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STELLINGEN

De vorm van de door Lifshits afgeleide uitdrukking voor de wissel-
werkingskracht tussen twee lichamen met willekeurige complexe diélectrici-
teitsconstante suggereert dat deze ook kan worden verkregen uit een be-

schouwing van de eigentrillingen van het systeem.

E. M. Lifshits, Z. exp. theor. Phys. 29, 94, 1955.

I1.

De door Leech afgeleide formule voor de geretardeerde wisselwerkings-

kracht tussen twee atomen is onjuist.

J. W. Leech, Phil. Mag. 46, 1328, 1955.

I11.

Conclusies volgende uit overwegingen omtrent de zogenaamde “steric
2 ging &
hindering” ter verklaring van het verschil in eigenschappen van verwante
o o o
legeringen, hebben slechts zeer beperkte waarde. Dit geldt zowel voor
o )

substitutionele als voor interstitiéle legeringen.

IV.

Volgens Gordon en Nowick zou de .,snelle” verkleuring van NaCl-
kristallen onder rontgenbestraling samenhangen met reeds véor de be-
straling aanwezige chloorvacatures. Deze bewering is slechts houdbaar
indien bovendien wordt verondersteld dat de betreffende kristallen ten

minste 0-01 atoomprocent verontreinigingen bevatten.

R. B. Gordon en A. S. Nowick, Phys. Rev. 101, 977, 1956.

V.
De berekening door Mason van de dislocatiedichtheid in metalen uit de
waargenomen mechanische hystereseverliezen bij hoge frequenties is niet
juist.

W. P. Mason, Bell System techn. J. 34, 903, 1955.

Vi

Het voorkomen van een incubatietijd bij de plastische deformatie van
germanium en silicium is een mogelijke aanwijzing voor het bestaan
van stabiele, relatief gering beweeglijke toestanden van de dislocaties in

deze stoffen.

R. G. Treuting, J. Metals 7, 1027, 1955.




VIL.

De bepaling van de dislocatiedichtheid in germanium en silicium uit de
telling van het aantal door een bepaalde etsing teweeggebrachte etsputten,
dient noodzakelijk gecalibreerd te worden met behulp van een onafhanke-

lijke methode, voordat uit de tellingen conclusies mogen worden getrokken.

VIII.

Ter toetsing van de theorie van Brinkman over de vorming van “displace-
ment spikes” tijdens de bestraling van metalen met neutronen of andere
nucleonen, zou het aanbeveling verdienen de magnetische weerstands-
verandering van dusdanig bestraalde materialen te onderzoeken als functie
van de temperatuur tijdens en na de bestraling.

J. A. Brinkman, J. appl. Phys. 25, 961, 1954:
Dit proefschrift, pag. 86.

IX.

Voor de toepassing van dislocatievrije materialen moet, indien deze in
de naaste toeckomst ter beschikking komen, in de eerste plaats worden

gedacht aan het gebied der halfgeleiders.

X,
Ter verklaring van de interstellaire polarisatie is het niet noodzakelijk
het bestaan van langgerekte stofdeeltjes aan te nemen.

L. Davis, Vistas in Astronemy I, Pergamon Press, London 1955, p. 336.

X1
Foto-electrische waarnemingen van de eclipsveranderlijke RZ Cassiopeiae

geven aanleiding tot het vermoeden dat de atmosfeer van de heldere
component op sterke en onregelmatige wijze wordt beinvloed door de
zwakke component. Het is mogelijk dat dit effect verantwoordelijk is voor
de variaties van de periode.

R. Szafraniec. Acta Astronomica, Sér b, 2, 86, 1952;

C. M. Huffer en Z. Kopal, Astrophys. J. 114, 297, 1951.

XII.

De schildering van het karakter van beoefenaren der exacte weten-
schappen door litteratoren van naam werpt vaak een verkeerd licht op de

habitus van deze onderzoekers.

XIIIL.

