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INLEIDING EN SAMENVATTING

Het blijkt experimenteel dat in een door een magnetisch veld verzadigd
ferromagnetisch metaal of legering bij stroomdoorgang een extra electrisch
veld optreedt in de richting van het tegelijkertijd aanwezige normale Hallveld.
Dit verschijnsel zal worden aangeduid als het spontane Halleffect.
De sterkte ervan kan het beste worden aangegeven met de grootte
van de spontane Hallhoek, welke voor de in dit proefschrift onderzochte
stoffen maximaal 0,02 rad is, of met de grootte van het magneetveld dat een
even groot effect zou veroorzaken. Dit laatste is maximaal 450.000 oersted.
Vooral dit effectieve magneetveld neemt sterk toe bij verhoging van de
temperatuur, mits men de Curietemperatuur niet te dicht nadert.

Verder blijkt dat onder dezelfde omstandigheden de electrische weerstand
anisotroop is, en wel is voor de in dit proefschrift onderzochte stoffen de
weerstand in de richting van de magnetizatie maximaal 20% groter dan in
een richting er loodrecht op. De sterkte van dit effect neemt af bij verhoging
van de temperatuur.

Deze verschijnselen waren reeds bekend, maar nog niet verklaard. Door
hun relatieve grootte krijgt men echter de indruk dat dit met de bestaande
electronentheorie, tezamen met de kennis welke men heeft van het ferro-
magnetisme, toch mogelijk zou moeten zijn.

Om een meer volledig beeld van deze verschijnselen te verkrijgen, werd
door schrijver dezes in de jaren 1949-1950 in het Kamerlingh Onnes Labora­
torium de electrische weerstand van een aantal ferromagnetische metalen
en legeringen in een magneetveld gemeten bij lage temperaturen en bij
kamertemperatuur. In 1953 zijn in samenwerking met Dr J. V o l g e r
in het Philips Natuurkundig Laboratorium experimenten over het Hall­
effect aan een aantal van deze stoffen uitgevoerd in dit zelfde temperatuur-
gebied. De resultaten „van deze onderzoekingen worden in dit proefschrift
besproken, aangevuld met enkele meer theoretische beschouwingen.

In hoofdstuk I wordt, als grondslag voor latere beschouwingen, de ban­
denstructuur van nikkel behandeld, als zijnde karakteristiek voor die der
midzijds kubische metalen en legeringen van de ijzergroep. Berekeningen
van F l e t c h e r  worden overgedaan met een andere potentiaalfunctie,
waarbij de correlatie tussen de posities van de electronen ter sprake komt
terwijl tevens de 4s-electronen in de berekening worden betrokken, welke een
groteinvloed op de bandenstructuur blijken te hebben.



In hoofdstuk II wordt het Halleffect besproken. Aangetoond wordt dat
de toeneming van het spontane Halleffect bij verhoging van de temperatuur
gecorreleerd is met die van de electrische weerstand. Bij een zuiver nikkel-
preparaat verdwijnt bij lage temperatuur, tegelijk met de electrische weer­
stand, ook het spontane Halleffect. Bij ongeordende legeringen blijven beide
eindig bij T — 0. In overeenstemming hiermee volgt uit het bewijs van
H o u s t o n ,  volgens hetwelk een periodiek rooster geen weerstand heeft,
dat ook het spontane Halleffect nul moet zijn, d.w.z. het magnetische veld
dat werkt op de geleidingselectronen is dan gelijk aan de inductie B.

De verklaring van het effect moet dan ook worden gezocht in de invloed
welke de spin-baanwisselwerking heeft op het verstrooiingsproces. Als
resultaat vindt men dan dat het effectieve veld een fractie is van het spin-
baanwisselwerkingsveld dat volgt uit de fijnstructuur van spectra («» 107
oersted).

Het is gebruikelijk het Halleffect te beschouwen als een eerste-, en de ver­
andering van de electrische weerstand door een magnetisch veld als een
tweede-orde-effect. Als men dit voor de spontane effecten ook doet, dan
komt men tot de conlcusie dat het „tweede-orde-effect” (de relatieve aniso-
tropie in de weerstand welke in hoofdstuk III wordt behandeld) ongeveer
10 keer zo groot is als het „eerste-orde-effeet” (spontane Hallhoek) en niet
enige tientallen malen kleiner, zoals men zou verwachten op grond van een
nadere uitwerking van het mechanisme dat aansprakelijk is voor het spon­
tane Halleffect. Dit mechanisme laat de component van het spinmoment
in de richting van de macroscopische magnetizatie onveranderd, d.w.z. men
gebruikt in de spin-baanwisselwerkingsoperator alleen de diagonaalelemen-
ten van de operator van het spinmoment. Dit is noodzakelijk om uitkomsten
te verkrijgen welke lineair zijn in het magnetische moment, overeenkomende
met de symmetrie van het Halleffect. Op grond van de experimentele resul­
taten moet dus voor de verklaring van de anisotropie van de weerstand wel
teruggegrepen worden op de niet-diagonaalelementen van de operator van
het spinmoment. De uitkomsten welke hiermee worden verkregen bevatten
alleen even machten van het magnetisch moment. Men behoeft dus niet bang
te zijn in de uitkomst van de theorie geconfronteerd te worden met een
spontane Hallhoek van de orde van grootte (0,2)*.

Om de weerstand-temperatuurkromme van nikkel te verklaren, nam
M o t t  aan dat door de roostertrillingen electronen veelvuldig van s- naar
^-toestanden overgaan en omgekeerd, onder behoud van de richting van
hun spinmoment. Bij lage temperaturen kunnen s-electronen met een spin
parallel aan de resulterende magnetizatie deze overgangen niet maken, om­
dat de corresponderende ̂ -toestanden alle bezet zijn, zodat deze s-electronen
de minste weerstand ondervinden en het grootste gedeelte van de stroom
voeren. Deze toestand verandert enigermate door de invoering van de spin-
baanwisselwerking en in hoofdstuk III zal worden aangetoond dat de op-



tredende extra overgangen de anisotropie in de weerstand geven. Het blijkt
experimenteel dat vreemde ferromagnetische ionen een grotere anisotropie
geven dan roostertrillingen en niet-magnetische ionen. Dit volgt ook uit alge­
mene theoretische beschouwingen. De grootte van het effect wordt geschat
op ongeveer 5%, dat dus iets aan de kleine kant is.

Bij lage temperaturen treedt in de zuivere metalen ijzer en nikkel de nor­
male toeneming van de weerstand in een magnetisch veld op. Voor ijzer
kwam met zekerheid vast te staan dat het effectieve veld, dat op de gelei-
dingselectronen werkt, B is, wat een bevestiging inhoudt van de in hoofd-
II gedane uitspraken.

Het is mij een genoegen mijn erkentelijkheid te betuigen aan de Directie
van het Natuurkundig Laboratorium der ,N.V. Philips’ Gloeilampenfabrie­
ken, die mij mede in staat stelde dit werk uit te voeren en de resultaten ervan
te publiceren.

Dat ik gedurende een gedeelte van het onderzoek in persoonlijk contact
heb mogen profiteren van de kennis en het inzicht van Dr J. L. S n o e kf,
beschouw ik als een groot voorrecht.

De Heren E. J. H a e s ,  A. S c h a a f s m a  en j. v a n  W e e s e l  dank
ik voor de verleende hulp bij de experimenten.

De Stichting Physica dank ik voor het gebruik van enig zetsel en enkele
cliché’s.



SUMMARY

In chapter I the band structure of the incomplete shell electrons in nickel
has been calculated with the aid of a potential function different to that used
by F l e t c h e r .  The correlation has been taken into account. The consider­
ation of the s electrons substantially changes the band picture.

In chapter II experimental results concerning the Hall effect in ferro­
magnetic metals and alloys are given, together with a theoretical discussion
on the origin of the spontaneous part. It is shown that the latter is correlated
with the electrical resistivity, and in agreement with this view it vanishes
for a pure nickel sample at low temperatures, i.e. the effective field is equal to
B. This is merely a consequence of H o u s t o n s  proof that a periodic *
lattice has no resistivity. For disordered alloys both effects remain finite
near T =  0.

The theoretical explanation is based upon the anisotropic scattering due
to spin-orbit interaction. In effect the moving electrons are electrically polar­
ized due to this interaction. Though the order of magnitude of the effects
ran be accounted for, the models used are too simple to yield a satisfactory
description.

For the explanation of the spontaneous Hall effect only the diagonal
elements of the spin moment operator were used. However, for the calcula­
tion of the anisotropy in the resistivity of ferromagnetic metals and alloys it
is necessary to employ the off-diagonal elements. Experiments and theory
of this effect are described in chapter III. The theory given is an extension
of the theory of M o t t  concerning the resistivity-temperature curve of
nickel.

Superimposed on these purely ferromagnetic effects there is, of course,
the normal increase in resistivity in a magnetic field. It is shown that for
pure iron the effective field at low temperatures is equal to B, just as was
found in the studies of the Hall effect for nickel.



CHAPTER I

THE BAND STRUCTURE OF THE INCOMPLETE SHELL
ELECTRONS IN NICKEL

1. Introduction
Before discussing the galvanomagnetic properties of ferromagnetic metals

it will prove necessary to first treat the electronic structure of these ma­
terials.

For the non-transition metals the electrical properties are determined by
the s or p electrons of the outer shell only. The transition metals, however,
also contain partially filled d shells. In the metals iron, cobalt and nickel
these 3d electrons have uncompensated spins and at ordinary temperatures
give rise to ferromagnetism, because of the exchange interactions between
these electrons on neighbouring atoms. It is usually assumed that there are
also electrons in the 4s and 4p states. These electrons presumably do not
contribute to the net magnetic moment of the solid; they carry the greater
part of the current.

The multi-electron wave function in solids is usually approximated by a
product, or more generally a determinant, of one-electron wave functions.
Because of the approximate nature there is a certain freedom in the choice
of the latter functions. Usually two types of wave functions are used, i.e.
the atomic type (H e i 11 e r-L o n d o n) and the periodic type (Bloch) .
Physically it means that we assume as a first approximation that the
electrons are independent of each other, each moving in a fixed potential
field caused by the nuclei and the other electrons. In the first scheme the
electrons are assumed to stay around the ion at which they were in the isolated
atom. In the second picture the electron is assumed to wander through the
whole crystal, having equal probabilities of occurrence at equivalent sites
in the crystal. If the atoms are far from each other, the first model gives a
more realistic description, whereas for small distances the use of the latter
is more justified. If we assume one electron per atom in the unfilled shell,
then in the atomic model conductivity can only occur by the excitation of
one of these electrons to a higher state in a neighbouring atom. In general
this will require a large amount of energy, so we can say that metallic con­
ductivity cannot occur. In this model these electrons will not contribute to
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the specific heat at low temperatures. In the Bloch model the electrons move
through the crystal, and their energies, being mainly kinetic, have a nearly
continuous spectrum. An electric field can then produce transitions between
states adjacent in the energy scale, i.e. the solid conducts electricity. These
states will also give rise to a contribution proportional to T  in the specific
heat.

The latter model is therefore ideally suited for the treatment of the con­
duction electrons in metals and most essential features of metals are quite
well understood with the aid of a theoretical description in terms of these
wave functions.

For the d electrons in the transition metals the situation is more difficult.
These orbits are smaller than those of the s electrons of the next shell, and
therefore the overlapping of the wave functions of adjacent ions is leséj and
so also is the probability of an electron jumping over. The Heitler-London
model seems, therefore, more adequate for these electrons, but then we en­
counter great difficulties. In nickel, for instance, the magnetic moment
corresponds to the spin moment of 0.6 electrons per atom, so that one as­
sumes that about 0.6 electrons are missing in the 3d shell. This non-integral
number is not consistent with the Heitler-London model, since one cannot
assume that 60% of the atoms have a hole in the d shell, and the remaining
have none. Undoubtedly these holes have to move, so that over a time aver­
age all ions are identical. According to the Bloch model the electrons move
independently so that the number of electrons at a certain moment in one
ion is governed by the laws of probability. The electrons are subject to the
Pauli principle, so that no more than two electrons (with opposite spin) can
be in the same orbit. It has been shown by V a n  V 1 e c k  x) that in nickel
for example, the highly ionized states having only 7 or 8 d electrons, have far
too large a weight in the total Bloch wave function. As the formation of
such states actually requires a large amount of energy, they will not occur
very frequently in reality. V a n  V 1 e c k therefore proposes the use of a
wave function for nickel in which only d9 and d10 states occur, but in which
the electrons still may jump from one atom to an adjacent one (itinerant
Heitler-London model). The movement of the electrons is therefore to some
extent correlated. Unfortunately such a model cannot be handled mathe­
matically. The high electronic specific heat at low temperatures (proportional
to the absolute temperature T) in the transition metals reveals that a con­
tinuum of energy levels above the ground state exists. One is forced there­
fore to use an itinerant electron model for these 3d electrons.

The Bloch model is extensively used for the calculation of the properties
of these 3d electrons and we shall in this chapter discuss a calculation of the
energy bands in nickel given by F l e t c h e r 2) 3). A different potential
field will be used and the calculation will be extended by taking into account
the 4s electrons.
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The fact that in this approximation highly ionized states occur, is not as
serious as one might think in the energy calculation. This is due to the fact
that we assume, as we shall see in the next section, that the electrons move
in a fixed potential field, which in any atomic polyhedron is almost identical
to that occurring in the free atom, so that the high energy of these highly
ionized states, which increases very strongly with the degree of ionization,
does not enter into the calculation. Though in any perturbation theory the
energy is always more accurate than the wave function used, in this case it
is enhanced by the choice of the energy operator. This criticism of the band
picture is therefore applicable to the wave function but to a far lesser extent
to the energy calculated for it.

For the calculation of the band structure in the Bloch scheme we shall use
the tight-binding approximation. It is agreed that near one ion the wave
function has to resemble very much that of the free atom. The Bloch function
is therefore built up from the atomic wave functions of all the ions of the
lattice.

2. The tight-binding approxim ation

If there exist atomic one-electron wave functions for an atom centred
around r n, which are denoted by <^(r — r„), then we can construct from it
Bloch wave functions for a periodic crystal according to

. V(k, r) =  X, S„ a, (k) eikr« 9?,(r -  r„), (1)
where n is summed over all N  lattice points and j  over all possible atomic
wave functions. In the tight-binding approximation it is assumed that one
obtains the right wave functions for one band by taking in (1) only the
atomic wave functions of one or a few shells.This will be the case if the atomic
wave functions under consideration of neighbouring atoms do not overlap
too much. In this section we shall only consider the 3d functions.

