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CHAPTER 1

INTRODUCTION

la: Purpose and design of single and double focusing mass
Spectvometers.

A mass spectrometer is an instrument which should trans -
form a sample into a beam of charged particles, and resolve
this beam into a spectrum according to the mass-to-charge
ratio. Basically, suchan instrument consists of an ion source
(which converts the sample into ions and forms a beam); an
analysing system (which resolves the beam into a mass spec-
trum); and a detecting system (for the detection of the resolved
beam).

In this study we will not discuss the design of the ion source.
We will only assume that it produces a beam of ions of nearly
the same energy and small angular divergence, emerging from
a narrow object slit. Between the ionising region and the de~-
fining (object) slit, the ions are accelerated by a high voltage
(of the order of 1-10 kV); the energy spread in the beam is
supposedto be smallas compared with the accelerating voltage.

Neither will the detecting system itself be discussed here.
We will confine ourselves to the study of the analysing field
comprised between the defining slits of the source (object slit)
and of the collector (image slit), and investigate the conditions
for obtaining a high resolving power and a high transmission.
However, these conditions depend on the type of the detecting
system inasmuch as whether the different masses are to be
collected simultaneously or subsequently,

There are several types of analysing systems. The most com -
mon type consists of amagnetic field, either alone or combined
withan electrostatic deflecting field. The radius of deflection
in the magnetic field is proportional to the momentum-to -charge
ratio of the ions. The field or combination of fields also ex-
hibits a lens action, and should focus the beam on the detecting
system.

The aim of this study will be the discussion of the ion optical
properties of this class of analysing systems, consisting either
of amagnetic field alone (single focusing mass spectrometers),
orof an electrostatic field plus a magnetic field, with the re=-
strictionthat these should not overlap each other (tandem ar-
rangement for double focusing mass spectrometers). In the lat-
ter case, for practical reasons the ion beam is supposed to pass
first through the electrostatic field and subsequently through
the magnetic field; this restriction is not essential from the
ion-optical point of view.
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For the simultaneous collection of the whole spectrum or of
partof it, it may be focused on a photographic plate. The po-
sitions of the lines serve as a measure of the mass of the ions
whereas the blackening gives some indication of their relative
abundance. This method is employed in mass spectrographs.
It requires good focusing of a considerable part of the spec-
trum on an image plane as flat as possible. The photographic
plate integrates over the exposure time, and fluctuations in the
beam intensity affect all lines identically. However, the sta=-
bility of the electrostatic and magnetic fields should be high
over the whole exposure time.

For subsequent detection, the ion current is measured which
passes through a narrow collector slit, placed at a fixed po-
sition in the image plane. At given field strengths, only ions of
onem /e (in single focusing instruments: mv/e) value can pass
through the collector slit. By varying either the magnetic field
strength, or the accelerating voltage and electrostatic field
strength, the mass spectrum can be scanned, and the different
ions measured subsequently, This method is employed in mass
spectrometers. It requires good focusing and resolution only
at one point in the image plane. Stabilisation of the ion beam
intensity produced by the ion source is now essential for ac-
curate abundance ratio measurements; however, the accuracy
achievable in current measurements is much better than with
photographic detection, whereas the application of secondary
electron emission multipliers increases the sensitivity so far
as to make the counting and measurement of individual ions
possible.

For obtaining the highest possible accuracy in abundance ratio
measurements, a variation of the second method lessens the
need for ion current stabilisation. It consists of the simulta~-
neous electrical measurement of the two masses to be com~
pared, each being measured after a separate collector slit.
Unless one of the slits is made wide, this method is only ap-
plicable to ions of a specified mass ratio.

This study concerns the ion optics of mass spectrometers for
subsequent detection, where only that part of the image plane
in the immediate environment of the collector slit is of interest.
No attempt will be made to obtain a flat image plane.

A single focusing mass spectrometer resolves the ion beam
according to the momentum-to-charge ratio instead of the de-
sired mass~-to-charge ratio. Energy spread in the ion beam thus
results in broadening of the image and loss of resolving power.
The relative energy spread should be much smaller than the
required mass resolving power. Although the relative energy
spread can be reduced by careful ion source design (Dubrovin
et al,') and by increasing the accelerating voltage of the ions.
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the energy spread may be the limiting factor in the resolving
power of single focusing instruments, particularly for ions
from the dissociation of a two-atomic molecule, which are
formed with considerable kinetic energy (Morrison and Stan-
ton?). Fortunately, however, this effect can be compensated
by the addition of an electrostatic deflecting field. An electro-
static field resolves anion beam according to the energy of the
ions, and by a suitable choice of the parameters the total energy
dispersion of the combination can be made zero (at least in
first order) whilst the m /e dispersion remains. This is achieved
in double focusing mass spectrometers and mass spectro-
graphs.

1b: Theoretical limit on the resolving power. Aim of the vivtual
enlargement of the radius by inhomogeneous magnetic and
toroidally curved electrostatic fields.

Let us suppose that the analysing field produces a perfectly
sharp image of the object slit on the image plane, and exhibits
no optical aberrations. Let Dy denote the mass dispersion in
radial direction at the image per unit ém/m_, and M,,. the
radial lateral magnification of the optical system. Two adja-
cent peaks inthe mass spectrum corresponding to masses m,
and m, + ém are said to be resolved, if at no instant ions of
both masses can reach the collector simultaneously when the
mass spectrum is swept over the collector slit. It is evident
that the "'free space" in radial direction between the two adja-
cent peaks should exceed the collector slit width for complete
resolution. If the mass resolving power R is defined as the
reciprocal of the relative mass difference at which two adja-
cent peaks are just resolved, and if the object and image slit
widths are denoted by s' and s'' respectively, we arrive at the
inequality:

RE|Dl/ ([ My s' + 8™ (1,1)

For accurate abundance ratio measurements, s'' should exceed
]Mml s', such asto obtain flat-topped peaks, the height of which
corresponds to the total ion current at a given mass. Conse-
quently:

R<}|Dp /My, |- (1,2)

In the conventional symmetrical arrangement (object dis-
tance = image distance) with a homogeneous magnetic field with
normal incidence and exit, we have:

M -1; (2,109)

lat
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whereas it follows from (2, 116) that:
D

(1,3)

m= rm;
and thus:
R<r, /2s'. (1,4)

r . isthe radius of deflection of the main path in the magnetic
field.

Evidently, two ways for increasing the resolving power are
the reduction of s', or increasing r_ . The former cannot be
extended far as it reduces the transmission and sensitivity of
the apparatus, and increases the relative effect of inevitable
aberrations. The latter was done in a number of very large and
costljysinstruments with radii ranging from 1000 mm to 2740
mm -

Only little can be gained by increasing the object distance and
decreasing the image distance. Then both D, and M, de-
crease, but D, /M,,, increases. However, the decrease of the
dispersion and the large object distance are inconvenient.

The mass dispersion may be increased by using oblique inci-
dence and exit. Denoting the object and image distances by 1},
and 1 respectively, the sector angle by é,,, and the angle
of obliqueness between the normal at the field boundary and the
main path by €, (see Fig. 3 in the following chapter), we have
inthe symmetricalarrangement (1}, = 1;,']) still (2, 109); writing
T =tan (¢,/2) and t = tan €, we have:

D, = r,/(L-t/T); (2,116)

1'm=l'r;=rm/(T—t). (2, 115)

The object and image distances are increased by the same fac-
tor as the mass dispersion.

Another way for increasing the resolving power is the use of
an inhomogeneous magnetic field. (Alekseevski et al.’). Ina
symmetrical arrangement, where the magnetic field strength
in the median plane varies with the radius according to:

I‘m aBZ (2' 33)
B\ G ey =n, (0<n<l),
Z m
the mass dispersion equals:
D,=r_/(1-n), (2,113)

and the object and image distances:
I' =1" =r (L-n)? cot (%(1-!1)*05). (2,112)
m m m m

Again, an increase in mass dispersion is accompanied by an
increase in the objectand image distances. However, by using




<15~

large angles of deflection and values of n close to unity, it is
possible to build rather compact instruments with a high resol~
ving power.

In the conventional design of a double focusing mass spectro-
meter, the electrostatic deflecting field consists of a cylindrical
condensor The radial field strength between coaxial cylindrical
electrodes is proportional with 1/r. This field exhibits a lens
action on charged particles, together with energy dispersion
(or velocity dispersion). (Herzog®). For comparison referring
agam to the symmetmcal case where object distance 1} and
image distance 1, are equal, we have:

lle = l'e' = % 2 re cot (%ﬁd’e)n (3:55)

whereas the velocity dispersion D, in radial direction at the
image per unit of the relative velocity difference év/v, equals:

D, =2r,. (3,56)

The velocity dispersion is twice the energy dispersion. r, is
the radius of deflection of the main path, ¢. is the sector angle,
or angle of deflection. Due tothe symmetry we have still M, =
-1.

The velocity d1spersxon can be increased (with a simultaneous
increase in 1, and le) by giving the equipotential surfaces and
the electrodes of the deflecting field an extra curvature, such
as to make them parts of toroids %13, Denoting this second
radius of curvature of the equipotential surface comprising the
main path, by R, (positive if convex towards increasing r),
and defining:

c = re/Re, (0ge<2) (3,7)

we now have:

(3,53)

D\.=4re/(2-c). (3, 54)

Evidently, the velocity dispersion has been increased by a fac=-
tor 2/(2-c).

The ion optics of inhomogeneous magnetic and of toroidally
curved electrostatic sector fields will be studied in detail in
chapters 2 and 3. To realise such fields, appropriately shaped
pole shoes and electrodes should be applied, which are discus-
sed in chapter 4, Instruments, designed for obtaining a very high
resolving power, require accurate realisation of the prescribed
instrument parame=ters; in some cases the final adjustment is
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best achieved by correcting devices, a number of which are
presented in chapter 5. In chapter 6 and 7, a theoretical and
numerical discussion will be given of the double focusing prop=
erties of tandem arrangements consisting of electrostatic and
magnetic fields of the general type indicated above, with "vir-
tually enlarged radius'\

1c: Two-directional focusing.

In the conventional deflecting fields, i.e. the homogeneous
magnetic field and the cylindrical electrostatic field, focusing
occurs only in radial direction. No force affects the component
of the ion trajectories normal to the median plane. Consequent-
ly, the maximum transmitted axialaperture angle is determin=-
ed solely by the total path length and the image slit height, as-
suming the vacuum envelope dimensions to the sufficiently
large.

Some axial focusing is caused by the fringing fields of the
magnetic field if the boundaries are oblique, (see 2,57), but
the practical importance of this effect is rather limited.

On the other hand, both inhomogeneous magnetic and toroid-
ally curved electrostatic fields exhibit axial focusing action,
Atn=}, and at c=1 (spherical condensor), the axial and radial
images coincide. At $<n<l, and 1<c<2, the axial converging
action of these fields exceeds the radial.

Two-directional focusing may also be achieved by the addition
of some extra element which adds mutually differing extra
convergences in axial and radial direction. Quadrupole lenses
are suitable for this purpose. (Enge'#). These lenses converge
in one direction and diverge in the other.

In most cases, the transmissionand sensitivity of the instru-
ment are increased by (approximate) stigmatic focusing, where
the radial and axial images coincide. Thereto the axial lateral
magnification should be of the order of unity in absolute value.
The axial focusing needs only be approximate, as deviations
result only in some loss in intensity, but do not affect the mass
dispersion and resolution. With £ <n<1 and 1<c<2, stigmatic
focusing may be achieved by admitting an (extra) intermediate
axial image between object and image slit.

The balancing of the radialand axial focusing of general elec-
tromagnetic fields has been studied by several authors °°18,
The field with n=} has been used for g-spectrometers 19, in
amass spectrometer 20, and in electromagnetic isotope sep-
arators 21-22, The combination of a toroidally curved elec-
trostatic field with 1<c<2, with a homogeneous magnetic field
also makes stigmatic focusing possible 23-26,38, A case of a
combination of an electrostatic field with 1<c<2 and a magnetic
field with 1<n<l is presented in the literature 27, Further
examples will be given in Chapter /iR




CHAPTER 2

ION-OPTICAL PROPERTIES OF THE INHOMOGENEOUS
MAGNETIC SECTOR FIELD

2a: Assumptions; coovdinate system.

This chapter deals with the ion optics of a secforfield. In
first instance, the field strength is supposed to be independent
of the path coordinate ¢, outside the deflecting field region it
is supposed to be zero, dropping to zero abruptly at the field
boundaries. In second instance, the first order focusingaction
due to the fringing fields with oblique incidence and/or exit
is accounted for; otherwise their influences are neglected. A
discussion of the influence of the fringing fields will be given
in chapter 5.

In general, both the object and the image lie outside the
deflecting field region. We will first calculate the trajectories
in the field region, and then suppose the rectilinear paths in
the field free object and image space to coincide with the path
tangents at the field boundaries.

In the object and image space, the ion trajectories are ex-
pressed in the cartesian coordinates x;, y;, 2, and X2, Y2
zy, respectively, the origins being located at the points of
entrance and exit of the main path. In the deflecting field region
the main path is assumed to be circular with radius r;,, and
the ion trajectories are expressed in the dimensionless coor-
dinates:normal coordinate u = (r-ry,)/r ; binormal coordinate

m

] 1 +
TR gl

Fig. 1, Coordinate svstem
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v = z/r . path coordinate w = ¢. (See Fig. 1). The median
plane is supposed to be a plane of symmetry for the magnetic
vector potential.

ob: The Euler - Lagrange equations.

The ion trajectories are defined by the Euler - Lagrange
equations (Glaser 26.29):

d [9F oF

aw(sw) “Et (2, 1)
d_(ﬁ i)l

dw \ov' ey (2,2)

Here u' = du/dw; v' =dv/dw; and F is the ""ion-optical index
of refraction', which equals in the general case of a w-in~-
dependent electromagnetic deflecting field which is constant
or nearly constant *) in time:

Flu,v,u',v") =\/?{ (1+u)? + (u'2+v'2)} - n(1+u)A . (2,3)

¢ is the electrostatic potential, Uis the potential through which
the ions have been accelerated before entering into the deflect -
ing field; both ¢ and U are zero for ions with zero kinetic
energy. A, isthe w-component of the magnetic vector poten-
tial A, whichis chosen in such a way that A , is the only com-
ponent differing from zero.

n equals:

n = (e/2mU) . (2, 4)

If the deflecting field consists only of a magnetic field, ¢ =U;
if the deflection is purely electrostatic, A = 0.

(2, 3) reveals an essential difference in the kind of dispers=-
jon which is obtained in electrostatic and magnetic fields.
In magnetic fields, the properties of the ions enter through n,
which equals the charge - to - momentum = ratio; a magnetic
field will thus exhibit a momentum dispersion (or momentum -
to-charge -ratio dispersion). On the other hand, in electrostatic
fields the ion properties enter through U, which equals the
energy - to - charge - ratio. Consequently, an electrostatic
field will exhibit an energy dispersion (or energy-to-charge-
ratio dispersion). This difference is generally true for time
independent fields, irrespective of the other restrictions made
in the first section of this chapter.

The magnetic vector potential and the electrostatic potential
may now be expanded ina power series in u and v in the neigh-~

*) "Nearly constant” means that the field variations should be neglegible in the transit
time of the ions; the restriction is not impaired by scanning.
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bourhood of the main path (u=v=0), and F may be written as a
power seriesinu, v, u', and v'. This expansion of F contains
no odd powers of u' or v', and symmetry of A, and ¢ with
respecttothe median planev =0 causes terms with odd powers
of v to vanish. Thus (2, 3) may be written, including terms up
to the third order:

1 s 2 2 1 A Sy
F(u,v,u', v'") F00+Flou+F20u + Fopov™ + 3 +v1°) +

+ Fyu® + Frauv? - gu'+v1?) + ... (2,5)

In a purelymagnetic field, g =%, andthe coefficients Fij depend
onn andonthe strength and shape of the magnetic field as ex-
pressed by A .

Successive approximations of the ion trajectories are defined
by substituting (2, 5) into (2, 1)~(2, 2), retaining terms in (2,5)
up to one order higher than that of the approximation wanted.
If u,a, v,, @,, are the values of u, u', v, v', respectively
at w=0 (boundary conditions), (these quantities are supposed
tobe small of first order), then the order of approximation is
defined as the highest degree in u,, @, vo, @z, up to which all
terms are included in the expansion for the ion trajectories.

The central path should be a possible trajectory for ions with
N =1n,; U = U,. This corresponds to the zeroth order approxi-
mation, which sets the condition for a purely magnetic deflect-
ing field:

Fio @A) =0; (2, 6)
and for a purely electrostatic deflecting field:
F(®,U,)=0. (2,7)

2c: First ovder approximation of the ion trajectories.

Retaining terms up to the second order in (2,5), we find on
substitution into (2, 1)-(2, 2) the two simultaneous differential
equations defining the first order approximation:

u'" =2 Fgu+ F 1; (2, 8)
v''=2 Fyv. (2,9)

Writing:
R (2, 10)




and assuming:

k%> 0;
(2,12)
k22> 0;
the general solutions of (2, 8) and (2, 9) may written as:
u=a,; sink,w+ay cosk1w+F10/k12; (2,13)
v = b, sin k,w + by cos kow. (2,14)

Choosing as boundary conditions the parameters defining the
ion trajectory at w = 0:

u(0) =u; u'(0) =a; v(0) = v ; v'(0) =a , (2,15)

the particular solutions satisfying (2, 8) and (2, 9) read:

F
u = (Dyu(w) = u_cos k,w +—sin k W+ —2(1-cos k,w); (2,16
0 1 kl 1 Kk 9 1
1
(1 2z
v = Wy(w) = v cos kow + k.8in kow. (2,17)
2

If either of the conditions (2,12) is not fulfilled, the field
exerts a diverging action in radial or axial direction; we will
not discuss these cases.

2d: Second ovder approximation of the ion trajectories.

Retaining the third order terms in (2,5), substitution into
(2,1)-(2, 2) yields the simultaneous differential equations de-

fining the second order approximation of the ion trajectories:

ul' = 2 Pyt - Fyp=

guu' + g(u'2-v'?) + 2 Fgu® + Fy%; (2,18)
v''- 2 Fgvr = 2gu'v' + 2guv" + 2 Fyuv. (2,19)

(2, 19) gives the second order approximation related to focusing
in axial direction (z- or v-direction). Small aberrations in
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axial focusing are relatively unimportant, as they affect only
the extension of the image in the direction of the image slit.
Therefore, we will omit a discussion of (2,19).

