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STELLINGEN

Het gedachtenexperiment van Bresler en Wendt bewijst geenszins, dat de reciproci-
teitsrelatie van Onsager niet toepasbaar zou zijn voor een eenvoudig lineair mem-
braanproces.

E. H. Bresler en R. P. Wendt, J. Phys. Chem. 73 1969) 264.
J. A. M. Smiten A. J. Staverman, ibidem 74 (1970) 996.

11

Katchalsky en Curran benaderen op een onjuiste wijze het begrip membraanselectivi-
teit, zoals deze in de reflectiecoéfficiént van Staverman tot uitdrukking wordt ge-
bracht.

A. Katchalsky en P. F. Curran, ,,Nonequilibrium Thermodynamics in Bio-
physics”, Harvard University Press, Cambridge, Massachusetts 1967, formule
(10-20).

Het schema van verschillende transportprocessen door membranen. dat door Laksh-
minarayanaiah in fig. 1. van zijn overzichtsartikel opgesteld wordt, is onvolledig.
N. Lakshminarayanaiah, Chem. Rev. 65 (1965) 491.

18Y

De hoge positieve waarde van de activeringsentropie voor dipoolrelaxatie, welke door
Srivastava aan de zuivere vloeistof N,N’-diethyleenaniline wordt toegekend, is niet
in overeenstemming met zijn experimentele resultaten.

K. K. Srivastava, J. Phys. Chem. 74 (1970) 152.

Vv

De lineaire uitzettingscoéfficiénten van een reeks polystyreenkluwens in benzeen bij
20 °C zijn door Tanford onjuist berekend.

C. Tanford, Physical Chemistry of Macromolecules, Wiley and Sons Inc. N.Y.
1967, Tabel (23-6), formule (23-11), formule (9-22).

VI

Tung en Runyon onderschatten de invloed van de zoneverbreding, voorzover die
veroorzaakt wordt door menging buiten de kolommen van de gelpermeatiechromato-
graaf.

L. H. Tung en J. R. Runyon, J. Appl. Polym. Sci. 13 (1969) 2397.






VII

Ekejiuba en Hallam houden bij de toekenning van C-Cl rekvibraties in chloor-
cyclopentaan niet voldoende rekening met een mogelijk conformatie-evenwicht in de
vaste toestand.

I. O. C. Ekejiuba en H. E. Hallam, Spectrochim. Acta 26A (1970) 59.
ibidem, 26A (1970) 67.

VIII

Bij de interpretatie van veldemissiebeelden, zoals die gevonden worden bij de desorptie
van koolmonoxyde van een platina tip, maken Lewis en Gomer gebruik van een
aanvechtbare veronderstelling.

R. Lewis en R. Gomer, Nuovo Cimento Suppl. 5(2) (1967) 506.

IX

De conclusie van Spitnik-Elson en Atsmon, dat de aan RNA verbonden eiwitten
verschillend zijn van die, welke door NaCl vrijgemaakt zijn, volgt niet uit de door
hen gevonden aminozuursamenstelling.

P. Spitnik-Elson en A. Atsmon, J. Mol. Biol. 45 (1969) 113.

X

Een duidelijke leemte in het werk van Dufourcq is, dat het volledig voorbijgaat aan
de historisch georiénteerde stroming in de moderne clavecimbelbouw.

Norbert Dufourcq, Le Clavecin, Presses Universitaires de France, Paris, 1967,

J. A. M. Smit
29 april 1970
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CHAPTER 1
INTRODUCTION

The main purpose of our investigation has been to arrive at a better insight into the
mechanism of permeation across solute-permeable membranes and to inquire into the
possibilities of finding adequate quantities for distinguishing between the chemical
and geometrical membrane properties. As such it follows the lines of the phenome-
nological membrane theories based on irreversible thermodynamics, as first developed
by Staverman (1951) [37, 38, 39] and later applied and extended by Kedem and
Katchalsky [17, 18, 19]. Within the framework of irreversible thermodynamics, or
more precisely in the so-called “discontinuous theory”, it is possible to describe the
permeation process with the aid of a definite number of phenomenological coefficients
[13]. The number of coefficients needed is restricted by virtue of the Onsager reciprocal
relation. As a result one finds that the behaviour of, for instance, a membrane system
where two permeating non-electrolytes are present, can be described by means of three
characteristic, and also well-measurable, quantities. They are the filtration coeflicient
Ly, the reflection coefficient ¢ of Staverman and the solute permeability @ of Kedem
and Katchalsky. Their only drawback is, however, that they actually refer to the
system as a whole and not to some species, including the membrane, in particular.

Better characteristic coefficients, at least from a physical point of view, are the
“friction coefficients which describe the friction between two species i and k moving
with different velocities. They result from the so-called *“‘continuous theory of transport
processes’ [2, 7, 25, 32] which we shortly term the friction model. Whatever their
merits may be in the field of free diffusion [8, 10], where concentrations can be
measured as a continuous function of the distance, in membrane systems they cannot
be measured directly because of the difficulty of determining local concentrations
within the membrane. Nevertheless, there remains a possibility of coupling the con-
tinuous theory to the discontinuous theory, because both cover essentially the same
phenomena but only on a different scale. This requires an integration across the
membrane under rather idealized assumptions. A number of procedures for this
integration have been proposed [4, 18, 21, 22, 40], some of which appear completely
impractible. It would appear that the integration involves an important attendant
aspect: the partition of the solute between the membrane phase and the external phase.
Once the integrated transport equations are found, they can be compared immediately
with the corresponding equations of the discontinuous theory. As a result of this
confrontation one retains expressions relating the friction coefficients to the experi-
mental quantities, but also involving partition coefficients which must be measured
separately. Thus in general the evaluation of the friction coefficients requires addi-
tional measurements. Only in the case where two permeating components are present,
it is sufficient, as appears later, to measure o, L, and o for different compositions of
the system. These are the basic ideas of the whole treatment worked out in the sub-
sequent chapters.




In Chapter 2 we have developed the discontinuous theory, leading in the case of
a two-component system to the equation of Staverman relating the apparent to the
true osmotic pressure, and also to the well-known phenomenological equations of
Kedem and Katchalsky in which the experimental quantities o, Lp and @ appear.
We have extended the theory so that it also covers the cases of a very dilute multi-
component system and the heterodisperse mixture of polymers. For both latter
systems we have succeeded in deriving flow equations quite comparable, as far as
their form is concerned, with the equations of Kedem and Katchalsky.

Chapter 3 is devoted to the friction model. The two-component system can be
described by means of three friction coefficients and a single partition coefficient.
The friction coefficients are a measure for the mutual friction between every unequal
species present: membrane-solvent, membrane-solute and solute-solvent. The parti-
tion coefficient relates the solute concentration within the membrane to the solute
concentration outside. The four characteristic quantities concerned can be evaluated
from the three experimental quantities ¢, Lp and @ when the concentration-dependence
of L, is particularly taken into account. When the partition coefficient deviates from
unity, there is an indication that the membrane does not behave chemically indif-
ferently. When, on the other hand, the membrane is chemically inert, information is
gained about its geometry by comparing the friction between solute and solvent in
free solution to the friction between the same components in the membrane. If, for
a given membrane, with regard to a number of different solutes but always to the
same solvent, these friction coefficients are equal except for a constant factor, there is
a strong indication that only geometrical effects are involved, and that a purely geo-
metrical character must be ascribed to this constant, like the porosity and the tor-
tuosity of the membrane. Finally we introduce in this chapter two indicative quantities
enabling us to make a clearer distinction between the “pore model” and the “solution
model”. They are the partition coefficient and the geometrical constant mentioned
above.

In Chapter 4 we enter into more practical details. The systems used were: Vycor glass
as membrane, water as solvent and penta-erythritol, mannitol, sucrose and raffinose
as successive solutes. The practical measurements centred around the determination
of 6, Lp and . In order to obtain a consistent set of experimental data it is advan-
tageous to gather information as much as possible from a single experiment, or from
several experiments in which the system is not subjected to external conditions which
differ too greatly from each other. However it may be, the experimental confirmation
of the Onsager reciprocal relations may be regarded as a proof of the reliability of
the experimental procedure.

In Chapter 5 we have presented the results. In particular the description in terms
of the friction model reveals differences in the behaviour of the systems concerned,
which would have remained unnoticed in the conventional description in terms
of ¢, Lp and . Conclusions about the results of the whole work are once again
summarized in Chapter 5 § 4.




CHAPTER 2

THE DISCONTINUOUS THEORY

§ 1. The Phenomenological Equations

Osmotic experiments are generally visualized as involving a membrane, separating
two solutions, having the same solvent and solutes, which may however differ in
concentration. In many cases the osmotic membrane shows a measurable permeability
to the solutes as well as to the solvent and consequently flow coupling appears as an
important phenomenon in membrane theory. More than many model theories, irre-
versible thermodynamics has proved to be a very useful approach to transport processes
across membranes, because of its very general character as a phenomenological theory,
which also fully accounts for possible cross or coupling effects. Within the framework
of irreversible thermodynamics the isothermal transport process of matter across the
membrane is commonly described by means of flow equations in which the particle
fluxes appear as linear functions of the differences of generalized chemical potentials
between the outer bulk phases. The equations considered here, which are designated
hereafter as “‘phenomenological equations™ cover only the stationary cases, close to
equilibrium, where in any case linearity is supposed to be present. Though nothing is
known from thermodynamics about the range in which this linearity prevails, it
appears in practice to be rather wide. In the case of isothermally permeating non-
electrolytes, the phenomenological equations take their usual form [37, 38]:

| Jl' = Z L“\(Allk‘i"vaP), (i = 0, ], 2, ey n} (2"1)
k=0

with J; the number of moles of component i passing the membrane per unit time,
Apy the concentration-dependent part of the chemical potential difference of species k,
vy the partial molar volume of component k& and AP the pressure difference between
the outer phases. The subscript 0 refers to the solvent, while the other indices indicate
the various solutes present. The permeability coefficients L, relate the independent
“fluxes” (J)) to the independent “forces™ (Au,+v;AP) and obey the Onsager Reci-
procal Relations (ORR) [30, 31]:

' Ly = L. (i # k) (2-2)

The equations (2-1), given in the permeability form, may be brought just as well
into the reciprocal form:

Ap+vAP = Y RyJy, (i=0,1,2,...,n) (2-3)
k=0




with the resistance coefficients satisfying the ORR:
Ry = Ry (i # k) (2-4)

Thus the L, and the Ry, form reciprocal symmetrical matrices. The diagonal elements
stand for the straight effects, whereas the off-diagonal elements represent the cross
effects. The “fluxes” and “forces”, which are connected by the straight coefficients
L;; or R;;, are referred to as being conjugated to each other. The sum of their products
divided by the absolute temperature T represents the entropy sources strength or
entropy production inside the system g,, and can be formulated as

u
To, = Y, J{Aw+vAP). (2-5)
i=0

The equations (2-1) to (2-5) are the basic relations for the isothermal permeation of
non-electrolytes across membranes and have been treated thoroughly by De Groot
and Mazur [13] and recently by Katchalsky and Curran [16] in their textbooks.

The permeability coefficients L;, as well as the resistance coefficients R; may be
regarded as describing completely the behaviour of a given membrane system with a
definite composition. Dealing with a (n+ 1)-component system we need not know
(n+1)* L, coefficients, but only a reduced number of 4(n+1)(n+2) as a consequence
of the ORR. Another attractive feature of the discontinuous theory is that neither
specific knowledge of the interior of the membrane is required, nor has any model to
be adopted in order to evaluate the L, or Ry. As will be obvious later (Chapter 3), our
investigation centers around the so-called friction coefficients, because of their physical
interest. Therefore the R, matrix, having simple relationships with this coefficients,
warrants more consideration in our treatment than the L; matrix. Now the resistance
coefficients. as such, are not directly measurable, so we have to express them in experi-
mental quantities. In this connection we have made it the purpose of this chapter to
select the experimental quantities in such a way that they are easily measurable,
further, that they may be generalized from a two-component to a multi-component
system and finally, that they can reasonably be expected to be almost independent of
concentration, at least in dilute solution. Moreover we shall derive flow equations
containing only these experimental quantities, and thus more appropriate to practical
use than the phenomenological equations. Starting from different formulations for
the entropy production (§ 2) we shall deal first with the familiar two-component
system (§ 3) and pass then to the more complicated multi-component system (§ 4).
The possibilities and limits of the discontinuous theory are discussed for the various
cases. Obviously we shall often revert to the basic work done in this field by Staver-
man [37, 38] and Kedem and Katchalsky [17].

§ 2. The Proper Choice of *Fluxes™ and “Forces™

The choice of conjugated “fluxes” and “forces™ is in some degree arbitrary. Indeed
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new sets of independent fluxes and thermodynamic forces may be derived from the
old sets, provided that it leaves the entropy production invariant with respect to its
magnitude and dimension. Hence it seems to be wortwhile to examine the possible
ways in which the entropy production can be formulated and to find out the very
combinations of fluxes and forces which are most ideal from a practical point of view.
Now the actually measured forces are the hydrostatic and the osmotic pressure.
Therefore it is convenient to put the thermodynamic forces in the entropy production
into pressure units, say dyne/cm” and, since the product To, stands in ergs/sec, the
units of the fluxes turn out to be cm?/sec. In other words, volume flows are conjugated
to pressures, where the dimension is concerned.

In order to work this out further, we first rewrite (2-5) in the following manner:

To, = JoAuo + Y. JAp+J AP, (2-6)
i=1
with the volume flow defined as
Jo= ) Jw (2-7)
i=0
For vanishingly small Au’s we shall be allowed to apply the Gibbs-Duhem relation:
Y A = 0. (2-8)

Now we want to generalize (2-8), by definition, to all those cases where finite Au’s
occur, indicating with the bar over the concentration ¢; an averaging process over
both concentrations of species 7, present in the phases outside the membrane (for more
details see Appendix I). Moreover we introduce the average volume fraction of
component i, ¢; = ¢;v;, satisfying the familiar expression:

Among the many possibilities for formulating the entropy production we will consider
in particular two ways which we believe to be of interest. The first formulation is
directly found by elimination of Ay, from (2-8) and (2-6), yielding

n

To,= Y (Ji = (%‘;—Jl,>Au,.+JvAP. (2-10)

i=1

The second formulation, though less conspicious, is found along the following lines
of reasoning. Elimination of &, from (2-8) and (2-9) leads on the one hand to




Apo = —vp ). & (A;q - ﬂAuo).
i=1 Yo
On the other hand, solving (2-7) for J,, gives

J LR X
(R, B X (2-12)

Vo i=1 Vo

Finally, insertion of (2-11) and (2-12) into (2-6) yields
n 01
To, = 3. (Ji—E,JL.)<A;1,» - U—‘A;10> + J,AP. (2-13)
i=1 0

Equations (2-10) and (2-13) are two different ways of writing the entropy production
in terms of independent fluxes and independent thermodynamic forces. It is im-
mediately seen from these equations that the new fluxes form linear combinations of
the old fluxes, found in (2-5). Further, it is easy to show that the same is true for the
new forces with respect to the old forces in (2-5). Now with regard to such linear
transformations which are subjected to the condition of an invariant entropy produc-
tion, Meixner [26] has pointed out that the ORR remain valid for the new phenom-
enological coefficients in the linear relationships between the new fluxes and forces.
This statement enables us to apply henceforth the ORR without restrictions. It does
not alter the fact, if we once more multiply a flux with a definite factor and divide the
conjugated force by the same factor in order to get the quantities in the right dimen-
sions. Hence we introduce the useful definitions:

3 8 (%"-J,.—Jouo) (i=1,2, 0 1) (2-14)
(Allp), = %Auh (e O el (2-15)
T = (J( b J) =17 (2-16)
(AIlp), = 5,(A;1,. - %Auo), (omed 2 S ) (2-17)

and bring (2-10) and (2-13) into the desired final form, reading respectively:

To, = Y, (Jp)i(Alp)+J,AP (2-18)
i=1
and

Ta,

i

(Jo)i (Al ), + JT-AP:
=1




Though at this point it will not yet be apparent why we have made a proper choice
of fluxes and forces, we can even now make some statements about the character of
these quantities. The total volume flow J, actually represents the volume of bulk
liquid which is transported per unit time and is, like its conjugated force, the hydro-
static pressure AP, a good measurable quantity. The flux (J,); is a measure of the
flow of solute i relative to the solvent motion, whereas (J;); stands for the same, but
relative to the bulk motion. Concerning the forces (AIlp); and (AIl.),, we state that
both, after summing them over all solutes, yield —Apy,/v,. Recalling the familiar
expression of thermodynamics for the osmotic pressure difference

) G (2-20)
Vo

we see that (AITp); and (AIl.); actually represent those fractions of AIT, which as
conjugated forces of the diffusional flows mentioned above refer to solute i. We shall
in any case be obliged in the following to find the relation of these forces to the
osmotic pressure difference AIT in order to obtain meaningful equations.

§ 3. The Two-component System

The theory outlined in § 2, becomes considerably more simple if it is applied to a
system with a single solute. Putting n = 1 into (2-7), (2-14) and (2-16), we arrive at
the identity (Jp), = (J¢);. Analogously, it follows from (2-8), (2-15), (2-17) and (2-20)
that (Allp); = (Allc), = AIl. Dealing with a single solute we are allowed to drop
the parentheses and the index 1 as a lumber of notation. Then, according to (2-19),
the entropy production must satisfy

To, = JAIT+J,AP. (2-21)
In the linear approximation the fluxes and forces are related to each other by

Jo = LcAIT+ LopAP, (2-22)

Jy = LpAP +Lp All (2-23)
The ORR reads in this notation

Lpc = Lep. (2-24)

Let us first examine the sign of the phenomenological coefficients, appearing in (2-22)
and (2-23). Insertion of (2-22) and (2-23) into the expression for the entropy produc-
tion (2-21) gives

To, = LAIT? +(Lep+Lp)APAIT + Ly AP? > 0. (2-25)

13




The fact, that the entropy production is positive definite, causes the right-hand side
of (2-25) to be positive, whatever the value of AIT or AP may be. So, by taking these
quantities respectively equal to zero, we conclude that L, and L. are positive. This
result enables us to state that

(VLpAP +~/LcAIT? > 0. (2-26)

With the help of (2-26) and (2-25), it can be shown that a positive definite entropy
production requires still another condition, which becomes

LPLC e %(ch +LCP)2 2 0. (2'27)
By virtue of the ORR the inequality (2-27) is reduced to
LpLc—Lep = 0. (2-28)

By considering (2-28), it is obvious that L., may be negative, positive or zero.

We now call attention to the question of which measurable quantities fit best in
the theory developed hitherto. In fact we can distinguish two different permeation
experiments, differing in the external conditions imposed on the system. A permeation
experiment characterized by a constant hydrostatic pressure difference with AIl = 0
is well-known as ultrafiltration. Another experimental situation is found in the so-
called osmotic experiment, showing the characteristics of a fixed AIT (# 0) with an
additional condition AP =0 or J, = 0.