To the Hamilton operator H^(r) for an electron centred at r n in the free
atom an operator H (r) is added so that

H( r) =  +  H™( r)

is periodic. The Schroedinger equation gives then, after multiplication by
an atomic wave function centred at the origin and integration:

S, «,(k) S„ e^'fcpi (r) H <p, (r -  r„) dr =  £(k) a,(k). , (2)

where it is assumed that

f<p'i{r ~  r«) <Piir ~  r  J  dr =  &u 8nm- (3)
This assumption will in general not be satisfied by the atomic wave functions.
It is always possible, however, to construct by linear combination of them
a new set of “atomic” functions for which (3) is valid. It appears 4) that by
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using in (2) the true atomic wave functions, thus neglecting their lack of
orthogonality, the relative error in the final k-dependent part of the energy
is of the order of the overlap-integral times the number of nearest neigh­
bours, which, according to F l e t c h e r 3), for the 3d functions of nickel
is at the most 0.1, so this gives an error of the order of 10%. Furthermore we
shall retain with F l e t c h e r  in (2) only the contributions of pairs of
nearest neighbours. Estimation shows that this error is at most 10%.

Equation (2) represents a set (for the 3d electrons five) of homogeneous
linear equations in the coefficients «<(k) which give rise to a determinantal
equation with matrix elements

Hu =  £'°> du +  S„ r  -  r„) dr, (4)
where £)0) is the energy of the electron in the free atom wave function <p}.
It is the same for all the five 3d orbits. The summation over n in (4) refers
only to nearest neighbours. For each value of k we then find five Bloch
functions.

For the atomic wave functions the eigen functions in a cubic crystalline
field were taken, i.e.

<Pi =  (15/4^)* xy f(r)/r2 <p2 =  (15/4jr)* yz f(r)/r2
cp3 =  ( 15/4tt)* zx f(r)/r2 <p i  =  (15/1 6jt)* (x2 — y2) f(r)/r2
<p5 =  (5/1 6tt)* (2z2 - x 2 -  y2) f(r)/r2. (5)

The matrix elements (4) can then be expressed in terms of the energy
integrals between atomic functions and the wave vector k, and read 3)
H n  =  — 4AX cos £ cos T] -f- 4,4 2 cos £ (cos £ cos rf)
# 2 2 >  H 33 C y d .

Hi4 =  4A4 cos £ cos t] — 4AS cos £ (cos £ +  cos tj)
H5a =  — (4/3) (At +  4A b) cos £ cos rj +  (4/3) (2,44 — A 6) cos £

(cos £ +  cos rj)
4A„ sin £ sin £ H 23 CYc l -

Hu  —  0 H2i —
H lb = — (8/3*) A 3 sin £ sin rj
H35 =  (4/3*) A e sin £ sin £

4Ae sin rj sin £ H34 = 4A e sin £ sin £
H 25 =  (4/3*) A e sin rj sin £
#45 =  -  (4/3*) (^[4 +  Ag)

cos £ (cos £ — cos rj),

(6)

with £ =  \akx, rj =  \  akv, £ = \  akz where a is the lattice parameter and
A 1 =  — ƒ <p4(x, y, z) H™ 9\{x — \a ,y  — \a, z) dr
A 2 =  f  <Pi(x , y, z) H{g] y-^x, y — \ a , z — \a) dr
A a =  y, z) Hg> <px(x — \a ,y , z — \a) dr
A 4 =  y, z) HU* (p4(x — \a ,y  — \a, z) dr
A 5 =  —f n ( x> y> ■») # 01) y — ia ,z  — \a ) dr
Ag = f<Pi(x, y, z) H{g] <p2(x, y — \a, z — \a) dr
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For the <p functions F l e t c h e r 3) used the atomic 3d functions of the
Cu+ ion, as calculated by H a r t r e e  and H a r t r e e 5). Its radial part
could be approximated analytically by

f(r) =  85.88 r2 e~Sr +  1.979 r2 e~2r. (8)

The oscillatory part near the nucleus was not taken into account, being of
m in or importance for the integrals in (7). The effective potential in the free
atom was approximated by

F ( r ) = - ( l + 2 8 r Sf)/f. (9)

Atomic units are used in these equations.

3. The perturbing potential
We shall now discuss what we have to take for the perturbing potential

• H{1) in (4) and (7). If we add other atoms to the central atom in order to form
a lattice, one-electron potential troughs are added. These are not exactly
equal to (9), since this corresponds to a coulombic potential at large distances.
What we add actually are neutral atoms, so we may expect that in this
approximation the extra potentials are given by

U(r) =  — 28 e~3T/r (10)

centred around the additional lattice points. The consistent application
of the band model should reveal that also the potential energy of the central
atom is changed, since the charge of the electron under consideration is
spread out over the whole crystal, and what an electron then feels in the
centre is (10) and not (9). We should then find

H ?  =  1/r -  SB#0 28 '«l/|r -  r.(. (11)

We shall take only that value of rre which coincides with that occurring in
(7). In (11) no correlation between the positions of the electrons is taken into
account. Actually, what we consider in (7) is the hopping of an electron of
the central atom to one of its neighbours. Because of the correlation which
exists between the positions of the electrons we may expect that in one
atomic polyhedron two electrons of the same type are not present at the
same time. We therefore assume that the perturbing potential is zero in the
central atomic polyhedron and in the adjacent one is given by (10) with
r ->r — r n. This way of taking correlation into account is quite similar to
that which has been used by W i g n e r and S e i t z 6) in the cellular
approximation, which gives good results. F l e t  c h e r  used as perturbing
potential H(1) =  0 in the central polyhedron whereas its value at the neigh­
bouring atom was given by (9). This is an over-estimation of the correlation
effect, since it is equivalent to the assumption that the electron under con-
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sideration keeps his brothers out of two polyhedra. We therefore repeated
F 1 e t c h e r’s calculations and found that the contributions of the 1 fr term
and that of the screened Coulomb field in (9) are about the same, so that
this reduces the results of F 1 e t  c h e r to about half their values, t.e. the
bandwidth of 2.7 eV becomes 1.5 eV. Moreover we found it reasonable to
treat the perturbing potentials caused by the two atoms under consideration
on an equal footing, i.e. we assumed that each of them worked m the half
the whole space, with as boundary the plane bisecting perpendicularly the
line joining the two lattice points. It turns out that all integrals are the
about 50% larger than those of F 1 e t  c h e r, so that the total bandwidth
is increased to 2.2 eV. This more or less arbitrary way of choosing the domain
of integration can presumably introduce the most serious error in the calcu-

The values obtained for the integrals (7), expressed in eV, are compiled.in
table I.

TABLE I

Calculated values of the overlap energy integrals in eV for various
the perturbing potential

assumptions of

—28 e~*rlr
(a)

— Mr
(b)

(a)—(6)
(c)

{a) +  (o)
(<*>

F l e t c h e r
(«)

4 A ,
4 A t
4 A 9
4 A ,
4 A ,
4 A ,

0.858
0.238
0.354
0.591
0.127
0.373

0.662
0.204
0.284

■ 0.488
0.082

, Q.293

0.196
0.034
0.070
0.103
0.045
0.080

0.442
0.638
1.079
0.209
0.666.

0.309
0.418
0.727
0.133
0.465 |

useof u i
M) leads to a bandwidth of about 0.3 or 0.4 eV, this being ar too small to
have any physical significance. We shah use potential (10) corresponding
to (a).

4. Interaction with the 4s electrons
Before plotting the E -  k curves we have first to consider the interaction

with the 4s electrons, which band overlaps the 3d band. The corresponding
matrix elements are also given by (4) if Vi is some type of t ó c ^ s f u ^ t w ^
Since the atomic 4s wave functions overlap very much at the actudi < ^ c e
of the atoms in the metal, it is not correct to use them for (the index o
is adopted for the 4s electrons). The 4s band is occupied by only 0.6 electrons
per atom, so their wave functions closely resemble those of free electrons
we L  only interested in states not far above the Fermi level, we can put in



first approximation
2» e<kr" <Po (r -  r„) =  eikT, (12)

Q being the atomic volume. The matrix elements are then
#o<* =  #*„ = Q - ' f  e~ikr U(r) <pd(r) dr, (13)

which, expressed in eV, are easily found to be:

#oi =  #io =  0-380 it) # 0 2  =  # 2 0  =* 0.380 1
#03 =  #30 =  0.380 «  # 04 =  # 40 =  0.190 ( |2 - r , 2) 1 ( 14)

#05 =  #50 =  0.110 (2C2 - i 2-r,2) J
and with

#„0 =  1.22 ( |2 +  j?2 +  f2) -  5.27

if the zero of energy is taken at the Fermi level in the ferromagnetic state.
Because of the use of the very simplified wave function (12) we may not
expect that the results (14) give more than the order of magnitude. The
symmetry in k space, however, is correct.

For wave vectors at or near the Brillouin zone boundaries, (14) is no longer
valid. We may expect that at the top of the s band the wave functions have
predominantly p character, which wave functions do not combine in these
integrals with d functions, so we shall assume that the off-diagonal elements
of (14) are zero at the Brillouin zone boundary in the first Brillouin zone.

The way in which the values in (14) go over into these zero values for the
matrix elements depends of course on the periodic potential.

5. Solution of the secular equation
We have solved the secular equation for the (100) (110) and (111) orien­

tation of the wave vector, and the results have been plotted in fig. 1, 2 and 3
respectively.

In the (100) direction the 4s functions combine with only one atomic 3d
wave function with angular part (2x2 — y2 — z2)/r2. At the Fermi level their
weight is about 25%, but the velocity is not much decreased.

The 4s electrons moving in the (110) direction combine with a hybride of
the 3d functions with angular part xy/r2 and (2z2 — x2 — y2)/r2. At the Fermi
level the wave function has predominantly d character with a slightly
increased velocity (about ^ of that of a free electron with the same energy).

In the (111) direction there is a mixing of the 4s function with the 3d wave
function having angular part (xy -\- yz +  zx) jr2. At the Fermi level the
weight of the d electron wave functions is about 25%, but the velocity is
nearly that of a free electron.

It is seen that in general the 4s electrons combine with d states which have
maximum weight in the direction of propagation.

7



Fig. 2. FlS 3‘
:or the (100), (110) and (111) orientations of ft, respectively. The dashed curves are without s—d
interaction. The Fermi level in the ferromagnetic state is a t E  =  0.



6. Discussion

We conclude that in the (100) and (111) orientations of the wave vector
the 4s electrons near the Fermi level are not seriously affected. Their ef­
fective mass will be within a factor 2 of that of the free electron. It is to be
expected that in general in all other orientations of the wave vector there
will be a mixing of the s states and the wave functions belonging to the upper
band. That is the E — k curves of the s functions and of the upper d band
wave functions will repel each other. From the fact that this repulsion is zero
in the (100) and the (111) direction, we conclude that an appreciable part of
the electrons at the Fermi surface have nearly pure s wave functions in which
the velocity and the effective mass are not substantially changed. According­
ly, for conduction problems etc. we have shown, that it is still possible to
separate the electrons into two kinds, namely electrons with a normal mass,
which carry most of the current, and the heavily-bound 3d electrons. Thé
latter have, according to the figures 1, 2 and 3, a mass which is at least a

Fig. 4. F,stimated Fermi surface of the conduction electrons for kz =  0. Dashed circle:
the same for free electrons.

factor 10 larger than that of the conduction electrons. We shall make use
of this fact in chapter III. It follows, however, that the momenta of the
conduction electrons no longer have spherical symmetry, as one would
expect for a pure s band which is occupied by only 0.6 electrons per atom. In
fig. 4 an estimated cut of the Fermi surface in a (100) plane in k space is
plotted. This anisotropy will be of importance for the explanation of the
relatively high magnetoresistance in nickel, as will be discussed in section 15.

Also, without calculating the exact shape of the density of states against
energy curve, it is clear that it is changed substantially by the introduction
of the 4s states into the calculation. This will therefore have a great influence
on all the properties which are related to the band structure 7).

F l e t c h e r  has calculated the complete band structure for states near
the top of the band, and was able to construct the density of states
curve in this energy range. From this the calculated the electronic specific
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heat. We have not repeated these complete calculations for our modified
interaction, since we believe that such calculations can only give an order of
magnitude. This order of magnitude can also be obtained by putting the
density of states at the Fermi level equal to the average level density. We
then find for a band width or 2.2 eV for the coefficient y from the expression
c  __ y T t y  =  1.3 x  10-3 cal mol-1 deg-2, as compared with an observed value
of 1.7 X 10-s.

Our conclusion is that for the actual multi-electron wave function a
continuum of energy levels above the lowest state exists, due to an increase
in kinetic energy of the 3d electrons. The essential features of this continuum
may be calculated using the one-electron Bloch functions, provided the
correlation is taken into account.



CHAPTER II

THE HALL EFFECT IN FERROMAGNETIC METALS AND
ALLOYS

7. Introduction

The linear relationship between the current density i and the electric field
E in a conductor can be described by a tensor w according to

E i =  wi j ij , (1)

summed up over repeated indices. The antisymmetrical part of this tensor,
i  e- !(»« — wh)> is, according to the Onsager relations, odd in the externally
applied magnetic field H, or in the induction B. In three dimensional space
an antisymmetrical tensor can be represented by a vector. We then have

where q, defined by
E =  gi + A  x i,

Qa =  j(»«  +  ™,i)>
is the symmetrical resistivity tensor and A the Hall vector. The relation
between A and the induction B is determined by the material only. If a
linear relationship exists, which usually will be a sufficient approximation,
this relation is described by a tensor

A i =  Ru Bj. (2)

The tensor Rit has the symmetry of the crystal. For a cubic crystal such a
tensor has to be isotropic, i.e. it is diagonal with three equal diagonal matrix
elements R0. This constant is the Hall coefficient obeying

E v =  R0ix Bz , (3)
if the primary current is in the x direction and B along the 2 axis. This Hall
tension is a consequence of the Lorentz force acting on the moving electrons.
For free electrons R0 is then equal to

R0 =  (Nec)-1, (4)

where Ne is the total amount of moving charge per cm®. If the electrons are
not free N  should be replaced by N eff, the effective number of charge
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carriers. If the sign is found to be opposite, we say that the effective charge
of the carrier is -j- \c\ so that we have conduction by holes. Assuming that
these quantities do not change with temperature, R0 should be independent
of temperature. For most metals this is essentially true. For monovalent
metals one finds that N  corresponds to about one electron per atom, as one
would expect.