(2, 18) can be solved by the general method known as that of
"variation of parameters'', if the right hand member can be
written as a function of w, say F(w):

u'" - 2 Fyu - Fy = F(w). (2, 20)

This can be accomplished by substituting the first order ap-
proximations (2, 16) and (2, 17) and their derivatives into the
right hand member of (2, 18):
F(w) = 2gPu®y" + g D2 Dy
+3 Fgp i & T Ve &
= Cycos?k,w + Cgsin k;w cos k;w + Cgsin?kw +
+ C4cos kw + Cssin kyw + Cg

+ C,,cos?'kzw + Cb.sin kow cos k,w + C,'sin:k.,w,

1
where: ¥ =3

C, = (3Fy-2gk PJu 2+ go? - 2F  k "(3F,,-2gk 2)u, +
92 4o B0
+ Fy 2k, (3F - 2gk 2);

Cy = 6(k,'F gk Jue - 6k;®(Fy-gk?)as

Cy = gk ’u + (3k,*Fy -2g)a - 2gF, u_+ gk,"F, 2%

C, = 2k, °F, (3F,,-gk,)u, - 2k, *F, 2 (3F;,-gk, )

Cs = 2k, °F | (3F gk Ha;

Cg = 3k *F, 2Fyy (2, 22)
Com B> g,

Cq = 2(k, 'Fy, + 2gk IV a,;

Cy =Ky B ga” = glfv.®

The particular solution of (2, 18) satisfying the boundary con-

ditions (2, 15) is now given by: o
?

S ‘ sin k;w : .
u = Glu(w) = (hu(w) + —%—— | cos k;w . F(w).dw +
1 3
&) %
« 1
COS K V ) .
-— ‘ Sin &, w. F(w). dv (2,23)
»\1 i s
I J
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Straightforward integration leads to the second order approxi-
mation of the ion trajectories:

u= Auw) =
= Hyu, + Hyo + Hy + Hyju? +Hjuge + Hop? +
+H v, +Hyvae, + Hgse, %
where: (2,24)
H, = cos k,w -}k “4F (3F, -2gk ?) (sin®k,w - cos k ,w+1)+

2, -2 2 -1 : 2 i .
- §kl gF | (1-cos k,w) 2 ¥ k : ‘FW(SF30 -gkl")klw sin k w;
H, = k; © sin kw + 2k, ™ F gk, -F g )sin kw(l-cos kw) +
+ k OF  (3F, -gk ;*)(sin k w - k,w cos k,w);
H, = k,F (1-cos k,w) + §k,°F ? (3F 5,-2gk, ?) (sin®k,w - cos k w + 1) +
1 -4 2(1 - 2z -6 2 s 2 i
+ 38k, Fm (1-cos k,w) K, Fis (3F,, gkl )k ,w sin kow+

+ 3k, OF [ %F g (1 - cos k,w);

tk | "33F, -2gk ) (sin®k W - cos k,w + 1) + jg(l-cos k w) %

2k, "3 (F 4, -gk, *)sin k w(l-cos k,w);

1 “2ai ST P 2 2.
38k | (sin %k W - cos kw+1)+ gk, ‘(BF:;O —ngl"') (1-cos k ,w)?%

-
=
[

k "%k 2-4k, %) " F , [k, 2cos?k w - (k,*-2k " )cos kyw - 2k , 7]+
- gky? [-k,2cos®k,w + 2k cos kw + ky® - 2k, %11
H, = 2k2'1(k12—4k22) (Fyq +gk, %)(sin k,w cos k,w - (k,/k )sin k, w);
Hyg =k, 2k, 2 (k 2-4k,*) M Py, (-k,cos ®k,w + 2k,"cos kyw + k,%- 2k, )+
- gk,2[k, 2cos %, w - (k,2-2k, %)cos k,w - 2 k,*1L
2 1 2 1 2 1 2 (2’ 25)
2¢: Correlation with the magnetic field shape.

The coefficients FOO: FIUJ F'J\): Fu'_':: FI}U 3 P‘J'..' ] and g, should
now be expressed in the magnetic field parameters and n of
the ions. This may be accomplished by expanding A, in a pow~-

er series in u and v:
%0
A, = a* uly2
A }: R ¥ (2, 26)

(where the symmetry of A  with respect to the median plane
excludes terms with odd powers of v), and using the relation:

div X = 0. (2, 27)
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X is chosen in such a way that A, is the only component of g
differing from zero, and thus the relation

via, =0 (2, 27a)

is equivalent to (2, 27). The components of the magnetic field

strength are related to A, through: (Grimm iy
Bu = - 8Aw/8v; (2, 28)
1 o \
B, = frapy { (A - (2, 29)

Instead of the coefficients aj in (2, 26), suitably chosen coef-
ficients B, B,, B,, etc. may be written, which express the
relations between the a} derived from (2,27) or (2,27a):

(Griimm 18)

(2, 30)

A, = 3B + 3Bu + 1B, (u?-v?) - KB +Byu® + (4B, +Byuv® + .
Bu=B1V "(B1+2B2)UV+... (2,31)

2 2 P
B, =B+ Bju - (3B;#ByJu” + Bov™ + ... (2, 32)

The condition
-\&—l\5— =n, 2,33
(Bz ar ( )
s S S

mentioned in the preceding chapter, corresponds to:
B,/B= -n. (2, 34)

The coefficient B, is so far undetermined. It may be written
in the convenient form:

B, /B = 3 {X(1-n)-n}. (2, 35)

For X — n the field shape as defined by (2, 30)-(2, 35) reduces
tothat of a field which varies in the median plane proportional
to r™", as may be seen by comparing (2, 32) with the Taylor
expansion of B,(u,0) = B(l+u)™. For the more interesting
case of the magnetic field between conical pole faces, it will
be shown in chapter 4 that

X = 2n. (4, 10)
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(2,30), (2,34), and (2, 35) may now be substituted into (2, 3),
together with the condition for a purely magnetic deflecting
field ¢ = U, yielding:

g=1%;
Foo = 1= '%T)B,'
F 19> 1 - nB;
Fon = b oD (2, 36)

F g = -3nnB;
F 30 = g X(1-n)nB;
1{n-X(1-n)inB.

es|
=
i

If the ions have a velocity spread according to:
v = v(1+B) (2,37)

and if all ions have the same mass m, and charge e, (2,37)
is equivalent to:

n = n,/(1+B) (2, 38)

The product nB may be expressed in B if we remind that the
zeroth order approximation (2, 6) sets the condition:

noB = 1. (2, 39)

B is supposed to be a small quantity, small of the same order
as a, u,, @z, Vo. We substitute (2,36), (2,38), (2,39), into
(2, 24)-(2, 25), and expand (2, 24) in a Taylor series in B. Re-
taining terms up to the second order in u,, a, vy, @, , and j3,
we find the following expression for the second order approxi-
mation of the ion trajectories: (Tasman and Boerboom 3°;
Wachsmuth, Boerboom and Tasman °!)

u = Pulw) = (2, 40)
2
=D1uo+D2a+D33+Duuo2 + Djouya + Dgga™ +

2 2 9
+D g u B+ Dyaf+Dgyf”+Dyv,” +Dygvea, + Dssa,

where, with:
wik = (l-n)i w;

wl = ntw; (2,41)
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D, =cos wx

D, = (1-n) + gin w

Dg = (1-n)"" (1-cos w¥)

D, = }{(X-3)sinw* + X(1-cos w*)}:

Dlg = %(l—n)" (X-3)sin wk(l-cos w¥) ;

D,, = ;,l:(l-n)"‘ {(X-3)cos “w* - (2X-3)cos wk + Xt

Dy3 = #(1-n)"! {-2(X-3)sin 2w - 2X(1-cos w*)+ 3(X-n)w*sin wk);

D&,‘ = é(l-n)*"’“{Z(X-.’i)sm wXcos w* + (X-3n+6)sin wk - 3(X-n)w* cos wx|;
D,, = é(l-n) #{(X-3)sin’w* + 4X(1-cos w¥*) - 3(X-n)wksin wk};

Dy = -].;(I—Sn)"\ {(2n-X(1-n))cos 2wt - 2(n-X+3nX)cos wk -X(1-5n)};

o
"

48 %(1-:’)n)'l (2n-X(1-n)){n"! sin 2wt - 2(1-n) *sin wk};

o

-%n"(l-ﬁn)'ll (Zn—X(l-n)):'os 2wl - 2n(1-2X)cos w* + X(1-5n)}.

(2,42)

2f: Imaging properties of the inhomogeneous magnetic sector
field.

If the boundaries are plane and normal to the main path at
the points where it enters and leaves the field, the boundary
conditions (2, 15) are easily related to the parameters in the
object space. From Fig. 2 we read the relations:

main path

Pm_
=
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: 2,
(l'm/rm)am’ =(1+uo)am= %m & (llm/rm)am -

'
zm <1 (1 m/rm )Q mazm

o

(2, 43)

1' /v )a._ +6/r ; a =«
o] m m Zm m Z

The rectilinear path in the image space may be defined by the
relations:

¥, (x,) = ¥,(0) + (dy, /dx,)x (2, 44)
z,(x,) = z,(0) + (dz, /dx,)x,. (2, 45)

y‘z
Z

2
r4

"

If the sector angle equals ¢ , we may write analogous to
(2, 43):
Yo (0) = I‘mu(d’m); z2(0) = rmVv(dm);
dy,/dxy = u'(dm)/ (1+u(ém)) = u'(dm)- (1-u(ém)) ; (2, 46)
dzy [ dx, = v'(6,)/(1+u(éy)) = V' (). (1-u(dm)) -
From (2, 17), (2, 40)~(2, 42), (2, 43)~(2,46) we find the following

expression for the second order radial approximation of the ion
trajectory in the image space:

2 2
y: 2 rm“\/llam A NIZ@ * Mllam + M lZamB + M‘Z'Zﬁ 0+
+M 3302111~ ¥ M3-407.m (6/rm) + M«H (6/rm)b} +
+x,(Na, + NyB + N e, + NygapB + Ny B +
2 2. 47
* NSBQZ i N;H azm (6/rm) i N~H (6/rm) b (2’ “)

m

and for the first order axial approximation:

g =l T e U E‘;(é/rm)) + X, 72N R 37 (6/rm)}. (2, 48)

2 m

The coefficients M;, N, L, T;, are given by:

M, = g, + by, (A1) Mg = Ky,

My, = Hya T Ha M fry) * & “C(l'm/rm)2;

M, = Biga ¥ Higp (13, /ry); Moy = Hog,s (& 42
Mg, = Mgy, + Hagp (' Jrp,) + Hogge (1'm/rm)z;

Mg, = Mgy, T Hag (A Jr ) My = By,
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N, =v,, +yp (A /ry); Ny =vg,;
e TPURLAT Y (LR B Ve U /Tm)
Nio = Viga +Vig On/Tp)s Bag = Vo, (2550)
33 = Yaza + Vagy /T + Ve (Ba/rp);
Noy = Vg ¥V /) Ny =V, -
Ly =03 *+03(lh/rm); Ly=0a (2,51)
Ty = Ty + Tap (I'm/Tm); T4 = Taa (2,52)

As will appear from further generalisations, the expres-
sions (2, 47)-(2, 52) are valid for any sector field in the degree
of approximation used here. For the special case of normal
entry and exit at plane boundaries, the coefficients u;, v, 7,
T;» are equal tog;, 7, G, T respectively, which read with
the abbreviations:

6 =@1-nt ¢ ; o¢l=nis ; (2,53)

m

%*. = %*

A la S (l_n)'i Siném‘ Hp - COB ér.n;

a, = (1-n)"! (1-cos¢™):

Ay = %“"‘)_1 f(x‘3)(‘~053¢:n - (2X-3)cosé’;] + X%

ﬁ&ib = _%(l-n)‘i (Xsind,;‘;1 - (X‘3)Sin¢;‘;cos¢;);

By = LX(1-coséX) + (X-3)sin? ¢* };

B g, = H(1-n)~3/2{2(X-3)sing};cosgl, + (X-3n+6)singy, - 3(X-n)épcosér);
A, = H1-0)71{-2(X-3)sin’¢) - 2X(1-coséy) + 3(X-n)éysindy};

By, = M1 {(X-3)5in?6], + 4X(1-cos6]) - 3EX-m)47sineT )

G, = -in-1(1-5n)"Y{ {2n-X(1-n))cos 261 - 2n(1-2X)cosé}, + X(1-5n)};

1(1-5n)"1 (2n-X(1-n)} n"} sin 2¢ T - 2(1-n)"d sing7};

=
n
n

33b “348

Haa = 35.’54&» =
= }(1-5n)"Y {2n-X(1-n))cos 2¢1 - 2(n-X(1-3n))cosé} - X(1-5n)).




e

Du 3 COSQ’:’I; ﬁih -1 (l-n)isind)";"l :

ﬁ:.a = (1_n)'§ Siné’:‘;

s l(1 -n)2 |- 2Xsm¢w cos¢” + (2X- 3)Sm°m :

5 =1 . 9 _

v ]X(2sm ém 4 Cos‘om -1}

P11¢ © 3(1-n)} Xsing}; (2coséy, + 1);

U, =i(1-n)"'{-4Xsin®¢¥ + 2X(1-cos¢}) + 3(X-n)¢} siné };

Ty = (1 -ny * {-4Xsing* cos¢* + (X-3n+6)sing} + 3(X-n)¢} coséy};
Veos ® ‘(l N e 2Xsmdam cobqs"l + (X+3n- G)qlno - 3(X-n)¢* Cos¢»’ Y

7, =4(1-5n)"{n"#(2n-X(1-n))sin 247 + (1-n)!(2X-1)sing} };
Veso ™ Vaga, = (1731 1{2n=X(1=n))(coB 2¢I: - cos¢*);
Ugnd B Vg y v ’1“7 N
= L(1-5n)" {~(2n-X(1-n))n! sin 241 +{n-X(1-n))(1-n)!sing*}.
(2,55)
633 = n'lZS'lnd)L; 631) — 6’18 = ?33 = COS.f)I]', ‘F'Jb = ;43 - _n% smé;t]
(2, 56)

If the field boundaries are plane, but the incidence and/or
exit of the main path is oblique, the situation becom=2s more
complex. The general expressions (2,47)-(2,52) are still
equally applicable, but instead of (2,54)-(2,56) more general
expressions :.hould be used.

In case of oblique incidence and/or exit, the axial focusing
action due to the stray fields has to be taken into account.
(Herzog °-9%). Theyact as thin lenses on the entrance and exit
side, which have focal lengths for axial focusing f}, and b
respectively, given by:

. A
! Str (
oA - )
/1\{[ tan € .

tan €';

0o
W
3
~

"

r
n

The meaning of €' and €' may be seen from Figs. 3-5: they
are taken to be positive as indicated in these figures.

The radial effect of oblique incidence may be deduced from
Fig. 4, whichrepresents a projectionon the median pl ane. The
olnuth projected at O; OAE is the main path; OA =1' : MA =

ME . If the trajectories in the field re gion are measured
nm
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inthe coordinates u, v, w, (Fig. 1), the origin of w may still
be chosen. Withnormal incidence we chase w=0 at the point of
entrance of the main path. Now in Fig. 4, two such coordinate
systems are indicated, differing only in origin. The first

st I

Fig. 3. Curved oblique boundaries,

Fig. 4. Obligque entrance.




Fig. 5. Oblique exit.
system, in which all trajectories should finally be express-
ed, still has its origin w=0 at the point of entrance of the
main path. The second, rotated system, distinghuished bya'",
has W=0 at the point of entrance of some other path OB under
consideration. If BDLOA, and designating BD/r  =p, we read
from Fig. 4, omlttmg terms of third and higher or der and writ-

ing t' = tan €'

% Ll I RS
A, arctanP——pH (p-p“)t' + (2,58)

= {(l'm/rm)“l—pt'}tan iy Q'm(l'm/rn B a’m:2 (lx'n /r‘m ik

3|

(2,59)

and consequently:

= {o (1t ) — e "(1‘ /r )2 PEL G (1' /r]t‘2+
(2, 60)

Now BC = BD/cosA,, and MC = r;;,/ cosA;, and thus i, (meas-
ured in the rotated system) equals:
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4 BE p+l "
0" r;m €OoSA;

amu;n/rm) i3 amg “r'n /rm)t' g %amz (1'm/rm)zt'2 e

(2,61)
@ (measured in the rotated system) equals:
@ = (ag+a (1+1) = o, +a 21 /r ) + o (1 /r )t +
2 2
IS LIS e
(2, 62)

Because of the axial focusing action of the stray fields repre-
sented by (2, 57), the relations for the axial boundary conditions
are modified to:

Vo= (n/rylagy +(8/rg) + ... (2, 63)
AR (Y o AR (5 e i A S (2, 64)

QZ zZm

(2, 63)-(2, 64) are valid for the rotated as well as for the fixed
coordinate system.

Substitution of (2, 61)~(2, 64) into (2, 40) yields the radial sec-
ond order approximationin the rotated system. Substituting in
this expression:

W:w—Al, (2, 65)
and expanding in a Taylor series in A,, we obtain with (2, 60)
the fadial second order approximation measured in the fixed
system (with DJ!=dDj [dw):

u=uw) =

= [D'.:+(D'|+I)2t'}(llni/rﬂl)]a m * Dliﬁ + [D22+‘Dl: *Dﬁ+(D] "2D'..’.1 —D‘._'l)t' *
+l:)‘.'lm“l'm/"m H‘Du *‘Dx';'D: ')"*GDND';: ~D,£')t"°"5(l’m/rn“)~' }"m: 3

+(Dygg +{D 13 +(Dyy =Dg It I /e Ve B + Dsu‘j: 3

HDgg +{Dy5 -2D g5t "1} /1 )4{D, ~D g t'4+D o 1241 [ )2 e, 2

+(D,; -2D ("1 +{2D,, -2D  t™+2D 11! /r e, (8/r )+
21 . )2
+ [Dy, -D t'+D t*™“1(5 /).