In general, ultrafiltration causes an observable separation of solute molecules from
the solvent molecules, because the former are more “reflected” from the membrane
than the latter. Thus the solute flow lags behind the bulk motion, as can be expressed
by the inequality J, < ¢,J,. This effect can be formulated with more refinement, as
has been done by Stayerman [37], who has introduced the reflection coefficient o,
which accounts for the selectivity of the membrane. It is defined as

Jy Je
g = = —— = —|—= : (2-29)
( ¢y >Al1=0 <Ju)au=o

Its significance is clarified as follows. If J,/¢, = 0, all the solute is reflected and o = 1
according to (2-29). In fact this occurs, when the membrane is semi-permeable.
However, if J, = ¢,J,, solute and solvent are reflected to the same degree, which
means, that ¢ = 0. In that case the membrane shows no selectivity at all and is com-
pletely permeable. In all intermediate cases the solute is more reflected than the solvent,
corresponding to 0 < ¢ < 1 and the membrane is to a certain extent permeable for
the solute. An interesting case arises, when J; > ¢,J, or ¢ becomes negative. Indeed
negative values of ¢ have been observed by Talen and Staverman [43]. The following
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explanation can be given for this phenomenon. In dilute solution the ratio (J,v,)/J,,
being actually the transport number of the solute, reduces to

Jiv _ @it (2-30)

Jy Pollo

where @," and ¢, stand for average volume fractions inside the membrane and Uy
and u, are the corresponding velocities. The internal concentrations may be related
\ to those outside the membrane by the partition coefficient ¥ according to

| @1

. (2-31)
Po

= ~@1
== l——-.
Po
Introducing respectively (2-30) and (2-31) into (2-29) and using the approximation
@ = 1, can be written in terms of velocities, reading

g=| =iyt : (2-32)
Uo Janr=0

From (2-32) we conclude that when y > 1 (solute adsorption within the membrane),
o becomes negative. Such phenomena occur clearly in the experiments reported by
Talen and Staverman. The catastrophic decrease of the reflection coeflicient to negative
values suggests that y increases rapidly in high dilution. Though this is an exceptional
case, it may inspire us to take into consideration the influence of the partition coef-
ficient on membrane selectivity, and not to ignore that even small deviations of
from unity may have a large effect on the reflection coefficient. In fact one might
equally well claim that it is precisely the case y = | which is exceptional. If, indeed,
% = 1, we arrive by virtue of (2-32) at the expression for o, given by Katchalsky and
Curran [16]:

o= ( .| ’L’) ; (2-33)
Upg Jann=0

Both equations (2-32) and (2-33) show that the rate of reflection is closely related to
the ratio of the velocities of the solute and the solvent and also, as is seen from the
former equation, to the partition coefficient.

During an ultrafiltration experiment it is quite possible to follow the bulk motion,
induced by a hydrostatic pressure difference. Then the volume of the bulk liquid,
transported through the membrane per unit time and pressure i.e. the filtration coef-
ficient L, can be determined. Its definition is

I
) R et (2-34
’ (AP) )
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At first sight one would think that membrane selectivity did not emerge clearly in this
quantity. However, it will appear later that from the way in which L, depends on
concentration — as indeed it does to a slight extent —, we are informed about the nature
and magnitude of the partition coefficient.

Experiments under osmotic conditions furnish even more information about the
permeability properties of the membrane than ultrafiltration. Whereas ultrafiltration
yields the filtration coefficient Lp and the reflection coefficient ¢, an osmotic experi-
ment provides us with three independent experimental quantities, which is just the
number required to describe the two-component system completely. In order to hold
the system in an at least quasi-stationary state, one will try to keep the concentration
difference across the membrane constant as close as possible. Obviously this succeeds
better in the osmotic state with J, = 0 than in the state with AP = 0. The reason is
that the presence of a volume flow does itself lead to an extra change of concentration
in the outer bulk phases. Hence it is advantageous to study the state with J, =0
rather than the state with AP = 0. Now the hydrostatic pressure difference, which
makes the bulk volume flow vanish, can be considered to counterbalance what we
shall call the “apparent osmotic pressure” AP". This is formulated as

AP = (AP);, 0. (2-35)

As opposed to this situation, the volume flow J°, still remaining when AP = 0, will
be termed by us the “apparent osmotic flow”, obeying the definition

J" = (Jo)ar=o- (2-36)

Further, by a “real osmotic flow” is meant the flow Josm, which is equal to —LpAll
and which becomes identical to J* in the case of a semi-permeable membrane. Finally
we follow Kedem and Katchalsky [17] in defining the very useful solute permeability
 according to

== —_—— == _— > ~= 7
¢ (An),‘:o (AH >,p=0 (3:31)

The filtration coefficient Lp, the reflection coefficient g, and the solute permeability @
play a major role in our treatment. The applicability of Fick’s first law to a solute
permeating a membrane implies that @ turns out to be reasonably independent of
concentration. From a mechanical point of view the same conclusion may be drawn
with respect to Lp. With regard to ¢ it seems to be plausible to assume a certain
independency of concentration, if one considers the solute transport number, (J,v,)//J,
with AIT = 0, to be proportional to @;, as a first approximation. However we stress
that we can only guess and hope that it is so. Only practical data will disclose, and
perhaps justify, the operational value of these quantities.
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So far we have not yet considered the fact, that the ORR give rise to relations
amongst distinct experimental quantities. In this connection it is convenient to write
the experimental quantities in terms of the phenomenological coefficients appearing
in (2-22) and (2-23). Applying the definition of o, (2-29), to (2-22) and (2-23) we have

o P (2-38)

In conformity with what is stated about the sign of Lp and Lqp, o can be positive,
negative or equal to zero. On the other hand we obtain from (2-35) and (2-23)

AP" = — ZPE AT (2-39)

Now, as was first pointed out by Staverman [37], the effects (2-38) and (2-39) are
interconnected by virtue of the ORR (2-24) according to

*

AP
N (2-40)

In a quite analogous way, it can be shown that

J

iy (2-41)

osm

In (2-40) and (2-41) we meet with an interesting consequence of the ORR, which
introduces an entirely new proportion to the whole phenomenology. It means, in fact,
that distinct physical quantities, measured in different states, are not unrelated, but
are linked together by virtue of the ORR. Thus in this way the reflection coefficient o,
resulting from an ultrafiltration, is related to an apparent osmotic pressure difference
AP’ or to an apparent osmotic flow J*, measured under totally different condition,
namely an osmotic experiment. It will be obvious upon consideration of (2-40) and
(2-41) that here a way is found, however indirect, for determining the osmotic pressure
difference AIT with a membrane permeable for the solute. For this purpose one has
to measure ¢ in an ultrafiltration on the one hand and on the other hand AP in an
osmotic experiment (2-40). Instead of AP" one might measure also J* osmotically and
o and Lp by an ultrafiltration, (2-41) leading also to an evaluation of AIT. Talen and
Staverman [42] have taken advantage of this principle to determine the molecular
weight of sucrose with a membrane highly permeable for this solute.

Just as the reflection coefficient o, the solute permeability w can also be written in
terms of the phenomenological coefficients. Applying its definition (2-37) to (2-22),
(2-23) and (2-24), we obtain, after some arrangement

Lele~Eep

W = ¢4
Ly

(2-42)
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Recalling that L, must be positive and comparing further (2-42) with (2-28), we
conclude that

o = 0. (2-43)

The sign of equality in (2-43) refers to the case where the membrane is semi-permeable
(¢ = 1) and prevents the solute from permeating.

From a practical point of view it is convenient to replace the set Lp, Lcp and Le
by the experimental quantities o, Lp and @ in the flow equations (2-22) and (2-23).
The procedure to be followed is: Apply the ORR (2-24) on (2-23) and insert (2-38)
into the same equation, yielding

J, = L(AP—c All). (2-44)

Further, first eliminate AP from (2-22) with the help of (2-23), apply the ORR (2-24)
to this result and finally use (2-16), (2-38) and (2-42), which after rearrangement
leads to

Jy = oAl +¢&(1—0)J,. (2-45)

The equations (2-44) and (2-45), first derived by Kedem and Katchalsky [17] are
more appropriate than the set (2-22) and (2-23) because of their operational form.
Irrespective of their practical convenience, we have other reasons to present them
here. First, they can be generalized to multi-component systems, which is the subject
of the following section. Secondly, they form good starting points for the derivation
of the equations relating the physically interesting resistance coefficients Ry, Ryo
and Ry to o, Lp and @. In order to show this, we solve (2-44) and (2-45) for All
and AP, which becomes respectively

_J1-(1-0)a,] A 5
All = o j-J,v, T <fJ0u0. (2-46)
i . I—-(1=0)@:, . J 1 _mﬁl(l—a)] ¥
AT | Lp Oy c’&Tﬂ}"J'b' 4 L L v, ﬁJoUO' )

where the total volume flow has been written out in the volume flows of its con-
stituting components in accordance with (2-7) for n = 1. The relation of AIT to A,
and Ap, can be obtained from (2-20) and (2-15), when these equations are applied
to the particular case where n = 1. Making use of this, we write

1 —06){1—(1—0)@,} 1 1—0)’¢
A;:0+1>0AP=|:£»——( oh -fﬂﬂ‘-l]u,qu,Jr[—Jr( -M:luf,.]o. (2-48)
P

W, P U,
1 {1-(1=0)@,}*| 2 1 (1=0){1-(1—0),}
Ap, +v AP = [ + - (1=0)04; :|z‘;.l, +|:*< ot oht=t )PL’]IHUOJU.
Lp VP4 Lp W,




Now the equations (2-48) and (2-49) correspond exactly, as far as their form is
concerned, to the set (2-3) with » taken equal to 1. By comparing the two sets we
obtain immediately

vy Lp o, ‘

_R_‘;Q =1 7 (,';"M, (2-51)
g Lp wy,

Ry _ 1 {1-(-0)3,}* (2-52)

i Lp (O

We can already give a prognosis as to how the resistance coefficients will depend on
concentration, starting from the assumption, that ¢, L, and @ are almost constant.
In the range of small concentrations the factor {I —(1—0)@,} will be about I. It
means that in this range R,, will be approximately constant, R,, will increase and
R, will decrease with increasing average concentration.

Let us draw some final conclusions concerning the two-component system.
1. Within the framework of the discontinuous theory it is possible to describe the
behaviour of the membrane system as a whole in terms of the measurable quantities
6 (< 1), Lp(>0) and w (= 0). If only the selective properties of the membrane
are of interest, an osmotic experiment (Al # 0) is sufficient to provide us with these
three quantities, but then it is supposed that the osmotic pressure difference AIT is
known. This can be illustrated with the flow equations (2-44) and (2-45). Assuming
a constancy of g, Lp and @ (which seems completely plausible for a single experiment
where only small changes of concentrations are allowed), we expect straight lines,
if J, is plotted versus AP in accordance with (2-44). From slope and intercept L, and
¢ may be calculated, provided that AIT is known. Equation (2-45), under the condition
of J, equal to zero, is the basis for the determination of . The experimental verifica-
tion of (2-44) involves measurements of pressures and volume flows only, the verifica-
tion of (2-45) involves measurements of changes of composition. We stress that it is
recommendable to determine o, L, and @ in this way rather than ¢ and L, in an
ultrafiltration and w separately in an osmotic experiment. The relatively high pressures
applied in ultrafiltration may enhance preferential adsorption or bring the membrane
in a state, differing from that prevailing in the osmotic experiment. In fact, dealing
with the ORR, we have silently assumed that, though the external conditions are
different, the membrane itself will remain in the same state, i.e. its selective properties
are not allowed to vary with the external conditions imposed on the system.
2. If the molecular weight of the solute is unknown, or the ORR has to be tested,
as well as an osmotic experiment an ultrafiltration must also be performed. The
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latter yields only o and Lp and not @ and does not therefore provide full information
about the selectivity of the membrane. Nevertheless, ultrafiltration retains its value
as a complementary measurement besides the osmotic measurements. In our opinion
every investigation into the selective properties of the membrane has to be preceded
by a test of the ORR.
3. The question may rise whether the experimental quantities o, Lp and o are the
most appropriate quantities to describe membrane behaviour. In any case the
use of the permeability coefficients Ly, Lyo and Lgo, following from first principles
of irreversible thermodynamics (2-1), seems less appropriate, since they turn out to be
very dependent on concentration [42, 15]. This also holds true to a lesser extent with
regard to the resistance coefficients, where at least R,, is expected to be constant.
Finally, about all these coefficients, at least within the scope of the discontinuous
theory, it may be said that they tell us nothing of what actually happens within the
membrane. The specific influence of the membrane is not immediately evident from
them. With this we have reached the limits of the discontinuous theory, which, indeed
simple in the mathematical sense, does not inform us about the essential nature of

the permeation process.

§ 4. The Multi-component System

Though a system with a single solute is particularly worth examining because of its
simplicity, one is often interested in systems in which more permeating solutes are
involved. So it is important to know how far the theory developed for two-component
systems may be generalized to multi-component systems. Moreover, what is valid
for a two-component system, need not necessarily be true for a multi-component
system. Hence an analysis in this field, or at least a first approach, seems to be meaning-
ful. In particular we shall focus our treatment on the derivation of flow equations
which contain overall quantities and actually represent an extension of the familiar
equations of Kedem and Katchalsky viz. (2-44) and (2-45). As such they have not yet
been presented. The following two cases will be discussed:

1. The highly dilute multi-component system.
2. A heterodisperse mixture of polymers.

Case 1. Starting from (2-19), we may write quite generally the basic linear relation-
ships according to

U= 3 (LOwAI)+(Lep)AP, (i=1,2,...1) (2-53)
k=1

J

Il

LoAP + ¥ (Leoh(AIT ), (2-54)
k=1

v

with the ORR:
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(Lpe): = (Lep)is E=12.n)
(2-55)

(Lo = (Lo - (i k =052 on)

In high dilution the difference between (J;); and (J,,); becomes vanishingly small and
the same is true for the difference between (A1), and (AIT,),. Exactly as in the case of
the two-component system, it makes no difference whether we use the “C-transforma-
tion” or the “D-transformation™, formulating the flow equations. Here, we restrict
ourselves to the set (2-53) to (2-55), which agrees with the set (2-22) to (2-24). On the
analogy of (2-38) and (2-42) we define

ot e
U,’ = LP %
and
. LP(L(')ML_—L(IL(-p).‘(L(‘ﬂ' =12 . 7 (2-57)
P

I

With the use of (2-56) and (2-57) we eliminate the phenomenological coefficients from
(2-53) and (2-54) and find with the help of (2-16), after some rearrangement,

n

Ji = Y oA+l —0)], (=T 20 (2-58)
k=1
and
3 LP{AP =1 aA(ATIC-)k}. (2-59)
k=1

Instead of (2-38), indicating the number of moles of solute i passing the membrane
per unit time, we might equally well have written the number of cm?® of solute i
permeating through the membrane per unit time according to

Jp = Y o (Ad)e+3(1—0)J,, (i=1,2,..,n) (2-60)
k=1

where we have used the abbreviation
O = V. (2-61)
As a next step we have to relate (AIl.), to the osmotic pressure difference AIL.

Assuming the solution to be highly dilute with respect to each solute and every Ay,
to be vanishingly small, we obtain from (2-17)

(Allp), = ¢ Ay, = RTAc, = Al (2-62)




with R the gas constant and T the absolute temperature and the latter sign of equality
referring to the definition of the partial osmotic pressure All,, i.e. the osmotic pressure
difference between both compartments separated by the membrane, caused solely
by the concentration difference of solute k. Moreover, when we impose on the system
the condition that the same distribution of solutes must exist in both outer bulk
phases, then AIT, is related to AIl, as can be shown easily, by

(=]]
=~

AL, (2-63)

All, =

izl
-

where &, denotes the total average solute concentration.

Now the last step we have to make before arriving at the final result, is the introduc-
tion of some adequate definitions, which considerably simplify the notation. Therefore
we assign by agreement that the overall quantity a, means

n

a,= Y, a (2-64)

k=1

while the subscript s refers to the whole solute and k to the single solute k. Further g

may stand in this connection for:

C = the average concentration of the whole solute in moles per unit volume,

the average volume fraction of the whole solute,

the flow of the whole permeating solute in moles per unit time,

(), = the permeability of the whole solute, caused by the partial osmotic pressure
AI,, in moles per unit time and pressure,

the same quantity as above, but then expressed in cm?® per unit time and

~
“

-~ S
o

I

((U;)k
pressure.

Then the “number-average’™ quantity b, represents by definition:

. S (2-65)

k=1 Cs

standing respectively for:

M, = the number-average molecular weight of the solutes,

6, = the number-average reflection coefficient,

v, = the number-average molar volume of the solutes,

(w,), = the number-average solute permeability in terms of moles per unit time and
pressure,

(wl), = the same quantity as above, but here expressed in em® per unit time and

pressure.




Finally we introduce the “weight-average™ b,, by

" &.b
b 62k
kgl

5

(2-66)

~ St

being respectively:

g, = the weight-average reflection coefficient,
(w,),, = the weight-average solute permeability in moles per unit time and pressure,
(@5),, = the weight-average solute permeability in cm® per unit time and pressure.

After elimination of (All.), from the set (2-58) to (2-60) by means of (2-62) and (2-63)
and then performing the summation of this set with the help of the definitions given
by (2-64) and (2-65), we find in a straight-forward way

L = (@) A +E(1~a)l,, (2-67)
Z kak = (U).’\)nA[I + ('/_j‘(l = o’w)"ra (2-68)

k=1

3 S LUAP LG AT, (2-69)

The equations (2-67) to (2-69) show a striking resemblance to the equations (2-44)
and (2-45), due to Kedem and Katchalsky, especially with respect to their form.
Indeed they account for the “overall behaviour™ of the total solute present. Since,
however n separate solutes are present within the solute as a whole, a new aspect
arises from the occurrence of both number-average and weight-average quantities in
this case, contrary to the two-component case in which the solute is uniform. Evidently
the fact that J,v, does not equal ), _ Jv, is the origin of the different averages ap-
pearing in (2-67) to (2-69).

