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STELLINGEN

De door van der Waerden behandelde correcties, nodig voor een juiste
becordeling van de in een scheidingswip verkregen ontmenging, kunnen
verwaarloosd worden indien voor de concentratie~nivellering tussen de
afzonderlijke elementen van de opstelling gebruik wordt gemaakt van
thermo-syphon werking.

B.L. van der Waerden, Z. Naturforsch. 124, (1957), 583,

Dit proefschrift, hoofdstuk I.

Bij enkelvoudige ionisatie van krypton door electronen is de bijdrage
van de N=3 schil klein, in tegenspraak met de bewering van Lotz.

W. Lotz, Z. f. Physik 206, (1967), 205,

De oscillaties, gevonden in de differentifle en onvolledige totale
botsingsdoorsnede voor de interactie van alkalimetaalionen en edelgas~
atomen, kunnen behalve door de invloed van een lading-geinduceerde di-
pool ook verklaard worden door effecten, die optreden bij verstrooiing
aan een monotone repulsieve potentiaal.,

H. Boersch und G. Forst, Z. f. Physik 176, (1963), 221,

H. Schoenebeck, Z., f. Physik 177, (1964), 111,

F.J. Smith, E.A, Mason and J.T. Vanderslice, J. Chem. Phys. 42,

(1965), 3257,

De wijze waarop in het boek van Hirschfelder, Curtiss en Bird de gere-
duceerde Q-integralen geIntroduceerd worden, suggereert een onjuiste
interpretatie van het gebruikelijke begrip moleculairve diameter.

J.0, Hirschfelder, C.F. Curtiss and R.B. Bird, Molecular theory

of gases and liquids, New York, (1954),

Ten onrechte verwaarlozen Nezlin et al. de mogelijkheid, dat instabie-
le golven in een plasma gereflecteerd worden in de plasmasheath aan

een metalen wand,

M.V. Nezlin, G.I. Sapozhnikov and A.M. Solntsev, Sov. Phys. JETP
23, (1966), 232,




6. Bij de experimentele bepaling van dimeerconcentraties in gassen verdie-
nen nauwkeurige absorptiemetingen de voorkeur boven massaspectrome-

trische bepalingen.

7. De extreem grote negatieve waarden, die Walther en Drickamer vinden
voor de thermodiffusiefactor, kunnen verklaard worden als zijnde het
gevolg van de vorming van veelvoudige moleculen in het koude deel van
het apparaat.

J.E. Walther and H.G. Drickamer, J. Phys. Chem. 62, (1958), 421,
H.A, Cataldi and H.G., Drickamer, J. Chem. Phys. 18, (1950), 650,

8. Woodmansee en Decius uitten de veronderstelling (welke door anderen is
overgenomen), dat de vibratie-relaxatie-tijd voor andere gassen dan
kooldioxide niet bepaald kan worden door het in een spectrofoon opge=
vangen signaal te meten als functie van de moduleringsfrequentie. In
de argumentatie voor deze veronderstelling is ten onrechte de drukaf-
hankelijkheid van de relaxatie-tijd verwaarloosd.

W.E. Woodmansee and J.C. Decius, J. Chem. Phys. 36, (1962), 1831,
A.D, Wood, thesis, Purdue University, (1963).

R.J, Vargovick, thesis, Purdue University, (1965).

9. Wegens de in toenemende snelheid voortgaande aantasting van het biolo-
gisch milieu dient als &&n der op nationaal zowel als internationaal

niveau te nemen maatregelen de studie der oecologie hoogste prioriteit

te krijgen.

10. De sinds de winter 1962/1963 in Rotterdam gemeten daling van de lucht~-
verontreiniging (althans wat betreft het gehalte aan zwaveldioxide) is
grotendeels te danken aan gunstige meteorologische omstandigheden. Een
dankwoord aan de industrie voor de door haar genomen maatregelen is
dus vooralsnog prematuur,

Jaarverslag over 1967 van de commissie Bodem, Water en Lucht te
Rotterdam,
Perspublicaties naar aanleiding van de ingebruikneming van de

Centrale Meld~ en Regelkamer te Rotterdam.

WeA. Oost
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VOORWOORD

Teneinde te voldoen aan de wens van de Faculteit der Wiskunde en
Natuurwetenschappen volgt hier een kort overzicht van mijn studie.

Nadat ik in 1955 met goed gevolg het eindexamen H.B.S.-B had afge-
legd aan de Christelijke H.B.S.-B met vijfjarige cursus te Amsterdam liet
ik mij inschrijven als student aan de Vrije Universiteit te Amsterdam.
Hier legde ik in 1959 mijn candidaatsexamen wis- en natuurkunde A af. Ge-
durende de studie voor dit examen volgde ik de colleges van en legde ik
tentamens af bij Prof.Dr. H.R. Woltjer, Prof.Dr. P. Mullender, Prof.Dr.
J.F. Koksma, Prof.Dr. G.J. Sizoo, Prof.Dr. G.H.A. Grosheide F.Wzn, Prof.
Dr. R. Hooykaas en Prof.Dr. J.P. van Rooijen.
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J.F. Koksma, Prof.Dr. P. Mullender, Prof.Dr. P. Groen en Prof.Dr.

C.C. Jonker, verrichtte ik practisch werk op het gebied van de kernphysica
en wel onder leiding van Drs. J.J. Vasmel betreffende het ijken van een
neutronenbron. Gedurende ruim twee jaar was ik als assistent verbonden aan
het natuurkundig practicum voor studenten medicijnen en biologie. In 1962
legde ik het doctoraalexamen natuurkunde met bijvakken wiskunde en mechani-
ca af.

In oktober 1962 werd ik verbonden aan het F.0.M.-Instituut voor
Atoom- en Molecuulfysica (toentertijd F.0.M.-Laboratorium voor Massaspec-
trografie) als wetenschappelijk medewerker in gewoon verband. Aanvankelijk
betroffen mijn werkzaamheden het meten van diffusieco&fficiénten, later
het in dit proefschrift beschreven onderzoek.

In januari 1967 aanvaardde ik een functie als docent natuurkunde
aan het Christelijk Lyceum West (thans Christelijke Scholengemeenschap
"Pascal") te Amsterdam. Gaarne wil ik op deze plaats mijn dank betuigen
aan rector en conrectores van deze school voor de wijze waarop bij de roos-
tersamenstelling rekening gehouden is met mijn wensen, voortvloeiend uit
dit promotieonderzoek. Ook wil ik mijn collega, Drs. C. Oranje, dank zeg-
gen voor zijn bereidheid de lessen in de hogere klassen voor zijn rekening
te nemen. De ervaringen bij het tijdelijk overnemen van deze lessen hebben
mij getoond hoeveel tijdbesparing deze taakverdeling mij heeft opgeleverd.

Hen, die meer betrokken zijn geweest bij het onderzoek, wil ik

graag bedanken voor de geboden medewerking.



Zeergeleerde Velds, beste Dick, de wijze waarop jij het onderzoek
aan mij hebt overgedragen, heeft het mij mogelijk gemaakt binnen de tijd
waarin ik mij geheel aan dit onderzoek kon wijden tot de eerste resultaten
te komen. Zonder die start betwijfel ik of dit proefschrift coit geschre-
ven was.

Zeergeleerde Los, beste Joop, jouw adviezen en kritiek in droeve en
minder droeve dagen, je voortdurende aandacht voor en je bijdragen aan dit
onderzoek zijn voor mij een belangrijke stimulans geweest om het tot een
goed einde te brengen.

Zeergeleerde de Vries, beste Dolf, de vele discussies die we over
dit onderzoek hebben gehad en je meeleven met de voortgang ervan hebben
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CHAPTER X

SURVEY OF THEORY AND EXPERIMENT

a. INTRODUCTION

The first experiments on the phenomenon, now known as thermal dif-
fusion, were done in 1856 by C. Ludwig (Lu 1856), who investigated the
change in composition when a temperature gradient was introduced in an
initially homogeneous solution. In 1873 W. Feddersen (Fe 1873) speaks al-
ready about thermal diffusion (Thermodiffusion) and in 18739 C. Soret
(So 1879) publishes the experiments that connect his name with thermal dif-
fusion, which is called the Soret-effect when it takes place in liquids. In
1890 a publication of M.P. Van Berghem (Bg 1890) gives results for thermal
diffusion experiments on gases dissolved in water. But it was in the theore-
tical work, published in a number of articles, of Chapman and Enskog, that
the stimulus was received for a systematic and thorough research of this
phenomenon. The fact that the first article of Enskog on this subject dates
back to 1911 (En 11), while the first article of Chapman on thermal diffusion
was published in 1912 (Ch 12) does not mean, however, that thermal diffusion
by now has become a clear and easily understood phenomenon. The restrictions
Chapman and Enskog had to make in their theory are only partly removed and
theory and experiment on thermal diffusion often meet each other on the basis
of serious disagreement.

One of the points for which still no dependable predictions can be
made is the pressure dependence of the thermal diffusion factor. In this
thesis we try to find an explanation on the basis of several theories. To see
where pressure may have influence on thermal diffusion we will give a short
survey of the way in which the transport coefficients are calculated in the
so-called distribution function method. The alternative procedure, the time-
correlation function method up till now has not led to numerical results for
the thermal diffusion factor and so will be left out of the discussion.

To prevent circumlocutions we will indicate densities for which the
mean free path is small compared with the dimensions of the vessel and large
compared with the dimensions of the molecules of the gas as low densities.

This will cause no confusion as we will restrict ourselves to pressures well

outside the Knudsen region.




The calculation of the transport properties by means of the distributiocn

function method for these densities is started with the derivation of the
Boltzmann-equation from the Liouville-equation. The Boltzmann-equation gives
the relation between the variation with time of the one-particle distribution
function and the molecular encounters. When we multiply this equation with
mass, momentum or kinetic energy and integrate the result over velocity space
the conservation laws give us the possibility to find relations between the
time~dependence of the local values of these physical quantities and their res-
pective fluxes: the equations of change. Then, by means of the H-theorem the
equilibrium distribution is found, whereafter the distribution function for the
non-equilibrium situation is written as the sum of the equilibrium distribution
function and the product of this function and a supposedly small perturbation
function. In the now linearized problem our task is the determination of this
perturbation function. We make the approximation that only first powers of
first derivatives of the equilibrium distribution, the Maxwell distribution,
are maintained. Then, from the Boltzmann-equation and the equations of change
the general outlook of the perturbation function follows immediately as a sum of

inner products of vectors and tensors. From each term in this sum one of the two

factors is a thermodynamical force, such as a gradient in the composition or in
the temperature. The other factor, the unknown vector or temsor,is split into
the product of a known vector or tensor and a scalar. The scalars are found by
expanding them into Sonine polynomials using a limited number of terms or by
means of variational calculus. Here several methods exist, differing in the way
in which the infinite system that must be solved is handled. Successive approxi-
mations are found by taking an increasing number of terms. Using the now known
distribution function in the definitions of the diffusion wvelocity, the pressure
tensor and the energy flux and comparing the result with the definitions of the
various fluxes, formulae for the transport coefficients are found. As a last
step the Sonine-polynomials are replaced by so-called Q-integrals, which are di-
rectly related to-the intermolecular potential energy functions.

The first moment that the pressure comes in is in the derivation of the
Boltzmann-equation. During this derivation certain suppositions are made; one
of them is that of molecular chaos: during the time between two collisions the
system returns to a situation in which no correlation can be found in the motion
of particles, that has resulted from the collision. This supposition will be
exactly true as long as the molecules may be considered as hard spheres, inde-
pendent of the pressure (Je O4). As soon as we consider real molecules, still

interacting when they are on a distance from each other, the interaction will
12




cause a certain correlation between the motion of neighbouring molecules.
This correlation will be negligible when the molecules are outside each
other's fields of force for most of the time. As soon as we increase the
density the molecules will be in each other's neighbourhood for a larger
percentage of the time, thus making the correlation more important. This
problem can be dealt with by taking into account the two=-particle distri-
bution function. This function, to which we will return in chapter II,
gives the probability that, at the same time, one molecule with momentum ;
is at the place T and an other one, with momentum ;' is at »',

A second aspect of the Boltzmann-equation which is valid only at
low densities is the fact that simultaneous collisions of three or more
molecules are left out of the discussion. Once again when the molecules
are to be considered as hard spheres, this approximation will be sufficient
to pretty high densities, although it is never exact. With real molecules
however, it is quite well possible that two molecules are still within each
other's interaction sphere when a third one strikes the system. This three-
particle collision can be considered as a collision of a two-particle sys~
tem with a single molecule, so that the net effect is that a third kind of
molecule (viz. the two-particle system) is added to the mixture.

When the pressure is raised the number of collisions of this type
will increase and we have here another aspect of the influence of pressupe
on transport properties. We will treat this problem in an approximate way
by taking into account those systems of two molecules that arve more or less
stable. We will look after the influence of this type of molecules on ther-
mal diffusion in chapter III,

In the use of the Boltzmann-equation one of the next steps is the
derivation of the equations of change. Here we only take into account the
transport of mass, momentum and energy during the free flight of the mole-
cules, While this is strictly true with mass, momentum and energy can be
transported in another way, namely during the collision: then energy and
momentum are transferred from the center of one molecule to that of an
other which gives an extra transport term for these quantities. This col-
lisional transfer has been calculated for hard spheres by Enskog (En 22)
for pure gases, while the theory has been extended to mixtures by
H.H. Thorne, as mentioned in the book of Chapman and Cowling (Ch 39). Pro-
bably due to the unrealistic assumption of hard spheres however, the
theory does not hold even qualitatively, as has been found by Walther
and Drickamer (Wl 58) and Velds (Ve 66). Therefore we will not

13




not try to find an explanation of the pressure dependence of the thermal dif-
fusion factor on the base of this theory. We shall consider the influence of
collisional transfer on the thermal diffusion factor in the last part of
chapter II by means of the two-particle distribution function.

Apart from the distribution function method there are two other rela-
ted methods. The first one, describing the whole process in terms of probabi-
lity statements and using a so-called "Master-equation" is due mainly to
Brout and Prigogine (Br 56a and Br 56b). The second one is due to Bogolubov
(Bo 46) and gives a new basic equation from which the Boltzmann-equation may
be derived under certain limiting conditions. Although the last equation
gives the heat conduction and viscosity coefficients in terms of the local
density we will not consider it here, as no results have been obtained for the
thermal diffusion factor or, in general, for a mixture involving more than one
gas. The Master-equation approach can be used only for spatially homogeneous
systems.

Apart from these kinetic methods some phenomenological equations for
the pressure dependence of the thermal diffusion factor have been derived, We

will return to these in chapter II.

b. THE THERMAL DIFFUSION FACTOR AND THE DIFFUSION COEFFICIENT AT LOW DENSITIES

As we will need the values of the thermal diffusion factor and the dif-
fusion coefficient at low pressures in some of our calculations, we will give
the results of the first Chapman-Enskog approximations for the diffusion coef-
ficient as well as for the thermal diffusion factor and also the first Kihara
approximation for the thermal diffusion factor.

In the derivation of the formulae for the transport coefficients a sy-
stem of integral equations is solved by changing it into an infinite system
of linear equations, as mentioned in the introduction. This infinite system
is solved by conventional techniques by taking only a very limited number of
terms. Here two fundamentally different approaches exist: the first one, due
to Chapman and Cowling (Ch 39) takes as a first approximation the terms on
the main diagonal of the determinant, as a second approximation some elements
next to the main diagonalj the other one, due to Kihara (kKh 49) starts also
with the elements of the main diagonal, but then expresses the off-diagonal

elements in terms of the Q-integrals and their temperature derivatives. The
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successive approximations are found by including first, second, third etc.
time-derivatives. The last method has the most physical background and will
be used if possible. A second advantage of the Kihara method is that the
resulting formulae are much simpler than those of the Chapman-Cowling
scheme. In the first approximation, both in the Chapman-Cowling and Kihara
system, the thermal diffusion factor is zero. Therefore the first approxi-
mation to the thermal diffusion factor is necessarily the second step in
the approximation scheme.

Part of our considerations will be the calculation of the thermal
diffusion factor in multicomponent mixtures. No formulae exist for such
mixtures in the Kihara approximation. We will therefore have to use the
Chapman-Cowling method, as here the generalization to multicomponent mix-
tures has been made by Van der Valk (Va 63), following the work of Waldmann
(Wa 58). This formalism uses the first Chapman-Cowling approximation to the
thermal diffusion factor. An important factor in the use of transport coef-
ficients in general is the choice of a reference system. As has been shown
by Waldmann (loc.cit.p.357) the reference system most suited for the des-
cription of both diffusion and thermal diffusion is the one in which the

mean particle velocity v is zero. v = § x Vi, in which Xs is the mole-
i

fraction of component i in the mixture an; vy is the mean velocity of the
molecules of component i with respect to the laboratory system. We will use
this system throughout this thesis.