+

(2, 66)
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To find the relations for oblique exit, the projection on the
median plane is represented in Fig. 5. Besides the fixed coor-
dinate system x3, y2, (with its origin at the point of exit A of
the main path GAI, and with the x,-axis coinciding withthe main
pathinthe image space), a second, rotated coordinate system
is indicated, distinguished by a'""''. The plane X,;=0 of this
second system includes the point of exit of somg other path
DBCI under consideration. GM=AM=r . Writing U = DG/r.,
the path DBCI is represented relative to the rotated system by:

¥o= rp0 - Xptan & . (2,67)

Writing ut= AB/r ., the corresponding expression relative
to the fixed coordinate system is:

Yo = rmU* - Xytan af . (2, 68)
We designate by U, U', U", the values of u, du/dw, d%u/dw?,
respectivelyat w = ¢ ,,, irrespective of the termination of the
deflecting field by the field boundary. We have:

8 =0-0A,+ 40" 02 ~ .. (2, 69)

Now MF =r  /cos Ag; DE = DF cos Ay; DN = EA = DE tan €¢",
and consequently, writing t'' = tan €'

A, = arcsin (DN/DM) = Ut" - U2 - gunt"? - ot o+ L.
(2,70)
G=Uu-uut"+... (2,71)

We have:

8=-U00+00 +... =-Ur+UU' + UUM" +... (2,72)

Now ADCG-AKCH, and thus: KH =r_ (U - tan & tan A,). As
AKBH-ADBM, it follows that:

“ut=AB/r = U+ 0%+ ... (2, 73)

From Fig. 5, we read:
at=5-n,-= —UHUU(-U+UUU2 s uue 2450 + L L.
(2,74)

Substitution of (2,73)-(2,74) into (2,68), using (2,66), and
evaluating the expressions D, and their derivatives for w = ¢ ,
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leads to the second order radial approximation of the ion tra=-
Jectory inthe image space with oblique incidence and exit. Be-
fore evaluating the results, however, we will include the ef-
fect of curved boundaries.

A discussion of the effect of curved boundaries for homoge -
neous magnetic sector fields was presented by Kdnig and Hin-
tenberger ). The curvature changes only some of the second
order coefficients of the u4;, v;. The effect of boundary curva-
ture being of second order, the reasoning of Kbnig and Hinten-
berger applies equally to inhomogeneous magnetic sector
fields. The radii of curvature of the entrance and exit bound-
aries R'and R" areto be taken positive as indicated in Fig. 3.

On evaluation of the above arguments, it is found that the
coefficients u;, v;, for the general case of oblique curved
boundaries, appearing in (2, 47), (2,49)-(2,50), may be ex~
pressed in the coefficients #;, p;, for the corresponding case
of normal entry and exit at plane boundaries with the same
field shape and sector angle. Using the abbreviations:

rl'l'l
t' = tan €' Pl —_— .
2R'cos3e!
(2, 75)
r
t" = tan €'"; p' = =

2R"cos3e"

these relations read: (Tasman, Boerboom, and Wachsmuth 34 )

= 4. . 1l T 1.
la -ula’ “lb H1p +“1at'
e .. 41 2402,
Moa = Hg,s Hi11a = Hi1a g HM1a 2: i L
-2 = - 2 - - " - "
5 3 ! Ty o '
Bop = Hqgp Y20 0 AT BoipHq,t o“ia t; .
- T3 - < ] P _l— 12 1 = " +
e * By T 11b n";la)t i (“uza ZQ“lb)t s My t
= = 1411 T 2 a2 "= .
+ulau1btt +2ula 5% +pl“la'
= P [1 tn?.
“12a ARty 1la " 2a ? 2 i
= = ' . n S 2,
Higp = Bygy + (B, - 8+ [ B t"° + 0y, 1y, t1"S
- +_1_— tn‘z_ -~ i
Hoga = Hggy TG Mot HM33a = M3z 5
13 i 1.
Masp = B 3459 =8 g3, = 2845, t';
. 7 [ gapt! + Ggga '
M3ge = M 442 = 5M 34 = M 33c ~ M 33p M 33a

(2,76)




n2

+ (‘1— ‘n[j 2 )t" [ ﬁla 17 t = %ﬁlaQ t||3 + p" = /9
v

1la la la ula )
=V + 27 '+ (G...-2nm, f i
vy =P 2R R 20|, A 0T+

11b lat'22+
4 200 3y, -0 y,0 W = (B Ty Y738+
- fy, A 1b't"3 - 20,,7;, "% 4+ ﬁlatv‘zt" +
- /:‘-132 t't"3 + 29"(/‘—‘13 ’Ilb+ﬁla2 t1):
Vige = Pae + (Fypy ~07 3 ¥+ id gy -nit 1 "+ Ty, -3y 07 +
+ (B 43,708 1," 5 W2 + (@, ~200 1,8 50 1) +
P ﬁlbﬁlbt"2 = (@, Ty YA 17 1a e - 1p 2" +
T ﬁlaﬂlbt'tus it ‘—“1a1713"'2 e %ﬁlft'zt”a +
A p"(ﬁ1b2+2ﬁla ﬁlbt'+ﬁ1a2 AT Py, Hiyat');

7] - - = - | B o - n2
Viga = Viga T (A 9,200y, Bo, =My W=, Uy, FHo, V1, o+
- = 1" SR
= ula“‘Zat +2p "‘la“‘Za’
=57 7 =) 73 ! T T "
Vi milli, ¥ (P oueth SR (‘; 1ob ~2DHy, Aoy =Ay It +
"

- - - - - - = - "

= Ay, Ty, Hilg, Dy )t + (i 19, =200, Ag, -2, 'L +
N L1 BN Ty i /4 = = 42 _ 5 o n3

Ay, gyt (1,7 g, tH g, V3, )"t By, g, t'E77 +

+ 20"l Y, o t');
= 2,

Vg = Vgg +(fgy, -nji g, ~fig, " = By, Pt A iR
Vaga = Vgza T H agat s
Vagp = Ya4a = Vo = 273, t' i ggpt" = 2l g3, t''
Vage = Vaqa = %US% =V g3c ~Vagp !+ fgg g V33a t' &
S LR L

(2,77)

The axial focusing effect, due to the fringing fields, and
represented by (2, 57), should be taken into account in the coef-
ficients o., T;. If these are expressed in the corresponding
coegficienks 61., 'rj, for normal incidence and exit, the relations
read:

O3a =03, Ogp =04y =035 +T3athi
= = = 1".

TSa = TSa ¥ c":Sat ’ (2»78)
= =T T 4! o "

Tsa 743 Tab +73a (t+t )-"o’f.iatt x
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For homogeneous magnetic sector fields (n = X = 0), the re-
sults become identical with those derived by Hintenberger and
Konig 35 for this case.

2g: Discussion.

The contribution to y, of the term proportional to @, van-
ishes for xy = -r ,,(M; /N; ). For very small values of B, a beam
of ions of equal mass and charge, emerging from an object slit
at the object distance 1} from the entrance boundary, is then
focused in first order at the image distance:

1::] = -rm(MI/Nl). (2579)

This first order focusing property may be put in the familiar
form:

(i - gy - g") = £2, (2, 80)

where, using the abbreviations (2,53) and (2, 75):

gt (1-n)tcos¢* + sing* t "

= = = ; (2,81
Y, (l—n)sindf:‘n - (l-n)icosd)’;(t'ﬂ") - sinqS:’;t't"

g" (1_n)i COS¢* + sind)*t'

— = = = —:  (2,82)
r (1-n)sing’ - (1-n)icos¢¥ (t+t") - sing’ trt"

f 1

— S * -4 " "2, 83)
r, (I-n)*sing_ - cos¢ (t'+t") - (1-n) singt't"

Similarly, first order focusing in axial direction occurs at
the axial image distance 17 :

L e (e T, (2, 84)
which may again be put in the form:
(W - gy - g = 1,°, (2, 85)
where:
g n*cosﬂ;1 + sindﬂ:nt"
Seen ; (2, 86)

nsind;l1 - n*cos¢r1;l(t'+t") - sinéLt’t“
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g nicosqSIn + siné;,tt'

. 9 (2, 87)
r_ nsing | - ntcosgft'+t") - singTprt"

f 1

— = © (2,88)
T nisinqsl;l - cos¢r1;1(t'+t") -n-t sinqSlt't"

If all ions are of the same energyeU, but a small difference in
mass is allowed according to:

m =m, + ém, (2,89)
the corresponding difference in n equals, instead of (2, 38),

&
— Y

ns= Tlo/(1+ 2m°

(2, 90)

Consequently, the mass dispersion in the y; -direction at the
image distance l'r:), per unit ém/m S for a monoenergetic ion
beam is given by:

D_=3r_ (M, - (M /N))N,). (2,91)

However, the focusing plane of the mass spectrum need not
be perpendicular to the main path, as the image distance de-
pends on the mass difference:

M_+ M _(6m/m
p +zM o)_ (2, 92)

I = -p
m m 1
N, + 3N, (6m/m,)

Elimination of (ém/m,) from (2, 91) and (2, 92) gives the in-
clination of the focusing plane.

Object and image are at the same electrostatic potential.
Thus the lateral magnification M, is the reciprocal of the
SR At ; ; : :
angular magnification M, . (both in radial direction). Omit-
ting terms of second order’in y,, we have:

M, = 9ldy, /dx,)/da = N,, (2, 93)

an 1

and consequently:

M,,, = 1/N;. (2, 94)

lat

The same result is found (as it should), if the axial magnifica~
tion M is derived from (2,80):
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M =0l /81! = - (1"-g")/(! -g"), (2, 95)

ax

and the relation:

M, =-M__.M (2, 96)

lat ang ax

is used.
Similarly, we have in axial direction the magnifications:

[ .
My, =Ty (2,97)
MZ, =1/T,. (2, 98)

If all ions have the same momentum (n = n,), the image of
an infinitely narrow object slit is broadened, at the correct
image distance 1:1'1 , by the following second order aberrations:
(Boerboom 36 )

by the second order angular aberration by the amount:
Ape® = 1y (M ) = (M, /NNy, ey, ; (2,99)
by the sagittal second order angular aberration by the amount:
Aga, %=1, (Mg - (M; /N, )Ngg)a (2, 100)
by the agammatism by the amount:
A34sz (5/I'm) = I‘m(M a4 = (M;/N1)Ng4)am (6/ry);  (2,101)
and by the image curvature by the amount:
2 2
A“(élrm) - rm(M44 - (M1 /NI)N 44)(6/r'm) . (2,102)
When allions inthe object space travel parallel to the median
plane (a, = 0), elimination of (§/r ) from (2, 48) and (2, 102)
yields the radius of curvature R, of the image:

(Z,-(M, /N))T,)?

B . =r A
im = *m 5TM,, —(M, /N, )N ,)’

(2,103)

where a positive value of R ;,, means that the centre of curva-
ture has a positive y, coordinate. g
However, it has been demonstrated by Berry *', that the
fringing fields affect the aberrations outside the median plane.
Berryshowed, that the stray fields of a homogeneous magnetic
sector field produce an image curvature, which is independent




T

of the shape of the fringing fields. The fringing fields also in-
fluence the sagittal second order angular aberration and the
agammatism, butin the latter cases the effect can be reduced
by reducing the extension of the stray fields by shims. Al-
though the reasoning by Berry is strictly valid only for homo-
geneous sector fields, it should be approximately correct for
inhomogeneous sector fields also. Then the fringing fields alone
produce a curved image with radius of curvature R, in our
notation given by:

by Foan ) ~ L (2, 104)

The radius of the image, resulting from both effects, is then
given by:

R imR'fr

R ) e & 2,105
total Rim + R e ( )
In a mass spectrometer, comprising the inhomogeneous

magnetic sector field as the analysing element, and with object

and collector slit widths s' and s'" respectively, the mass re-
solving power (the reciprocal of the relative mass difference
ém /m  which will just be resolved) equals:

R =D, /(s'My, +s" + IA), (2, 106)

where LA; stands for the total image broadening due to all
aberrations. Among these are first order aberrations due to
energy spread and to misalignment, andthe second order aber-
rations mentioned above.

As follows from (2,4), a certain relative energy difference
causes the same displacement in the image as a relative mass
difference of the same magnitude, and thus energy spread in the
ion beam may limit the resolving power attainable with a single
focusing arrangement. The elimination of this chromatic aber~
ration requires a combination of electrostatic and magnetic
fields: it will be discussed in chapters 6 and 7. Unless such an
elimination of the first order chromatic aberration is achieved,
neither the second order chromatic aberration (proportional to
3%), nor the mixed second order aberration (proportional to
@ nB) have au appreciable influence on the sharpness of the
image. The aberrations due to misalignment, incorrect posi-
tioning of the slits, etc. will be discussed in chapter 5.

The only radial aberration not mentioned above is the distor-
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sionin radial direction. Asthe object slit width is always very
small as compared with r, its influence results only in a
slight shift of the image positionin the focusing plane, together
with aninclination in the top of an otherwise ideally "flat-top-
ped" peak.

Aberrations in axial focusing result only in loss of intensity,
and not in loss of resolving power, and are usually of secondary
importance,

2h: Symmelric arvangement.

A special case of particular importance is the ''symmetric
arrangement", in which the object and image distances are
equal, and in addition to the median plane the plane w = o% /2
is also a plane of symmetry. This case is particularly infer -
esting as most existing mass spectrometers satisfy these
specifications. Onthe other hand many of the general expres-
sions derived in this chapter simplify considerably if the extra
symmetry is imposed.

Using the abbreviaticns (2,53) and (2, 75), we introduce the
extra abbreviations:

T = tan(¢ /2);
t =t' =t (2,107)
p=p =p".

The object and image distances are now equal to:

B 17 e e (2,108)

m m m m (1-n) 5,]‘ 3

Inthis case all magnifications in radial direction equal minus
unity:

M =M, =M__=-1. (2, 109)
The mass dispersion per unit ém /m, reduces in this case to:

D = T i ¢ (2, 110)

s T—(l-n)'it P

The coefficient A |; of the second order angular aberration
now takes the form:
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-2t343(1-n)4 Tt2-2nt+1(1-n)* (2T %43 T)X+2p-(1-n) T 3

Aps=rgy

{(1-n)iT - t}3

(2,111)

If moreover both entrance and exit are normal (t=0), further
simplification results:

r
lps ———; (2, 112)
(1-n)iT
rm
D= Ton e
r. [ coséi+5 2p
A, = X + —-1p  (2,114)
1-n 3(1-(:05«15’[’;1 (l—n)iT

For the homogeneous magnetic sector field (n=X=0; T =
= tan(¢,, /2)) we have in this symmetric arrangement:

rm
1n1='r sy (23 115)
rm
Dm=-1—_—t7717; (2,116)

Apepidoulo., THEbL (2,117)
(T-t)® T -t




CHAPTER 3

ION-OPTICAL PROPERTIES OF THE TOROIDALLY CURVED
ELECTROSTATIC SECTOR FIELD

3a: Assumptions; coordinate system.

The calculation of the ion trajectories is performed along the
same lines as in the preceding chapter. The field strength within
the field boundaries is supposed to be independent of the path
coordinate¢, outside the boundaries it is supposed to be zero,
dropping to zeroabruptlyat the boundaries. The effect of fring-
ingfields is neglected. Inthis case, there is no image curvature
nor axial focusing action due to the fringing fields other than
the effects treated in chapter 4. Again, the rectilinear paths
in the field free object and image space will be supposed to
coincide with the tangents at the boundaries to the trajectories
in the field region.

TOROIDAL
CONDENSER

£ IMAGE SPACE
2
~ vssecT seace

Fig. 6. Toroidally curved electrostatic sector field.

The arrangement is illustrated schematically in Fig. 6. The
main path is supposed to be circular with radius re. The me-
dian plane is supposed to be a plane of symmetry for the elec-
trostatic potential. The equipotential surface containing the
main path is (in general) not cylindrical; it maybe approximated
byapartofatoroid. The radius of the "extra" toroidal curva-
ture of this equipotential surface, normal to the median plane,
is denoted by R..R, is taken positive if the equipotential surface
is convex with respect to the toroidal curvature to the side of
increasing radius r. In Fig. 6, R, is positive. To create such
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a toroidally curved electrostatic field, a pair of toroidally
curved deflecting electrodes is required, the shape of which
will be indicated in the following chapter.

Within the deflecting field region, the iontrajectory will again
be expressed in the dimensionless coordinates: normal coor-
dinateu = (r -, ) /re; binormal coordinatev = z /re; path coor-
dinate w = ¢. In the object and image space, the trajectories
are expressed in the cartesian coordinates x,, y;, 2, and Xy,
Y.. Z,, respectively, the origins being located at the points of
entry and exit of the main path.

3b: First and second ovdev approximation of the ion trajec-
lories.

The reasoning is analogous to that in the preceding chapter.
Again the trajectories are defined by the Euler - Lagrange
equations (2, 1)-(2, 2). Inthe expression (2, 3) for F, however,
wenow have A =0, and ¢/Uis a function of u and v. The coef-
ficients F;; in the expansion (2,5) for F now depend on ¢/U.
The zeroth order approximation is presented by (2, 7); the first
order approximation satisfying the boundary conditions (2, 15)
is given by (2,16)-(2,17). The expression (2, 24) with (2, 25)
for the second order approximation applies also to this case if
the parameters in (2, 25) are specified appropriately.

3¢: Correlation with the shape of the electrostatic field.

The potential ¢ in the neighbourhood of the main pathu=v =0
may be expanded in a power series in u and v:

0
o(u,v) =) Ay uiv, (3,1)
i, k=0

where the symmetry with respect to the median plane excludes
terms with odd powers of v. Relations between the coefficients
A, follow from the condition that in the abscence of space charge
(which is assumedhere), ¢ should satisfy Laplace's equation:

Vie=0, (3,2)
which reads in the coordinate system (u, v, W):
d%¢ 3% 1 oe

- + —= 0. (3, 2a)
ouZz ovZ¢ 1+u du

Writing instead of the coefficients A j, suitably chosen coef-
ficients E, E,, E which express the relations between

> 18 DA MCIRS |
“

—— —
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them derivable from (3,2) or (3,2a), we may write for ¢:
(Griimm 18)

O )

¢(u, v) = (3, 3)
= U-Eu-4E u? + }(E + E;)v?- § E;u® - {(E-E;-E)uv’+ ...

The electrostatic field strength E is defined by:
E = - grad o, (3, 4)

and thus its components E,, E,, are:

=%
E,(u.v)= E+ Eju+ 3Eu®+ %(E-EI-EQ)v‘Jf (3, 5)

E (u,v)=-(E+E, v+ (E-E+Ej)uv + ... (3, 6)

v

Calculations of the potential distribution in a toroidal conden-
sor have been published by Hachenberg 1!, Svartholm 16, and
Albrecht '%:!3 whereasa simple derivation will be presented
in the following chapter. If we define:

e iRt (3,7)
and:
Bl = (aR/av)r:rc’Z:O (3, 8)

where R represents the radius of the toroidal curvature of an
equipotential surface near the main path, then the coefficients
E, E,, E,, may be written:

B=r ks
E, =-r,E (1+c) (3,9)
E,6 =1, Eo{z(l +e)re? (1 + RL)}.

