soc. Japan 15 (1960) 483.

Bij het construeren van spoelen, welke pulsvelden moeten produceren boven
de 400 kOe, dient men de nodige aandacht te besteden aan de isolatie van

het draad waarvan de spoelen worden gewikkeld.

De verklaring van het warmtegeleidingsgedrag van een Nb-Ti preparaat, zoals
deze is gegeven door Dubeck en Setty, wordt niet voldoende door hun experi-
menten ondersteund.

Dubeck, L. en Setty, K.S.L., Phys. Letters 274 (1968) 334.

De bepaling van de ''zero point spin deviation'' met behulp van suscepti-
biliteitsmetingen verdient in een aantal gevallen de voorkeur boven de

methode die gebruik maakt van neutronen diffractie.

blz. 107 van dit proefschrift.




De argumenten, welke Pekalski aanvoert ter ondersteuning van zijn fase-

diagram voor een eenvoudige antiferromagneet, zoals deze werd verkregen
uit de lineare spingolf theorie, zijn twijfelachtig.

Pol Takd A\t IV
Pekaleki, A., Acta Physica

9. De berekeningen aan eindige lineaire Heisenberg ketens van onder andere
Bonner en Fisher, kunnen aanzienlijk vereenvoudigd worden.

Bonner, J.C. en Figsher,

10. De beschrijving welke Brilouin geeft van de roodverschuiving ten gevolge
van een gravitatieveld is discutabel.

Brillowin, L., Relatiz

Reexamined. Academic Press

York en London, blz. 785.

J.W. Metselaar Leiden 28 juni 1973.
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CiH AP T-E R 1

INTRODUCTION AND SURVEY

1. The research program.

In this thesis the magnetic behaviour of three antiferromagnets:
LiCuClB'ZHZO, C0C12-6H20 and CoBrZ-GHZO is described. These salts have in
common that the spins from which the magnetic properties arise have the value
one half and that anisotropic interactions play an important role.

The magnetic susceptibility at low frequencies was measured in the tem-
perature range 1.2 to about 12 K and in magnetic fields up to about 110 kOe.
This field value is much larger than what is currently available in physical
research laboratories. Details can be found in Chapter 2.

Up to now no clear model for the magnetic interactions in LiCuC13-2H20 is
available in the literature. The model is greatly extended and improved on
the basis of the susceptibility measurements given in Chapter 3, which cover
a large part of the magnetic phase diagram. From the discussions as outlined
in Chapter 4 it appears that the magnetic behaviour is dominated by an aniso-
tropy of the antisymmetric type, giving rise to a spontaneous canting of the
four magnetic sublattices with respect to each other (see section 2). Another
consequence of the antisymmetric interaction is the occurrence of several
phase transitions (first and second order). Thesg transitions take place far
below the field at which the transition to paramagnetism occurs, and are not
found in simple two sublattice antiferromagnets.

C0C|2'6H20 and CoBr2-6H20 are both examples of simple two sublattice
antiferromagnets with a (first order) phase transition and a (second order)
transition to paramagnetism. The anisotropy in these salts arises from the
combined effect of the spin-orbit coupling and the crystal field and its form
is symmetric. The model of the interactions in these Co salts is better es-
tablished in the literature than for LiCuCIs-ZHZO. However, a rigorous treat-
ment, based on recent spin wave theories, was necessary because the spin value
is low (S = %) and the most important interaction takes place between a spin
and only four neighbours. This leads to a zero point spin deviation (see

Chapter 6) large as compared to the one occurring in most other antiferromagnets.

9




The experimental results are presented in Chapter 5 and the discussion is given

in Chapter 6.

Canting mechanisms.

A spontaneous canting or bending of the sublattices in zero magnetic field
is encountered in many magnetic systems. If only two sublattices are involved
the canting gives rise to a small net magnetic moment. This phenomenon is called
"'weak ferromagnetism''. If more sublattices are involved the canting, in case of
a non-zero resulting magnetic moment, is called "overt''. It is called "hidden"
in the case of more than two sublattices with a vanishing net magnetic moment.

The possibility of canting of the sublattices in magnetic systems was

1)

first investigated by Dzyaloshinsky , who based his considerations upon sym-
metry properties of the crystal and on Landau's theory of phase transitions.
He suggested an energy term of the form

D Siq NS

=t

between two spins §4 and S.. This gives rise to a canting of the two spins
with respect to each other, if in addition an antiferromagnetic interaction
between these spins is present.

According to Dzyaloshinsky spontaneous canting can only exist if the
symmetry (magnetic as well as crystallographic) is the same in the canted as
in the uncanted state.

The symmetry of LiCuCl -2H20 is considered extensively in Chapter 4, sec-

3

tion 3, from which it can easily be concluded that the proposed zero field

spin arrangement, given in section 5 of the same chapter, satisfies Dzyaloshinsky's

requirement. This means that canting is possible in LiCuC13-2H20 regardless of

the mechanism.
The necessary and sufficient conditions for the existence of weak ferro-

2).

magnetism have been given by Turov Two necessary conditions for weak ferro-
magnetism are:

1°, The magnetic and chemical unit cell must be identical.

2°. The magnetic moments at all lattice sites related by translation or

inversion transformations must be parallel.

3) 4)

From neutron diffraction data , X-ray analysis and Li nuclear magne-
tic resonance 5) it is concluded that the chemical unit cell contains four dif-

ferent Cu ions and that the magnetic system consists of four or two sublattices.
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If there are two magnetic sublattices, thus two magnetically different Cu spins,
then the first condition is not fulfilled. If there are four magnetic sublat-
tices then by definition LiCuC13-2H20 can not be a weak ferromagnet. In fact a
four magnetic sublattice model appears to describe the behaviour of LiCuCI3-2H20
satisfactorily according to Chapter 4.

The second necessary condition for weak ferromagnetism is not fulfilled as
is clear from the neutron diffraction data h). Neighbouring spins which are
related by inversion are antiparallel.

So the conclusion is that weak ferromagnetism is not possible in LiCuCl3-
2H20.

The canting in LiCuCl_ +2H,0 should be either hidden or overt. In the sus-

ceptibility measurements, ihicﬁ are given in Chapter 3 no magnetic moment in
zero field was detected and also in the literature this property has never been
mentioned. In fact, thus far, all investigators have considered LiCuCl3-2H20
to be an ordinary two sublattice antiferromagnet. This model appears to be too
simple, as follows from the discussions given in Chapters 3 and 4.

So it is concluded that in LiCuC|3°2H20 only a hidden canting is possible
and it follows from the susceptibility data of Chapter 3 that the canting angle
is approximately 6°,

In the literature several canting mechanisms may be found.

1°., Moriya's single ion anisotropy mechanism 6). This mechanism is ruled
out in the case of LiCuCl3-2H20 because S = ¥ so that no single ion anisotropy
can exist.

2°. Moriya's antisymmetric exchange mechanism 7). In this case the can-

ting arises from the antisymmetric part of the anisotropic superexchange
energy; it is caused by the spin-orbit coupling. The magnitude is estimated to
be Ag/g times the isotropic superexchange energy (see also Chapter 4, section
2). Here Ag is some mean value of g - 2 for the substance considered. In the
case of LiCuCl3°2H20 Ag/g = .1, giving rise to a canting angle of about 6°,
which is quite close to the experimental value, The interaction related to
this mechanism is in the literature known as Dzyaloshinsky-Moriya interaction.

8)

action of anisotropic g tensors, of which the principal axes are tilted with

3°. Silvera et al. have shown that canting can be produced by the
respect to each other at the different magnetic ion sites. The antisymmetric
interaction in the description of the magnetic behaviour arises in terms of a
fictitious spin § = §. In case of an isotropic g tensor there is no canting.
In the case of LiCuCI3-2H20 g varies only 10% for the different crystallo-

graphic directions and the canting angle does not exceed .06° irrespective of

11



the tilting angle (if this exists) between the principal axes belonging to
different Cu ions. Consequently this mechanism can not account for the experi-
mental ly observed angle of 6°.

From the preceding discussion it is clear that only Moriya's antisymmetric
exchange mechanism is a possible cause of the canting in LiCuCIB-ZHZO. The
symmetry considerations related to this mechanism are extensively given in
Chapter 4 section 3 and important conclusions are drawn,

The model for LiCuCI3-2H20 is further developed by using the fact that an
ordering process sets in at a finite temperature (4.48 K as follows from the
susceptibility measurements given in Chapter 3). The existence of this ordering
temperature means that interactions should play a role outside the chain in
which the smallest distances occur between Cu spins, because a system of
uncorrelated chains does not lead to long range order.

The considerations about the existence of a Dzyaloshinsky-Moriya inter-
action as well as the occurrence of an ordering temperature together with the
restriction that, if an important interaction takes place between two spins,
their distance should not be too large, are the main features of the arguments
which result into the energy expression (equation 3 of Chapter 4) of
LiCuCI3°2H20. It is expected that this Hamiltonian describes the most impor-
tant properties of this antiferromagnet. Preliminary calculations show that
this Hamiltonian describes the spin-flop transition as well as the first order
phase transition which takes place at a higher field. An essential property of
the higher first order phase transition is that the sign of the vector product

of two of the four magnetic sublattices of LiCuCl -2H20 suddenly reverses,

3

3 SEin waves.

9)

The concept of a spin wave was first used by Bloch This spin wave is
described as a single reversed spin distributed coherently over a large number
of otherwise aligned atomic spins in a crystal lattice.

A quantummechanical treatment for an antiferromagnet was first given by
Hul thén ]0). He defined coordinates which, in a classical way, represent the
small vibrations (considered to be harmonic) of the spin system; then these
coordinates were quantized. However, he ignored the zero point energy which
should exist in a system of harmonic oscillators, as was pointed out by Klein
and Smith ]I). A careful treatment of the ground state, including the zero
point energy, was carried out by Anderson 12) for a simple antiferromagnet, The

theory in which the spin vibrations are taken to be harmonic is called the

12




linear spin wave theory.

13)

Anderson 12) and Kubo predicted, on the basis of the linear spin wave
theory, a spin reduction in a crystal lattice of the order of 1/zS, in which
z is the number of spins with which one spin interacts. For ordinary antiferro-
magnets this spin reduction should be experimentally observable e.g. with
accurate neutron diffraction. If S = % and z = 4, which is the case for
CoC|2-6H20 and C08r2-6H20. the two salts considered in this thesis, the spin
reduction is expected to be very large, viz. 0.5, and this must be reflected
in the behaviour of the susceptibility in the flop phase of these antiferro-
magnets. The reason for this is that the spin reduction does not exist in the
paramagnetic phase. So a more than linear increase of the magnetization is
expected in the flop phase, resulting into a rise of the susceptibility with
increasing field, This rise is not predicted by the molecular field theory.
The assumption that the spin differs only a small amount from its ground
state value limits the applicability of the linear spin wave theory to the low

b)

temperature region. For this reason Holstein and Primakoff developed a
non-1inear spin wave theory in which they defined the exact coordinates re-
presenting the spin deviations from the ground state value. In terms of these
coordinates the Hamiltonian of the system splits into two parts. One quadratic
in the spin wave amplitudes and one of the higher order. The quadratic part
alone gives a theory of non-interacting spin waves, identical to the linear

‘2). The non-quadratic part represents the effects

approximation of Anderson
of interaction between spin waves. Therefore it is expected that, for the lower
temperatures, a consistent treatment of spin wave interactions is possible,
taking the quadratic part of the Hamiltonian as a first approximation and
dealing with the non-quadratic part by perturbation theory. However, according

15)

to Dyson , for the case of ferromagnetism it appears that in this pertur-
bation theory the spin wave interactions are largely overestimated and that,
for the lower temperatures, the linear spin wave theory gives a much better
description. The same result is expected for an antiferromagnet, although an
exact proof has not yet been given.

Several authors treated the problem of an antiferromagnet in the different
phases. Wang and Callen 16) described the behaviour of an antiferromagnet in the
flop phase. In this description the spin wave interactions are taken into

17)

account to a certain extent. Feder and Pytte carried out calculations in-

cluding the three different phases of an anisotropic antiferromagnet including

8)

spin wave interactions to the order 1/S. Kanamori and Yosida approached

the problem with the linear spin wave theory.

13



The experimental results of C0C12-6H20 and CoBr2-6H20 given in Chapter

are compared with the spin wave predictions in Chapter 6. Special attention
given to the behaviour of the susceptibility in the flop phase, considering

influence of the spin wave interactions, the temperature and the anisotropy.
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EXPERIMENTAL PROCEDURE

1. Introduction.

The purpose of the experiments is to study the behaviour of antiferromag-
netic materials as a function of the magnetic field and the temperature,
specially the phase transitions.

In the literature many transitions are described which occur at relative-
ly low field values. Most of them are transitions between two ordered states
usually between the so-called "antiferromagnetic' and '"'spin flop' phases. In
these phases the order is brought about by the anisotropic exchange interaction,
characterized by the exchange energy J.

In the present investigations special attention has been given to the
transitions in higher fields, of which the highest one is the transition to
paramagnetic saturation, A simple qualitative consideration leads to an estimate
of the necessary field values. In zero field the antiferromagnetic order is
destroyed by the energy kTN, where k is the Boltzmann's constant and TN the
Néel temperature. At zero temperature it is destroyed by the energy uBHc' where
g is the Bohr magneton and Hc the transition field at T = 0. Considering only
only orders of magnitude we have the relations

since uB/k = .67 x 10'“ emu, a Néel temperature in the liquid helium region,
say 3 K, corresponds to an upper transition field of about 40 kOe. Such fields
are well within reach of the modern superconducting coil magnets.

The quantity determined in the experiments was the isothermal differential
susceptibility (3M/3H)T. The phase transitions are observed as well defined
peaks, jumps and kinks in the experimental curves. From these we can derive the
(H,T)-phase diagram.

The Néel temperatures of the substances investigated in this thesis are:
4.48 K for LICuClB-ZHZO, 2.25 K for CoC]z-BHZO and 3.14 K for CoBr2-6H20. The

first one was investigated between 1.2 and 12 K, the latter two between 1.2
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and 4.2 K. Magnetic fields up to 110 kOe were available.

Zi The superconducting coil and the cryostat.

2.1. Conetruction of the coil. The coil is shown in fig. 1. It consists
of three concentric sections, each 140 mm in length. The outer section was
wound from 3300 m NbTi wire supplied by IMI (type ''Niomax S' 50/80). This sec-
tion has an external diameter of 160 mm and an inner diameter of 86 mm. The
middle section was wound from 1037 m NbSSn ribbon supplied by RCA (type R-
60214) and had an outer diameter of 82 mm and an inner diameter of 54 mm. The
inner section was wound from 533 m Nb35n ribbon, also from RCA (type SR-2101)
with an outer diameter of 50 mm and an inner diameter of 30 mm2). The resulting
magnet has a clear bore of 28 mm. The sections are shown separately in fig. 2.
The outer section was wound without any special precautions, as was (at that
time) suggested by IMI, Both NbBSn coils were wound exactly according to RCA's
application note. Copper shorting strips were applied over all the layers and
mylar-copper-mylar sheets were inserted between layers.

In order to increase the homogeneity of the field 3), a number of turns
were omitted in the centre of the inner coil, as shown in fig. 1. The length

of the gap is 10 mm and its height 2.3 mm. Holes and grooves were applied in

(] !
<2 8>
|
-*T-5C)-r’
82 -
- 160 H—H—t—
O :
+ g«
i L
0
L&
‘I
[ | i faly]
Fig, 1. Cross-section of coil (dimensions in mm).

the flanges of the coils in order to improve the cooling during energizing of
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the magnet (see fig. 2).

The connections between the subsequent sections and between the magnet and
the current leads were made by means of copper blocks to which strips of NbBSn
were soldered. By tightly bolting them to the coil terminals, resistances of

the order of 10_79 were obtained (see fig. 3). Five soldered connections were

Fig. 2. Photograph of the three separate sections on whieh the holea and

the grooves for cooling can be seen.

Fig. 3. Photograph showing the coil terminal connections and the tail of

the insert dewar.




made inside the sections. Three of them had resistances between 10-7 and
IO‘SQ, and the other two had resistances of the order of IO-SQ in low fields,
increasing to 107% at 70 kOe 80 A.

2.2. Coil characteristice. The field is measured with a Siemens cryogenic
Hall probe, which was calibrated in this coil up to 114 kOe by means of a
simul taneous nuclear magnetic resonance experiment. The apparatus for this
calibration was kindly put at our disposal by M.W. van Tol from our laboratory.

Table | gives some field values and the deviation from linear behaviour

with current. H is the experimentally determined field and H is the
meas calc
Table |
Current Field Hysteresis
1,A H , kOe H - K , kOe
meas calc meas
0 0
5 5.6 0.8
10 11.8 bowil
30 36.5 2+3
50 63.0 155
70 89.6 1.0
85 109.4 0.5

field calculated for a copper coil of the same dimensions. After a full run
up to 110 kOe and down to zero current, the remanent field is about 3 kOe.
The field homogeneity can be seen in fig. 4, for several field levels.
The fully drawn curve was calculated for a copper coil. The dependence of
homogeneity on the field strength is caused by the breakdown of the magneti-
zing currents in the superconducting wire and ribbon of the coil, which is

different for NbBSn and NbTi.