Het schrijven van populair-wetenschappelijke lectuur door personen die
niet actief in de door hen behandelde tak van wetenschap werkzaam zijn,

moet ten stelligste worden afgekeurd.
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GENERAL INTRODUCTION

The mechanism of plastic deformation of crystalline solids depends
primarily on the behaviour of lattice defects, such as dislocations. vacancies
and interstitial atoms. The motion of dislocations gives rise to the well-
known phenomenon of glide or slip in metals. In order to explain the large
plastic deformation of metals under the influence of moderate stresses, not
only the motion but also the formation of large numbers of dislocations by
the action of the stress must be understood. Motion of dislocations in imper-
fect erystals is accompanied by the formation of vacancies and interstitials.
Thus in a plastically strained metal all three kinds of defects are present.
They affect appreciably the physical properties of the material, such as the
electrical resistivity, the thermo-electric power and the magnetoresistance,
as well as the X-ray diffraction pattern, the density, ete.

To study the mechanism of plastic deformation of metals, it is therefore
useful to direct attention not only to the mechanical properties affected,
or to the surface phenomena such as slip line pattern, deformation bands,
ete., but also to the general physical properties of the metal.

In this paper the change of electrical resistivity and of magnetoresistivity,
caused by plastic deformation, of the monovalent metals copper, silver and
gold will be studied, from a theoretical as well as from an experimental
point of view. From this study several conclusions will be drawn as to the
concentrations, the diffusive properties and the electric scattering power of
the various defects formed.

The first chapter is devoted to a discussion of current ideas about the
fundamental properties of the defects mentioned and of their occurrence
in well-annealed metals. In chapter 2 the behaviour of the defects under
stresses exceeding the elastic limit of the metal are discussed and a simple
model theory deseribing the situation in plastically deformed metals is
proposed. Theoretical relations are derived between the amount of deforma-
tion and the concentrations of the various defects presentin the lattice after
the deformation. In chapter 3 the change of electrical resistivity of a metal
during plastic deformation is discussed and related to the formation of
defects. Various experiments are described and their results compared to
the theoretical deductions. Chapter 4 deals with the change of resistance of
plastically strained metals in a transverse magnetic field. From theoretical
considerations it follows that under these circumstances the dislocations
can be studied independent of other defects. Chapter 5 is devoted to the
study of the thermal recovery phenomena of the electrical properties of
deformed metals. Similar recovery phenomena in irradiated and rapidly
quenched metals are also considered. Chapter 6 summarizes the conclusions
that can be drawn from our investigations.




1. PROPERTIES OF LATTICE DEFECTS

1.1. Dislocations

A complete review of the properties of dislocations cannot be given in
this paper; only those aspects to be used in the later sections will be dealt
with. For instance, the elastic and dynamic properties of dislocations will
not be discussed at all. Detailed accounts on the structure and elementary
properties of dislocations can be found in the book of W.T. Read !); a fairly
complete discussion of the effects of dislocations on the mechanical proper-
ties of metals is given by A. H. Cottrell in his monograph %), while the
mathematical theory of dislocations has been extensively presented by
F. R. N. Nabarro ?). Recently, nearly all these aspects of the dislocation
problem have been discussed anew by A. Seeger ).

1.1.1. Structure of dislocations

Dislocations were originally introduced into the formal theory of elastici-
ty ?) by considering a multiply connected body, in which a cut has been
made to render it simply connected. By displacing the two cut surfaces,
possibly adding or removing some material, and finally joining the surfaces
again, a state of strain is obtained which was called a dislocation. In order
to ensure everywhere finite and differentiable strains, the relative displace-
ment of the cut surfaces should be compatible with the displacements of a
rigid body ). According to this condition, the relative displacement of
neighbouring points on either side of the cut is given by an expression of the
form:

ou; = b; + 3 djj x5, (1.1)
J

where x; denote the coordinates of the point, the three constants b; specify
the relative translation of the cut surface and the three constants
dij (= — dj;) specify the relative rotation.