From (3, 3), (3,9), it follows that the coefficients in (2, 5)
equal:

F =1;
i I‘CEO'
F_=1- '
10 2U
T N 3,10
Fo, = -3 Luiqﬂ l1-¢ + rL:EQ ) ( )
: 9U 2U
F.. = Az.l’f_l“O(-c);

2U
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Fj, =% E{1+c c? (1+R! )+ 3c Te Eo-SCZU)}

2U 2U
F,, = %r;ﬁg{cz(“ R)- e Eoc (3, 10)
= L(1+reE°)'
g=2 20

If all ions have the same mass m, and charge e, and if a
velocity spread is allowed according to:

v =v, (1+B) (3, 37)

which is then equivalent to:

U= U, (1+8)% (3,11)

we see from (2,7), (3,10) and (3,11), that:

(r,E, /2U) = (L+B)2. (3,12)
and
F20 = (1 +[3)'2 (3¢-1 +8 -%Bz+...);
F * #(1+48)> (~c)
T 1e é(1+3)2{ +c-c?(L+R!)+3c (1+p)2 -3(1+5)'4};(3’13)
F, = (1+¢3)"2.§<'L ct+e? (1 + R')-ZLB 3ep’- ;

g=%{1+(1+3 }

From (2, 24)-(2, 25)and (3, 13) we find the radial second order
approximation for the ion trajectories:

u= Gu(w)=D,u, +D20+DB+D“u +D12ua+D2202+
+Dygu B + DygaB+ Dgg B? + Dyy v + Dysvea, + Dga?,
(3,14)

where, with the abbreviations:

= (2~ c)*' wk = KW; wh=cltw;

(3, 15)
I'=3c-3-3c?2(1+RL); A= c+c?(1+RL);




D, = cos w¥; D, = «"!sin wk;

D, =2k"%(1-cos wk );

Dy, =—’) 3 '(’l-x)-(F*x ) cos wx - (I'- 2x%)cos? wx ) ;

Dy = 7‘ (2 (- 2&°%) sin wx (1 -cos w*)};

Dy, =4 « '(r-r.&’) - (2I-k*)cos w* + (I~ 2x%)cos® w*};

DlL‘=?‘,x"‘ (-4(20- k%) + 4 (T+ &) cos w* + 4 (P- 2x”) cos’w# +
+ (60+3x% +3k* )w* sinw*};

D, =-; S ((er+11x®+3x* ) sin w* +4 (I'- 2c* ) sin w¥ cos w#

- (6T +3x? +3k*) wx cos wk};

Dgy =5 k6 ((20T+20k2 + 3x* ) sin w - (16T + 28«2 + 3x4) cos w +
-4(r- 2x )cos w¥- (12T + 6k + 6k )w*smw*}

D.“ = %K.{"(z- SC) A{K cos WT- (2- 3C)cos\w&-~c) +ex” '(COSW *-1);
D = (2-5¢) af{e™ sinwlcoswt -k~ sinwk );

Dy = #k 2™ (2-5¢) 1A {-k%cos® wT +2¢ cos w + (2-3c)) +
+ k-2 (cos wk - 1),

(3, 16)

3d: Imaging properties of the tovoidally curved electrostatic
sector field.

For the case of plane boundaries and normal incidence and
exit of the main path, the relations of the parameters in the
object space and the boundary conditions read, similar to (2, 43):
(See Fig. 7)

Equipotential 1
surface ¢=0

R
i

ug = (1L /r, )ey; @e + (11 /r, Jal; (3.17)

o (l'e/l‘c )aze g 6/re" az aze * (lé /I'e )at‘ a‘l.ﬂ'

From relations similar to (2, 44)-(2, 46) we find the radial
second order approximation of the ion trajectories in the image
space:
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Yo = T (Ki@e + KoB+ Kij@e + KipaeB + KgaB”+
e K33Qzez+ K34aze(6/re) + Kyg (é/re )2 } +
+ %o (L @y +LgB+ Lo+ LB+ Loy +

+ Lgg a2 + Liggay, (8/1,) + Lig(8/re)?);

and the first order axial approximation:

Z9 E r;:{IIL“IerrI‘!r(é/re )} * )(2{133‘1'23+ P4 (6/!‘3)}.

The coefficients K;, L II;, P;, are given by:

Ky =k try(le/r); Ko =Koy
Ky =8y, 0o QL/2 ) +iKg,, @L/r,)%;
Ky =Ko, Kaop (14/7, ); K o = Koo
Kag = Kg3,* Kasp (1(':/1‘e ) + Kgao ay/r, ¥
Kay = Kggot K34b(l;/l‘e ) Ky “K s
L= xg, * a0 /r ) Lo= o
Lyp % Xgqe * Xpp@L/5.) # Xy Q800
Lig = Xyp + Xp(l/r,) L= Naps
Lag = Agg, + Aagp(ll/r,)+ Agae 1L/, )%
L34 =Agqa T be(lL/I‘e); L44=)‘443'
o= x (1('2/1'e P [ R TR

P, = pg, + Pap (1;/1‘3 ); Py =pg,-

(3,18)

(3,19)

(3, 20)

(3,21)

(3, 22)

(3, 23)

In case of normalincidence and exit of the main path at plane
boundaries, the coefficientsk;, A, 7;, and pj, are given by &j,
/\i,ﬁi, and Bi respectively, which read with the abbreviations:

k= (2-c)}; o* = ko ;
e e

L2 -
I'= 3C-3—2C (1 ‘i"R.:3 );

6T = ctg ;
A =c+c? (1 +R:,_).

(3, 24)




s PFE
5

11

o

1lc

I I B R |

3

33b

X1 R

33c

> A

11b

) A A

1
5

33a
33b

33¢c

= k™! sin é:; 'zn; = cos d;e’";
= 2x~2(1 -cos¢e’" );

=3k ((T+k2) - (20-k2)cos ¢* +(I-2k%)cos?s*);

=3k {(2T-«?)sin¢X* -2 (I'-2«%)sing* cos¢*);

=3k-2 ((2D-«%) - (T+«”)cos ¢* -(I-2k?)cos?¢*};

=3k-5 {(2I+11«% +3k*) sin¢¥ +4(I'-2«*) sin¢* cos¢* +
- (6r+3k? +3k*) 90X cos ¢ X);

=3k-4 (-4 (20-k?)+4(P+k?) cos ¢* +4 (I'-2¢*)cos?®¢¥ +
+ (6T+3x” +3x*) ¢ sing * ) ;

=3x8 ((200+20x% +3k*) - (167+28k% +3k*) cos ¢ +

-4 (P-2?%) cos?¢* -2 (6T'+ 3x? +3x*) ¢ ¥ sind *};
=ik-2c! (2-5¢)" A-k%cos®¢ T + (2¢) cos 6 +(2-3¢)} +
+ k"2 (cos ¢F -1);

= ES% = (2--5c)'1A{c'* sin ¢CT cos dbeT- k~1sin d::‘ )
=Ky “3Kgp™

L2 (2-5¢)™! A(x20052¢eT - (2-3c)cos ¢ -2¢}+
+ck"2 (cos ¢ -1).

(3, 25)

n

g 3 e : * .
cos¢X* Ay = -ksing ™
2«71 sin ¢ .*;
=13 ((2D-k?)sin¢* -(2T-«%)sing* cos ¢, *}
k™2 (-2 (2I'- k%) cos?¢* + (2T - k?)cos ¢.* +(20-k%));
k! {(P+«?)sing X +(2I- k*)sin ¢ * cos ¢ ¥};
K

e’
-4 (4 (20- k%) cos 2 * -2 (2T-k?) cos ¢ * -2 (2T- &%) +
+ (6T+3k% +3k*) 8 X sin¢ *);
=1k ((2T+5«% +3¢%) sin ¢ -4(2r-«*)sin¢X cos ¢ ¥ +
+ (6T'+3k2 +3k%) 6 X cos ¢.*);
5 k™8 ((4T+10x? -3«*)sin¢* +4 (2I-«*) sin ¢ *cos 6 +
- 2(6T+3k% +3x*) 6> cos 6. )
= (2-5c)'1A(c'isin d»eT cos ¢J -k sin¢X}-x"1 sin X
= -)\3“ = (2-5c)'1A{20032¢J -cos¢F -1);
¢ XM; > %33% T
= (2-5¢)A(~ctsin ¢ Tcos ¢ T +4(2-3c) k' sin g *}+

- 2ck~1 sing.” .

u "
€0 It 1= o s cof
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ctising I

3a

Sh T Mg 533 = cos ¢J; (3,27)
g6 wipy, e -t sindJ.

Retaining the symmetry with respect to the median plane,
oblique incidence and/or exit could be realised by making the
sector angle of the electrodes different from that of the main
path. However, this would complicate the definition of the
"boundary' considerably, as it would introduce a field com-
ponent E, parallel to the main path. In the previous calculations
this component E,, was assumed to be zero.

A curved boundary with the axis of the curvature normal to
the median plane, would also introduce considerable complica-
tions, and would be far from easy to realise in practice.

However, a curved boundary with the axis of curvature in
the median plane may be realised readily by shaping the ends
of the deflecting electrodes correspondingly.

Unlike with the magnetic sector field, the fringing fields here
do not produce effects which are independent of their shape,
as the first order axial focusing and image curving effects in
the magnetic case. Therefore, their influences are fully within
the scope of chapter 5, and need not be discussed here.

Fig. 8. Curved entrance boundary.

We will now discuss the effect of a curved entrance boundary
as shown in Fig. 8. Its radius of curvature R is said to be
positive if the boundary is convex towards field-free space,
asitisin Fig. 8. From considerations analogous to those used
in the preceding chapter (Kénig and Hintenberger3%), it may
be seen that the ions are subjected to an extra angle of deflec-
tion 6,:

(3, 28)
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As 6, is small of second order, its influence is accounted for
if we replace a, in (3, 18) by aJ*:

a:=ae +6,, (3, 29)
and 1! in (3,20)~(3, 21) by 11*:
1% = 1! a jo¥. (3, 30)

Similarly, a curved exitboundary with radius R, produces
an extra angle of deflection &, at the exit side:

2
6, = -4Y W) X (3,31)
Ry

which gives rise to an additional term -X, 6, at the right hand
side of (3,18). Combining these arguments, we see, that the
coefficients Kis X js 7, Pi, fora toroidal condensor with curved
boundaries maybe expressedin the corresponding coefficients
for plane boundaries:

Kia = Kias Kip = Kip s Koa = Kga; Kila = K11a;
Kiib S Kup ¢+ Kyie T Kjle 5 Kiga SKiga s Ki2a = Kigb s
Koga = Koga 5 K3y = K 3325 K3z3p = Kgda = Kaap s
- peap \ o SN S cry « ’
K3se = Kqaa = 2Kggp = Kaze + Ky, (re/Ry). (3,32)
Aa= A1 Agp = Ay Aga = Aoyl Adja T Aqga
A'1“:)= _Allb ; AllC= Allc; A 12a =.X123 ; Al?b ) >‘1‘2b'
c y = L= 2 :
A223 3 A’223 2 A‘338- .X-S.'Sa + 2 7’.33 (re/R“):
Aagp= Agga = Xggp + Tga Mgy (T /Ry
- w5 £ i / L
A3ge= Agaa = 3 Aagp = Agge +E Ny, (r./ Ry) + 3 Tap%(r, /Ry).
(3, 33)
Ta M3a? Tap  Maa Pgy ™ Tgp® Pap ~ Py “Pgyr  (3,34)

The focusing properties of the toroidal condensor as expressed
by (3,18)-(3,27) are equivalent to the expressions derived in
a different manner by Ewald and Liebl !°. Essentially the
same method for the calculation of the effect of curved boun-
daries was used by Liebl and Ewald ®, who specified their
result to the case L ;=0, which condition is met in most mass
spectrographs for photographic detection.




3e: Discussion.

Analogous to section 2g in the preceding chapter, we see that
first order radial direction focusing occurs at the radial image
distance:

" = -
1 re(Kl/Ll), (3, 35)
which may be expressed in the conventional form:
| It 1M Ty = 2 -
(1 -g)Qa; -g")=1% (3, 36)
where: (Ewald en Liebl ?)

" cot ¢ *

glsigisan s e o (3,37)
K

T o A (3, 38)
Ksinée*

Inaxial direction first order direction focusing occurs at the
axial image distance 17, :

L A « «
1Y o (IT,/ B, ), (3,39)
which is equivalent to:
e W= "y — 2 4
( -gL) Q) - gl =12 (3, 40)
T
gl =gl=r, cotde ; (3,41)
: ct
r

fE R iy (3,42)
2" ciging,
The velocity dispersion for a beam of ions of the same mass -
to - charge ratio, per unit év/v, = B, equals:

D, = ro {Kg- (Ki/Lj)Ls}. (3, 43)

Analogous to (2, 93)-(2, 94) and (2, 97)-(2, 98), we have:

Mang L T (3, 44)
N o= iy M4 (3, 45)
L B i (3, 46)

ang 82
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VA
lat

M2 =1/P,. (3, 47)

The image broadenmg with a monoenergetic ion beam, at
the image distance 1 due to the second order angular aber-
ration equals:

2~ : 2.
Apal=r, {Ku' (hl/Ll)Lll}ac ; (3, 48)

due to the sagittal second order angular aberration:
20 20
A 5@, = T, {x a3~ (K,/L )L 33}"ze ; (3,49)
due to the agammatism:
A g, (8/r,) = T {Ky - (Ky/Ly)Lg}a,(s/r,);  (3.50)
and due to the image curvature:
2 ‘
A (s/r)? = r (K, - (K /L)L, (8/r)2. (3,51)
For an ion beam, travelling in the object space parallel to
the madian plane (a,, =0), the radius of curvature of the image

R im is found by elimination of (6/r,) from (3,19) and (3, 51):

1 {I,- (K,/L,)P,}?
KM'(Kn/Ll)Lu

R (3,52)

im e’

Whereas curvature of the boundaries of a magnetic sector
field affects the second order aberrations in the medlan plane
(i.e. those proportional to am2, to a B and to B) with an
electrostatic sector field it affects the remammg second order
aberrations outside the median plane (1 e. those proportional
to @,.% to @, (6/r.), and to (6/re)?). It will be shown in
chapter 6, that this statement remains valid for a tandem ar-
rangement of an electrostatic sector field plus a magnetic
sector field witha common median plane. At least in principle,
four of the six relevant second order aberrations may be eli-
minated by a suitable choice for the radii of curvature of the
boundaries.

The general case of the toroidal condensor comprises two
importantspecifications One ofthese is the sphevical conden-
sov, with ¢ = R} = +1. It provides stigmatic focusing, as the
radial and the ax1al image coincide.

The second, more widelyused, specification, is the cylindrical
condensor. (c = 0; R! = +1). Expressions for the coefficients
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Ki, Ai, for the median plane of a cylindrical electrostatm sec-
tor f1e1d were published by Hintenberger and Kb®nig °°; their
results are identicalto (3, 25)=(3, 26) with the approprlate spe -
cifications.

3f: Symmetvic arvangement.

Inan arrangement where the object and image distances are
equal, and where the plane w = ¢./2 is an additional plane of
symmetry, we have:

1 =10 = g SO (6772, (3,53)
K

M ang= Mlal = Max =-1; (2108

D,=4r,/k>. (3,54)

If the condensor is also cylindrical, ¢=0 and x=\/§, and thus:

cot (¢./ V2)

I M M S it A (3, 55)

(3, 56)




CHAPTER 4

SHAPE OF THE POLE SHOES AND DEFLECTING
ELECTRODES

4a: The scalar magnetic potential.

The scalar magnetic potential #  is related to the magnetic
field strength B through its definition:

B - - grad L (4,1)

which determines ¢, except for anadditional constant. We will
choose this constant such as to make ¢, = 0 at the main path.
Then ¢, =0 in the median plane, and ¢, is anti-symmetric
with respect to the median plane.

Retaining terms up to the fourth order in B, we find from
(4,1) and (2, 27)-(2, 32) with (2, 34)-(2, 35):

¢ /B = -v+nuv +1{X(1-n)-2nlu?v -3 1X(1-n)-n}v? +
- C; udv + {%n— -,I:X(l-n)'fCa}uv3 +

o
4 L 1 2.9
- C,u’v + {— g g X(1-n)+5C; +2C4}u A

1 1 1 = X ;9
+{kn- HX(1-n)- LC,-1C i+ ... (4,2)

The so far undetermined coefficients C3 and C4 define the
fourth and fifth order contributions to the scalar magnetic po-
tential, and appear in the third and fourth order approximation
of the ion trajectories.

If the permeability of the pole shoe material is very high,
their surfaces are very nearly equipotential surfaces for the
scalar magnetic potential. We will start with this approxima-
tion, and estimate the effect of the finite pole shoe permeabi-
lityin sect. 4d. At first we will assume infinite radial exten-
sion of the pole faces. The deviations caused by the finite exten-
sion are small at a few gap widths away from the edges. A
mezans for extending the usuable region is given in sect. 4e.

Inthe following section we will deduce the required shape of
the pole faces for creating a specified field shape, whereas in
sect. 4c we will deduce the field shape from a given pole face
profile.
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4b: Shape of the pole faces required for the elimination of the
second ovder angular abevration in a symmetvical arvange-
ment with normal incidence and exit at plane boundaries.