For the ferromagnetic materials it is found that A is not proportional to
B, but that a constant part has to be added 8). This "spontaneous” part, as
we shall call it, is caused by the spontaneous magnetization Ms. In this case
we cannot speak of a linear relationship between As and M„ since the magni­
tude of M„ cannot be changed. Therefore even for a cubic crystal the de­
pendence of this spontaneous part A, on Ms can only be described by an
approximate relationship, which contains more than one constant. If we
denote the direction cosines of Ms with respect to the cubic axes by a,-, we
get for the components A si of As along these axes in first approximation

Ati — AnR, Msi {1 +  p «? +  q <£ +  r (a|o4 +  *3ai +  *1 *2)) + ---- } (5)
The occurrence of the constants p, q and r makes the effect anisotropic. The
only measurements made on single crystals are those of W e b s t e r 9) on
iron which showed that the effect is isotropic. In a polycrystalline material,
which is being magnetized, the resultant A, will have a mean value of (5) as
is found by averaging over all Weiss domains, assuming that the current is
homogeneous. For finite values of p, q, r, this average will take different
relative values at different stages of the magnetization process. In that case
A, will not be proportional to the resultant magnetization. In the measure­
ments on polycrystalling samples we never found a marked deviation of
proportionality between the Hall voltage and the applied field well below
saturation, i.e. as long as the magnetization is linear in the applied field.
We therefore conclude that the terms p, q and r are not predominant and
may be neglected, so that for ferromagnetic materials

Ey =  (R0Bz +  4nR .M ,)ix. (6)

Because we have dropped the non-linear terms in the direction cosines it may
be expected that (6) also holds in the paramagnetic region as for instance
near the Curie point10) or in strongly paramagnetic substances u ). Since in
this case both B and M are proportional to H, one observes this anomalous
Hall effect as a normal one. For substances with a paramagnetic suscepti­
bility of the usual order of magnitude, the contribution of this anomalous
effect is negligible. It is then also immaterial whether we use in (3) B or H.
For ferromagnetic materials, because we add a term proportional to An M,
it is again possible to use H instead of B. We prefer the use of this last
quantity since this is the mean magnetic field inside the crystal. This choice
will be justified theoretically and experimentally in the next sections.
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The spontaneous Hall effect is usually very large, i.e. R„ ;> R0. For nickel
at room temperature for instance R, <v 10 R0. An extra magnetic field of
magnitude (RJR0) 4n M  would give the same effect, which is in this case
about 60.000 oersted. Although such an effective field gives a good idea of
the order of magnitude we do not consider it to be a good description of the
effect: it will appear from the experimental results that at different temper­
atures Rs and R0 are quite uncorrelated, whereas Ra is a monotonie function
of temperature. Besides the large magnitude, its strong increase with in­
creasing temperature is the most striking feature of this Hall effect. Earlier
experiments12) seemed to indicate that for nickel at low temperatures
Ra tv R0, whereas at room temperature Rs & 10 R0. In 1910 S m i t h 13) 8)
showed that above room temperature Ra increases strongly. In particular at
low temperatures this behaviour cannot be understood in terms of a variation
of the magnetic properties: the spontaneous magnetization does not increase
more than 5% below room temperature. The only relevant property of the
material, which changes in a similar way, is its electrical resistivity. If a
relationship between Ra and q exists, one should expect that for disordered
alloys Ra decreases much less below room temperature than it does for the
pure metals. Starting from this idea Dr J. V o l g e r  and the author
measured Ra of a number of alloys at temperatures of liquid hydrogen, of
liquid nitrogen and at room temperature. In most cases it was found that Ra
and q have a similar temperature dependence. We also measured some nickel
samples, and it was found that for the purest material Ra goes to zero for
T =  0. We may therefore state that Ra is correlated with the electrical
resistivity of the material.

As to the theoretical aspect of the problem we could prove by an extension
of H o u s t o n s  proof, which states that a periodic lattice has no resist­
ivity, that I?, must also be zero in such a lattice. This is in agreement with our
experimental results obtained with very pure nickel. We shall show in this
chapter that the spontaneous Hall effect must be caused by skew scattering
due to spin-orbit interaction of the magnetized electrons on the imperfections
of the lattice.

8. Experimental data
The Hall effect was determined for a number of nickel alloys both

with magnetic ions like iron or cobalt as second component and with nom
magnetic ions. Measurements were carried out at room temperature and
at the temperatures of liquid nitrogen and hydrogen in fields up to
14000 oersted. The samples were in the form of thin foils with dimensions
50 X 10 X 0.05 mm3. The Hall contacts were Ni wires of 50// thickness which
were spot welded on the edges of the specimen over a distance which did not
exceed 0.5 mm. At one side two contacts were made at 1 cm apart and were
overbridged by a potentiometer. In this way it is possible u ) to measure the
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pure Hall voltage. At this stage the specimens were annealed for one hour
at 1000°C in purified hydrogen, after that slowly cooled to 600°C and then
pulled out into the cold part of the tube. The current leads were soldered on
the specimen.

The finite dimensions of the specimen cause some errors in the measure­
ment of the Hall effect. This has been investigated by V o l g e r  and
F r a n k 15) and for our case the maximum error is l£%. Another cause for
error is in the fact that the Ni wire of the Hall contacts short circuits to
some extent the Hall voltage over the distance over which it is welded on
the foil. If the effective resistance of that part of the foil is Rx and that of
the wire R2, the Hall voltage over that part is reduced by a factor
RJ(R1 +  R2). If we assume that for R1 we have to take a part of the foil
with a width of the order of the length of overlapping, we find, if the wire
and the foil have the same specific resistivity, a maximum error of 1%. For
the measurements on alloys at low temperatures it would be better to take
for the material of the wire also an alloy, but this gave difficulties with the
welding.

The current through the sample was 1 — 3 A and the Hall voltage was
compensated with a Dieselhorst compensator. Every point was measured
four times, i.e. both the current and the magnetic field were commuted
in order to find that part of the voltage which is odd in both the current
and the field. The field was always first brought to its maximum value and
after that to the desired one, in order to avoid- hysteresis. A few typical
curves are shown in fig. 5. The results are given in table II. The magnet­
ization has only been measured at 77° and 290°K. The value at 20° is esti­
mated. The spontaneous Hall angle has been corrected for the change of
the magnetization. We see that it is mostly of the order of 10 . For the
purest Ni specimen the spontaneous Hall effect goes to zero at the lowest
temperature, as is also seen from fig. 5. This is not the case for the impure
samples12) and the alloys. Also the “pseudo nickels” (Ni-Fe-Cu alloys) have
a finite R, at T  =  0. The material of the specimens quoted as “annealed”
and “hard” is not as pure as the carbonyl nickel. In this case R, increases
upon annealing. ■

The normal Hall coefficient of the commercial Ni behaves as one should
expect: it is constant as a function of temperature. For the purer specimens
this is not the case, R0 increases appreciably for increasing temperature.
Also the R0 of some Ni-Co alloys do not agree with measurements at room
temperature of other authors16), so we conclude that the Hall effect in ferro­
magnetic metals and alloys is extremely sensitive to impurities. It appears
from the experimental results that R0 and Ra are not closely correlated.
This is most clearly demonstrated for the Ni alloys with non-magnetic ions
where R0 varies quite irregularly with temperature, whereas Ra is a mono­
tonie function of the resistivity. P u g h 17) has recently discussed theo-
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retically R0 for Ni and Ni-Cu alloys and could explain why there R0 de­
creases with increasing temperature. For quite a number of alloys and for
nickel, however, the reverse is true, so his argument cannot be considered as
conclusive. The high value of R0 of the V alloy at room temperature is

Ni (Carbonyl)

290°K

Ni92.SFe2.5CuS

---------- ► B (k gauss)
Fig. 5. Hall effect in pure nickel and in "pseudo nickel” (Ni 92.5 Fe 2.5 Cu 5) at
different temperatures. Extrapolation of the high field values to B  =  0 gives the
spontaneous contribution. This is zero for the Ni sample at 20°K. Note the different

scales for the two specimens.

spurious, and is due to the high intrinsic permeability near its Curie point.
This possibility was first suggested by R o s t o k e r  and P u g h 10). In
this paper we shall further only discuss Rs.
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TABLE II

Ordinary and spontaneous Hall effect of some nickel alloys.

Composition
atomic %

Q X 10«
Q  cm

4n  M
k  gauss

- S „ X  1018
Si cm/gauss

—  R s X  10“
Si cm/gauss

— <PSH
—~ z ig . Q'jilvl o

e
X 10*

n

20° 1 77° 290° 20° I 77° I 290° 20° 77° | 290° 20° | 77° | 290° 20° 77° I 290°

Ni (carbonyl)
Ni (commercial)
Ni (hard)

(annealed)

0.059
0.40
0.32
0.12

0.69
0.86
0.84

6.8
7.2
7.1
6.9

6.4
6.4
6.4
6.4

6.4
6.4
6.4
6.4

6.1
6.1
6.1
6.1

0.50
0.58
0.51
0.40

0.36
0.52
0.51
0.42

1.26
0.60
1.1
1.33

0.0
0.25
0.05
0.15

0.19
0.27
0.05
0.17

2.4
6.4
4.4
3.6

4.0
0.9
8.3

1.7
2.0
0.4

5.5
3.9
3.3

Ni 92.5 Fe 2.5 Cu 5
Ni 85 Fe 5 Cu 10

6.3 7.1 15.0
20.2

6.2
6.1

6.2
6.1

5.9
5.8

2.05
2.4

1.7
2.1

1.45
2.1

3.7
3.9

4.2
4.8

15.2
13.1

3.7 • 3.8 6.2
3.9

Ni 91 Cu 9
Ni 82 Cu 18

8.3
15.5

9.3
16.7

18.5
28.8

5.1
4.l|

5.1
4.0

4.8
3.6

2.4
2.5

2.1
2.3

1.15
1.35

7.2
17.5

8.2
20.0

27.7
44

4.5
4.6

4.5
4.9

7.7
6.3

1.7
1.4

Ni 90 Co 10
Ni 80 Co 20
Ni 70 Co 30

2.2
3.2
3.9

2.3
3.3
4.0

11.8
12.0
11.4

7.7
9.0

10.2

7.7
9.0

10.2

7.4
8.7
9.9

1.2
2.1
2.9

1.1
2.0
2.8

2.25
1.9
1.3

0.48
0.27
0.32

0.77
0.14

£-0.53

7.4
0.65

— 1.9

1.8
0.7
0.8

2.6
0.4

— 6.6

4.8
0.5

— 1.7

Ni 89.3 Fe 10.7
Ni 84 Fe 16

3.8
4.6

4.5
5.2

13.1
14.4

9.0
10.0;

9.0
9.9

8.6
9.5 ,

0.4
2.35

0.45
2.2

1.7
1.7

1.4
— 0.40

1.2
— 0.65

1.8
— 0.95

3.4
— 0.9

2.5
— 1.2

1.2
— 0.7

Ni 92 A1 8
Ni 97 Si 3
Ni 93 V 7
Ni 97 Mo 3
Ni 97 Sn 3
Ni 98.4 W 1.6

12.4
9.5

33.2
20.9
10;8
11.0

13.1
10.1
34.1
21.9
11.4
11.9

24.8
18.0
43.9
30.7
17.2
19.6

3.2
4.9
3.1
4.8
5.0
5.9

- 3.1
4.9
2.8
4.7
5.0
5.8

2.6
4.7
1.3
4.1
4.6
5.4

1.8
0.7
1.6
1.15
0.85
0.7

1.8
1.0
1.95
1.05
0.9
1.05

1.0
1.1
4.8
1.5
2.0
1.1

36
18

237
83
18
20.3

42
19

255
84
18
21

85
39

221
106
34
39.6

9.3
9.2

22
19

8.3
10.7

1Ó.1 .
9.1

23
18
8.0

10.6

10.9
10.6
16
16
10.2
11.8

1.2

0.6
1.4
1.2



As already noted, especially for the alloys with a non-magnetic element,
Ra changes monotonically with q. This is demonstrated in fig. 6. From the
slope we find the power n of the relation

R. ~ e n
which has been added to table II. As a mean value we have 1.4, which
value also holds for the Ni sample of J  a n 18) at high temperatures. Such a
graph of R svsq was first made by K o o y 11) for iron and its alloys with
silicon.

(Jhcm/gauss)

- R s

A
>

'I

/ ✓

AA//

<éW JT

w

---- Ni (after JAN)
® Ni 92.5 Fe 2.5 Cu5
a Ni 91 Cu 9
A Ni 82 Cu18

/ r/ ef J/  //  /

/ v Ni 92 Al 8
« Ni 97 Si 3
* Ni 93 V7

Ni 97 Mo 3

/ 'B Ni 98.4. W1.6

2

A
«T*

Fig. 6. The spontaneous Hall coefficient Rs as a function of the resistivity g for several
Ni alloys at three temperatures.

For nickel R, is negative. The addition of Co or Fe decreases the absolute
value of R„, so that it passes through zero at about 25% Co or 15% Fe.
For pure Co and Fe Rs is positive16). It is remarkable that these zero points
occur at about the same Bohr magneton number (nB & 0.9). The normal
Hall coefficient R0 has still the same sign as that of Ni, but for pure iron
it is also positive 16) (hole conduction).
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9. Theory for a periodic lattice

Three possible causes for the spontaneous Hall effect might be:
a) Magnetic fields originating from the dipoles;
b) Spin-orbit interaction;
c) Inhomogeneous magnetic fields caused by the electrical current ix

through the crystal.
The mean field averaged over the whole space of the crystal is equal to B.

If we assume that this field acts on the electrons which carry the current,
then the space within the circular currents, which generate the magnetic
dipole, may not be excluded. This means that the charge carriers which give
the Hall effect must have the ability to pass through the interior of these
currents, i.e. the conduction electrons have to penetrate the magnetic
electrons since the magnetic moment is mainly caused by the spins of the 3d
electrons. This situation is similar to that in the theory of the hyper-fine
splitting.