2.3. Behaviour of the coil during energizing. Usually rates of field

change of about 3 kOe min_] are used. At 4.2 K we observed many small fast

19



flux jumps (order of magnitude 10 Oe and characteristic time a few milli-
second) and a few slow '"jumps' (order of magnitude 500 Oe and characteristic
time a few second). The small fast flux jumps are probably caused by the
quenching of magnetizing currents in the inner NbBSn windings, whereas the
large slow jumps are caused by the quenching of magnetizing currents in the
outer NbTi windings. The long duration of the latter ones is due to partial
compensation by induced currents in the windings of the inner sections which
are shorted by copper strips (see above). Below the A point of liquid helium
more jumps occur than at 4.2 K but they are of smaller magnitude (stated

wrongly in ref. 1).

.99+

Fig. 4. Field dependent homogeneity; fully drawn curve i8 calculated
for a copper coil of the same dimensions.

O Experimental points for 20 kOe

field in the centre).
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Table 1l gives the maximum fields and currents that could be reached before
going normal for different combinations of coil sections. Here section | is the
outer one, section 2 the middle one, and section 3 the inner one. The maximum
current densities for the different sections just before quenching are listed
in table II1l.

The winding densities of the sections proved to be somewhat higher than
was expected before winding the magnet. Due to this the expected quench current
of 90 A at 4.2 K was not reached, but the necessary current density for 100 kOe
below the A point was easily obtained.

Energizing the coil below the A point has several advantages.

1. Smaller flux jumps than at 4.2 K.

2, The boil-off rate of helium after quenching is less violent than at

4.2 K.
3. Appreciably higher fields.
The disadvantages are
1. An extra pump is needed.
2. Helium consumption is increased,

3. Extra time is needed to reduce the temperature.

Table 11

Combination Inner Quter 4,2 K 1.5 K

diameter diameter Field Current Field Current

mm mm kOe A kOe A
1 82 160 45 77 > 73 >]28
142 50 160 79 81 90 93
14243 28 160 91 70 114 87

Table |11

Section Type of wire Current density A <:m_2

4.2 K 1.5 K

! Niomax S 50-80(IMI) 12600 21000

2 R-60214 (RCA) 25700 29400

3 SR 2101 (RCA) 19800 24200

2.4. The eryostat. The cryostat is shown in fig. 5. It has been construc-
ted in the laboratory workshop, and is made entirely from stainless steel, It

consists of three concentric vessels. The outer one is filled with liquid

21



nitrogen, the middle one contains liquid helium which cools the coil, and the

inner one is used for the actual experiment during which it may be filled with
liquid helium, hydrogen, nitrogen or even neon. Its tail has an inner diameter

of 22 mm.

Fig. 5. Cross-section of the eryostat and coil suspension.

The vacuum spaces of the three vessels can be independently evacuated.
This has the advantage that, during the filling of the outer vessel with liquid
nitrogen, some helium exchange gas can be admitted to the vacuum spaces of the

inner two dewars, so that the magnet coil and the experimental equipment can
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be cooled down to liquid nitrogen temperature. This takes about eight hours.

In order to reduce the evaporation rate of the helium, we mounted three
copper radiation shields in the helium gas stream in such a way that the evapo-
rating gas is forced along the walls of the dewars. This reduces the evaporation

. . -1
rate by a factor of three. At present the total evaporation is 0.35 Fashixs

dewar transport vessel

Fig. 6. The helium transfer line, with the intercomnection tube required

to avoid helium oseillations.

The coil is suspended from a flange which is welded to the lower part of
the inner dewar (fig. 5), so there is no extra mounting device which would have
its upper part at room temperature. This, again, reduces the helium evaporation.

The current leads to the coil h,5,6)' consist of folded copper sheets,
60 mm wide and 0.1 mm thick, with a superconducting strip soldered to them.
They are each mounted in a glass tube which is open at both ends. In this way
the leads are effectively cooled by the evaporating helium. A pair of leads,
each 1.2 m long, give a total heat dissipation of about 200 mW at 100 A.

In order to cool down the coil (which has a weight of about 20 kg) effi-
ciently from 80 to 4.2 K, a fixed helium transfer line is used. It is double
walled down to the bottom of the dewar. Since in such a tube helium oscilla-
tions may arise, we mounted a narrow tube, which connects the upper part of
the transfer line, to the space above the liquid helium, as shown in fig. 6.
In this way the cooling down of the coil from 80 to 4.2 K takes about 6 1 of

helium. A shorter transfer line is used to replenish the dewar.
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Temperature measurement and temperature control.

The susceptibility has been measured versus the magnetic field at constant
temperature as well as versus the temperature at constant field. The temperature
was detected with two Allen-Bradley carbon resistors, mounted symmetrically
above and below the sample.

The thermometers were calibrated betwen 1.2 and 4.2 K versus the liquid
hel ium vapour pressure and above 14 K versus the hydrogen vapour pressure. For
the experiments between 4.2 and 12 K interpolation was needed. Since the mag-
netoresistance of the carbon resistors was non-negligible additional calibra-
tions at several magnetic field levels were necessary. The calibrations were
repeated periodically after several helium runs,

During the experiments between 1.2 and 4.2 K the inner dewar of the cryo-
stat (see section 2) was filled with liquid helium. The investigations between
4.2 and 12 K were carried out with 8 mm Hg pressure of helium gas in the dewar
and a small amount of helium between its walls, acting as an exchange gas
between the experimental equipment and the surrounding liquid helium in the
dewar containing the superconducting coil. The current through the primary
measuring coils and the heat leak from the room temperature top of the inner
dewar gave rise to an increase of the temperature of the sample and the thermo-
meters, which could be controlled by adjusting the pressure of the exchange
gas between the walls of the dewar.

In the experiments above 4.2 K the temperatures of the crystal and the
thermometers were equalized as well as possible by using ''coil foil' inside
the measuring system. A check on the thermal equilibrium was made by repeating
the experiments between 1.2 and 4.2 K with helium gas inside the inner dewar
and the helium of the superconducting coil at 1.2 K. Moreover an experiment
was made in which the crystal under investigation was replaced by CSZCO(SOM)Z.

7). |t turned out that

6H20, a salt which obeys Curie's law very accurately
in all these experiments the difference between the mean temperature of the

salt (derived from its susceptibility) and the mean temperature of the carbon
thermometers never exceeded 0.02 K and it is supposed that, up to 12 K, this

uncertainty in the temperature will not be significantly higher.

b, Susceptibility measurement.,

The susceptibility of the single crystals of LiLuCl3-2H20. CoCI2-6H20 and

CoBr2-6H20 has been measured by means of a mutual induction method8) . The
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crystal under investigation was mounted inside a coil system in the inner
dewar, which was surrounded by the superconducting coil magnet, see section 2.

The primary of the mutual inductance consisted of two concentric coils of
which the outer one had half the number of turns of the inner one and vZ times
its diameter, the coils being wound inopposite directions. With this configura-
tion the stray field, and hence the coupling with the surrounding dewar and the
superconducting coil magnet, is greatly reduced. The secondary system consisted
of two oppositely wound coils, of which one contained the salt. In order to save
space the secondary coils were not located inside the primary ones, as is usual-
ly done, but between them.

Alternating measuring fields, 3 Oe peak to peak at 225 Hz, were generated
in the primary coils and the signal from the secondary coils was detected with
the help of a PAR phase sensitive detector. The component of the signal which
is 90° out of phase with the primary current is directly related to the real
component of the differential magnetic susceptibility x'. The in phase component
is related to the imaginary part x', which is proportional to the energy absorp-
tion in the sample. None of our crystals showed any detectable ' at any tem-
perature or field, so that relaxation effects at 225 Hz may be assumed to be

negligible. For a schematic diagram of the measurements see £lganils

recorder Vi

. 7
primar) secundar)
current voltage
1 2 3 4 5 6
recorder Y2
8
Fig. 7.  Block diagram of the susceptibility measurement. 1. oscillator,

2. attenuator, 3. current measuring device, 4. coil system and
sample in the eryostat, 5. pre-amplifier, 6. selective amplifier,

7. and 8. phase sensitive detectors.

A correction has to be made to the measured susceptibilities because of
a small vibration of the coil system, due to the Lorentz forces on the primary
coils. The correction, measured with an empty coil system, appeared to be
proportional to the square of the magnetic field, as could be expected. An
additional susceptibility peak was found near zero field. This could entirely
be ascribed to a coupling between the coil system and the surrounding super-

conducting coil; a correction could be applied for it.
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Only relative values of the susceptibility are measured with our method.
The absolute values for CoC12-6H 0 were obtained by comparing our results with

2
those of Skalyo et al. 9), those for CoBr2-6H20 by comparing them with those

10)

of Garber . The absolute susceptibility values of LiCuCl3-2H 0 were obtained

from the calibrations of the Co salts. :

Two kinds of experiments were performed. In the regions of the (H,T)-
diagrams where a phase transition was represented by a more or less horizontal
line the field was slowly varied at constant temperature and the susceptibility
(output of the PAR phase-sensitive detector) was plotted on an XY recorder as
a function of the field. In opposite cases the temperature was slowly varied
at constant field and the susceptibility was plotted against T. The results of
the two methods were in mutual agreement.

The field of the superconducting coil was measured with the help of a
Hall probe, mounted just below the sample. In the experiments at constant
temperature the horizontal axis of the recorder was directly driven by the Hall
voltage. This had the consequence of a non-1inear field scale of the recorder.
For reproducibility of the field scale it proved to be necessary to thermostat
the power source of the Hall probe.

In the experiments at constant field the horizontal scale of the XY re-
corder was driven by the unbalance of a Wheatstone bridge. A part of this

bridge consisted of the pair of carbon thermometers, described in section 3.

Measurements versus the orientation.

2
function of the orientation of the single crystal could be detected. The appa-

In the case of the measurements of LiCuCI3-ZH 0 the susceptibility as a

ratus for reorienting the single crystal is shown in fig. 8. It consists of

two concentric frames made from delrin. The outer frame consists of two de-
mountable rings perpendicular with respect to each other. This frame can be
rotated over more than 200° around a fixed axis perpendicular to the external
field. Inside this frame a smaller similar frame is mounted, in such a way that
its axis of rotation is perpendicular to that of the outer one. Rotations of
the inner frame (also over more than 200°) with respect to the outer one is
accompl ished by means of two cotton threads passing through the hollow suspen=
sion axes of the outer frame. Because of constructional difficulties the axes
of rotation are not exactly perpendicular but 3° off. The whole apparatus is

mounted inside a delrin tube of 9.4 mm inner diameter.
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C'HAP TER 3

MAGNETIC BEHAVIOUR OF LiCuClB-ZHzO

B Survey of the literature.

’

Vossos et al. investigated single crystals of LiCuCl_+2H,0 with

X-rays. The red-brown monoclinic crystals have lattice constanis a2= 6.078 A,
b=11.145 A, c = 9.145 A and B = 108°45', The space group was concluded to
be PZI/C' Prominent in the structure are planar CuCI;- ions with symmetrical
Cu-Cl1-Cu bridges, giving rise to strongly coupled copper pairs. These pairs
will henceforth be referred to as ''dimers''. The dimers are weakly 1inked to
each other, leading to chains parallel to the a axis. This crystal structure,
together with the results of the susceptibility measurements (also performed
by Vossos et al.), suggest a ground state triplet. Comparing this structure
with that of CuC]2 and CuCIz-ZHZO, and taking into account the known exchange
interactions of the compounds, it was concluded that in the chains the members
of a dimer are parallel and subsequent dimers are oriented oppositely. From the
maximum in the susceptibility the ordering temperature was concluded to be
59 Ks

The heat capacity has been measured in the temperature range 2 - 9 K by

3)

Forstat and McNeely Its behaviour indicated a paramagnetic to antiferro-
magnetic phase transition at 4.40 K, so appreciably lower than the temperature
given by Vossos et al. I). The total magnetic entropy change was 1.35 cal/mole
degree. This value is very close to the value expected for a S = % system, which
suggests that the orientation of the members of a dimer is antiparallel, con-
tradictory to the arrangement suggested by Vossos and his coworkers. It was
found that 48% of the total entropy change occurs above the Néel temperature,
presumably due to the slow diminuation of the short range ordering of the spins.
The considerable short range order has also been found in CoC12-6H20, CoBr, -

2
6H20 and other antiferromagnetic salts.

b)

More recently heat capacity measurements by Clay and Staveley ', however,
suggested again that the interaction within a dimer should be ferromagnetic,
giving rise to a spin of unity for the pair.

5)

From nuclear resonance of 7Li and proton resonance by Spence and Murty
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a Néel temperature of 4.46 K was found, in good agreement with the value of

Forstat and McNeely 3)

. The magnetic space group was one of the following three
P2y fCY, . R2ALC of PiZ./Cs
1 1 a’l 6)

Spence and Murty derived the sublattice magnetization versus the tem-
perature from the local field at the proton sites by observing the proton re-
sonance. A T3 dependence was found. The proton spin-lattice relaxation time
showed a T-h dependence. The discrepancies between spin wave theory and experi-
ment are much less serious in LiCuC13-2H20 than in CuCIZ-ZHZO.
Antiferromagnetic resonance in LiCuCl3 2H20 was studied by Date and

Nagata 7)

. The observed g values along the principal magnetic axes are:
g 5™ 2,06, 9y = 2.14, g - 2.22, it was concluded that the easy spin axis is
the a' axis. The spin flop transition takes place at 10.2 kOe at 1.4 K.

From a neutron diffraction experiment on a single crystal in zero field

and from magnetic susceptibility measurements performed by Abrahams and

Williams 8) the most likely space group was found to be PZi/C. From the neutron

diffraction data it could only be concluded that the spin direction is in the
ac plane at approximately 18.8 + 68° from the c axis. One of these directions
(18.8 + 68°) differs only 3° from a' which was the spin direction according to

Date and Nagata 7).

From the susceptibility data versus the orientation in the
ac plane it was concluded, however, that the correct direction was 18.1 - 68°,
although the susceptibility data did not include the a' direction.

Abrahams and Williams could develop a consistent model for the spin
arrangement by combining the neutron diffraction data with the susceptibility
measurements. They concluded that the spins of the members of a dimer are
oriented along the line interconnecting the Cu ions in a dimer and are anti=
parallel. The antiparallel arrangement of the spins in a dimer is in agreement
with the specific heat measurements of Forstat and McNeely 3), but in disagree=
ment with the susceptibility measurements of Vossos et al., " and with the spe-

k)

cific heat measurements of Clay and Staveley . The susceptibility measure-
ments in zero field between 20 and 100 K indicate a paramagnetic behaviour with
an effective paramagnetic moment of 2.0k Mgs thus corresponding to a spin

S =~ %, in this temperature range.

Forstat et al. 9) investigated the phase boundaries up to 22 kOe by means
of adiabatic magnetization experiments for the antiferromagnetic to flop phase
transition, and by means of specific heat measurements for the transition to the
paramagnetic phase. The Néel temperature found in this way is 4.4 K. By adiaba-
tic rotation in the ac plane the direction of antiferromagnetic alignment was

found to be the c' axis in disagreement with both Date and Nagata 7) and
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8)

Abrahams and Williams

Electron spin resonance has been performed on LiCuCl

'ZHZO by Zimmerman
10)

3

et al. , who found several new modes in addition to the conventional ones
in antiferromagnets. The direction of the antiferromagnetic spin alignment

was found to coincide with the 101 direction, with an accuracy of 1°.

2. Experimental results.

The red-brown single crystals were grown from an aqueous solution of
CuC12°2H20 and LiCl. The crystals are elongated along the a axis, and the do-
minant face is the (011) plane. In moist air the crystals dissolve quickly.

Out of a larger crystal a sphere of 5 mm diameter was ground and mounted
inside the coil system in order to measure the differential magnetic suscepti-
bility. The experiments were performed in fields up to 110 kOe and in the
temperature range from 1.2 to 12 K.

By observing the susceptibility versus the orientation in fields just
below the spin flop field the direction of antiferromagnetic spin alignment
("easy spin axis') was found from the minimum in the susceptibility. For con-
venience it will further be referred to as the ''e direction''. Our first ex-
periments were performed in this direction, which is the 101 direction lO).

a. Typical susceptibility curves for the e direction, both versus the
field and versus the temperature are shown in figs. | and 2.

The curves plotted versus the temperature (fig. 2) show a clear phase
transition which is located, for low fields, near 4.2 K and which shifts, with
increasing field, to lower temperatures. This transition is readily identified
with the upper (second oreder) transition of the curves of fig. 1. The remar-
kable point is, however, that above this transition, even at the lowest tem-
peratures the susceptibility does not fall to zero. This means that the mag-
netic system is not yet saturated.

Apart from this transition the curves of fig., 2 above about 50 kOe show
another broad maximum, also located near 4.2 K, which depends very little on
the field, and which suggests the existence of another phase transition. This
anomaly is even more clear for the measurements in the b direction (see fig. 5).
It must be emphasized that these broad maxima are much clearer in the original
recordings than in the figures as given here, because in these the susceptibility
scales have been largely reduced. In sections 5 and 6 of Chapter 4 it will be
demonstrated that this broad anomaly is related to a saturation process. This

saturation process, however, does not take place via a second order phase

31



| | |
LCuC52H20

H/l eaosy spin

425K |
—_—

0.05 emu ! mole/division

-

o

Sugceptibility of LiCuCl ,+2H,0 "reld at several
32

temperatures. The measurements Trection
of antiferromagnetic aligrment

of the susceptibility scales.

transition, like a simple two sublattice antiferromagnet, but via a gradual
orientation of the spins, which is dominated by the existence of a Dzyaloshinsky=-
Moriya interaction. Since this broad anomaly is not observed at the lower tem-

peratures in fig. 1 it might approach T = 0 at fields well above 100 kOe.
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Fig. 2. Susceptibility of LiCuCZz-ZHEO versus the temperature at various
field levele, along the direction of antiferromagnetic alignment

(101 axis). Note the vertical shift of the susceptibility scales.