Again the name of Waldmann turns up when we consider the diffusion
coefficient. In the general scheme for the derivation of explicit expres-
sions for the transport coefficients as discussed in part a. of this chap-
ter, one degree of freedom is left in the derivation of the diffusion co-
efficient about which can be disposed at will. Here several choices can be
made. Hirschfelder, Curtiss and Bird (Hi S4), for example, made their
choice in such a way that the multicomponent diffusion coefficients, which
are found from the general treatment reduce to the binary diffusion coef-
ficient as defined by Fick's law in the binary case. Waldmann (Wa 58), on
the other hand,uses the degree of freedom left to introduce the property
E Xy Dik = 0, where the Dik are the multicomponent diffusion coefficients.
The result is that the multicomponent diffusion coefficients no longer re-

duce directly to the binary diffusion coefficients according to Fick's law

i arve symmetrical (i.e. Dy

Dki) and the relation between the binary diffusion coefficients and the

in the case of a binary mixture, but the Di

multicomponent ones is a system of linear equations for each number of




components, at least in the first Chapman-Cowling approximation. As this ap-
proximation is pretty good for the diffusion coefficient we have a simple
way here to calculate multicomponent diffusion coefficients from binary ones,
for which closed formulae exist.

After these general arguments we will proceed now by giving the perti-

nent formulae.

b1. THE DIFFUSION COEFFICIENT

i
W
v

The diffusion velocity i with respect to the average particle veloci-

ty is given as

- -
wi=-g Dy 4 = Dps grad In T (1.1)

The summation is extended over all components of the mixture. The Dik are
the multicomponent diffusion coefficients, the Skare summations over the
three factors giving rise to diffusion viz. grad Xy (concentration diffusion),
grad ln p (pressure diffusion) and the external forces. Of these only the

concentration diffusion will be considered so that for our purposes

ék = grad x, (1.2)

The DTi are thermal diffusion coefficients in a polynary mixture, whereas T
is the absolute temperature.

For the Di Waldmann (Wa 58) derived the following relation with the

k
binary diffusion coefficients :

(D = Dy B ) AN Y SO .

Z x](le D]k)/D(l,j) élK/xl (1.3a)
J

which is correct up to the first Chapman-Cowling approximation. Here the

D(i,j) are the binary diffusion coefficients, whereas the Gik is the well-

known delta-function. (1.3a) may be rewritten as the following set of li-

near equations i
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(- Z .xj/D(l’J))Dik 2 Z .(xj/D(l’]))Djk = 6ik/xi -1 (1.3b)
Jsd#1 joi#i
This linear system makes possible the calculation of the polynary diffusion
coefficients from the first Chapman-Cowling approximation of the binary dif-

fusion coefficient (see f.i. Wa 58, part 68,51)

3k\k V Ta(mi+mj )/(2mm,)
2 9(1,1),&‘ (1.4a)

BV} P oij 13

D(i,j) =

where k is the Boltzmann constant, m, the mass of a molecule of type i, p
the pressure and cij the distance between the centers of two colliding mo-
lecules, one of type i and one of type j if these molecules are considered
as rigid spheres. It is common practice to use the molecular diameter be-
longing to the potential model used instead of the rigid sphere diameter
(which is energy dependent). An approximation, implicit in this formula,
originates from the use of the ideal gas law for the transition from parti-
cle density to pressure in its derivation.

g;’1)ﬁ is the value of a function which de-

pends on the type of interaction potential, the temperature and some para-

The reduced Q-integral

meters which are caracteristic for the molecule under consideration.

{1 1%
1]

supposed to be valid by the Q-integral for a rigid sphere type of interac-

is found by dividing the Q-integral for the potential model that is

tion. These Q-integrals do depend on the same quantities as the rveduced Q-
integrals, but they are dimensionless; their evaluation involves integra-
tions over all possible distances and relative velocities of the molecules
(see e.g. Ch 39, part 9.33 or Hi 54, page 525). Values of the Q-integrals
for several potential models are tabulated in the book of Hirschfelder et
al. (Hi 54).

Expressing m, and m, as molecular weights, writing down p in atmo-

spheres and oij in Angstrém-units (1.4a) becomes (Hi 54, page 539)

3
V'r (m,+m,)/(2m.m, )
1 _J 1]
P O.. 8,
iJ 1]

D(i,j) = 0.002628
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The second Chapman-Cowling approximation to the binary diffusion coefficient
is a pretty complicated function which gives a value for the diffusion coef-
ficient which is only slightly different from the first approximation. In
the correction factor, given by Hirschfelder et al. (Hi 54, p. 606) Q-inte-
grals different from the earlier mentioned appear; the difference lies in
an other way of averaging about the angle of deflection of a molecule in a
collision and the relative velocities of the two colliding molecules; this
is indicated by the values of the superscripts for the Q-integral (eege

9(1'2), Q(2'2) etc.).

b2. THE THERMAL DIFFUSION COEFFICIENT

We will proceed now by discussing the thermal diffusion coefficient
DTi in a polynary mixture. As in the case of the diffusion coefficient an
extra condition must be imposed to obtain unequivocal values for the DTi’

for which, using the convention of Waldmann,we have

(1.5)

because of the already introduced relation between the polynary diffusion
coefficients and the definition of the diffusion velocity, which was taken
with respect to the mean particle velocity. Following Waldmann (Wa 58,

part 69) we introduce now the multicomponent thermal diffusion ratios ka

by the relation

E (Dy - Djk) ke = Ppg = Dpy (1.6)

By defining so-called polynary thermal diffusion factors aij in the
first Chapman-Cowling approximation to the thermal diffusion coefficient

(second approximation in the general scheme), we get the following rela-

tions




In a binary mixture the aij reduce to the experimentally found thermal diffu-
sion factor; in a polynary mixture they have only a mathematical meaning,
Van der Valk (Va 63) worked out this scheme and obtained the following rela-

tions for an n-component mixture
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The functions A?j, Bf} and C;} are ratios of reduced Q-integrals and can be
found also from the book of Hirschfelder et al. (Hi 54).

The foregoing formulae are based on the first step in the Chapman~-
Cowling scheme that gives a non-zero value for the thermal diffusion coef-
ficient. A better approximation is the earlier mentioned second Kihara ap-

proximation which can be written as follows

# Sixi—S.x.
a4 = (6C3;-5) L = 3 1,2 1,2 ; i# (1.9)
xiQi+xiijij+ijj
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c. EXPERIMENTAL METHODS

Three methods are used for the experimental determination of the
thermal diffusion factor :
1. The two-bulb apparatus
2., The thermal diffusion column
3. The swing-separator ("Trennschaukel")
Of these three only the first and second one have been used to determine
the thermal diffusion factor at higher densities. The two-bulb apparatus
consists of two volumes, kept at different temperatures, connected by a
tube, The temperature difference causes one of the components, in general
the lighter one, to go to the volume with the highest temperature, while
the other one goes to the colder volume. The separation process is halted
as soon as the back-diffusion caused by the concentration difference
equals the demixing. In this case the net diffusive flux is zero as long
as we have a non-reacting mixture, so that in (1.1) the term on the left
side is zero. Combining (1.1), (1.6) and (1.7), written down for two com-

ponents,we obtain the relation

grad x, = - a,, X, X, grad In T (1.10)




Remembering that x, = 1 - X, and supposing a., independent of temperature

1 12
and composition we may integrate this to obtain

= =Q12
x1/x2 =CT

where C is some constant.

Using this for the higher and lower temperature part we find

e /% hign _ { Thigh }"’12
(x1/x2)low Tlow
Th
or In q = -a,, 1n{ T } (1.11)
1

q is called the separation factor.

This is the way in which the thermal diffusion factor is found from experi-
ment in a two-bulb apparatus.

The fact that %45 depends both on temperature and concentration is accoun-
ted for by taking a suitable mean temperature and mean concentration to
which the value of @5 belongs. General practice is to take the geometric
mean for the value of T.

The separation factor can be found experimentally in two ways. One
is an analysis at the pressure of the experiment, e.g. by means of heat
conduction measurements or infra-red gas analysis. The second way is to
take a sample from both volumes and analyse these samples at low pressure,
e.g. in a mass-spectrometer. Although these methods need not be distin-
guished for low pressure experiments (i.e. up to a density comparable to
normal circumstances) it will be useful to make the distinction for expe-
riments at somewhat higher pressures.

The demixing found with a two-~bulb apparatus is in general pretty
small. Among the methods used to enlarge the separation the thermal diffu-
sion column invented by Clusius and Dickel (Cl 39) is the most drastic one,
Here two concentric tubes (or a wire and a tube) are kept at different tem-
peratures, so that each cross-section acts as a two-bulb apparatus, causing
the light component to concentrate around the (hot) inner tube, Convective

action then causes the light component to go upwards, while the heavier one
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goes down along the outer tube. The final separation between the lower and
upper parts of the tube is determined again by back-diffusion. Although
this type of apparatus has the advantage of causing a strong demixing, it
has the drawback that for the evaluation of a from the separation obtained
no straight-forward method exists. Its main meaning for fundamental re-
search comes from the determination of relative values of the thermal dif-
fusion factor under identical circumstances. A great number of experiments
has been made, both with two-bulb apparatuses and thermal diffusion columns
to obtain values of the thermal diffusion factor at elevated pressures. We
will only use in this thesis the results of experiments with two-bulb appa-
ratuses, as we wish to study the change of the thermal diffusion factor
with pressure. A change in pressure changes the conditions in a thermal
diffusion column in such a way that no straightforward comparison between
experiments at different pressures can be made. The two-bulb experiments
which we have chosen are those of Becker (Be 50), performed at temperatures
higher than room temperature with 50%-50% mixtures and those of Van Ee

(Ee 66), performed at low temperatures with mixtures of different composi-
tion. Together with our own experiments, performed at temperatures above
room temperature with 10%-90% mixtures we have a range of temperatures and
compositions sufficient for a reasonable comparison between theory and ex-
periment.

No experiments have been made at pressures higher than one atmos-
phere with the third kind of apparatus, the swing-separator or Trennschau-
kel. This type of thermal separation unit, originally described by Clusius
and Huber (Cl 55),is in fact a number of two-bulb apparatuses in a series
arrvangement. Each tube (two-bulb apparatus) has a cold and a hot sidej the
hot side of each tube is connected by means of a piece of capillary tubing
to the cold side of the next one. The hot side of one end tube and the
cold side of the other one are connected with a pumping arrangement which
pushes a certain amount of gas to one side through all tubes and capilla-
ries and then pulls it back again. This rocking motion of the gas causes a
leveling of the concentrations at both ends of a capillary. In this way
each following tube builds up a concentration difference on top of the one
already obtained. Between the end tubes we find a separation which is the
nth power of the one obtained with a two-bulb apparatus, if n is the number
of tubes.

Although the situation is somewhat more complex than this short dis-

cussion shows, the physical effects, which lead to a wrong value of a found
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from experiment, become less important at higher pressures, as can be seen
from the article by Van der Waerden (Wr 57), so that a Trennschaukel appa-
ratus seems very suitable for the measurement of thermal diffusion factors
at higher pressures. If technical difficulties with the rocking arrangement
under high pressure would show insurmountable the concentration leveling
might be achieved by connecting the tubes each time with two capillaries,
kept at different temperatures, to each of their neighbours.

Thermo-syphon action then would replace the rocking of the gas. This
type of experiments is desired as the bigger separation obtained gives
higher accuracy in the values of a, which is necessary to see the effect of
small pressure changes and in this way to decide when the several effects

occurring at higher pressures start being important.,

d. SCOPE OF THIS STUDY

In this thesis we will treat some theoretical aspects of the pres-
sure dependence of the thermal diffusion factor and give the results of a
number of experiments., These experiments were performed at densities which
were well away from the critical. This was done because the phenomena in
the critical region are very complicated and no dependable quantitative
predictions can be made. Moreover, small fluctuations in the temperature
will cause large changes in the mixture under investigation thus making ac-
curate measurements extremely difficult. From the work of other experimen-
ters e.g. that of Velds (Ve 66,67), performed at this institute,we knew
that large changes in the thermal diffusion factor could be obtained well
outside the critical region. However, this large demixing caused a pretty
big change in the mean concentration ratio between the two bulbs. This
change is mainly due to the unequal volumes of upper and lower bulb. There-
fore we chose for our experiments such conditions that the demixing ob-
tained was pretty small.

In the theoretical part we will give in chapter II some theories,
both old and new, which are based on a thermodynamical approach of the pro-
blem. Chapter III contains a new theory based on the fact that molecules
tend to form clusters. The number of clusters and the number of molecules

in a cluster both depend on temperature and pressure in the same way

when the pressure is raised or the temperature is lowered both numbers will
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increase. As we have restricted ourselves to densities far from the critical

the most important clusters for us are clusters of two molecules, called di-

mers. Chapter IV contains the experimental part. We have performed our expe-
riments on mixtures for which no earlier data concerning the pressure depen-
dence of the thermal diffusion factor existed, viz. 10%-90% mixtures at tem-
peratures higher than ambient. Chapter V contains a survey of the calcula-
tions performed and a discussion of the theoretical and experimental data

obtained.




CHAPTER II

THE THERMAL DIFFUSION FACTOR
AT HIGHER PRESSURES

a. THE THERMAL DIFFUSION FACTOR ACCORDING TO NON-EQUILIBRIUM THERMO-
DYNAMICS

A phenomenological approach to the thermal diffusion factor can be
made from the point of view of non-equilibrium thermodynamics. Following
the monograph of De Groot (Gt 59) we write down the phenomenological equa-

tions for a non-reacting n-component mixture

(2.1)

where 3idenotes the mass-flux of component i and J denotes the heat flux,

q
both due to the thermodynamic forces ik and iu. The L

ik? Luk’ Liu and Luu
are phenomenological coefficients. The thermodynamic forces are
> s
X Eh =T grad(uk/T)
(2.2)
-
X, = - grad T /T

Here Fk denotes the external forces per unit mass, working on the system
(e.g. gravity or an external magnetic field) and M is the chemical po~
tential per unit mass of species k; T is the temperature. The formalism,
as it will be given here, is valid in a center-of-mass system and with
mass fractions instead of molar fractions. The transcription to our usual
system will be made in the final formula. For the derivation of a closed
formula for the thermal diffusion factor it is convenient to introduce

ErE s *
new coefficients Qk by




n-1
Ly, = ) LikQ; =Ly, (11,2, « ¢ o y0=1) (2.3)
k=1

where the last equality follows from the Onsager relations. The fluxes of

(2.1) can now be written as

->

n-1
Ei =¥ Lik(xk—§n+Q;§u) (21,2, &« s « sn=1)
=1
K (2.4)
- <>

n-1
> -
Jq .kz1Luk(xk-xn)+Luuxu

The physical interpretation of the Q: is as follows: when there is
no temperature gradient (§u=0) QT, the so-called heat of transfer, is the
amount of heat, transported with the unity of mass of component 1.

Introducing the equations (2.2) into the mass-fluxes in (2.4) we

find

n-1
= —P--P- ( . ‘-* -
31 kZ1Lik[Fk E T grad\(uk Jn)/T} Q grad(T)/T]

or, supposing that the only force present is gravity and remembering that

: ; - e
the force is per unit mass, so that Ik:rn

n=-1
31 %) Lik[—T grad{(uk-un)/T}—Q; grad(T)/T] (2.5)
k=1

grad ¥, can be written as a linear combination of temperature, pressure
and concentration gradients; when we suppose mechanical equilibrium the

pressure gradient is zero, so that we have for two components

L%

H

-

> - 1
J, = =J_, = -L11{ a—— grad c

»
= 1 1
= - (Q1 h1+h2)grac lﬂT}

2>

c 1

2 1

where the Gibbs-Duhem relation
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u. =0 : .
c16u1 + c26u2 3y T and p constant

has been used and hk=uk+T.sk is the partial specific enthalpy per unit

mass of substance k.