The total magnetic field inside the periodic crystal can be represented by
the Fourier series

h(r) =  B +  Eg bg eigr,

where g is a basis factor of the reciprocal lattice, excluding g =  0. Since
div h =  0, we find bg - g =  0 for any vector g. We can therefore derive h(r)
from a vector potential

A =  B x  r  +  * Eg (bg x g) ei6flg2, (7)

which then consists of a non-periodic part (B X r) and a periodic part. The
part with B will give rise to the normal Hall effect R0B in (6). The second
part of (7), which we shall denote by A„, will in first approximation give rise
to an additional periodic term in the Hamiltonian

Hiip=  — (e/mc) A„ p. (8)

A similar periodic term is introduced by the spin-orbit interaction *°)

H' — (2 mee)-1 (jx X VV) p, (9)

where V is the periodic potential of the lattice and |x the spin magnetic
moment. Since we are interested in an odd effect in jx, we have only to
consider its diagonal elements, so we can treat it as being a number. The
effects a) and b) thus give rise to periodic potentials. The resulting Hamilto­
nian without the effect of B is still periodic and the solutions of the Schroe-
dinger equation will be of the Bloch type. Electrons in these states can carry
a translational current which is thus stationary, i.e. no acceleration results,
and no field strength is needed to maintain this current, so that R, =  0. The
conduction electrons simply report the space averaged field in the metal.
This is independent of the charge distribution of these electrons in space, so

18



it is immaterial whether the electrons avoid places of high field strength or
not. The inhomogeneous part of the field and the inhomogeneous charge
distribution have no influence on the effective magnetic field because of
their periodicity. W a n n i e r 21) and before him other authors have treated
this problem of the dipole fields and found fields different from B. Their field
was in first approximation given by H +  2n M(1 +  p) where p measures
the relative probability of a conduction electron penetrating into the interior
of a polarized electron. In this case p fa 0, so He// ta 2n M. These authors
did not take into account the periodicity of the lattice and their analysis is
therefore irrelevant for this problem. Also theories using the spin-orbit inter­
action 22) 8) to explain the spontaneous Hall effect were carried out for
periodic lattices and should give therefore zero results. In fact the relevant
integrals in these papers are all zero. The fact that we found R, =  0 for
nickel at low temperatures may therefore be regarded as experimental proof
that the magnetic dipoles are generated by circular currents. This conclusion
is not restricted by the use of one-electron wave functions. One can show that
the total electronic wave function, for a periodic lattice is also of the Bloch
type, i.e.

Y& V  r2 . . . r N) =  e<*'i+r2+..+rNw  tfk(ri> r2 . . .
where r 1( r 2 . . .  are the coordinates of the electrons and Uk a periodic anti­
symmetric function of these coordinates (spin coordinates included). The
above argument remains the same, only the coordinate of one single electron
is replaced by that of the centre of gravity of all the electrons, but this is just
what we need.

The last point c) has been discussed by R u d n i t s k y 23) and also in
ref. 8). The primary current ix causes a magnetic field. This field, which has
not yet been discussed under a), is inhomogeneous in a finite crystal and a
force is acting on the spins of the electrons. The corresponding part of the
Hamiltonian H  has to be subtracted before H  is periodic. This force will also
try to curve the paths of the electrons, but since each component of the field
averages to zero, it yields no resulting e.m.f. The authors quoted calculated
the force f on the magnetic moment p. of the electron by means of the
equation

f == (H • P) H. (10a)
This equation only applies to dumb-bell dipoles. The adequate force equation
for dipoles generated by circular currents is

f =  P(ji-H). (106)
Equation (10a) is clear: we must have the change of H in the direction of p..
That (106) applies to circular currents follows most directly by writing down
the relation between the magnetic moment density m and the dipole current
density i :

curl m =  ijc.
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The Lorentz force per unit volume fz is given by — H X i/c so that we get

fj =  — H X curl m =  — F(m-H) +  (H- V) m, (10c)

where only m is differentiated. Integrating (10c) in order to find the total
force, we find for the last term —.ƒ m- PH dr =  0. The first term gives in
the same way, assuming that the gradient of H is constant over the volume
of the dipole, the equation (106), where p =  ƒ m dr. Though m is not
uniquely defined by its curl, the gradient field which can be added does not
contribute to p. The difference between (10a) and (106) is p X curl H and
is zero when there are no currents. In our case H is generated by the currents
within the sample and therefore only (106) is valid. But this force, being a
macroscopic gradient field, cannot give an e.m.f. in a closed circuit. We con­
clude therefore that in a periodic crystal no spontaneous Hall e.m.f. can
exist, i.e. R, =  0.

It may be noted that (10a) gives rise to a Hall effect of the required form
as was derived by the authors quoted. The effect is given by

p X curl H =  p X 4tt i/c,
where i is the primary current. The force is then equal to

f =  An p X i/c,

corresponding to a field strength of
E =  An M X i/Nec,

where N  is the net number of Bohr-magnetons per unit volume. According
to (4) this equation is equivalent to the normal Hall effect formula with an
effective field of An M, if it is assumed that only the magnetized electrons
carry the current. For rod shaped dumb-bell dipoles we should have found
that the space averaged field is equal to H instead of B, but now the missing
An M is given by the effect c), so that we again arrive at an effective field
equal to B in a periodic lattice. In actual ferromagnetics, however, as
we have seen in chapter I, the current is presumably carried for the greater
part by the unmagnetized s electrons, so the last reasoning breaks down.

10. Combined influence of spin-orbit interaction and an applied
electric field

In order to maintain a stationary current in an imperfect crystal one has
to apply an electric field. In this section we shall discuss the combined
influence of such a uniform electric field and the spin-orbit interaction on
the wave functions, but still neglecting the perturbations of the lattice. The
wave functions are therefore still of the Bloch type. Such a procedure has
also been followed by K a r p 1 u s and L u t t i n g e r 24) (K—L paper)
and these authors claimed to show that as a result a stationary current is
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generated, being proportional and perpendicular to both the applied field
and the magnetization, thus having the symmetry of a Hall current. The
constant of proportionality is in first approximation independent of temper­
ature, so that R a ~  q2, which dependence on q agrees quite well with the
experimental data, this being also the case with the order of magnitude of
the constant of proportionality. We shall show that this effect is spurious,
and that in the stationary state it is compensated exactly by the opposite
action of the collisions of the electrons against the perturbing potentials.

Prior to a discussion of this matter we shall treat the spin-orbit inter­
action in more detail. Since one can write a triple scalar product in different
ways, it is also possible to identify (9) as a result of the action of a magnetic
field

Hs o =  (p X VV)/2 mec — — x E (9a)

on the spin magnetic moment ja. The fine structure of spectra is caused by
the fact that the spin can be either parallel or antiparallel to this spin-orbit
magnetic field. For the present problem we shall be interested in the fact
that this H, 0 is inhomogeneous, due to the inhomogeneity of V, so that the
electron feels a force via its spin magnetic moment. The nature of this force
can be seen most easily by writing (9) in a third way:

H' — (2me)-1 E (p. x  p),

showing that the spin-orbit interaction also can be interpreted as the inter­
action of an electric dipole moment with an electric field. So a moving
electron has for an observer in a system at rest an electric dipole moment

=  — i(v/c) X |A. (9b)
For an electron moving in the x direction with its spin along the z axis this
polarization points in the y direction, so that the energy is E y [iz vx/2c. In a
crystal with potential troughs at the ion sites it means that the “potential
energy’’ for the travelling electron is smaller if it passes the ions on the right
than on the left. As a result the charge density will become asymmetrical
with respect to the ions, so that a finite polarization in the y direction, or
more generally perpendicular to the velocity and to the spin, will result,
which changes sign with vx and /iM. The altered wave function is still of the
Bloch type. The situation has been plotted schematically in fig. 7. In the
lowest figure, which refers to the k space, this polarization of the wave
functions (referring to normal space) has been indicated.

An applied uniform electric field Ex =  F  has two effects:
a) The orientation effect

Electrons moving in the y direction have opposite polarization in the x
direction ( ^  qx) for opposite values of kv. The energies for the two states in
the field are therefore changed by an amount of T" eEqx respectively, so that
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E(ky) =£ E(—kv). We can say that the field tries to orient the permanent
dipole moments. The velocity in the y direction in the state characterized
by k is ti-1 dE/dky. Usually £(k) =  E { -  k), so that an electron in the state k
compensates exactly the drift of one in the state k. Let us assume with
K —L that the density function is a function of the energy of the individual
states: q =  q(E). In that case the resultant velocity is obviously zero for the
case of E(k) =  E(—k). In our case £(k) ^  E(—k), so this simple argument
does not apply. The total velocity in the y direction, however, is proportional
to

<V V> If & k x  f  (dE/dky) q(E) dky ( 11)

and is zero, since the last integral can be reduced to one with respect to E.
In fact many electrons with small velocity compensate the opposite current
of less electrons with larger velocity. So we can state that any band, even if

X x 4-x X X X

Fig. 7. Schematic plot of the effect of polarization caused by the spin-orbit interaction
on travelling electrons. The upper figure is in normal space, the crosses indicate the
ions, and the lower figure is in wave vector space. The ellipses indicate the direction

of the polarization.

it is asymmetrical, does not carry a current if it is filled up with a density
which is a function of the energy only. This fact was also recognized by
K —L, as is borne out by their eq. (2.13).
b) The acceleration

Secondly the electric field accelerates the electrons, i.e. transitions between
states with different kx occur, so that for instance in effect an electron in
state 1 (see fig. 7) at one side of the Fermi surface changes to state 2 at the
other side, thereby changing the crystal momentum with h(k2x—  klx). But
at the same time there is a shift in position in the y direction equal to 2^v.
Thus an acceleration in the * direction gives rise to a velocity in the y
direction. This effect has been considered in the K—L paper and we get their
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result (2.19) at once by putting dg/dt of the equation vy = (dg/dt) qy, where
qy is identical with i J a(k) of their eq. (2.6), equal to

Peffltuu =  -  (ae m  • • eF/n.
In reality there is in the equilibrium state no resultant change of the density
matrix, since we have

dg/dt =  (dg/dt)/Uli -f (dg/dt)eoll =  0,

so in the steady state the effect of the applied field is cancelled exactly by
that of the collisions.

The only result is a constant polarization in the y  direction Py proportion­
al to ix caused "by the shift of the Fermi sphere in the x direction. In a finite
specimen this gives a depolarizing field which is in an ellipsoid equal to
Ey =  — N yPy, with N v the demagnetization coefficient, which is here a
depolarization coefficient. This field is curl free, so it cannot give an e.m.f.
in a closed circuit, i.e. it does not contribute to R,.

One might think for a moment that the occurrence of a field Ey is not in
agreement with our previous statement that in a periodic crystal no field
can be generated. The solution is that in the last case Ey is only a conse­
quence of the finite dimensions of the crystal and such a crystal cannot be
considered as being perfectly periodic.

The K-L reasoning can be made more similar to ours by not splitting
in their eq. (2.12) Ht into Ht =  H  -f- H" — H v +  H" — H\, but into
Ht =  H v -(- H'/. Then no interband matrix elements enter, since H"t con­
nects only states within one band. Their conclusion following eq. (2.19) may
therefore not be very relevant. In fact therefore K-L calculated the current
in an accelerated system of electrons. This originates from the fact that they
used in their eq. (2.12) Ht  instead of Hv.

We shall now put the analysis in a more rigourous form. The electric field
F  gives an additional term in the Hamiltonian

H" =  — eFx.

This potential has matrix elements between Bloch functions with the samek,
so it contains a periodic part. This is a saw-tooth-like potential, which is in
the Z'th atomic cell defined by

(H"t)t =  -  eF ( X -  x,),

where xt is the x coordinate of the centre of the i'th cell. The remaining part
jS a staircase-like potential, being in the same cell given by

( K) i  =  — eFxt,

which has no matrix elements between Bloch functions with the same k,
provided we choose the origin of the coordinate system in the centre of
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gravity of the crystal. Since the electron cannot distinguish between the
periodic potential H"t induced by the applied field and a similar one if it
were caused by the ions, we shall assume that the total periodic Hamiltonian,
which determines the Bloch functions, is given by

H , =  H +  H"t . (12)

It may be noted that our Hv is different from that used by K-L. In (12) H
is the periodic Hamiltonian which includes the spin-orbit interaction H' of
(9). The total Hamiltonian is given by

Ht =  Hv +  H i  (13)

We shall now calculate the behaviour of a wave packet of Bloch functions
within one band:

v(r, t) =  2k a(k, t) ?>(k, r) (14)

under the action of the total Hamiltonian (13), where the <pk satisfy

Hv tpk =  Ek <pk =  Ek uk e lkr. (12a)

The eigenvalues Ek differ from those of the operator Hoi (12) in first approxi­
mation by an amount of — eF fa uk xuk dr. The integration extends over the
crystal volume Q, over which the wave function is normalized. The time-
dependent Schroedinger equation for the total Hamiltonian reads, after
multiplication with <pk and integration over the volume of the crystal:

ak Ek — eF Sk, ak, S, x, *<(*.'-*.» u* Uk, dr =  i % dk.

Transitions; to other bands are neglected. The integral extends over the
atomic cell at xt =  0. For a very large crystal the term with the summation
over I approaches—iN(d/8k'x) dki.km, where N  is the number of atoms in the
crystal. Replacing the sum over k ' by an integral, so that the Kronecker
symbol becomes a d function, and integrating by parts, we obtain

% 8ak/8t +  eF 8aJ8kx +  iak Ek =  0 (15)
with

£ ’ =  £ k - * F | k, (15a)

where the real distance £k is given by

fk =  i fa K {8ukl8kx) dr — fa uk xuk dr. (16)

These two integrals in (16) are for non-polar crystals only finite due to the
spin-orbit interaction 24). Both integrals measure the polarization for the state
k in the x direction, the first for a wave packet, as we shall see below, and
the second for the pure Bloch state. The energy £ k in (15) therefore repre­
sents the total energy connected with the wave function with wave vector k
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in the wave packet, and is independent of the actual shape of the packet.
The mean value of a coordinate x{ of a wave packet

(Xi(fyy — ^k' fa a k  fk  Xi a k '  9V
is found to be, when using the same procedure as for the evaluation of the
Schroedinger equation

<*<(*)> =  2k i ak da^/dkf -f- \&k\2 qt(k) (17)

where qt is the i component of the polarization in the wave packet belonging
to the state k :

=  * fa  ^k (8uk/8ki) dr, (18)

which is just the first part of £k in (16). It manifests itself therefore as a
property of a pure Bloch state, though it exists only when a wave packet is
formed. For the pure Bloch state the last term of (16) is found for qx. A
similar difference is thus found in the energies Ek and Ek. This existence of
two forms for the energy necessitates this more rigourous analysis, since it is
for instance not certain a priori that both E ’s occurring in (11) are identical.