The existence of an anomaly in the susceptibility which is related to a
saturation process at about 4.2 K and fields which, at the lower temperatures,
exceeds 100 kOe is not unlikely because CuClZ'ZHZO shows a transition from the
flop phase to the paramagnetic phase in fields up to 150 kOe, and its Néel
temperature is 4.3 K, so quite close to the Néel temperature of LiCuCIB-ZHZO.
which is 4.48 K according to our measurements. The closeness of the two Néel
points suggests that the exchange constants, and thus the exchange fields
(speaking in terms of the molecular field approximation) are of the same order
of magnitude.

For this reason some isothermal magnetization curves were measured on a
3-2H20 by Jordaan 14)

installation of our laboratory. A gradual saturation of the magnetic moment

powdered sample of LiCuCl in the pulsed magnetic fields
was found in fields of the order of 150 kOe, see fig. 1, Chapter 4. These
measurements will be discussed and compared with those on CuCIZ-ZHZO in Chapter
4 section 2.

The susceptibility versus the magnetic field at intermediate temperatures
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(e.g. 2.70 K) as given in fig. 1 shows a few more remarkable facts.

1°. The lowest transition at about 12 kOe, interpreted by most authors

7,8,9)

as a spin flop transition seems to consist of two anomalies about 1 kOe
apart. This can not be due to the fact that the crystal should not be a perfect
single crystal, because rotational diagrams do not show double peaks. The
double character of the spin flop transition has only been reported thus far

10)

by Zimmerman et al. in their E.S.R. measurements.

2°. There is a second similar peak near 30 kOe, which does not occur in
ordinary antiferromagnets. No double character could be detected for this
transition.

3°. The anomaly at about 50 kOe is similar in behaviour to the one found
12) 4nd CoBr* 6H,0 13)
occurs from the flop phase to the paramagnetic phase. In the case of LiCuCl,-

3

2H20, however, it is probably also a second osder phase transition but distinct-

ly not to the paramagnetic phase. This transition does not occur in LiCuCl._-

3

in e.g. CoC12-6H20 where a second order phase transition

2H20 as discussed above and in Chapter L sections 5 and 6.

From the anomalies in the susceptibility the phase diagram is constructed
This diagram is shown in fig. 3.
The remarkable points are:

1°. The double transition near 12 kOe (low temperatures) .

2°, The bend in the phase boundary near 17 kOe, 4.2 K between the two
triple points. Many more points of the phase diagram in this region have been
measured than indicated in the figure.

3°, The extra phase transition at about 32 kOe (low temperatures).

4°. The fact that the transition boundary near 56 kOe (low temperatures)
is not the one to paramagnetic saturation, although it has the appearance of
a second order phase transition.

5°., The anomalies above 4.2 K in the susceptibility versus the tempera-
ture, and the anomalies in the magnetization near 150 kOe, which are related
to the saturation process. They are connected by a dotted line in fig. 3. It
is interesting to note that the slope of this line is positive at fields below
about 80 kOe. This point will be discussed further in Chapter L, section 7.

b. Also other directions than the easy spin axis have been investigated.
As an example figs. 4, 5 and 6 show the experiments with the magnetic field
parallel to the b axis. In fig. 4 the susceptibility versus the magnetic field
is plotted showing one first order phase transition only, with a double charac-
ter, similar to that found for the transition near 12 kOe with the field paral-

lel to the e direction. No second order phase transition has been found up to
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110 kOe for this direction which, again, indicates that the second order phase

transition found in the parallel case is not the one to paramagnetic saturation.

Measurements versus the temperature (see fig. 5) at fixed field levels

have also been done for this direction. The figure shows clearly the double

character of the transition. The high field curves (above about 20 kOe) show

a flat region of the susceptibility versus the temperature below, and a broad

maximum near, about 4.2 K. This is also observed in the parallel case. Due to

the smallness of the susceptibility scales these broad maxima are not too clear
from figs. 2 and 5.
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Susceptibility of LiCuCZZ-ZHQU versus the magnetic field at several
temperatures. The measurements have been taken along the b axis

which is perpendicular to the easy spin direction.

Above about 4.2 K, at any field below 110 kOe, the susceptibility decreases
with increasing temperature. This has also been observed in CoC12-6H20 12) and
C08r2-6H20 13) when passing the flop-para transition by changing the temperature,
in the field region between about 10 and 40 kOe.

A simple calculation concerning the behaviour of a classical paramagnet
with § = ¥ yields that the susceptibility at constant field versus the
temperature shows a maximum at an intermediate temperature. This temperature
increases linearly with the field through the relation uBH = 0.8 kT. So if we

interpret the transition near 56 kOe in the e direction as the one to para-
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Fig. 5. Susceptibility of LiCuCl ,»2H,0 versus the temperature at several

field levels along the b axis.

magnetic saturation, we should certainly expect an increase of the susceptibi=-
lity with the temperature near 4 K and at fields well above 60 kOe. This in-
crease of the susceptibility has in fact been observed in CoC12-6H20 and
CoBr2-6H20, at sufficiently high magnetic fields (see the curve for 62.3 kOe
in fig. 5 of ref. 13).

In LiCuC13-2H20, however, we always find a decrease of the susceptibility
up to fields, much higher than 60 kOe as stated above. This, again, is an indi-
cation that below 4.2 K and above 60 kDe we are not in the paramagnetic region.

The anomalies for this direction have been assembled in the phase diagram
of fig. 6.

Ci The susceptibility versus the orientation in the plane perpendicular

to the easy spin axis has been measured for some points of the magnetic phase
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diagram. Examples are given in fig. 7 at 3.35 K and different field levels.
The anomalies have been assembled in the diagram of fig. 8. The figure is
represented (within the accuracy of the experiment) by the critical hyperbola

in the (b,le) plane:

2

le/q2 i )

Hi/p2 = H
where Hb = cos$ and Hle = H singd with ¢ the angle between the external field
and the b axis. The Le direction is defined as the axis in the ac plane perpen-
dicular to e. We find p = 21.5 + 1.0 kOe and q = 32 + | kOe. For 26.1 kOe,
in the plane perpendicular to the easy spin axis, the temperature dependence
of the anomaly versus the orientation is given in fig. 9. Similar behaviour is

found for other points of this hyperbola and for points of the curves given

in fig. 11.

38




0026 FT7 T T T T T T -
o LiCuCl3.2H,0
mole 335K

0.0255 - -
leasy spin
40.0 kOe
0025 =
1 l 1 | 1 1 T\q\n
015 - .
010 - =
D08 | 21.8 kOe]
1 | | 1 1 1 |
0024 - -
x“
l 129 kOe
! 1| | 1 1 1 1
0035 230 p +30 +90 +150
—
OXES)

Pig. 7. Angular dependence of the susceptibility of LiCuCZS-EHZO in the plane
perpendicular to the easy spin axis at 3.35 K and several field
levels.

d. The susceptibility versus the orientation in a plane through the

easy spin axis (e b plane) has been measured for several points in the phase
diagram. Some curves are shown in fig. 10.

We first discuss the part in the neighbourhood of the first transition
field (left hand half of the figure, H < 23 kOe). These curves are in agreement
with the generally accepted fact that the first transition is a spin flop
transition. The curves show the behaviour for a rotation in the easy - second
easy plane (which is the e b plane) with maxima symmetrically arranged with
respect to the easy spin axis. These maxima should not be confused with those

which are found in the easy-hard plane (the ac plane in this case) where a
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Fig. 10. Angular dependence of the susceptibility of LiCuCZ3-2H90 in the

e b plane at 2.68 K and several field levels.

critical hyperbola can be observed ]O). The anomalies in the easy-hard plane,
which correspond to a first order phase transition, are generally much more
pronounced than those in the easy-second easy plane, which corresponds to a
rapid change of the directions of the sublattice magnetization vectors, but
not to a first order phase transition.

Above about 23 kOe new peaks appear which are different in nature from
those near 12 kOe. They are much more pronounced. The anomalies (corresponding

to first order phase transitions) are assembled in fig. 11 for 2.68 K and two
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different branches are shown.

The branch near the e axis can be described by a hyperbola:
2 2 22
He/p Hb/q =] (2)

where He and H, are the field components along the e and b axis respectively.

b
We find p = 30 + 1 kOe and q = 20 = | kOe.

The branch near the b axis can be described by a hyperbola:
22 Ay A
H./p H/q" = =1 (3)

with p =18 = 1 kOe and q = 24 + | kOe.

Behaviour of the parallel b and perpendicular b component of the

xy
o
Q
e
[

eritical magnetic field at various orientations of the crystal with
the Le axis always perpendicular to the magnetic field. The fully
draum curves are hyperbolae with parameters as mentioned in the text.

The temperature i8 2.68 K.
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CHAPTER 4

DISCUSSION AND THEORY OF LiCuCIB'ZHZO

Discrepancies in the literature.

From the literature review of Chapter 3 two important conclusions may be

drawn.

1)

data indicate that LiCuC13-2H20 behaves like a paramagnet with S = 1 in the

temperature range 20 K and higher. From this fact it was concluded that the

2)

32 According to some authors the susceptibility and specific heat

two Cu spins 3.47 A apart, forming the dimers along the a axis, are parallel

and thus ferromagnetically coupled. In contradiction to this other suscepti-

3) k)

bility and specific heat measurements lead to the conclusion that in

LiCuCI3-2H20 an ordering process sets in at 4.40 K involving a S = % spin
3)

system. Neutron diffraction measurements finally revealed that the spins

within a dimer are antiparallel. Because a neutron diffraction experiment is
the most direct way in which the spin arrangement can be detected, it must be
concluded that the spins within a dimer are antiparallel.

2° For the direction of spin alignment in zero field four different

5) .

' from E.S.R. measurements

6)

¢' from temperature measurement during adiabatic rotation ; the Cu = Cu

orientations may be found in the literature: a

internuclear line within the CuZCIs- dimer by combining susceptibility measure-

3)

ments and neutron diffraction data ; and the 101 direction from recent E.S.R.

measurements 7) (see also fig. 2). The direction as found from the recent

E.S.R. measurements seems the most reliable one. The fact that this direction
is the correct choice for the easy spin axis is supported by the observation
that a clear spin flop transition is found in a Li nuclear resonance experi-
ment if the single crystal is mounted with its 101 direction parallel to the

magnetic field (to be discussed further in section 4).

2 Experimental evidence for Dzyaloshinsky-Moriya interaction.

From the data given in the preceding Chapter (see figs. 8 and 11) it is

clear that the transitions near 32 kOe in fig. 3 and near 20 kOe in fig. 6
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depend strongly on the orientation of the crystal. The same can be said of the
transition at about 56 kOe which is found for the easy spin direction (fig. 3)
but not for instance for the b direction (fig. 6). This indicates that the
anisotropy related to this angular dependence is much larger than what is
usally found for exchange constants of this order of magnitude, which can be

8))

measured either from the saturation field at low temperatures (about 150 kOe

or from the Néel temperature (4.48 K in the present measurements).

This high anisotropy suggests that a Dzyaloshinsky-Moriya interaction
should be present in LiCuCl_, *2H.0 like in CuC12-2H 0 IO).

32 2
Moriya (henceforth D-M) interaction is the antisymmetric part of the super-

9)10) Dzyaloshinsky~-

exchange constant tensor, which describes the quadratic part of the interaction

between two spins, and is of the form:

Eij.éi A §j (1
where Rij is the D-M vector, whose magnitude and orientation depend on the
crystal symmetry and the pair of spins under consideration.

One of the effects of the occurrence of D-M interaction in an antiferro-
magnet is the destruction of the second order phase transition to paramagnetic

13)

saturation This point will be discussed in sections 6 and 7. It is illu-

strated in fig. 1, which shows the magnetization curves for LiCuCIB-ZHZO and
CuClz°2H20 at 1.55 K. The lower first and second order transitions of
LiCuC|3'2H20 are not visible in this figure because these experiments were
performed on powdered samples. For both salts the saturation occurs at about
3-2H20. This shows that

in this salt the D-M interaction is much stronger than in CuCI2-2H20. An even

150 kOe but the rounding off is much larger for LiCuCl

more pronounced anomaly is found in the experiments on C0C12-6H20 1) and
CoBr2-6H20 12) where D-M interaction is absent.

In fact the rounding off of the magnetization near saturation is also
found in the measurements of the susceptibility versus the temperature. See
e.g. the curve at 97 kOe in fig. 5, Chapter 3.

A second argument for the existence of D-M interaction is the occurrence
of a small ferromagnetic moment at high fields. For instance, integration of
the 1.20 K susceptibility curve of fig. 4, Chapter 3 (b direction) gives rise
to a jump in the magnetization at about 24 kOe. Extrapolation of the magnetic
moment above this field back to zero field yields a ferromagnetic moment of
about 6 per cent of the saturation moment. Something similar happens in the

e direction. The peaks at about 12 and 32 kOe are followed by regions with
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Fzg. 1. Isothermal magnetization curves of powder samples of Cu012-2H20
(left) and LiCuCZg-zﬁzO (right). The measurements have been per-

formed in high pulsed magnetic fields.

higher susceptibilities, in such a way that extrapolation of the magnetization
back to zero from these regions leads to zero magnetic moments. But the anomaly
at about 56 kOe gives rise to a diminution of the slope of the magnetization
versus field above this field and extrapolation back to zero field from here
yields a ferromagnetic moment of about 4 per cent of the saturation value.
These extrapolated magnetic moments are equivalent with a canting of the spins
of approximately 6°.

Because at this point no detailed picture is available of the magnetic
interactions in LiCuCl3-2H20 this canting angle, extrapolated to zero field,
must be considered as a preliminary estimation. A final picture will be given
in sections 6 and 7.

14)

De Jong , making use of the exchange constants given in section 7, made
calculations on the spin-spin relaxation frequency. Assuming a D-M interaction
large as compared to the dipole-dipole interaction, but small with respect to
the isotropic exchange interaction, he came to values in the region 150-500 MHz,
the exact numbers depending on the orientation. This was in excellent agreement
with the experimental data. For the case D-M interaction was absent, frequencies

of about 5 MHz were calculated. This, again, is a strong argument for the

presence of an important D-M interaction in LiCuC!3-2H20.

It was assumed in these calculations that the D-M vector could be
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described by:
]DiI/J3 = a-Ag, (2)

with a independent of the direction; i indicates a principal magnetic axis and

Agi is the deviation of 9; from 2 for the i direction. For the definition of

J3 see below. It turned out that a = .30 + .02 for any of the three directions
mentioned. This magnitude of D/J is half the value given by Moriya, as an order
of magnitude, and it differs less than a factor of 2 from D/J = 0.1 which is

obtained from the canting angle of 6° mentioned before.

3. Crystal symmetry considerations and D-M interactions.

From the preceding sections it has become clear that an important D-M
interaction must play an important role in LiCuC13-2H20. In this section this
fact will be discussed in more detail.

The crystalline structure of LiCuCl3-2H20 is represented by figures 2
(projection on the ac plane) and 3 (projection on the bc plane). There are
four Cu++ and four Li+ ions in the unit cell, so in our discussion we will
distinguish four crystalline sublattices, numbered 1, 2, 3 and 4, as indicated
in figs. 2 and 3. From the Li nuclear resonance data, to be discussed in
section 4, it is clear that a four magnetic sublattice model must be adequate

to describe the most important features of LiCuCl -2H20. These four magnetic

sublattices are supposed to coincide with the fou? crystalline sublattices.
The copper ions of sublattices 1 and 2 are approximately in the plane of fig.
2, the ions 3 and 4 are halfway the unit cell above or below the plane, see
also fig. 3.

The D-M interaction which must be present in LiCuCI3-2H20 cannot exist
between the Cu spins within the dimer, neither can it exist between the spins
3.84 A apart from neighbouring dimers (along the a axis), because in both
cases the midpoint of the line interconnecting the spins under consideration

0)

(see fig. 2) a D-M interaction may exist but then, apart from the interaction

are inversion centers . Between the spins along the a axis 6.08 A apart
constants J], J2 and this interaction, all acting inside the same chain along
the a axis, a fourth interaction with spins outside the chain is needed because
otherwise no long range order can exist.

For the spins 6.6 A apart in the ac plane along the ¢ axis no D-M inter-

action is possible again. Between the spins e and b (see fig. 3) belonging to
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Arrangement of the Cu spins and Li ions projected on the ac plane.