A general dislocation is thus described by six constants, or, it can be
considered that a general dislocation is in fact built up out of six elementary
dislocations, each of them characterized by only one constant, the other
five being zero. These elementary dislocations can be illustrated as follows
(fig. 1). Consider a hollow cylinder with a cut in its mantle parallel to the
axis. A dislocation is formed by displacing the cut surfaces with respect to
sach other. The six types can be divided into three classes:

(1) Only a translation is present normal to the length direction of the cut.
These dislocations are called edge dislocations (b, ¢).

(2) Only a translation is present parallel to the length direction of the cut.
Phese dislocations are called screw dislocations (d).

3) Only a relative rotation of the cut surfaces has been applied. These




dislocations give rise to finite strains at infinity, and do not occur in the
ordinary theory of plasticity (e, f. g).

This general concept of dislocations has been applied by J. M. Burgers ©)

to the case of glide in solids. He considers an isotropic solid, from which a

thin filament of matter in the form of a closed loop has been removed (corre-

sponding to the hole in the cylinders in fig. 1). By displacing the two surfaces

of a cap whose edge is formed by the loop, over an amount b a dislocation is
created, viz. of type (1) or type (2) or a mixture of the two. The strains are
largely concentrated around the loop: this is called the dislocation line.

87973

Fig. 1. The six types of elastic dislocation. (a) Original eylinder containing a cut parallel to
its axis; (b) and (¢) edge dislocations; (d) screw dislocation: (e), (f) and (g) rotational
dislocations. (After F. R. N, Nabarro %).)

The vector b is named the Burgers vector of the dislocation. It can be
shown ©) that the strain at any point in the material depends only on the
vector b and the position of the dislocation line: it is independent of the
form of the cap.

Frank 7) introduced the dislocation concept in a way especially suited to
crystalline solids built on a spatial lattice. In an ideal crystal, the atoms
are situated at p|u('.c.~'

r=la 4 mb + ne, (1.2)

-‘ In reality, ideal crystals do not exist, and (1.2) describes the positions of the
1 atoms only approximately: there are internal vibrations, and various atoms
| are missing, others occupy interstitial sites, etc. However, comparing

actual and ideal crystals, one can try to establish a one to one correspon-
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dence between the atoms in both crystals. Regions in the actual crystal
where this is possible are called good regions; regions where such a correspon-
dence can not be unambiguously established are named bad regions. Con-
sider a closed circuit (Burgers circuit) in the real crystal. It is always
possible to define an associated circuit in the ideal crystal, which, however,
is not necessarily closed. When it is not closed, the Burgers circuit is said
to encircle one or more dislocations (fig. 2). When the Burgers circuit runs
entirely through good crystal, the associated circuit, if not closed, has
necessarily a closing failure which is equal to a lattice vector. One then
speaks of a perfect dislocation, with a Burgers vector equal to that closing
failure. Otherwise the closing failure may differ from a lattice vector, and
the Burgers circuit encircles an imperfect dislocation. By uniquely defining
the direction along which the Burgers circuit is traversed, one can assign a
sign to a dislocation. Two dislocations with Burgers vectors equal in
magnitude but of opposite directions of the closing failure are called dis-
locations of opposite sign.

The Burgers circuit can be continuously displaced through good erystal
without change of the Burgers vector. The circuit may be shrunk as far
as possible to its central core of bad crystal, that is to the immediate
neighbourhood of the dislocation line.

An important deduction from this is the following: Since the Burgers
circuit can be continuously displaced along the dislocation line without
change in Burgers vector, a dislocation line cannot terminate within the
crystal.
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Fig. 2. Ideal (a) and real (b) crystal. The latter contains a dislocation, The Burgers circuit
encircling it has an associated circuit in the ideal erystal with a closing failure equal to the
Burgers vector of this dislocation. Corresponding intersections of the circuit with lattice
planes have been denoted by corresponding figures.