It must be said that the set (2-67) to (2-69) only shows its full significance if the
relevant transport coefficients are indeed experimentally measurable. Therefore we
shall consider how these coefficients must be measured. First we note that Lp can be
evaluated by an ultrafiltration in just the same way as already described, for the two-
component case. Another quantity following directly from ultrafiltration experiments
is the weight-average reflection coefficient ¢,,. When we term the inner and outer
compartments respectively « and f§ and take the applied pressure difference AP equal
to P*— P’  we can express o,, in terms of the infinitesimally small changes of solute
volume fraction @, and of the volume ¥ of the bulk liquid in at least one compart-
ment, say the « compartment (the f compartment can always be chosen so large that
the change of concentration within it is negligible). As is shown in Appendix II, we
may write

Y. Jivy a
e \1-E) (SR (2-70
@, /an=o dIn V*/an=o0
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Now it is quite possible, if perhaps somewhat difficult, to measure the small variation
of @, and V under ultrafiltration conditions, yielding thus ¢,, according to the last
member of (2-70). Analogously (Appendix II) we derive for the number-average
reflection coefficient

0',.,=(l _J.L) — _(dll’l (‘s) : (2_7”
CJ,/An=0 dIn V*/an=o0

Since in the concentration ¢ the number of moles of solute is involved, it is obvious
that the last member of (2-71) cannot be evaluated from measurement of the total
solute volume concentration alone. The conclusion is that g, cannot be measured
independently by ultrafiltration. The auxiliary measurements required make us rule
out ultrafiltration as a technique for the determination of a,. The obvious way to get
information about this quantity is an osmotic experiment (AIT # 0) in which the
chosen hydrostatic pressure difference (AP);, - causes the total volume flow to vanish.
Just as in (2-40), 6, may be found from the ratio of the measured apparent osmotic
pressure difference AP" and the true osmotic pressure difference AIl, which must be
known beforehand, by setting J, = 0 in (2-69).

The solute permeabilities (@,), and (®y), can be measured only in the osmotic
state characterized by the external conditions AIT # 0, J, = 0, and may be formulated
as (Appendix II)

7y In Ac,
(@), = (J) . ( L., )(‘l = &> : (2-72)
AllJ1.=0 RT \V*+V* dt Jr=o0
Z ‘lkltk < ray/B
@) = \"——— Ju fn( = )(dl%> ' (2-73)
All [ 3e=o0 RT\V*+V* dt  Ja=o0

The validity of (2-72) and (2-73) is based on the supposition that the permeation is so
slow that the system may be considered to be in a quasi-stationary state. In order to
measure the solute permeability, the very slow decay of concentration with time must
be followed. Here also it is true that ¢, is more practically accessible than c;. The
solute permeabilities (@,), and (@), are expected to be a function of the average
solute concentration &, or the average solute volume fraction @, in general. If not,
a plot of InAc, versus ¢ or a plot of InAg, versus ¢ will yield a straight line, indicating
a constancy of the solute permeability with respect to the solute concentration.
Finally we conclude that in the case of a highly dilute multi-component system
information is gained by an ultrafiltration experiment about the large molecules in
particular (o), whereas by an osmotic experiment it is about the small molecules
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that we obtain information (). This discrepancy, not present in the case of a one-
solute system, leads to the conclusion that what is quite well possible in the case of
a one-solute system is not possible in the case of a multi-component system: i.e. the
measurement of a molecular weight (M,) by subjecting the solution to both an ultra-
filtration and an osmotic permeation across the membrane.

Case 2. The permeation of a heterodisperse mixture of polymers through a membrane
permeable for the solute may hold the attention now, because it is frequently
met in practice. The problem of finding a good semi-permeable membrane is hard to
solve, when one has to do with broad molecular distributions. Nevertheless, one is
obliged to persist, when the number-average molecular weight M, has to be measured
with membrane osmometry. However, when the distribution itself is the subject of
investigation, it is precisely a membrane admitting permeation which is suitable for
the purpose, since it induces an easier passage for the small molecules than for the
large ones, and this consequently has different effects on the number-average and
weight-average transport coefficients. The discrepancy between these quantities must
be related in some way or other to the width of the molecular weight distribution.
Dealing with a heterodisperse mixture of polymers, we are confronted with two
aspects which complicate matters. First, since necessarily the dilution is not infinite,
both transformations (‘C* and ‘D’) need not coincide, but can be applied separately.
Further, even in high dilution, the interaction between the molecules must be taken
into account. Staverman [39] has pointed out that it is possible to relate Ay, of each
solute k to Ap, of the solvent, using the Flory-Huggins theory, provided that the
solutions on both sides of the membrane are nearly equal with regard to the total
solute concentration ¢,, and quite equal with regard to the solute distribution within
the whole solute. His result may be written as

Ay Co Co { @9(1—uvy/v,)
SR o e S ey 4 it s SLiS (l\ = 1, 2, Sias n) 2-74)
Apo & & | (Po—@) ¢

where y is the abbreviation of y = 1 —uv,/v,(1 —22), and « stands for the “interaction
constant”. Let us restrict ourselves in first instance to the “C-transformation”, then
we can translate (2-74) in our terms with the help of (2-17) and (2-20), reading

All ), = - 0 e Ca '_;' 1 —v,/v,
.(_ ‘ k =3 q)k+(p0.i+(p0% ‘ELL ,J‘/ )I

All e & | @o—3y) |

(k=1,2,....,m) (2-75)

The equation (2-75) enables us to follow the same procedure with respect to the set
(2-58) to (2-60) as has been done in case 1. It starts by eliminating (AIl.), from
(2-58)-(2-60) by means of (2-75), continues by summing the so obtained equations
and arrives finally with the definitions (2-64)-(2-66) at
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Let us draw some conclusions from the transport equations derived above:

1. In general the small molecules count most in the value of a,, whereas it is precisely
the large molecules which are important for the value of o,. On these grounds
one would expect that always o, < 0. Following the same lines of reasoning, we
expect the reverse to be true for the solute permeabilities; thus (©y), > (@
and similarly (@,), > (),

2. The quotient of the apparent osmotic pressure and the real osmotic pressure being
just the form in braces in (2-78) may be considered to be a sort of overall reflec-
tion coefficient depending clearly on the average solute concentration ¢, Starting
from the rather bold assumption that both ¢, and ¢, are independent of concentra-
tion, we expect, remembering the inequality o, < 0, that the overall reflection
coefficient will decrease with increasing solute concentration. But even, when g,
itself decreases with increasing solute concentration, and preliminary measure-
ments seem to confirm this behaviour [14], the same concentration effect on the
overall reflection coefficient is found again, and even more strongly still. However
it may be, the overall reflection coefficient determined from an osmotic experiment
(AIT # 0, and AP" = (AP);,=0) becomes equal to g, in the limit of very small
solute concentration, as follows from (2-78) in accordance with (2-69).

3. The forms in brackets in (2-76) and (2-77) may be understood as overall solute
permeabilities. Assuming that the separate solute permeabilities are more or less
constant (Fick’s law), we expect that by virtue of the relevant inequalities men-
tioned in conclusion 1 the overall solute permeabilities increase with increasing
solute concentration. This effect too, has been observed in preliminary measure-
ments [14].

4. Recalling that o, can be determined by ultrafiltration and g, by osmotic measure-
ments, we may calculate the quotient 6,,/0, providing us with information about
the width of the molecular weight distribution. When it is known, or can be
determined by calibration, how the reflection coefficient depends on the molecular
weight, it must be possible to relate 7,,/0, to the familiar M,/ M, ratio.

In the derivations so far, only the so-called «C-transformation” has been used. The
same reasoning may be repeated for the «p-transformation”, but this does not reveal
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essentially new aspects, except that in the transport equations quantities appear which
are defined in a somewhat different way. Because of the mathematical resemblance
with the Kedem and Katchalsky equations we have preferred the ““C-transformation”
to the “D-transformation”. However, on practical grounds one might decide which
transformation yields better constant reflection coefficients and solute permeabilities
at higher concentrations.




CHAPTER 3

THE FRICTION MODEL

§ 1. Introduction

The discontinuous theory provides us with a very general description of transport
processes, irrespective of the membrane model adopted. It does not require any
knowledge of what occurs within the membrane, except that the latter is homogeneous.
It never involves complicated mathematics, but is always very simple in its formula-
tion. It describes the whole transport process with a minimal number of transport
coefficients, for instance, three for a two-component system. However, it must be
noted that though the discontinuous theory yields Ly, 6 and @ in the case of a two-
component system it fails to give an interpretation of these coefficients in terms of the
separate contributions of the permeating components and of the membrane. So it
cannot explain or indicate what, for instance, is the influence of the membrane on
the reflection coefficient and on the solute permeability. Nor can it give a decisive
answer as to exactly what the influence of the solute is on the value of ¢ and .
Evidently Lp, ¢ and @ do not refer separately to a special component or to the mem-
brane. but to a complex combination of their contributions. Thus the very general
concept of the discontinuous theory, however acceptable in itself, does not permit us
to obtain information about the interior details of the membrane and does not reach
far enough to penetrate into the mechanism of the transport process.

A promising approach which goes more to the root of the matter is found in the
continuous description of transport processes with the aid of friction coefficients, as
proposed by Onsager [32], Klemm [22], Laity [25] and Bearman [2]. Contrary to the
discontinuous description, this theory covers the phenomena occurring locally within
the membrane which is conceived as a separate continuous phase. The friction coef-
ficients are well-defined physical quantities being a measure for the friction between
the different species, including the membrane. As far as they refer to permeating
components they may be compared with the friction coefficients resulting from free
diffusion. In this way something can be predicted about their variation with composi-
tion. They have in any case the advantage of always referring to two specific com-
ponents, what is not the case for the experimental quantities. Since they essentially
describe the same phenomena as the experimental quantities, relationships will exist
between the two sets. However, it must be noted that the friction coefficients result
from a continuous theory and may be compared only with the experimental quantities
after integration across the membrane phase of the local transport equations con-
taining them. This step from microscopy to macroscopy is attended by mathematical
complications which can be solved only by making some drastic assumptions. As
will appear, the confrontation of both descriptions reveals, besides friction, still
another aspect: the partition of solute between the membrane phase and the outer
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phases. Both friction and partition are the very elements of permeation which do not
clearly emerge from the discontinuous description, but which give the friction model
a more intrusive character in a physical sense.

It is the object of this chapter to express the friction coefficients in terms of the
experimental quantities, and vice versa, for a system consisting of a membrane and a
mixture of two non-electrolytic permeants. Some authors [11, 18] have already
provided relationships of this type, but never without making rather simplifying and
hardly permissible assumptions in their derivations. We claim to have minimized the
assumptions in our presentation with respect both to their number and to their
significance.

§ 2. The Differential and Integral Transport Equations

The model to be discussed here is a homogeneous membrane phase separating two
external phases under isothermal conditions. The external phases are kept at constant
chemical potential of the solute. Mass transfer may only occur in the x-direction i.e.
normal to the membrane. The membrane itself is considered to be composed of a lot
of parallel layers normal to the transport direction and the position in space of each
layer is indicated by its x-coordinate. The composition in a definite layer is assumed
to be constant for all species, including the membrane. The concentrations ¢; are
expressed as the number of moles of species 7 per unit volume of membrane substance
including the pore liquid, while the asterisk always refers to the membrane phase. The
index 7 runs from O (solvent) over 1, 2, ..., m—1 (permeating solutes) to m (mem-
brane). The average velocity of species i in a definite layer u,(x) is measured relative
to a fixed point in space. If there is a stationary regime the flow densities j; (= ¢;'u;)
are independent of x and time ¢, in other words, no accumulation or depletion of
permeating components may occur within the membrane. Further, under condition
of a steady state the net force on a mole of species i in a certain layer will be zero:

), Xy =0, (alei=10, 1,2, .5-10) (3-1)
k=0

where the net force in (3-1) is considered to be composed of a driving force X;; on
a mole i equal to the gradient of the chemical potential in the isothermal case:
—Vu;—v,VP and frictional forces on a mole i due to the relative velocity u;—u,
between the species i and k, termed X;. Following Klemm [22], we may write for
the frictional forces in the linear approximation

Xu = —rue (n—u), (k =0,1,2,...,m) 3-2)

by which the friction coefficients are defined. Since in a definite layer the total fric-
tional force exerted by species k on species i must be equal and opposite to the total
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force exerted by species i on species k by virtue of the principle of action = reaction:
e Xu+cXu =0, (i,k = 0,1,2,...,m) (3-3)
it follows from (3-2) that
rg = Ty (Lt 1k =00,1; 2655 m) (3-4)

As a consequence of (3-4) a local equilibrium of forces must exist following directly
from (3-1) and (3-2) and reading

> L‘:(V;t,.+v,-VP)+c:,,X,,,,,, =0, (i=0,1,2..,.,m=1) (3-5)

i=0

The relation (3-5) enables us to express the membrane force X, in the well-defined
thermodynamic forces of the other components. With respect to the m permeants
we may rewrite the balance between the thermodynamic and the frictional forces as
represented by (3-1) as follows:

—Vu,—oVP+ Y Xy =0, (i=0,1,2,....m—1) (3-6)
k=0
which leads with the help of (3-2) to
—V;—vVP = Y ryci(u;—uy), (i=0,1,2,....,m—1) (3-7)
k=0

while X,,, is related to the other forces by means of (3-5). The equations (3-7) have
already been presented in this form by many authors [2, 3, 22, 25]. Upon inspecting
them it becomes clear that by virtue of (3-4) only a set of m (m+1) friction coefficients
is required in the continuous description. Recalling that the number of permeating
solutes n is equal to m—1, the required number of friction coefficients turns out to
be 1(n+1)(n+2), namely exactly the number of resistance coefficients, as we have
seen in Chapter 2. Further, we note that the friction coefficients are independent of
the frame of reference chosen, i.e. independent of the coordinate system used for
measuring the velocities, because neither the gradient of the chemical potential in the
left side nor the difference in velocity in the right side of (3-7) depends on the choice
of the coordinate system of measurement. Finally, we note that all coefficients of the
type r;; drop out of (3-7). Only the dissimilar species moving with different average
velocities through a certain layer contributes as a result of their mutual friction to (3-7).

The set (3-7) may be simplified still farther. Since the ill-defined membrane con-
centration c,, always appears in the product FimCn» it is cONvenient to introduce the
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abbreviation f,, = r,,¢,, into (3-7), being the friction coefficient of component i with
the membrane. Furthermore, a membrane fixed in space means that u,, must be taken
equal to zero. Finally, using the definition of the flow densities j, = ¢iu;, we rewrite
(3-7) in the form:

m—1
Z I.ik(.:& +./;'m m—1
V= VP =22 — i — ¥ ruje. i#k (i=0,1,2,...,m—1) (3-8)

1 k=0

The equations (3-8) essentially describe the same phenomena as the equations (2-3),
on the understanding however, that the former operate locally or on a microscopic
level, whereas the latter do so integrally or on a macroscopic level. Direct confronta-
tion of the continuous description with the discontinuous description is only possible
after integrating the local equations (3-8). This operation gives rise to many problems
and to differing results found by various authors [4, 18, 21, 40].

Before integrating (3-8) with respect to x across the membrane we suppose the
following conditions to be fulfilled:

1. No jump may exist in the chemical potential of the solute at the boundaries of
the membrane phase with the external phases [21]. It does not imply, however,
that the same is true with regard to the solute concentration, or in other words,
a partition of solute between the membrane phase and the outer phases is always
possible and probable.

2. The flow densities are independent of x and thus constant throughout the mem-
brane under steady-state conditions.

Assuming constant flow densities and continuous chemical potential of the solute
we now integrate (3-8) with respect to x across the membrane thickness d, yielding [40]

m—1
ruce+f; -
1 Z ik“k TS im 1 m=1
Api+v,AP = (—<k0 T > Ji— /;— Y. Lruddy,

m ¢

i m k=0

L#E (0 =0,1;2;..:m—1) (3-9)

where we have denoted with the symbol { > the operation (1/d) j'(:( )dx and have
replaced j; by J;/A,,, A,, being the membrane surface. The equations (3-9) are given
in the so-called integral form and are obtained by integration of the equations (3-8)
appearing in the so-called differential form. The former equations are directly com-
parable with the set (2-3). In accordance with the fact that # = m—1 the relationships
between the macroscopic resistance coefficients and the microscopic friction coeffi-
cients turn out to be
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(1 Z rikc; +./;‘m
Ry = A—<""” —> . (i=0,1,2,....n) (3-10)
Cs

m i

Ly

Ry = A

{riw)- ik (i=0,1,2,....,n) (3-11)

m

Some important conclusions may be drawn from (3-10) and (3-11):

1. The relation (3-4) which is based on the principle of action = reaction on a
microscopic level implies, in view of (3-11), that R, = R,;. Now this, precisely,
is the ORR which is valid under the assumption of microscopic reversibility.

2. Evidently the resistance coefficients R;, (i # k) describe merely the friction be-
tween components i and components k as opposed to R;; in which also the fric-
tions with the membrane are involved.

3. Itisimportant to know how the friction coefficients can be related to experimental-
ly measurable quantities. In the particular case where only one permeating solute
is present (n = 1) the friction coefficient r,, accounting for the friction between
solute and solvent is directly connected to experimentally measurable quantities.
Indeed, by eliminating R;, from (3-11) and (2-50) we find

Crio) _ ,1,,,[(1—«7):1 ~(1-0)3,} _ L], (3-12)
P

U410 d W, L

The equation (3-12) shows a very attractive feature: it does not contain ¢,” which
is difficult to determine. Even the external average solute volume fraction plays
a minor role because mostly (1 —¢)@, < 1. With the help of (3-12) a constancy
of ryo, if present, is easily checked.

4. From (3-10) it becomes clear that the friction coefficients between the membrane
and the other components are not simply determinable from the resistance coef-
ficients. Auxiliary data or assumptions about the partition coefficients charac-
terizing the ratios of the concentrations inside and outside the membrane must be
available.

§ 3. Partition of Solute between the Membrane Phase and the External Phases

The concentrations appearing in (3-10) refer to values in the membrane and can be
related to the external concentrations in the usual way by defining partition coefficients.
Here we shall restrict ourselves to a system consisting of a membrane (m), solvent (0)
and a single solute (1), and shall introduce a partition coefficient by strictly thermo-
dynamic arguments.

We have already formulated the condition of the continuous chemical potential of
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solute across the boundaries of the membrane phase with the external phases. When,
under ordinary experimental conditions, the volume flow J, is small, it can be shown
(Appendix III) that the main part of the chemical potential is formed by Wy the
concentration-dependent part of the chemical potential. So ignoring the influence of
the pressure-dependent part of the chemical potential of solute, the condition of
continuity is written

=y (3-13)

ul =", (3-14)

where p;" is the concentration-dependent part of the chemical potential of the solute
in the well-stirred « compartment, and p,"* is the corresponding quantity in the
adjacent boundary layer within the membrane. u# and yu,” have an analogous
meaning but with respect to the f compartment and the f boundary. The chemical
potential x;* is given by the familiar expression:

ui = ui + RT Inffck, (3-15)

where the superscript 0 denotes the relevant value in the standard state, 1 represents
the activity coefficient referring to the volume concentration, and RT has its usual
meaning. With regard to the internal phase we want to express the concentrations in
moles per unit volume including the membrane substance. Doing so we have quite
analogously

py = ul + RT Inf{%e{(1—@,) ", (3-16)

with ¢,, the volume fraction of the membrane substance and (1—¢,) thus conse-
quently the volume fraction of the pore liquid. By putting (3-16) equal to (3-15) in
accordance with (3-13) we find, after some rearrangements,

. *0

¢y A _l‘I

— = (1 (pm) *—C‘( 3 (3-17)
(63) e p RT

Following the same lines of reasoning we obtain also
2B /; 0 *0
Hy— 1y

¢,
A= (1=l exp izt (3-18)
el fl P RT

When the external concentration difference ¢,*—¢,/ is not too large we take ap-

proximately
x B
Lo (3-19)
l’ .fl”
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Fig. 3.1. Illustration of linear concentration profiles in the membrane for different internal
and external conditions. There is a jump in the concentration at the boundaries
when K # 1.