As soon as equilibrium has been reached J1 =Jd, =0, or

Q

¥

21195

il

c

-
grad c. + (Q1~h1+h2)grad InT = 0 (2.6a)

1

(5]

which leads to a relation comparable with (1.,10). To obtain full agreement
between these two equations we will only have to replace concentrations by
mole-fractions, as, in the equilibrium situation in our system both the
center-of-mass and the center-of-particles are at rest, so that no change
of coordinate system is needed. The mole-fractions in our two~-component

system are connected with the mass-fractions through

X.M,
c = ——L}_
3 N
3 x1A1+x2M2

where the Mi are the molecular weights and which changes (2,6a), multi-

plied with Xq0%, into

x1M1+x2M2 oM ‘s
o X, 3;: grad x, + x1x2(Q1-h1+h2) grad In T = 0 (2.6b)
giving
* *
- grad X, M Q,-h.+h Q.-h_+h
g s 2 il 5 e e (2.7a)
12 X X grad InT x]h]+x2M2 X, au]/éx1 e, 3u1/8c1

or, using molar quantities, denoted by the superposition of a wave, so

~ % “

that e.g. Q;=M;.Q




S0 5
M.Q.-M.h_+M.h
257 T2y 2
Gy = - (2.7b)
x1(x1M1+x2M2) 3u1/3x1

Up to this point the dlscu531on has been fully general. We can now
introduce for h and My (or h and My ) expressions derivable from the e-
quation of state that is supposed to be valid. For Q1 this is less simple,
so that one or more new assumptions have to come in as soon as we wish to

use the equations (2.11) for predicting values of a,, at higher pressures.

b. HAASE THEORY

The simplest assumption for Q? (or 6?) is to take it independent of
the pressure. This supposition was introduced by Haase (Ha 49) and used
extensively by Drickamer and co-workers (Dr 50-53) for several equations
of state. The procedure is to take (2.7a) or (2.7b) and write it down
twice: once for the low pressure situation where only the non-equilibrium
contribution to the separation is important and once for the pressure of
the experiment. From these two equations Q: can be eliminated under the

assumption made. The result is

L — (2.8)

o T P e 5
{ (x1M +x2M2)u12RT+M1(h2 h2) .42(h1 hl) } 3U1
1 X

x1M1+x M

2-2 1

where the superscript o indicates the low pressure value of the pertinent
quantity and use has been made of the thermodynamical relation, valid for

ideal gases

2 1
X, === = RT
1 x1

For a given equation of state ., can now be calculated if the low pres-
sure thermal diffusion factor is known.
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c. FUGACITY-THEORY

The experimental work of Becker (Be 50) showed that a description
of the higher pressure behavior of the thermal diffusion factor can be
found by separating the total demixing in a low-pressure contribution
(the thermal diffusion factor in the usual sense) and a contribution due
to the non-ideal behavior of the component gases, In fact, this partition
can be seen in (2.8), although here the separation is not complete, due
to the factor in the denominator. Velds, Los and De Vries (Ve 67) worked
out this idea by ascribing the non-ideality contribution to the fact that
for higher pressures not the partial pressures but the partial fugacities
have to be the same throughout the apparatus. No cross-effects will exist
with thermal diffusion, due to the Curie principle, as thermal diffusion
has a vectorial and the fugacity demixing a scalar character.

The way in which this splitting was introduced by Velds et al. is
somewhat confusing as the thermal diffusion contribution is considered as
due to ideal properties of the gaseous mixture, whereas in an ideal gas
no thermal diffusion exists. A better proposition is the term quasi-ideal,
used by Becker (Be 50).

The observed demixing Qobs can now be written as

+ Q (2.9a)

=9 fug

th.d.

where ch.d. is the separation due to thermal diffusion and qug the one

due to the fugacity. Using a similar notation (2,%9a) leads to

%bs = %th.d. T %fug (2.9b)

The fugacity fi of component i in a mixture is defined by the equa-

tion (see e.g. (Hi 54), p.389)

R PR S L o LT (2.10)
il I 3 L e e RT o i o P ’

in which R is the gas-constant and Vi the partial molar volume. It is
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clear that the value of fi will depend on the equation of state that is
used. Velds et al. worked out in detail the formulae for the Van der
Waals equation and the simplified Beattie-Bridgeman equation of state. The

last mentioned equation has the form

pV=RT+Bp (2.11a)

where V is the molar volume of the mixture and B is a function of tempera-

ture and composition

g 2 2
B = an1 + 2812x1x2 + B22x2 (2.11b)
L " ) 3
Bij = (BO)lj (AO)ij/RT Cij/T (2.11¢)
(Ao)ll (BO)ii and c;; are empirical constants for the pure gasesj the

constants with unequal suffixes are found from those for the pure gases by
the use of combination rules.

Formula (2.11a) is also a form of the virial equation of state.
This equation can be written as an expansion in negative powers of the
specific volume V or in positive powers of the pressure p. Using this last
type of expansion and cutting off after the second term gives equation
(2.11a). The concentration dependence (2.11b) of B is the same as in the
simplified Beattie-Bridgeman equation but the temperature dependence
(2.11c) is not the same and is determined by the type of interaction po-
tential used.

The basic statement of the fugacity theory is that the fugacity fi
of each component gas is the same in the hot and in the cold part of the

apparatus or
£0T )03 £:00 ) (2.12)
< AR i"h

where T denotes the temperature of the cold and Th of the hot part of the

apparatus. For the simplified Beattle Bridgeman equation of state we have

in a two-component system (Ve 67)




T)

In £,(T,p,x,) = In(px. ) + R (M+1-x")? am)) (2.13)

with

A(T) = 2B, ,(T) - B, (T) - B, (T)
the superscript (T) indicating that the value of g is meant in the region
with temperature T. Combining (2.12) and (2.13) we have the relation

(T, ) O Fin : & o B
ln{xi h p{— B, (T,) : A(T, ) (1-x."h") . B,,(T) . AT )(1-x; ¢”) }

Tﬂ‘ = =

X, C R T T T T
i

“h h c “c
(2.14%

Writing down (2.14) twice, once for i=1 and once for i=2 and subtracting the

two equations, we find for the separation

ngh)/x;Th)
Q= T, (1) (2.15)
X, c /x2 c

due to the equilibrium properties of the mixture

(T)
c

(T))
o p P B g (T =Boo(T )+(x, e’=x,"e”)A(T ) .
—— 14 R T
é
- ) e I T e
i Byq (T )=B, (T, )+(x,"h7-x."h )A(.h)} e
Th

(2.16), with the omission of the superscripts (Th) and (Tc) of the x, is the
formula used by Velds. The values of the Xy he used are the initial molar

fractions. We wish to maintain the superscripts for the following reasons

1« From the basic formula (2.12) it follows that the equilibrium part of the
separation is found from the local values of temperature, concentration

etc., in the upper volume and, separately, in the lower volume. This
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means that it is in principle incorrect to use an intermediate value for

the concentration and, moreover, the neglect of a factor contributing to

the separation.

2. Using the initial concentration ratio for the mean value means that no
account is taken of the conservation of the number of particles present
of each species. If we introduce this conservation law into our conside-
rations we find that the value of the separation will change with the
ratio of the upper and lower volumes.

3« Al{hough, as stated, no cross-effects exist between the equilibrium and

(1) (T)

and X, ¢ to be used

in (2.16) are the actual values, i.e. the values after both effects have

non-equilibrium properties, the values of X

changed the concentrations. This enhances the effect mentioned under 2.
in the case that the two kinds of separation reinforce each other, other-
wise decreases it.

The reasons, mentioned as 2. and 3., are valid for all calculations of
thermal diffusion factors. That they are mentioned here comes from the fact
that here it is possible - at least approximately - to take them into account.
In other calculations, starting from a thermal diffusion factor at some inter-
mediate temperature,this is less simple.

The use of (2.16) instead of a formula with mean values of the x; com-
plicates the mathematical treatment, inasmuch as the equation has now become
transcendental. Moreover, we have to introduce other equations as the system
is no longer sufficiently described by (2.14). To solve the problem we have
started from the actual filling procedure used in our and most other experi-
ments. First one gas is introduced into the system until the desired pressure
P4 has been reached. Using again the simplified Beattie-Bridgeman equation

(2.11) for one component we find for the number N1 of moles present :

P,V p.V
N, = —— L& + I (2.17a)
RTC+BH(TC)p1 RTh+B11(Th)p1

where V. and V are resp. the hot (upper) and cold (lower) volume. Then the

second gas is introduced until the final pressure p has been reached.

The total number N of moles present is :

pV pV.
< + i =C +C (2.17b)
RTh+B(Th)p

=
"

RT +B(T )p
c c




Here Cc denotes the total number of moles present in the cold, Ch in the hot

volume. It will be clear from the definitions that

(2.19)

The system is now fully described: (2.16), together with (2.15), the
values of N, N., C_and C_ and the equations (2,18) and (2.19) form a sys-
1 c h
(D) €T (T.)
1 S x2 ) X, ¢ and

X (Th). The method used for the solution of this system will be discussed

tem of four equations in four unknowns, viz. X
-
in chapter V.

‘ The same procedure could be followed with any other equation of

‘ state. The fact that we have chosen the simplified Beattie-Bridgeman equa-

' tion instead of e.g. the Van der Waals equation comes from the easy mathema-
tical tractability of the formulae and is not to be considered as a funda-

! mental choice.

d. PAIR-CORRELATION THEORY

As discussed below eqn.(2.7b), the thermal diffusion factor can be
calculated when the heat of transfer QT is known. To find this quantity one
can suppose that only two-body forces are acting between the various mole-
cules. This restricts the discussion to the one-particle and two-particle
distribution functions, the last one giving the distribution of pairs of
molecules as a function of position, momentum and time. A number of authors
have been using this supposition to calculate QT, the most complete treat-
ment having been given by Bearman, Kirkwood and Fixman (Bm 58). Starting

| from the Liouville equation they derive an expression for the heat flux a
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in a two-component system, using the assumption mentioned and supposing
further that the molecules interact with central forces and that no ex-
ternal fields of force are present. Their expression consists of a part Ek
that gives the kinetic contribution and a part a¢ giving the effect of the
intermolecular forces on the heat flux. The calculation of the kinetic
contribution can be performed without difficulties; for the calculation of
the contribution of the intermolecular forces a number of approximations
must be made. The most important of these is the supposition that a number
of friction coefficients in pair space are direct sums of comparable coef-
ficients in singlet space.

These friction coefficients are needed to express in terms of mole-
cular velocities the deviations of the mean thermodynamical forces from the
values these forces would have if the system was in equilibrium. This means
that the interaction between two molecular pairs is split into two times
the interaction of two separate molecules, which is true in the case of a
large distance between the molecules of the pair. The final formula for the
heat of transport consists of two parts, one using equilibrium quantities,
the other containing the non-equilibrium contribution. We have used only
the equilibrium part as this may be expected to give the most important con-
tribution to the heat of transfer and the non-equilibrium part can not be
calculated in a simple way to a useful degree of accuracy. We will give the
depivation of the equilibrium contribution from the formula for the heat
flux in a two-component system given by Bearman et al., (loc.cit.), which is
a generalization of the formula given by Irving and Kirkwood (Ir 50) for one

component (see also (Hi 54), chapter 9). This expression reads as follows

ey 550)
> 2
2 m P e -
with Ek(;) s+ '[__9, k. iy (-—l - v>f(1)dp1
a=1 2 |m = m S
o3
T N HE - ¢ D :R} 32 3 H3 2 P@D) &
q°(r) s !az1 BZ1I {QaS(R L ¢aB —; ]uB,l s VolaB o

P 2).,> -> -
(-I:..ﬁ) = J'J' m fig)(r,;',p,;')di;dp'
a




In these formulae is f (r,p) the one~-particle, f ( )(r r! ,p,p') the two-
particle distribution functlon R is the 1ntermolecular position vector,
( )(r R) is

the number density of molecular pairs with one molecule located at r, the

OlB(R) the intermolecular potential, ¢&B(R) its derivative;

-> > -~ 3 . 3 :
other at r' = r + R. The other quantities have their usual meanlng, the

suffixes denoting the molecular species. From the formulae for q and
2(2) ¢

‘a8, 1
vector on the space of r), we see that

(the last one is the projection of the six-dimensional pair flux

_;

g3 +
3@ =3 ] ] [{s 001 (R)—-}{jf(— SOED B R (2.21)
a=1 B=1 Mo
We now suppose

e

e P > > > > >
ff(—— -v )f(z)dpdp f(;— -vo)fi1)( ,p)dpff (r',p')dp'g(r,R) =
Pa a

na(r) v ns(r') g(r,R) (2.22)

using for the last change the definitions of the one-particle distribution
function and the diffusion velocity v of component a. n (r) and n (r') are
number densities in singlet space; g(r, R) is the radial dlstrlbutlon func-
tion, which is supposed not to depend on the composition of the mixture.
(2,22) assumes that no relation exists between the velocities of the compo-
nents of the pair.

Introducing (2.22) into (2.21) we find

do o RR
= } 2 Z n (r)v fn (r'){¢ sU- 22 —]g(x,R)dR
a=1 Bg=1 dR R

or, to a good approximation, as the number density will not vary much over

distances of the order of the intermolecular distance

>

: douB RR > > >
= } E 1 n (r)n (r-)v J{e U~ — —la(r,R)dR (2.23)
a=1 B=1 “ dR R 35




(2.23) is now split into two contributions following the expression between

braces
q! = 1 § § (r) (*):f 5 (r,R)dR (2.24)
q¢ 2&:1 8£1nOl By Gl ¢uB gLr's i >
-»> 2 2 -»> -+ : d¢lu8 ?{}i -
q; = ; Z z n (I‘)I’IP(!")VGI e dRrR (2.25)
a=1 8=1 ¢ : d8 R

The internal energy per molecule in a one-component system, due to

the intermolecular potential energy,can be given as

u¢<?) = In(r) [¢(R)g(T,R)dR

Assuming equilibrium we can substitute q; by u¢ in a one-component
system (no summation, a=8=1). To find the relation between q& and uy in a
two-component system we shall use the following considerations: as the po-
tential energy of a molecule is the sum of the potential energies resulting
from the interaction of this molecule with every single molecule in the
vessel, the supposition of two-body forces allows us to write for the po-
tential energy of a molecule of species 1 in a mixture of components 1 and

2
u (P = 3o, (¢, (Rg(r,R)R + n,(F)[¢,, (R)g(r,K)dR}
$1 1 11 2 12 \

and the mean potential energy of a molecule is

u¢(;) =.x u (P + x.u ()

1%1 242
2 2
__1_ > > > > >
= o Z Z na(r)ng(r)f¢08g(r,R)dR (2.26)
a=1 B=1
2 2

az1 821x°x6u¢’06




when we denote particle fractions with Xy

The total energy per molecule in a gas is made up of a potential and

a kinetic contribution. As the last one is the only one present in an ideal

gas, we may write, taking the quantities per molecule

u (r) =u, - u(o)
¢,aB af af

the superscript zero indicating that the value for an ideal gas is meant.