A dislocation line can branch. Taking the Burgers circuit through good
crystal and large enough to encircle the branches. its Burgers vector
remains constant as the circuit is displaced past the branchpoint. Thus
the vector sum of the Burgers vectors of the branches is equal to the Burgers
vector of the unbranched dislocation. Along an unbranched dislocation the
Burgers vector has everywhere the same modulus and direction.

From the above general considerations it follows that dislocations in
crystals are linear defects characterized by two vector quantities, namely a
unit vector denoting the local direction of the dislocation line and the
Burgers vector, which measures the resultant displacements of the atoms.

In the theory of plastic deformation, one is only interested in lattice
defects which cause a strain that tends to zero at infinity, and therefore only
types (1) and (2) of page 4 (or a mixture of the two) have to be considered.
These two principal types of dislocation are illustrated in figs 3 and 4 for
the case of a simple cubic structure. The edge dislocation has its Burgers
vector perpendicular to its axis. Its significance for the theory of plastic
deformation follows from fig. 3, as it can be considered as the boundary
line between a region of the crystal that has slipped and a region which has
not yet slipped. Slip can be propagated through the crystal by moving the
dislocation along its slip plane.

A screw dislocation (fig. 4) has its Burgers vector parallel to its axis. It
can also be regarded as the boundary line between slipped and unslipped
regions. In both cases the slip vector is equal to the Burgers vector.

As will be clear from the foregoing, a dislocation line needs not necessarily
be straight; due to the constancy of its Burgers vector a curved dislocation
changes its type along its axis, as depicted in fig. 5. For most of its length
it is of mixed edge-screw character.
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Fig. 3. Perspective diagram of an edge dislocation that has progressed halfway through
a crystal. The dotted line d is the dislocation axis: the drawn lines represent atomic planes,
The Burgers vector b is perpendicular to the axis. To complete the shear, the dislocation
must move along the slip plane g in the direction of b.
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Fig. 4. Perspective diagram of a screw dislocation that has progressed halfway through
the erystal. The letters have the same meaning as in fig. 3. To complete slip, the dislocation
has to move over the slip plane g perpendicular to its Burgers vector b.

Fig. 5. Closed dislocation loop. b is the Burgers vector, that is constant along the loop.
Only the parts I and S are of pure edge and screw character respectively.

1.1.2. Energy and free energy of a stationary dislocation

When the stresses g;; and strains ¢;; relating to a dislocation are known,
its strain energy can be found. Cottrell 2) derives the formula:

Gb* [Ty

U~ log (

dma T \r,

) (1.3)

for the energy per unit length of a straight dislocation in a simple cubic

lattice with atomic spacing b. For an edge dislocation, « = 1 — », for a
serew dislocation a = 1, where » is Poisson’s ratio: G is the shear modulus.

Additional terms arising from the finite dimensions of the material are left
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out of account here: r, denotes the extent of the strain field of the dis-
location, r, the radius of a cylindrical region around the axis of the dis-
location within which the strains become so large that Hooke’s law is no
longer valid. If we put r, equal to one atomic distance, the strains at the
surface of the inner eylinder are already of the order ! » which are much
to large for ordinary elasticity theory to be applicable. We shall therefore
take r, = 1077 cm. In an ordinary crystal one may take r; to be of the order
of 1 em, thus one has

~ AGH?
U~ (1.3a)

T

for the energy per unit length. In copper, this energy works out to 5.10°4
erg/em, or about 8 eV per atomic plane perpendicular to its axis for an edge
dislocation, and about 5 eV for a screw dislocation.

Various authors have tried to determine somewhat more accurately the
energy of dislocations of arbitrary type in various crystal structures.
The most recent results have been obtained by Foreman %): they confirm
the values quoted above. The difference in energy between the various
types are relatively small, and no conclusion is possible as to what kind of
dislocation may be expected to be most probable. The uncertainty is largely
due to the unknown energy contained in the dislocation core.