Inserting p =0 in (2,114), we find that A, vanishes in this
case if:
_ 3(1-cosé,)

*
cos d)m +5

X (4, 3)

The second order approximation of the ion trajectories does
not justify a preference for any of the infinite number of field
shapes differing only in the contributions of the third and higher
order terms C,, C,, .. etc. The pole face profile for any of
these field shapes is best found by an iterative process. Writing
(4, 2) in the form:

¢./B=f (u).v+f,).v:+f (). v>+... (4, 2a)
I 4 pr-con (mm) I
+05_ 4 +0.05
-0
-0.5 | L-0.05
I
-1.0] -0.10
.15/ b e e SO ) =015

-75 -850 =25 0 25 50

Fig. 9. Pole face profiles forn = 0,91; X = +0,22131; r, = 200 mm; 2b = 20 mm. L C3 =
C4=0, II: Cg = =0,75348; C4 = +0,68563. The ordinates represent the differences in the
distances from the median planc between the profile and the conical shape for n = 0,91,
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and specifyingthe circle u,, v, which should be included in the
pole face in question, the iteration proceeds along:

vy, v,) = @ (4,4)

lTIO;
PmolB - £, (). v.3 = f5(u).vp5 - ...
£,(u)

v (u) = (4,95)

n+l

Fig. 9 gives the deviations from the conical shape of two such
profiles. With the sector angle ¢y =7, and n = 0.91, A
vanishes in this case if X = +0.22131. The calculations were
made assuming r , = 200 mm; and a gap width 2b = 20 mm.
The abscis is the radial coordinate r-r ,; the ordinate is the
difference in the distances from the median plane of the profile
in question and the conical profile resulting in n=0.91. Both
curvesland II refer to n=0.91; X=0.22131. InI, C3 = C4 = 0.
Inll, C, = -0.75348; C4 = +0. 68563; these values occur in the
field shape between conical pole faces with n = 0.91. With
conicalpole faces, we have X = 2n = 1. 82, as will be shown in
the following section, resulting in A,, = +7.2238.

4c: Field shape with conical pole faces.

It was demonstrated in the preceding section, that although
in principle any desired field shape may be realised by appro-
priate shaping of the pole faces, very small deviations in the
pole face profile result in serious deviations in the field shape.
These complex surfaces are difficult to machine with the re-
quired precision.

A conical profile, however, can be machined and measured
with a much higher precision. A curved entrance and/or exit
boundary in such an arrangement can eliminate the second
order angular aberration.

For the calculation of the field shape between conical pole
faces, we useagainthe scalar magnetic potential ¢,. Defining
the conical profile by:

v =au+b, (4, 6)

we must find the parameters which satisfy the equations:

Ay o 0%
al-) u=0,v=b - ~\du / v u=0,v=b -~ & (4.7)




d*v N
du® | u=0, v=b

(-(a%m [au*)(de av)? -(a”vm /av*® )ae /au)‘~‘+2(a%w [oudv)(de_ /du)(ae /ov)

= 0.

(8o Jav)®
8 u=0.v=b

(4, 8)

If we expand both a and X in a power series in b, and equate
terms with equal powers of b at both sides, we find from (4, 7):

a = nb + terms proportional to b3; (4,9)

and from (4, 8):
X = 2n + terms proportional to b%. (4,10)
The accuracy of (4, 9)-(4,10) is amply sufficient for nearly

all practical cases. More accurate expressions are (Boerboom,
Tasman and Wachsmuth 39):

a=nb +én(1-n)b3+ (4,11)
X=2n+—;n(1-n)b2 s (4,12)
Cy = -n® +In(l -n)®(1+2n)b® + ... (4, 13)
C4=n4-én(1-n)2(1+2n+3n2)b2+... (4, 14)

4d: Influence of the finite pevmeability of the pole shoe material.

Due to the finite permeability of the pole shoes, their surfaces
need not be equipotential surfaces for the scalar magnetic po-
tential. Remanent magnetism may contribute to the field, but
it is unlikely to have appreciable influence on the field shape
at inductions above 1000 Gauss, which are of main interest in
mass spectrometry.

If the flux density at the transitions between the yoke and the
pole shoes may be assumed to be homogeneously distributed,
the situation is equivalent to that with slightly thinner pole
shoes with infinite relative permeability u, their thickness
being multiplied by (u-1)/u. If the excitation current is in-
creased such as to restore the desired field strength at the
main path, the finite permeability results in a decrease in the
effective value of n:

u-1 -
s 2o : 4,1
M eff » (u=o0) (4,:15)
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The relations (4, 11)-(4, 20) remain valid if n off 1S substituted
for n.

Complications arise due to the dependence of the permeabi-
lity on the induction. To get an idea of the order of magnitude
of this effect, let us suppose that the pole shoe thickness is
about equal to the gap width, and that in a layer of about half
the pole shoe thickness adjacent to the gap the induction cor-
responds tothatinthe gap whereas in the rest of the pole shoe
itis homogeneously distributed. The field strength in the median
plane is roughly inversely proportionaltothe distance of the
"virtual" pole faces, which has increased due to the finite per-
meability of the "inhomogeneous layer' by the factor u/(u-1).
Considering onlythe first order term in the field shape expan-
sion, we find from (2, 33):

_a(lnB)=n

{l-d(l/u)/d(ln B)} (4, 16)
d(lnr) (u=const.)

ns=

Figs. 10 and 11 represent 1/u andd(1/u)/d(In B) respectively
for some soft magnetic materials according to the manufac-
turers'specifications. For these materials the effects expres-
sed by (4,15)-(4, 16) are negligible as compared with the in-
avoidable machining inaccuracies in the region between 100
Gauss and the induction at maximum permeability.

hx10*
15 f x 2 b8 HYPERM 4
Vo ™ N 3 s VACOFLUX 50
i N | §i ——RAFOPERM N3
8 S i i - VACOFLUX MASSIV
o A N P b ____HYPERM (D 35
'l TR S 1 §i ~«<HYPERMCO 50
NS N - O ARMCO
L N, : 14
5 | i \\\,'.f: 1,:
Pns i
' Al
. <£7 B (6auss)
0, L THSL 0, Al g e
100 1000 10000
Fig. 10. 1/u asa function of the induction of some soft magnetic materials, according to

the manufacturers’ specifications for the properly heat-treated condition, (Trafoperm and
Vacoflux: Vakuumschmelze A, G. , Hanau, Germany; Hyperm: Fried. Krupp Widia Fabrik,
Essen, Germany; Armeo: Armco Corp., Middletown, Ohio, USA.)
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Fig. 11, d(1/a)/d(1n B) asa function of the induction for the same materials as in Fig. 10,
according to the manufacturers' specifications.

These predictions were tested with anactual set of conical pole
faces. These pole faces were mounted with a gap width 2b=22 mm
atthe radius of the mainpathry;, = 200 mm, and extended radial-
ly to -28 mm and +32 mm from the main path.(Fig. 12, ) The cone
angle was calculated to obtain n = 0.91. The pole faces were
very carefully machined, heat treated, and ground from Tra-
foperm N-3, whichisa 2. 9%Si-Fealloy, made by the Vakuum-
schmelze, Hanau, Germany.

Spacing ring Main poth

Water cooling Correction turns

Pole shoe

——

rmi200

Fig. 12. Radial cross section of the pole shoe mounting. On the pole faces water cooled,
copper disks are shown, carrying the correction tums discussed in sect, de.
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The field shape was measured witha Hall generator (Siemens,
Type FA 21), with a specified sensitive area of approximately
1.5x 3mm?2. In the mounting in the probe, the larger of these
two dimensions was in radial direction. The position of the
sensitive area was established by moving the probe between
two opposed magnetised sewing needles. By comparison of the
resulting signal as a function of probe position, with the cal-
culated field between two opposed magnetic charges at a dis-
tance of the needle tip-to-tip distance plus twice the tip radius,
the effective extension of this sensitive area in radial direc-
tion was found to be smaller than 0.3 mm. The readings were
taken as point readings.

The particular Hall generator was calibrated against proton
resonance. Attempts were made to minimise temperature fluc-
tuations by thermal insulation of the probe, which was not ther-
mostated, however. No temperature correction was applied.
To reduce the internal heating of the probe and the thermal lag
through the change in resistance in varying fields, the Hall
generator was supplied with only 20 mA, controlled by meas-
uring the voltage developed across a 100 Ohm resistor with
a precision comparator. The Hall signal was compared with
a voltage derived from a mercury cell with an appropriate
series resistance through a "Dekapot' decade potentiometer
with 10 p. p. m. resolution. A Hewlett-Packard Model 425A mi-
cro-volt-ammeter with a sensitivity of £ 10 uV f.s.d. served
as a null detector. By very careful shielding, using shielded
batteries for the probe current and the comparator current and
a moving coil galvanometer for the null detector inthe compa-

[(uo.sru)—gla-fjlo:’

'3 T T T T T
-15 ~-10 -5 0 S 10 15

—— =y (mm)

Fig. 13. The "error-curve" of the field shape, (1 + 0.91 u)B/B, - 1, asa functionof r = r.;
a: without correction turns; b: with the current distribution through the correction tums as
shown in Fig. 15.
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rator, the total noise and short term instability could be reduced
toabout + 0. 5 4V, corresponding to an accuracy of 1 : 2 x 10*
at 10 kiloGauss, or 1 : 2 x 107 at 1000 Gauss. The voltage of
the mercury cell was found to be constant to about 1 : 10° over
the time needed for the measurement of about 30 points of the
field shape. The magnet current was also checked on the com-
parator, and found to be constant to about 1 : 2 x 10" over the
same period.

From (4, 9)-(4, 14) it follows that the field shape between ideal
conical pole faces is given by B, /B = 1/(1 + nu), where u =
(r-r m)(rm.

The "error-curve', (1 +0.91 u)B/B, -1, as a function of
r -r ., was found to be independent of the induction at the main
path B_, within the accuracy of the measurements, fcr induc-
tions %o from 1000 Gauss to 12 kiloGauss. Withoutany cor-
recting device for the finite radial pole face extension, a region
ofabout 7 mm in radial direction corresponded to the theore-
tical prediction within the accuracy of the measurements.

4e: Influence of the finite vadial extension of the pole faces.

Calculations and measurements 943 have shown, that the
influence of the edges is negligible at a few gap widths away
from the edges. See also Fig. 13. With a gap width 2b much
smaller than the radius of deflection ry,, one may discuss the
effect of one edge independent of the other.

In Fig. 14, twocurves B, /B, as a function of the radius, are
shown, taken from the measurements of Septier * on plane
parallel pole faces. One of these applies to the median plane
z = 0, theother to z =+ 0.8 b. If one is only interested in ex-
tending the region with approximately the correct field shape
inthe median plane, one may decrease the gap width near the
edge to compensate for the decrease in B, /B, (Fischer 20,
or apply alternating ridges and grooves (Mates 45 | Zilver-
schoon % ). Outside the median plane this procedure is es-
sentially incorrect, however.

Somewhat similar objections may be made against the use of
tangentially arranged correction turns on the pole faces. This
device presents an adjustable correction, however, and was
tested with the pole shoes of Fig. 12. The tangential correction
turns were mounted on water cooled copper disks, laying on
the pole faces. With an appropriate current distribution, the
"error-curve'' of Fig. 13b was obtained, showing a "correct
region' of about 20 mm, whichis to be compared with Fig. 13a.
Fig. 15 shows the applied current density along the profile in
Ampére-turns/cm for B, = 7500 Gauss.
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Fig. 14. B, /B, as a function of the radius, from the measurements of Septier 44, The curves
apply to the median plane z = 0, and to z =% 0.8b.
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Fig. 15. Required current density through the correction tums for correction with By = 7500

Gauss, in Ampere-tums/cm. The sign is taken as positive where the positive current
| flows parallel with the positive ion current.




4f: Effect of fringing fields.

For the case of an electrostatic deflectmg field, extensive
calculations were made by Herzog *®, who showed that the
extension of the strayfields may be reduced and their influence
compensated by placinga grounded shield near the entrance or
exit boundary. The arrangement is shown in Fig. 16, where
the thickness of the shield is assumed to be large. Fig. 16
represents a cross section which is assumed to be independent

—\ arccosq
11 arccosp

7

e - %
e oS

Fig. 16. Thick fringing field shield for an electrostatic condensor.

of the z-coordinate (normal to the plane of paper). The ex-
tension of the stray fields was assumed to be short as compared
with the radius of deflection of the main path, and the deflection
in the stray fields should be small of first order.

It follows from Herzog's calculations, that the effect of the
stray fields maybe replaced in good approximation by a hypo-
thetical field, extending undisturbed by the boundary to a
distance g outside the mechanical boundary, falling off abruptly
to zero at that point. If the potentials of the deflecting elec-
trodes are ¢; and ¢,, and that of the grounded shield equals
zero, Herzog found that £ is given by:

( 2 )
= _1_{_ arccos q + > arccosh 14pq _ 3 201-07) i+ ¥, 3,

m|b b p+q ptq 2U j

(4,17)

3
b
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where Uis the accelerating voltage of the ions. For reference,
Herzog's graphof (4, 17) for the case ¢, + ¢, = 0 is reproduced

here in Fig. 17.
I\//
o\

e rd 2 1 0
b

Fig. 117, Effective extension of the fringing fields of an electrostatic condensor with a thick
shield. The graph is symmetrical with respect to the line s/b = 0,

In case of a-symmetrical grounding, £ is modified somewhat
according to:

AS . 011 #tes (4,18)
b U

It follows that the effective extension of the fringing fields may
be reduced to zero bya proper choice of s/b and d/b. Then the
hypothetical boundary coincides with the mechanical boundary
as regards the angle of deflection. However, the stray fields
exert also a focusing action, consisting of two terms. One of
these, with radial focal lengthf,, is independent of ¢, + @,,
whereas the other term, with radial focal length f, vanishes
for ¢ *+9, =0. Infact, Herzog found that:
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T

b (arccos p - arccos (-q)) - arccosh 1224 + In 2(1-q3)

d p+4q p+q
(4,19)

2
be L _15(1 ?) -92 (4 20)
2 i :

: o b 9 +%

Asthe arrangement of Fig. 17 was supposed to the independent
of the z-coordinate, there is no axial focusing action. The cal-
culations of Herzog do not permit a calculation of the second
order aberrations of the fringing fields, but as f,/r,. is large,
no appreciable second order effects should be expected.

If the pole shoe permeability is sufficiently high, the situation
in case of magnetic deflection is similar. Now Fig. 17, with
the appropriate changes in coordinates, represents a tangen-
tial cross section. The grounded shield should be replaced by a
magnetically short-circuited ring. The sum of the scalar mag-
netic potentials of the pole faces equals zero, which causes the
last term in (4, 17) to vanish. However, if § = 0, there is no
radial focusing action due to the fringing fields corresponding
to (4, 19)-(4, 20), as their effectis independent of the radial co-
ordinate.

Unlike in the electrostatic case, the fringing fields at an obli-
que boundary exert an axial focusing action, as mentioned in
(2,57). Their effect on the image curvature was mentioned in
(2,104).

In the absence of fringing field shields, § as given by (4, 17)
becomes infinite, whichis a consequence of the assumed infinite
pole shoe thickness. Actual measurements with finite pole shoe
thickness resulted invalues for g /b ranging from 2.0 to 2.2 .
(Kdnig and Hintenberger **; Nier * ).

4g: Field shape of the toroidally curved electrostatic field.
The electrostatic potential ¢ obeys the Laplacian equation:

Vie = 0. (3,2)

Expanding ¢ in a power series inu andv around the main path:

[+ o]
¢=E A uivk, (3,1)
ik

i, k=0
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(where the symmetry causes the A;  with k = odd vanish), we
have the relation from (3, 1)-(3, 2):
(k+2)(k+1)(A i +A y=-(i+3)(i+2)A bk T (i+2)°A

i+1,ke2 i+2,k

(4,21)

The field shape may be defined through the A |
variables, together with the condition: :

o as independent

A =0foric0. (4, 22)

In the preceding chapter we used the quantities E,, c, and
R.' asindependent variables to express the imaging properties
up to the second order included. These quantities are related
to the A ; , through:

Eoz_l_(a_’) .- 20 (4,23)
r \ou/ u=v=0 Te
[
2 2 A
P S ) ,ﬁoz_,-(nzﬂ).u,u)
R, \0+(u/av)?}32[u=v-0 A, Ak
oR Agyhgg- A, Ajg ,
Re' =(.a?)u=‘]s0 == - A 2 E f (4’25)
02

Conversely, the relevant coefficients in the expansion (3, 1)
are equal to:

l+c, .
A00= U, A10=-I'EE°; A20= reEO (—é—") 3
A _=-r E c; A -—rE(l+c+£(l+R s
LR WETeTA g g e!fi  (4,26)
2
A12: I‘eEo C_+C_ (1+Re')
2 2

4h: Shape of the deflecting electrodes.

The toroidal radii of curvature follow directly from the to-
roidal radius of curvature of the equipotential surface compri-
sing the main path, R, = r, /c, and its first radial derivative
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R.'. Designating the radii of curvature of the electrodes by

e
Ra, r, + a, and Rb, Lot b, respectively, we thus have:

R

n

(re /c) +aR,";

% (4, 27)
Ry = (r, /c) - bR_";
The electrodes should be at potentials V_ and V, :
V,=U+r,Ej(-a+ }{1+c)a®); ., 28)
V, = U+r E,(b+ ¥1+c)b?).

The condition that the intersections of the electrode surfaces
witha plane w = const. should be parts of circles, defines the
higher order terms omitted in (4, 28). Liebland Ewald 24 quote
the following expressions for R, '< 0.5, which should be exact
to the third order:

201 _OR. )
R, s iy EiblcoR )};
a+k
2 :
Ry %{-b+k+k(l__2Rf_'_)}; (4, 29)
“b+k

R./(1-R.").




CHAPTER 5

ADJUSTABLE DEVICES FOR THE ELIMINATION OF
ABERRATIONS

5a: Scope of the adjustments.

For systems comprising either an inhomogeneous magnetic
or a toroidal electrostatic sector field, the calculations pre-
sented in chapters 2 and 3 determined the magnitude of the
aberrations up to the second order. Likewise, systems con~
sisting of a tandem arrangement of an electrostatic field, fol-
lowed by a magnetic field, will be discussed in chapter 6. In
all cases, the zeroth order aberration, as wellas at least some
of the first and second order aberrations, canbe eliminated by a
proper choice of the instrument parameters.

However, it seems desirable to incorporate some adjustable
devices to compensate the effect of slight deviations from the
prescribed parameters. In sect. 5f, an auxiliary device is
presented for the elimination of the image curvature, which
is not readily achieved by a careful choice of the instrument
parameters alone.

The discussion of the elimination of the first order velocity
aberration will be presented in the next chapter. The present
chapter deals with the zeroth order, and one second order aber-
ration and two first order aberrations:

1. The zeroth order approximation corresponds to the re-
quirement, that the trajectory of the main path should fit into
the instrument design for ions of the appropriate mass-to-
charge ratio and energy.

2. The image should be formed at the collector slit. Deviation
from the correct image distance 1 results in a first order
aberration.

3. The object and image slits should be correctly aligned,
i.e. they should be parallel to each other and normal to the
median plane of the deflecting field. Moreover, in a tandem
arrangement, the median planes of the deflecting field should
coincide. Misalignment results in a first order aberration.