The velocity in the y direction of the wave packet is found by differentia­
ting (17) with respect to t and using (15), and is given by

< V  =  Sk |ak|2 A-* (8E£/8kv) +  (8\ak\2j8t) qv{k), (19)
since a term containing F(8/8kx) is zero.

For the expectation value of Ht for the wave packet is found

<£> =  Ek |«k|2 E£ — ieF a£ da^/Sk^ (20)

The equations (19) and (20) have the form as if an electron in a pure Bloch
state has a velocity %~x Pk Ek and an energy £ k. In the absence of skew
scattering (see below) no driving force in the y  direction is present. Thus,
apart from the shift of the Fermi sphere into the x direction, the density
function j>k= |a k|2 is then the Fermi-Dirac function of this E£, so that (11)
applies.

The last term of (19) represents the polarization current which has been
discussed above, and can give only a contribution if in the mean 8\ak\2/8t^0.

The only possibility for getting a finite spontaneous Hall effect is that q in
(11) has not the value corresponding to thermal equilibrium, but that the
Fermi “sphere” is shifted not only into the x direction, but also into the y
direction. This has to be caused by the collision processes, which have not yet
been considered. The spin-orbit interaction has therefore to make the
scattering skew, i.e. for an incident electron moving in the x  direction the
amplitude of the outgoing wave has to be different for opposite values of kv
of this scattered wave. We shall investigate this problem in the following
sections.
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11. The effect of spin-orbit interaction on the transition probability

In order to proceed ydth the discussion of effects which do not yield a
finite spontaneous Hall effect in ferromagnetic materials, we shall treat the
electron scattering process in the usual way, i.e. by using transition probabili­
ties, and we shall show that under that condition the spin-orbit interaction
does not give skew scattering. For this purpose we shall first discuss some
properties of the Bloch functions. A Bloch function can be expanded into its
Fourier components as follows:

yk(r) =  ^ S t A4>k̂ ,  (21)

where g is a vector of the reciprocal lattice. Since we have to do with non­
polar crystals, the Hamiltonian is invariant under a transformation of
r -> — r. Therefore when (21) undergoes the same transformation, it must
remain a solution for the same value of the energy. If there is no spin-orbit
interaction the Schroedinger equation is a differential equation with real
coefficients, and therefore the complex conjugate (c.c.) of (21) is also a
solution of it for the same value of the energy. Combining these two facts,
it follows that we can take all Agik’s as real. If the spin-orbit interaction (9)
is included, this is no longer true because of the occurrence of a term linear
in p. It is seen by perturbation calculus that the extra terms in A g linear in
the spin magnetic moment p have a purely imaginary coefficient. This is
also clear from the fact that taking the c.c. of the Hamiltonian (reversal of
time) is the same as reversing the spin direction, from which follows

- ^ g .k W  - ^ - g . - k  ( I1 )-

Since the Hamiltonian is still invariant against the transformation r — r,
we have

•4g,k(li ) =  ■'̂ g,k( I1)-
We shall now calculate the transition probability of an electron from the

state k to the state k' under the action of a perturbing potential V, which
includes the spin-orbit interaction accompanying it. This transition proba­
bility is proportional to

Pkk, ~  |<k'|F|k>|2 (22)

and enters into the Boltzmann integral equation, from which the stationary
change in the distribution function under the action of an applied electric
field can be calculated. For free electrons this procedure is equivalent to the
Born approximation. We shall show that Pkk. does not contain terms linear
in p, and therefore we cannot obtain a spontaneous Hall effect in this
approximation. If we take into account the effect of spin-orbit interaction
in <p, we can leave it out in V and vice versa.

Starting with the first case, and expanding this V into a Fourier series
V =  2 q Vq eiqr, (23a)

26



where q can be any vector, we obtain

<k'|F |k> =  2 g S g, F (k,( k ' - k + g ' - g )  ^ g . k - ^ g 'k ' - (24a)

By squaring the absolute value of this expression, we get products such as
V<ii K -We assume a random perturbing potential so th a t the phases of the
Fq’s are uncorrelated. This means th a t the mean value of the product is only
finite if q x =  q 2. We then get for the transition probability, being a real
number, a sum of terms of the fourth degree in the Ag k’s with real coeffi­
cients. Therefore it cannot contain a term  linear in [x, which can only be
imaginary.

The next step is to take into account the extra spin-orbit interaction due
to the perturbing potential, so th a t now the Ag>k’s can be taken as real.
The Fourier expansion now becomes, according to  (9) and (23a):

Instead of (24a) we now obtain

<k'|F '|k> =  2 g Eg, F (k._k+g,_g) x  [1 +  * A (2mec)-1

(p  X (k' -  k  +  g ' -  g)} (g +  k)] Agk Ag,k„ (246)

Also in this case, due to  the assumption of random phases of F  , the only
imaginary numbers occurring in the expression for P kk, are those in the
terms with p. Since P kk- is real, p  can only occur with even powers. The con­
clusion is therefore th a t the Born approximation of the scattering process
cannot yield a finite spontaneous Hall effect.

We shall illustrate the assumption of random phases of the Fourier com­
ponents of (23a) with some simple examples. Firstly, it is clear th a t it applies
to lattice vibration scattering, where the phases of the lattice waves are not
defined. Secondly, for one single symmetrical potential trough a t the origin
all F q s are real. In  th a t case FqiFqa is not zero for q x ^  q 2, bu t our conclu­
sion remains valid. For a number of identical potential troughs distributed
at random over the lattice, the Fourier coefficients Fq of (23a) change into
Vq s n e‘q“n if the troughs are centred around a„. For the transition probability
we then get terms which contain the products

For the random distribution it  is clear th a t only the terms for which q-̂  =  q2
and m =  n contribute, which agrees with our assumption.

In  the approximation used above the scattering is proportional to  V 2. If
it had given a finite result for the spin-orbit interaction scattering, we should
have found R , ~  q. The next term s contain F s or F 4, so th a t we m ust expect
th a t R s varies a t least as gs/2 or q2. Such a dependence on q is actually ob-

V  — 2 q Vq e'v  [1 +  i(2mec)~1 (p x  q) p]. (236)

FqiF qa 2 m

served.

27



12. Non-central collisions due to spin-orbit interaction

Since we have shown that the Born approximation does not yield a spon­
taneous Hall effect, we have to treat the scattering problem more rigourously.

The idea is that in the periodic lattice the transverse spin-orbit force is
compensated by “electrostatic” forces for a finite value of the polarization.
At the place of a perturbation, e.g. due to a foreign atom, this equilibrium
situation is destroyed, and a transverse force results, which accelerates the
electron in that direction. Two models are discussed which stress the changes
due to the perturbation of the spin-orbit force and of the electrostatic
forces respectively.
a. Non-spherical perturbing potential

As an example we shall treat the scattering of free electrons on a rectangu­
lar potential with radius R with a value for r < R :

V =  {h2l2m) (k2 -  k\) (25)

and V =  0 for r > R, where k is the wave vector of the incident wave in the
x direction. Using spherical coordinates, defined by x =  r cos ft, — z + iy = r
sin ft ei<f, the solution of the problem without spin-orbit interaction is given
by

r < R  : ip =  S {«,f i(*i r) P , (cos ft)
r > R :  y> =  S, {21 +  1) *'* j t(kr) P , (cos ft) +  bjit(kr) P l (cos ft) ;

here /,(g) =  W 2e)* Ji+i(Q) is the spherical Bessel function, J l+i being the
ordinary Bessel function of half-odd-integer order. Further ht = j t +  tn„
where nt is in a similar way the spherical Neumann function so that ht is a
spherical Hankel function (cf. S c h i f f “ )). At r = R the two solutions must
have equal values of the function and its first derivative, these conditions
being sufficient for solving at and bv If the Hamiltonian of this problem is
denoted by H  and the wave function by rp, then introduction of the spin-
orbit operator H' of (9) with [L along the z-axis gives a change in the wave
function of ip', so that in first approximation

(H -  E) ip' =  -  H' ip.

In spherical coordinates the operator H' of (9) is given by
H' = i (%l2mc)2 (MJM) [r-1 dV/dr) sin <p 8/dft, (9c)

where M z and M  are the z component and the absolute value of the magneti­
zation respectively. In our case this operator is zero everywhere apart from
r =  R. The wave function ip' is given by

r < R : ip' =  2, piji(ki r) sin <p 8Pl (cos ft)/dft
r > R: ip' — Si <hhi(kr) sin <P dPi (cos #)/^-
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At r =  R  we must have

—  <hh i(P) =  0
(*) — <hP KiP) =  — ityfimc)2 [MJM) (k\ — k%) a„

where a =  Aji? and /3 =  &R. If « and /? are small we obtain for the scattering
cross section for the resistivity in first approximation

Ax ~  l&ol2 Av ~  (*7V3) (ijft -  60?i).
The Hall angle is defined as

fSH  =  — A J A X. (26)
For small values of a and /? the result can be found by series expansion, and
one obtains in first approximation

<Psh  =  — (2/3\/3) (hj2mcR)2 {MJM) (a2 — /32) /3s. (26a)

Since (a2 — /S2) is proportional to V, the result is that Rs ~  p,/a. Another
consequence is that <psh has opposite sign for attractive and repulsive per­
turbing potentials. For a repulsive potential it is positive. The order of
magnitude is, however, far too small to account for the experimental values.
For instance for ,8=1, |a2—/?2| ^1 and R=\0~B cm we find rpSH= \A x  lO"6,
as compared with 10~2 for the observed values.

b. Non-central collision
So far we have only considered the influence of spin-orbit interaction on

the perturbing potential. We have seen, however, that spin-orbit interaction
severely modifies the Bloch wave functions, in so far that it gives them a
polarization q in a direction perpendicular to both the velocity and the spin.
If, as in a disordered alloy, one of the atoms is replaced by a foreign one, the
electrons will not collide centrally on this perturbing potential. As a result
one can expect a transverse current, which is here a Hall current. We shall
illustrate this with the simplest model of a spherically symmetrical potential
function. For the incident wave we take only one term of the actual wave
function, i.e.

ip =  eik*x cos (gyy — y) — J [e~iv <.<<*»*+<'*»> _|_ e*v JKK*-»»»)] (27)

This wave function is modulated in the y direction with the periodicity of the
lattice (gy is the shortest reciprocal lattice vector). The phase angle is related
to the polarization or impact parametér qv of (18) by

7 =  ëiiïv  (28)
The two waves into which y> can be resolved have total wave vectors

of equal magnitude

* =  (*; +  ?*)* (29)

29



and have directions lying in the y —z plane which make angles ziz e with the
x  axis satisfying

tan e =  g jk x. (30)

The scattering of these two waves can be calculated separately. The asymp­
totic form of the scattered wave of an incident wave e,kr is 2e)

ip , *  r-1 eikr f(ft) =  :(etkrJ2ikr) X?=0 (21+  1) 1) P, (cos ft), (31)
where ft refers to the direction of k. The two waves (27) have in (31) all
factors common, except the last where ft refers to two different orientations.
The total scattered wave is therefore in this* case

ip , (ei1cr\2ikr) 2 ~ 0 (2Z+1) 1) [\e~ivP t (cos ftx) +  \civ P, (cos #*)], (31a)

where ft1 and ft2 satisfy
cos ft12 — cos ft cos e ±  sin ft sin e sin (p.

For small perturbing potentials the spontaneous Hall angle (26) is found to
be

A v 8a/ 3 sin y cos y sin e sin r]0 sin (rjo—rjj) sin ̂
ysH =  -  A . = -------------16sin»,.cos- V.cos V---- ^ P2)
since for small kx, according to (30), s & jt/2. It has opposite sign for repul­
sive and attractive potentials, as one would expect. For our rectangular
potential function we can calculate rjx and find for small R :

Vi — (*2 f t )  /45,
where jS, =  gvR, so that

<Psh  & (a/ 3/90) y(«2 — P*) $1- (32a)
This formula is quite similar to (26a), in both cases This similarity
is due to the fact that in both cases we have to do with non-central collision.
In the first case the impact parameter follows from (9b) and is equal to

q'y =  v^i,l2ec =  \(vjc) (hftmc), (33)

which is very small (3x 10~14 cm f o r ^  =  108 cm/sec). It corresponds to a
negative y in (32a), and therefore the signs of (32a) and (26a) are the same
for the same potential. The value of qy of (18) and (28) is much larger. It can
be deduced from the K-L paper that it is of the order of 10~9 cm. This means
that the translational velocity gives rise to an orbital angular momentum
which is of the same order of magnitude as that which follows from the g
factor 27), being equal to (g — 2)%j2. The estimation of K—L is very rough,
for instance in their eq. (4.2) a spin-orbit field of the type (9a) is introduced
where it had to be one of the type

H' 0 =  curl (p. X E)/2e (9c)
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(compare (9).). But in view of the interpretation in terms of the orbital angu­
lar momentum, the estimation seems reasonable, though it would then have
been possible to estimate qv on this base at once. For qv =  10-9 cm, one
finds from (28) y & 0.2. For a reasonable value of say 0.1, we find
9osh ^  0.02, this being of the correct order of magnitude.

D. P o l d e r  has kindly pointed out to the author that it would be better
to attack the second problem (model b) with the effective mass theory. The
application of this theory allows one to insert directly the enlarged qv into
(9c), so that the result also becomes of the right order of magnitude. Unfortu­
nately this theory is only applicable for smoothly varying potentials, i.e. to
those which are spread out over several atoms, and which are small as
compared with the energy differences between the relevant bands. Neither
of these conditions is fulfilled for the perturbing potentials in metals. For
instance the potentials due to foreign atoms, in which we are particularly
interested, can be represented by a screened Coulomb potential

V =  (Ze2/r) e -Tlr°

with r0 of the order of 0.3 X 10~8 cm, which value has also to be considered as
the radius of the effective potential. The effective depth for Z  =  1 is of the
order of 50 eV, which value is much larger than the mean energy separation
of different bands. For semi-conducting ferromagnetics, as for instance the
ferrites, this effective mass theory undoubtedly gives the most adequate
description. It may be noted that also in ferrites a spontaneous Hall effect
has been observed 28).