The figure shows also the zero field sepin arrangement as deduced

from neutron diffraction and E.S.R. measurements.
Black ecircles : Cu spine near (0,1,0) plane
Shaded eiveles : Cu spins near (0,2,0) plane
White eircles : Li ions near (0,1,0) plane

Dotted ecircles : Li ions near (0,2,0) plane

sublattices 3 and 2 respectively a D-M interaction may exist, because these
spins are related by the two-fold screw axis. The distance between these spins
is 6.16 A. Interactions of the same magnitude occur between e and h, f and k,

f and ¢ and so on in chains parallel to the b axis. The spins e and a are
related by a glide-mirror plane parallel to the ac plane, so also here a D-M
interaction may exist, e and a belonging to sublattices 3 and | respectively.
The distance between these spins is 7.4 A, The spins e and g are also related
by a glide-mirror plane and belong also to sublattices 3 and | respectively.
This distance is 7.0 A. There is no relation at all between the interaction

of e and a and of e and g. The interactions between e and a, e and ¢ and so on,

however, are equal in magnitude and occur in chains parallel to the c axis;
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Fig. 3. Arrangement of the Cu spins projected on the be plane. The inter-
actions as discussed in the text have been indicated.
a, ¢, g and k belong to sublattice 1

¢

b, d, h and 1 belong to sublattice 2

e belongs to lattice 3 and

I belongs to sublattice 4.
The angle between the lines interconnecting the spins in a dimer
and the ¢ axis ie slightly exaggerated for elarity.
g-m indicates a glide-mirror plane.
tw tndicates a two-fold screw axis.

o tndicates an inversion center.

interactions of the same magnitude are found between f and h, f and 1 and so
on in chains along the c axis as well. That the magnitude of the interaction
between e and a is the same as the one between f and 1, is caused by the fact
that e and f as well as a and | are related by the same inversion centre.

In section 6 it will be demonstrated that the interaction between the
spins belonging to sublattices | and 3 respectively, in addition to the ex-

change constants J] and JZ' may result in phase transitions. The net effect of
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the interactions between the spins of sublattices | and 3 (so e and a, e and
g, e and ¢ etc.) must be antiferromagnetic in sign in the absence of interac-
tions between spins belonging to sublattices | and 4 respectively, as follows
from the antiparallel alignment of spins | and 3 in zero field, according to
ref. 3. As far as the interaction between the spins of sublattices 1 and 4
(as well as 2 and 3) is concerned (so e and h, f and k, f and c etc.) and which
must be ferromagnetic in sign in the absence of interactions between spins of
sublattices 1 and 3 respectively as follows again from the parallel alignment
in zero field according to ref. 3, it does not seem possible that phase tran-
sitions, as found in these experiments, occur for such a system, if this in-
teraction alone is taken into account in addition to J‘ and J2.

The simplest model which possibly will exhibit the phase transitions as
described in Chapter 3 is one neglecting the interactions (indicated above)
between the spins belonging to sublattices | and 4. But still two different
interactions (also mentioned above) concerning the interactions between spins
belonging to sublattices 1 and 3 remain possible.

Let us first consider the interactions in the chain containing spins e
and a (see fig. 3). The D-M vector is indicated in the figure (in fact its
projection on the bc plane). The vector has been drawn in an arbitrary direc-
tion. But because the spins e and ¢ can be obtained by the glide-mirror opera-

tion from the spins a and e respectively, the D-M vector transforms as indicated

in the figure (the D-M vector is an axial vector). The two vectors Qea and

gec are symmetrically directed with respect to the glide-mirror plane.

In introducing these D-M vectors the spins a and c still belong to the
same sublattice, because the components in the ac plane of the D-M vectors
give equal canting of the spins a and c out of the ac plane, whereas the can-
ting due to the parallel b components is cancelled. Thus only the components
in the ac plane are of importance. This is consistent with the molecular field
treatment which allows us to add Eea and Eec if a and ¢ belong to the same

sublattice. is defined as D + D and lies in the ac plane. Similar con-
—ea —ecC

D

siderations c;: be held for the interactions between the spins e and g, e and
k, f and b, f and d etc. in chains parallel to the c axis, and also for the

interactions between h and e, e and b, k and f, f and ¢ etc. in chains paral-
lel to the b axis. The latter interaction will be neglected as already argued.
The D-M vector th
as well as ¢ and h are related by an inversion centre.

which belongs to f and h is parallel to Eec because e and f

If we introduce an interaction between e and a of about equal magnitude as

the interaction between e and g, then possibly a and g do not belong to the
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same sublattice any more, because there is no simple symmetry relation between
the two corresponding D-M vectors and the canting is not fully cancelled. From
the fact that the Li resonance data, discussed in the next section, does not
indicate more than four magnetic sublattices, it seems that only one of these
two different interactions is important. The interaction between e and a has
been chosen as the leading interaction in spite of the slightly larger distance
between e and a (7.4 A) than between e and g (7.0 A). This has been done
because an oxygen ion is favourably situated between the spins e and a. The
lengths of the lines connecting the oxygen ion with each of the two spins e and
a are of about equal magnitude (4.2 A) and form an angle of about 124°,

The conclusion which may be drawn from this section is that in LiCuCIB-
2H20, apart from the interactions J] and Jz, a third interaction J3, containing
D-M anisotropy, occurs between spins which are related by the glide-mirror

plane. J, is an interaction occurring between spins of sublattices | and 3 as

3

well as between spins of 2 and 4. It has been indicated in fig. 3. The D-M

anisotropy in J, has the consequence that the sublattice magnetization vectors

I and 3 are canzed with respect to each other as are 2 and 4, whereas | and 2
as well as 3 and 4 remain exactly antiparallel. Thus LiCuCl3-ZH20 has a hidden
canting in zero field. This hidden canting is not destroyed even if anyone of
the other interactions occurring between spins belonging to the sublattices |

and 3 and to | and 4, mentioned in this section, is taken into account.

L, Li nuclear resonance.

In order to get more information about the detailed behaviour of LiCuCl3-
2H20 in the different phases for the e direction preliminary data was taken
of Li nuclear resonance 15), with the magnetic field parallel to this direction
and with the crystal at 1.3 K. This resonance data is shown in fig. 4. The
numbers 1-4 of the curves refer to the numbers of the Li nuclei indicated in
fig. 2. These Li nuclei are numbered similarly as the Cu spins.

We,know that in zero field the spins are (or are almost) in the ac plane
3)7). Fig. 4 shows that the resonance lines | and 4 as well as 2 and 3 coincide
at fields well below the spin flop field of about 12 kOe. These coinciding
lines must arise from the Li nuclei which are related by the two-fold screw
axis, because the corresponding spins are (almost) parallel and in (or near)
the ac plane. As far as this Li resonance data is concerned a canting out of
the ac plane is permitted, with the restriction that the spins which are

related by this screw axis are symmetrically directed with respect to this
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Li resonance in LiCuCl,.2H,;0
1.3K H/l easy spin

L1 resonance data in LiCuCZ3°2H¢0. A 28 the deviation of the

resonance frequency from the free nucleus value.

plane (see also fig. 5a).

The lines | and 2 are symmetrically located around the zero internal
field resonance frequency, with a small shift added to it. These lines must
arise from the Li nuclei which are related by inversion, because the correspon-
ding spins, which are numbered 1 and 2 respectively (see fig. 2) are anti-

3)

parallel

7.

Above about 12 kOe the spins flop to a direction near the b axis From

symmetry considerations it follows that the spin arrangement should be sym-
metrical with respect to the ac plane, if the magnetic field is perfectly
aligned in the ac plane. The spins | and 3 are connected via a gl ide-mirror
plane, which is parallel to the ac plane. This means that the corresponding
Li resonance lines coincide if the spins are symmetrically aligned with respect
to the ac plane. The spins | and 4 are connected via a two-fold screw axis
parallel to the b axis (and consequently perpendicular to the ac plane) and
also in this case the corresponding Li lines coincide if these spins are sym-
metrically directed with respect to the ac plane.

In the experiment, however, four different resonance lines are measured

between the threshold field of 12 kOe and the first order phase transition at
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about 32 kOe, and also between 32 kOe and the second order phase transition at
56 kOe. This can only be found if the spins | and 2 as well as 3 and 4 are
symmetrical with respect to the ac plane and other combinations are not sym-
metric. In such an arrangement, however, any contribution to the energy from
the D-M interaction is cancelled. So we are inclined to believe that the split-
ting of the lines | and 3 (and 2 and 4) in the range 12 to 32 kOe as well as
the splitting of the lines 1 and 4 (and 2 and 3) in the range 32 to 56 kOe is
merely due to a slight misalignment (we estimate about 10°) of the external
field with respect to the ac plane. This is also supported by the fact that the
transitions as found in this preliminary resonance experiment occur at Sys-
tematically higher fields than those from the susceptibility measurements.
Moreover, the change of the internal fields at the Li sites, at the spin flop
transition, seems to be much less sudden than what is usually found for such

a transition if the crystal is properly aligned.

The slight misalignment of the external field with respect to the ac plane
gives us the opportunity to identify the resonance lines. From this resonance
data it can thus be concluded that between 12 and 32 kOe the sublattices 1 and
3, as well as 2 and 4 are symmetrically directed with respect to the ac plane.
Between 32 kOe and 56 kOe the sublattices | and 4, as well as 2 and 3, are
symmetrical with respect to the ac plane.

Coinciding lines | and 4 below 56 kOe with the field perfectly aligned in
the ac plane necessarily means that only one resonance line should be found
above 56 kOe in that case. Full saturation of the spin system occurs at about
160 kOe 8). This means that above 56 kOe the sublattice magnetization vectors
| and 2 coincide as well as 3 and 4, whereas 1 and 3 are symmetrically directed
with respect to the ac plane, as are 2 and 4, with large angles between the

magnetization vectors | and 3. See also fig. 5.

5 Mechanism of the transitions.

From the crystal symmetry considerations as given in section 3 it follows
that the D-M vectors 213 and 22“ are parallel, equal in magnitude and lie in
the ac plane, giving rise to the spin configuration in zero field with a hidden
canting as shown in fig. 5a. After the flopping process at 12 kOe the spins
are slightly canted towards the field. See fig. 5b.

As far as the D-M interaction is concerned the sublattice vectors | and
3 have lowest energy if the vectors are perpendicular to each other in such a

way that the vector product points into the positive e direction. The same is
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(¢)

3

Proposed spin arrangements of the different phases in LiCu013-2H20
for the external field parallel to the easy spin direction.

(a) 0 to 12 kO

(b) 12 to 32 kOe

(c) 32 to 56 kOe

(d) §6 kOe and higher

true for 2 and 4. On increasing the field the sublattices cant more and more
to the field direction. The D-M contribution to the energy from 243 decreases

this energy, but the D-M contribution D, 4 increases it more and more, so that,

as far as this interaction is concerned? 2 and 4 must change their directions
so that also the D-M contribution from 2 and 4 lowers the energy. See fig. 5c.

This sign reversal of the vector product of the sublattice magnetization
vectors 2 and 4 is, of course, only possible if the symmetric interactions
allow such a process. The second order phase transition which occurs at higher
fields is then due to an antiferromagnetic interaction between the spins 1 and
2. Here the four sublattice system changes into a two sublattice system. See
figs. 5¢c and d.

To understand the process qualitatively only the interactions between |

and 2 (3 and 4) and between | and 3 (2 and 4) are necessary. In that case only

one D-M vector (243 - 22“) is present which lies in the ac plane. If this
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vector makes an arbitrary angle with the field, then the spins are not coplanar
in non-zero field. For simplicity in fig. 5 the D-M vector is assumed to be
perpendicular to the easy spin axis (thus parallel tole).

In order to derive the conditions for these transitions, as well as the
values of the interactions which play an important role in LiCuC|3-2H20, a
detailed analysis of the Hamiltonian is necessary. As a start a preliminary
analysis of the energy expression at zero temperature and in the molecular

field approximation is given in the next section.

6. The energy expression.

On the basis of the preceding sections the spin system of LiCuCl3-2H20

is a four sublattice magnetic system. |f we use subscripts |, 2, 3 and 4
(indicated in figs. 2 and 3) for the spins belonging to the four magnetic sub-
lattices respectively we may write the energy, corresponding to the Hamiltonian,

in the molecular field approximation at zero temperature as follows:

= - - - —] - .
o NS oy + )08 NSl # )RS
=g NS ; *J_°*S = L-NS' *J_*S
2 =] =3 =3 2 =2 =3 =4
- ND, oS ALS = L ND,, S, AS
2 =3 =123 2 =24 2p 2y
1
FhugHege(s, +5, +8, +5,) (3)
Here:
N is the total number of spins.
il is the superexchange constant, which is attributed to the interaction
between the spins within a dimer, see figs. 2 and 3.
22 is the superexchange constant, which is attributed to the interaction
between the neighbouring spins belonging to different dimers along the
a axis, see fig. 2.
33 is the symmetric part of the superexchange constant, which is attributed

to the interaction between the spins which are related by the glide-
mirror plane and which are 7.4 A apart, see fig. 3.
213 is the sum of the two D-M vectors which belong to S] and its two neigh-

bours, §3, the two neighbours §3 belonging to the same sublattice, as

is indicated by the subscript 3.
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92“ is defined in a similar way.

In order to perform some preliminary calculations we make two more sim-
plifying assumptions:
123 gl' 32 and g3 are isotropic, though, of course, D

taken into account,

and D,

2l will be

13
2°, The magnetic field will be taken perpendicular to the D-M vector

(243 = th, as follows from the arguments given in section 3. It will be

further referred to as D).

It is obvious that the spins are confined to the plane perpendicular to
the D-M vector. From the preceding sections it is clear that we have to consi-
der two different configurations, one with the directions of the spins 1 and 3
(as well as 2 and 4) symmetric with respect to the plane through H and D, which
we shall abbreviate as the (1,3) solution, and one with the directions of the
spins 1 and 4 (as well as 2 and 3) symmetric with respect to this plane, which

we shall refer to as solution (1,4).

(b)

Definition of the angles a, B, v and & for the calculations as

earried out in the text. Left: configuration (1,3). Right: con—
v v

figuration (1,4).

Fig. 6a shows configuration (1,3) (as does fig. 5b) and fig. 6b shows
configuration (1,4) (as do figs. 5a and 5¢).

In the energy expression (3) J] + J2 and J3 are negative, 913 = 224 =D
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will also be taken negative.
6.1, The solution (1,3). See fig. ba. Using the angles a and B we obtain:

e = cos 28(1 + 2r cos 2a + 2rd sin 2a) - 2h cos Bcos a (4)
in which

e = -E/iN(Jl + J
r = J3/(Jl + J2) which is a positive quantity
d = D/J3 also a positive quantity

h = -guBH/S(JI + J,)

2
The necessary conditions for the equilibrium values of a and B are that

the derivatives with respect to these angles should be zero:
cos 2B8(-4r sin 2a + 4rd cos 2a) + 2h cos B sin a = 0 (5)
-2 sin 28(1 + 2r cos 2a + 2rd sin 2a) + 2h sin B cos a = 0 (6)

From eq. 6 it follows that two different cases must be considered:
sin B # 0 and sin B = 0.

Case a: sin B# 0

It does not seem possible to obtain o and 8 explicitly as functions of h
from equations 5 and 6. Therefore we treat the equations in such a way that
expressions are obtained which are suitable for numerical calculations. Then
e as a function of h can be obtained in an indirect way.,

Elimination of h from equations 5 and 6 yields

coszﬁ _ Sin 2a - d cos 2a (7)

p tang a - 2d

with p = (2r - 1)/r.

The reduced magnetic field can then be calculated either from 5 or from 6:

|l + 2r cos 2a + 2rd sin 2a (8)
cos o

h =2 cosR

e can be rewritten in a slightly simpler way:
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2
e = -h cos QM (9)

2 cos B

From equation 7 it is clear that certain values of a cannot be realized,

because it is required that 0 < coszﬁ ¢ 1. The boundary cosZB = 0 corresponds

to two values of a, respectively % and Aoy obeying:
sin Zul - d cos Za] =0
tang a, = % @

The boundary cosZB =1 gives

sin 2a, - d cos 2a

tan = 2d
P 9 &3

The right hand side of equation 7 becomes infinite at
p tang ay - 2d = 0 (13)

A sketch of cosZB as a function of a is given in fig. 7 (r and d have
been chosen 3.51 and .22 respectively).

From equation 8 it can be seen that there must exist a critical value of
h above which |cos 8| > 1 unless cos a becomes zero simultaneously. From 7,
however, it is concluded that if cos a = 0 then cos g = 0. This means that
this critical value of h is realized as an upper limit and is given by

] + 2r cos 2a, + 2 rd sin 2«
- 3 3

Ic
cos «

3
where a3 obeys equation 12.

The relation between e and h (again for r = 3.5]1 and d = .22), is repre-
sented by the fully drawn curves of fig. 8, of which one ends abruptly at hlc'
These curves represent all the solutions of equations 5 and 6 for sin B # 0,
including those with maximum energy.

Case b: sin g = 0.

If sin B = 0 then 8 = 0 or m, which means that spins | and 2 coincide as

do 3 and 4, so we obtain a two sublattice system. Equation 4 reduces to:

=1 + 2r cos 2a + 2rd sin 2a ¥ 2 h co$s a (15)
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Fig. 7. Plot of cosdB versus o for configuration (1,3). The periodicity is
180°, a5 af, Agy Qg and a, are solutions of the equations 10, 11,

12 and 13 respectively. Forbidden ranges of a are: o, < a < a, and

1
a, <o <al.
g T
which is equivalent with the energy expression for a weak ferromagnet. It
reduces to the expression for a simple two sublattice antiferromagnet if

d =0. If d # 0 equation 5 becomes equal to:
-4r sin 2a + 4 rd cos 20 £ 2 h sina =0 (16)

If d = 0 equation 16 has two solutions, viz. sin a = 0 and cos a = h/4r. The
first one is the ferromagnetic solution for a simple two sublattice antiferro-
magnet. This solution does not exist if d # 0. Consequently no second order
phase transition occurs near saturation. The disturbance of the second order
phase transition due to D-M interaction was earlier discussed in ref. 13
Equation 16 gives the relation between h and a. From this the energy e
can be calculated as a function of h. The result (r = 3.51 and d = .22) is
represented by the dashed curves of fig. 8. At hlc cases a and b come together
with identical slopes. It should be noted here that h|C does not lie on the
lowest energy branch of case b and consequently does not influence the dis-

cussions in 6.3.
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Plot of the energy e in reduced units as a function of the reduced
magnetic field h.