4. The image curvature (62—aberration) is best eliminated
by an auxiliary device.

5b: The trajectory of the main path.

The accelerating voltage of the ions and the field strengths
in the deflecting fields should be adjusted to satisfy (2, 6)-(2, 7),
(2, 39). Moreover, some additional adjustement may be incor-
porated, either mechanically by bellow devices, or electro-
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statically by using variable deflecting fields. (Fig. 18). The
position of entrance and exit are affected by deflections near

Object slit Image stit

Fig. 18. Adjustment of the trajectory of the main path by variable electrostatic deflecting
fields.
the slits (A), whereas deflections near the field boundaries
(B) affect the angles of entrance and exit into the deflecting
field.

5¢: Adjustment of object and image distances.

In the usual symmetrical design of single focusing homoge-
neous field sector type mass spectrometers, this adjustment
may be effected by moving the analyser tube relative to the
deflecting field parallel to the plane w=¢, /2. This results in
a simultaneous change of the objectandimage distances and
of the radius of the main path. Only the ratios 1'y,/r; and
1}/ rm areion-optically relevant, andasan increase in 1}, and
1;;, is accompanied by a decrease in rp,, both variations act in
the same sense.

Complications arise, however, when the deflecting field is
inhomogeneous and for the boundaries are curved, and for ¢, =.
Now the adjustment may be achieved mechanically, or ion-op-
tically by placing an ion lens of variable strength between slit
and field boundary. Magnetic lenses are apt to introduce com-
plications with magnetic scanning, and rotate the image (see
sect. 5d).

Care should be taken in the choice of the type of lenses in
view of their aberrations. Systems withtwo planes of symmetry '
exhibit no second order aberrations, but their third order aber-
rations maybecome objectionable. For a rotationally symme - |
tric lens system, consisting of coaxial tubes of equal diameter
D, the order of magnitude of the aberration may be derived
from data of Zworykin %Y and Klemperer °!. Ions entering the
lens as a parallel beam at a distance r from the axis are focused l
at a shorter distance than the paraxial ions; for weak lenses
this difference in focal length is of the order of:
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2
A_f=1.5(£) ; (5,1)
£ D

These lenses are essentially positive. The object and image
distances should thus be made shorter than the prescribed value
to make them applicable. Except for very small adjustment
ranges the aberration (5,1) is so serious, that the advantage
of the facility is largely lost. These lenses compare unfavour-
ably with the deflecting fields in view of their aberrations,
because the distance from the axis is measured in units D in-
stead of in usually much larger units r ,, or re.

However, electrostatic quadrupole lenses with hyperbolic
equipotentials do not exhibit serious aberrations except for the
influence of the end effects, which is proportional to the open-
ing-to-length ratio.

5d: Alignment of the object and image slits.

Rotation out of its correct position over the angle ¥ of an
image slit of height h, corresponds to an image broadening h¥.
Misalignment of the object slit may be taken into account sim-
ilarly as a virtual object broadening.

The obvious way of correcting misalignment is rotating the
slits mechanically into their correct position. It is also pos-
sible to incorporate a device for the continuous rotationalad-
justment by means of electrostatic or magnetic fields.

A quadrupole field with the potential distribution
¢=1U + Vyz, (5,2)
and with the field components

Ey=-Vz, (5, 3)
E,=-Vy, (5, 4)

placed near the corresponding slit, exerts a rotating action.
The equipotential surfaces are hyperbolic cylinders. Fig. 19
represents a cross section with a plane x = const. The field
may be generated by hyperbolic cylindrical electrodes or ap-
proximated with circular cylindrical electrodes.

At first, we assume the quadrupole field (5, 2) to be present
over an effective length L, starting at a distance D from e.g.
the object slit. (Shaded area in Fig. 20). Consideringa trajec-
tory emerging from the slit withay =@, =0; 6 # 0; we find
from (5,3) for the point where it leaves the quadrupole field:




Fig. 19, Intersection with a plane x = const. of the quadrupole field (5, 2) for virtual slit
rotation.

Lé; (5, 5)

y, = -% 5%, (5, 6)

Hence the path seems to come from a virtual object point,
displaced over the distance A:

A=(£+D)I_-‘X5; (5,7)
2 2U

777777 P

Object slit W\
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whichis equivalent to a virtual rotation of the object slit over
the angle:

3-2-LipLV, (5, 8)
5 2 2U

Fortrajectories with a,,, # 0, the above reasoning remains
valid, provided that:

)

«l———.
zL+ D

(5,9)

azm

Trajectories with e, # 0 undergo an irrelevant deflection in
the z-direction due to (5, 4).

Inthe arrangement of Fig. 20, the virtual slit rotation is ac-
companied bya deflection of the trajectories outside the median
plane. Rotation without resulting deflection is possible by an
arrangement as in Fig. 21, where the available length L is
divided in two parts of length L./2, in the second of which the
parameter V is made the reverse of that in the first part. At
the exit of the second part we now have:

dy,/dx, = 0; (5,10)

2
y1=A=—LV6; (5,11)

8 U
and thus:
2

e i, (5,12)

8 U

%
Dbjectslit V. /A \ Xy
o = 4 //\ % e E
Al’ b b B e \
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The restriction (5, 9) remains unchanged. The resulting rot-
ation is smaller than (5, 8), and in the opposite sense.

Itis also possible to rotate a slit virtually by means of a long-
itudinal magnetic field. As maybe derived from Busch'theorem
{Pierce 52), amagnetic field component B, in the direction of
the main path causes rotation of the beam over the angle:

b
9= -;—Ve fodx=L Bx dx. (5185
2mUa Zrm B, 2
a

The integralis to be evaluated along the main path, where the
longitudinal field is supposed to extend from x=a to x=b. B, is
the magnetic field strength at the main path in the deflecting
field.

Besides a rotatingaction, a longitudinal magnetic field exerts
alsoa focusingaction, actingas a (weak) lens with focal length
f given by:

B

o

b 2
. (B—) By (5,14)
ma

Ifthe distancea - bis not small as compared with r,, the fo-
cusing action accompanying small rotations is neglegible.

5e: Correction of the image curvature.

An electrostatic hexapole field maybe usedto create a virtual
object or image curvature, which may be made the reverse of
that produced by the rest of the system, such as to result in
an image free from the § -aberration.

The arrangement, illustratedin Fig. 22, consists of six thin
cylindrical rods with radius ry, intersectingthe plane of draw-
ing orthogonally at the corners of a regular hexagon with
sides Ry. The voltages applied to the rods should be alterna-
tively positive and negative, of equal absolute magnitude with
respect to ground.

Let us first treat the rods as line charges. The field strength
caused by one line charge is inversely proportional to the dis-
tance tothat line charge. As follows from symmetry considera-
tions, the potential along the z-axis is zero, and consequently
the field strength at the z-axis has only a component Ey. The
y-axis is a line of symmetry, and consequently the field strength
alongthe y-axis has onlya component E,. By vector addition of
the contributions from the six line charges we find:




73 -

Field strength along the z-axis:

K 6(z/R))* .

E (z-axis) = bl 2 (5, 15)
Ry L + (z/R )

Field strength along the y-axis:

2
E, (y-axis) = — _8G/Ry) | (5, 16)

R, 1- (y/R,)®

Taking the origin at zero potential, we find the potential along
the y-axis by integration of (5, 16):

V (y-axis) = K In 1+ O/Bn)”® | (5,17)
1-(y/R,)?

The factor K is proportional to the charge per unit length.
Now assuming thin rods with radius ry instead of the line
charges, the relation between K and the voltages on the rods
V, reads:

o 3
Vv =tk 1PUA" oy gy 2 (5,18)
1-(1-q)} 3q
where:
q=r /R «l. (5,19)
Writing:
2 .
Q=6/In_—_, (5, 20)
3q
we have:
2 3
E (z-axis) = iQZ_/RL,lV,I A (5, 21)

1 (Z/Rh)6

The upper signin (5, 21) applies to voltages with signs as indi-
catedin Fig. 22; the lower sign when the signs of the voltages
are reversed.

Ifthe hexapole field extends over an effective length L starting
at a distance D from the object slit (Fig. 20), the virtualdis
placement A of the object point equals:




O | O
+

‘ &

Fig. 22. Electrostatic hexapole field for correcting the image curvature.

2 2
AT L+ 2LD. % Q lvr,» (5'22)
4U Rg

provided that the condition (5, 9) holds. The object is thus curved
virtually with a radius of curvature R,; equal to:

- 2U Ry, '
(L2+2LD)Q| V; |

Ry 3 (5, 23)

However, this effectis accompanied by a radial deflection of
the trajectories outside the median plane. Continuously variable
virtual object curvature is possible without remaining radial
deflection by an arrangement as in Fig. 21, where the signs of
the voltages in the second part of length L/2 should be the re-
verse of those in the first part. Then we have:

4U R}

R e | L (5, 24)
i MY
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the sign of the curvature being related to the voltages in the
first part.

A hexapole field near the image slit influences the image cur-
vature inthe same way, andthus a straight image is obtainable.
Strictly, one hexapole system placed somewhere between object
and image slit suffices to eliminate the §2-aberration: however,
if the condition (5, 9) does not apply, the relation between the
resulting object or image curvature and the applied voltages
is not of the simple form of (5, 23) or (5, 24).




CHAPTER 6

ION OPTICS OF THE DOUBLE FOCUSING
MASS SPECTROMETER

6a: Radial imaging properties of the tandem arrangement; fivst
ovder double focusing.

In a tandem arrangement as considered in this chapter, the
ion beam passes at first through an electrostatic deflecting
field, and subsequently through a magnetic deflecting field, not
overlappingthe electrostatic field. It will be shown, that by a
suitable choice of the parameters at leastthe first order veloc-
ityaberration at the position of the mass spectrum may be elim-
inated, producing animage which is in first order independent
of the velocity spread or energy spread of the ion beam. Thus
one of the limiting factors in the resolving power of single fo-
cusing mass spectrometers is eliminated.

The discussion will be restrictedtoa combination of two sec-
tor fields in the sense as defined in chapters 2 and 3. The in-
fluence of the stray fields as expressed by (2, 57) is accounted
for. The influence of the stray fields on the image curvature
(2, 104) will be mentioned lateron.

At first we will assume the ions to be of mass m, and charge

e , and use B to denote the relative velocity deviation:

o’

i (1+B). (2,37)

Fromnow on we will use « to denote the radial aperture angle
in the object space:

a = - dyl /dxl, (6, 1)

and o, toindicate the axial aperture angle in the object space:
@, = - dz, /dx;. (6,2)

We will express the trajectories in the general coefficients
(3,20)-(3, 27), (3, 32)~(3, 37), (2, 49)-(2, 56), (2, 75)-(2, 78). With

the abbreviations:

[K] = Ko+ K,B + K,a’+K,oB+ K,,B° +
+ K, 2+ Kya,(6/r,) + K, (6/r,)% (6, 3)
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[L] = Lia+ Ly + I_,“arZ + LB + I_..z;_,ﬁ“2 +

+ Lwaz‘n’ + L34az(6/re) 4 L“(élre):; (6, 4)
(T]= Dya, + Hu(6/r,); (6, 5)
[P] = P3QZ+P4 (6/re); (6, 6)

we may write the expressions (3, 18)-(3, 19) in the form:

r, [Kl+x, [L]; (6,7)

Yo

Z9

r. (M+x, [Pl (6, 8)

The deflection in the magnetic field may be either in the same
sense as inthe electrostatic field (Fig. 23), or in the opposite
sense (Fig. 24). The magnetic field sees the ion trajectory as
if it originates from an object at the object distance:

Fig. 23, Deflection in the same sense. Projection on the median plane.

1I' =d+r,[K]/[L], (6, 9)
whereas the aperture angle equals:

o =% (L), (6,10)

m




Fig. 24. Deflection in the opposite sense. Projection on the median plane.

The upper sign refersto deflection in the same sense, the lower
to deflection in the opposite sense.

The axial component of the trajectory is independent of the
sense of the magnetic deflection. Thus Fig. 25 refers both to
deflection inthe same and inthe opposite sense. The object for

———

lZE [:;;;;;]

Fié. 25. Development along the main path, showing the axial components. Deflection
either in the same or in the opposite sense.

the magnetic field is located at the distance from the median
plane:

8% = r {I1- [P]K]/[L]}, (6, 11) |
whilst the axial aperture angle is:

o =[Pl (6, 12)

zm
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Writing the abbreviations:

Sy = my v (UL /e,

(6,13)
(3=1a,1b, 2a,11a,11b, 11c,12a, 12b, 22a, 33a, 33b, 33c, 34a, 34b, 44a,)
and using the relations:
S34a= Sagys (6,14)
Soap= 2 S4q = 2 Sgges

the radial component of the ion trajectory yg at the image
distance l'n'1 is found from (2, 47) with (6, 3)-(6, 6), (6, 9)-(6, 14)
to be given by:
2 2
Yp/tm =Bja+ BB+ B a + B,aB+ B, B +
+ 833022 + B34az(6/re) + BM(élre)z'

(6,15)
where, with the abbreviations:
Ty = (v, [, )K; + (/e )Ly (6, 16)
(i=1,2,11,12,22,33,34,44)
F; = (v, /v ) + (d/rg)P;; (6,17)

(i=3,9
the coefficients B; are given by:

B, =%5,L 8, T;
S

B, = la T O e %a ’

B, =%5,L;; +85, T; +8,,, L2+ S LyTy + 8y, T2

Bip =£8,,Lyy +85,, Ty, +25;;, LiL,+ 8, (L Ty+ L,T)) +
+28c Ti Ty £S5, Ly +8 5 Ty ;

By =4 81,Lg £8,, Ty +85,,, L2+ 8, L,T, +8,, T2+
T Si9a Lgt Sy Ty + 85,

By =+ S, Lg3 385, Ty, +S,, P? + Saap Py Fy + Sy, F32 ;

By, = i"Slal-':miSst«z +2833a P3P4 +833b (P3F4+P4F3)+
+ 28 4, FyFy;

By =85, Ly £8,, Ty +8;5,P7 + 8y, PF, +8,, F?.

(6, 18)
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The expressions for B;-Bgy are identical to those published
by Hintenberger and Kénig 53 : the expression for Bg; is equi-
valent to that published by Wachsmuth, Liebl, and Ewald %4.

First order direction focusing occurs if:
B1 = 0; (61 19)
and first order velocity focusing if:

B, = 0. (6, 20)
Toachieve first order double focusing, both (6,19) and (6, 20)
should be satisfied. This determines the image and object dis-
tances as 93:

m _ -
o a, +bn(re/rm)+cn(d/rm)

o a, + bz(re/rm) + cz(d/rm) 3 (6, 21)

_'¢_=_Az+Bz(re/rm)+Cz(d/rm); (6, 22)

r, A, + B,(r,/ry) + C,(d/ry)

where the abbreviations read with the sector fields treated in
Chapters 2 and 3:

Aga Bia T Moy =3 Aoavyy T Voas
K2al-l1b; (6:23)

AgaMip s
Ala“Za;
Ko (Vo + Hgat!) + Koy Kyp (Vpy +Hga t')+ Agys
Ayp (Vg t Hg, t')s A (Pgy + gy t')-

(6,24)

For a trajectory with o, =
image distance 1"’ is given b

0, the axial coordinate zy at the
y:

zg /7y, =(<033 + (U, /1 ) T3a) Py (055" (U5 /T ) T30 ) Fy (8/re)=
= G(6/r,).
(6, 25)

The image broadening due to the (6/r.)? aberration with coef-
ficient B, corresponds toan image curvature with radius R, :
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r /R, =3B, /G% (6, 26)

This curvature should be added to that resulting from the fring-
ing fields of the magnetic sector field:

rm/Rfr LTS (2,104)
The mass dispersion inthe y-direction per unit ém /m, equals:
o - T (6,27)

The angular magnification in radial direction is found as the
product of the angular magnifications of the electrostatic and
magnetic field:

M, =t L,/S,,. (6,28)

As object and image are at the same electrostatic potential,
the radial lateral magnification is the inverse of M

ang:
Mlat & tslb/Ll' (6:29)
The mass resolving power is given by:
R = Dm/(s'Mm +s'" + ZA)). (2,106)

In a double focusing arrangement, the image planes where
B, =0and where By = 0 intersect at the main path at the image
distance 17,. The inclinations were calculated by Liebl 55,
who found for the direction focusing plane:

Sop (T, Lyt v, Ty ) .
tan Xg = - 2a la 1 -1/, (6, 30)
T SlZa Lli' Sl2b Tl
and for the energy focusing plane:
tanxs = - S2a (i' vlaLZt vle2+v23) o (6’31)

1 S y9a Ligt Syg Ty +28y,, +5,,
6b: Axial imaging properties of the tandem arrangement; fivst
ovder stigmatic focusing.

After passing through the electrostatic field, the axial com-
ponent of the ion trajectory (3, 8) corresponds to first order
axial focusing at the axial image distance 1" :
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1 fr, ==, JP,; (6, 32)

and after passing through the magnetic field at the axial image

1 (1
distance lzm.

I‘m 733+ T3b (d—lléc )/r

ym _ _ O3at gy (d-15 )7y, (6, 33)
m
Equating (6, 33) to (6, 21), we find the condition for stigmatic
focusing as a cubic relation between (r, /rm) and (d/rm):
A ¥ Aglr,/ra) b Agldfre)+- A e eV + Afr feaNdire) &
+ Ag(dfr )2 + A(r, [r )% + Ag(r, /1, )*(d/r
+ Ag(r, [t Nd/r)® + Ay, (d/r ) = 0.

lﬂ) iy

(6, 34)

With the abbreviations:

o
I

T3a An_ T3b Az; P pSaAn- prAz;
Qz = T3a Bn- T3b Bz; Qn paa Bn- p3b Bz; (6’35)
R R P3a Cn= P Cyi

Gl Cn_ 7’3bcz;

a; = O3, an_ 'rBaaz‘. ay = Ogy an- TSbaz;
bl m oSabn_ T3abz; bz T Ogp bn- TSbbz" (6’ 36)
Cj = 032Cn~ T3,C5 Cy=03,Cp~ TgpCyp?

the coefficients in (6, 34) are given by:

Aj=a,P;  Ay=a,Q +a,P +b P Ag=a;R +(aytc,)R;;
A =a,Q,+b,Q,tbyF, 5 Ag=a,(Q iR Hb R +b,F +¢,Q e, Py ;
Ag=(agte )R +c B 5 Agmb,Q,0  Ag=hb,(Q R, Jc,Q
Ag=b, R, +cy(Q R, ) Ajp=coR,.
(6, 37)
A system which satisfies (6, 21)-(6, 22) and (6, 34) provides

first order stigmatic double focusing, with axial angular mag-
nification:

Mz = %t Panlle/re) (6, 38)

ang

oz + Tap(l}/r)
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and axial lateral magnification (see 6, 25):

Mz =9t T Un/Tn) . g Im, (6, 39)
2 P3a + P3p (1:,_ /re ) Te

6c: The Mattauch arrangement.