The model b, analyzed above, has therefore at least the merit that it holds
to some approximation in the situation which occurs in metals, (e.g. (32) is
only valid for I? smaller than the lattice parameter) though it may be doubted
whether the wave function used has the adequate features.

So far we have not yet discussed the type of wave functions of the electrons
involved. The effective electrons must have a net magnetization, which
condition is satisfied for the 3d electrons. Usually, however, one assumes
that the main part of the current is carried by the 4s-p electrons. We have
seen in chapter I, however, that, in order to explain several properties of
transition metals, one has to adopt Bloch functions for the 3d electrons,
i.e. they are assumed to wander through the crystal, and to be able to carry
a current. If we assume that these 3d electrons give the spontaneous Hall
effect, we have still to multiply the <psH of (32) with the square of the ratio
of the conductivity of the d electrons and the total conductivity.

A second possibility is, however, that the s electrons, even if they are not
magnetized, give the spontaneous Hall effect, since, as we shall see in the
next chapter, at temperatures well below the Curie temperature most of the
current is carried by the s electrons having their spin parallel to the net
magnetization. It is also shown in that chapter, however, that this is probably
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not the case for the alloys with non-magnetic elements a t low temperatures.
Since the la tte r have extremely high values of R s, we can rule out this
possibility on experimental grounds.

One essential feature of the models used was, th a t in first approxi­
mation the spontaneous Hall effect should have opposite sign for repulsive
and attractive potentials. W ith this in mind we had measured Ni alloys
with elements which have lower and higher atomic numbers respectively
than  th a t of nickel, for instance A1 or Si a t one side and Sn or W on the
other. For all these alloys, however, <psh is negative. One might think
that, since these foreign atoms do not have d orbits available with compar­
able energy, these ions always act as a kind of repulsive potential for the
3d electrons. For y >  0 in (32) one then finds <psh <  0. Such a reasoning
cannot be given, however, for the Ni-Co as compared with the Ni-Cu
alloys. In  chapter I I I  we shall give strong evidence th a t the Cu ions are
magnetized, so th a t we have to expect th a t <psh has opposite sign for these
alloys, which is not the case.

For lattice vibration scattering the mean value of the perturbing potential
is zero, so one cannot expect a result odd in V. The adequate theory of the
scattering of Bloch waves on phonons in the presence of spin-orbit inter­
action m ust therefore give in first approximation q>sH ~  V 2. Thus especially
for pure metals should hold R s ~  q 2, as in the K  —  L  theory. This was
found to be approximately true for iron 24).

In  order to  trea t this case, we have worked out the series expansion
concerning mechanism a one step further and found, for the case th a t V
averages to zero, the mean spontaneous Hall angle to  be

VSH =  -  A J A X =  (28/45 V3) {h/2mcR)2 (M J M ) (a2 -/?* )* /P  (266)
This result is practically equal to (26a), only (a2 — /S2) is replaced by its mean
square. For the same assumptions the value of (266) will be —- 1.3 X 10“ 6.
I t  appears th a t terms with still higher powers of (a2 — (i2) have substantially
smaller coefficients.

When using this result in the effective mass approximation, we have
again to m ultiply (266) with the ratio of qv of (18) and q'v of (33), being of the
order of 3 X 104, yielding <psn =  — 0.04, which is of the right order of
magnitude, and independent of the sign of V. Thus <psh ~  g or ~  q2.

Of course the approximations made are invalid, bu t the results obtained
may indicate th a t the V 2 terms in <psH are a t least comparable to the V
terms.
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CHAPTER III

THE MAGNETORESISTANCE OF FERROMAGNETIC
METALS AND ALLOYS

13. Introduction
It is well known 29) that in strong magnetic fields the resistivity at finite

temperatures of ferromagnetic metals varies about linearly with the field,
the small negative slope being the same for all orientations (fig. 8). As in

Fig. 8. Schematical plot of the longitudinal and transversal resistances for
ferromagnetic metals.

chapter II we are only interested in the effects at saturation and the straight
lines are extrapolated to H =  0. Whether this has to be B =  0 as in ch. II,
or H  =  0, is of minor importance here. It appears that this resistivity is
anisotropic for a fixed orientation of the magnetization. The elements of
the resistivity tensor with respect to the cubic axes can then, for reasons of
symmetry, be written as

011 ==  0 0  "I" 0 1  ®1 "4"  0 3  (a 2® 3 +  a 3 a l  +  * 1 * 2 )  "4"  0 5 * 2 * 3  / j \

012 =  0 2  ®1 *2 "4" 04  *1 * 2  ®3‘

Terms higher than those of the fourth degree in the direction cosines oq
of the magnetization with respect to the crystal axes being omitted. Similar
equations are holding for the other tensor elements.

For nickel and iron all five constants of (1) have been determined 30) at
room temperature.

If we confine ourselves to the quadratic terms, we find for the resistivity
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in an arbitrary orientation characterized by the direction cosines /?x, /?2
and /S3:

Q ~  Po P i i ^ i P i  ~f" *2^2 a3^s)2 "4" 2 (q 2 — (?x) (a2 *3^2P3  d-
T  a3*1^3^1 d- ai a2̂ 1 ft2) • • • • (2)

Here gx =  g/ —q± if the magnetization is along the cubic axis, and q2 that if
it is along the body diagonals. The effect is isotropic if Qt = q2, the resistivity
then only depends upon the angle between the magnetization and the cur­
rent ; the material then has uniaxial properties with the magnetization vector
as axis of symmetry. For a polycrystalline material with at random orienta­
tion of the crystals we observe the same symmetry. The resistivity can then
also be described with the equation

q(6) =  Q// cos2 0 ql sin2 0, (3)

0 being the angle between the electrical current and the magnetic field. In
the demagnetized state usually

P =  i  P/r d- § Pi- (4)

It appears that in nearly all cases e//>Pi■ The only exceptions found so far
occur in some alloys with non-magnetic ions but there the effect is a hundred
times smaller than in the nickel-iron or nickel-cobalt alloys. It will be shown
that these exceptions are caused by a secondary effect. We regard this
positive sign oi Aq =  — ql as the most characteristic feature, and we
shall confine our attention practically only to this first order effect. Expressed
in the constants of feq. (2) we find by averaging over all orientations:

Q// — Q± =  TQi +  iP2- (5)

Since the anisotropy is not large (at most 20%), the way of averaging (for
instance over the conductivity or over the resistivity) is of minor im­
portance, as is symbolized by the approximate equality of (1 — x)_1 and
(1 +  x) for x 1.

The finite negative slope of the q-H curve is connected with the increase
of the intrinsic magnetization in strong fields against the action of the
temperature agitation, by which the saturation moment is decreased. One
should expect this effect to be zero at T  =  0. This is satisfied for most alloys,
but we shall see that there do occur some exceptions.

The phenomenological description of these effects is the same as for the
magnetostriction. The anisotropy of the resistivity is analogous to the linear
magnetostriction (anisotropy of the dimensions) both being a tensor quantity-
in dependence of the orientation of the magnetization vector. The decrease
of q in strong fields corresponds to the volume magnetostriction. The magne­
tostriction itself should also change the resistance of the sample, but these
variations are far too small to explain the experimental values.
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At low temperatures in the pure metals we still encounter a third type of
change in resistivity with the field, which is superimposed on the foregoing
ones-. It is the normal increase in resistivity which we also have in non-ferro­
magnetic metals. It is somewhat different because we shall show that we
have to take here as effective field that which is used to describe the Hall
effect, as is discussed in ch. II, instead of the applied field H, as is always
sufficient in the non-ferromagnetic metals. We shall discuss the different
types of magnetoresistance separately.

14. Experimental technique
The measurements have been performed in the large magnet of the Kamer-

lingh Onnes Laboratory, the maximum fieldstrength used being about 22000
oersteds. The resistances have been measured in the usual way on a potentio­
meter as in chapter II. For most measurements wires have been used, with
a length of about 25 mm and a diameter of some tenths of a mm. In this case
the transversal external field has been corrected for the demagnetizing field
in order to find the internal field. In some cases foils of some tenths of a mm
thicknes were available. All specimens have been annealed in purified hydro­
gen as described in chapter II.

15. The normal increase in resistivity
At low temperatures a similar increase in the resistance has been found as

for the non-ferromagnetic metals. This effect is due to the Lorentz force
acting on the conduction electrons, which gives them curved paths. The
effect is appreciable only if the mean free path is comparable with the radius
of curvature, which is inversely proportional to the field strength. According­
ly for the alloys the effect was small.

For the pure metals Ni and Fe at liquid hydrogen temperatures the effects
are large and of the same order of magnitude as for the noble metals. Here
gj_ always exceeds Q/y.

The main difference between the curves for the ferromagnetic metals and
those for the normal ones was that for Ni and Fe at weak fields the difference
between longitudinal and transversal resistance did not vanish, except of
course for H =  0, since the remanence of the material is negligible (fig. 9).
The only possible conclusion is that the field acting on the conduction
electrons is not equal to the external field, but a field caused by the internal
dipoles has to be added. In the case of iron we were able to evaluate this
extra field by means of the Kohler diagram. K o h l e r 31) has stated that
AqIqh = o can be plotted as a function of H/qh=0 only, for all temperatures
and purities. The diagram in which log (Aq/q)h=0 is plotted versus log
( • ® 7 é?j ? = o)  1s called the "Kohler diagram”. The values of the additive internal
field and those of qh=0 (which define an additive constant in Aq̂  and Aq±)
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can now be chosen in such a way as to fit all the points on a Kohler diagram.
The actual procedure for doing this was as follows.

Firstly we have to correct for the orientation effect described by (3). For
iron this amounted to 0.5% at room temperature, and we assumed this to be
independent of the temperature, as was found approximately for nickel (see
section 17). Because of the smallness of this effect for iron no large error can
be introduced. The values of the resistance at zero total field could be extra­
polated with sufficient accuracy. By plotting the Kohler diagram with
different values for the additive internal field, and taking for dp the difference

T=77°K

T=20°K

H(k oersted)
Fig. 9. Magnetoresistance of iron at low temperatures.

between p L and Q//t we found that all measurements (at T =  14, 20, 64, 69
and 77°K), especially for the purest specimen, he on one straight line for an
extra field of 22000 ±  1000 oersted. This is approximately equal to 4nM.
Thus the field acting on the conduction electrons is equal to the induction
B, which is the mean magnetic field within the metal. Now the curves for
AqJ q and Aq̂ /q could be derived separately (fig. 11). Three specimens have
been used of different purity (labelled from I to III in fig. 10, I being the
most impure one and III the purest). In order to avoid crowding not all
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experimental points are given in the figure. It is seen that the three curves
do not coincide, and that the curve for the most impure metal is highest.

For nickel the extra internal field could not be estimated with the same
accuracy as for iron, and may range from 6 to 12 k oersted. The reasons may
be firstly that in the Kohler diagram no straight lines were obtained and
secondly that the ferromagnetic orientation effect is much greater (3%).
Therefore we took for the additive field also 4nM  (6000 gauss). The results
are given in fig. 11. From this figure we see that the transversal effect in iron
shows no saturation, whereas nickel behaves similarly to the odd-valent
metals, with the exception that the ratio between the longitudinal and the
transversal effect increases with increasing field or decreasing temperature.

loŝ lP̂ r+ÉUMw)

H+22000

Fig. 10. Reduced Kohler diagram for iron. For AR the difference between R// and
Ri_, corrected for the orientation effect (1), has been taken. The three specimens have
different purity (I is the impurest, and III the purest one). The lower points refer to
measurements at temperatures of liquid nitrogen, and the higher ones to temperatures

of liquid hydrogen.

For comparison in the Kohler diagram we have also plotted the transversal
curve for sodium, which is lower than those for iron and nickel.

The magnetoresistance in metals is caused by the fact that not all electrons
have the same drift velocity. The effective Lorentz force, giving rise to the
Hall effect, is then not the same for all electrons. If the Hall current is com­
pensated by an externally applied electric field, which gives the same force on
all electrons, not all curvatures are compensated, but some curvatures sur­
vive, though with a smaller value, and others are over-compensated. It is
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seen then that the current in the x direction is decreased, i.e. the resistivity
has increased. At finite temperatures there is already a spread in the magni­
tude of the velocities of the conducting electrons, and therefore in the drift
velocities, but this is far too small to explain the experimental values. Very
much greater spread is present if the Fermi surface in k space is not spherical,
or if the intensity of scattering is anisotropic and depends on both the initial
and the final state, and not only on the difference in velocity. The latter case
occurs for lattice vibration scattering if the metal is elastically anisotropic.
For sodium it is generally assumed that the Fermi surface is practically
spherical. The observed magnetoresistance has therefore to be attributed to
the anisotropic scattering. This is quite well possible since the elastic
constants are very anisotropic in Na: the elastic anisotropy, expressed by

Fig. 11. Reduced Kohler diagrams for iron and nickel, both for the magnetic field
parallel and perpendicular to the current. The transversal curve for sodium has been

added for comparison.

the ratio 2c44/(cu — c12), is about 8. We assume, in agreement with our
considerations of chapter I, that in nickel the s electrons carry the greater
part of the current. If it is assumed that the magnetoresistance in Ni has
the same origin as in Na, then one should expect that it is much smaller in
the former, since this ratio of the elastic constants is only 2.6 in nickel. If
there were no interaction with the 3d electrons, this would be the only
possibility, since the s band is only occupied by 0.6 electrons per atom, so
that the Fermi surface is far from any Brillouin zone boundary and will
therefore be spherical. The high value of the magnetoresistance in nickel,
and presumably also in iron, has therefore to be attributed to the non-
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spherical Fermi surface as is plotted in fig. 4, which is caused by the mixing
with 3d states.