The fully drawn curve belongs to configuration (1,3) for sin B # 0,
thue four sublattices, and describes all the solutions of equations
S5 and 6 with sin B # 0. The curve ends at h = h]c'

The dashed curve belongs to configuration (1,3) with sin B = 0 as
well as to configuration (1,4) with sin y = 0, thus two sublattices,
and describes gll the solutions from equations 15 and 186.

The dash-dotted curve describes only the lowest energy of configu-—
ration (1,4) with sin y # 0. This curve ends at h = h20’
8.2. The solution (1,4). See fig. 6b. Introducing the angles y and & we

obtain from equation 3:

€ = cos 2y + 2r cos 28 - 2r sin 26 - 2 h cos § cos y (17)
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Necessary conditions for the equilibrium values of y and § are

-sin 2y + h cos § siny =0 (18)

=4r sin 26 - brd cos 26 + 2 h sin § cos y = 0 (19)

From 18 it is concluded that two solutions must be considered again:
sin y # 0 and sin y = 0.
Case a: sin y # 0

In this case 18 reduces to

=2 cos y+ hcos 6§6=0 (20)

8§, as follows from 19 and 20, is given by

tang 28 = —5§£95— (21)
h™ = 8r

y can then be calculated by combining 20 and 21.
After some calculations it appears that an explicit expression can be

obtained for the energy as a function of h:

e=-F/(n"-8r)7 46k rfa? - L% - (22)
From 20 it is clear that this solution exists up to a critical field h2C
which is reached for cos vy = 1, viz.
" 2
hZc " cos & (23)
c
Substituting 22 in 19 and using cos vy = | we obtain:
tang & r

— - (24)

sin(26C + ¢) cos ¢

with tang ¢ = d.

The solution is represented by the dash-dotted curve of fig. 8.

Case b: siny =0

If sin y = 0 then y = 0 or m, which means that spins | and 2 coincide as
do 3 and 4, thus again a two sublattice system. In fact this case is the same

as case b of solution (1,3) discussed before, with a = =&:
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=] + 2r cos 26 - 2 rd sin 26 ¥ 2 h cos & (25)

compare equation 15. So it is also represented by the dashed curves of fig. 8.
At h2C cases a and b come together with identical slopes.

6.3. Phase transitiong. It is clear that for each of the possible spin
configurations only the lowest energy branch of fig. 8 can be realized. A
cross-over of the lowest fully drawn curve and the lowest dashed curve takes
place, so we must expect to observe, in the experiments, one first order
transition and no second order transitions. The first order transition may be
considered to take place from configuration (1,3) case a to configuration
(1,4) case b (see above). It may also be considered to take place, however,
from configuration (1,3) case a to case b of the same configuration. From the
latter point of view the occurrence of a first order transition seems quite
remarkable.

The case of one first order transition and no second order transitions is
in agreement with the experiments in the b direction of LiCuCIB-ZHZO. In this
case we are sure that the field is perpendicular to the D-M vector. The hori-
zontal axes of figs. 6a and b represent the b axis and the D-M vector is per-
pendicular to the figures.

Thus far, in all our considerations we neglected the symmetric part of
the anisotropy. If we take this into account the consequence is that the zero
field energy of solution (1,3) case a (the lowest fully drawn curve of fig. 8)
is somewhat lowered with respect to the zero field energy of solution (1,4)
case a (dash-dotted curve of fig. 8). This is caused by the fact that, near
zero field, solution (1,3) belongs to a spin configuration in which all the
spins are oriented approximately parallel to the e axis (perpendicular to the
field) whereas in solution (1,4), again near zero field, the spins are aligned

approximately parallel to the b axis (so parallel to the field). The e axis

differs only 16° from the axis along which g reaches its largest value 7). This

energy shift has no consequences for the phase diagram in the b direction, in
such a way that still only one first order phase transition is found.

It should be realized that the energies in the solutions (1,3) and (1,4)
are exactly equal in zero field if the symmetric part of the anisotropy is
neglected. The only difference is that the spin arrangements are mutually
perpendicular.

Now consider the case that the field is applied parallel to the e axis,
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and suppose that this axis is perpendicular to the D-M vector. If now the
symmetric part of the anisotropy is taken into consideration the energy of
solution (1,3) for low fields is increased with respect to the energy of solu-
tion (1,4). This is because now solution (1,3) belongs to a configuration where
near zero field the spins are approximately parallel to the b axis (perpendicu-
lar to the field) and in solution (1,4) they are approximately parallel to the
e axis (parallel to the field). This shift of the energies gives rise to a
second crossing of the energies versus the field which accounts for the first
order phase transition which was interpreted as a spin flop transition. It
should be realized, however, that in this spin flop transition four sublattices
are involved.

The existence of two first order phase transitions for the e direction
follows quite naturally from our energy function (equation 3). The explanation
of the second order phase transition found for the e direction at higher field
gives us more trouble.

From the numerical analysis of equations 21 and 24 which belong to con-
figuration (1,4) case a it appears that 2y, which is the angle between the
spins | and 2, changes rapidly just below h
d = .22) we find 2y = 0 at h

2¢* For the example (r = 3.51,and

8 and 2y = 30° if h differs only 1% from hZc'

This behaviour seems to be qualitatively in agreement with the actual

observations on LiCuCI3-2H20 at fields just below the second order phase

transition in the e direction (about 56 kOe). This is illustrated by the rapid
variation of the local fields at the Li sites, which follows from the steep
changes of the resonance frequencies just below 56 kDe, see fig. 4. Therefore
it seems plausible that for the e direction solution (1,4) case a is realized
again above the higher first order transition (as it was below the spin flop
transition). It is also supported by the fact that these resonance |ines above
the higher first order phase transition tend to go back to their original
positions found below the spin flop transition.

It is questionable whether the introduction of a symmetric contribution
to the anisotropy can influence fig. 8 so much that two crossings arise between

the solutions (1,3) and (1,4) below the second order transition field h 2 (so

between the fully drawn and dash-dotted curves). A
Another explanation for the absence of the second order phase transition
from our calculations might be the fact that the D-M vector is not perpendicular
to the e axis. From equation 2 of section 2 the angle between the e axis and the
D-M vector is estimated to be either 4° or 28°. The latter direction seems to

be the most probable one, because if the field is parallel to the D-M vector no
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transitions are expected at all except the one to saturation, which occurs only
for this direction. So our assumption that this angle is 90° may be too crude
and it might be useful to perform calculations with the magnetic field at an

arbitrary angle with the D-M vector.

6.4. The sign reversing field. Additional calculations have been made in
order to find the first order phase transition at which the sign reversal of
the vector product of two of the four sublattice magnetization vectors occurs

as a function of 1/r = (J] + JZ)/J3 and d = D/J,. This field, in reduced units,

3
will further be referred to as the sign reversing field hsr'
Three values of d were chosen (d = ,06, .10 and .14) which cover the data

obtained from various experiments. Equation 2 of section 2 yields d = .065 *

.004, the value from De Jong's calculations 14) (actually the component of d

in the ac plane); the magnetization measurements in the b direction near satu-
ration give d = .055 £ .005; the preliminary calculations in section 2 lead
tosdisradi

In fig. 9 hsr/hs has been plotted versus 1/r for the three d values. hS
is the field, again in reduced units, at which full saturation occurs if the
D-M interaction is absent (d = 0). According to equations 15 and 16 we have
hS = L4r. For the b direction HSr = 24 kOe and HS + 150 kOe. These are values
extrapolated to zero temperature which follow from the phase diagrams in
Chapter 3 figs. 3 and 6. The two critical fields lead to hsr/hs = .16. This
value is indicated by the horizontal dotted line of fig. 9. It leads to ex-
tremely low values of 1/r = (J] + JZ)/JB' For instance if d = .06 we find
1/r = .022, which means that J, + J

1 2’
along the a axis, is very small as compared to J

the sum of the interactions in a chain
3 the interaction in chains
parallel to the ¢ axis. This result might change somewhat if the symmetric
anisotropy were taken into account, but this leads to much more complicated
calculations, which have not yet been carried out.

The low value of 1/r is somewhat unexpected in view of the interatomic
distances.

Two possibilities exist.

P J], J, and J

2 3
and J, (which must both possess the antiferromagnetic sign)

are the only important interactions in LiCuCl3-2H20.
In that case J]
are actually so small as was concluded from the preceding calculations.

2°. In addition to JI’ J2 and J3 and fourth interaction Jh must be taken
into account, which stabilizes the structure with the four magnetic sublattices,

so that a ferromagnetic J, and an antiferromagnetic J, are allowed, without

I 2
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Fig. 9. Plot of : teld t turation field ratio versus

1/r at several d values. The sign reversing field exists for any

value of 1/r. The curves 1, 2 and 3 belong to d values .06, .10 and

. 14 respectively. The dotted line represents h R 0= 6
p Y T

affecting the alternating arrangement of the spins along the a axis in zero

field, which has been found with neutron diffraction 3). (An antiferromagnetic

JI and a ferromagnetic J2 is also a possibility but there are argumunts, to
be given in section 7, that J‘ is ferromagnetic). A strong ferromagnetic inter-
action between the spins 6.08 A apart, which are related by translation along
the a axis (see fig. 2), fulfills this requirement. This interaction is inef-
fective in the four magnetic sublattice model, the only effect being that it
stabilizes this model. Even the D-M interaction which may be present in J,4 is
cancelled in this four sublattice model. So, as far as the zero temperature
behaviour is concerned no inconsistencies are introduced by taking Jh into
account.

The second possibility seems to be sustained by the fact that also in
certain antiferromagnetic iron group halides strong ferromagnetic interactions

1).

dimers in LiCuCl3-2H20.

Another argument for the existence of strong interactions in the chains

exist In these halides similarly bridged structures are present as in the

along the a axis follows from the value of the Néel temperature.
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If we approximate the interactions in LiCuC13-2H20 by those in the chains

1 or JZ'

for the Néel

along the ¢ axis (J3) and an interchain interaction J which is either J

16)

temperature for an Ising square net of spins. We apply this relation though

then we may use as a first approximation, Onsager's relation

we real ize that this approximation of the interactions does not result into a

square net, because J, couples a spin with two neighbours, whereas J

3

couples a spin with only one neighbour.

p or J2

The zero temperature saturation field of 160 kOe yields J3/k = =12 K.

Together with the experimental value TN = 4,5 K this leads to J/k = =6 K in the

Onsager model. So it must be concluded that important interactions are present
between the chains along the ¢ axis, and this result may hold even if both

JI and J2 are taken into account.
In section 7 the values of the exchange constants J

J J, and Jh will

| foo B

be estimated.

Estimation of the exchange constants.

Tachiki and Yamada 17)

made some calculations, in the molecular field
approximation, on the behaviour of a two sublattice system of identical spin
pairs with some interpair exchange interaction. They assumed that the inter-
action between the members of a pair (with an antiferromagnetic sign) is large
as compared to the interpair interactions and that all interactions are iso-
tropic. Since pairs of spins occur in LiCuCl3-2H20 between which an important
antiferromagnetic interaction is expected (J2 in fig. 2), as was argued in
section 6.4, the possibility exists that their theoretical results may lead to
at least approximate J values. |t should be emphasized that these pairs of
spins do not coincide with the dimers as introduced before, but are the neigh-
bours 3.84 A apart.

If the exchange interactions between the spin pairs along the a axis (JI

and Jh) are neglected and only J, is taken into account as an interpair inter-

3

action, then we are dealing with a system of identical spin pairs. If we neg-

lect J, instead of J] and Jh the situation is similar, but from section 6 it

3

has become clear why J, is so important. Moreover, if only J J, and Jh were

,
taken into account, thzre would be no long range order. I ’

From the definitions of a and 8, the quantities introduced by Tachiki and
Yamada (which are both related to the interpair interactions), we find the
relations

g = +2J3 (26)




The considerations of these authors lead to the phase diagram of fig. 10a,
which represents the boundary between the antiferromagnetic and paramagnetic
phases. This curve can be identified with the dotted line of fig. 3 in Chapter
3 (the transition to paramagnetism if the D-M interaction were absent). It has
been redrawn in fig. 10b in such a way that the low field part (dotted part)
has been obtained by mirroring the upper part with respect to the 80 kOe line
(which is the field at which an anomaly occurs at the highest temperature).

In this way we obtain a full phase diagram, which does not show any effect
arising from either the antisymmetric or the symmetric part of the anisotropy
and which is derived by using only high field data. These conditions are neces-
sary for the applicability of the calculations of ref. 17. Perhaps by coinci-
dence the lower transition at zero temperature occurs at zero external field.
Comparing figs. 10a and b, the two critical fields at zero temperature lead
immediately to the relations:

s

J - i8] =0 J+ o+ i[8| = gug (27)

7)

in which: J is identical to -Jz, the interpair interaction, g = 2.22 and

H® is the saturation field, which in our case is equal to about 160 kOe. Mg
is the Bohrmagneton.
A third relation follows from the highest temperature at which a

transition occurs:
|g|/4 = 5 k

with k Boltzmann's constant.

Combination of equations 26 and 27 yields

Jylk = =22 K; [J3|/k =22 K

so equal in absolute magnitude.

Combining 26 and 28 we obtain a different result
[J3|/k = 10 K (30)

The disagreement between the two |J3] values demonstrates that probably
it is not justified to neglect J] and Jb’ the interpair interactions along the

a axis. Moreover, in the calculations of Tachiki and Yamada it has been assumed
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that the interpair interactions are small as compared with the intrapair inter-
action. Thirdley, calculation of the exchange constants in the molecular field
approximation, using the transition fields at zero temperature, gives usually
values which differ significantly from the values which can be derived from
anomalies at higher temperatures. Therefore these calculations can only give

orders of magnitude for the interaction constants.

175
1 kOe
J+a+ | Bl 150

125
100
1D
50

|
gl
4
(a)

Left: theoretical phase boundary for a spin-pair syetem as calculated
by Tachiki and Yamada. Right: phase boundary of LiCuCl ,-2H,0, omitting
v o

any effeet as well as all transitions which arise from anisotropy.

Now if we choose J3/k = -16 K (the average of the values derived from
equations 29 and 30), the relation (Jl + JZ)/JB = ,022 of section 6.4 leads
to (Jl + Jz)/k = -,35 K. In view of equation 29 this yields J‘/k = +22 K and
Jz/k = =22 K, so that the alternating arrangement of the spins in zero field
along the a axis leads to the requirement Jh/k >iklil K

For the calculations of De Jong ! , mentioned in section 2, the values
J3/k = -16 K and JI/k = +22 K were adopted, whereas J2 and Jh were neglected.

Al though these calculations are not very sensitive for the exchange model used,

they give quite accurate and reliable values of the D-M interaction.

Concluding remarks.

So far nothing has been said about the double character of the spin flop
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transition as well as about the double character of the first order transition
near 24 kOe in the b direction. It is very well possible that the mechanism
which causes these small anomalies is a D-M interaction between the spins which
are connected via the glide-mirror plane and are 7.0 A apart (e.f. e and g in
fig. 3). This may lead to the existence of at least eight sublattices as has
been argued in section 3.

Although the energy expression (equation 3) has not yet been analyzed
fully, the first order phase transition, which can be described as a sudden
sign reversal of the vector product of two of the four existing sublattice
magnetization vectors, occurring at about 32 kOe for the e direction, must be
a quite common process in antiferromagnets showing a hidden canting.

It should be very useful to determine the spin directions in a direct ex-
perimental way, especially near the second order phase transition (which is
found at 56 kOe for the e direction). Just below this transition four different
spin directions must be found, which are probably non-coplanar, while above
this field only two spin directions should occur. For the b direction only one
first order phase transition was found. Similarly here four sublattices exist
below 24 kOe and only two above this field. This can be checked with accurate
neutron diffraction investigations or with Li resonance experiments, performed
on single crystals. In the case of Li resonance for the b direction, for exam-
ple, four resonance lines must be found below the first order phase transition
and only two resonance lines above this field (certainly above the weak anomaly
which occurs at a field slightly above that of the first order phase transition).

Investigations of solution (1,3) case b as well as solution (1,4) case b,
which both describe the behaviour of a weak ferromagnet (thus two canted sub-
lattices) as was demonstrated in section 6, reveals that the behaviour near
saturation is strongly dependent on the magnitude of the D-M vector. For in-
stance if d = 0 then a sharp anomaly occurs at saturation, corresponding to
a second order phase transition. If d # 0 a marked rounding off of the magneti-
zation near saturation is found (see equations 15 and 16 from which the mag-
netization can be derived by calculating -de/dh).

At temperatures low as compared to the Néel temperature and in fields near
saturation (so about 160 kOe for LiCuClB-ZHZO) the spins are approximately
parallel to the field. The canting of the spins is only due to the component
of the D-M vector perpendicular to the plane through the two spin directions,

Consequently if the magnetic saturation is measured in a direction perpen-

dicular to the D-M vector (for instance the b direction in LiCuCl3-2H20)

the magnitude of the D-M vector can be derived from the width of the saturation
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process. The direction of the D-M vector can be found similarly by searching
for a crystallographic orientation in which the saturation shows up as a

sharp anomaly (even in the case of four sublattices, which remain in existence
in LiCuClB-ZHZO, if it is magnetized in the direction parallel to the D-M
vector. This direction must be found somewhere in the ac plane.