The pressure tensor for a gas is, just as the internal energy, made

up of a potential and a kinetic part. In the case of a single gas in equili-

brium the total pressure tensor becomes diagonal with elements

1
p = nkT - Z n2f %% g(R)MWdeR (2.28)

the second term on the right hand side representing the potential contribu-
tion. Using the same kind of reasoning as with the potential energy we can

generalize this expression for a two-component mixture as

1 2 2 - i d¢GB(R) 3
p=nkT -- J Jn (r)n (r) [——— g(R)47R"dR (2.29)
6 a=1 =1 ¢ dR

Comparing this with the virial equation of state truncated after the

second virial coefficient

2 2
p=ukr+ BRADKE . o KL F § (F)n (2B, (T) (2.30)
| v oV =1 g=1 % &

we find the desired interpretation of (2.25) if q&' is taken in the equili-

brium situation.
In (2.30) is V the molar volume and BaB(T) are the virial coeffi-

cients specific for the interaction between the various components. Combi-

ning eqns.(2.23) to (2.30), all for the equilibrium situation, we find

2 -—

5 0

Y x x v (u -u( )) + KLy x

E =n % B
a=18=1 ¢ B a aBf aB G a B aB

<+l

4 (2.31)
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The contribution to the heat of tramnsfer of E¢ is then found by di-

viding E@ by the mass-flux J1, given as

J. =nmv, =-nm v (2.32)

the last form resulting from the supposition that the center of mass of the

system is at rest. This gives, using n, =X .M,

o) a0y X 5

¢t = o b 1 e M X ByqPoluy5m0, 4057 By ’
1,9
™
(0),. kT o), . P
3 X, (0 5mug " 4% G By #xo(upmuo) Do By
H

or, multiplying both numerator and denominator with Avogadro's number,

x -(o) RT (0),  RT
) x1(u11 )+x v B11+x (u 127992 )+x2\7 812
Q* = =
1,9 -
1
~ =00 s =C0) RT
N x1(u12-u12 )+ x1v B ST (u22 U0 )+x29 22 (2.33)
Ba

a wave denoting a quantity per mole.
From the relations between the thermodynamic properties and the equa-
tion of state it is easily derived (see e.g. (Hi 54), chapter 3) that for

the virial equation of state in the approximation earlier used

RT Sl - _=(0)
5 By R ) (u4j Uy )




wherein hij denotes the specific enthalpy, calculated for a hypothetical
(i#j) or real (i=j) gas, consisting of molecules i or molecules with a com-

bination of the properties of molecules i and j and which changes (2.33)

into
x Gy =530 G B0y e (RSO e, 50
= [YES 1 22
Q = . = % (2.34)
1,4 m m
1 2
As will be clear from (2.24) QT ¢ 8oes to zero with the pressure.
b}
Supposing that the pressure dependence of Q? is fully contained in
QT ¢ we may write, according to (2.7a) and (2.7b),
s
*(0) . (0) , (0)
L0 _ R, Ty My
- (0)
c13u1 /3c1
with

»(0) _ x = ok
01 3 Q1'¢

Combination of these formulae with (2.7a) gives

(0) ©1 3u$0)/3c1 x1(ﬁ1 (O))+x (h (0)) (h h(O))
a=a + -~ -
e, 3u1/8c1 m, ¢, 3u1/3c1
~ ( 0) (O) ~(0)
! x1(h12 )+x2(h22 29 )=(h h2 )
52 ¢, 3u1/8c1

or, using the virial equation of state to second order and the corresponding

formulae for the specific enthalpy and thermodynamic potential,

ao+p/RT{(B22—T dB,,/dT)-(B, T dB, ,/dT)+(x,-x,)(A-T da/dr)}

s (2.35)
1-2pr1x2/RT
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in which

A(T) = 2B12(T) - 811(T) - B,,(T)

22

The final formula of (Bm 58) for the equilibrium contribution is
identical with (2.34) up to terms of the order of the third virial coeffi-

cient and a correction factor

1+ pB(T)/RT

It must be kept in mind, however, that the thermal diffusion factor
can not be calculated from the formula given in (Bm 58) for QT in combina-
tion with the expression for 31 in that publication, as this will introduce

an error of a factor

with respect to the common definition of the thermal diffusion factor, due

+o the choice of the reference system in combination with molecular units.




CHAPTER IT"1I"1

PTHE FORMNMATIONQOF DEMERS AND I'TS EI'EECTS
ON THERMAL DIFFUSION

DIMER CONCEPT

As early as 1904 Jeans (Je O4) mentioned the possible existence of
double molecules. Several investigators did detect them in adiabatically
expanding molecular beams (Gr 1) as well as in systems where this expansion
and the consequent cooling did not take place (Le 66). The amount of double
molecules to be expected in a given gaseous system was calculated by Hill
(H1 55), Stogryn and Hirschfelder (St 59), Kim and Ross (Ki 65) and others
(Gr 2). In this thesis we will mainly use the results of Stogryn and
Hirschfelder, which are partly based on those of Hill.

For the calculation of the dimer concentration we start from a known
interaction potential ¢(r) which is only dependent on the intermolecular
distance. Throughout this part we will neglect intermal degrees of freedom.
After the well-known reduction of the three-dimensional scattering problem
to a two-dimensional one by the use of center-of-mass coordinates (Hi 54)
we may write down the laws of conservation of angular momentum and conser—
vation of energy in polar coordinates

S
ubg=ur 9 (3.1a)

3w g2 =3 u (02 + 0282 + ¢(r) (3.1b)

In this formula is u the reduced mass of the colliding pair, b the impact
parameter, g the relative velocity and 6 the angle of deflection. Elimina-

ting 8 we find

2
fug =:ur2+}ug2<b—2'>+ $(x) (3.2)
r

Here the only variable left is r, so that we have reduced our scattering

problem to a one~dimensional equivalent as far as the separation of the
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molecules is concerned. This separation is the only thing of interest for
the dimer concept, so that (3.2) gives the whole description of our problem.
We may consider (3.2) as giving the motion of a particle with mass u

in a potential ¢eff(r), the effective potential, given as

\

2 (b2
¢eff(r) = ¢(r) +u g <?) (3.3)

The relative kinetic energy of the two particles, which is 1/2 p g2,

will be indicated by the letter Ej the factor E b2 is called L. Taking for

¢(r) a known potential, for instance the Lennard-Jones (6-12) potential

12 6
#(x) = 4 e {(D)'F - (%) } (3.4)

we may draw the curves for ¢eff for different values of L, as has been done
in fig.3.1. The zero of energy is defined as the potential energy of the
particles at infinite separation.

LT

]

Fig. 3.1

Effective potential energy curves for the Lennard-
Jones (6-12) potential for different values of the
ceor angular momentum I. L = I?/2yu where y is the reduced
mass of the colliding molecules,




From this figure we see that for values of L different from zero,

but not too big, (r) has a maximum beside the minimum due to ¢(r). As

¢
the value of L inciiises the minimum and the maximum coincide in an in-
flection point for L = Lc = 2,462y 502. For values of L bigger than LC no
extremum exists any longer. The value of ¢eff(r) in the inflection point
is indicated as Ec.

Two kinds of dimers may be introduced now. In the case of a three-
particle collision one particle may gain a certain amount of energy, leaving
the other two trapped in each other's potential well. Here two possibilities
arise
a. The relative potential energy of the two particles is less than zero.

b. The relative potential energy of the two particles is bigger than zero,
but less than the maximum in the effective potential.
Case a. has been discussed by Hill (H1l 55). The double molecule that has
been formed is called a stable dimer: neither classically nor quantum-mecha-
nically the two particles will separate without external disturbances.
Case b. has been introduced by Stogryn and Hirschfelder (St 59) and is
called a metastable dimer. Classically the particles stay together, quantum-
mechanically the tunnelling process will finally allow them to separate. As
long as the lifetime of such a metastable dimer is longer than the time be-
tween two collisions these molecular complexes behave like stable dimers.
Stogryn and Hirschfelder calculated the lifetimes of these metastable dimers
with the help of the W.K.B.approximation for the Lennard-Jones potential.
They took three, about equally spaced, values for L and calculated the life-
times of the metastable dimers for four values of E for each of these L~
values. The L-values covered the range in which metastable dimers can be ex-
pected (0 to Lc) and the E-values covered the range determined by the L-
value (minimum to maximum in ¢eff)' The results are given for the case of
Ar, where the vast majority of metastable dimers has a lifetime exceeding
the time between two collisions at temperatures not too far from ambient and
atmospheric pressure.
We calculated the lifetimes for the metastable dimers of several

other gases: H He, CHu, N CO2 and CQHQ. For CHQ, N2, C,H 002 and Kr

2’ 2,
the results were comparable to those of Ar. For H

2
. and 10 i3 seconds, with all values except one

27y
and He however the life-

times varied between 10~
-9 = g -
smaller than 10 seconds. As this is shorter than the time between two col-

lisions we may conclude that the role of metastable dimers is negligible
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here. As the mean temperature in our apparatus is higher than ambient and
the pressure well above one atmosphere it will be permitted to consider the
metastable species as real dimers, except for H2 and He.

A third kind of dimer has been introduced by Kim and Ross (Ki 65).
Starting from the fact that -for a value of E somewhat bigger than the maxi-
mum in the effective potential the phenomenon of orbiting will occur, which
means that two particles stay revolving around each other for some time be-
fore separating again, they extended the region of E where dimers could be
formed: regardless of the value of L they consider as dimers two-particle
systems where E_:Ec. The extra amount of dimers is referred to as quasi-
dimers. Although the mean lifetime of quasi-dimers is too short to take
them into account as real dimers, their importance mainly comes from the
fact that for their existence only a two-particle collision is needed. Be-
cause their mean lifetime is longer than the mean duration of a collision,
they enhance the possibility for the three-particle collisions needed for

the coming into existence of the stable and metastable species.

b. PREDICTIONS OF THE DIMER CONCENTRATION

For the calculation of the concentration of stable and metastable
dimers, in which we will follow the treatment given by Hill and by Stogryn
and Hirschfelder (loc.cit.), we consider the formation of dimers as a che-

mical equilibrium

2AZA, (3.5)

" .
K = a, N,V / a, N (3.6a)

where the a,; are activity coefficients and the Ni are the numbers of mono-
mers (N1) and dimers (N,) present in the system. As it is more convenient

for us to express K in mole fractions Xy instead of numbers of molecules Ni
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we use the equivalent expression

K =%, / Xy n (3.6b)

where n is the overall particle concentration. The a; have been put equal
to 1 in (3.6b) which means that we consider the system as ideal as far as
the reaction is concermed.

From the equations given by Hill (Hl 55) it is easy to derive the

relation

{(q

2t Qp) tee . |} (3.7)

AG
ve
where I\2 = h2 / 2mmkT, V is the volume of the system and Q?b and Q2m are
the partition functions for stable and metastable dimers resp. The dots
stand for terms in a series expansion which contain combinations of parti-
tion functions, multiplied by functions of concentrations of monomers, di-
mers and higher polymers. These terms correct for the interactions between
clusters. We will not take these interactions into account for the calcu~-
lation of the dimer concentration. This approximation is only valid as
long as the concentration of clusters stays low enough i.e. for pressures

which are not too high or temperatures which are not too low. From (3.6a)

or (3.7) we may conclude

\6
K= 2= = 0 0] (3.8)

7
N.I V

N

<<

We now come to the calculation of the partition function for double
molecules. The general formula for this function is (see f.i. Ma 40 or
Hi 54)

S e
Q=5 /e

T
- dxdydzddedrdpxdpydpzdpedp®dpr (3.9a)
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with the Hamiltonian

2 2
S P P Py

H =gy R, 19, )t TRt —5n) 4 + ¢(r) (3.9b)
my sin 6 m

%X, y and z are the coordinates of the center of mass and 6, ¥ and r are the

relative (polar) coordinates of the two molecules. Making the change of

variables
p pe P p!‘
= s —_JL-—T 2P v Se——
 ~ mrAr?® ¥ (mArsin?e)? T (uk1)?

and integrating over x, y, z, 8 and y we get for (3.8a,b)

1
ey 6 2 WP 52 2 o2 15
Q, = 2Vr “A [r“exp{ Tt Ml P }drdedPedPr (3.10)

Up to this point the calculations of Hill (stable dimers) and
Stogryn and Hirschfelder (metastable dimers) are the same, but now each one
goes his way by the choice of the limits of the integration to be per-
formed. The terms between braces in the integrand of (3.10) together form
the total energy divided by kT of the two-molecule system. Hill now consi-
ders the system to be a dimer when this total energy is less than or equal

to zero, in formula

P2+ 22+ B % < - o2/t (3.11)

(3.10) may be split up in two separate integrals :

T
i

= [ 2 2 2 2
Q, = 2Vr aA s[fr exp{- Q%El}dr][fexp{~(Pe +Pw +P )}dPedP dPr] (3.10a)

v

The region of integration of the triple integral in (3.10a) is de-
termined by (3.11) and the fact that a sum of squares of real quantities is

larger than or equal to zero. The integration over Pe, PW and Pr may now be
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performed and the result is expressed in the gamma function and incomplete

gamma function :

{é _Q(I‘)}
TR

(3.10b)
3
F(E)

» 2 2 2 s [ )
[exp{ (Pg“+P “+P_ )}dPededPr T

The limits of integration for r are the values of r between which
¢(r) < 0. Taking for ¢(r) a potential which is negative for values of r

larger than a certain ¢ we have at last

- 2VnA'6fp2e'¢(r)/kT[r{%,-3§§l}/r(%>]dr (3.12)
o

Ly

For the calculation of Q2m we start again from (3.10). The term be-
tween braces is equal to the relative energy of the particles, divided by

kT,so that
2 2 2
E = KT(P +P. ) + kTP + ¢(x) (3.13a)
6 /] :
The centrifugal part of ¢eff(r) (See(3.3)) is found to be
2

kT(P62+Pw )= BbA/e (3.13b)

As only the sum of the squares of P, and P, comes into play we may intro-

e v
duce a kind of polar coordinates instead of Pe and PW for the integration,
so that
. S 2
fdPede 8 o frz d(Eb“) (3.13c)

Introducing (3.13a,b,c) into (3.10), substituting E for P_ with the
help of (3.13a) and remembering that P may be negative and positive to

give positive values of E, we find
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Q, = 2an/2(kT)'3/2A'6f{B-¢(r)—EbQ/rz}’l/ze_E/de(EbQ)drdE (3.14)

The regions of integration must now be found. For E this is simple
enough: E has to be larger than 0 - otherwise we would have a stable dimer -
and less than Ec. For a fixed value of E only a certain range of values for
Eb2 gives rise to metastable dimers as will be clear from fig.3.1. The 1li-
mits for the integration over r, however, do depend on the value of Eb2. At
the turning points of motion of the two particles in each other's effective

potential, rf(E) and rh(E), the kinetic energy has to be equal to ¢ i &
e

E = o(r) + Eb2/r?
or

Eb2 = r2{E - ¢(r)}

This gives the integration area for the combined integrations over

Eb2 and r. (3.14) may now be written as

Q = Uy *+ Uy (3.15)
EC rh(E)
Q2m = yynl/2(xT)~3/2)-6 f J r2{E-¢(r)—Ebf2/r2}'l/ze_z/derdE
0 rf(E)

where bf(E) is the value of b for which the initial kinetic energy is equal
to the height of the hump in Qeff'

The combination of (3.6b), (3.8), (3.12) and (3.15) gives in prin-
ciple the possibility to calculate the dimer-concentration for a gas with a
given potential and under given experimental conditions. Stogryn and
Hirschfelder did calculate the integrals (3.12) and (3.15) for the square
well, Sutherland and Lennard-Jones (6-12) potentials. Their results for the
Lennard-Jones potential (which were obtained partly numerically) have been

used in our calculations.




c. THERMAL DIFFUSION IN MIXTURES CONTAINING ONE DIMER-FORMING COMPONENT

The formation of dimers, as discussed in the foregoing paragraphs,

can be considered as a chemical reaction with equilibrium constant given in

eq.(3.6b). K is only temperature dependent, the pressure dependence of

x2/x12 is contained in n. When we raise the pressure of a mixture of two

gases in which one component is able to form dimers we have two effects

that do influence the thermal diffusion in such a system :

1. The formation of dimers changes the mixture from a two-component to a

three-component one.

2. The temperature dependence of K gives an other equilibrium value for the
dimer-monomer ratio in the high-temperature part of a thermal-diffusion
apparatus than in the low-temperature part. This gives an extra unmixing
in the two-component system.

To work this out in detail we will make two assumptions
a. The chemical reaction (3.5) is fast compared with thermal diffusion so

that local "chemical equilibrium between A and A2 is established.

b. Thermal diffusion and dimerisation do not have cross-effects. This fol-
lows from the Curie principle, as the dimerisation has a chemical and
therefore a scalar character, whereas thermal diffusion is a vectorial
phenomenon.

As a consequence of the first of the two effects, mentioned above we
will have to use a formalism for thermal diffusion in ternary mixtures, for
which we choose the formalism given by Van der Valk (Va 63) which is based
on that of Waldmann (Wa 58).

‘ The analysis of a thermal diffusion experiment is usually done at

low pressures (e.g. in a mass-spectrometer) where the reaction (3.5) has

gone completely to the left side. This means that we have to distinguish

two kinds of mole fractions: X1s %, and X3, respectively the mole fractions

of monomer, dimer and second component at the pressure of the experiment
and ;A and §E’ the mole fractions of first (dimer-forming) and second com-

ponent at low pressure. The relations between them are

X, + 2%

“ 1 2
I (3.16a)
2
- Xq
X = (3.16b)
B X,
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The experimentally obtained thermal diffusion factor is

a =

grad §B

(3.17)

xAngrad InT

We will see now how this thermal diffusion factor does depend on the
amount of molecules A forming dimers.

Fipst of all we will have to find a relation between the diffusion
velocities or fluxes in the system. Because we have a reacting mixture we
will have to distinguish different velocities because even in the equilib-
pium situation the mean particle velocities in the center of particles and
in the laboratory system are not the same. Denoting the diffusion velocities
in the laboratory system as 3i and those in the center-of-particles system

> -
as Ni we have the relation

- S T .
W, =v., ~w gy i=1,2,3 (3.18)

A 3 . . .
where w is the velocity of the center-of-particles with respect to the la-
boratory system. According to the definition of w we may write

-> >
w = E X Vo (3.19)

In the equilibrium situation we have as a consequence of the fact
+hat the center of mass of both component A and component B is at rest
- A - &>
1 vy ® 03 this means that w = -w3

-+ -+ : s . .
2. m.n, v, + mon,v, = 0. Because m, = 2m1, this gives, when we divide by the

total particle concentration n and m,

X. Vv, + 2x.v, =0 (3.20)

Both results can also be derived by a way of reasoning based on the
fact that the velocity of the center—-of-particles of both components is

zero. By subtracting (3.19) once from (3.20) and remembering that 33 =0
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(3.21a)

or, with the help of (3.18)

-

x2ﬁ2 - (1+x2)w3 =0 (3.21b)

3.21b) is the equation which forms the basis for our evaluation of the
thermal diffusion factor in a gas mixture where dimers are formed.