If ions of equal energy travel parallel between the electro-
static and the magnetic field, and the deflection in these fields
occurs in opposite direction, the previous expressions take a
particularly simple form. This case is commonly realised in
mass spectrographs. We now have:

L.,=0; (6, 40)
and because of (6, 19):
Sip = 0; (6, 41)

as the solution T, = 0 is devoid of physical meaning. (6, 41) is
equivalent to:

l'r;/rm wayp s (6, 41a)
and (6, 40) to:
l;/re B A A (6, 40a)

On equating either (6, 4la) to (6, 21) or (6, 40a) to (6, 22), we
find the condition for first order double focusing as:

Aoa= Hip Voga = Moy V. (8,42)
The condition for stigmatic focusing takes a particularly sim-

ple formas onlyone root of (6, 34) remains. On equating (6, 41a)
to (6, 33), we find the condition:

+ T3aAib” TpA1a Te 4 %3aVip” TaaMip = 0, (6, 43)

a
Tm Paadiy” Papr1a T 3pVip” TabM1b

Inview of (6, 42), the mass dispersion in the y-direction, per
unit ém/m,, equals:

1 =
Dm T 2 AZa/Vlb 1 (6, 44)
1-(1-n) * tan(¢/2) t'

1-(1-n)"* cot ¢ (L'+t")~(1-n)"' t't"

L}

1 Y3
ar,, (L-n)
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The radial magnifications take the form:

M g = (e /o W/ Ag) = 1/ My, . (6, 45)

Witha very narrow image slit and in the absence of aberra-
tions, the essential quantity which determines the mass resolv-
ing power is Dm/M lar» Which equals in this case:

o 1 =
D,/M,, =-71r, Ao/ Ayp= T /K2 (6, 46)

As compared with the traditionalarrangement with a cylindrical
condensor (k2 = 2-c = 2), the quotient Dy, /M, has increased
bythe factor 2/k%. For normal entry and exit in the magnetic
field, the mass dispersion has increased by the factor 1/(1-n)
as compared with the traditional arrangement with a homoge-
neous magnetic field (n=0).




CHAPTER 7

NUMERICAL EVALUATION OF THE CONDITIONS FOR FIRST
ORDER STIGMATIC DOUBLE FOCUSING, AND FOR THE
ELIMINATION OF THE RADIAL SECOND ORDER
ABERRATIONS

7a: Computation procedure.

The first order equations to be satisfied are:

B, = 0; (6,19)

B,

(which are equivalent to (6, 21)-(6, 22)), and:

0; (6, 20)

" = 0.

bt (7,1)
which is equivalent to (6, 34). Of the second order aberrations,
those proportional to o2, off and B%, seem to be the most im-

portant; thus we put the conditions, in the symbols of (6, 15):

B,, = 0; (7,2)
B, =0; (7, 3)
B = (7, 4)

We chose as independent variables:
. . . . . 1.
b smethth e [r .

Thend /r p, is fixed through (6, 34), and 1}, /rm and 1! /r. through
(6,21)-(6,22). In this work we assumed the pole faces to be
conical and the gap widthto be very small as compared with rm,
and thus from (4,12): X = 2n. Now R}, r/R', and rp,/R",
are fixed through (7, 2)-(7, 4). Through the boundary curvatures

of the electrostatic field we are in a position to eliminate two
more aberrations, for which we chose:

By = 0; (7, 5)

By, = 0. (7, 6)
(7,5)=(7, 6) then determine rc/Rl and r, /Ry. The resulting
value of the remaining radial second order aberration, prop-
ortional to 6%, was computed.
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The choice of (7, 5)-(7, 6) is somewhat arbitrary. However,
the fringing fields contribute to the image curvature (2, 104) in
a way which cannot be minimalised by shields, whereas it can
be eliminated separately through a simple device such as an
electrostatic hexapole field (5, 31) or (5, 32).

To represent a physically acceptable combination, several
additional conditions are required. Alldistances should be real
and positive. The maximum acceptable distances are a matter
of personal taste; for reasons of simplicity, related to the
binary representation of the numbers in the computing machine
used, we chose:

0 <d/r,<+16; (7, 7)

0< 1;/re<+16; (7, 8)

0<1"/r <+16. (7,9)
m m

Likewise, the acceptable boundary curvature was subjected to
the restrictions:

‘Sgrm/R'<+8; (7,10)
-8 ¢ r, /R"<+8. (7,11)

On applying similar restrictions to the boundary curvatures
of the electrostatic field, it was found that acceptable solutions
were rare. As inparticular the aberrations proportional to a?,
aB, and B2 tend to increase sharply with virtual increase of the
radius, their elimination was thought to be more important than
of those proportional to a,’z and @,6. Thus the conditions (7, 5)-
(7, 6) were replaced by:

|Bss| + |Bss| = minimum, (7,12)

together with:
-6 g r,/R; € +6; (7,13)
-6 < r, /Ry <+6. (7,14)

(7, 12)is clearly equivalent to (7, 5)=(7, 6) if the curvatures fall
within the acceptable range.

A computer programma was made along these lines for the
ARMAC automatic magnetic drum computer of the Mathema-
tisch Centrum in Amsterdam.
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At any given set of the independent variables ¢, ¢., n, c,
t', t', the value of r e/Tm was varied stepwise by a constant
factor from 0.5 to 2, the procedure being repeated after each
change in the other independent variables. The first root of
(6, 34) was extracted by iteration according to Newton; the rest
of the calculation is then straightforward. (7, 2)-(7, 4) are three
simultaneous linear equations with three unknowns, (7, 5) }7 6)
are two linear equations with two unknowns. If in the r, /R; -
- ro/Ry - planethe intersectionof the lines (7, 5) - (7, 6) does
not fall within the square around the origin permitted through
(7,13)-(7, 14), it follows from the linearity that (7, 12) is sat-
isfied either at the intersection of either (7, 5) of (7, 6) and a
side of the square, or at a corner.

First order stigmatic focusing could be achieved by choosing
¢ = +1; n = +3 which causes all radial and axial images to
coincide. This special case was not treated here. Then (6, 34)
becomes trivial, and the solutions produced by the machine
depend on the rounding off errors, and are devoid of physical
meaning.

7b: Combinations with deflection in the same sense. The
"pretzel"-configuration.

Withn=0.91, t' =t'"= 0, no acceptable solutions w1th deflec-

tlon in the same sense were found with ¢, = 90° or 120°

£ Pe £ 180° and 1.720<€ ¢ € 1. 885. Nelther did tests W1th
n= 0 765; t' = t =0, 1.525< ¢ £1.740, and the same ranges
for ¢ ,, and ¢, produce any acceptable results.

However, the weak radial converging action of deflecting fields
with virtually enlarged radius makes a new class of arrange-
ments possible with angles of deflection exceeding 270°, for
which the name '"'pretzel' -configuration might be proposed.
Acceptable solutions were found for Om = 0= 300°. This geo-
metry requires the additional conditions:

d>re +rm; (7,15)
I/r, >4 (7, 16)
1 /x> 7. (7,17)

Acceptable solutions were found with n = 0.91 and n = 0. 765.
Cwasgnenthc\aluesl 88551.87851.850;1.815;71.765; 1.720.
t was varied from -1.00 to +1.00 in +0.25 steps, keeping
t"' +t' =0.

Varying r./r,,, all other parameters being kept constant,
mainlyaffectsd/r,, (which increases with increasing r M2 A s
and the boundary curvatures. R} was foundto be nearly ¢ onstant
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and equal to +0.5 over the whole range investigated here. A
decrease in c¢ resultsina decrease in 1} /r_., a decrease inn
corresponds to a decrease in I /r .. In many cases, the in-
clinations of the focusing planes as computed from (6, 30)-(6, 31)
differed by less than 1°. As could be expected these inclinations
depend strongly on t' and t'. Solutions with normal incidence
and exit are unfavourable because of the large M {,,. Even though
stigmatic focusing is achieved in these arrangements, this
large axial magnification prohibites all ions emerging from a
short object slit to be collected through an image slit of com-
parable length. Keepingt' +t''= 0, it was found that M},, could
be reduced by increasing t', and by decreasing c.

Some of the solutions are presented in Table 1. Asan example,
case No. 3 is illustrated in Fig. 26.

Focusing plane

c=1.875 n=0.915
Re =+0.496 X=2n

re/RI= ’e/RI =+ 6.0
Fig. 26. Case No, 3.

7¢c: Combinations with deflection in the opposite sense.

One example of this class has been presented by Wachsmuth,
Liebl, and Ewald %4. These authors looked for a Mattauch ar-
rangement satisfying (7, 2)-(7,5) and the additional condition:

X'R= X‘E‘ (7: 18)

leaving r, /R =T /R 1. For reference, their solution is repro-
duced here as case No. 10 in Table 2.

The same independent variables as in case No. 10 were now
fed into the computer programme used here. The results are
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represented as case No. 11 in Table 2. Now the conditions
(6,40)~(6, 42) of the Mattauch arrangement are no longer strin-
gentlyimposed, and small deviations from No. 10 are caused
by rounding off errors. The condition (7, 18) was dropped, and
(7,5) was replaced by (7,12)-(7,14), resulting in different
boundary curvatures for the electrostatic field.

The values for X, and X; in case No. 10, quoted by Wachs-
muth etal.®, were found to be incorrect. It seems that these
authors might have overlooked the dependence of Xgr and Xg
on r,/R", as a combination with the same parameters but
rm/R" =0, would produce their values of X ; and X E-

Some more examples of this class as represented in Table 3,
show similar trends as found in those of Table 1. In many res-
pects these combinations possess more desirable properties
than those with deflection in the same sense, as in Table 1,
and the combination chosen by Wachsmuth et al. appears to be
a favourable one. As an example, case No. 14 is illustrated
in Fig. 27.

c=1.720

Focusing planes

Fig. 27, Case No. 14,






TABLE 1

"Pretzel™-arrangements with deflection in the same sense.

No.| de c Om n t' t" Yoftm | leffe | a7t |5/ ] RS I /R Im/R" |t /Ry T /Ryp My, MlzaL D/t XRr Xe Bag B, By, for B
1 300° 1.850 | 300° [0.915 0.0 0.0 1.000 | 0.783 | 8.826 | 2.146 | +0.538 +0. 200 -4.2717 +6.000 +6.000 +0,814 -18. 248 +9, 30 - 6.64° - 6.86° -2.226 +2,237 -41.701 -1.643
2 300° | 1.850 | 300° [0.915 [ +0.5 | -0.5]| 1.000 | 0.888 | 4.763 | 1.739 | +0.515 | +0.893 | -1.119 [ +6.000 | +6.000 | +0.314 | - 7.923 | +3.71 | -43.69° | -46.06° | -0.857| +1.385 | -12.715 | -1.340
3 300° 1,850 | 300° [0.915 | +1.0 [ ~-1.0| 1.000 | 0.955 | 3,769 | 0.966 | +0.504 +0.382 -1.460 +6.000 +6. 000 +0. 156 - 8,840 +1.85 -44, 790 -45,93° -0.423 +0. 771 - 5.467 -1.306
4 300° | 1.875 | 300° [0.915 | +1.0 | -1.0| 1.000 | 0.726 | 7.218 | 0.955 | +0.496 | +0.524 | -1.480 [ +6.000 | +6.000 | +0.155 | - 8.126 | +1.89 | -45.08° | -45.74° | -0.200 | +1.403 | -33.014 | -1.331
5 300° | 1.885 | 300° 0.915 | +1.0 | -1.0] 1.000 | 0.663 | 9.716 | 0.915 | +0.492 | +0.571 | -1.488 | +6.000 [ +6.000 | +0.154 | -11.243 | +1.90 | -45.10° | -45.65° | -0.279 | +1.607 | -68.685 | -1.337
6 300° | 1.850 [ 300° [0.875 [ +1.0 | -1.0 1,000 [ 0.952 | 4.032 | 0.840 | +0.507 | +0.475 | -1.731 | +6.000 | +6.000 | +0.166 | - 2.677 | +1.96 | -45.31° | -46.51° | -0.456 | +0.722 | - 7.620 | -1.660
7 300° | 1.850 | 300° [0.875 | +1.0 | -1.0| 0.707 | 0.990 | 2.560 | 0.856 | +0.505 | +1.548 | -1.705 | +6.000 | +6.000 | +0.225 | - 2.467 | +1.90 | -42.48° | -44.05° | -0.454 | +0.493 | - 2.004 | -1.501
8 300° | 1.850 | 300° [0.875 | +1.0 | -1.0| 1.414 | 0.930 [ 6.101 | 0.828 | +0.508 | +0.017 | -1.747 | +6.000 | +6.000 | +0.120 | - 2.810 [ +2.00 | -48.02° | -48.92° | -0.461| +1.023 | -20.913 | -1.72a
9 300° | 1.850 [ 300° [0.875 [ +1.0 | -1.0| 2,000 [ 0.917 [ 9.019 | 0.820 [ +0.509 [ -0.217 [ -1.757 | +6.000 | +6.000 [ +0.087 | - 2.896 | +2.08 | -50.87° | -51.05° | -0.464 | +1.432 | -50.700 | -1.824
TABLE 2

Arrangements with deflection in the opposite sense.

\ ‘ " ' ' " ’ ) - P Z
No. ()% c (o3 n t t 'e/'m le/re d/r lm/rrn R: rm/R rm/R r /Ry 'e/RH M., M D/r X'R ¥ Bgg By By r R

10 61.35° | 1.75 128.60°[0.889 0.0 0.0 1.800 ) 3.371 | 0.292 | 38.232 | -1.419 +1.855 -1.124 +2, 94 +2.94 -924,330 -24.330 0.00

11 61.35° | 1.75 128.60%]0.889 0.0 0.0 1.800| 3.371 | 0.289 | 3,231 | -1.432 | +1.870 =1.130 +6.000 +6.000 +0. 625 +0.734 +4, 50 -47.51° =47, 519 +13.509| +19.320 + 4,149 +0. 189

TABLE 3
Arrangements with deflection in the opposite sense.
No. qbc e ¢m n e t" re/rm lé/re d/t, Lo RS /R t/R" re/RI [e/RII Miat Mlzat D/t X'R X,E Baq 8‘44 B_}_‘1 rm’!Rim
12 600 1.720 | 120° | 0.910 | 0.0 0.0 1.000 | 2.947 | 0,140 | 4.873 | -1.618 +9, 132 -1.008 +6, 000 +6.000 +1, 684 +1.293 +5.83 -25.89° -29.04 +12,134 +20, 565 +5,118 +0,481
13 60° | 1.720 | 120° | 0.910 | 0.0 | 0.0 | 1.260 | 2.935| 0.238 | 4.838 | -1,525 | +3.586 | -1.042 | +6.000 | +6.000 | +1.333 | +1.289 | +5.80 -24,72° | -27.21° | + 6.800 | +18.764 | +5.083 |-0.081
14 60° 1.720 | 120° | 0.910 | 0.0 0.0 1,587 | 2.924 | 0.362| 4.804 | -1.481 +2.326 =1,030 +6. 000 +6. 000 +1.055 +1, 286 +5.717 -25_610 -27.88° + 4,346 +18,918 +5.370 -0.39%4
15 60° 1.720 | 120° | 0.910 | 0.0 0.0 2,000 | 2.914 | 0.518 | 4.772 | -1.466 +1.551 -0,987 +6.000 +6. 000 +0, 836 +1.283 +5. 74 -28.09° -30,38° + 3,503 +20.395 +5.888 -0. 586
16 60° 1.765 | 120% | 0.910 | 0.0 0.0 2.000 | 3.399 ( 0.402 | 4.894 | -1.433 +1.571 -0.886 +6. 000 +6.000 +0. 742 +1,093 +5.86 -32.84° -36.09° +14, 291 +25.847 +5.858 -0.442
17 80° 1.815 | 120° | 0.910 | 0.0 0.0 2.000 | 4.129 | 0.285| 5,047 | -1.401 +1. 5695 -0. 777 +6. 000 +6.000 +0.636 +0.899 +6.01 -40.210 -45,19° +35. 635 +34,178 +5,843 -0.178
18 60° 1.850 120° 0.910 | 0.U 0.0 2.000 | 4.825| 0.209| 5,165 | -1.380 +1,614 =0.703 +6.000 +6. 000 +0.561 +0.772 +6.12 -47.35° -54.15° +61,962 +42, 283 +5.850 +0,125
19 60° 1.875 | 120° | 0.910 | 0.0 0.0 2.000 | 5.466 | 0.158 | 5.257 | -1.367 | +1.629 | -0.650 | +6.000 | +6.000 | +0.506 | +0.684 | +6.21 -53.87° -62.30° | +91.438 +49,8517 +5.864 | +0.449
20 60° 1,885 1200 0.910 | 0.0 0.0 2.000 | 5.767 | 0.138 | 5.295 | -1.362 +1.635 ~0.629 +6, 000 +6.000 +0.484 +0.650 +6. 25 -56.870 -66.020 > 100 +53.,456 +5.873 +0.615







-

A
Aqps Mgy Agys Agy

an,Apsa,, A,
A

W

R R R R R

ze ? Q"/.m

b

B

B, B,

B,,Bg

B, By, Byy, By,
By2s Bag Byy, By

by, By, b,, B,
Bus BB, B,

B

Cc
Ca, C4

CH’CII'CZ’ CZ

m

INDEX OF SYMBOLS

Magnetic vector potential,

Coefficients of second order aberrations,
(2,99)-(2, 102).

see (6, 22)-(6, 23).

w-component of A,

u'(0); in Ch. 6-7 also: -dy; /dx, .

-dy, /dxl , electrostatic case, see Fig, T.
-dy, /dx, , magnetic case, see Fig, 2.
v'(0); in Ch. 6-7 also: -dz, /dx, .

-dz, /dx,, see Figs, 2 and 7.

half gap width at the main path; in (4, 6)-
(4, 14) expressed in units rp,.

Magnetic field strength.