The above mentioned method of finding the magnitude as well as the direc-
tion of the D-M vector is obviously only applicable if only one direction is
present in the crystal in which an important D-M interaction occurs. Moreover
certain components of the D-M vector are cancelled in the ordered phase.
Measurements of this type are in progress in the pulsed magnetic field instal-
3'2H20 8).

Further calculations with the energy expression (equstion 3) can be carried

lation of our laboratory for LiCuCl

out. For instance, it cannot be very difficult to calculate the orientation of
the D-M vector from the angle between the direction of maximum g and and spin

7)

direction in zero field if the magnitudes of the anisotropies are known.
Secondly the calculations of section 6 can be extended to magnetic field
directions at arbitrary angles with the D-M vector. Thirdly it must be interes-
ting to find the stability regions of the two solutions, considered here, as a
function of r (the ratio of the exchange constants) and d (the ratio of the

D-M interaction and the exchange energy which it belongs to).
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CHAPTER 5
MAGNETIC BEHAVIOUR OF CoCl,*6H,0 AND CoBr,6H,0
I CoCl,+6H,0.

Cobalt chloride hexahydrate, CoCl2-6H20, becomes antiferromagnetic below
TN = 2.29 K ]). Thezcrystal is base-centered monoclinic, the external shape was
described by Groth ). The dimensions of the unit cell are: a = 10.34 A, b =
7.06 A, c = 6.67 A with B = 122°20' 3), the density being 1.924 g/cm3. The ¢
axis is the direction of antiferromagnetic alignment 4) and the magnetic space
group is Cc2£c6f). The g factors for different directions obey G = 9 = 4.9,
ng,c i? Dl

zations are parallel to the b axis.

. Above the spin-flop transition field the sublattice magneti-

Two conflicting sets of values for the exchange integrals J between inter-
acting spins (J is defined by writing the exchange energy between two spins S

and §2 as J§4 §2) can be found in the literature. For the ¢ direction Shinoda

7)

|

et al. give J'/k = 8.12 K for nearest neig?bours and a much smaller value

for the second-neighour interaction. Kimura gives J]/k = 2.32 K for the
nearest-neighbour interaction, Jz/k = 1.75 K for the second-neighbour inter-
action and a small fourth-neighbour interaction. These J values lead in the
molecular-field approximation (MFA) to exchange fields of 49.2 kOe and 19.4 kOe,
for Shinoda et al. and Kimura, respectively. The exchange fields are calculated
for zero temperature in the antiferromagnetic phase. Again in the MFA this leads
to critical-field values for the transition from the flop phase to the paramag-
netic phase at zero temperature of 98.4 kOe and 38.8 kOe, respectively 9).

Single crystals were grown from a saturated aqeous solution. A crystal
weighing 0.216 g was used in the experiment. It was mounted with its c axis
parallel to the external field.

Some typical curves, showing the susceptibility versus the magnetic field
at constant temperature are given in fig. 1. All the curves are on the same
scale, but the zero lines have been shifted with respect to each other as indi-
cated in the figure. Two pronounced anomalies are observed at the lower temper-~
atures. The lower one is the transition from the antiferromagnetic to the spin-

flop phase, the upper one is assumed to be the transition from the spin-flop
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phase to paramagnetism (see below). A small hysteresis of about 1.5% was
invariably found in the position of the lower peak (which is a first-order
transition), but no such effect could be detected in the case of the upper one.
Curves showing the susceptibility versus the temperature at constant field
are shown in figs. 2 and 3. The kinks and peaks in these curves correspond very
well with the peaks in fig. 1. Fig. 3 corresponds to a small region of fig. 2.
Here, for clarity, the curves have been shifted vertically with respect to
each other in an arbitrary way.
From figs. 1, 2 and 3 we constructed the H,T phase diagram of fig. 4. The
Néel temperature is observed to be 2.30 + 0.02 K and the triple point at
2,07 £ 0.02 K and H= 7.9 + 0.2 kOe. The following criteria were used for the
positions of the transitions. For the antiferromagnetic to spin-flop transition:
the maxima in the x(H) curves; for the antiferromagnetic to paramagnetic tran-
sition: the kinks in the x(T) curves; for the spin-flop to paramagnetic tran-
sition: the maxima in the x(H) or x(T) curves. In general the transitions be-
come very vague near the triple point.

The diagram of state of CoCI2-6H20 up to about 12 kOe had been derived

before from proton-resonance experiments by Van der Lugt and Poulis 12), from
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Fig. 4. Phase diagram of CoCZZ-Gﬁgo as derived from anomalies in the sus-
ceptibility. O First-order phase transition. b Second-order phase
transition.

13)

isothermal magnetization experiments by Schmidt and Friedberg and from

Ih)‘

isentropic magnetization experiments by McElearney et al. In general there
is good agreement with our results. The positive slope of the upper transition
curve just above the triple point was also found in these experiments. It
follows clearly from fig. 3.

It is obvious that the low-field transition below the triple-point temper-
ature is the transition from the antiferromagnetic phase (where the spin ar-
rangement is parallel to the c axis) to the flop phase (where the spin arrange-
ment is almost parallel to the b axis).

Considering the transition from the antiferromagnetic to the paramagnetic
phase, the x(T) curves of fig. 2 for low fields show that there is some short-
range order above the Néel point. The susceptibility curves show maxima at
temperatures Tmax/TN > 1.8. This is in agreement with the zero-field specific-

I).

It should be noted that the susceptibility in the flop phase rises with

heat measurements of Robinson and Friedberg

the field as well as with the temperature, leading to a rather sharp maximum
at the transition to the paramagnetic phase. The simple molecular-field cal-
culations show a temperature- and field-independent susceptibility. This field-

dependent susceptibility was reported earlier in several other antiferro-
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18)

magnetic materials such as MnCIz-hHZO IS), EuTe |6), CoCl2 17), CuC12-2H20

and GdAlO3 '9). In the literature at least three mechanisms can be found in
order to explain this field-dependent susceptibility: firstly biquadratic ex~-

21)

of a zero-point motion of the antiferromagnetic magnons

20 - g 3
change effects ), secondly a large anisotropy and thirdly the existence

22)

an intrinsic property of any ferro- or antiferromagnet. This will be further

s, which is in fact

discussed in Chapter 6.

It seems plausible that the upper transition field is the transition to
the paramagnetic phase indeed. The x(H) curves at constant temperature (fig. 1)
approach the value zero above this transition. So it does not seem likely that
additional transitions will be found at still higher fields as in the cases of

Mn (CHO0) ,2H,0 10) 4nd Licucl +2H,0 23)

If we eitrapo]ate our upger transition field to T = 0 we obtain 46.0 kOe,
which is in disagreement with the values derived from the exchange fields, as
calculated from the exchange constants in the MFA of both Shinoda et al. and
Kimura (see above). This seems to indicate that molecular-field theories are
inadequate to give a description of the behaviour of CoC12-6H20. In Chapter 6
we give a more detailed discussion of our results based, for the lower fields,
on the two-dimensional Ising model, and for the flop phase, on spin-wave
theories. Several authors have already adapted the Ising model in order to

1,7,11)

explain their experimental results d

2. CoBr,+6H.0.

)

Cobalt bromide hexahydrate, CoBr2-6H20 becomes antiferromagnetic below

TN = 3.07 K Zh). The crystal is isomorphous with the corresponding chloride,
which is base-centered monoclinic and whose external shape was described by
Groth 2). The dimensions of the unit cell at room temperature are: a = 11,029

A, b=7.178 A, ¢ = 6.908 A, each with an accuracy of one part in a thousand
and B = 124.71 %+ 0,04° 25). The density is 2.46 g/cm3. The ¢ axis is the direc~
26)

tion of antiferromagnetic spin alignment and the magnetic space group is

C2c2/c 27). The g factors for different directions are g = 5.0, = Bl
28)

Iihie =24

are parallel to the b axis.

. Above the spin-flop transition the sublattice magnetizations

Single crystals were grown from a saturated aqeous solution. A crystal
weighing 2.36 g was used for the measurements in the b direction and a crystal

of 0.902 g was used for the measurements in the ¢ direction. For orienting the

2)

single crystals, the morphology as given by Groth was used, and in addition
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25)

an X-ray analysis was made in order to check the chosen direction.
Some typical curves, showing the susceptibility versus the magnetic field

at constant temperature for the c direction are given in fig. 5. All the curves

Fig. 5. Susceptibility versus magnetic field of CoBr,«6H,0 single erystal
with the external field parallel to the c aris at several temperatures.

Note the vertical shift of susceptibility scales.

are on the same scale, but the zero lines have been shifted with respect to
each other as indicated in the figure. Two pronounced anomalies are observed
at the lower temperatures. The lower one represents the transition from the
antiferromagnetic to the spin-flop phase, the upper one corresponds to the
transition from the spin-flop phase to the paramagnetic phase., A small hys-
teresis for the antiferromagnetic to spin-flop phase boundary, ranging from
| percent at 1.2 K to about 3 percent near the triple-point temperature, was
found. No hysteresis could be detected in any of the other phase transitions.
Curves showing the susceptibility versus the temperature at constant field
(c direction) are shown in figs. 6 and 7. Fig. 7 corresponds to the region
just above the triple point in order to show the positive curvature of the
phase boundary as has also been found in e.g. C0C12-6H20 29). The measurements
versus the temperature have been done in addition to those versus the field
because close to the Néel temperature the transition temperature is nearly in-

dependent of the field, so well-defined anomalies can only be expected by
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crossing the phase boundary with varying temperature.
The same experiments have been done for the b direction. The results are

T T T T
Co Br,. 6 Haf

H/l b-axis

shown in figs. 8 and 9. No spin-flop transition is found in this direction.

ot
xf
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o

eptibi

lity versus magnetic field of CoBr s
o
1e external field parallel

to the b axis

with th

atures.
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Fig. 4. Susceptibility versus temperature of CoBr ,+6H,0 &
< 4
the external field parallel to the b axis at several field 1

From figs. 5, 6 and 7 we constructed the H,T phase diagram for the ¢
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direction. From figs. 8 and 9 we constructed the H,T diagram for the b direc-

tion. Both diagrams are given in fig. 10. The Néel temperature (c direction)
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&
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ol . , 30
10T 15 ! 25 30 K35

———

The magnetic phase diagram of a single crystal of CcBrO-GHPO.
O Magnetic field parallel to the ¢ axts; [ magnetic field parallel
to the b axis. The dash indicates the direction in which the phase

boundary is crossed.

is observed to be 3.14 * 0.03 K and the triple point occurs at 2.89 + 0.03 K
and 9.3 + 0.2 kDe. The following criteria were used for the positions of the
transitions., For the antiferromagnetic to spin-flop phase: the maxima in the
x(H) curves. For the spin-flop to paramagnetic phase: the maxima in the x(H)
or x(T) curves for the higher field levels and kinks in the x(T) curves at the
lower fields. For the antiferromagnetic to paramagnetic phase: maxima in the
x(H) or x(T) curves at the higher field levels and kinks in the x(H) or x(T)

curves at the lower fields. In general the transitions become very vague near

the triple point. The difference in TN for the b and ¢ directions of fig. 10

cannot be explained from the experimental accuracy. |t may be connected with
our criteria for the positions of the transitions.
The diagram of state of CoBr,+6H_ 0 up to about 10 kOe has been derived

30) 2 2
by isentropic magnetization and specific-heat

before by McElearney et al.
measurements. The phase boundaries as detected from the susceptibility measure-

ments correspond within the accuracy of the experiment with those derived from
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the isentropic magnetization and specific-heat measurements.

The experimental results will be discussed theoretically in Chapter 6.
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CHAPTER 6
DISCUSSION OF THE MAGNETIC BEHAVIOUR OF CoClz-6H20 AND CoBr2-6H20
bie The model .

Several investigators described their experimental data on C0C12-6H20 and
CoBr2-6H20 at low temperatures by using only one important exchange interaction
J, where J is defined by writing the exchange energy between two spins §4 and
§2 as

B M2y 98y v it (1)
see for instance reference 1 for CoC12'6H20 and reference 2 for CoBr2-6H20.
This interaction J should occur between a spin and its four neighbours in the
(001) or ab plane. These planes are tetragonally occupied by Co spins. In ad-
dition to this interaction J a small interaction J', occurring between spins
belonging to neighbouring (001) planes, was sometimes introduced.

A more careful investigation of the model of both the chloride and the
bromide reveals that both salts are highly anisotropic two dimensional Heisen-
berg antiferromagnets. The highly anisotropic Heisenberg type of interaction
is most clearly demonstrated by the components of the molecular fields as in-
troduced by Date 3) to explain his electron spin resonance data on CoCl2 6H20.
From these molecular field constants an estimation can be made for the aniso-
tropy in the exchange constant. |t appears that Jb = .96 Jc; Ja' = .13 JC. From
these values it is clear that the anisotropy is of the easy plane type.

The two dimensional character of the interaction is suggested by the crystal

k)

as the data given in Chapter 5 can be described satisfactorily using only one

structure . Moreover the experimental data as given in the literature as well
exchange constant (see also section 4).

The occurrence of a Néel point entails some diffuculties in the anisotropic
Heisenberg antiferromagnet. If the model is strictly two dimensional then the
Néel temperature TN is related to the anisotropy, because a two dimensional
isotropic Heisenber? antiferromagnet does not order, as has been proved by

5

Mermin and Wagner . In this case it seems reasonable to calculate TN using

the Ising approximation. However, if, in the other limiting case, the exchange
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energy is isotropic TN is related to the interaction between planes, which
causes three dimensional order. The former picture appears to be more fruitful,
at least in zero field.

A neutron diffraction experiment, carried out by Kleinberg revealed unam-
biguously that a two sublattice model is adequate in describing the behaviour
of CoC12°6H20 6) and C08r2-6H20 7). at least in zero field. The two sublattice
models will be adopted throughout this chapter for all field values for both
the chloride and the bromide.

8)

for the

The Landé splitting factors g, which have been measured by Haseda and

Flippen and Friedberg 9) 2)

for CoC|2'6H20 and by Murray and Wessel
corresponding bromide, are largely anisotropic and show tetragonal symmetry.
The g values were given in Chapter 5 and the anisotropy in g will be further
discussed in section 2. The g values indicate that both salts are easy plane
antiferromagnets, the easy plane being the bc plane. A small anisotropy in this
plane, with the c axis as the easy spin axis, is reflected in the existence

of a spin flop phase transition for the ¢ direction as mentioned in Chapter 5.

2. The energy level scheme of Co' ' in C0C17-6H29:

In this section the energy level scheme of o' in C0C12-6H20 will be dis-
cussed briefly. Apart from slight quantitative differences it can also be ap-
plied to Co'" in CoBr *6H., 0,

22 L

The lowest state of a free Co++ ion is F (L=3, § = %) IO,II)' The first
exited state is hP (L=1, 5= %) and lies about 1500 cm-] above the ground
state.

In a crystalline field of cubic symmetry the ground state splits into a
lowest orbital triplet Fb, a higher triplet FS and a still highe; sif?let Fz,
the energy separation between Tb and FS being of the order of 10" ecm '. I1f we
neglect the spin-orbit coupling the tetragonal component of the crystalline
field gives rise to a further splitting of Fh into a doublet (denoted by FL
and Fu) and a singlet (Fu'). A substantial tetragonal component can be expected

4)

the centre of an octahedron, on the corners of which four water molecules are

2)

A small orthorhombic contribution is added to the tetragonal and cubic

' *h . P v t
on the basis of the crystal structure , because the Co ion is situated in

situated in a square » and two chlorine ions on the tops of the octahedron,

components of the crystal field arising from two more water molecules located

near the chlorine ions, which form a slightly distorted octahedron together

10)

with the four water molecules mentioned above . This is illustrated in fig. 1.
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The combined action of the tetragonal and orthorhombic components of the
crystalline field and of the spin-orbit coupling (the latter being of compara-
ble magnitude as the other two) results into the splitting of Th into six
Kramers doublets, of which the lowest two lie about 150 cm-l apart.

A scheme of the level splittings of the Co'" jon is shown in fig. 2, which
was redrawn from ref. 11.

The tetragonal and orthorhombic components of the crystal field are respon-
sible for the anisotropy in the effective splitting factor g.

C0C12-6H20 and CoBr2-6H20 show transitions to the paramagnetic phase at
about 48 kOe and 55 kOe respectively at zero temperatures. The Zeeman splitting
guBH in the paramagnetic phase in fields of the order of 60 kOe is about 13 cm-L
which is small as compared to the level splitting between the ground state and
the first excited Kramers doublet (for CoBr2'6H20 this splitting is slightly
larger than for CoC12'6H20, about 180 cm—'). Therefore a change in g due to the
magnetic field is expected to be small and the effect will be neglected. In
fact the value of g in high fields can be determined by integrating the sus-

ceptibility curve. For the chloride 9. in 70 kOe is somewhat higher than the
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literature value, which has been determined in zero field, but the effect hard-
ly exceeds the experimental accuracy. For the bromide no difference was found
between the literature value and its value in 70 kOe.

The degree of saturation of the sample can be estimated by comparing kT
BH. At 1.2 K we find kT = .8 cm-l and since at 60 kOe gLBH o cm-‘.