With this assumption (3-19) we are able to define a single partition coefficient K

according to

fi
w X1 - =
it RT $ g RT

0__ %0 B 0__ %0
)lll j“l_,/xr ex Ri— K1 (3-20)

N

K =

which with the help of (3-17) and (3-18) is simplified to
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L= (1—gnK. (3-21)

Thus the concentrations in the boundary layers within the membrane are related to
the external concentrations via the partition coefficient K. The first indication about
the chemical interaction between the membrane and a permeant is given by the value
of K. If K > 1 the membrane attracts the solute preferentially, if K < 1 it attracts
the solvent with preference, and finally if K = 1 one may call the membrane chemical-
ly indifferent or inert, indicating that it does not show any preferential adsorption of
some permeant.

Now from an operational point of view, it seems more convenient to work with
an average concentration in the membrane {c,’>, instead of with the boundary
concentrations ¢,"* and ¢,”. The former is in any case more easily measurable than
the latter. However, {c, ) cannot be calculated without making an assumption about
the concentration profile within the membrane. Let us suppose as a first approxima-
tion that the solute concentration is a linear function of the transport direction x.
This is shown schematically for different internal and external conditions in Fig. 3.1.
Then we may write

L7 By
hat St BN, (3-22)
d

ei(x) =
Integrating both sides of (3-22) across the membrane thickness and dividing the
result by d, we find for the average solute concentration in the membrane

Cer) = (e "+, P). (3-23)

On the other hand, it can be shown from (3-22) that

-1 | ¢ i
(¢, )=———7F-1In <4—> (3-24)
! (cF—=c?) ]
Now it is worth comparing the results embodied in (3-23) and (3-24) with the expres-
sion found in Appendix I for the average external concentration ¢,, which reads

i (% . B
(_'1 b _917 % FISlI g - ﬂé(: 1+ )’ —— (3_25)
(&) [ () (D]
ct U “\eitef ci+cf f
Using (3-21), (3-23), (3-24) and (3-25) we obtain respectively
«_ ., B\2 2 B\4
(edy = K=o 41 + g(c‘—‘t> +g<“‘—‘—’> +} (3-26)
U7 \efte! ci+cf
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(o ) e S
‘ K(1— )¢, (
For small deviations of ¢,%/¢,” from unity we are left in the right-hand side of (3-26)
with only the first term of the series and retain

(e = K(1—9,)¢;. (3-28)

If large external concentration differences are present, we expect the ratio {c¢, »/¢;
to be a function of ¢,%/c. If ¢;*—c? equals 3(c*+¢/’), or ¢,* = 2¢,”, then the error
in (3-28) is 4% only. An expression for {cy, the average solvent concentration in
the membrane, can also be derived. Remembering that everywhere in the membrane
the sum of the volume fractions equals unity, we write

Cedvy+{eodvo+ @ = 1. (3-29)
Elimination of {¢, ) from (3-28) and (3-29) leads to

. (1—’(@11.

eoy = (1—@m) — (3-30)
0

It must be noted that an imposed condition of nearly equal external concentrations
on both sides of the membrane is so far reaching that it does not matter whether the
concentration gradient of the solute is constant across the membrane or not. In the
limit of a vanishingly small difference of the external solute concentrations, ((‘l'>'l
will be always equal to (q'”} making the constancy of the concentration gradient
irrelevant. Nevertheless, by assuming a constant concentration gradient in the mem-
brane we have shown clearly by (3-26) that finite concentration differences outside
the membrane lead to a non-constant value of the ratio (e, ey, even if K is constant.

Summarizing, we may conclude that for ideal external solutions under conditions
of small concentration differences, it is indeed possible to relate the average concentra-
tion of the components inside the membrane to those outside by means of a single
partition coefficient. In the special case that all activity coefficients are equal to unity,
or at least independent of concentration, K will be independent of the composition
of the solutions.

§ 4. The Relation between the Friction Coefficients and the Experimental Quantities

However useful the friction coefficients may be for describing permeation, they can
be applied practically only, if it is possible to express them in terms of experimentally
measurable quantities. Dealing with a system consisting of a membrane, solvent and
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a single solute we have to do this for three friction coefficients namely ryq, fi, and
fom- As we have already stated in § 2, the friction coefficient rio representing the fric-
tion between solute and solvent yields no problems. The evaluation of fi, and fo,
standing for the friction of respectively the solute and the solvent with the membrane
requires still more assumptions than we have made already. Therefore we suppose
further that the friction coefficients do not depend on x, which is, in fact, strictly
true if the external concentration difference is vanishingly small. With the assumption
above the expressions (3-10) and (3-11) can be developed further and become in the
two-component case

Ry = i("10<c?‘>+fxm<];>)‘ (3-31)
A, ¢y 4

Rio = = -0

4, (3-32)

l - sl
Roo = L("xo<ﬁ.> +./om< .>> (3-33)
Am CO Co

When, moreover, the solute concentration within the membrane is rather small,
¢, may be taken in a good approximation equal to {¢,’» everywhere in the membrane.
Then using (3-27), (3-28) and (3-30) we have the following approximations:

<"‘2> My = (3-34)
() Cy0g
(6o YRAET ™Y o0 . (3-35)
R e T

1\ o coty cotty — KEivo 3.36
<(0> (‘1><‘0 > l—K(ﬁ, (3 )

The set (3-34) to (3-36) and the equation (3-27) enable us to eliminate the internal
concentrations of the set (3-31) to (3-33). So we obtain

1l (1-K@ 1

R“ = L(—_&rlo s 2y .fflm)‘ (3—37)
Am K('lv() ]\(1 -'(pm)(‘l

d

Rip = — 71";"10‘ (3-32)
d [ Ké,v v

RO() = %<¥I'%rlo T e 2 s ./;)m)' (3'38)
Am l_K(vol (l_(/)m)(]_l\(pl)
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We note that the resistance coefficients in the left-hand sides of (3-32), (3-37) and
(3-38) can be expressed in terms of the experimental quantities o, Lp and o, as has
already been done in the equations (2-50) to (2-52) within the framework of the dis-
continuous theory. With this a direct connection is made between the friction coef-
ficients on the one hand and the experimental quantities on the other. Moreover, the
equations so obtained can be solved for the friction coefficients by straight-forward
algebraic operations. We omit the somewhat ponderous derivations here, but give
immediately the results, reading

To _ Am [“ —0){1-(1—-0)¢:} _ le (3-39)
vy Vg d v, Lp
T 2 Ry
W o : =§T[l_+.1 (1-0)3,} (0 1+&], (3.40)
U|(| —(pm) ‘1 LP v,
_Jom — = A"’[l_ _da _a)(";l“*'ﬁ)i’l]‘ (3-41)
vo(1—9,) d | Lp v,

With these equations we have formed the basis of the determination of the friction
coefficients. The friction coefficient r;o can be calculated directly from (3-39) con-
taining only well measurable quantities, not involving K. From this calculation it
will also appear whether r,, is constant or not. When K is measured by a separate
experiment f,,, and f;, are easily evaluated from (3-40) and (3-41). But that is not
necessary. The reason is that we can eliminate K in an elegant way from (3-40) and
(3-41). Multiplication of (3-40) with the factor (1—o0) and (3-41) with the factor
1—(1—0)@,, followed by a summing up of the results yields after some arrangement

< T f""’~.-+(l—a>< Fim o Lon .)«’u. (3-42)
d LP v()(l—(pm) Ul(l_(pln) l’()(l_(ﬂm)

By plotting the left-hand side of (3-42) versus (1 —0)@, we obtain a straight line
provided, that f;,, and f,,, are constant, as we have assumed. From slope and intercept
both f,,, and f,,, can be calculated. By confronting (3-42) with (3-41) it immediately
follows that

AJ_ (Uj_l+K) — e .flmi .[()m (3_41)
d vy v,(1—@n)  vo(l—0m) -

which enables us to calculate K. This somewhat indirect determination of K must be
preferred to direct measurement of this quantity for practical reasons, to which we
shall return later. Obviously, by utilizing the dependence on concentration of 1/Lp
it is possible to evaluate four unknown quantities: yo, fim fom and K from three
equations viz. (3-39), (3-40) and (3-41).
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Several conclusions can be drawn from the equations (3-39) to (3-41).

I. Let us consider the case where equal volumina of the permeants are retarded by
the membrane to the same degree. This means that the right-hand side of (3-43)
must be equalized to zero. Consequently we find from the left-hand side of (3-43)
that ¢ = 1—K, indicating that the membrane may reflect some component more
than the other because of a different chemical interaction. Moreover, the slope in
(3-42) will vanish and L, will be independent of the composition of the liquid. The
case may be of interest when small, or even negative values of ¢ are observed. The
selectivity, if any, of the membrane may be described in such cases for the greater
part to preferential adsorption of some component.
2. If the friction exerted by the membrane upon the solute is much larger than the
friction upon the solvent, the right-hand side of (3-43) will differ considerably from
zero. As a consequence of this 1/L, will depend strongly on (I —0)®,. This effect
becomes stronger according as the solute molecules are larger than the solvent
molecules.

In order to obtain a better insight into the physical meaning of ¢ and w it is worth-
while expressing them also in friction coefficients as has been done for Lp. Division
of the sum of (3-39) and (3-41) by the sum of (3-39) and (3-41) yields, after some
arrangement, for o

(1-0) g (71(__) (1 —w,,g)"erff)mﬁ. (3-44)
l_(l—o)(pl l—(le (1—‘/’".)"10'*'./1,':1’0
Similary we have for @ by adding (3-39) and (3-40) followed by some arrangement

e 3400 e gl <i,,) i (l'—wm)L’Qi, 4 (3-45)
1—(1-0)p, d (I =@wrio+/fimbo

For very dilute solutions (3-44) and (3-45) may be further simplified by taking in a
good approximation 1 —(1—0)@, and 1 — K@, equal to unity.

Let us point out the influence of the various friction coefficients and the partition
coefficient on Ly, ¢ and @ with the aid of (3-42), (3-44) and (3-45).

The friction between the solvent and the membrane (fom) has little significance
for w, because it appears in the immaterial factor 1 — (1 —0)®,. However, it contributes
more to ¢ and most of all to L,.

The friction between the solute and the membrane (f,,,) influences ¢ and @ con-
siderably and L, only as far as its dependence on concentration is concerned.

The friction between the solute and the solvent (ry0) affects mostly w and to a lesser
degree o, because it appears in both numerator and denominator of the right-hand
side of (3-44). Lp is determined only to a certain degree by r,, via the factor (1 —a).

The partition coefficient K is involved in all the experimental quantities. Never-
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theless, one may devise expressions of these quantities in which K does not occur or
may be ignored. An example of an expression which does not contain K is already
given by (3-42). Further the ratio (1 —0)/® involves K only in the insignificant factor
1 —K@,. These sort of relationships of which K forms no part, or only a negligible
one, are suitable starting points for the calculation of friction coefficients and for a
check on their constancy.

We shall conclude this section by making some remarks about the dependence on
concentration of the several quantities involved. The friction coefficients which have
been assumed constant throughout the membrane actually depend on the average
concentration ¢,. Mostly, especially when Fick’s first law is obeyed perfectly, at least
in free solution, r;, depends only slightly on concentration. Concerning fq,, deter-
mined mainly by the mechanical interaction of the membrane with the solvent, we
expect that generally it will not vary more with concentration than the viscosity.
The partition coefficient K may be strongly dependent on concentration. Evidently
these concentration effects have influence on Lp, ¢ and . In some cases a conclusion
may be drawn. When, for instance, o and » depend strongly on concentration,
whereas (1 —o)/@ does not do so, f;,, or K must be a function of concentration. Then
a further test can be made by inspecting the plot of 1/Lp versus (1 —0)P,. A curved
line will indicate that f,,, does indeed depend on concentration, but a straight line
will prove its constancy. Another test can be made by plotting R, versus ¢, according
to (3-38), which yields a straight line if K is constant and K@, is much smaller than
unity. In the particular case that the friction coefficients as well as the partition coef-
ficient are constant, we expect from (3-42), (3-44) and (3-45) that ¢ and ® are reason-
ably constant and that Lp decreases with increasing concentration. With regard to
the resistance coefficients it follows from (3-37), (3-32) and (3-38) that R, and the
product R,,¢, turn out to be constant, whereas R,, increases with concentration.
However, it must be noted that these considerations are only true if K@, may be
neglected with respect to unity.

§ 5. Classification of Membrane Systems

Friction coefficients have already been used frequently in connection with the descrip-
tion of transport processes by many authors especially in the field of free diffusion.
After Onsager [32] had introduced them, many papers have been devoted to their rela-
tion to diffusion coefficients [25, 7] and their foundation on statistical mechanics [2].
From the literature cited above it becomes clear that a simple transport process like
an isothermal mutual diffusion in free solution of two components is characterized
by a single friction coefficient r{, accounting for the friction between the solute and
the solvent, and related to the mutual diffusion coefficient 2 according to

dln f;
RTl.‘O(l 5 cﬁ_n!_,)
r dlnc,
rig=——+.
10

7

(3-46)




Now it is worth drawing rJ, of free solution into our considerations and comparing
it with r, in the membrane. In doing so we do indeed have a way of eliminating the
chemical as well as the geometrical and mechanical effect of the membrane on the
permeating components. The mechanical influence of the membrane, originating from
its fixed situation in space, is expressed mainly by f;,, and f;,,. The chemical influence
of the membrane on the permeants is accounted for by the partition coefficient K.
As we have seen, K # 1 agrees with a chemically active membrane, whereas K = 1
corresponds to a chemically inert membrane. The geometrical influence of the mem-
brane originates from the fact that the permeating molecules are forced to follow
outlined pathways which are usually longer than the thickness of the membrane
because of their tortuosity. Obviously the value of r{,/r,, is determined by these
geometrical and chemical influences. A possible ambiguity concerning the average
concentration to be chosen for the friction coefficients in this ratio may be avoided
by extrapolating them to zero solute concentrations.

With respect to the influence of the membrane on permeation two extreme situa-
tions can be distinguished. If the membrane pores have dimensions much larger than
the mean free path of the permeating molecules the membrane participates only
marginally in the transport process. If, however, the membrane pores are of the same
order of magnitude as the mean free path of the permeating molecules, wall effects
have more grip on the permeation process and consequently chemical and other
interactions will more strongly affect the value of r,,. In this case the membrane is
involved completely in the transport process at a molecular level. Frequently one
meets this distinction in two membrane models in literature, referred to as “pore
model” and “solution model™, concurring with respectively the former and latter
case discussed above. Recently a similar view has been given by Mikulecky and Caplan
[27]. Yet we object to such a distinction for several reasons. Our first objection is that
it can only be a rather crude distinction for one can think of several intermediate
cases. Our main objection is, however, that it is actually based on the pore dimensions,
compared with the magnitude of the molecules, ignoring a possible specific interaction
of the membrane with some component. Two examples may clarify this. Suppose we
have a membrane possessing pore dimensions much larger than the molecular diameter
but showing a preferential adsorption with respect to the solute (K # 1). On the
grounds of the pore dimensions one would be inclined to think that the pore model
must be adopted, but on the grounds of the specific interaction of the membrane one
would decide on the solution model. Exactly the reverse situation is met if one is
dealing with a membrane having pore dimensions in the order of magnitude of the
molecules but chemically inert with respect to these molecules (K = 1). Here again
it is not clear if either the pore model or the solution model covers this case. Therefore
it is worth looking for more unambiguous bases for models of membrane systems.
From the following it will be obvious that on the basis of two important character-
istics of permeation viz. partition and friction, it is possible to arrive at a reasonable
classification of membrane systems.

41




Let us suppose that we are dealing with a given membrane which is chemically
indifferent (K = 1) to a number of solutes dissolved in the same solvent. Let us
moreover assume that the different solutes follow the same diffusion pathways through
the membrane and that none of them are excluded from the small pores because of
their magnitude. With these suppositions we expect the ratio r{,/r;o to be purely
geometrical and independent of the solute chosen. Now it is desirable to analyse this
geometrical constant and to express it in measurable quantities. In this connection
we recall that we have calculated r,, according to (3-12) or to (3-39) in which the
factor A,,/d is involved, being the membrane surface divided by the membrane thick-
ness. Indeed the choice of this factor was to some degree arbitrary, and had been
suggested by the idea that it does not matter which value for 4,,/d is taken as it enters
in all three expressions for the friction coefficients. When, however one is interested
in an absolute value of r,, a more realistic factor must be chosen which accounts
fully for the tortuosity of the diffusion pathways. In fact the molecules permeating
from one membrane face to the other do not cover a distance equal to d, but a much
longer way, equal to d/3 where 9 (< 1) represents the tortuosity factor. Instead of
the total membrane surface a smaller effective membrane surface is only open for
permeation. Debije and Cleland [3, 5] have shown this effective membrane surface
to be (1—¢,)94,,. Hence the value of ry,, which is based on the factor 4,,/d, must
be multiplied by (1 —¢,,)3* before being confronted with /. In the case considered
here, we may write

rho.

1o

= (1-9,)9%" (3-47)

Thus the geometrical membrane properties determining the constant in the right-hand
side of (3-47) are the porosity (1 —,,) and the tortuosity 3. Upon inspecting (3-47)
it is clear that for merely geometrical reasons r,, will be larger than r{,. For instance,
dealing with a membrane in which the pores have been distributed at random (3 = 1)
[5] and have a pore volume fraction of (1 —¢,)) equal to }, we expect r, eight times
larger than r{o. However, the case may be that the interaction between solute and
solvent is markedly affected by a chemical interaction of the membrane and the
ratio rfo/r;o varies for a given membrane from solute to solute. In any case the parti-
tion coefficient K and the frictional ratio r{o/r,o are in our opinion the most appro-
priate quantities which may serve to classify the membranes by their behaviour with
respect to a number of solutes. Along lines of formal reasoning we arrive at the
following subdivision:

Class 1

This class may be defined by K = 1 and the same value of r{y/rio for a number of
different solutes and represents in our terms the “pore model”. An example is the
glass filter of the diaphragm cell used for mutual and self-diffusion measurements.
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The so-called calibration constant must then be a purely geometrical factor. The
reflection coefficient is very small in these systems.