Cottrell %) has estimated the amount of energy concentrated within r,,
and finds this to amount approximately to '/, Gb* per atomie plane, which
is of the order of 1 ¢V and thus not very small compared to the strain energy
outside r, (therefore it plays an important part when the distinction between
two kinds of dislocations is studied). It is an interesting property of a dis-
location that about half of its strain energy arises from regions outside 104
em from the dislocation line.

The presence of a dislocation increases the disorder of the crystal.
On the other hand a dislocation can be arranged in the crystal in various
ways. Cottrell 2) has computed the change in entropy corresponding to the
introduction of a dislocation in a crystal of unit volume. finding A4S to be
minus a few times R per mole. This means that the entropy contribution
to the free energy of a dislocation amounts to about 1%, of the strain
energy at room temperature, and can, even at temperatures of the order
of the melting point of most metals, be completely neglected.

Thus the free energy is practically equal to the strain energy which is
positive and large. Hence dislocations cannot exist as thermodynamically
stable lattice defects.

1.1.3. Motion of dislocations

Slip is based on the motion of dislocations. The above discussion already
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yields some insight into the kinematical properties of dislocations. Following
Frank 7), we consider a Burgers circuit anywhere in the (actual) erystal and
let a dislocation line move from outside to inside the circuit. The closing
failure of the associated path, which may originally have been zero or finite,
is then changed by the Burgers vector b of the dislocation. Two adjacent
ions on the circuit between which the dislocation has passed are thus dis-

placed by an amount approximately equal to b relative to each other (the

displacement is measured in the actual crystal and needs thus not be
exactly equal to b).

Let n be the unit vector normal to the planar area that has been swept
by an infinitesimal segment do of the dislocation line. Then with this
movement a change of volume occurs which, per unit area swept, is equal
to (b.n). If the movement is such that this product is zero, there is no

87975

Fig. 6. The dislocation line d can glide into any position on the cylindrical surface containing
itself and the direction of the Burgers vector b. The screw part S can glide on any plane
through its axis, e.g. the plane 4ABCD.
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volume change and the dislocation is said to glide. Glide motions thus
occur when the dislocation line moves in a surface containing itself and its
Burgers vector (fig. 6), this is termed its glide surface or slip surface. It is
easily seen that all motions of pure screw dislocations are pure glide
motions.

For dislocations with some edge character, however, glide motion can
occur only on a definite glide plane. From fig. 6 it follows that glide
motions are characterized by the property that the projection of the dis-
location line on a plane perpendicular to the Burgers vector is invariant in
area and shape.

All motions not satisfying this condition necessitate the production of
vacancies resp. the transfer of interstitial atoms to lattice sites when (b.n)
is positive, or the production of interstitial atoms resp. the removal of
vacancies when (b.n) is negative. Such motions. when occurring at not
too high temperatures, bring about an appreciable change in the free energy
of the crystal and are therefore only possible under appreciable forces. They
are called climb motions. Glide motions on the contrary take place already
under very slight forces.

Forces on dislocations

In this study we are not concerned with the el
Nevertheless, the concept of the force on a d
in several connections later on. The force exe

astic and dynamic properties of dislocations,
islocation should be touched upon, as it arises
rted on a dislocation by an elastic stress field
P can be introduced as follows. If a line element do of a dislocation moves S0 as to sweep a
planar element of area dn — do % dx. than the traction on the element is n.P, and the work

done by the field in this motion is (n.P).b = (b.P).n. — (b.P).(do = dx) [(b.P) < do].dx.
The force dF, exerted by the elastic field P on the

element do of the dislocation can thus
be defined as *7):

dF (b.P) » do.

If only a uniform shear stress 7 acts in the diree

tion of the Burgers vector, it is easily
seen that

F h (1.4)

per unit length.

We shall now discuss the motion of dislocations in more detail.