We have kT << gugh so that the magnetization may be considered as fully satura-

with gu
ted.
3 Theories.

A molecular field treatment is not adequate to describe some of the domi-
nating features in the measurements given in Chapter 5. One example is the rise
of the zero field susceptibility with the temperature above the Néel point.

The molecular field theory predicts a decreasing susceptibility in this region
(see for instance Nagamiya, Yoshida and Kubo IB)), since in this theory it is
assumed that no short range order exists above TN. Secondly the rise of the

susceptibility with the field in the flop phase (see for instance the curves
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at 1.19 K in fig. 1 and at 1.2] K in fig. 5 of Chapter 5) is not predicted in
the molecular field description except if, for instance, a large single ion

14)

anisotropy is present . This possibility is ruled out here because we are

dealing with a S = § system and no single ion anisotropy occurs in that case.

Biquadratic exchange effects 15)

arising from strain dependence of the exchange
energy (already mentioned in Chapter 5) can also be a cause of non-linear be-
haviour of the magnetization, but this effect is expected to be small. The field
dependence of g is negligible as has been pointed out in section 2.

'1161]7)

Several authors adopted two-dimensional Ising models for the
chloride in order to describe their experimental data, particularly the specific
heat behaviour near the Néel point. Because of the occurrence of the spin flop
transition no satisfactory results can be expected from the Ising approximation
at fields exceeding about 7 kOe, but in section 5 the zero field experimental
data will be compared with the results from a two-dimensional super-exchange

18)

Ising antiferromagnet, a case which has been exactly solved This theory
also predicts a rise of the susceptibility with the temperature above the Néel
point.

In the preceding discussion it appears that a duality exists in the descrip-
tion of the experimental data as given by several authors. On the one hand
C0C12°6H20 is considered to be a two-dimensional Ising antiferromagnet and on
the other hand the Heisenberg type of interaction is adopted. This is not very
surprising in view of the discussion given in section 1.

As the Ising model cannot be used in higher fields we have to adopt the
two-dimensional anisotropic Heisenberg model.

Spin-wave theories may account for the rise of the susceptibility with
the field in the flop phase. These theories, however, are usually developed for
three-dimensional systems (simple cubic, thus six neighbours and body centered
cubic, thus eight neighbours) with an uniaxial anisotropy. It is interesting to
investigate whether these theories can be extended and applied to two-dimensional
systems of which both CoClz-éHZO and CoBr2-6H20 are thought to be examples (the
number of neighbours being equal to four). In calculating the susceptibility
according to these spin-wave theories it appears that the summation over the
k-space (5 being the wave number of a spin wave), which in this case is two-
dimensional, does not lead to divergences except if the magnetic field approaches
the value at which saturation occurs. The quantitative agreement between the
results from these calculations and the experimental susceptibility is a further
indication that these spin-wave theories may also be used for two-dimensional

systems.
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The two salts considered here are extremely good examples of magnetic sub-
stances showing a susceptibility behaviour which reflects the existence of zero
point spin deviations. This is a fundamental property of magnetic substances
and can only be described by spin-wave theories. A complicating factor, however,
is the high easy plane anisotropy, because most authors who treated spin-wave
theories thus far used either an isotropic exchange model or an uniaxial (easy

axis) exchange model .

19) 0)

According to Anderson and Kubo 2 the zero point spin deviation gives
rise to an "effective'" spin which differs (at zero temperature and in zero field)
from its saturation value S by an amount of the order 1/zS. Here z is the number
of nearest neighbours. In the salts under consideration we have z = L and S = §,
which means that S and its zero point deviation are roughly of the same magni-
tude. Accurate neutron diffraction measurements may be used to investigate this
in a quite direct way. However, also susceptibility measurements can give accu-
rate and important information about the effective spin value and its field de-
pendence, though this method is less direct and cannot be applied for every

magnetic substance. This point will further be discussed in section 6.4.

L, Calculation of the exchange constant.

In order to carry out further calculations using spin-wave theories we
have to specify our model for the two salts in more detail. Because in the
literature different numerical values are used for J by different authors we
recalculate it here using several theories.

4.1. Molecular field. In a molecular field treatment the exchange constant
can be obtained in two different ways.

1 From the Néel temperature. From the literature (see for instance

Nagamiya, Yoshida and Kubo l3)) we have the relation

= Al
Ty="3 /K zs5 (s+1) (2)
yielding
J/k = - 3,14 K for CoBr2-6H20
(3)
J/k =

= 2.30 K for C0C12-6H20

22 From the saturation field at zero temperature. It obeys the equation
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gugh = 2zJS (&)
We find
J/k

- 4.72 K for CoBr2-6H20

J/k

- 3.97 K for C0C|2-6H20

4

4.2, The Ising model. The similarity to the two-dimensional square Ising

21)

model has already been indicated. Onsager's relation for the Néel temper-

ature, in the special case of only one exchange constant reduces to:
|sinh 2K| =1 (6)
with 2K = - J/ZkTN. This leads to

J/k

n

- 5,684 K for CoBr2-6H20

J/k - 4.06 K for C0C12'6H20

A second way of calculating J/k from TN makes use of the relation given by

18)

Fisher He gave an exact solution of the magnetic behaviour of a two-dimen-
sional square net of spins in the Ising approximation. He introduced a super-
exchange mechanism, which is essential for solving the problem exactly. He
found

TN = - (1.30841/4) (J/k) (8)

from which it follows that

J/k

- 9.61 K for CoBr2'6H20

J/k = = 7.04 K for CoClZ-6H20

A third way of estimating the value of the exchange constant makes use of
the curvature of the boundary between the antiferromagnetic and paramagnetic
phases. Bienenstock 22) calculated the field dependence of the transition tem-
perature for the square, simple cubic and body centered cubic lattices of Ising
antiferromagnets with one exchange constant. His results could be described very

well by the formula
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3

2\
Ty(H) = Ty(0) (1 = (wh)?) (10)

For low fields this reduces to
T (H) = T.(0) (1 = €(H/H )2) (1)
N N 2 c
where & equals .87, .35 and .36 for the square, simple cubic and body centered
cubic lattices respectively. Hc is defined by HC = - zJS/guB.

According to figs. 4 and 10 of Chapter 5 the phase boundaries for the

bromide and for the chloride can be represented by

2
Ty(H) = TN(O) (1 - aH®) (12)
with
_9 -Z
a= .83 x 10 Oe for CoBrz-GHZO
(13)
: =5 %2
a=1.6x 10 7 e for CoCl_+6H.0
2 2
The same value for a was found for CoC12-6H20 by Skalyo et al. |7).
With £ = .87 we find
J/k = - 5,684 K for CoBr2'6H20
(14)

J/k

3.85 K for CoCl2-6H20

With £ = .36 we find

]
'

J/k 3.57 K for CoBr2'6H20

(15)

J/k - 2.48 K for C0C12'6H20

23)

4.3. Spin-wave deseription. Spin-wave theories, linear

24)

as well as
non-|inear » Yield the same relation as the molecular field approximation
between the saturation field at Zero temperature and the exchange constant.
This is not surprising because the zero point spin deviation becomes zero at
the saturation field. A relation between the exchange constant and a higher
temperature property of the antiferromagnet, such as the Néel temperature or

the curvature of the phase boundary between the antiferromagnetic phase and the
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paramagnetic phase, is not available in the literature. This is caused by the
fact that at higher temperatures the spin-wave interactions become very impor-
tant and mathematical difficulties arise (see also section 6).

Non-1linear spin-wave calculations such as carried out by Feder and Pyttezn)
result into a temperature dependent transition field from the flop phase to the
paramagnetic phase. A T3/2 power law is found. In fig. 3 this transition field

is plotted versus T3/2

for CoBr,*6H.0 (b and ¢ direction) and for CoCl,*6H.0
2 2 2 2
A T3/2

(c direction). dependence for the lower temperatures is not clearly
demonstrated (extension of the measurements to lower temperatures would be
highly desirable) but it is possible to approximate the low temperature data by

straight lines. According to ref. 24 these slopes should obey
an/a(13/2) = = 2.315 (33/2/25¢%) (-2k/520)3/2 (16)
from which we find
J/k = - 8.1 K for CoBr2-6H20
(17)

J/k = - 4.8 K for C0C|2'6H20

4.4. Discussion of the J valuee. The J values obtained from the various

theories have been listed in table 1.

Table 1
MOL. FIELD ISING SPIN WAVES
TN H dep. AFM-P T dep.
TN Hg Onsager|Fisher|£=.87 |£=.36 HS FLOP-P
CoBr2'6H20 3.14(4.72 5.54 9.61 5.54 | 3,57 |4.72| 8.1
COC|2'6H20 2.30|3.97 4.06 7.04 3.85 | 2.48 |3.97| 4.8

J/k values as caleulated from the different theories. The numbers
below H dep. AFM-P are those obtained from the field dependence of
the Néel temperature. The values below T dep. FLOP-P are those ob-

tained from the temperature dependenceof the saturation field.
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If only one exchange constant is present its value can be obtained in the
most reliable way from the saturation field at zero temperature, because both
the molecular field theory and the spin-wave theories yield the same relation
between these two quantities. For the chloride this J/k value is in nice agree-
ment with the one from TN using Onsager's relation for TN and with the J/k
value obtained from the curvature of the antiferromagnetic to paramagnetic phase
boundary as derived by Bienenstock if we choose £ = ,87. This means that the
model of the two-dimensional rectangular Ising spin arrangement seems to be a
very good approximation in zero field, as must also be expected on the basis
of speg;Fic heat measurements performed, for instance, by Robinson and Fried-

]

berg For the bromide the correspondence is not so good, indicating that a

second neighbour interaction in the bromide is more important than in the

chloride.

The values as derived from the superexchange model of Fisher 18) are
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significantly higher. This may indicate that his superexchange mechanism does
not describe very well the physical situation concerning the superexchange in
these salts.

The disagreement between the J/k values obtained in the molecular field
theory from TN and from HS indicates that either the molecular field treatment
is not adequate to describe the behaviour at zero temperature and in zero field
at high temperatures simultaneously, or that more exchange interactions should
be introduced. The latter possibility is ruled out (certainly for the chloride)
because adoption of the correct approximation in the correct field and temper-
ature ranges yields consistent J/k values when only one exchange constant is
used.

The J/k values obtained from the temperature dependence of the transition
field to paramagnetism at low temperatures in the spin-wave approximation are
too high. The conclusion which may be drawn from this is that either the high
easy plane anisotropy plays an important role or the two-dimensional character
of the antiferromagnets modifies this dependence because, in fact, in reference
24 the temperature dependence of the transition field is derived for the simple
cubic case.

From this section it may be concluded that the behaviour of both salts
(certainly the chloride) can be described satisfactorily using one exchange
constant only., This interaction occurs only in planes, each spin having four
neighbours. Introduction of another exchange interaction is not necessary, if
the correct approximation is used in the field and temperature region where one

wants to describe the magnetic behaviour.

5 Zero field behaviour.

In the present section we give a discussion of the zero magnetic field
susceptibility curve of CoBr2~6H20 in view of the available theories. The only
Ising model that could be solved exactly is Fisher's two-dimensional Ising
superexchange antiferromagnet. Though it was stated in section 4.4 that this
model does not apply too well to our substances we discuss it first. We have
chosen J/k = 9.61 K so that the theoretical and experimental TN coincide (see
section 4.2).

It is shown in fig. 4 that the agreement between the experimental and
theoretical data is much better below TN than above it. In this superexchange
model an infinite slope of the susceptibility versus the temperature is expec-

ted at T,, in zero field and a narrow spike near TN in finite fields. This

N
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compared with different theories.

eircles :  experimental points.

dashed and dotted curves: molecular field approximation.

fully dram curve : Ising model from Fisher.

dash-dotted curve : non-linear epin-wave theory.

critical behaviour in zero field does not seem to be sustained by the experi-
ment because the susceptibility shows rather an abrupt change of slope at TN'
the slopes having finite values at either side of TN' At higher fields, but
below the triple point field, a weak maximum, however, is visible in fig. 6 of
Chapter 5. This maximum is interpreted as the transition from the antiferro-
magnetic phase to the paramagnetic one and it may be related to the peak as
predicted by Fisher.

The anomaly in the susceptibility as measured here is in qualitative
agreement with the approximate treatment of the two-dimensional Ising antiferro-
magnet by Domb and Sykes (private communication between these authors and

18)).

Fisher A numerical comparison has not been made.

The results of the molecular field treatment ]3) have also been represen-

ted in fig. 4. The dashed curve corresponds to J/k = - 3.14 K (derived from TN'

95




see section 4.1) and the dotted curve to J/k = - 4.72 K (derived from Hs)'
Large deviations from the experimental points are present as could be expected
according to section 4.4.

Oguchi 25)

treated antiferromagnets with spin-wave theory including spin-
wave interactions. An expansion in powers of T up to T6 of the susceptibility
for the simple cubic and body centered cubic lattices was obtained. The dash-
dotted curve in fig. 4 represents the simple cubic case. J/k was chosen - 4.72 K
from Hs' see section 4.3. The body centered cubic case gives slightly lower
susceptibility values so it is expected that for the two-dimensional square
lattice the difference between this theory and the experimental points will be
somewhat larger, although, again, the influence of the high easy plane aniso-
tropy and of the two-dimensional character of this antiferromagnet is hard to

estimate.

6. Non-zero field behaviour.

In this section a comparison will be made between the experimental suscep-
tibility data at the lower temperatures and several spin-wave theories. Special
attention will be given to the behaviour in the flop phase and the perpendicular
susceptibility.

In the different spin-wave theories different approximations are used for
the Holstein-Primakoff transformation. Here spin deviation operators are de-
fined using the factor

(1 - n/25)% (18)

with n the boson number operator. n ranges from 0 to 2S.
6.1. Spin-wave theories. The susceptibility data will be compared with
three different spin-wave theories.

In these theories use is made of the quantity Yie which is defined by:

N |-

Yk

Z exp (i i-g) (19)
P

with k the wave vector of the spin wave, p the vectors pointing from a spin to
its neighbours and z the number of neighbours. Because in both C0C12-6H20 and
CoBr2°6H20 the nearest neighbour interaction takes place in the (001) planes

only, one of the three components of the k vector does not occur and consequent-
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ly all the summations over the k space, which will be carried out below, take
place in two dimensions. The double summations will be replaced by double in-
tegrals. See also the discussion in section 3.

Because of the tetragonal arrangement of the spins in both salts 19 can

be rewritten as

Wit (cos kx + cos ky) (20)

23)

6.1.a. Kanamor i calculated the free energy for a simple two sub-
lattice antiferromagnet including single ion anisotropy (which vanishes if
S = ). He made use of the linear spin-wave theory, in which the Hamiltonian
of the spin waves is obtained by omitting terms of higher order than quadratic
in the spin deviation operators. This means that, apart from other approxima-
tions, expression 18 is written as 1 = n/4S. The resulting spin waves are in-
dependent of each other. An important feature of this linear approach is that
its application is particularly restricted to low temperatures (where n is
small) and that the transition field from the flop phase to the paramagnetic
phase is temperature independent.

According to this theory the dispersion relations for the two modes of the

spin waves, for zero anisotropy, read:

hw'

ﬁwz
Kanamori derived the susceptibility from the free energy F applying the
relation

x = =(3F/3H) _/H (22)

T

Since in our experiments the differential magnetic susceptibility is measured

we made use of the formula

= -(aF/oK?) (23)

which corresponds to the perpendicular susceptibility from the experiment,
because in 23 the anisotropy is assumed to be zero. Equation 23 leads to the

following relations:




2 mrm
m/h + (h/(27%)) J J Fly, sh)dk dk
LI/
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with the reduced magnetization

h

+
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(h/(277)) L L G(Yk,h)dkxdky
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60y ,h) = (2n(r,,h) + 1)6, (¥, ,h)

F(Y}i,h) Fo(Yi.h)(Zn(Yk,h) L

2

)3

26, (1 1) (¥, sh) n? (rysh) (2 /0 (= ¥ )70+ (= 200y,
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In these expressions:

n(voh) = (exp(((1 = ¥ ) (1 + (1 = 202y, ) ¥/6)-D)7!

which is the occupation number of the spin waves

/(1 + (1 - th)Yk))*

GO(Yb,h) =v ((1 - ¥

|=

L3
m) = 1+ 1) (= ¥/ v (- 2ntmh
The reduced magnetic field h is defined by

h = -guBH/ZJzS
the reduced temperature t by

t = -kT/zJS

and the reduced susceptibility is defined such that the integral of the suscep-

tibility over h is equal to %.

26)

pearing in their treatment by simplified ones which give a correct description

6.1.b. Wang and Callen replaced the spin deviation operators ap-

of the low lying states, but introduce relatively large errors in the higher

states., Actually they replaced (1 - n/ZS)%by 1 = (1 = E)n with 52 =] = 1/28,
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which is equivalent to the assumption n2 = n.

In the resulting Hamiltonian expressed in terms of the spin deviation
operators third and higher order terms have been replaced by lower order terms,
which means that spin-wave interactions are taken into account to a certain
extent.

It seems promising to use this approach for § = ¥ systems because in that
case 18 reads (1 - n)5 and is exactly equal to 1l = n for n =0 and n = 1, the
only n values which can exist.