Class 11

This class is defined by K = 1 and a ratio r{o/r,, variable with solute. The highly
swollen membrane systems investigated by Ginzburg and Katchalsky [11] belong
perhaps to this class. Indeed they find a non-constant value for r{,/r,, using aqueous
solutions of sucrose, glucose, urea, tagged water and dialysis tubing and wet gel as
membranes. However, they only assume that K = 1 for their systems, but do not prove
or measure it. Therefore it may be quite possible that their systems belong rather to
class IV than to class II. We note that another effect may cause a variable ro/r;o.
If the membrane possesses pores showing a broad distribution with respect to their
diameters, some solutes may be excluded from the small pores which actually reduces

ol
r1o/"10-

Class 111
This class is defined by K # 1 and a constant ratio r{,/r,, for different solutes. We
do not know of any examples of this class, which in fact is not very realistic.

Class 1V

This class is defined by K # 1 and a frictional ratio r/,/r,, variable with solute. The
membranes belonging to this class will show an obvious selectivity (easily measurable
reflection coefficients) and the whole system may be regarded as a “solution model”.
In our opinion most membrane systems can be described by this very general model,
because some molecular interaction between the membrane and the permeating
components will always be present.

Yet, as will appear later as a result of our work, it is not a simple matter to dis-
tinguish on the basis of the magnitudes of K and r{,/r,, the purely geometrical effects
from the purely chemical effects, unless the membrane is chemically inert. This means
that the classification given above is perhaps too formal and is reduced mainly to
two classes: *“‘the pore model™ and “the solution model”. Nevertheless, these two
models are best defined and distinguished by the two indicative quantities K and
r{olr10-
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CHAPTER 4

EXPERIMENTAL OUTLINE

§ 1. The System: Membrane-Solute-Solvent

The system which was the object of the experimental investigation consisted of a
porous glass membrane (trade-mark Vycor) and the aqueous solutions of the fol-
lowing solutes, in sequence of increasing molecular weight: penta-erythritol, mannitol,
sucrose and raffinose. The use of porous Vycor glass as a membrane shows favourable
perspectives. In the first place, it has the great advantage of being tight and supporting
itself even when exposed to pressures of up to 4 atmosphere. Moreover, it is easily
purified by a simple treatment with nitric acid, while still retaining hereafter rather
constant permeability properties. The choice of the solutes was suggested by the
following considerations. All of them are available as commercial products in a high
degree of purity. They form stable aqueous solutions with a sufficiently large refractive
index increment (dn/dc) admitting, with the aid of interferometric methods, an
accurate determination of their concentration. The fact that Talen and Staverman [42]
have found an easily measurable reflection coefficient with a value of 0.2 for an aqueous
sucrose solution with respect to a porous glass membrane indicates that solutes of
this kind have interesting properties with respect to glass membranes. Because of
their excellent transport properties in free solution they have been used many times
in recent years for mutual and tracer diffusion measurements. Consequently, we can
dispose of a great deal of auxiliary experimental data, such as the diffusion coefficients
and the activity coefficients. The specifications of the different materials are men-
tioned below.

penta-erythritol formula: C;H,;,04; mwt: 136.15.

The commercial product (Fluka A.G., purum) was recrystallized from distilled water at 100 °C
in a weight ratio 1:1. Thereupon it was dried over KOH in vacuo at room temperature till constant
weight (16 hours). Melting point found: 257.0-257.7 C in agreement with the literature value.

mannitol formula: CgH,,04; mwt: 182.17.

The material used was the micro analytical reagens (organic analytical standard) from B.D.H.
Its purity was very high; melting point found: 168.2-168.8 °C in agreement with the literature value.
Before use it was dried in vacuo at room temperature.

sucrose formula: C;3H1.04,; mwt: 342.30.

The commercial product (Baker Analyzed Reagent) was dried in vacuo at room temperature and
found very pure (A.C.S. specification). Melting point found: 185.2-185.7 °C in agreement with the
literature value.

raffinose formula: C;¢H3,046.5H,0; mwt: 504.44.

The hydrated product had a melting point 79.2-80.0 °C in agreement with the literature value.
The anhydrous product was obtained by heating in vacuo at 70 °C for several days, and then heating
in vacuo at 85 °C till constant weight. It was ensured that the anhydrous product was not exposed
to the moist atmosphere, by means of special equipment allowing only air dried over concentrated
H,SO, and solid KOH to pass into the vacuum dry box.
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The solutions were prepared by weighing both solvent and solutes. Volume con-
centrations and volume fractions were calculated with the help of auxiliary density
data. The freshly prepared solutions were not longer tenable, for our purpose, than
two days, and when not in use were kept cool.

The Glass Membrane

Porous Vycor Glass is a product of Corning Glass Works, N.Y., USA, and its fabrication is
described fully in the literature [29]. The porous glass phase consists of about 96% silica glass with
a pore radius which proved to be 20-30 A for the specimen used by us. The membrane itself occu-
pies the lower part (porous and open for permeation) of a finger-shaped glass cell. The membrane
surface is about 25 cm?*, the membrane thickness about 0.14 cm. Closed at one side (the “finger-
tip”), the membrane ends on the other side via several impermeable glass transitions into an open
Pyrex tube on which a group of glass joints may easily be melted. In the dry state the membrane
must be handled carefully and may not be wetted suddenly, because swelling causes a tremendous
internal tension in the glass, leading directly to cracking of the material. For good acclimatisa-
tion the membrane must be wrapped in moist Kleenex tissue and kept wetted for several hours.
After this it can be acclimatised to water and further treated with nitric acid in order to remove
remaining organic traces. For that purpose it is placed in a measuring glass filled with nitric acid.
The membrane itself is also filled with the acid, so that there is contact on both sides. Then the
whole is heated in a boiling water bath for several minutes, allowed to cool and thoroughly washed
with distilled water. Finally, the membrane is boiled out with distilled water for several hours in
order to drive out all traces of acid. Unfortunately this cleaning procedure, though efficient, affects
the permeability properties of the membrane and makes it more permeable than before. However,
by varying the strength of the acid and the time of cleaning, the change of permeability can be
regulated to a desired degree. In our case the mechanical permeability for pure water changes about
3% after each cleaning procedure. A less drastic procedure using only water does not lead to constant
permeabilities.

§ 2. The Apparatus

The whole osmotic assembly involves an osmometer (I), shown in Fig. 4.1 and in
detail in Fig. 4.2, in which a constant temperature of 25 °C is maintained by a ther-
mostating circuit (II), connected to the double wall of the outer vessel by means of
the two spout-shaped glass joints on the right side. The plastic tube at the top con-
nects the osmometer to a pressure system (I1I), enabling us to apply various over-
pressures. The two teflon tubes on the left side form part of a concentration-measuring
circuit (IV) through which the solution of the outer vessel can be pumped and in
which the concentration can be measured continuously during the experiments. The
different parts of the whole assembly are discussed in more detail in the following.

I. The Osmometer

The inner or @ compartment is represented by the finger-shaped tube of Vycor glass standing on
the bottom of the outer or f compartment and ending at the top into two concentric glass joints.
The pressure chamber fits onto the outer glass joint and the capillary onto the inner one. This construc-
tion is clearly seen in Fig. 4.3. Moreover, this picture shows that the glass joint connecting the
pressure chamber to the @ compartment is held tightly by a screwing device, assuring a solid enclosure
when high pressures must be applied. That the osmometer can be dismounted into different parts
facilitates the filling and cleaning procedure. Mounting or dismounting takes only a few minutes.
The porous glass area reaches up to a distance of about 5 cm from the bottom. The transition from
porous to non-porous glass is rather sharp and clearly visible. Leaks frequently met in placing mem-
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Fig. 4.1. Osmometer with Vyeor glass membrane equipped with two stirrers and a pressure chamber.
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branes in osmometers have been excluded here, as the membrane forms a whole with the « compart-
ment. With the help of a calibrated burette the volume of the « compartment can be determined,
and is found to be about 20 ml for the different osmometers used. The capillary standing on the
@ compartment is precision capillary (Verylia G.B.), of which the diameter was determined by
measuring the length and weight of a small column of mercury brought in. The diameters used are
0.6 mm and 1.0 mm.

The f compartment of the osmometer is simply the doublewalled outer vessel which can
contain 250 ml of the solution, in which the Beckmann thermometer is hanging. During the experi-
ments the outer vessel was coated with an efficient isolating material.

The solutions in both compartments were stirred vigorously. In the ¢ compartment this was
realized by means of a spiral-formed stirrer of soft glass, filled with iron powder; in the f compart-
ment the same was done by means of a small magnet coated in teflon. Both stirrers were driven by
a rotating permanent magnet under the outer vessel.

The osmometer was filled in the following way. The ¢ compartment was placed without capillary
and pressure chamber in a measuring glass filled with the « solution. By means of an injection syringe
the solution was brought into the @ compartment up to the edge of the inner glass joint. The capillary
was there fitted to it and the space between the inner and the outer glass joint filled up with mercury
(mercury lock) in order to prevent the liquid head in the capillary from leaking through the inner
glass joint. A very long needle was used to fill the capillary without including air bubbles. Finally,
the sequence of assembling was carried out as shown in Fig. 4.3 and the whole mounted « compart-
ment was placed in the outer vessel, partially filled beforehand with the f solution.

During the experiments the meniscus in the capillary was followed with the aid of a cathetometer
(Wild M 10). The accuracy gained in the measurement of the osmotic height was 0.01 mm.

The osmometer discussed here may be considered as an improved version of the type described
by Talen and Staverman [42].

II. The Thermostating Circuit

The thermostating circuit must satisfy the most severe requirements, for the ¢ compartment with
capillary acts itself as a perfect precision thermometer. In order to profit fully from the very accurate
measurement of the osmotic height, we have to take care that the variation of temperature in the
outer vessel is as small as possible. This problem was solved by applying a thermostating in three
steps; the first step cools the second and the second step cools the final step, which actually forms
the thermostating circuit for the outer vessel. The first step was formed by a cryomat (Lauda TK 30 D),
yielding methanol of 10 + 1 °C. The following step consisted of a pumping thermostat (Haake type F),
producing water of 23 + 0.1 °C. The final step was an ultra-thermostat (Haake TP 41) keeping the
temperature in the outer vessel at 25 °C with a variation of 0.001-0.002 °C over a period of one
hour, measured with the Beckmann thermometer. Measurements were carried out to observe the
temperature in both the # compartment and the « compartment. It turned out that the temperature
in the inner compartment follows the temperature in the outer compartment spontaneously. Because
of the remaining small changes of temperature the measured osmotic heights were corrected.

ITI. The Pressure System

The pressure source was a cylinder of compressed nitrogen of extremely pure quality. By means of
regulating manostats the pressure differences between the two osmometer compartments could be
varied from 0 to 80 cm water or from 0 to 76 cm mercury. The manometers used were of the open
U type and the difference in height between the menisci was measured with the cathetometer. With
the mercury manostat constant pressures were obtained within 0.1 mm Hg. The heights of the mercury
columns in the manometers were corrected for small variations of the room temperature. We had
at our disposal a high mercury manostat without regulation outfit, yielding an overpressure of
2.5 atmosphere especially suited for ultrafiltration experiments. The whole system of manostats,
manometers, conduits, valves and taps was devised by Talen, who has described it fully in his
thesis [41].

IV. The Concentration-measuring Circuit
The outer or £ concentration could be followed continuously during permeation. For that purpose
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The inner and outer compartment of the osmometer.




a peristaltic pump (L.K.B.) circulated the solution through a differential refractometer (Waters R 4)
connected with the outer vessel, but also in a parallel way with a second identical outer vessel acting
as dummy and containing the reference solution. At zero time the solutions in both vessels were equal
and the recorder of the refractometer gave the usual base line. In the course of an experiment the
solute concentration in the outer vessel, forming part of the osmometer, increased because of permea-
tion contrary to the solute concentration in the dummy vessel. This phenomenon was observed on
the recorder as a deflection from the base line which became larger in the course of time. The device
of the dummy reference vessel was used to eliminate the disturbing effect of solvent evaporization
assumed quite reasonably to be equal for both vessels.

Though this method of determining concentration differences appeared very sensitive, the accuracy
was somewhat disappointing. Calibration with standard solutions showed that the deflections of the
recorder were no more linear than about 3%, while the base line itself had a drift of about 2% over
a period of 24 hours.

The flow rate in the circuit was 1 ml per minute, sufficiently small to assure a stable base line but
on the other hand sufficiently large to follow the very slow change of concentration in the outer
vessel. After the termination of each experiment a time lag of about 8 minutes was observed in
accordance with the “dead volume™ present in the pump, the refractometer and the conduits between
them. This “dead volume”, amounting to only 3% of the external liquid volume, had evidently been
withdrawn from the influence of permeation.

The recorder data were strongly dependent on fluctuations of temperature. Also the base line
drift must be ascribed mainly to temperature effects. By means of a pumping ultra-thermostat
(Haake TP 41) the refractometer cell was kept as close as possible to a constant temperature.

1,!' ﬂ

ey

-~

Fig. 4.3. Theconnection between the inner compartment and the pressure chamber of the osmometer.
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The whole assembly outlined above works extremely well as a dynamic osmometer
with a high accuracy. Its only drawback is perhaps the unfavourable combination
of the laborious serving of the apparatus with the very slow progress of the permeation
process. In fact, we can do nothing about this. The very fact that the system may not
be far from equilibrium means that all processes, leading to its final state, take place
very slowly or under quasi-stationary conditions. On the other hand, an automatic
serving system such as has been achieved recently in some automatic high speed
membrane osmometers might have been used, but only with loss of accuracy [1].

Some remarks must be made about the unequal volumina of the compartments of
our osmometer, in which respect it differs from most osmometers. For several reasons
the B compartment has been made much larger than the 2 compartment. Firstly,
inherent in the construction of the osmometer, the larger volume of the f§ cell serves
as a thermostating medium of the « compartment. Furthermore, during permeation
processes the concentration in at least one compartment can be held as nearly constant
as possible. This is important for ultrafiltration, where at the one hand the concentra-
tion difference must be kept at zero, but on the other hand a concentration difference,
however small, is built up. Finally, in view of the “dead volume” present in the
concentration measuring circuit, we have to deal with a relatively large f volume.

Evidently the change of concentration is much larger for the 2 compartment than
for the f compartment because of the relative smallness of the former. Yet a con-
tinuous measurement of concentration seems in the « compartment quite impossible
for practical reasons. Therefore, we were obliged to take samples before and after
each experiment and to analyse them in a Rayleigh interferometer. Some details of
the Rayleigh interferometer are discussed below.

The Rayleigh Interferometer

In the interferometer two coherent beams of light travel over a distance / through the solution
and the solvent with respective refractive indices n and n,. The optical path difference between the
two beams equals (n—n,)/ and is measured by a compensation method. It can be shown that the
optical path difference satisfies the relation

(n—ny)l = hip, 4-1)

where Ap represents the wave length of the light used and 4 the number of shifted interference bands.

The relation between h and the interferometer readings was determined by us by a calibration
with Na-D light (Ap = 5893 A) at a temperature of about 25 °C. A small correction was usually
necessary to obtain values at exactly 25 °C (£ 1°/4, per °C). For each solute used, the ratio h/c was
proved to be constant in the concentration range considered, indicating that dn/dc is constant, as it
should be. The variation observed in & was always less than 2°/,.

Since in fact samples saturated with N, were to be measured, the influence of this gas in solution
has been examined. The only thing observed by us was the somewhat inferior quality of the inter-
ference pattern caused by N, bubbles escaping from the solution. Besides this there was no quan-
titive disturbance in the interference pattern by the presence of N,.

With the osmotic assembly we have carried out three types of experiments. They are
the ultrafiltration, the osmotic experiment and the relaxation experiment. In the fol-
lowing we shall discuss them separately.
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§ 3. The Ultrafiltration Experiment

In an ultrafiltration experiment the solution present in the « compartment was pressed
through the membrane, under a constant overpressure of 2.5 atmosphere and equal
concentrations on both sides of the membrane, at least at zero time. Since the solvent
permeates faster than the solute across the membrane, the solute concentration in
the o compartment will increase in the course of time, whereas the volume of the
liquid present in the same compartment will decrease. A measurement of both effects
gives us information about the reflection coefficient ¢. This will be more clear after
inspecting the expressions (2-70) and (2-71) which, applied to a two-component
system, must coincide because o, = o,. Remembering from equation (4-1) that A/c
was found to be constant, ¢ can thus be determined with the use of

o= — jTl:—ll/l (4-2)
In Fig. 4.4 we have plotted / versus V for the system sucrose-water. The negative
slope represents ¢ in accordance with (4-2). Unfortunately we could not break off
one individual experiment in order to take a sample out of the « compartment for
analysis, and then continue the permeation, because this involves an inadmissible
violation of the accuracy of the measurement. We have, therefore, performed several
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experiments, starting in each case with the same initial concentration, but varying
the time of filtration from 9, 18, 27 to 36 hours. These experiments were combined
to one plot.

Before each experiment the o« compartment was filled up to the edge of the glass
joint and equipped with a very narrow capillary. The decrease in volume was deter-
mined by weighing the o cell before and after each experiment. From the initial volume
known beforehand the final volume could be calculated. The liquid level in the
% compartment was not allowed to fall too much, because otherwise the balance of
the spiral stirrer was disturbed and it stopped working. This meant that the volume
pressed through had to be restricted to 4 ml, about 20%; of the content of the « com-
partment.

Before and after each experiment the « concentration was measured in the Rayleigh
interferometer. The changes of the o concentration measured lay in the range of
2-3%: the change of the § concentration was completely negligible. The linearity of
the plots was reasonable; probable errors in the slope calculated according to the
method of least squares were always less than 5%,

Some remarks must be made about the contradiction between the measurement
itself and the external condition under which it must be carried out. The external
condition requires that the concentrations on both sides of the membrane are held
strictly constant, but what one actually does is to measure a small change in con-
centration, thus admitting the presence of a concentration difference, however small.
As a consequence of this a very small osmotic pressure is built up during the experi-
ments, leading to an apparent decrease of the reflection coefficient. However, calcula-
tions show that this effect lies within the experimental error.

Another disturbing factor is found in the inevitable evaporation of the solvent
during the ultrafiltration. However, as this phenomenon occurs in both compart-
ments, this effect will be compensated to a certain degree. In any case, the measure-
ments are not sufficiently accurate to reveal a significant indication for the evapora-
tion to occur.

The measurements of the very small concentration effects involved in ultrafiltration
are very subtle and require a great practical proficiency. Nevertheless, the results
remain somewhat disappointing in view of the accuracy obtained. We have used this
procedure only to test the ORR. In the following we shall see that besides ultrafiltra-
tion the osmotic experiment also yields the reflection coefficient, and in fact even
more accurately.