Absolute value of the magnetic field strength
at the main path.

see (2, 30)-(2, 32), (2, 34)-(2, 35).

see (6, 14)-(6, 17).
see (6,22)-(6, 23),

component of the magnetic field strength
in the u-, v-, x-, and z-direction.

6v/v,, relative velocity spread, see (2, 37).

r, /R,, see Fig. 6,

see (4,2); coefficients in field shape ex-
pansion.

see (6, 22)-(6, 23).

distance between electrostatic and mag-
netic field in tandem arrangement.

mass dispersion in the y,-direction per
unit m/m .
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velocity dispersion in the y; -direction per
unit g.

distance of the object point to the median
plane, see Figs, 2 and 7,

charge of the proton.

electrostatic field strength.

see (3, 9).

electrostatic field strength at the main path.

inclinations of the field boundaries, see
Fig. 3.

(e/2mU)?.
see (2, 38).

ion-optical "index of refraction", see (2, 3).

coefficients in the expansion of F, see
(2,5).

see (6, 16).

radial and axial focal lengths, see (2, 80),
(2, 85), (3,36), (3,40).

see (2, 57).

see (2, 5).

see (6,24)-(6, 25).

see (2, 80), (2,85), (3,36), (3,40).

see (2,10)-(2,11).

see (3, 20).

(2-0)5.

see (83, 25), (3,32).
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object distances in the magnetic and elec-

trostatic case.

image distances in the magnetic and elec-

trostatic case.

see (3, 21).

see (3,26), (3, 33).

mass of the ion.

lateral, angular, and axial magnification

in radial direction.

lateral and angular magnification in axial

direction.

see (2,49).

see (2, 54)-(2. 76).

-(r/B)(6B/ar), see (2, 33).

see (2, 50).

see (2,55), (2,77).

see (3, 22)-(3, 23).
see (3,27), (3, 34).

radius

mass resolving power, see (1,1).

radius of deflection of the main path in the
electrostatic and magnetic field.
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see (3, 8).

radius ofthe magnetic entrance boundary,

(Fig. 3).

radius of the magnetic exit boundary,

(Fig. 3).

electrostatic entrance and exit boundary

radius, Fig. 8.

radius of a curved image.
see (2, 75).

see (3,27), (3, 34).

pi + vy /r, ), see (6,12).
object and image slit widths.
see (2,56), (2,78).

see (2,51).

tane

tan €'; tan €''; see (2, 75).

tan (¢%/2).

see (2, 52).

(r, /v )K; + (d/r,)L;, see (6,15).
see (2, 56), (2, 78).

(r-r,)/rp .
accelerating voltage of the ions,
du/dw; d2u/dw?2,

zie.
dv/dw; dZv/dw?2.

path coordinate, see Figs. 1 and 5.
(1-n)tw, (Chapter 2); kw, (Chapter 3).

see Fig. 6; radius of toroidal curvature.




wt

X

X1:91 %

XR
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ntw, (Chapter 2); ctw, (Chapter 3).

second order magnetic field shape para-
meter, see (2, 35); (4.10).

cartesian coordinates in the object space,
see Figs. 1 and 5.

cartesian coordinates in the image space,
see Figs. 1 and 5.

distance between the hypothetical sector
field boundary and the mechanical pole face
or electirode boundary.

eletrostatic potential,
scalar magnetic potential.
electrostatic sector angle.
magnetic sector angle,
K, .

cid,.

(1-11)5¢m.

nig .
angular coordinate,

inglination of the plane of direction focusing,

inclination of the plane of energy focusing.



DN =

3

REFERENCES

A, V.Duvrovinetal.: Dokl. Akad. Nauk SSSR 102, 719(1955).

J.D.Morrison and H.E.Stanton: J,Chem.Phys. 28, 9
(1958).

J.T.Kerr,G.R. Bainbridge, J. W.Dewdney, and H.E, Duck~
worth: ""Advances in Mass Spectrometry''(London 1959),
Dacly

T.L.Collins and K.T. Bainbridge: "Nuclear Masses and
their Determination" (Ed. H.Hintenberger, London
1957), v».213.

. K.Ogata and H, Matsuda: "Nuclear Masses and their De-

termination' (Ed. H.Hintenberger, London 1957),
p.202; Z, Naturforschg. 10a, 843 (1955).

. F.Everlingetal.: '""Nuclear Masses and their Determina-

tion'", (Ed. H.Hintenberger, London 1957), p. 221.

. C.M. Stevens, Argonne National Laboratory, Argonne, I11.,

private communication.

N.E, Alekseevski et al.: Dokl.Akad. Nauk SSSR 100, 229
(1953).

R.F.K.Herzog: Acta Phys.Austr. 4, 431 (1950-1951).

. H.Ewald and H. Liebl: Z, Naturforschg. 10a, 872 (1955).

H.Ewald and H.Liebl: Z.Naturforschg. 12a, 28 (1957).

O.Hachenberg: Ann, Phys.Lpz. 2, 225 (1948).

R. Albrecht: "Berechnung des Potentiales in doppelt ge-
kritmmten Kondensatoren', Diplomarbeit T.H. Min-
chen, 1955.

. R.Albrecht: Z,Naturforschg. 1la, 156 (1956).

H. A.Enge: Rev, Sci.Instr. 30, 248 (1959).

. N.Svartholm and K. Siegbahn: Rev.Sci.Instr, 19, 594 (1948).
. N.Svartholm: Ark. Fys. 2, 20 (1950).

H.W. Franke: Oest.Ing.Arch. 5, 371 (1951); ibid. 6, 105
(1952).
H.Grtimm: Acta Phys. Austr. 8. 119 (1953).

. A.Hedgran, K,Siegbahn, and N,Svartholm: Proc. Phys.

Soc. London, Ser. A 63, 960 (1950).
D. Fischer: Z,Phys. 133, 455, 471 (1952).

. C.Mileikowsky: Ark. Fys. 4, 337(1952); ibid. 7, 33(1953).

F. Viehbdck, private communication.

. H.Liebl and H.Ewald: Z. Naturforschg. 14a, 199 (1959).

H. Liebl and H.,Ewald: Z.Naturforschg. 14a, 842 (1959).

H.Ewald, H. Liebl, and G. Sauerman: Z, Naturforsclig. 14a,
129 (1959).

G.Sauerman and H, Ewald: Z. Naturforschg. 14a, 137(1957).

. H,Wachsmuth, H.Liebl, and H.Ewald: Z. Naturforschg.

14a, 844 (1959).




28.

29.
» H.A.Tasmanand A. J. H, Boerboom: Z. Naturforschg. 14a,

31.

32,
33.

34,
35,
36.
37.
. H.Liebl and H.Ewald: Z. Naturforschg. 12a, 541 (1957).
39.

40,
41.

42,

43.
44,

55,

-97 -

W.Glaser: ""Handbuch der Physik", (Ed. S.Fltigge, Berlin
1956), 33, pp. 306 ff.
W.Glaser: Z. Phys. 89, 451 (1933).

121 (1959).

H.Wachsmuth, A.J,H., Boerboom, and H, A. Tasman: Z.
Naturforschg. 14a, 818 (1959).

R.F.K. Herzog: Z. Naturforschg. 8a, 191 (1953).

L. A.Kbnigand H, Hintenberger: Z, Naturforschg, 12a, 377
(1957).

H.A.Tasman, A.J.H.Boerboom, and H.Wachsmuth: Z.
Naturforschg. 14a, 822 (1959).

H. Hintenberger and L, A, K8nig: Z, Naturforschg. 12a, 773
(1957).

A.J.H.Boerboom: "De Ionenoptiek van de Massaspectro-
meter", (Thesis, Leyden, 1957); Appl. sci. Res. B 1,
52 (1958).

C.E. Berry: Rev.Sci.Instr. 27, 849 (1956).

A.J.H, Boerboom, H.A,Tasman, and H.,Wachsmuth: Z.
Naturforschg. 14a, 816 (1959).

N.D, Coggeshall: J, Appl. Phys. 18, 855 (1947),

G. P, Barnard:"Modern Mass Spectrometry" (London,1953),
p. 35.

L. A.Kbnig and H. Hintenberger: Z, Naturforschg. 10a, 877
(1955).

W. Ploch and W, Walcher: Z, Phys. 127, 274 (1950).

A.Septier: "Sur le champ de fuite des déflecteurs magné-
tiques, etc." CERN 59-1, Division du Synchrotron A
Protons, Décembre 1958.

. J.Mates: "Magnet Report", TID-5118, April 1953,
. C.J.Zilverschoon: "An Electromagnetic Isotope Separa-

tor', (Thesis, Amsterdam, 1954).

. H.Wild and O. Huber: Helv, Phys. Acta 30, 3 (1957).

. R.Herzog: Z., Phys._ 97, 596 (1935).

. A.O, Nier: Rev, Sci. Instr. 11, 212 (1940).

. V.K.Zworykin et al.: "Electron Optics and the Electron

Microscope', (New York, 1948), Chapter 16.

. O.Klemperer: "Electron Optics", (Cambridge, 1953),

Chapter VI.

. J.H, Pierce: "Theory and Design of Electron Beams", (New

York, 1954), p. 76.

. H. Hintenberger and L, A. K8nig: Z. Naturforschg. 12a, 140;

773 (1957).

. H.Wachsmuth, H, Liebl, H.Ewald: Z . Naturforschg. 14a,

844 (1959).
H. Liebl: Optik 16, 19.(1959).



SUMMARY

It is found that the mass dispersion of magnetic analysing
fields for mass spectrometers may be increased without in-
crease in radius of deflection by employing inhomogeneous
magnetic fields. If at the main path -(r/B)8B/dr = n (0 n<1),
the mass dispersion and resolution are increased essentially
by the factor 1/(1-n).

The imaging properties of this type of sector fields are de-
rived up to the second order. The shape of the pole faces and
the influence of boundary inclination and curvature are discuss-
ed. Several adjustable devices are discussed for the elimina-
tion of first and second order aberrations.

Actual measurements with a pair of very carefully made conic-
al pole faces show agreement with the calculated field shape.
Itis shownthat the influence of the finite radial extension may
be reduced by appropriate correction turns.

Similar considerations apply to toroidally curved electrostatic
sector fields, where the energy dispersion can be increased
as compared with that in the cylindrical electrostatic field.
The imaging properties are derived up to the second order
alongthe same lines as for the inhomogeneous magnetic sector
fields. Therequired shape of the deflecting electrodes is men-
tioned.

For a so-called tandem arrangement of a toroidally curved
electrostatic sector field followed by an inhomogeneous mag-
netic sector field, the imaging properties are derived up to
the second order, including the trajectories outside the median
plane. The conditions are presented for double focusing and
for stigmatic focusing.

For deflection in the same sense in these subsequent fields,
numerical evaluation revealed the possibility of a new type of
"pretzel"-arrangement, consisting of 300° electrostatic de-
flection followed by 300° magnetic deflection. Inthese arrange-
ments stigmatic double focusing may be achievedinfirst order,
together with elimination of the second order aberrations in
the median plane and minimalisation of those outside the me-
dian plane. Stigmatic double focusing with subsequent deflec-
tion in the opposite sense is also possible; some numerical
examples are given. In all these examples the resolution, de-
pending onthe ratio of the mass dispersion to the lateral mag-
nification, is considerably increased as compared with simi-
lar combinations of homogeneous magnetic fields with cylin-
drical electrostatic fields, whereas the stigmatic focusing
obtained may improve the transmission and sensitivity of the
instrument.




SAMENVATTING

De massa dispersie van magnetische analysator velden voor
massaspectrometers kan zonder vergroting van afbuigstraal
vergroot worden door gebruik te maken van inhomogene mag-
neetvelden. Indienter plaatse vande hoofdbaan -(r/B)aB/or = n
(0€n<1), worden massadispersie en oplossend vermogen ruw-
weg vergroot met de factor 1/(1-n).

Van dit type velden werden de afbeeldingseigenschappen tot
intweede orde doorgerekend. De invloed van scheve en/of ge-
kromde veldbegrenzingen wordt behandeld, zowel als de vorm
van het poolschoenprofiel. Verschillende instelmogelijkheden
wordenbesproken voor de opheffing van eerste en tweede orde
afbeeldingsfouten.

De veldvorm, gemeten tussen een stel zeer zorgvuldig ver-
vaardigde conische poolschoenen, komt overeen met de theo-
retischberekende. Er wordt aangetoond, dat de afval naar de
randendoor de eindige radiele uitgebreidheid van de poolschoe~
nen, verminderd kan worden door het aanbrengen van correc-
tiewindingen.

Ook intoroidaal gekromde electrostatische sectorvelden treedt
een soortgelijk effect op, waar n.1. de energiedispersie ver-
grootkan worden vergeleken met het cylindrische electrosta-
tische veld. Tot in tweede orde werden de afbeeldingseigen-
schappen afgeleid, op dezelfde wijze als voor de inhomogene
magneetvelden, De vereiste electrodenvorm wordt aangeduid,

Van een z.g. tandem-opstelling van een toroidaal gekromd
electrostatisch afbuigveld, gevolgddoor een inhomogeen mag-
neetveld, werden de afbeeldingseigenschappen tot in tweede
orde afgeleid, met inbegrip van de banen buiten het mediaan-
vlak. De voorwaarden voor dubbelfocussering en voor puntvor-
mige afbeelding worden gegeven.

Numerieke uitwerking toonde aan, dat bij gelijkgerichte af-
buigin% indeze twee opeenvolgende velden een nieuw soort "kra-
keling” -opstelling mogelijk is, bestaande uit 300° electrosta-
tische afbuiging, gevolgd door 300° magnetische afbuiging,
Hierin kan puntvormige dubbelfocussering verkregen worden
ineerste orde, met opheffing van de tweede orde afbeeldings-
fouten in het mediaanvlak en minimalisering van die daarbui-
ten. Hetis ook mogelijk puntvormige dubbelfocussering te ver-
krijgen met opeenvolgende afbuiging in tegengestelde richting:;
er worden enige numerieke voorbeelden gegeven, Hetoplossend
vermogen, bepaald door de verhouding van dispersie en dwars-
vergroting, is in al deze gevallen aanzienlijk groter dan in
soortgelijke combinaties van homogene magneetvelden met cy-
lindrische electrostatische velden. De puntvormige afbeelding
kande lichtsterkte en gevoeligheid van het instrument ten goe-
de komen,
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B

STELLINGEN

Bij de metingen van Miller en Kusch aan de damp van al-
kalihalogenidenuit een koper vervaardigde oven, geeft re-
actie met het ovenmateriaal te hoge waarden voor het ge-
halte aan dimeer en trimeer,

R.C.Miller en P.Kush: J.Chem. Phys. 25, 860 (1956); 27, 981 (1958).

De gevolgtrekkingen van Datz en Taylor uit hun oppervlak-
teionisatie metingen, leiden tot onwaarschijnlijke resulta-
ten betreffende de reflectie van Li op Pt.

S.Datz en E.H.Taylor: J.Chcm.Phys‘ 25, 389 (1956).

De door Akishin et al gepubliceerde waarden over de mas-
saspectra van NaCl, Na,Cl,, LiF en Lig Fo, zijn onjuist,
Met name is hun hoge waarde voor de verhouding Na*/NaC1*
uit monomeer NaCl waarschijnlijk een gevolg van onzui-
verheden in hun monster,

P.Akishin, L.N. Gorokhov, en L.N. Sidorov: Zhur. fiz. Khim. 33, 2822 (1959).

De metingen van thermische accomodatieco®fficidnten door
Schéfer zijn bij zo hoge druk uitgevoerd, dat zijn inter-
pretatie, waarbij hieruit gemiddelde verblijftijden aan de
wand worden afgeleid, ongeoorloofd is.

KL.Schifer: Fortschr.chem. Forschg. 1, 61(1949-1950).
Kl.Schifer en H. Gerstacher: Z.Elektrochem. 59. 1023 (1955); 60, 874 (1956).

De bewering van Septier, dat de radiale en axiale krom-
mingen van de effectieve veldgrens van een magnetisch
sectorveld om principidle redenen elkaars tegengestelde
zouden zijn, is onjuist,

A.Septier: "Surle champde fuite des déflecteurs magnétiques, etc.", CERN 59-1,
Décembre 1958,

De effectieve uitgebreidheid van het gevoelige gebied van
de Siemens Hall sonde type FA 21, is zeer veel kleiner
dan de door de fabrikant gespecifiderde effectieve afme-
tingen

Dit proefschrift, Ch.4, sect. 4d
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7. De voornaamste oorzaak, waarom de pompsnelheid van
glazen kwikdiffusiepompen zo veel geringer is dan die van
metalen pompen van gelijke geometrie en vermogen, ligt
inde slechte warmtegeleiding door de glazen wand tussen
condensaat en koelmiddel.

9.

10.

1 8

Bijde gevoeligheid van de Knudsen manometer is niet al-
leen een afhankelijkheid van de gassoort, doch evenzeer
vande voorgeschiedenis vanhet instrument te verwachten.

W. Stechelmacher: J.Sci.Instr., suppl.1, (1950), p. 60.
S.Weber: Kgl.Danske Vidensk. Selskab, Math. Phys. Medd. Q(IU-H), No.4
E.Fredlund: Ann.Phys.Lpz. (1932) No.5,6117.

Bij de metingendoor Romanov en Starodubtsev van de veld-
sterkte-afhankelijkheid van de oppervlaktefonisatieop-
brengst van Na op polykristallijn W, is de gevonden line-
aire afhankelijkheid van de logarithme van de Nat-ionen-
stroom met de veldsterkte E, in plaats van de te verwach-
ten afhankelijkheid met E}, te verklaren uit te lage veld-
sterkten bij de metingen.

A.M.Romanov en S.V.Starodubtsev: Soviet Phys. , Techn. Phys. 2, 652 (1957).

E.Ya.Zandberg: Zhur.tekn.Fiz, 28, 2434 (1958).

Voor het meten van kleine ladingen kan men met voordeel
gebruik maken van de sterke verandering in absorptie-
spectrum bij oxydatie of reductie van vele organische

stoffen.

De vraag, of in het Ag - Phtalocyanine complex éénwaar-
dig dan wel tweewaardig Ag is ingebouwd, kan beantwoord
wordendoor dit met D3SOy telaten uitwisselen, en massa-
spectrometrisch te bepalen of hierbij één dan wel geen
atoom D per molecuul complex wordt opgenomen,

Het is gewenst de verplichte winkelsluitingen over ver-=
schillende middagen etc. te spreiden tussen verschillen-
de gelijksoortige zaken in dezelfde buurt.