In the notation of Waldmann (loc.cit.) we have

|
2y
!

a1

D.. grad X, = DT. grad InT (3.22)

1] "

where the Dij are multicomponent diffusion coefficients and the D.. multi-
-
component thermal diffusion coefficients.
In this expression one of the concentration gradients can be elimi-

nated by means of

) X, =1 (3.23a)
i

or
) grad x, =0 (3.23b)
i

so that
'_7 = - -D - - - 8 T 3.24
W, (D12 Qa)grad X (DQ2 Dga)grad %,~Dp,grad InT ( a)
>
W. =

=D =D -(D,. - - T 3.24b
( 13 33)grad X, (023 Daa)grad % ,=Dy ,grad 1nT ( )




The relation between X, and %, given in (3.6b) gives the possibility
to eliminate X, by supposing that chemical equilibrium is established. From

this equation we find

2
X, = (nK) X, (3.25a)

so that

grad x, = x12grad(nK) + 2x](nK)grad X,

As nK is dependent on pressure and reduced temperature only while
the pressure is constant throughout the apparatus we may substitute
grad (nK) by an expression in which the gradient of T or 1nT appears as
the only gradient.

Introducing a quantity A by means of

»

X = =2z (nK)x, (3.25b)

1
we see that

grad X, = x2(nK)'Tgrad InT + 2Agrad % (3.26)

where the prime denotes the derivative to T.
When (3.24a) and (3.24b) are combined in (3.21b) the thermal diffu-

sion coefficients are combined as

_XQDTQ . (1+x2)DT3

The DTk can be expressed in formal multicomponent thermal diffusion fac-

tors in the way as given by Van der Valk (Va 63)

Do =L Des®i®s%sg
i,3




The combination of (3.21b), (3.24a), (3.24b) and (3.26) gives us an

equation in which the only gradients are those of X, and InT

[{-x2(512-023)+(1+x2)(D13-D33)}+2A{-x2(D22—D23)+(1+x2)(D23-333)}]grad X+

2 ' - - - - ] —
+[x] (nK)"T{ XQ(DQQ D23)+(1+x2)(D23 DSG)} x2DT2+(1+x2)DT3]grad InT =0 (3.28)

DT2 and DTB can be eliminated by means of (3.27).

To find an expression for the right side of (3.17) we have to find a
relation between grad %y and grad EB' This is done by using the inverse

formulae of (3.16a) and (3.16b), found with these formulae and (3.25b)

- ) B
8 X, Ay i ( QA)xB
Xy Eom—e=e R, B om——e o g B et (3.29)
LI PO 2 ek S PP
N - i e

The first of these equations gives (remembering that ;A t X3 = 1, so that

grad iA = -grad iB)

-(1+Ax1)2grad RB = (1+2))grad X, + x1(2-x1)grad A
grad A is found from the second expression for A in (3.25b) as

grad A = x1(nK)'Tgrad InT + (nK)grad X,

so that

~(1+Ax1)2grad T (1+MA—2x12)grad St (2-x1)x12(nK)'Tgrad InT (3.30)

B 1

Combination of (3.28) and (3.30) would give an expression in which
grad EB and grad 1nT are the only gradients. Before writing it down we will
make two more changes. First we replace the X by Xy and X5 according to
(3.29) because we know from the experimental conditions the values of these

quantities and not of the s In the second place we substitute the multi-
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component Dij by the binary diffusion coefficients D (i,j). This is done
by the method given by Waldmann, which is wvalid up to the first Chapman-

Enskog approximation. The general formula for this substitution is

x.(D.,=D..) 8.
) ’JER%ETjJE_ e (3.31)
1,7 x

from which explicit expressions can be found for the differences of two
multicomponent diffusion coefficients. Doing this for the three-component

mixture we have at hand, making use of (3.27) and substituting the x, by

iA and RB’ we find from (3.30) and (3.28) the following expression for
Xpp
Bia® <Gy [{xAD(1,3)D(2,3)-2D(1,2)D(2,3)+(1+xB)D(1,2)D(1,3)}xA(nK)'T—
—(1+2}+2Ax8){{D(1,3)-2D(2,3)}Xa12xAD(1,2)+
+('I+2X)XAD(1,3)D(2,3)(a13-)\a23)+

+(1+2A)XBD(1,2){G13D(1,3)+2Ru23D(2,3)}}]
(1+42)) (142+2%. ) { (1423)%, D(1,3)D(2,3)+x . D(1,2)D(1,3)+
- A -

+ux>’cBD(1,2)D(2,3)}]'1 (3.32)

To find A it is not necessary to know X, and X, from (3.25b) and (3.29)

it is easily found that

p oz e @ 0-x,7) J{2014%)] (3.33)

We calculate the ternary thermal diffusion factors aij (the a's are
ternary, the a's binary quantities) with the formulae given by Van der Valk
(loc.cit. formulae (13), (14), (16), (17) and (18) and the binary diffusion
coefficients in the first Chapman-Cowling approximation.

A is calculated from (3.20); for this we use the value of iA’ known
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from the low-pressure analysis, the value of K according to Stogryn and

Hirschfelder and a value of n which was found by applying the ideal gas law

to a ternary mixture. For the mean temperature of the experiment we used

the geometric mean of the temperatures of the two bulbs of the apparatus; a

control calculation where the value of a thus obtained was used to find the

concentrations at various points in the diffusion tube and using these va-

lues to find a second approximation showed that this supposition was good

enough for our purposes: on a thermal diffusion factor of about 0.4 the se-

cond order correction was 0.004 i.e. 1%.

The numerator of (3.32) may be split into two groups: the one that
is multiplied with iA(nK)'T and the one that is multiplied with (1+2A+2x§B).
The first one gives a contribution due to the fact that nK is temperature
dependent, whereas the second one gives the change in a due to the mere

presence of a third component,

d. THERMAL DIFFUSION IN MIXTURES WHERE BOTH COMPONENTS MAY FORM DIMERS

Again we consider a mixture of two gases A and B, but now both com-
ponents may form dimers. A third kind of dimer will be present then, namely
a dimer formed from one molecule of component A and one of component B. We
will refer to this kind of dimer as a mixed or hetero-molecular dimer. The
dimers consisting of two similar molecules will be indicated as homo-mole-
cular.

Supposing, as in part c. of this chapter, that the analysis of a
thermal diffusion experiment takes place at low pressure where all dimers
have changed into two monomers we have as our experimentally determined

thermal diffusion factor

e grad x -grad x
a,. = 2 = 8 (3.34)

xAngrad InT xAngrad InT

where §A and §B denote the mole fractions during the analysis i.e. at low
pressure.

For the five components of the mixture present during the experiment
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we will use the following notation

: monomer A

: dimer A

2
dimer AB
dimer 82

: monomer B

The rest of the notation and the reference system will be along the

same lines as in part c. of this chapter. We now have three reactions

(3.35a) and (3.35c¢c) have equilibrium constants

just as in (3.6b). For mixed dimers a corresponding formula applies

We have to keep in mind that, for the case of equal a priori proba-
bilities for the formation of dimers, the concentration of homo-molecular
dimers is proportional to X,
molecular dimers is proportional to 2x1x5 if we use the same proportionali-

ty constant. As in part c. we will use a notation for mole ratios

2 3
or Xg whereas the concentration of hatero-

.
.

(3.35a)

(3.35b)

(3.35¢)

(3.36a)

(3.36c)

(3.36b)




A = — s A = — (3.37)

First we will try to find an expression comparable to (3.21b). We
will proceed along the same lines as used there. (3.18) and (3.19) stay va-
lid with i = 1, 2, 3, 4, 5. As in the equilibrium situation the center of
mass of component A is at rest it is clear that for the diffusion velocities

in the laboratory system the following relation must hold

ot (e e D3 . Dalg¥s = 0
3
As m, = 2m1, this is equivalent to
V. o+ 2%V v, =0 (3.38)
)(1\}1 + X?V2 e X3V3 - .

where we have divided by n, the total number of molecules. The same expres-
sion is found when we start from the center of particles of component A be-
ing at rest. From (3.19) written down for five components we find with

(3.38)

. - . . ->
Using (3.18) we can derive from the last expression a relation between w,

j St <
the ;: by the ﬁi and w gives the following result :

W., W. and the Xy which, when introduced in (3.38) after substitution of

~x. (% +2% +x W =x_(2=%.-x W _+x (2-%.-x W +x_(x_+2% +x_)W_=0 (3.39)
1" a1 PRI T 1 08 22 % ¥ 824 S 3 At 58S

In the derivation of (3.39) we have used also (3.23a) written down for five
components. (3.39) is the parallel formula of (3.21b) in the simple case;

putting X, and X, equal to zero gives (3.21b) from (3.39).

i
In (3.39) we substitute the ﬁi by the expressions used by Waldmann
and given in (38.22); next we eliminate grad X, by means of (3.23b). The DTi
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are substituted by multicomponent diffusion coefficients and multicomponent
thermal diffusion factors with the help of (3.27). Introducing a new func-
tion

DS i = ¢ =D, . )-x,(2-%, - ~D,,,
x1(x1+2x +x3)(D11 D1]) x2(2 X, xs)(D21 D2])+

2
+x“(2-x1-x5)(Dui—Duj)+x5(x5+2x“+x3)(D5i-D5j) (3.40)

which has the properties

DS.. = -DS.. 3 BBy =0 (3.41a)

DS,. + DS, = DSi (3.41b)

it is a matter of some calculations to show that using (3.36) and (3.37) we

can write (3.39) in the following form

(DS13+2R2D823)grad X, + (D853+2)uDSu3)grad Xo +

2 ; 2 q 1 5
+{x1 (nK,)'T DS, +x.“(nK )'T DSu3+;ijDSjkxjxkajk}grad inT = 0 (3.42)
b

where the primes denote the derivative with respect to T.

As we have to find a relation between a concentration gradient and a
gradient of the temperature we have to eliminate one of the concentration
gradients for which we choose grad Xeo The procedure to do this uses (3.23b)

with (3.36) substituted into it. The result is

(1+2x2+x3i)grad x1+(1+2ku+A35)grad X+

2 ' tax, 2 ' e 3.43
+{x (nKQ) +X xS(nKS) X (nKu) }T grad InT = 0 ( a)

1 1

or, with a kind of shorthand notation

- il T grad 1nT (3.43b)
®s a5




Introducing (3.43b) into (8.42) we find

[ aT a, a. a,
D +2) — = T . e
DS, 4#23 DS, +—DS  +2), 4o DS A}grdd x1+{ac. DS, +20, =T DS, +
9 9 5
o 2 - 'T DS 2 i 1 Y e 10
tx, " (aK ) 'T DS, 5=%g (nK,)'T DS, t3 ) DS, XX }gra nT=
¥ 1k &7

A,,grad x, + A, grad InT = 0 (3.44)

From (3.44) we find the ratio of grad x, and grad 1nT. We have to

1
and grad 1InT.

find however the ratio of grad X, To do this we use the equa-

tion that links xX. and the x.
A - £
2
i x,\+?x2+x3 'I+2(nK2)x1 +(nK3)x1x5
Ay g = (3.45a)

A 1+xq+x +X X 2 2
2 -8 % 1+(m<2)x1 +(nK3)x]x5+(nK“)x5

Taking the gradient of x, from this expression and remembering that the

A
gradient of (nK{) is dependent only on T, as the pressure is constant

throughout the apparatus we find that

grad x, =[[{(a1+21ua1+2A2a5)(2—x1-x5)+a1x1(35—31)}grad X+

+ (2—x1—x5){2a x (nK )'+a X% (nK )? -aﬂx -a x1] grad lnT]

5 35} 1

{‘35(2--x1—x5_>)2}_1

A A
- 7%2 grad x, + 7&2 T grad 1nT (3.46)
5 5

From (3.46) and (3.44) we find an expression for (3.34) :

= 121 (3.47)
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To evaluate the coefficients in (3.47) we have to find the concentra-
tions x; during the experiment from the experimentally measured iA and iB'

To do this we use (3.23a) and (3.45a) and its parallel expression

2
X +2(nKu)x5 +(nK3)x1x

S 5

2
1+(nK2)x1 +(nK3)x1x5+(nKu)x5

;B =

> (3.45b)

Taking twice (3.23a) and using the ratio of X, and §E from (3.45) we have

A

x
x +x +( 14 :é){x5+2(nKu)x52+(nK3)x1x

15
*B

s1=2 (3.48)

From this equation we find x. expressed in x_, X, and the (nKi); inserting

1 9% B

this expression in (3.23a) we find a fourth order equation for Xg ¢

(K, ) {4(nK, ) (nK, ) (nK ) * e *+

+{2(nKu){2(nK2)-(nK3)}+§B{H(nK2)(nKu)—(nK3)2}}x53+

> - o3 - 2 2, = =y 2
+{(nKu)xB(xB-2)+(nK2)(1+xB) - (nK ) (14x, ") +(nK,) (2xB-1)-8(nK2)(nKu)xB}x5 -

-{§B{1+u(nx2)}+§82{2(nx2)-(m<3)}}x5+iB2{1+u(nK2)}=o (3.49)

From this equation we find x_, from (3.48) and from (3.36) Xos Xy and X,

s
From the complicated express?ons it will be clear that no closed final for-
mula can be given in this case: (3.34) can be calculated with the help of
(3.47), (3.44), (3.u46), (3.43) and (3.49); ;B and T are experimental para-
meters whereas the (nKi) and (nKi)' may be found f.i. from the work of
Stogryn and Hirschfelder. The calculation of the Dij and uij is postponed

until chapter V.




CHAPTER IV

EXPERIMENTS

a. APPARATUS AND PROCEDURE

The apparatus used for our experiments was the two-bulb apparatus

used by Velds (Ve 66) with some minor changes. (fig.4.1)

Thermal diffusion takes place between the reservoirs V

1 and V2, the

hotter one at the top to avoid convection between these two bulbs. As, for

some earlier experiments, an ionization chamber analysis of the contents of

the upper volume was needed, this volume was divided into two parts, con-

nected by two tubes. The upper space was kept on room temperature because

of the ionization chamber analysis; the real high temperature part V2 was
welded together and thermally isolated from the rest of the apparatus by

the oil-cooled flanges F and W. To avoid thermal diffusion between V2 and I,
the gas was flushed continuously from V2 to I and back through the by-pass B.
This flushing was accomplished by convective action when the temperature
difference between V2 and I was big enough; for lower temperatures of V2 a
heater around B maintained a flow by means of thermo-syphon action.

By means of E and S samples could be taken for analysis; the appara-
tus could be evacuated and filled through S.

The pressure in the apparatus was measured with a bourdon-manometer.
The temperature of O was kept constant and measured by means of a photo-
transistor regulator (made by Nieaf, Utrecht, Holland), acting on the ther-
mocouple T,

Only one of the heating elements was switched on and off; the other
elements were used only during the first heating period. The lower part of
the apparatus (from F downward) was placed in a thermostatted space. Here
the thermostate consisted of a contact thermometer, blower and heater. The
temperature was controlled with an accuracy of about one degree centigrade
in this part. During the course of our experiments the temperature was kept
on 36 + 1 e,

A typical run started with the evacuation of the apparatus through S,
after which the component of the mixture that was to have the lowest concen-
tration was admitted through a valve at S. When the pressure of this gas had

reached the desired value, this valve was closed and the filling system at
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Fig. 4.1

The two-bulb apparatus.
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the back of it depressurized and evacuated. After that the second component

was allowed to enter, until the manometer indicated the desired total pres-

sure. The admittance of the second component gave rise to a turbulency that

assured a mixing of the components.