§ 4. The Osmotic Experiment (the determination of ¢ and Lp)

Osmotic experiments differ from ultrafiltration in the external condition, imposed
on the system: a definite concentration difference across the membrane. They have
been described many times in literature and may be subdivided into two branches:
1. The “static” or “relaxation” experiments.

2. The “dynamic” experiments.




I. In the static experiments the system being in a state of non-equilibrium is left to

itself and comes slowly to its final state. In an osmometer like ours the process is
followed by observing the meniscus moving in the capillary. When the initial pressure
difference (AP) is zero, or at least constant and smaller than the apparent osmotic
pressure difference (AP"), the meniscus runs through a maximum in the course of
time. Exactly at this maximum the volume flow equals zero and AP’ is counter-
balanced by AP. Before the maximum the volume flow is negative (rising meniscus):
after the maximum the volume flow is positive (falling meniscus). This behaviour,
typical for a solute permeable membrane, is easily explained from (2-44), which,
however, is only true if a quasi-stationary regime is present. Laidler and Shuler [24]
and also Vink [44, 45] have carried out relaxation experiments and have shown that
much information can be obtained from the single curve relating the osmotic heights
to the time. Kedem and Katchalsky [17] have pointed out how the experimental
quantities o, L, and @ may be evaluated from these curves. However, we stress that
their equations are only valid if from the beginning of the experiment a quasi-sta-
tionary state exists. Therefore, interpretations about relaxation curves must be taken
with caution. At first sight one would think that from the maximum in any case AP’
can be evaluated, but this is only of interest when, at the time that the maximum
occurs, Ac is known or measurable. Mostly one knows only the concentration dif-
ference at zero time exactly. This fact has been used by Cleland [3], and also by
Ginzburg and Katchalsky [11]. They start their experiments with AP = 0 and measure
the volume flow as a function of time. Cleland plots the volume flow against the various
concentration differences chosen and obtains straight lines, from which he deduces
a quasi-steady state. Similar conclusions have been drawn by Ginzburg and Kat-
chalsky from their linear plots of the volume flow against the time. In our opinion
it is highly questionable if so soon after the beginning of an experiment a quasi-
stationary regime has set in, in which a definite concentration profile is established
across the membrane. The time needed for a quasi-stationary state to set in is found
in our case to be 1-2 hours, as will be apparent later.

2. In dynamic measurements the normal run of the process to its final state is inter-
rupted by intervention of the observer, who applies successive overpressures and
measures the resulting flows. The procedure to be followed then, is to look for the
overpressure belonging to a zero volume flow. Dynamic measurements involving
solute permeable membranes are described by Talen and Staverman [42] and by Elias
and Schlumpf [9]. A further good example of a dynamic measurement is found in
the principle according to which some automatic osmometers work [1]: a momentary
balancing of the osmotic pressure by a hydrostatic pressure in such a way that the
volume flow through the membrane stops.
Thus, although many procedures are available to measure AP’, most of them could
not be applied to the Vycor glass membranes used in this investigation. Looking for
the best method of measuring AP®, we have first followed the idea of evaluating it
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from a single relaxation curve. However, the curves found with glass membranes
show rather flat maxima. Moreover, the whole measurement requires several days,
and the waiting times for a quasi-stationary state are long. For these reasons we have
ruled out the relaxation experiment for the determination of AP". Nevertheless, these
experiments have taught us that we could maintain our system for many hours in a
state in which J, ~ 0, by applying an overpressure slightly lower than AP°. As we
shall see, we could make fruitful use of this principle for the measurement of .
From the above it is obvious that we were forced towards dynamic measurements.
The tight thick glass membranes lend themselves excellently to this type of measure-
ments and are able to resist overpressures of up to 1 atmosphere without showing
any ballooning. Moreover, the concentration difference across the membrane has
the favourable property of falling very slowly in the course of time, a few percent in
four hours. On these grounds we arrived at a rather simple principle of measurement
based on equation (2-44). Indeed, a plot of J, against AP must yield a straight line
with a slope equal to L, and intersecting the AP axis exactly at AP’, provided that
the time needed to determine the measuring points turns out to be sufficiently short
to make the assumption of a constant concentration difference across the membrane

3/
J(mm3/h)
20 ‘}
151
10
5 -
AP(atm)
O & Ll ’ 7 T ne
w7 // // / ,/ . 0.4 0.6 o.e [lg. 4.5. )
SN LRpaY The dynamic measurement
7/ / .
[( 22000 of the apparent osmotic
/ . .
A /,/ b7 pressure AP* in an osmotic
g Lt oY experiment with various solu-
g 7 tions of mannitol in water
’ ’
b ot and a glass membrane. The
G intersections with the AP
[ axis represent the values of
APY,




a good approximation. We have represented this for the system mannitol-water in
Fig. 4.5. From left to right the curves refer to greater differences between the external
concentrations. We have taken care to wait sufficiently long before starting measuring.
Too short waiting times lead to non-linear plots. The reflection coefficient can be
evaluated from AP" and the osmotic pressure AIT calculated from the concentration
difference.

The practical procedure was as follows. First, the o compartment was filled and
equipped with a long capillary and the pressure chamber, as described above. During
mounting, the « compartment was placed in an outer solution identical to the filling
solution. After this, the « compartment was placed in the outer vessel filled with the
B solution and put at a pressure high enough to keep the meniscus at a constant
height in the capillary. This situation was maintained for 1-2 hours. The waiting
times had to be made longer according as the molecular weight of the solute was
larger, indicating evidently an effect resulting from non-stationarity. Then several
overpressures were applied, starting with higher pressures and going down in steps,
as can be seen in Fig. 4.5. The system was given about ten minutes to accustom itself
to each new overpressure. The distance covered by the meniscus in each run was always
chosen as about 10 mm. The volume flows were calculated by multiplication of the
velocity of the descending meniscus with the diameter of the capillary, while a correc-
tion was made for a change of temperature, if any, during the measurement. The
overpressures were calculated by summing up the manometer readings and the
average liquid head during each run, corrected for temperature, density and capillary
rise.

Our dynamic measurements differ from those cited above in that we have inten-
tionally chosen an unidirectional movement of the meniscus by applying overpressures
always higher than AP", in order to avoid complications with the draining of the
capillary wall, deformation of the meniscus and a rapid change of the concentration
profile within the membrane. We feel that the good agreement found between the
reflection coefficients resulting from this method and those originating from the
ultrafiltration, as should be by virtue of the ORR, has proved the correctness of the
procedure outlined above.

§ 5. The relaxation experiment (the determination of )

As we have seen, the tardy glass membranes enable us to hold the system for long
times in a state where little or no convection occurs (J, & 0). Each relaxation experi-
ment was started with the same concentration difference as used in the osmotic experi-
ment, and with a hydrostatic overpressure equal to about 95% of AP previously
measured. In this manner we succeeded in obtaining a minimal movement of the
meniscus in the capillary, whereas the osmotic height ran very slowly through its
maximum. The value of the maximum itself was immaterial, but it was precisely the
state belonging to it which was important. Under the condition of sufficiently small
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J,, the last term of the right-hand side of (2-45) is negligible with respect to the first
term (1% at most), and consequently we may write

J (1) = oATI(D). (4-3)

When the permeation process proceeds very slowly, in the course of time an at least
quasi-stationary regime is present, in which the solute flow J; and the osmotic
pressure difference AIT are slightly dependent on the time (¢). In these circumstances
we may use equations strictly valid under stationary conditions. As a consequence of
(4-3) we may apply (2-72) specified to two components. Moreover, we assume the
solute permeability @ to be constant during an experiment. (This assumption is
justified by the fact that the average concentration ¢, on which @ depends does not
change much during a measurement.) Hence we integrate (2-72) yielding

Ac(t) = Ac(0)e™ ", (4-4)

where 4 is given by

(4-5)

The osmotic non-ideality can be expressed by the ratio All/Ac. When the osmotic
coefficients for the system concerned are known, this ratio can be calculated in a
straight forward way. Since in our experiments only relatively small variations of A¢
are involved, AIT/Ac can be considered constant from the beginning to the end of
each experiment. Therefore, we have besides (4-4) as an alternative expression:

AII(t) = AII(0)e™ ™. (4-6)

The quantity 2 may be understood as a reciprocal relaxation time. From (4-4) and
(4-6) it is obvious that 2 may be evaluated from an analysis of concentrations in both
compartments at the beginning and the end of each experiment. These measurements
have been carried out by us with the help of a Rayleigh interferometer. Good constant
values of 2 have been obtained as shown in Table VI. The permeation half-times for
the different solutes turn out to be 70 hours (penta-erythritol), 100 hours (mannitol),
150 hours (sucrose) and 250 hours (raffinose). These long times also determine the
logarithmic decay of the solute flow, for from (4-6) and (4-3) it follows immediately
that:

Jy(t) = J(0)e™* (4-7)

which falls only very slowly in the course of time. When once J has been determined,
 can be calculated on the basis of (4-5).
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Apart from the discontinuous measurements of concentration we were able to
follow the f concentration continuously during the relaxation experiment by means
of the concentration-measuring circuit already described. This extra equipment was
used especially for the relaxation experiments. A typical example (mannitol/water)
is seen in Fig. 4.6, where the change of the f concentration relative to its original
value has been plotted against the time. The lines show hardly any curvature, which

ACg(qg/1)103
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Fig. 4.6. The continuous increase of the concentration in the outer compartment of
the osmometer in the course of time during a relaxation experiment with
various solutions of mannitol in water and a glass membrane.

indeed indicates that a quasi-stationary state is present. At zero time a definite dif-
ference of concentration remains, due to a spontaneous release of solute by the
membrane at the beginning. After a period of about one hour a quasi-stationary state
has been established. These acclimation times are longer according as the molecular
weight of the permeating solute increases. However, a quantitative approach to these
curves is also of interest. Applying (4-7) and (4-3) to the f compartment we find

Ve id‘,i = wAII(0)e™ ™. (4-8)

Integration of (4-8) leads to

wAII(0)

Acg = ¢y(t)—c4(0) = T

(L=e"), (4-9)




Thus, a plot of c4(#) versus e~ * must give a straight line. From the slope of the line @
can be evaluated. This value of @ must be in agreement with the value obtained from
the discontinuous measurements if the solute flow entering the membrane equals
the flow leaving it.

Yet the accuracy obtained in the continuous procedure must be estimated to be
much smaller than that found in the discontinuous measurements. In the first place,
the variation of the  concentration is about fifteen times smaller than the correspon-
ding change of the « concentration. Moreover, the Rayleigh interferometer works
more accurately than the differential refractometer. For this reason we have only
used this procedure to illustrate the quasi-stationarity and to test the balance of flow.

§ 6. Additional Measurements

For the evaluation of the friction coefficients we need more data than g, Lp and @
as a function of the concentration. It becomes clear upon inspection of the equations
(3-39) to (3-41) that the intended quantities appear to be the membrane surface 4,
the membrane thickness d, the volume fraction of the membrane material ¢, the
respective partial molar volumina of the solute (v;) and of the solvent (vy). Hence
we have set up measurements which concerned the geometry of the membrane
(Table I) and the densities of the solutions as function of the composition (Table II).

Table I. The dimensions of the glass membranes

geometrical volumetrical

‘1 l."" (p": AI" Al"/(l l‘"l (Pm. Am A"l/‘l

cm cm? cm? cm cm’® cm?® cm
M 4. 0.133 334 0.680 25.13 188.9
M 5. 0.132 3.23  0.693 2447 1854 322 0.691 2439 18438
M 6. 0.136 338  0.710 24.83 182.6 3.39  0.712 2493 1833
M 7. 0.138 3.40 0.721 24.63 178.5 341 0.723 2471 179.1
M 8. 0.135 3.17 0.694 2346 1738 3.20 0.701 23.70 175.6

Table I. The partial molar volumina of the solvent (water) and the solutes at 25 °C
calculated from density data. ¢ = 9o+ Aec (¢ in g/ml)

v, o
Solute M doldc cm®/mole  cm?®/mole
Penta-erythritol 136.15 0.2515 101.94 18.069
Mannitol 182.17 0.3447 119.74 18.069
Sucrose 342.30 0.384 211.47 18.069
Raffinose 504.44 0.3927 307.24 18.069
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The Geometry of the Membrane

The geometrical quantities of the membrane to be measured were the thickness (d), the volume
of the pores (v,) and the volume of the membrane material including the pores (v,,).

In order to measure 4 on different places of the membrane we let a drop of mercury move over
the internal surface. In this way we obtained a good contrast and were able to measure the distance
between the internal and external surface of the membrane with the aid of the cathetometer.

From the water content of the membrane, which could be measured by weighing the membrane
in the wet state as well as in the dry state, v,, was calculated. For the membrane to be weighed in the
wet state, the water adhering to both the internal and external surface was wiped off cautiously with
Kleenex tissue. To obtain the dry weight the membrane was dried in vacuo until the weight was
constant., The accuracy in v, was better than 17,

v,, could be found by subtracting the measured internal volume from the measured external volume.
For the determination of the internal volume, the @ compartment (with its membrane part already
saturated with water) was filled with water by means of a burette up to the visible and rather sharp
transition of the porous to the non-porous glass. From the difference of the burette heights, the internal
volume was evaluated with an accuracy mostly better than 1%,. The external volume was determined
by measuring the upward force of the porous part of the « compartment in a submersion experi-
ment. For that purpose the « compartment was clamped firmly to a stand, with its membrane part
hanging into a small beaker filled with water and placed on a balance (Mettler P 1200). The « com-
partment was submerged in such a way that the heights of the water exactly matched the sharp
boundary between porous and non-porous glass. In this situation the weight of the beaker with
content was determined. Thereupon the membrane was removed and the weight was determined
once again. From the difference of the weights the external volume could be calculated, by which it
was necessary to make a correction for the effect of the surface tension. The estimated accuracy in
v,, was 3%. In Table I the results have been shown under the heading “*volumetrical™. The volume
fraction of the membrane material (¢,,*) is equal to 1—v,/v,,; the membrane surface 4,, is equal
to v,,/d.

We have also measured directly the dimensions of the membrane with the cathetometer. Yet the
membrane may be considered to be composed of a half sphere, a cylinder and a truncated cone,
which can be measured separately. Since we met with the complication that the internal surface
turned out to be somewhat smaller than the external surface, we have taken A4, equal to an imaginary
surface half way, which could be evaluated directly from the data of measurement. The results
found in Table I have been referred to as ‘“‘geometrical”. v,, was calculated by multiplying 4,,
with d.

The Density Measurements

The densities of the sucrose [12] and raffinose [6] solutions were taken from literature data. The
densities of the penta-erythritol and mannitol solutions were measured with the use of different
types of pycnometers at 25 °C. The concentration range was always so chosen that the density o
was linear in the concentration according to ¢ = 0,-+ Ac (¢ in g/ml). The values of A (= do/éc) have
been mentioned in Table II. The partial molar volumina were calculated according to

0
Ml( ‘5%)

v, = —UQ (4-10)
g—¢c=
de
M
Dy = _060, (4-11)
9—05‘5

Dunlop [8] gives for the partial molar volume of mannitol 119.42 cm?®/mole at 25 °C; Kelly, Mills
and Stokes [20] report a partial molar volume for penta-erythritol being 101.7 cm?/mole at 25 °C.
Our results (Table IT) confirm these data.
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CHAPTER 5

RESULTS AND THEIR INTERPRETATION

§ 1. The Test of the Onsager Reciprocal Relation

In our opinion the test of the ORR is the first way to set about measurements in the
field of solute permeable membranes [36]. Yet, for these fundamental relations to be
valid some essential conditions concerning the system must be fulfilled.

First, the system is not allowed to be too far from equilibrium so that the forces
remain linear functions of the fluxes. In practice it means that the concentration dif-
ference across the membrane must be chosen as small as is possible in osmotic
experiments (¢,”/¢; may not deviate too much from unity), and that only moderate
pressures are permitted in ultrafiltration.

Moreover, the membrane must be homogeneous throughout. In this connection
we recall the attention to the treatment of composite membranes by Kedem and
Katchalsky [19]. They have pointed out that the ORR may break down in the case
of heterogeneity of the membrane.

Finally, the validity of the ORR is based on the implied condition that for the
membrane the state pertaining to ultrafiltration does not differ from the state per-
taining to an osmotic experiment. Let us illustrate this with an example. Suppose we
compare the reflection coefficient of a system measured by ultrafiltration with the
one obtained from an osmotic experiment. Suppose, however, that the membrane
shows a stronger adsorption with respect to the solute during ultrafiltration than
during the osmotic experiment. It may then be expected that the reflection coefficient
resulting from the former method is greater than that originating from the latter,
leading to an apparent failure of the ORR. In fact one has measured not only in two
different states but also with two different membranes. The question is of importance
when one measures, for instance, ¢ and L, by ultrafiltration and by an osmotic
experiment. In doing this one risks obtaining a non-consistent set of experimental
quantities.

From these considerations it is clear that the presence of disturbing factors, such
as the non-linearity of the flow equations, the heterogeneity of the membrane and
the occurrance of adsorption can cause deviations in the ORR. If, on the other hand
no deviations are observed in the equalities which, as a consequence of the ORR ought
to exist between some distinct experimental quantities, it inspires confidence in the
ORR themselves as well as in the procedure of measurement followed.

A number of ultrafiltration experiments was set up by us in which for several
systems ¢ was measured (—ZLcp/Lp in Table III). On both sides of the membrane
the solute concentration was taken equal to 5 g/l; the overpressures applied amounted
to 2.5 atm. The membranes, though different, all had a filtration coefficient L, of
about 30 mm?®/h atm.
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Table III. Test of the Onsager reciprocal relation in Vycor glass membranes for
different aqueous sugar solutions.
From ultrafiltration: ¢ = —Lgp/Lp; from an osmotic experiment and
known AIT: AP'/AIT = —Lp/Lp.

Membrane Solute —Lpc/Lp —Lep/Lp
M 2. Sucrose 0.198 0.204

M 1. Mannitol 0.124 0.130

M 3. Mannitol 0.112 0.106

M 1. Raffinose 0.28 0.30

M 3. Raffinose 0.25 0.24
Estimated limits of error —Lpe/Lp: 1-3%: —Lcp/Lp: 3-5%.

Table IV. The average concentrations during the osmotic experiments (g/l)

s cf G (e%/cy—1)
Sucrose 15.71 0.81 5.03 2.12
11.57 1.58 5.02 1.30
Mannitol 10.00 2.03 5.00 1.00
9.64 2.17 5.01 0.92
8.74 2.58 5.00 0.73
8.21 2.76 5.05 0.64
Raffinose 10.03 2.02 5.00 1.01
10.02 2.02 5.00 1.00
9.24 2.31 5.00 0.85
8.76 2.51 5.00 0.75

As well as ultrafiltration we have also carried out several osmotic experiments, of
which the corresponding concentrations are mentioned in Table IV. The average
concentration ¢, is the logarithmic mean defined in Appendix I and equals as closely
as possible the concentration used in ultrafiltration. The last column of Table IV
indicates how far the system was from equilibrium. The reflection coefficients were
found to be rather independent of concentration. Their average values are shown in
Table III (—Lpc/Lp).