The dispersion relations for the two existing spin-wave modes are:

1 2 1
hay = ~2dS(1 - Y£)’(1 + (1 = 2h )yk)’

(25)

1 1
- I - — op2y. V3
hm2 zJS(1 + Yﬁ) (1 (1 2h )YE)
In 25 the anisotropy is assumed to be zero and they coincide exactly with the
dispersion relations as given by Kanamori for zero anisotropy, which seems
quite surprising.
The perpendicular susceptibility can be obtained from the expression for

the sublattice magnetization per spin m, in the flop phase, which is given by
Wang and Callen.

X m, + h(E)rnS/ah)t (26)
with
2 mrn
ot = 2(1/27w) J J G(Yk,h)dkxdky
0“0 s
2 Tew
(ams/ah)t == 2(1/27n) L}L F(Yh,h)dkxdky

In these expressions

=~
~
]

(Zn(Yk,h) + 1)6, (v, »h)

F(Yk.h) B Fo(Yk,h)(Zn(Yk,h) +1) -

26, (o) (n(1eah) + 0% (b)) (2h1, /6) (0 + 7, )/(1 = (1 = 202y, )’

with the definitions:

n(Yeh) = (exp(((1 + v) (1= (1 =20%)y ) /e)-1) !
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which is the occupation number.

- 2 o (1 =02 3
F (v, ,h) = 20y, 6_(y,,h) ((1 + v, h?)™'= (1= (1-208)y) ™)
o'k’ ko' 'k’ K k
6.1.c. Feder and Pytte 24) treated the simple antiferromagnet (including

single ion anisotropy and anisotropic exchange) in the antiferromagnetic, flop
and paramagnetic phases. Spin-wave interactions to leading order in 1/2S are
taken into account. Their treatment results into a Hamiltonian which contains
spin deviation operators up to fourth order. An important feature of this theory
is that the spin waves are not independent any more and temperature dependent
critical fields are found. For the transition field to the paramagnetic phase
a T3/2 power law is derived. This dependence has already been compared with the
experiment and discussed in section 4.

The expressions for the parallel susceptibility as derived from the ex-
pressions for the magnetization given by these authors are the following.

In the antiferromagnetic phase if “21 - h >> t/2 then

)3/2tl/2

X; - 3-7‘4(h2l exp (-thl/t) cosh(2h/t) (26a)

Here hzl is the spin flop field in reduced units.

If h?, - h << t/2 << 2h° then
cl cl
o a3/2,,a _ =1/2 _ a \3/2.1/2
Fo 2-3“(hcl) (hcl h) 2'73(hcl) t h (27)
In the flop phase if h - hil << t/2 then
= = 2 3 RS % B NTH
A x;(o) .8661t° + 2.34 K*t(h hcl) + 1.17 K*th(h hc])
(28)
In this formula K is related to the anisotropic exchange and can be expressed
in h°
& a \2v%
K==1+ (1 + 4(h2,)7)
cl
x;(O) is the reduced susceptibility at zero temperature and is given by
]
1 b S & 1
x1(0) = 5 = S_(h) = hs}(h) (29)
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with
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2 mem
= 2 G ,h) dk_dk
(1/2m) LL (y-li ) 3K,

—

b~ 5

~
L}

2 T
2(1/2m) f J F(yk,h) dkxdky

0 ‘0 sx

In these expressions for So(h) and Sé(h), G<Yk'h) and F(yk,h) are given by

6(roh) = v, (1 + ¥, )/ (1 = (1 - 20%)y, )

Flyyoh) = - 2hy§((l +y /0 - -th)Y5}3)*
If h - hil >> t/2 and 1 = h >> t/2 then

xb = xL(0) + .85u7e* ((1 - h%)"5/2 4 5n2(1 - n2)77/2 (30)
and if 1 - h << t/2 then

xt = x1(0) + .8617¢%/2 = 2.3391¢(1 - 1.5h) (1 - h)~'/2 (31)

And finally in the paramagnetic phase if h - | << t/2

xt = .825t(h = 1)7"/2 - 963¢!/2 (32)
and if h = 1 > t/2 then

xt = 659t /% exp(2(1 = h)/t) (33)

For the perpendicular susceptibility according to Feder and Pytte equations

29 to 33 are used. Equations 29 and 30 will be applied down to zero field.

The susceptibility versus the magnetic field at zero temperature in the
perpendicular case according to all three theories is given in fig. 5.

The field scale h, in agreement with the definition given above, represents
the field H in units of HC(O), the upper transition field at T = 0, which is
55 kOe for CoBr2-6H20, see fig. 3. The susceptibility scale is chosen in such
a way that the integral of x' over h is equal to % (= 95).

The curves of Feder and Pytte and of Kanamori coincide as might be expec-

ted, because the higher than second order terms in the spin deviation operators
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Zero temperature susceptibility according to different theories.

fully drawm eurve: Kanamori as well as Feder and Pytte.

dashed curve : Wang and Callen.

in the Hamiltonian of Feder and Pytte arise from the spin-wave interactions

and their effect becomes negligible at zero temperature.

6.2. Comparison with experiment. The experimental results for CoBr2~6H20
as given in Chapter 5 are compared with the three theories, discussed above,
in figures 6, 7 and 8. In all the figures the experiments are represented by
circles. Similar comparisons can be made for CoClz-GHZO; they lead to conclu-
sions which are not essentially different from those for the bromide.

In fig. 6 the data in perpendicular fields is compared with the theories
of Kanamori and of Wang and Callen, for three different temperatures. hc(T) is
the experimental transition field in reduced units.

Fig. 7 shows the data in parallel fields for three different temperatures,

together with the curves of Feder and Pytte. h T) is the transition field

3/2 c2'

to paramagnetism according to the T law as derived by Feder and Pytte with
a fit at the lowest temperatures. “21 is the spin flop field.
Fig. 8 shows the data in perpendicular fields, again for three temperatures
and also with the theoretical curves of Feder and Pytte.
In these figures the susceptibilities and the fields have been expressed
in the same reduced units as in fig. 5, so h = H/HC(O) and the integral of x;

h is equal to %.
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6. Experimental perpendicular susceptibility (cireles) for CoBr,+6H,0
at different temperatures, compared with the theory as given by

Kanamori (fully drawn curve) and Wang and Callen (dashed curve).
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Experimental parallel susceptibility (eirecles) for CoBr,

ferent temperatures, compared with the theory as given by Feder and Pytte

(fully drawn curve). The dashed curve is explained in the text .
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Experimental perpendicular susceptibili ty (eireles) for CoBr +6H,0 at
different temperatures, compared with the theory as given by Feder and

Pytte (fully drawn curve). (The dashed curve ie explained in the text.)
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Near the vertical dashed lines in figs. 7 and 8, which are located on
both sides at distances t/2 from the critical fields the susceptibility has
been obtained by interpolating the susceptibility values which were obtained
at either side of these dashed lines using equations given in section 6.1.c.

As far as the perpendicular susceptibility is concerned large deviations
between the experimental and theoretical susceptibility at low fields are
noted (see figs. 6 and 8).

At first sight this seems to be consistent with the picture given by

27)

Dyson who criticizes the approximate spin-wave theory in which the part of
the Hamiltonian which is quadratic in the spin deviation operators is taken as
a first approximation and in which the non-quadratic part is taken into account
by means of perturbation theory. This approach would only give reliable results
in strong magnetic fields. In weak external fields the non-quadratic part
dominates the quadratic part and the approximation fails.

However, the discrepancy still exists at zero temperature (it is supposed
that the zero field experimental perpendicular susceptibility does not change
any more below 1.22 K). From this it may be concluded that the discrepancy is
partially due to the high easy plane anisotropy, which has not been taken into
account in the susceptibility expressions given in section 6.1. Also the two-
dimensional model may not be too strict, giving rise to this discrepancy. For
the preceding discussion compare fig. 5 and fig. 6.

At the lowest temperatures the experimental perpendicular susceptibility
in low fields seems to be described slightly better by the approximate theory
as developed by Wang and Callen, than by the other theories (compare fig. 5
with the perpendicular data in fig. 6 at 1.22 K). However, at slightly elevated
temperatures large differences are noted in fig. 6 (dashed curves) between the
theory of Wang and Callen and the experimental data.

In the parallel case the susceptibility in the flop phase seems to be
quite nicely described by the susceptibility derived from the paper of Feder
and Pytte (see fig. 7). At each of the three temperatures hzl has been adapted
in such a way that the theoretical and experimental spin flop transitions always
coincide, because its temperature dependence is very weak and nothing conclusive
can be said about its temperature dependence in view of this theory.

According to Feder and Pytte square root singularities in the susceptibi-
lity must be expected near hz‘(o) and hcz(o). This, however, can obviously not
be true for temperatures not equal to zero, because the theory predicts temper-
ature dependent transition fields. This inconsistency must be related to their

approximations, in which they take into account spin-wave interactions to
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leading order in 1/2S. To this order their transition fields are temperature
dependent, whereas to the same order, in their susceptibility expansion terms

(1 - hc(O))-i arise. The authors discuss this point also and they conclude

that a singularity of the form (1 - hC(T))ni must be expected, if higher order

terms are taken into account. They expect this result by comparing the critical
behaviour of the antiferromagnet with that of the ferromagnet.

In figs. 7 and 8 the fully drawn curves were directly derived from the
theoretical relations of Feder and Pytte. The dotted curves were obtained by
replacing the theoretical value hCZ(O) for the upper transition field at T = 0
by the experimental value hc(T) at the temperature under consideration in their
expressions for the susceptibility in the paramagnetic phase. Related to the
problem near the phase boundaries the authors recommend to calculate the sus-
ceptibility at the critical fields by evaluating the susceptibility expressions
for the flop phase at hc(T)'

Finally we may conclude that the susceptibility behaviour is satisfactorily
described by spin-wave theories in the temperature range considered, except by
the one from Wang and Callen. The description near the critical fields is still
unreliable. A slight improvement is obtained by taking into account spin-wave

interactions.

6.3. The sublattice magnetization. In order to demonstrate the large zero
point spin reduction even more clearly we will calculate explicitly the sub-
lattice magnetization per spin at the lowest possible temperature.

In each of the three theories, discussed above, the equilibrium condition
for the angle 6 between a sublattice magnetization vector and the magnetic

field and zero temperature takes the form

cos 8 = h
In that case the magnetization m in reduced units becomes

m = h<s > (35)
with <Ss> the sublattice magnetization per spin. This means that <SS> can be

obtained as a function of h by calculating the experimental value of m/h. m

can be calculated by integration

X, dh (36)

r




In this way we can calculate the sublattice magnetization per spin. Above the
transition field to saturation the sublattice magnetization and the total mag-
netization, both in reduced units, are identical.

The quantity as calculated here will not differ significantly from the
spin value at zero temperature, corrected for the zero point deviation, if
data at 1.22 K are used.

The sublattice magnetization per spin has been plotted in fig. 9 using
equations 34, 35 and 36 and the perpendicular susceptibility at 1.22 K for
CoBr2-6H20 (see fig. 8 in Chapter 5).
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Fig. 8. Sublattice magnetization per spin plotted versus the reduced

magnetic field at 1.22 K.

According to the theories given by Kanamori and by Feder and Pytte a zero
point spin reduction in zero field of .28 was expected. From Wang and Callen's
approach this value would be .19. Both values are derived from fig. 5. These
two values may be compared with the value that follows from linear spin-wave
calculations using a simple cubic spin structure and which amounts to .08 ]9).
In view of the experimental value .17 (see fig. 9) of the zero point spin re-
duction it seems that the two-dimensional character of the spin arrangement

(thus only four neighbours) is corroborated.
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Samenvatting.

In'dit proefschrift wordt het magnetische gedrag van drie antiferromagnetische
stoffen beschreven: LiCuClj ZHZO’ CoCI2'6H20 en CoBr2-6H20. De overeenkomst tussen
deze drie stoffen bestaat hierin dat de magnetische ionen de spinwaarde een half
bezitten endat de anisotropie in de wisselwerking tussen de spinsvrij groot is.

Tengevolge vande interactie tussende spins treden er bij voldoende lage tem-
peraturen (1.2 tot 5 Kvoor genoemde stoffen) ordeningsverschijnselenop, die op
hun beurt weer sterk door een magneetveld beinvloed kunnen worden. Teneinde een
groot deel van het veld-temperatuur fasediagram te kunnen onderzoeken, zijn mag-
neetvelden van de orde van 100 kOe nodig, die thans redelijk eenvoudig te verkrijgen
zi jnmet behulp van supergeleidende spoelen. De bouwen het gedrag van eendergeli jke
spoel met bi jbehorende metalen kryostaat is beschreven in hoofdstuk 2. Met behulp van
deze magneet is de susceptibiliteit vande drie antiferromagneten gemeten tot ongeveer
110 kOe, waarbij de metingen boven ongeveer 15 kOe geheel nieuw zijn.

De anisotropie in LiCuC13-2H20 blijkt, mede op grond van de susceptibiliteits=-
metingen die in hoofdstuk 3 vermeld staan, van het Dzyaloshinsky-Moriya type te
zijn en dus antisymmetrisch. Hiernaast treedt ook nog een minder belangrijk sym-
metrisch deel inde anisotropie op. De gegevens uit de literatuur betreffende
deze antiferromagneet zijn vrij summier. Niettemin is het in hoofdstuk 4 gelukt enkele
opmerkelijke eigenschappen te verklaren. Een hiervan is het bestaan van een extra
eerste orde faseovergang ten gevolge van de aanwezigheid van de Dzyaloshinsky-Moriya
interactie. Eenessentiele eigenschap van die faseovergang is dat het vector product

van twee van de vier magnetische onderroosters, welke in LiCuCl -ZHZO voorkomen,

onder invloed van een aangelegd magneetveld, van teken omslaat.3
De beide andere stoffenCoClz-éHzo en CoBr2-6H20 blijken in redel i jke benadering
twee dimensionale anisotrope Heisenbergantiferromagneten te zijn, zoals volgt uit
de literatuur gegevens en de susceptibiliteits-metingen, die vermeld staan in hoofd-
stuk 5. Uit dediscussies inhoofdstuk 6 blijktdat invelden die laagzijn tenopzichte
van het spin flop veld de Ising beschrijving redelijk is, terwijl voor hogere vel-
den dit limietgeval van het anisotrope Heisenberg model niet meer voldoet. In het
laatste geval is met behulp van spin golf theorie het anomaal gedrag van de sus-
ceptibiliteit in de flop fase, zowel als dat van de loodrecht susceptibiliteit,
kwantitatief verklaard, hoewel nog moeilijkheden optreden in de buurt van de
faseovergangen. De grote nulpunts afwijking van de spin-waarde in veld nul is
een verdere kwalitatieve aanwijzing dat in het gedrag van de beide Co-zouten

het twee dimensionale karakter een rol speelt.




Op verzoek van de Faculteit der Wiskunde en Natuurwetenschappen volgt hier

een overzicht van mijn studie.

Nadat ik het Rembrandt-lyceum in Leiden had doorlopen in de periode 1955~
1960 begon ik met mijn studie in de natuur- en wiskunde met als bijvak sterre-
kunde aan de Leidse Universiteit. |k legde in 1964 het kandidaatexamen af. Na
dit examen ben ik op het Kamerlingh Onnes Laboratorium werkzaam geweest in de
werkgroep van Dr. D. de Klerk, waar ik werd ingeschakeld bij het experimenteel
onderzoek aan type || supergeleiders van Dr. S.H. Goedemoed. In 1965 kreeg ik
van Dr. de Klerk de opdracht de in het laboratorium aanwezige 4 Megawatt instal-
latie zover te verbeteren, dat er fysische experimenten mee gedaan konden worden
in velden tot ongeveer 100 kOe. Dit doel werd ten koste van veel inspanning
slechts ten dele bereikt en daarom werd in 1967 (mijn doctoraalexamen legde ik
eind 1966 af) een aanvang gemaakt met het vervangen van deze installatie door
een veel eenvoudiger en moderner opstelling, waarbij het continue magneetveld
zou worden opgewekt met behulp van een vrij grote supergeleidende spoel. Deze
opstelling werd in 1969 operatief en sindsdien zijn de experimenten uitgevoerd,
die in dit proefschrift zijn vermeld.

Naast dit fysisch onderzoek had ik ook een taak bij het onderwijs. |k
assisteerde op het praktikum sinds 1965. In 1971 werd ik hoofdassistent bij het

elektronisch praktikum voor tweede jaars studenten.

Voor het tot stand komen van dit proefschrift is de medewerking van vele
anderen onmisbaar geweest. In het bijzonder worden Dr. H.W. Capel en Drs. A.E.
van der Valk bedankt voor hun bijdrage betreffende de theoretische problematiek
rond de discussie en interpretatie van de meetresultaten. Drs. H.A. Jordaan,
Drs. J.W. Schutter en Drs. K.R. van der Veen hebben mij bijgestaan bij de voor-
bereidingen en het uitvoeren van de experimenten. De vele discussies met andere
medewerkers zijn hooglijk gewaardeerd.

De illustraties in dit proefschrift zijn op fraaie wijze door de heren
W.F. Tegelaar en W.J. Brokaar getekend.

De heren A.F.M. Oosterbaan, J. van den Berg en in het bijzonder T.P.M. van
den Burg hebben vele technische problemen weten op te lossen.

Mevrouw M.A. Otten-Scholten heeft het merendeel van de eenkristallen ge-
maakt, die voor de experimenten nodig waren.

Tenslotte zij vermeld dat de tekst van het proefschrift op vaardige wijze

is getypt door mevrouw E. de Haas-Walraven.
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