After the filling procedure the system was left apart for at least

seven times the relaxation time tr; this is the time needed to reach the

final concentration gradient to within 1% . An estimate of t, was inferred

from an article of Saxena and Mason (Sa 59)

1 ¥ V2 2 Av

in which L is the length and A the cross-sectional area of the connecting

—_

L
TR

<

tube between V1 and V2. T1 and T2 are the temperatures of resp. V1 and V2;
in our situation V2 is the volume of V2 and I, as the gas is flushing
through both volumes. <T/D>AV is the average value of the quotient of tem-
perature and diffusion coefficient along the thermal diffusion path. The
validity of this formula was checked by taking samples after times longer
than 7'tr; no difference with the samples taken after 7.tr were found that
exceeded the experimental error, which shows that the formula gives at

least an upper limit. The value of t. is about proportional to the pressure.
For Kr—CO2 mixtures at 50 atm with T1 = 36 °C and T2 = 260 °C we calculated
for 7'tr 15 days. Smaller temperature intervals would make t. longer, due
to the fact that the binary diffusion coefficient depends on T with a power
that is roughly 1.5.

When the final separation has been attained with sufficient accuracy
samples are taken at S and E to give the concentration ratios in the low
and in the high temperature part of the apparatus. The analysis of the sam-
ples was carried out in a mass-spectrometer (Atlas, model CHY4) except for
the nitrogen-ethane samples., Mass-spectrometric analysis was not possible

here because of the almost equal masses of the N_ and C_.H, molecules. Here

the analysis was performed with the apparatuses ;iven szh:matically in
fig.4.2a and 4.2b.

The procedure for an analysis with the apparatus of fig.4.2a is as
follows: a certain amount of the sample S is introduced into the liquid ni-

trogen cooled trap K and circulated by means of the TSppler pump T through
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a closed system. Each time the gas passes K the C2Hu remaining in the

sample may be frozen to the wall. After this procedure has been ended the

N2 is introduced into the constant volume manometer and measured. After

the N2 has been pumped off the CQH4 is allowed to evaporate again, intro-

duced into the constant volume manometer and measured separately. From the

two measurements the composition of the sample is derived,

)

~
HE
HE ¢
v HH
— 8 =1
éj =
:J{y —
Z
/i\\\__'//};jﬂ
Fig. 4.2a

Apparatus for the analysis of N, -C

2 QHQ mixtures by means of a constant

volume manometer.

V wvacuum system & constant voclume manometer
S sample A1,A2 indication needles
K 1liquid nitrogen cooled trap H mercury reservoir
M mercury manometer T thermometer
Téppler pump I  valve
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At S the sample is introduced, P goes to the vacuum system; SP and
RP are the sample port and the reference port of the pressure gauge; V is a
glass bulb. The pressure at RP is kept zero; throughout the analysis RP is
connected with the pumping system by way of valves 6 and 8.

As we need to know the ratio of volume V plus the bore of stopcock 1
to the total volume, bounded by valves 3, 4 and 7 and the bourdon-tube of
the pressure gauge we introduce a certain amount of gas in the last mention-
ed volume, measure the pressure, close valve 1, pump off through valve 3,
close this valve, open valve 1 and measure the pressure again. The ratio of
the pressures gives the ratio of the volumes; it was found as 0.45385 +
0.0018,

The analysis now proceeds along the following lines. A certain
amount of the sample is introduced into the volume bounded by valves 3, 4
and 7 (which will be indicated as V1) and the pressure is read. Then
valve 1 is closed and the dewar vessel D put around V to freeze the C2Hu
against the wall while valve 3 is opened so that the rest of the apparatus
is evacuated. After the vacuum has become good enough (no indication of gas
on a McLeod gauge of the pumping system) valve 2 is closed and valve 1
opened so that the C2Hu in the bore of 1 can be frozen against the wall of
V. After the freezing procedure has been completed valve 2 is opened and
the N, pumped away, after which valve 3 is closed. The dewar vessel is re-
moved and V brought to room temperature. The pressure of the C2Hu is then
read on the gauge after allowing it to expand into Ve

From the known volume ratio and the two pressure readings the compo-
sition of the sample can be determined. We checked the consistency of the
analysis a number of times by measuring separately the pressure of the ni=-
trogen. This was done by closing valve 3 before the N2 was pumped off, al-
lowing the nitrogen to expand into v, while the ethane stayed frozen and
measuring the pressure of the NQ. After correction for the temperature and
the volume the amounts of C2Hu and N2 added up to the measured total amount
of gas to within one percent.

This method of analysis not only was much faster than the one with
the constant volume manometer, but the accuracy too had improved greatly:
the experimental scatter in the analysis of one sample was now well below
one percent, so that all later analyses of N2-C2H“ samples were done by

this method.




b. EXPERIMENTS PERFORMED AND RESULTS

The mixtures on which we did our experiments were chosen for a num-
ber of different reasons. The Ar—CO2 mixture was chosen to see if the regu-
larities observed by Velds (Ve 67) in He-CO, mixtures were also present in
an other noble gas-CO2 mixture. The fact of the near to equal masses of the
constituent gases made them interesting from the point of view of the
dimer-theory; if dimers had an appreciable influence their relative effect
had to be larger in the case of Ar-~CO2 than in the one of He—COQ, provided
that only the CO2 molecules were forming dimers. In the He—CO2 case CO2 was

already much heavier than He, so that the extra mass of (C0,). could be ex-

252
pected to be less important than in the Ar'-CO2 case. For the same reason we
used the Kr-CO, mixture, be it that here the mean relative mass~difference

2
should be diminished by the COQ-dimers. To look more explicitly to the in-

fluence of the depth of the potential well we did the experiments on

N2—C2Hu mixtures. Here the demixing cannot be due to a mass-difference (the
molecular mass of the main isotope is for C2Hu 28,0403, for N2 28.0151) so
that here the influence of a mass difference can be neglected and only the
effects due to the difference in the potential wells are important. Finally
we have performed experiments on a mixture of noble gases: Ar-He. These ex-
periments were done to test the several theories in cases where the internal
degrees of freedom will not play a rdle.

The choice of the concentrations followed from two arguments: first
we wished to have mixtures in which only one kind of dimers was formed, in
the second place Becker (Be 50) had done experiments on mixtures containing
about 50% of each component, so that it seemed worthwhile to take the other
extreme in view of the small amount of high-pressure thermal diffusion fac-
tors that have been measured. Although our first argument did not hold, as
we found out later, the choice of the concentrations gave us a clear picture
of the concentration dependence of the high-pressure effects.

The errors given in the tables are the errors indicating the spread
in the measured values. To this error the systematic ones inherent to the
measuring apparatuses should be added. These errors (e.g. calibration errors)
are believed to be in general an order of magnitude smaller than the spread

in the measured values of a.




1. CO,-Ar

We performed experiments at 5 and at 50 atmospheres, with the upper
volume at a temperature of about 260 °C. Two mixtures were used: one with
90% co, (10% Ar) and one with 10% co, (90% Ar). As the potential well for
CO2 is deeper than the one of Ar, we expected the biggest effect of a change

of pressure in the mixture containing much C02. To the experiments for this

TABLE 4.1
Experimental values of the separation factor q and the thermal
diffusion factor a for mixtures containing CO2 and Ar. Tempera- |
ture lower volume 308 °K, temperature upper volume 535 %K. A bar \
denotes an average value. !
: |
P 1n — % £ l
g
o % CO2 qQ q In q o |
s | 90 | 1,014 'I}
\
5 390 1.012 1.01420.001 0.014+0.001 0.026+0.002
5 90 1.016
20 90 1.047
20 90 1.048 1.048+0.0003 0.047:£0,0003 0.086+0.001
20 90 1.048
50 90 1.104
50 90 1.106 1.104£0,001 0.099+0.001 0.181:20.002
50 390 1.103
5 10 1.014
5 10 1.015
5 10 1.016 1.015£0.0005 0.015:0.0005 0.027+£0.001
5 10 1.014
5 10 | 1.016
50 10 1.042
o ¥ 1:025 1 4 .035:0.004 0.034:0.004 0.062+0.007
50 10 1.037
50 10 1.038
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mixture we later added measurements at 20 atm as it was clear from the re-

sults of the 5 and 50 atm experiments that the value of the separation at

20 atm could be expected to lie outside the limit of error of those at 5 and

50 atm, The analyses were done mass~-spectrometrically; the results of the ex-

periments are given in table. 4.1.

The Kr-CO, experiments were done at 5, 20 and 50 atm. Only a

P

10% Kr-90% C02 mixture was used, as there was no special interesting point
in a 10% CCQ-QO% Kr mixture, that would justify the pretty costly experi-
ment. The temperature of VQ was 255 OC; analyses were performed on the
mass-spectrometer. Table 4.2 gives the results of these experiments.

TABLE 4,2

Experimental values of the separation factor g and the
thermal diffusion factor a for a mixture containing 10% Kr

‘ and 90% COQ. Temperature lower volume 308 OK, temperature

‘ upper volume 535 °K. A bar denotes an average value.

p in " - .
’ atm. q q in q =
i 5 | 1.015
? 1:021 1.018:0.002 0.018:0.002 0.033:0.004
5 1.020
1 5 | 1.014
20 | 1.000
20 | 0.998 | 1.000+0.001 0.000:0.001 0.000:0.002
20 1.001
50 | 0.967
50 | 0.970
5 0.965 | 0.966+0.001 ~0.034+0.001 ~0.063+0,002




3. CQHu—N

and 90% N,. The temperature of V

2

denotes an average value.

TABLE 4.3

Experimental values of the separation factor g and the thermal

24

Experiments were done at 5, 20 and 50 atm on a mixture containing
10% N, and 90% C,H, and at 5 and 50 atm on a mixture containing 10% CH,

for all experiments was 255 °C. The ex-

diffusion factor a for mixtures containing C,H, and N,. Tempera-

ture lower volume 308 oK, temperature upper volume 535 °kK. A bar

p in & " &
atm. | ® CoHy 1 1 ol °‘

5 90 1.049

8 29 paESY 1.039:0.007 0.038+£0.007 0.069+0.013
5 90 1.052

5 90 1.020
20 90 1.062
20 90 1.055 1.056+0.001 0.054:0.001 0.097:£0.002
20 90 1.052

50 90 1.122

50 90 1.153

>0 o e 2 1.171£0.012 0.157+0.010 0.29 :0.02
50 90 1.194

50 90 1.179

50 30 1.171

5 10 1.004

2 b Iehae 1.01420.004 0.014:0.,004 0.026+0.008
5 10 1.017

5 10 1.012

50 10 1.033

45 12 o i 1.041+0,003 0.040:0.003 0.07420.006
50 10 1.049

10




periment at 20 atm was not done with the last mentioned mixture as here
the effect of pressure on the thermal diffusion factor was pretty small.
Analyses were performed with the apparatuses of fig.5.2a and 5.2b. The

results are given in table 4.3.

4. Ar-He

The experiments were done at 5 and 50 atm, both with the 10% Ar-
90% He and the 90% Ar-10% He mixture. The analyses were performed mass-

spectrometrically. The results are given in table 4.4.

TABLE 4.4

Experimental values of the separation factor q and the thermal
diffusion factor a for mixtures containing Ar and He. Tempera-
ture lower volume 308 oK, temperature upper volume 535 °K. A

bar denotes an average value.

p in

atm.

5 90 1.183
5 90 1.191 1.187:0.002 0.17120.002 0.305£0.004
5 S0 1.186

50 90 1.244
50 90 1.246 1.245+0,001 0.219:0.001 0.393:0.002
50 90 1.244

5 10 1.404
5 10 1.378 1.395+0.009 0.333+0.006 0.595:0.011
5 10 1.403

50 10 1.321
50 10 1.313 1.326+0.009 0.28210.007 0.50520.013
50 10 1.343
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CHAPTER V

CALCULATIONS, RESULTS AND DISCUSSION

a. CALCULATIONS

We will compare the experimental results of Becker (Be 50), Van Ee
(Ee 66) and ourselves with the theories given in chapter II and chapter III.
As some of the calculations needed for this comparison are quite lengthy
(especially those for the extended dimer theory), we have used the calcula-
tional facilities of the Mathematisch Centrum at Amsterdam, where the work
was done on an Electrologica EL-X8 computer. In the next subsections we
give the pertinent details for each programme.

For the temperature belonging to the value of the thermal diffusion
factor we used the geometric mean between the upper and lower temperatures.
The correct way to find this temperature would have been to repeat the ex-
periments for a number of temperatures and to derive a from a InQ vs.
1n Th/Tl plot. This however would have asked for a far greater series of ex-
periments and we decided to take the geometric mean, which gave us the pos-
sibility to do a number of gases in a reasonable time, whereas the assump-
tion is not unreasonable. For the concentrations we took mean values, found
from the filling procedure. This is certainly permitted as the upper and lo-
wer volumes do not differ very much and the concentration differences are
fairly small. A number of calculations, made with slightly different tempe-
ratures and concentrations, gave negligible differences with the values ob-

tained with those using the earlier mentioned assumptions.

al. HAASE THEORY

In the basic formula (2.12) an equation of state must be introduced,
for which we choose the simplified Beattie-Bridgeman equation, given in
formula (2.15a,b,c). From this equation it follows (see e.g. (Ha 56)) for a

two~component mixture that

3B,
“h = Tk € 1ox. )2 (p-T 38 (5.1a)
By-hy 0 = p{By ~T—3H+(1-x,)“(a-15D)}




and

X, — = RT -2 pax x (5.1b)

with

As long as no use is made of the expression (2.15c) for the Bij’ (5.1a) and
(5.1b) stay valid also if we use a virial type equation of state and cut it
off after the second term.

As soon as we introduce (2.15c) into (5.1a) the computation is a
straightforward procedure. The value of G?Q has been calculated in the se-
cond Kihara approximation (1.9); for the collision parameters, reduced Q-
integrals and the functions A*, B¥ and C¥ the tables for the Lennard-Jones
(6-12) potential from the book of Hirschfelder et al. (Hi 54) have been
used. Also from this book came the parameters and combination rules for the
Beattie-Bridgeman equation needed for the calculations. The parameters used

are given in table 5.1 (non-equilibrium values) and table 5.2.

a2. FUGACITY THEORY

The calculations for the fugacity theory are somewhat more complica~-
ted inasmuch as a system of four equations with four unknowns, given by
egns (2.19), (2.20), (2,22) and (2.23) must be solved numerically. This was

LT ) (T (T.))
Tk 2 .=
and the quantities N1, Cc and Ch (which are known from the experimental con-

done in the following way: x xéTc and x h) are expressed in x
ditions) by means of the eqns (2.22) and (2.28). These expressions are in-
troduced in the right hand side of (2.20) so that this expression can be

written as

1n Q = E{k (B)+k, (B)xT )} (5.2)
fug -~ R'™M 2 s
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TABLE 5.1

Force constants for the Lennard-Jones (6-12) potential used

in the calculations. €/k denotes the depth of the potential

well in

oK, o is the zero-energy collision diameter in g.

% indicates values for temperatures below, h for temperatu-

res above room temperature.

where,

non-equilibrium equilibrium
values values
gas e/k g e/k (o}
HQ(E) 33.3 2,968 9.7 .87
H2(h) 38.0 2.915
D2 39.3 2.95 31.1 2.87
He 10.22 2.576 6.03 2.63
CHQ T4y 3.796 148.2 3.82
Nz(Q) 91.5 3.68 95.1 3.70
N2(h) 79.8 3.749
t C2Hu 205 4,232 199.2 4,523
Ar 116 3.465 120 3.41
CO2 213 3.897 203.3 3.91
Kr 190 3.61 158 3.60
using (2:15a) and (2.15b)
- - - - y
y B]T(Th) BQQ(Th) A(Th) B1T(Tl) BQQ(TL) A(Tl) 2)1A(Th)
kq(B) = T T TR
h 1 h'h




TABLE 5.2

Constants for the Beattie-Bridgeman equation of

state used in the calculations. For the meaning

of these constants see eqn (2.11).

gas AO BO c

H2 0.1975 0.02096 504
D, 0.2125 0.02060 1010
H; 0.0216 0.01400 40
CHu 2.2769 0.05587 128300
N2 1.3445 0.05046 42000
C2Hu 6.1520 0.12156 226800
Ar 1.2907 0.,03931 59900
co, 5.0065 0.10476 660000
Krk 2.4230 0.05261 148900

)

-
Now we take a trial value xggc for xg‘c) (viz. the mean value of

X, known from the filling procedure), which differs from the real value

by an amount éx, so

Eqns (2.22) and (2,23) give the values x(Th), xég ) and xggh) for ngh>,
xé‘c) and x(Th) when xg u) 1OC) and the changes in x(T ngc)

(T) (T.)

and X5 h” in going from X, ¢ to x10c « From these changes and the defini-

tion (2.19) we see that

(T ) ;Th) (xgg )+ox)(x H)+C §x/C,)
Q = -
(T LTS (x (T ) -C_sx/C, )(x( c)—éx)

% ) 10¢




With a linear approximation in &8x, which is supposed to be small, this leads

to the relation

x{Te) (T & o0y 1 1 i
Q = —10_ 20 [ 1+{ .—c + ~ + }6)( (5.3)
(1) (1) e L T T N L
20 10 20 10 20
. : RTL) 2 (27) = . .
ntroducing X10° instead of x,¢’ in (5.2), using (2.22) and (2.23) and in-
troducing the result in the logarithm of the expression (5.3), gives the va-
lue of &x. Using the value of xggc) + 86X as a new xggc) we can find Q to any

desired accuracy by iteration.