It is seen from Table III that the agreement between the quantities measured in
different states is reasonable and that the relation of Staverman (2-40) holds true for
our systems. The experimental evidence for the validity of the ORR in the case of a
simple membrane transport process involving two permeating non-electrolytes is also
confined in the work of Talen and Staverman [42], Cleland [3] and Krimer and
Sauer [23].
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Table V. The experimental data of the osmotic experiments.

34.756 12.719

34.430

e Cs cr [y e AP’

g/l g/l g/l g/l mm?*/h atm  atm
Penta-erythritol — Membrane 4
0. 0.000 0.000 0.000 0.000 35.60 0.000
1. 9.993 3.489 9.560 3.523 34.55 0.094°
2. 15.014 5.304 14.631 5.353 33.85 0.141
3. 19.990 7.272 19.435 7.351 33.61 0.177
4. 25.003 9.129 24.331 9.206 33.08 0.227
5. 30.011 10.941 29.280 11.046 32.72 0.275
6. 34,967 12.848 34.157 12.968 32.02 0.319
Mannitol — Membrane 5
0. 0.000 0.000 0.000 0.000 26.32 0.000
]2 9.996 4,046 9.714 4.071 25:37 0.094!
2 15.002 5.995 14.677 6.047 25.54 0.146
3: 20.021 7.969 19.737 8.028 25.67 0.198
4. 25.000 9.947 24.606 9.997 25.06 0.238
5. 29.701 11.766 29.207 11.823 25.01 0.290
6. 35.048 13.879 34.525 13.949 25.23 0.347
Sucrose — Membrane 5
0. 0.000 0.000 0.000 0.000 28.97 0.000
1. 10.01 4.00 9.92 4.01 28.16 0.079*
2; 20.01 10.96 19.77 10.97 27.53 0.123
3. 30.02 17.87 29.80 17.90 27.07 0.167
4. 39.51 24.54 39.19 24.61 25.85 0.206
9 49.99 31.63 49.69 31.70 25.39 0.259
6. 60.03 38.72 59.43 38.82 24.70 0.303
Raffinose — Membrane 6
0. 0.000 0.000 0.000 0.000 27.51 0.000
1. 9.971 3.605 9.780 3.612 27.27 0.078*
2. 14.939 5.494 14,798 5.511 26.88 0.117
3% 19.895 7.406 19.653 7.425 26.41 0.151
4. 24.853 9.361 24.546 9.385 25.91 0.185
54 29.818 11.209 29.476 11.235 24.89 0.224




§ 2. The Evaluation of the Experimental Quantities

Our main practical purpose was to determine a consistent set of ¢, L, and o as a
function of the solute concentration ¢,. The validity of the ORR for our systems
opens up two possible ways for measuring o: directly by an ultrafiltration, and in-
directly by measuring the apparent osmotic pressure AP" and using the relation of
Staverman (2-40). For the latter method AIT must be known. L, too, can be measured
by the same two procedures on the basis of (2-34) and (2-44). Yet we have given
preference to measuring L, and ¢ by an osmotic experiment (Ac¢ # 0), whereas for »
there was no alternative but to use the relaxation experiment. There were several
reasons for doing this. Firstly, we considered it important to keep the membrane
under the most equal conditions possible. In view of the fact that @ only could be
determined by a relaxation experiment this condition must be Ac # 0. If ¢ or L,
had been measured by ultrafiltration (Ac = 0) and @ by an osmotic experiment
(Ac # 0), it would have led to indesirable discrepancies. In this connection we
should point out the fact that although the ORR are valid there always remains a
difference between the reflection coefficients found in different ways, as is apparent in
Table III. Moreover, the values for L resulting from ultrafiltration turned out to be
about 179 lower than the corresponding values obtained from osmotic experiments.
Evidently it makes some difference whether the membrane is in a state Ac = 0 or
Ac # 0.

In the Tables V and VI the outside concentrations are shown for both the osmotic
and the relaxation experiments. The superscripts 0 and e refer to the concentration
at the beginning and at the end of the experiment concerned.

In the relatively short AP" measurements (Table V) the concentrations do not vary
much during the measurements. Here two effects counteract each other: the permea-
tion of solute from the  to the f compartment causes a decrease of the concentration
difference across the membrane, whereas the net transport of the solvent, induced by
the dynamical application of overpressures, produces the reverse effect. In the rather
long w measurements (Table VI) the variations of the concentrations are much larger,
while, moreover, the static overpressure, being nearly equal to AP" hardly gives rise
to the occurence of a convective flow across the membrane. From both Tables V and
VI it is clearly seen that the concentrations remain the more constant according as
the molecular weight of the permeating solute is higher. The average concentration
during an experiment was calculated as follows. First the logarithmic mean values
of the initial concentration ¢,° and of the final concentration ¢,° were calculated
according to (3-25), after which the arithmetical mean was taken of ¢,° and ¢,°.

The measured values for L, and AP" have been collected in Table V. The limits of
errors found (standard deviations) were 0.5-1.0% for L, and 1-3%, for AP’. Obviously
Lp decreases systematically with increasing ¢,. For each system AP" turns out to be
nearly proportional to the concentration difference across the membrane.

In Table VI we have placed in the last columns the times of measuring (7,) and the
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Table VI. The experimental data of the relaxation experiments.

¢ c,,o el ey t, A
g/l g/l g/l g/l h h™!
Penta-erythritol — Membrane 4
1 9.988 3.488 8.714 3.631 24.00 10.24x 1073
2. 15.028 5.306 13.359 5.482 21.00 10.02
3 20.004 7.275 18.377 7.446 15.00 10.15
4 25.008 9.131 23.400 9.311 12.00 9.96
5. 30.033 10.952 28.378 11.132 10.00 10.18
6. 34.963 12.836 33.518 13.034 8.00 9.65
Mannitol — Membrane 5
1c 10.003 4.049 9.287 4.124 20.60 6.94% 1073
2 15.021 5.995 13.967 6.097 19.00 7.25
3. 20.010 7.974 18.447 8.119 21.10 7.30
4. 25.017 9.958 22.868 10.151 23.50 7.25
5. 29.738 11.772 28.057 11.924 15.60 6.97
6. 35.024 13.870 33.330 14.041 13.00 7.18
Sucrose — Membrane 5
¢ 10.008 3.992 9.434 4,058 23.90 4.72%x1073
2. 20.003 10.955 19.147 11.040 24.10 4.58
3: 30.03 17.86 28.65 18.00 29.10 4.62
4. 39.51 24.54 37.91 24.68 27.00 4.58
S 50.08 31.63 48.70 31.77 19.00 4.60
6. 60.04 38.74 57.75 38.95 27.50 4.61
Raffinose — Membrane 6
1 9.978 3.607 9.391 3.664 35.50 3.00x1073
2 14.959 5.496 14.076 5.582 36.40 2.97
3. 19.895 7.406 18.735 7.512 36.20 2.95
4. 24.878 9.363 23.499 9.492 34.30 2.98
5 29.858 11.209 28.703 11.294 21.50 3.20
6 34.875 12.728 33.935 12.804 14.90 3.15




reciprocal relaxation times (). The small values of the latter quantities reflect the very
slow progress of the permeation processes. It must be noted that 4 is found to be
rather independent of the magnitude of the concentration difference and the average
solute concentration.

In Table VII the experimental quantities have been compiled as a function of the
average volume fraction of the solute. The volume fractions were obtained by multi-
plication of ¢, (calculated from the osmotic data of Table VI) with v, the partial
molar volume of the solute. The reflection coefficients (o) were calculated by dividing
AP by AIT previously evaluated from the measured concentration data and, in the
case of mannitol and sucrose, even with the use of the osmotic coefficients [33, 34].
The solute permeabilities (w) were calculated according to (4-5). Moreover, using
(4-9) we have calculated solute permeabilities from the increase of the external con-
centration during the relaxation experiment (the values for @ in parentheses). With
respect to Lp and @ the brackets [ ] mean that the relevant quantity has been multiplied
with the factor d/A4,, in order to obtain a specific quantity for the glass membrane.
Concerning Table VII we make the following statements:

I. For the different systems considered the reflection coefficient ¢ proves to be

constant in the measured range of concentration. In the case of sucrose this

constancy could only be gained if the non-ideality was taken into account in the
calculation of AIl. Neglect of non-ideality generally leads to slowly decreasing
values of ¢ with increasing concentration. The accuracy gained was better than

3% for all systems.

The filtration coefficient L, decreases with increasing concentration, as already

stated. The discrepancies between the value for the pure solvent found in different

membranes must be explained by the difference in pore radius and pore volume.

The accuracy was 0.5-1.0%.

3. The solute permeability @ is inclined to decrease slightly with increasing concentra-
tion, but this trend does not emerge clearly because it probably falls within the
accuracy of measurement (59,). The balance of the solute flow entering and
leaving the membrane is given by the two values for @. Since this balance has
been found reasonably fulfilled, the obtainable accuracy considered, it may be
concluded that a quasi-stationary state was indeed present. Actually @, averaged
over the relaxation experiment was somewhat smaller than the corresponding @,
averaged over the osmotic experiment. Because of the weak dependence on
concentration of @ observed we have ignored this fact completely, since it cannot
be handled accurately and is not, in any case, important.

o

We note that the observed concentration dependence of o, L, and @ can be explained
completely by assuming constant friction coefficients and a constant partition coef-
ficient, as we have argued at the end of § 4, Chapter 3. The consequent dependence
on concentration of the resistance coefficients to be expected on these grounds means
a constancy of R, and R,,¢,, and an increase with concentration for R,,. Indeed
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Table VII. The experimental quantities as a function of the solute concentration in
the glass membrane at 25 °C.

@1

(3

[Lp]
cm*/dyne sec

[w]

mole cm/dyne sec

0
1
2
3
4
5
6

e U S

ORI IS O

1
2
3.
4.
5
6

0.000x 1073
4.584
6.948
9.361
11.724
14.080
16.485

Mannitol — Membrane 5
0.

0.000x 10~*
4.316
6.476
8.665
10.838
12.881
15.247

Sucrose — Membrane 5

0.000x 103
4.071
9415

14.815

20.072

25.861

31.582

Raffinose — Membrane 6

0.000x 107*
3.788
5.738
7.674
9.636
11.548
13.321

Penta-erythritol — Membrane 4

0.0839
0.0825
0.0795
0.0816
0.0821
0.0820

0.120
0.121
0.122
0.117
0.119
0.120

0.184
0.188
0.187
0.185
0.186
0.186

0.258
0.257
0.255
0.251
0.250
0.252

0.5163x 10713
0.5010
0.4909
0.4875
0.4798
0.4746
0.4644

0.3902 x 103
0.3761
0.3786
0.3806
0.3715
0.3708
0.3740

0.4295x 10~ 13
0.4175
0.4081
0.4013
0.3832
0.3764
0.3662

0.4118x 1073
0.4076
0.4018
0.3947
0.3873
0.3720
0.3770

117 £1,25)
1.15 (1.18)
1:17 (1:11)
1.15 (1.25)
1.16 (1.19)
111 (1.14)

0.716 (0.81)
0.749 (0.77)
0.740 (0.73)
0.740 (0.73)
0.708 (0.72)
0.724 (0.73)

0.494
0.475 (0.49)
0.470 (0.47)
0.461 (0.46)
0.453 (0.47)
0.448 (0.43)

% 10717

x 10~17

x 10727

0.330 x 1077

0.344
0.340
0.344
0.370
0.364
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this behaviour is recognized in the values shown in Table VIII, which indicate that
the assumption of a constant partition coefficient and of constant friction coefficients
is consistent with our results.

§ 3. The Evaluation of the Friction Coefficients and the Partition Coefficient

In Chapter 3 we have already discussed how the friction coefficients r,, fyms fon and
the partition coefficient K can be evaluated when o, Ly and ® are known as a function
of the concentration. In this section we shall be concerned in particular with the
calculation of the quantities involved, and shall try to interprete the results.

rio Was calculated in the following way. First the resistance coefficient R,, was
calculated according to (2-50) and then multiplied with the factor 4,,/d yielding the
more convenient specific quantity [R,,]. These values have been tabulated in the
second column of Table VIII. According to (3-11) the simple relation r, = — [Ryo]
is valid. So the quoted values in Table VIII do represent r,, as function of the con-
centration. The case of sucrose excepted, r,, proves to be almost constant. Regarding
the results with sucrose, we note that the friction coefficient in free solution rJ, has
an analogous behaviour in the rather extended concentration range considered.
Probably the concentration ranges of the other solutes were not large enough for
conclusive evidence on this point. In any case, our previous assumption about the
constancy of ry, is justified after all, at least in a limited concentration range, by
the practical results.

The performance of a duplo experiment with raffinose and a membrane more
permeable than M 6 has led us to another striking property of r,,. Although Lp of
the membrane used was about 1% higher and consequently ¢ was somewhat smaller
and o at the same time somewhat larger, the values of r,, found were exactly the
same as those measured in the less permeable membrane M6. This result may be
understood better upon closer inspection of (2-50). In fact we were dealing with
membranes for which wv, turned out to be much smaller than L,. As a consequence
of this the first term of the right-hand side of (2-50) contributes only to about 3%
of the whole member, and r,, is determined mainly by the ratio (1 —0)[wv,;. Now
the more permeable the membrane, the greater (1 —0) and the greater v, but the
ratio of these quantities is affected to a much less degree by a slightly increased
permeability of the membrane, resulting in the mentioned insensitivity of rio

Whereas the constancy of r,, can easily be checked experimentally, this is more
difficult in the case of f;,, and f;,,. On the grounds of (3-44) and (3-45) one finds in
dilute solution that (1 —o)/w is only a function of r,, and f,,. This function must be
constant — and is indeed found to be so — when neither r,, nor f;,, depend on con-
centration. Yet such a test of the constancy of f,,, is only meaningful provided
Jom/ {vo(1—@,,)} is at least of the same order as r10/(vy0e). In the case of our mem-
branes where, as we have seen, wv, < Lp, this procedure cannot be used. However,
when both f;,, and f,,, are assumed to be constant there must exist a linear relation-
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Table VIII. The resistance coefficients as a function of the solute concentration in
the glass membrane at 25 °C.

4.336 3.53

6.21

El [_Rl()] [Rll] [ROO] [Rll](..l
mole dyne sec cm*  dyne sec cm? dyne seccm?  dyne sec
cm?® mole? mole? mole? mole cm
Penta-erythritol — Membrane 4
0. 0.000x10™3 6.32x 103
1. 4.497 1.37 x 108 1.88 x 10*! 1.57 0.085x 10*#
2. 6.816 1.39 1.26 8.28 0.086
3 9.183 1.37 0.91 8.87 0.084
4. 11.501 1.39 0.74 9.56 0.085
9. 13.812 1.37 0.61 10.15 0.084
6. 16.172 1.43 0.54 11.04 0.088
Mannitol — Membrane 5
0. 0.000x 10~ % 8.37x10'® |
1. 3.605 2.16 x 108 3.85 x 10%* 9.95 0.139x 10'#
2. 5.409 2.05 2.44 10.44 0.132
3 7.237 2.07 1.84 11.04 0.133
4, 9.052 2.08 1.46 11.90 0.133
5. 10.758 2.16 1.30 12.65 0.140
6. 12,734 2.11 1.06 13.17 0.134
Sucrose — Membrane 5
0.000x 10~ 3 7.60 x 103
1 1.925 2.88 x 10'8 10.51 x 10%* 8.67 0.202 x 10*#
2 4.452 2.97 4.66 10.02 0.211
3 7.006 2.99 2.96 11.35 0.212
4. 9.491 3.04 2.21 12.98 0.213
5 12.229 3.08 1.73 14.52 0.215
6 14.934 3.09 1.42 16.13 0.215
Raffinose — Membrane 6
0. 0.000x 10~ 3 7.94 x 10'°
I 1.238 3.72x 10'® 23.26 x 10%1 8.65 0.287 x 10*8
2. 1.868 3.75 15.44 9.11 0.288
3. 2.497 3.79 11.63 9.60 0.290
4. 3.136 3.76 9.14 10.10 0.286
5. 3.759 3.48 7.07 10.64 0.266

10.84

0.269




ship between 1/Lp and (1 —0)@, according to (3-42). We have expressed this in still
more detail at the head of Table IX. The constants C and D have been calculated
with the use of the method of least squares. The values in parentheses represent the
standard deviations. In the case of mannitol only, the linearity found is poor. The
values of fy,, and f,,, calculated from C and D are shown in Table XII.

Still better linear relationships are found between [R,,] and ¢,/é, as shown by the
constants A and B, and their standard deviations in Table IX. The relation [Roo] =
A(C,/¢o)+ B is suggested by (3-38) under the assumption that when K does not differ
much from unity, (1—@,K) equals approximately @, and that both r,, and Jom are
constant. The expressions for A and B stand at the head of Table IX. Upon inspecting
them it will be clear that provided r,, is known, K may be calculated from A4 and B.
The values of K obtained can be seen from Table X, which also shows the average
values of r,, used in the calculation. Another way to evaluate K is to start from
calculated values of f;,, and f;,, and insert them into (3-43). This procedure yields
somewhat smaller values of K than those mentioned in Table X in the order of
1-27;. For the system sucrose-water we had at our disposal data measured under
the condition of equal external concentrations [41]. The value of K calculated from
these data agrees completely with ours, which indicates that no experimental evidence
is present for possible deviations caused by the fact that we have used (3-28) instead
of (3-26). Nevertheless, we have measured K in experiments involving finite concentra-
tion differences obtaining so exactly the same conditions as those under which o
and L, were measured.