The spontaneous Hall effect, as discussed in chapter II, also gives for
moving electrons curved paths. Also these curvatures are different for
different Bloch functions, so that a transverse field, which cancels out the
resultant Hall current, will not do so all individual curvatures. In this respect
the situation is the same as for the normal Hall effect, so that an increase in
resistivity will also result. The spontaneous Hall effect could be described
phenomenologically by introducing an extra effective magnetic field of
magnitude Heff=(RJR0)AnM. Though it was realized that the action of spin-
orbit forces is quite different from that of a homogeneous magnetic field, we
shall assume, in order to estimate the order of magnitude of the change in
resistivity due to this spin-orbit current; that the same field is active for
the magnetoresistance.

For very pure metals at low temperatures the total effective field is there­
fore equal to B. This applies probably to the nickel and the purest iron,
though it does not apply at the liquid nitrogen temperatures. For nickel, for
instance, we find for the purest specimen in table II that at 77°K the extra
field is of the order of 3 k oersted. This is presumably the reason that the
procedure described above to fit the measurements at different temperatures
on one curve was least satisfactory for nickel. For the purest iron specimen it
is gratifying that we have just found B as the total effective field. Probably
for the impurer iron specimens R, ^  0, and this is perhaps the reason that
the curves I, II and III of fig. 10 do not coincide. Bringing I into coincidence
with III should require an extra field of 15 k oersted at the lowest temper­
atures, i.e. Ra «a 0.7 R0.

For the nickel-iron and nickel-cobalt alloys, according to table II, Rs is
small, corresponding to fields less than 10 k Oersted, so that its effect’ is
hardly detectable. For the nickel-copper alloys Ra is largèr, being equivalent
to a field of 29k oersted for Ni82Cul8 at 20°K. If we use this field tentatively
in fig. 10 and take for the resistivity at 0°C that of nickel or iron, we find for
Aq/q « - 6 x 10-8, which is again too small to be significant. Actually it will
be still smaller, since the effective field presumably only acts on the 3d
electrons.

For the alloys with non-magnetic elements, however, the effective fields are
much larger. For the Mo alloy, for instance, it is 350 k oersted at T  =  20°K
We then find from fig. 10 Aq/q « -  2 x 10-3. V a n  E 1 s t and G o r t e r 32)
have measured the magnetoresistance of several nickel alloys, and found them
to benegative (Q// < qx) in Ni92Mo8 and Ni99Cr 1 (weight %) having at 14°K
the values -  0.7 x 10~3 and -1 .6  X 10“3. For the Mo alloy, of which we have
measured the Hall effect, Aq/q was still positive but small (-f- 0.7 x 10~3) A
magnetoresistance effect of the Lorentz type but with the spontaneous Hall
field as magnetic field, manifests itself in first approximation as a negative

39



orientation effect, as is seen from fig. 9. We therefore suggest th a t this effect
is superimposed on the normal orientation effect and accounts for the minus
signs in the Mo and Cr alloys as reported by v a n  E l s t  and G o r t e r .
We see th a t this is possible as regards the order of magnitude. A consequence
would be, th a t a t low tem peratures the resistivity, especially th a t in the
transverse direction, increases with the field, just as in fig. 9. V a n E l s t
has informed the author th a t this is actually the case for these types of
alloys.

16. Dependence of p on the magnitude of H•
We now proceed with the effects of purely ferromagnetic origin.
Fig. 12 shows — (1/p) (dp/d#) a t room tem perature for the alloys Ni-Fe,

Ni-Co and Ni-Cu.The value for iron is 4 X 10"8 1 /oersted.The results for Ni-Fe
agree with those obtained by B o z o r t  h  33). In  the neighbourhood of
Ni3Fe a superlattice occurs, whilst the rise of the Cu-curve is without doubt
due to  the lowering of the Curie point.

Ni-Co a

atomic % N i ---------►

Fig. 12. Relative slopes of the q-H curves in strong fields at room temperature. The
value for pure iron is —4 x 10-8 1/ oersted.

I t  m ay be assumed th a t p depends only on the magnetization, or

dp/dH  — (dp/dM) (dM/dH). (6)

A further assumption is th a t dp/dM  does not vary  appreciably with M  for
normal fields, so the dependence of dp/dH  on H  is determined by th a t of
dM/dH,  the intrinsic susceptibility. There are two theories concerning this
susceptibility. A k u l o v ’s th eo ry 34), based on the phenomenological
Weiss theory, predicts a field-independent dM/dH,  whereas H o l s t e i n
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and P r i m a k o f f 36) using the Bloch spin waves, including dipole-dipole
interaction, derive for strong fields d A7d ƒƒ In the first case the
q-H curve should be a straight line, and in the latter a parabola. Of course
all these considerations hold only when the Weiss domain structure has dis­
appeared and all magnetization vectors are in the direction of H (H >  5000
oersted). It is rather difficult to decide experimentally between the two
possibilities. In one case (Ni89Fel 1) we succeeded in determining the field
dependence of q with a sufficient accuracy (10-*). The result has been plotted
in fig. 13. The four points are situated exactly on a straight line, which is
drawn together with the closest fitting parabola. This result points more to
the validity of the Weiss theory than to that of the Bloch spin wave theory.
Of coürse the latter holds only at low temperatures, where only relatively
few spins are reversed.

Fig. 13. Resistivity-field curve in a longitudinal field for Ni 89 Fe 11, showing that
linear relationship exists. The dashed curve is the closest fitting parabola

q — a —  bH1!*.

At low temperatures the slope must vanish because saturation is reached
and dM/dH consequently is zero. This was verified for alloys containing
besides^ nickel 10-30% iron, 10-70% cobalt and 10-20% copper. At
r  =  77°K, — (l/e) (dg/dH), never exceeded 8 X 10~8 1/oersted. The alloy Ni40
Fe60 behaves in quite an anomalous way: -(1/g) X (dg/dH) at low temper­
atures (44 X 10 8 1/oersted) was found to be even greater than at room
temperature (41x10-8 1 /oersted). This might be explained by assuming that
even at T =  0°K no complete alignment of spins exists, and consequently
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dM /dH ^  0. These singularities may be accounted for by the negative
exchange interaction between the spins of the iron atoms in the y-phase,
since y iron is non-magnetic.

The theory for different types of exchange interactions has been develop-
ped by N é e 1 36) for the ferrites. The exchange energy is then of the form

Eexch =  — 2  <*M2Ni — fiMNi MFe £ yM2Fe. (7)

If the three exchange parameters «, and y are positive, the energy is as low
as possible for the maximum values of the magnetic moments. In our case y
is negative, and then there is a critical value of M Ft, and thus of the concen­
tration of the iron atoms, above which E is no longer extreme for the satura­
tion value of MFe. This value is

MFe =  -  (P/y) Mm . (8)

For a greater concentration of iron the iron spins are according to N é e 1
not all parallel to the field, but some are reversed. This reversing of the spins
can be done in a great variety of ways, so this state is highly degenerate, and
therefore the entropy at T = 0  is finite, what is in conflict with N e r n s t s
theorem. One of its observable consequences would be a finite slope 37) of
the M — T curve at T =  0 and a finite specific heat. In this connection it is
interesting to note that early measurements of H e g g 38) indicate that
for Ni alloys with high iron concentration dM/dT  does not vanish down
to liquid nitrogen temperatures. At that time (1910) these curves were the
only ones which were consistent with the existing theory. The M  — T curves
of the other alloys and of nickel were regarded as being anomalous. At pre­
sent just the reverse is true.

It has been shown by Y a f e t  and K i t t e l 39) that in such cases in
ferrites a lower lying non-degenerate state exists, in which the spins with the
counteracting exchange interaction make an angle different from 0° or 180°
with the applied field. The thermodynamic difficulties are then no longer
present, whereas we still have the finite susceptibility at T  =  0.

Also the application of the band model to the 3d electrons removes the
degeneracy. Then the various states have different kinetic energy. Also in
this case there is the finite susceptibility at T  = 0 .

The concentration, corresponding to that of (8), of the nickel ions below
which the orientation of the iron spins ceases to be complete, even at the
absolute zero, can be derived from the experiments. For the Ni53Fe47 alloy
the .slope had not yet disappeared completely —(1/g) (dp/d//) —13 X lCH*
1 /oersted at 77°K and 7 X 10“8 at 20°K), so we may assume that this critical
composition is about Ni60Fe40. For the Ni70Cu30 alloy there was also still
a small slope at r=20°K  (11 X 10“8 1/oersted), but this must have a differ­
ent cause.

Só far, all peculiar features of dg/dH were explained in terms of those of
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dM/dH, and the cause of dg/dM was left undiscussed. We shall see in section
18 that the resistivity in the ferromagnetic state is a factor 2 or 3 smaller
than in the paramagnetic state, if it should exist at the same temperature,
as follows from extrapolation of the g-T curve from temperatures above the
Curie point towards lower temperatures. We conclude that dg/dM <  0, and
assume that it is of the order of (gferro — gpara)IM. This means that then
d In g/d In M  is of the order of unity. We put

(\/g) dg/dH =  (d In g/d In M) (1/M) dM/dH.
The experimental values of (\/g)dg/d H  are about 2x  10~7 1/oe. For nickel
P o l l e y 40) found at roomtemperature dM/dH =  1.3x 10-4, so that
(l/M) dM/dH is 2.6x 10~7, which value is in fair agreement with that of
(1 /g) dg/dH, so that our assumption regarding d in  g/d In M  seems to be
valid. The explanation of the difference in the para and ferromagnetic state
will then automatically yield an explanation of dg/dH.

17. The orientation effect
For the polycrystalline samples we measured the difference between the

longitudinal and the transversal resistance. This difference was always posi-

A£(%>)

N i-F e
° N i-C o
* N i-C u
v N i-F e-C u

Fig. 14. The relative difference of and at T  =  20°K as a function of the mean
number of Bohr magnetons. Note the small values of the pure metals Ni and Co and
of the ordered alloy Ni3Fe. The values for Ni60Cu40 and the Ni-Fe-Cu alloys

(nB =  0.6) are taken from v a n  F i s t  and G o r t e r  3J).

tive, in contradistinction to the magnetostriction. In fig. 14 the relative
change in resistance, (g//—g±)/g extrapolated to H  =  0, at T  =  20°K, has
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been plotted as a function of the mean number of Bohr magnetons ns- For q
has been taken q =  %q  ̂+  f ex­

i t  occurred already to S n o e k 41) that this anisotropy of the resistivity
has a maximum at about «b =  1. At the same point the linear magneto­
striction goes through zero. Actually these observations were the starting
point for these investigations. We have seen in chapter II that at about this
value of ns also the spontaneous Hall effect vanishes.The connection between
these three facts is not yet clear.

We see that the values for all alloys are nearly a function of the Bohr
magneton number only. Exceptions occur for the alloys Ni3Fe and for the
pure metals Ni and Co. For Co the value given by B a t e s 42) has been
taken, assuming that A q/ q does not vary appreciably with temperature. This
was verified in the case of Ni, where the effect at 77°K was only 12% greater
than at room temperature.

°  M—Co

30 iO 50 SO 70 SO 90 700
atomic %Ni------ ►

Fig. 15. The three lower curves give the ratios between the values of g//—gx room
temperature and at T = 20°K. The three upper curves give the same for g itself.

The behaviour of the alloys as a function of the temperature is quite
different from that of the pure metals. There A q itself does not vary appreciably
with temperature. In fig. 15 the ratios between A q at room temperature and
at low temperature and also those of q are given. The curves approach the
values for pure nickel, which are 144 and 163 respectively. Measurements
with non-annealed samples showed always smaller values for A q/q.

Some measurements have been made on samples (Ni-Fe 79—21 and
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89—11) having a marked texture, so it may be expected that they behave
as single-crystals. We were able to measure g3 of equation (1) at different
temperatures (see fig. 16). The most interesting result is the strong decrease
of qJ qt=0 with increasing temperature.

Fig. 16. The anisotropy of the orientation effect as a function of temperature.
□ =  Ni 89 Fe 11
O =  Ni 79 Fe 21

18. The resistivity-temperature curves of ferromagnetics
In this section we shall discuss qualitatively a model due to M o t t 43)

which explains the resistance-temperature curve for nickel very well. This
curve is concave below the Curie temperature Tc, has a discontinuity in
slope there, and is the same as for normal metals above it. M o t t  assumes
that the 4s electrons are mainly responsible for the current, and thus for the
resistance, and that during a transition from an s to an s or d state the spin
direction does not change and the spin exchange between s electrons can be
ignored. These assumptions are equivalent to dividing the current into two
independent parts, one current of the s electrons with parallel spin direction,
and the other with the opposite spin. As the density of the 3d states is very
large, (compare fig. 1—3 of chapter I) transitions to these states account for a
great part of the resistance in the paramagnetic state. At low temperatures,
however, the 3d states of parallel spin are almost completely occupied, so the
parallel 4s electrons can jump only to other 4s states. Hence their resistance
is much smaller ( Mo t t  estimates by a factor 5) than for the antiparallel 4s
electrons, where the possibility for transitions to 3d states is still present.
Therefore at low temperatures we may assume that the resistance is de­
termined mainly by the s—s transitions of the electrons with parallel spin.
This state of affairs may be demonstrated by the scheme of fig. 17. In the
paramagnetic state the two branches of the circuit are equal (Rads & 4Rts,
Ru is due to direct s—s transitions, and R,d, via a d state). At low temper­
atures Rtf, drops out. The influence of the magnetic field strength as dis-
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cussed in section 16 can be explained as a decrease of the density at the Fermi
surface of the parallel 3d states with increasing magnetization, resulting in
a decrease of the resistance (R?d,).

We have seen in chapter I that there is a considerable mixing of the 4s
and 3d states, but that there is still a band in which an appreciable part of
the electrons has predominantly s character at the Fermi surface, so that a
distinction as has been made by M o t t  has still sense.

Rss Rsds

Fig. 17. Schematical circuit for the resistance of a ferromagnetic metal.

We will also apply this theory to the alloys of nickel with magnetic or non­
magnetic ions. At low temperatures these foreign atoms represent the only
scattering centres. The perturbing potentials are practically confined to
these regions. For the nickel alloys with cobalt or iron the 3d bands are modi­
fied at the positions of the foreign atoms, but still at these places there are
unoccupied 3d orbits, and the perturbing potentials, which are just finite at
these ions, can cause s—d transitions, so that M o t t ’s picture remains
valid also for these alloys.This is presumably not the case for the nickel alloys
with non-magnetic inclusions, since at the places where the perturbing
potential is large, no empty 3d orbits are present with comparable energy.