The equation used for the Bij was again the Beattie-Bridgeman expres-
sion (2.15c). The computations can be performed now, using (2.21a), (2.21b)
and the formulae and method outlined above. The result is that we find a va-
lue for the separation qug of eqn (2.13a). To this must be added the sepa-

ration Q to find the total separation: in the actual computations we

th.d.
derived the value of a from qug and then added a calculated in the

second Kihara approximgzgon to find the total therma;hég%fusion factor. All
parameters used, as well as the values for the Qﬁ-integrals and related
functions, were found from the book of Hirschfelder (Hi 54); the potential
used was again the Lennard-Jones (6-12) potential, the equation of state
the Beattie-Bridgeman equation. The parameters used are given again in

table 5.1 (non-equilibrium values) and table 5.2.

a3. PAIR-CORRELATION FUNCTION

A complete final formula was derived (eqn (2.39)), so that the calcu-
lation was a straightforward procedure. The equation of state chosen was the
virial equation, cut off after the second virial coefficient. For the calcu-
lation of the low-pressure value of a the second Kihara approximation (1.9)
was used. The values of Bij(T) and its temperature-derivative, as well as
those of the Q-integrals and related functions (or, better, their reduced
values) were found from the tables for the Lennard-Jones potential in
(Hi 54). A procedure was introduced into the programme that derived the va-

lues needed from the tables by linear interpolation, thus reducing the
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amount of work needed for the composition of the number tapes. The parame-

ters used are given in table 5.1 (equilibrium values).

a4. DIMER THEORY

For the simplified dimer theory a complete final formula was derived
(eqn (3.32)), so that no substantial difficulties are met in the calcula-
tions; for the Qij we have used the formulae for ternary thermal diffusion
factors given by Van der Valk (Va 63) which are correct up to the first
Chapman-Cowling approximation. The determinants given by Van der Valk have
been written out and calculated for the Lennard-Jones (6-12) potential. The
diffusion coefficients D(i,j) have been calculated to the first Chapman-
Cowling approximation (1.4a), also for the Lennard-Jones potential, with
the parameters given in table 5.1 (non-equilibrium values).

For the extended dimer theory more complications arise. The first

problem is the calculation of the functions nK; and (nKi)'; nK, and nK, , as

well as their temperature derivatives, can be calculated with ihe formula
given by Stogryn and Hirschfelder (St 59) for the Lennard-Jones potential,
taking into account the lifetimes of the metastable dimers as discussed in
the beginning of chapter III. For the nK, and (nK3)' we have used the same
formula; the values for the potential parameters that we used in this case
were derived from those of components A and B with the usual combination

rules: for the depth of the potential well we took the geometric, for the

‘ molecular diameter the arithmetric mean of the values for A and B. With the

nKi known eqn (3.48) can be written down, from which we have to find Keo
This is done by using a trial value X, for Xg (viz. the value of ;B) which

5 = X + &x

in (3.49) and linearizing with respect to éx gives the possibility to find
and (3.36)

differs from X by a supposedly small amount éx. Introducing x

1

3 and xu.

We do need the potential parameters of the various monomers and di-

Xys X

‘ X; to any required accuracy by iteration; (3.48) then gives x
; mers to calculate their influence on the transport coefficients. Those for
the monomers were used already for the calculation of the nKi and (nKi)'.
\ For the calculation of the parameters for the homo-molecular dimers we
used the empirical rules given for dimer-monomer interaction by Stogryn and

| Hirschfelder (St 59), together with the well-known combination rules. This
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leads to the following relations

k. 2
(E/k)dimer L (E/k)monomer

(5.4)

- 1 1.06 o
dimer monomer

where e/k denotes the depth of the potential well and o the zero-energy
collision diameter. The potential parameters for the hetero-molecular di-
mers were found also from (5.4) with the values used in the calculation of
nK, and (nK,)' inserted for (e/k) and o .
3 3 monomer monomer
The next problem is the calculation of the five-component diffusion

coefficients Di and five-component thermal diffusion factors aij' For the

k

Dyy We will use eqn (1.3b) and the relation

5 (5.5
g ot ol )

As the five equations of the type (1.3b) that we get for each value
of i are linearly dependent, we omit the equation for izk and replace it by
(5.5). In this way we get for each i a system of five independent linear
equations with five unknowns in which the coefficients and known terms con-
sist of combinations of binary diffusion coefficients and concentrations.
The binary diffusion coefficients are calculated up to the second Chapman-
Cowling approximation for the Lennard-Jones potential. The system is solved
by the computer, using the procedures AP 204, AP 205 and AP 207 of the
Mathematisch Centrum at Amsterdam.

The aij can be found in the same way as for the three-component sys-
tem, although here we did not develop the determinants constituting the fi-
nal formula of Van der Valk, but used a combination of some of his formulae
from which the aij for an n-component system can be found as the inner pro=-
duct of coefficients Ak and bk,ij‘ The Ak are the roots of a system of n
independent linear equations with n unknowns, which was solved by the compu-
ter, The bk,ij can be calculated from given expressions so that, with the
ki3 known, the uij can be calculated as

Ak and b




The remaining calculations are straightforward, using the egns (3.40),
(3.44), (3.46) and (3.47). To facilitate the composition of the number tapes
(for each temperature and each combination of gases 125 values of 9 -inte~-
grals and related functions were needed) a procedure of the same kind as
used with the pair-correlation calculations was inserted in the programme.
For the computation of the a's, taking into account the dimer-concen-
trations measured by Leckenby and Robbins (Le 66), the same procedure was
used. The correction was performed by the introduction of extra factors in

the formulae for the nK. and (nKi)'.

b. RESULTS

The theoretical predictions for the values of the thermal diffusion
factor at different pressures, obtained via the calculations described in
part a. of this chapter, are given in table 5.3. Table 5.3a contains the re-
sults for our own experiments, table 5.3b those for the experiments of
Becker and table 5.3c those for the experiments of Van Ee, at least a part
of them. The experimental values are indicated with uexp’ while for the in-

dication of the various theories the following notation is used in the suf-

fixes
Haase : Haase theory
fug : fugacity theory
PsCe ¢ pair-correlation theory
s.d. : simplified dimer theory
e.d. : extended dimer theory

e.d.c. : extended dimer theory with corrections according to the ex~-

perimental results of Leckenby and Robbins (Le 66),

Pressures are indicated with p and given in atmospheres, X, is the
mole fraction of the first mentioned (i.e. heavier) component of the mixture.

For the comparison of the various predictions with each other and
with the experimental values we have used the following method: from the va-
lues of a for different pressures we obtained a mean pressure dependence
GD(Q) = 8a / 8p where 8a resp. 8p are the change in a resp. p on going from

the lowest pressure used to the pressure of the experiment. These pressure

dependences are tabulated in the first part of table 5.4a and table 5.4b,
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TABLE 5.3a

Experimental and theoretical values of the thermal diffusion factor a for our experiments.

For the meaning of abbreviations: see page

mixture a
Haase

COQ-Ar

CO2—Ar




TABLE 5.3b

Experimental and theoretical values of the thermal diffusion factor a for the experiments

of Becker (Be 50). For the meaning of abbreviations: see page

RS 1 P Qexp “Haase afug cp.c. %e.d. %e.d.c,
CO2-H2 0.52 3 0,32 0.38 0.04 0,40 0.33 0.35
26 0,46 0,54 0.33 0.52 0,39 0.51
51 0.67 0,72 0.71 0.64 0.43 0,62
81 0,98 0.97 1.25 0.82 0.47 0.70
CCQ-N2 0.48 3 0.05 0.11 0,03 0.10 0.09 0.11
26 0,12 0.27 0.25 0.17 0.10 0.24
52 0.25 0.u45 0.51 0.25 0.09 0.33
81 0.40 0,67 0,81 0.36 0.08 0,39
CO2-Ar 0.46 3 0,03 0.05 0.03 0.04 0,03 0.04
26 0.08 0,24 0,23 0.10 0.02 0.12
50 0,15 0.54 0.46 0.18 0,01 0.16
80 0.25 0,70 0.75 0.28 -0,02 0.17
COQ-—CHu 0.48 3 0,07 0,12 0.02 0,12 0.10 0.12
26 0,12 0,12 0.18 0.17 0.04 0,12
51 0.22 0,13 0,36 0,22 -0,02 0.11
81 0.37 0,14 0.57 0.28 =0,01 0.06
N,-CH, 0,50 “ 0.07 0,09 -0.01 0,09 0,09 0,09
20 0.03 0.03 -0,05 0.07 0.04 0.04
38 0,02 =0.04 -0.09 0.05 0.00 0,00
80 0.00 =0.21 -0.20 0,01 -0,09 -0,09
N,-H, 0,50 3 0,35 0.41 0,01 0.42 0.37 0.36
26 0.36 O.44 0,05 0.4y 0.37 0,36
50 0,39 0.47 0,10 0,46 0.38 0.36
78 0.44 0,51 0.16 0.49 0.38 0.36
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TABLE 5,3c

Experimental and theoretical values of the thermal diffusion factor a
for a number of the experimental values of Van Ee (Ee 66). For the

meaning of abbreviations: see page

mixture 0 o
L e.d.Cy




TABLE 5.3c (continued)

mixture

table 5.4a referring to our own experiments and 5.4b to those of Becker.
From the values of the mean pressure dependence we calculated the relative
error u(dp(a)) of the theoretical predictions with respect to the experi-

mental results with the formula

u(fp(a)) = {({-u/fﬁp)th-(sSa/ﬁp)exp}/(!Su/ép)exp (5.6)

where (Ga/dp)th denotes a theoretical prediction for the mean pressure de-
pendence. The values of u(5p(a)) are given in the second part of tables 5.4a
and S5.4b. To have a criterion which gives us an indication for the peliabili-

ty of the various theories we have added the absolute values of the relative
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TABLE 5.4a

Experimental and theoretical values of the mean pressure dependence & (a) of the thermal diffusion factor a and the
relative error u(ép(a)) of the theoretical predictions, calculated with formula (5.6), using values from our experi-

ments. Also given are the sum of the absolute values of u(ép(a)) and its mean value. For abbreviations: see page

8 (a).10" u(s ()
P P

mixture P+Cs s«ds sed.

15 -1.,60

25 =0.,45
26 =047

12 0.27
12 40 -0,18

24 2 3 -1.36

47 17 26 0.42
50 13 22 -0,55

2 1 1 1.00

10 10

Z|u(s_(a))|
P

[u(s_(a))|
P gem




TABLE S5.4b

Experimental and theoretical values of the mean pressure dependence § (u) of the thermal diffusion
factor o and the relative error u(é (u)) of the theoretical predxctxons, calculated with formula
(5.6); values for the experiments of Becker (Be 50), Also given are the sum of the absolute values

of u(&p(a)) and its mean value. For abbreviations: see page

§ (a).10" (s _(a))
P p
mixture Py P exp | Haase fug| p.c. e.d, e.d.c. Haase| fug DPeCe e.d, e.d.c,
Co,-H, | 3 | 26| 61 70 126 | 52 26 70 0.15 | 1.07| 0.85[-0.57| 0.15
51| 73 71 40| 50 21 56 =0.03 | 0,92| -0,32| -0,71 | =0.23
81| 85 76 155 | 54 18 45 =0.11 | 0,82 ~0,36 [ -0.79 | -0.47
Co,-N, [3 ]| 26| 30 70 96 | 30 " 57 1.33 | 2,20| 0.00|-0.87| 0.90
52| u1 69 98 | a1 0 45 0.68 | 1,39 ~0,24 | ~1,00]| 0.10
81| 45 72 100 | 33 =3 36 0.60 | 1,22 -0,27 | -0,98 | -0.20
Co,-Ar | 3 | 26| 22 83 87| 26 -y as 2,77 | 2.95| 0.18|-1.18| 0,59
50| 26 83 91| 30 -4 26 2.19 | 2,50| 0.15|-=1.15] o0.00
80| 29 8y 9y | 31 -6 17 1.90 | 2,24 0,07 | =1.21 | =0.41
CO,~CH, | 3 | 26 22 0 70| 22 -26 0 =1.00 | 2.18| 0.00(-2,18]-1.00
51| 31 2 71| 21 -25 -2 =0,94 | 1,29| -0,32 | =1.81 | =1.06
81| 38 3 71| 21 -1y -8 =0.92 | 0,87 | =0,45 | =1,37 | =1.21
N,=CH, [4 | 20| -25 | -38 - 25| -13 =31 -31 0.52 | 0,00 | ~0,48 | 0.24| 0,24
38| -15 | -38 - 24| -12 -26 -26 1.53 | 0.60| -0.20| 0,73 | 0.73
80| -9 | -39 - 25| =11 -24 -24 3.33 | 1.78] 0.22| 1.67| 1.67
N,-H, 3| 2 4 13 17 9 0 0 2,25 | 3,25| 1.25| 1.00| 1.00
50 9 13 19 9 2 0 0.44% | 1.11] 0,00 | -0,78 | =1,00
78| 12 13 20 g 1 0 0,08 | 0,67 ~0,25|-0,92 | =1,00
Zlu(ép(a))l 20.77 [27.06 | 5.61 | 19,16 | 11.96
Iu(Gp(o))lgem 1.15 | 1,50] 0.31| 1,06 | 0.66
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TABLE 5.5

Sums of the differences between the theoretical and experimental
values of the change in thermal diffusion factor a on going from
a pressure of 0.1 atm to the pressure of the experiment. Values
for the experiments of Van Ee (Ee 66) given in table 5.1c for
300, 290 and 200 °K. Also given are the sums of the experimental

values for the change in a. For abbreviations: see page

mixture X, Haase P«Cs e.d. e.d.c. Sa
exp
N2-H2 0.726 0,03 0.02 0.02 0.04 0.04
0.500 0.086 0.04 0.04 0.07 0.07
0.241 0.03 0.03 0.06 0.11 0.09
NQ-D2 0,498 0.04 0.03 0.04 0.05 0.05
N2—He 0.492 0.06 0.03 0.03 0.07 0.08
sum 0.22 0,15 0.19 0.34

errors for each theory in tables 5.4a and 5.4b. From this sum we calculated
a mean relative error per experiment.

We have not used this method for the work of Van Eej; due to the small
changes of a in the majority of cases a difference of 1 in the last decimal
would give an unrealistically large relative error, even if we take the
theoretical value of Sa/8p as the denominator in (5.6) in the case of no
change in the experimental value of o and a change 0.071 in the theoretical
value. In table 5.5 we have added the absolute values of the differences be-
tween the theoretical and the experimental change in a on going from the lo-
west pressure used to the pressure of the experiment. In this way we use the
ratio of the experimental and theoretical values of the change in a with the
experimental value of this change as weight function as indication for the

reliability of the various theories. We have done this for the pair-correla-

tion theory, the two versions of the extended dimer theory and the Haase

86




theory; the values for the last-mentioned theory were derived from (Ee 66).
We have given in table 5.5 the sum of the differences outlined above for
the temperatures 290 (or 300) and 200 °K; for 100 °K an unrealistically
large extrapolation had to be made to obtain values for the correction fac-
tor, needed for the e.d.c.-values, from the measurements of Leckenby and
Robbins; therefore we left out this temperature. In the table are inserted

also the values for the sum of the changes in a found from experiment.

c. DISCUSSION

To test the applicability of various theories we shall not use
tables 5.8a, b or ¢, as a basic inaccuracy in these tables is the error in
the value of the low-pressure thermal diffusion factor. This value, calcu-
lated to the second Kihara or first Chapman-Cowling approximation (depend-
ing upon the theory under consideration), is a more or less additive factor
in the Haase, fugacity and pair-correlation theory. Its influence in the
dimer theories is far more complicated as can be seen from the pertinent
formulae. A better indication for the reliability of the various theories
is found in the pressure dependence of a as given in table 5.4a and
table 5.4b.