The fact that in the case of mannitol, sucrose and raffinose the values of K turn out
to be about unity, indicates that the membrane acts as chemically indifferent. Con-
trary to this, some adsorption occurs in the case of penta-erythritol, where K is
significantly greater than unity. However, this anomalous behaviour of penta-eryth-
ritol is also clearly seen in Table XI. In the first column of Table XI we have collected
the mutual diffusion coefficients of the different solutes extrapolated to zero con-
centration. The second column of this table shows the values of the corresponding
friction coefficients in free solution, which have been calculated according to (3-46).
In the last column we have presented the ratio r{o/{rw(l — @)}, which does not
depend on the solute as far as mannitol, sucrose and raffinose are concerned. The
exception mentioned is formed by penta-erythritol. This may be interpreted as follows.
Equation (3-47) has been derived from purely geometrical considerations and con-
sequently 9? is supposed to depend on the geometry of the membrane only. This is
apparent in the fact that 3% assumes the same value for mannitol, sucrose and raf-
finose. However the fact that for penta-erythritol we find a different value, combined
with the fact that for penta-erythritol K differs from unity, shows that within our
present theoretical insight purely geometrical and purely chemical effects cannot be
separated, except in membranes which are chemical inert. The physical meaning of
this state of affairs may be described by saying that, as soon as the membrane shows
preferential adsorption of a component, some molecules of this component behave
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Table IX. The linear dependence on concentration of Ry, and 1/L, according to

[Roo] = A(é,/¢))+B and 1/[Lp] = C(1=0)p,+D
A=K{)'10+»M—} C—A— __me

(1—0.) o=y vl-0,)
B f Omuo. D = __._[_Om___:
(1 i § (pm) UO(I T (tom)
A B C D

Solute/ dyne sec cm? dyne sec cm? dyne sec dyne sec
membrane mole? mole? cm* cm*
Penta-
erythritol M4 1.58 x 10*8 (4 0.03) 6.29 x lO'S(i 0.06) 13.7 x 1013(-_*- 0.5) 1.94x10'3(+ 0.01)
Mannitol M5 2.09 (+0.08) 8.42 (+0.12) 8.2 (£2.6) 2.59 (£0.02)
Sucrose M35 3.06 (+0.03) 7.56 (4 0.05) 15.6 (+0.7) 2.33 (£+0.01)
Raffinose M6  3.85 (+0.13) 7.87 (+0.07) 27.0 (+4.2) 2.40 (+0.03)

Table X. The friction coefficient r,, and the partition coefficient K in the glass membrane at 25 °C

Tio K
Solute dyne sec cm?/mole?
Penta-erythritol M4 1.39 x 108 (+ 0.02) 1.10 (+ 0.03)
Mannitol M5 2.11 (4 0.08) 0.96 (+ 0.05)
Sucrose M5 3.01 (+ 0.08) 0.99 (+0.03)
Raffinose M6 3.67 (+0.16) 1.01 (£ 0.06)

Table XI. The friction between the solute and water in free solution and in the glass membrane ;{
at 25 °C.

2 "{o (1—=@m) 110 "{o "
cm? dyne sec cm? dyne secem®  (1—g )r,,
Solute sec mole? mole?

Penta-erythritol [20] 5.886x 10'®  0.352 1.39 x 10*8 0.12

Mannitol [ 8] 6.664 6.721 0.309 2.11 0.10
Sucrose [12] 5.226 8.571 0.324 3.01 0.09
Raffinose [ 6] 4.359 10.276 0.288 3.67 0.10
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differently from those moving in the “pore liquid” and both types of molecules con-
tribute in a different way to the overall friction coefficients. In our case this evidently
reflects an increased apparent tortuosity for the penta-erythritol molecules. Obviously
the “pore model” fits the cases of mannitol, sucrose and raffinose rather well, whereas
a more general model, “the solution model”’, must be adopted in the case of penta-
erythritol.

A general view of the frictions present in the system has been given in Table XII.
The friction coefficient f; indicates the friction exerted on one mole i by all moles
present of species k. Thus fyy, = ryo¢o and fo; = ry,é,. From Table XII it is seen
that:

. fio > fim: one mole of the solute undergoes more friction from the solvent than
from the membrane material during permeation. The effect is the stronger ac-
cording as the molecular weight of the permeating solute is larger.

2. fim > fom: the membrane exerts more friction on one mole of the solute than on
one mole of the solvent during permeation. In the sequence of mannitol, sucrose
and raffinose this effect is stronger according as the molecular weight increases.
The relatively large value of f,,, in the case of penta-erythritol may be explained
by the occurrence of adsorption of this solute.

3. fom is of the order of f;,: in the concentration range of 0 till 1 x 10™* mole/cm?
one mole of the solvent undergoes friction from the membrane which is of the
same order as the friction from the solute. The influence of the solute becomes
larger according as its molecular weight and its concentration increase.

4. The remaining discrepancies between the different f, of the membranes used
must be explained on the grounds of the differences in ¢,, and the average pore
radius.

Table XII. The friction coefficients of the different components in dynesec/molecm in the glass
membrane at 25 °C.

= =
Solute/ 1-02) fio o fom Jo/6, wmol/on )

membrane 1x107%  05%x107% 1x10~4
Penta-

erythritol M4 0.352 7.69x10'° 0.56x10'® 1.23x10'* 1.39x10'® 0.70x 104 1.39 x 104
Mannitol M5 0.309 11.68 0.40 1.44 2.11 1.06 2.11
Sucrose M5 0.324 16.66 1.23 1.36 3.01 1.51 3.01
Raffinose M6 0.288  20.31 2.60 1.25 3.67 1.85
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§ 4. Summarizing Conclusions

The mechanism of an isotherm transport process through a membrane involving two
non-electrolytic permeants can be characterized by a purely phenomenological de-
scription in terms of friction and partition, as we have shown theoretically in Chap-
ter 3.

Experimentally we have shown this by analysing the permeation of the successive
solutes: penta-erythritol, mannitol, sucrose and raffinose, and of the solvent water,
through a Vycor glass membrane. In these systems states of nearly stationary flow
can be established and maintained for long periods of time (Fig. 4.5 and 4.6), as is
necessary for determining the experimental quantities o, L, and @ (Chapter 2).

The course of the permeation process was characterized by means of two types of
coefficients:

1. The partition coefficient K, relating the internal and external concentrations of
both permeants, and indicating whether or not there was adsorption of any com-
ponent within the membrane.

2. The friction coefficient r;, accounting for the friction exerted by one mole of the
solvent on one mole of the solute, and the friction coefficients f,,, and f,,, ac-
counting for the friction exerted by the membrane respectively on one mole of
the solute and one mole of the solvent.

All these coefficients were calculated from values of ¢, L, and @ measured as a func-
tion of the composition. The evaluation of r,, from the experimental quantities in-
volves a minimum of assumptions; not even the solute concentration within the
membrane nor the partition coefficient needs be known. For the evaluation of f,,, and
fom more assumptions must be made. r,, was experimentally found to be constant in
the concentration ranges considered. The assumed constancy of X, f;,, and f;,, could
subsequently be confirmed, as it was consistent with the observed slight change of
the experimental quantities with the concentration.
From the description as a whole two relevant characteristics emerge:

1. The partition coefficient K, which gives a primary indication of the chemical inter-
action of the membrane with one of the components.

2. The frictional ratio r{y/r,,, being the quotient of the friction coefficients in free
solution ( f) and within the membrane. The frictional ratio gives, at least in a
chemically indifferent membrane, information about the geometrical influence of
the membrane, and in particular about its porosity and the tortuosity of the
diffusion paths within it (3-47).

We have found that the permeation of mannitol, sucrose and raffinose is not accom-
panied by adsorption of these solutes by the membrane, and that the friction between
these solutes and the solvent water is not essentially affected by the presence of the
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membrane. These two facts are recognized in Table X where K is about unity, and
in Table XI where r{,/{r;o(1—¢,)} has the same value for these solutes and equals
the purely geometrical tortuosity 9% (3-47).

On the other hand, we have found that in the case of penta-erythritol some ad-
sorption of this solute occurs, as is evident in Table X where X is significantly larger
than unity. In complete agreement with this we see in Table XII that fim 18 relative
large for penta-erythritol compared to the corresponding values of the other solutes.

Now this adsorption has an important corollary. The penta-erythritol molecules will
be in two different states within the membrane: “free” in the pore liquid or “bound”
in the adsorbed layers. Consequently r,, can only refer to the “overall behaviour” of
the solute with respect to the solvent, leading, as is seen in Table XI, to an apparently
increased value of 9% which so loses its purely geometrical character.

It must be noted that an adsorption phenomenon as above would have been ob-
scured in a conventional description in terms of ¢, L, and @, and that for this reason
we have given preference to an analysis based on friction and partition. However, the
case of penta-erythritol has taught us that r,, is essentially different from r{o if ad-
sorption occurs, and that it is impossible in such cases to distinguish between the
purely geometrical properties of the membrane (r/,/r,, if K = 1) and the chemical
properties (K). Nevertheless, we have shown in Chapter 3 § 5 that for a satisfactory
and unambiguous distinction between the “pore model” and the “solution model”
both K and r{y/r,, should be taken into consideration.




APPENDIX I

ON THE EFFECTIVE SOLUTE CONCENTRATION
OUTSIDE THE MEMBRANE

By means of (2-8) and (2-9) we have introduced average concentrations which are
of particular interest when we meet with finite concentration differences across the
membrane. Applying these equations to the case where two components are present
(n = 1), we write for the average volume fraction quite generally

e = 1
A 1——Am (I-1)

T

Apy and Ay, can be expressed in terms of the solute concentrations present in the
a and the f cell of the osmometer. We shall perform this for the special case of ideal
solutions, which are so dilute that in a good approximation

Apo
VoAl

(I-2)

o1

Using the familiar relations

Al‘ 0
Uo

= AIl = RT(cZ—c")

and
Apy; = RTIn(ci/c}

where R and T stand respectively for the gas constant and the absolute temperature,
we arrive at

B
LS B (I-3) |
In(ci/ch)

o

For the case of a dilute multi-component system we proceed as follows. We integrate
the Gibbs-Duhem relation

Y edp; =0

across the membrane according to

} Y edp; =0

B




which by defining

(i=0,1,2,...,n)

is in accordance with (2-8). For ideal solutions

du; = RTdIng¢;

and

Ap; = RTIn(c}/ch), F=1,2....0
which combined with (I-4) yields

3
. _ b=

e = ———.
In (cf/cf)

The logarithm may be developed in the series

a_ 8 *—cf\3 2_ f\S
In(cf/ct) = 2-f<('—'>+§<~‘ A lEE e ) M l,
\et+¢f ¢ +cf ci+cf J

which can be substituted into (I-5), resulting in

s Wef+el)

C; = —— — (i=12,...,n) (I-6)
S Baly Ci—C; }
(D) o))
¢ +¢; Ci +¢; J
By replacing in (I-6) the index i by 1 also an expansion of (I-3) is obtained. It is
clearly seen from (I-6) that only in the limit ¢* = ¢/ the average concentration C;
becomes an arithmetical mean and that in all other cases negative deviations from
this value occur. It is easy to show that for very dilute solutions Co ~ /vy in ac-
cordance with (2-9).

A particular situation arises when ¢/ equals zero, for instance, at the very beginning
of an osmotic experiment where pure solvent is present on the 8 side of the membrane.
Then the average concentration ¢; becomes equal to zero and looses its operational
value in transformations involving (2-8). Thus the flow equations resulting from
these transformations are strictly valid when finite concentrations are present on both

sides of the membrane. Such, however was the case in our experiments. Moreover,
it must be noted that when ¢/ vanishes the force Ay, in (2-1) tends to infinity.




APPENDIX II

ON THE EVALUATION OF THE REFLECTION COEFFICIENTS
AND THE SOLUTE PERMEABILITIES

We wish to derive here the equations (2-70) to (2-73), which indicate how a,, a,,, (),
and (w,), can be expressed in terms of volumes and concentrations. The definitions
of ¢, and g, are

Z J v
gy = 1 —& ’ (ll-l)
\ AIl=0

P,

/8

e (1 - _J-~_> . (11-2)
¢y Jan=o0

Recalling that

V* is the volume of the bulk liquid present in the « compartment,

¢, V*is the number of moles of the whole solute present in the # compartment,

@V ?is the volume of the whole solute present in the « compartment,

we can formulate the flows (AIl = 0) as time derivatives of these quantities according
to

dy*
i e (11-3)
Lo dlefvy LAV det
PR e T T S
(et v av*  _.dc
Bo==Sa) o el (11-5)

Introduction of the explicit expressions of the flows from (II-3) to (II-5) into (II-1)
and (II-2) yields

g, = =~ (d 10 s ] (11-6)
dIn V*/an=0

5 3 <d In ¢? ) ; (11-7)
dIn V*/an=o0

The solute permeabilities are defined by

N
1 = [ X 11-8
(@), (Au>h_o 55




/ \

' kzl Jvy
(@) = \—x77— 92 (11-9)

For ideal solutions

AIl = RTAc, (11-10)

and when, moreover, in both the « and the f compartment the same distribution
exists within the whole solute,

Al = i o0 (11-11)

)
Un

where v, is defined by (2-65).

Assuming that the number of moles of solute escaping per unit time from the
o compartment equals the number of moles of solute entering the f compartment
per unit time, we write for the solute flow (d¥#/dt = 0)

de? def
Jo=-V—==ypP_=
¥ dt dt
or
xy7B
L (dAcs) (11-12)
VE+VE \ dt

Along the same lines of reasoning we find that

V*v?  dAg,
Viep: at

kzl Jp = — (11-13)

Insertion of (II-10) and (II-12) into (II-8) and of (II-11) and (II-13) into (II-9) leads
to respectively

|zl
(U)s)n SRS L— 2 (d lnAcs) (l"14)
RT(V*+V?) dt Ji=o0

and

) VEVP
(@), = n (d'"A“"> ; (11-15)
dt Ju=0

C RT(V*+ VP




APPENDIX III

ON THE PRESSURE TERM IN THE
CHEMICAL POTENTIAL OF THE SOLUTE

In those cases where only moderate pressures are applied, the pressure term in the
chemical potential, v;AP, may be ignored with respect to the concentration term
Ap,. If J, = 0, we obtain on the one side with the help of (2-40),

v,AP" = v,0AIl. (II1-1)

From (I-1) it follows on the other hand, with the help of (2-20), and after some
rearrangement, that

A (l“‘ﬁ])len'

N el 6 1-2
1 e ( )
Combining (III-1) and (III-2) yields
v, AP’ o, .
= . I11-3)
Apy (1-9y) (

The right-hand side of (III-3) is in our cases of the order of 103, Thus, even when
pressures are applied of several times AP", the pressure term remains small compared
with the concentration term.
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SAMENVATTING

Het mechanisme van een isotherm transportproces door een membraan, waarbij
twee permeérende niet-elektrolyten betrokken zijn, kan gekarakteriseerd worden door
een zuiver fenomenologische beschrijving uitgedrukt in frictie en partitie zoals we
het theoretisch hebben laten zien in hoofdstuk 3.

We hebben dit experimenteel laten zien door de permeatie te analyseren van de
volgende opgeloste stoffen: penta-erythritol, mannitol, sucrose en raffinose en van
het oplosmiddel water door een Vycor glasmembraan. In deze systemen kunnen
toestanden ingesteld en gedurende lange tijd gehandhaafd worden, waarbij de stromen
nagenoeg stationair blijven (fig. 4.5 en 4.6), hetgeen noodzakelijk is om de expe-
rimentele grootheden o, L, en o te bepalen.

Het verloop van het permeatie-proces werd gekarakteriseerd door twee soorten
coéfficiénten:

1. De partitie-coéfficiént K, die de interne en externe concentraties van beide per-
meérende componenten met elkaar in verband brengt en aangeeft of er al dan niet
een component wordt geadsorbeerd.

2. De frictie-coéfficiént r,,, die rekenschap geeft van de frictie die door één mol
oplosmiddel wordt uitgeoefend op één mol opgeloste stof en de frictie-coéffi-
ciénten f,,, en f,,, die rekenschap geven van de frictie uitgeoefend door het
membraan respectievelijk op één mol oplosmiddel en één mol opgeloste stof.

Al deze coéfficiénten werden berekend uit waarden van o, Lp en @, gemeten als functie
van de samenstelling. De berekening van r,, uit de experimentele grootheden brengt
een minimum aan onderstellingen met zich mee; zelfs de concentratie van de opgeloste
stof in het membraan of de partitie-coéfficiént behoeft niet bekend te zijn. Om f,,, en
fom te berekenen moeten meer onderstellingen worden gemaakt. Experimenteel werd
gevonden, dat r;, constant was in het beschouwde concentratiegebied. De onderstelde
constantheid van K, f,,, en f;,, kon achteraf bevestigd worden, daar dit consistent
was met de waargenomen geringe verandering van de experimentele grootheden met
de concentratie.

Uit de totale beschrijving komen twee ter zake dienende karakteristieken duidelijk
naar voren:

1. De partitie-coéfficiént K, die een eerste aanduiding geeft voor de chemische inter-
actie van het membraan met een van de componenten.

2. De frictieverhouding r{,/ryo, het quotiént van de frictie-coéfficiénten in vrije op-

lossing (f) en in het membraan. De frictieverhouding geeft, althans in een




chemisch indifferent membraan, informatie over de geometrische invloed van
het membraan en wel in het bijzonder over zijn poreusheid en de tortueusheid
van de diffusie-wegen daarbinnen (3-47).

We hebben gevonden, dat de permeatie van mannitol, sucrose en raffinose niet ge-
paard gaat met adsorptie van deze opgeloste stoffen door het membraam en dat de
frictie tussen deze stoffen en het oplosmiddel niet wezenlijk beinvloed wordt door de
aanwezigheid van het membraan. Deze beide feiten worden teruggevonden in Tabel X,
waar K ongeveer één is en in Tabel XI, waar r{,/{r,o(1 =9, )} dezelfde waarde heeft
voor deze opgeloste stoffen en gelijk is aan de zuiver geometrische 9% (3-47).

Daarentegen hebben we gevonden, dat in het geval van penta-erythritol enige ad-
sorptie optreedt, zoals duidelijk te zien is in Tabel X, waar K significant groter is
dan één. In volledige overeenstemming hiermee, zien we in Tabel XII, dat f,,, relatief
groter is voor penta-erythritol in vergelijking met de overeenkomstige waarden voor de
andere opgeloste stoffen.

Deze adsorptie nu heeft een belangrijk nevengevolg. De penta-erythritol-moleculen
zullen in twee verschillende toestanden verkeren in het membraan: ,,vrij” in de porién-
vloeistof of ,,gebonden” in de geadsorbeerde lagen. Dientengevolge kan ry, slechts
betrekking hebben op het ,,totaalgedrag’ van de opgeloste stof ten opzichte van het
oplosmiddel, hetgeen leidt, zoals men ziet in Tabel XI, tot een schijnbaar toegenomen
waarde van 92, die zo zijn zuiver geometrisch karakter verliest.

Het is juist dit adsorptieverschijnsel, dat verdoezeld zou zijn in een conventionele
beschrijving uitgedrukt in o, Lp en w, en juist om die reden hebben wij de voorkeur
gegeven aan een analyse gebaseerd op frictie en partitie. Het geval van penta-erythritol
heeft ons echter geleerd, dat r,, essentieel verschilt van rf,, als er adsorptie optreedt
en dat het onmogelijk is in dergelijke gevallen een onderscheid te maken tussen de
zuiver geometrische eigenschappen van het membraan (r{y/r,o, als K = 1) en de
chemische eigenschappen (K). We hebben evenwel in hoofdstuk 3, § 5 duidelijk laten
zien, dat voor een bevredigend en ondubbelzinnig onderscheid tussen het ,,porién-
model” en het ,,oplossingmodel” zowel K als r{,/r;, in overweging zouden moeten
worden genomen.
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