In order to verify this experimentally, we have measured the resistivity
for varying temperature of some alloys. If we plot the results {q(T) — q(0)}/
I{q(Tc) —g(0)} as a function of the reduced temperature T j T (fig. 18),
where Tc is the Curie temperature, we can compare all alloys with the curve
for nickel. We see then that indeed the alloys with non-magnetic additions
such as V or W have the smallest discontinuity of slope at the Curie temper­
ature, and are less concave than the Ni-curve. The Sn alloy behaves like the
alloys with ferromagnetic constituents. The change in slope at Tc does not
vanish of course, since at finite temperatures M o t t ’s picture is again valid
to some extent. The values of q are given in table III.

TABLE II I

Resistivities and Curie tem peratures of Fe and some Ni-alloys
Comp. at. % 1 T e(°K) g(0°K) X 10» (Q  cm) q(Tc) X 10» (Q cm)

Fe 100 1047 0.0 103.0
Ni 100 623 0.0 28
Ni 80 Co 20 851 3.9 62.0
Ni 90.7 Cu 9.3 523 9.0 38.4
Ni 98.5 Su 1.5 577 4.7 34.7
Ni 96.6 W  3.4 457 21.6 40.8
Ni 96.6 V 3.4 500 19.0 42.5
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We have also measured the resistivity versus temperature curve of pure
iron which is very similar to that of nickel. Iron has a Bohr magneton
number of 2.2. These non-integral values, which also occur in nickel and
cobalt (0.6 and 1.7 respectively), are easily explained by the band model for
the d and s electrons, which has been discussed in chapter I, and one assumes
then, neglecting the orbital angular momentum, that there are 0.6 and 0.7
electrons in the s band in the latter cases. Accordingly iron should have only
0.2 s electrons, what is very unlikely. It seems therefore plausible, as has

—=— Fe 100
—a— Ni 100
——  Ni BO Co 20
—©— Ni 90.7 Cu 93
—*— Ni 98.5 Sn 1.5
—v— .Ni 96.6 W 3 .i
I—+— Ni 96.6 V 3 .i

Fig. 18. Reduced resistivity-temperature curves of some ferromagnetic alloys and of
iron and nickel. The curve for nickel has been taken from literature.

been pointed out by S t o n e r 44) that the half band of parallel d spins is
not completely occupied due to the large kinetic energy which would be
involved. But then s—d transitions with parallel spin are possible at all
temperatures, so this resistivity theory of M o t t  is in this case not
consistent with the theory of S t o n e r  for the saturation magnetization.
According to S t o n e r ’s picture the paramagnetic susceptibility should be
finite at T  =  0. The measurement of the q—H  curve of a silicon-iron alloy
at low temperatures might provide a solution of this problem.
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19. Theory of the orientation effect

So far no cause for an anisotropy in the resistance is present, at a given
orientation of the magnetization. In our opinion this can only be introduced
by the interaction between the spin system and the lattice via the spin-orbit
coupling.

In chapter II we were interested in effects odd in the magnetization, and
used therefore only the diagonal elements of the spin moment operator. For the
anisotropy in the resistivity we have to look for effects which are even in the
magnetic moment. We have seen in section 15 that the effect of these diagon­
al elements, but put an approximation further and thus yielding quadratic
terms in the magnetization, gives far too small results, being of the order of
10~3 for the anisotropy in the resistivity. The only possibility left is therefore
that the origin of the effect resides in the off-diagonal elements of the spin
magnetic moment. These elements cannot give a Hall effect, since they only
yield effects even in fiz.

In a central electrqstatic field the spin-orbit interaction of eq. (9) of
chapter II takes the form

ALS =  A {L.S, +  i(L„ +  iLy) (S. -  »S.) +  * (Lm -  iLy) (Sx +  iSy)} (9)

Here A is the spin-orbit energy, being of the order of 500 cm-1,Lis the angular
momentum operator and Sx, S y and 5, are the Pauli matrices. The resultant
magnetization is again in the z direction. It has been shown by B r o o k s 45)
that (9) is also a good description in the tight-binding approximation within
one atomic polyhedron. We have then practically only to do with the atomic
wave function centred at the same polyhedron, so we shall consider only
the matrix elements between such states, as has also been done by B r o o k s
and which states are given by eq. (5) of chapter I.

The matrix elements in which we now are interested in are those of the last
part of (9), containing the factor ^(Sx +  iSy), which gives mixing of a state
with a spin parallel to the resultant magnetization with an originally pure
antiparallel state. It is shown in chapter I that the degeneracy existing in
the free atom of these five 3d states in the crystal is almost completely
removed by the “kinetic” energy. All states are thoroughly mixed and it
cannot be said with certainty which atomic wave function predominates
at the Fermi level. We shall therefore make the crude approximation that
all states equally occur there and that the differences in energy between
combining states all have the same value s. This energy difference is com­
posed of electrostatic, kinetic, and exchange energy. It is then possible to
use the eigenfunctions of the Lz operator which have angular dependent
coefficients

9>2 ~  (x +  iy)2, <px ~  2z(x +  iy), <p0 ~  ($)*(2z2 — x2 — y2)
<P-i ~  2z(x — iy), <p_2 ~  (% — iy)*-
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If we denote the spin functions by the superscripts -f- and —, we find that
the last term of (9) in first approximation changes the wave functions of the
electrons with antiparallel spin orientation into:

y>t = <pï — 2 (A/e) <pf
V ï =  '<Pï — 6* W«) <Po
V>o = 90 +  6* (A/e) ■ (10)
W-i = <pZx + 2  (A/e) <pt2
V>-2 =  9 -2

The energy of these states is only changed in second approximation which
is small, so that states with antiparallel spin which were not occupied before
the application of the perturbation, will not be so either after that the per­
turbation has been applied. This means, that, according to (10), the +  d band
is not occupied completely even at T  =  0, so that in the scheme of fig. 17
the resistance Rfd, does not vanish at T  =  0. We shall show that this re­
sistance gives the anisotropy. As one might expéct from the asymmetry of
operator (Lx — iLv), in (10) not all orbits are mixed to the same amount.
This is clear from the fact that the operator (9) conserves the total angular
momentum. The last part of it increases the spin angular momentum with
% and therefore the orbital part is dereased with ft. The main result is, that
in (10) the function therefore does not occur. This asymmetry comes in
because 9C 2 cannot combine with a state with lower orbital angular mo­
mentum.

We shall now calculate which influence this asymmetry has on the trans­
ition probability from an s to a d state under the action of a perturbing
potential V. This transition probability is proportional to the matrix element
squared, i.e. if we take for the s wave function that of a free electron and for
the d electron one of the atomic functions of eq. (5) of chapter I, then one
obtains for instance

P.a ~  I f / / e - ikrVxy f(r) dxdydz |* (11)

Assuming that V is spherically symmetrical, (11) is proportional to

P . * ~ k l k U ( k ) .  (12)
The wave functions in (11) are not orthogonal, but the ignored terms are

proportional to the overlap integral and do not change the orientation pro­
perties of (12). As it may be expected that in the mean V does not possess
extremely large orientation properties, (1 2) is the most anisotropic function
which can be obtained. We see that in this case electrons moving in the z-
direction, thus parallel to the magnetization, cannot be trapped.

Comparing (12) with (11) we see that for a spherically symmetrical per­
turbing potential the transition probability has the same angular dependence
in k space as the charge distribution in normal space. Applying this result
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to (10), we find for the average probability for,ian s—d transition in the
resistance R ^s , u; ipti

P .a ~ (k 2 + kl)g(k). (13)

Electrons moving in the z direction (parallel to the magnetization) are there­
fore most easily trapped, so we can now already conclude that Q// > ql , in
agreement with the experiments.

The evaluation of the anisotropy in the resistance is now straightforward.
Assume that in the unperturbed state (only R* present) there is an isotropic
time of relaxation r0. This will be slightly changed by an anisotropic term

*(k) =  *o(E) — Ti(k), Ti <  To-
This holds for the parallel electrons. Assuming, as already done tacitly, that
the energy is conserved during a transition, r(k) has to satisfy

r(k )----— r(k')} dS' =  constant,
ki )

where the integration has to be taken over the spherical Fermi surface in
k'-space. The index i refers to thè direction of the current. From (13) it
follows that P(kk') is of the form

P(kk') =  P0 +  P x P1 <  P 0,
with

Px ~  (k* +  1ft (k* +  k'*),

where P 0 is due to direct s—s scattering, and P x via d states for the electrons
with parallel spin orientation.

Assuming that P 0 is isotropic, to a first approximation one finds

% ~  k* +  k\,
and

I +  4^ 1 +  3A, (14)
A being a positive constant and approximately equal to the relative differ­
ence between the longitudinal and the transverse resistivity. According to
(10) and (14), (10/3)zl corresponds to an admixture of 4 (A/e)2 <p+ state per

state, so we find

(0/ — Qi )!q ~  (3/ 10) X 4 (A/e)2 RSJR „ .
In order to estimate the order of magnitude, we make use of the fact that

in the theory of the spectroscopic splitting factor g also a ratio of A and a
similar energy difference s' occurs. According to F l e t c h e r 7) (g — 2)
is of the order of 8A/3e', so that we shall take (A/e)2 sn 0.01. Assuming with
M o t t 43) R,dJRaa & 4, we finally find

(0/ — 8x)lQ ** °-05’ (15)
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being of the right order of magnitude, though somewhat too small to account
for the highest values.

20. Discussion
The theoretical results of section 19 were obtained by assuming that the

perturbing potential V is spherically symmetrical. This applies to the per­
turbing potential caused by foreign atoms in solid solution in disordered
alloys. We have seen in section (18) that, for causing s—d transitions, these
foreign atoms have to be ferromagnetic. Our theory applies therefore to alloys
of nickel with cobalt or iron.The fact that points for copper also lie on the same
curve of fig. 14 suggests that in the latter alloys the same mechanism is
working, i.e. also the copper ions have opened their d shells as in many salts
and are here ferromagnetic.

The fact that the values of the Ni-Co and the Ni-Fe alloys are lying on one
curve, suggests that the band picture for the 3d electrons is valid here. The
curve is then in some way related to the density of states curve. Calculations
show 3) 46) that the latter curve has a maximum for ns comparable with
unity, and then falls off rapidly. This is in agreement with our dp/g-curve.

Lattice vibrations and internal stresses will give perturbing potentials
which only in the mean, i.e. averaged over the crystal, are spherically
symmetrical, but the V occurring in (11) is anisotropic. As a consequence
the resultant anisotropy in the transition probability will be less, and we may
expect that the thermal resistivity and that due to internal stresses will give
a smaller anisotropy. This can be demonstrated easily for the case of lattice
vibrations. The perturbing potential due to a lattice wave with wave vector
q is proportional to eiqr. We see then that in (11) k is replaced by k +  q, so
that for instance also an electron moving in the z direction can now be
captured in an xy orbit. Since q can have all orientations, the anisotropy in
P(kk') will be smaller.This is in agreement with the experimental values for the
non-annealed samples and for the pure metals Ni and Co, which lie below the
curve. The substantially higher values of the two “pseudo nickels” (Agjg <—>
~  9.5%) confirm our theory.

At finite temperatures the anisotropy due to the foreign atoms and that
caused by the thermal lattice vibrations are present at the same time. In any
case it is clear that, because of the small effect of the lattice vibrations, Ag
will only increase slightly with increasing temperature, or even decrease, due
to the decrease in saturation magnetization, which is in agreement with the
experiments (see fig. 15). For nickel Agjg is practically constant, its small
decrease can be explained again by the decrease in M  with increasing T.

The measurements of v a n  E l s t  and G o r t e r 32) show that for
most alloys with non-magnetic constituents Agjg at low temperatures is
smaller than 1%, confirming our predictions. (These are the V, Cr, Mo and
Walloys.) The negative values of the Cr and the Mo alloy have been explained
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above, so that it is reasonable to assume that the real anisotropy in the
resistivity is always positive >  ql ). In some cases, however, (the Al, Si
and the Sn alloys) Aq/q is of the order of 3%. It is well known that Sn does
not form solid solutions with Ni, as was also remarked by v a n  E 1 s t and
G o r t e r .  Furthermore the solid solubility of Al in Ni is 4% and of Si about
6% (weight %). The other alloys cited above with a small value of Aq/q all
have a very large solid solubility (V: 20%, Cr: 45%, Mo: 17%, W: 30%).

Precipitations will cause large internal strains in the matrix. These strains
form perturbing potentials for the electrons, but now these potentials are at
the places of the Ni ions which can then trap conduction electrons in the holes
of their d shells. This is favourable for the existence of anisotropy in the
resistivity and for a concave q — T  curve (compare the curve for the Sn alloy
in fig. 18). This anisotropy can then be of the order of 3%, just as in Ni
for the lattice vibrations. We assume therefore that also in the Al and
Si alloys we have not a perfect solid solubility. This is in agreement with
the fact that the 4.5% Al alloy is very hard, due to internal stresses,
and is known as Z-nickel 47). For the Si alloy it is a little doubtful, but in any
case we may expect that in this 5% alloy, which is very near to the limit of
6% of solid solubility, large internal stresses will occur. The value of A q/q is
therefore intermediate. A direct test of this hypothesis can be obtained by
measuring the value of A q/q at low temperatures of alloys with a low content
of Al and Si, e.g. 2%, which goes into solid solution. One should expect that
the values of A q/q are then comparable with those of the other solid solutions,
e.g. smaller than 1%. We should have then the peculiar fact that A q/q as a
function of the composition goes through a minimum.

A more indirect confirmation of the suggestion is formed by the fact that
for the alloys with A q/q <  1% the value of A q/q increases with temperature
as was already noticed by v a n  E 1 s t and G o r t e r .  For instance, for
theCr alloy it is —0.16% at 14°Kand +0.11 % at 77°K, showing that the part
of q dependent upon temperature contributes about 2% to A q. This is pre­
sumably due to the fact that the lattice vibrations give perturbing potentials
at the places of the nickel ions. One should also expect that for these alloys
A q/q increases by plastic deformation, the reverse being the case for the
alloys with magnetic constituents.

The Mn ions in the Mn alloy are ferromagnetic for low concentrations, each
contributing about 2.8 /ub- Therefore A q/q is of the same order of magnitude
as for the Ni-Fe or Ni-Co alloys.
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