Starting with table 5.4a we see from the sum of the pelative errors
that the Haase theory and the fugacity theory are the two theories which
give the worst agreement with the experimental values. This is confirmed by
table S5.4b, be it that here the e.d.-predictions fall in the same category.
That these theories give no satisfying predictions could be expected as in
both cases gross simplifications have been introduced: for the Haase theory
the basic supposition of no pressure dependence of the heat-of-transfer,
for the fugacity theory the neglect of back-diffusion for the equilibrium
contribution to the separation. In the last case the implication is that
the predictions for the absolute value of the equilibrium contribution to
the separation are too high. This is true in all cases of table 5.4a and
table 5,4b, except for the Ar-He mixture with 10% Ar in table S.%a; this
mixture is a strange case as all theoretical predictions indicate positive
change or no change at all, while the experimentally obtained change is ne-

gative. No satisfactory explanation (such as a possible experimental error)
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could be found for this discrepancy.

The next best group of predictions is those of the dimer theories.
The predictions of the simplified theory for our own experiments are sur-
prisingly good and better than the e.d.-predictions. This is contrary to
our expectations for the following reason: neglecting for a moment the fact
that dimers are constantly being formed and disappearing again the three
kinds of dimers can be considered as heavy gasmolecules in a mixture of two
lighter gases, made up of the monomers. Taking equal a priori probabilities

for the three kinds of dimers we find as the ratio of the dimer-concentra-

tions in a mixture of 10% of gas A and 90% of gas B :

: T Xy = 0.81 : 0.18 : 0.01
2 2

As all three types of dimers have the greatest concentration in the
colder part of the vessel, the separation obtained depends only on their
concentration and composition compared to the one of the mixture as a whole.
The B2 dimers have a comparatively high concentration, but, due to the fact
that their composition does not differ appreciably from the one of the mix-

ture, their influence will be reduced. The A, dimers are present in very

low concentration, so that, although they haie a composition which is very
different from the one of the mixture, their influence can be neglected.
The hetero-molecular dimers AB, however, have a reasonable concentration
and a composition (50% A, 50% B) differing greatly from the one of the mix-
ture (10% A, 90% B), so that their influence will be pretty important in
10% - 90% mixtures, at least when the a priori probabilities for the forma-
tion of the various types of dimers are comparable. The reasonably good
agreement between the simplified dimer predictions and the experimental va-
lues is therefore somewhat surprising. The fact that the e.d.-predictions
are worse instead of better than those of the simplified theory can not be
explained by a physical picture. The reason for it seems to lie mainly in
the fact that diffusion coefficients and thermal diffusion factors are cal-
culated up to a certain approximation, in this case the first Chapman-
Cowling approximation, which is pretty accurate as regards the diffusion
coefficients but is less precise for the thermal diffusion factors. It will
be clear from the way in which the diffusion coefficients Dij and thermal

diffusion factors uij were calculated from the coefficients determining

them (part a. of this chapter) that inaccuracies in these coefficients give
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rise to larger errors in the Dij's and aij's for a five-component system
than for a three-component system.

Comparing the e.d. and the e.d.c.-values in tables 5.4a and 5.4b a
remarkable inconsistency shows up: for our own experiments the e.d.c.-values
are worse than the e.d.-values, for the experiments of Becker we see the pre-
verse. The inconsistency is caused by the theoretical predictions for only
one mixture viz, Kr-COQ. If we leave this mixture out of discussion (a pos-
sible justification for this will be given hereafter), the sum of relative
errors of table 5.4a goes down to 5.40 for the PsCs, to 6.40 for the s.d.,
to 7.24 for the e.d. and to 4.48 for the e.d.c.~values and the inconsistency
has disappeared: the correction gives a distinct improvement over the e.d,-
values in almost all cases of tables 5.4a and 5.4b: only in the case of the
NQ-H2 mixture in table 5.4b the e.d.c.-values are still slightly worse than
the e.d.-values. The same mixture has been used by Van Ee (Ee 66) and here
again the e.d.-values are better than the e.d.c.-predictions, not only for
N2—H2, but also for the N2—D2 and N2-He mixtures. This could mean that the
correction for N2 is in error e.g. because the supposition of rotational
disruption does not hold here.

We checked this by calculating e.d.c.-values for the mixture C02-N2
while using only the correction factor for C02. The result was that the sum
of the relative errors for the experiments of Becker on this mixture went up
from 1.20 to 2.34, so an error in the correction factor for N2 does not seem
to offer an explanation for the diffevent behavior of the other mixtures con-
taining N2. Comparing the differences between theory and experiment given in
table 5.5 we see that the difference between the experimental values and the
e.d.c.~values is the biggest for the mixture containing the largest amount
of H2, so it seems probable that the origin of the different behavior of
these mixtures lies in the second component, for which no experimental va-
lues of the dimer-concentration are known.

This brings us to the point that for the majority of the mixtures
used the dimer-concentration of only omne component is known, as Leckenby and
Robbins gave quantitative results only for CO2, N2 and Ar. The unknown dimer-
concentration of the second component may have caused also the wrong sign of
the correction for the Kr-CO2 mixture. To avoid this incompleteness we will
compare the e.d.c.-predictions with those of the pair-correlation theory
only using the values for the mixtures CO2~Ar and CO,-N,. The values of the

2
relative errors, calculated for these mixtures, are given again in table 5.6.
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TABLE 5.6

The relative error u(ép(u)), calculated with formu-
la (5.6) for the experiments in which two correction
factors are known for the dimer-calculations. The
values given are for the p.c. and the e.d.c. predic-
tions and contain also the sum of the absoclute va-
lues of u(5p(a)) and its mean value. P+ lowest

pressure used in atmj other abbreviations: see

page
mixture %, Py P PsCs e.d.c
CO,~Ar 0.1 5 50 0.96 0.86
CO,-Ar 0.9 5 20 0.38 0.20
50 0.24 0.21
CO,-N, 0.48 3 26 0.00 0.90
52 -0.24 0.10
81 -0.27 -0.20
CO,-Ar 0.46 3 26 0.18 0.59
50 0.15 0.00
80 0.07 | -0.41
zlu(s (a))| = 2.u8 3.47
Iu(ép(a))lgemz 0.28 0.39

From this table it is clear that, although the value of the mean relative
error for the e.d.c.-values has become smaller, the pair-correlation pre-
dictions are the best. This fact and the relatively simple calculations
needed to find the p.c.-predictions make the pair-correlation theory in the
present situation the most suitable theory for a semi-quantitative predic-

tion of the value of the thermal diffusion factor at slightly elevated
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pressures. Still better approximations may be obtained as soon as a useful
formalism has been found for the calculation of the non-equilibrium radial
distribution function.

After having compared the numerical results of the dimer- and pair-
correlation theories we will compare them on a somewhat more fundamental
base.

For the dimer theory one cause of its inaccuracy has been mentioned
already, viz. the fact that the concentrations of dimers may differ appre-
ciably from the values predicted by Stogryn and Hirschfelder. This may be
caused by a number of factors, such as the influence of internal degrees of
freedom and the inadequacy of the Lennard-Jones potential. The fact that we
have used in our calculations either all metastable dimers or no metastable
dimers at all, while the real number of metastables that survive the time
between two collisions will lie somewhere in between is an other factor that
leads to erroneous predictions. Furthermore, a small number of quasi-dimers
will live long enough to survive also the time between two collisions and we
have left this quasi-dimers fully out of the discussion. The problem of the

right number of dimers exists also for CO2 and N,, as we accepted the rota-

03
tional disruption supposition to find our correction factors. No experimental
or theoretical indications exist that indeed all rotational energy is con~-
verted into translational energy.

Apart from the number of dimers their behavior during a collision is
also a possible source of errors; this problem is in fact a three-particle
problem in which the internal degrees of freedom can not be neglected.

The dimer theory itself is also an approximation: no attention has
been paid to collisional transfer, neither to clusters of more than two mole-
cules. For all transport properties only the low-pressure values arve used
and even these only to the first Chapman-Cowling approximation.

The fact that with all these inaccuracies the theory still gives re-
sults that are reasonably in line with the experiments gives us the convic-
tion that the physical picture that forms the basis of the theory is correct:
dimers do have appreciable influence on the thermal diffusion factor when
the pressure is raised.

The good correspondence between the experimental and pair-correlation
values shows that our supposition that the equilibrium contribution to the
heat-of-transfer as the biggest one was correct. The remaining discrepancy

between theory and experiment may be attributed to the non-equilibrium
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contribution, although other factors too may be present, such as the in-
fluence of internal degrees of freedom.

Concerning the pair-correlation theory we may conclude that the most
important quantities in the final formula for the p.c.-predictions are the
second virial coefficients. The values for these quantities are found from
the tables in (Hi 54) with potential parameters derived from the experimen-
tal determination of the virial coefficients, thus in an indirect way using
the experimental values themselves. This means that in the calculation of a
high-pressure values are used and therefore effects due to dimers or colli-
sional transfer are automatically taken into account. This is true for the
second virial coefficients for the pure components. A fair comparison be=
tween the pair-correlation and dimer theories would be possible only if all
dimer-concentrations needed were known from experiment. For the time being
the conclusion is:
for the caleulation of the thermal diffusion factor at pressures where the
third virial coefficient has no appreciable influence the pair—correlation

theory gives the most reliable results.
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SUMMARY

The investigations, described in this thesis, are concerned with the
pressure dependence of the thermal diffusion factor in the region where
three-particle collisions are not yet important. The immediate motive was
the work of Velds on the He-CO2 mixtures, where was shown that a growing
concentration of CO2 caused an increasing pressure dependence of the ther-
mal diffusion factor. This was ascribed to the fact that the CO2 behaves
less like an ideal gas than He does.

To see which contribution to the non-ideality of the gas is impor-
tant in this respect, we used the fact that at higher pressures molecules
tend to cling together forming double molecules or dimers. By changing the
components of the mixture and their respective concentrations we can in-
fluence the number of dimers that is formed and in this way change the
thermal diffusion factor in a predictable way. These considerations deter-
mined our experimental programme: by giving first one, then the other com-
ponent of a binary mixture the biggest concentration, the number of dimers
of each component is changed and we can predict that the thermal diffusion
factor becomes lower or higher, These ideas have been worked out in chap~
ter III, where at first we supposed that only one component was able to
form dimers and later removed this restriction thus allowing both compo-
nents to form dimers, also with each other. For the calculation of the num-
ber of dimers present use has been made of the predictions of Stogryn and
Hirschfelder and the experimentally found numbers of dimers in the work of
Leckenby and Robbins.

In the choice of the last mixture we used (Ar-He) other considera-
tions came into play: the difference between the number of dimers calcula-
ted by Stogryn and Hirschfelder and the experimental results of Leckenby
and Robbins gave rise to the suspicion that internal degrees of freedom of
the molecules played a role in the formation of dimers., Therefore we used
a mixture consisting of molecules where internal degrees of freedom could
not have any influence.

The experiments have been performed in the two-bulb apparatus ear=-
lier described by Velds. The lower temperature for all experiments was
about 36 °C, the upper temperature about 255 °c; the pressure was varied
from 5 to 50 atmospheres.

The experimental results have been compared also with some other
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predictions. In the first place we have to mention the theory of Haase, in
which the assumption is used that the so-called heat~of-transfer is pres-
sure independent. This heat-of-transfer is a quantity which appears in the
treatment of the thermal diffusion factor in the book of De Groot about the
thermodynamics of irreversible processes.

A better approximation to the heat-of-transfer is given by Bearman,
Fixman and Kirkwood. Their results = though derived in a somewhat other
fashion, using an equilibrium treatment - are used in chapter II. As the ba-
sic idea in this theory is the interaction between pairs of molecules, we
speak about the pair-correlation theory.

Attention has further been paid to a theory, given already by Velds,
in which the influence of the non-ideality comes from the fact that in a
non-ideal mixture of gases not the partial pressures, but the fugacities of
the components of the mixture have to be equal throughout the apparatus.

To make the comparison between computed and experimental values as
complete as possible, we have used also the experimental results published
by Becker and Van Ee.

From the experimental results it followed that the physical picture
of dimer-formation (which is in fact the first stage of condensation) is
correct, but that it is very hard to calculate precisely the consequences
for thermal diffusion among other things because of the many, often badly
known, parameters involved.

From the comparison of the values found by experiment and by calcu~-
lation we can draw the conclusion that the predictions of the pair-correla-

tion theory give the best agreement with the experimental results.
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SAMENVATTING

Het in dit proefschrift beschreven onderzoek betreft de drukafhanke-
1ijkheid van de thermodiffusiefactor in een gebied, waar drie-deeltjes bot-
singen nog niet van belang zijn. De directe aanleiding vormde het werk van
Velds aan He-C02 mengsels, waarbij bleek dat een toenemende concentratie
van CO2 een toenemende drukafhankelijkheid van de thermodiffusiefactor ten-
gevolge had. Dit werd toegeschreven aan het feit, dat CO2 zich minder als
een ideaal gas gedraagt dan He,

Om na te gaan hoe dit verder geinterpreteerd zou moeten worden is
aanvankelijk gebruik gemaakt van het feit, dat bij hogere drukken de mole-
culen de neiging vertonen zich twee aan twee samen te voegen tot zgn. dime-
ren (tweelingmoleculen). Door nu de componenten en hun concentraties te wij-
zigen kan de concentratie van de mogelijke dimeren beinvlced worden, het-
geen tot voorspelbare veranderingen van de thermodiffusiefactor zou moeten
leiden. Dit bepaalde in feite de keuze van het meetprogramma: door nu eens
de ene dan weer de andere component de hoogste concentratie te geven kan
men het aantal gevormde dimeren wijzigen en kan voorspeld worden of de
thermodiffusiefactor groter of kleiner wordt. Dit is in hoofdstuk III nader
uitgewerkt, waarbij aanvankelijk verondersteld werd dat slechts &a&n van de
aanwezige componenten dimeren kon vormen, terwijl later de mogelijkheid dat
beide componenten dimeren vormen (ook met elkaar) in ogenschouw genomen
werd. Voor de berekening van de aanwezige hoeveelheden dimeren is gebruik
gemaakt van de voorspellingen hieromtrent door Stogryn en Hirschfelder en
van de door Leckenby en Robbins gemeten aantallen.

Bij de keuze van het mengsel, dat als laatste is opgenomen, speelde
nog een andere overweging mee: het verschil tussen de door Stogryn en
Hirschfelder berekende en door Leckenby en Robbins gevonden waarden gaf
aanleiding tot het vermoeden dat interne vrijheidsgraden van de moleculen
een rol speelden bij de vorming van dimeren, weshalve een experiment gedaan
is waarbij deze interne vrijheidsgraden geen invloed konden hebben.

De experimenten zijn uitgevoerd in een twee-bollen apparaat dat eer~
der beschreven werd door Velds. De ondertemperatuur was bij alle experimen—
ten ongeveer 36 °C, de boventemperatuur ongeveer 255 OC; de druk varieerde
tussen 5 en 50 atmosfeer.

Behalve met berekeningen betreffende de invlced van dimeren zijn de

experimentele resultaten ook vergeleken met enkele andere voorspellingen.,
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In de eerste plaats moet hierbij genocemd worden de theorie van Haase, waar-
in verondersteld wordt dat de zgn. heat-of-transfer niet afhangt van de
druk. Deze heat-of-transfer is een grootheid die optreedt in de behandeling
van de thermodiffusiefactor in het boek van de Groot over de thermodynamica
van irreversibele processen.

Een betere benadering van de heat-of-transfer is gegeven door
Bearman, Fixman en Kirkwood. Van hun resultaten - benaderd opnieuw afgeleid
in een evenwichtsbeschouwing - is gebruik gemaakt in hoofdstuk II. Aange-
zien het hier gaat om beschouwingen die de onderlinge interactie van mole-
cuul-paren in rekening brengen, wordt hier gesproken over de paar-correla-
tie theorie.

Verder is nog aandacht besteed aan een door Velds reeds behandelde
invliced van de niet-idealiteit wvan de componenten van het mengsel: niet de
partiéle drukken, maar de fugaciteiten van de componenten van het mengsel
zijn overal in het vat gelijk.

Om de vergelijking tussen berekende en experimentele waarden zo vol=-
ledig mogelijk te maken, is nog gebruik gemaakt van de experimentele resul-
taten, gepubliceerd door Becker en door van Ee.

Uit de experimentele resultaten volgde, dat het fysische beeld van
de dimeervorming - in feite het begin van het condensatie-proces - wel
juist is, doch dat de consequenties voor de thermodiffusie o.m. door de ve-
le, vaak slecht bekende, parameters die in de berekening voorkomen, moei=-
lijk precies te berekenen zijn.

Uit de vergelijking van de experimenten met de verschillende be-
schouwingen kan de conclusie getrokken worden, dat de paar-correlatie bere-
keningen de beste overeenkomst met de verkregen experimentele resultaten

opleveren.
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