1.1.3.1. Glide motion

In the presence of an elastic stress field. the component of the force on
a dislocation that is acting in the plane tends to move the dislocation in
that plane. Such a motion is a glide motion, no volume changes are
connected with it. However, still a small force is needed, as naturally in a
crystal, when a dislocation is displaced from a symmetrical position to an
unsymmetrical one, this displacement is opposed by a force. This
due to the fact that the atoms near to the slip plane
valent positions on opposite sides of the dislocation. Its magnitude depends
on the variation, with the position of the dislocation, of the energy of

force is

are no I(,)llg('l‘ in ('(llli-
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misfit between the faces of the slip plane. Following Peierls ?) we assume
in a simple cubic lattice with lattice spacing b a sinusoidal relation to
exist between the shear stresses acting on the atoms on both sides of the
slip plane and the deviations u of these atoms from their symmetrical
positions:

G dru

T o sin b . (1.5)

The total energy of misfit of a row of atoms of unit length parallel to the

diclocation is

j e — [ br du. (1.6)
Thus:
Ch . Gb? 1;
Ep.= 7y f sin Z“ du — 82 ‘I - cos il (1.7)
u=b/4

Let the distance of the centre of the dislocation to the nearest position
of symmetry be «b. where « is variable. Then we can describe the relative

positions of the atoms on both sides of the slip plane ;lpproximutvlv by

b %
u = arc tan —»
27 g
where x = (a 4 Yon)bs n = 0, £ 1, £ 2, cevvvsy and [ = ¢b/2(1 — »), where

q is a factor depending on the exact form of the law of force (1.5) between

the atoms. It is unity for a pure sinusoidal law, and may be 5 in actual

. - is a measure for the width of the dislocation. Summing (1.7) over

cases 3

all these positions, the misfit energy can be shown to depend on « as ?)

Gb® A
Em = e cos daa. (1.8)

2z(1 —»)
By differentiating (1.8) we find for the force on a dislocation preventing

its movement :
; 26 . Sriis
= e " sin daa. (1.9)

] —»

According to (1.4) the theoretical critical shear stress acting in the glide
plane needed to move the dislocation is
Frax 2G :
L (1.10)

s i B

The magnitude of this stress depends very sensitively on the width of

the dislocation and thus on the exact form of the shear stress function (1.5)
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and on the erystal structure. In actual crystal lattices [ can be decreased
in the ratio: lattice spacing in a direction perpendicular to the slipplane to
lattice spacing in the glide direction (= Burgers vector). This can give an
appreciable effect in 7., especially when slip occurs on close-packed planes.
[t has not yet been possible to make a reliable estimate of - (see e.g. Fore-
man, Jaswon and Wood 1°) ) and hence the theoretical critical shear stress
to move a dislocation cannot be computed even to the order of magnitude.
However, it is certainly several orders of magnitudes smaller than the
theoretical eritical shear stress of a perfect crystal, which is of the order of
10:3L).

It is this property of dislocations, viz. the low theoretical value of the
shear stress needed to move them across their glide plane, which makes these
lattice defects so important in plastic flow. The observed critical shear stress
for plastic deformation of actual metal single crystals is of the order of
1072 to 1073 G, thus much smaller than the theoretical critical shear stress
of a perfect crystal. Polyerystalline materials show a higher critical shear
stress, yet always much smaller than this theoretical value (except in some
cases of especially hardened materials). This discrepancy can only be
explained by the fundamental assumption that slip takes place by glide
motion of dislocations.

In actual cases, the motion of dislocation is not only hindered by the
“fundamental” Peierls force discussed above. but to a large extent by the
presence of other lattice defects in the erystal. As Seeger 12) has pointed out,
the Peierls force may nearly always be neglected compared to these other
influences, except maybe at very low temperatures. Leibfried 1) has indi-
cated however, that even then the Peierls force is easily overcome by the
thermal vibrations and the zero point vibrations of the lattice.

However, the conclusion that dislocations are re latively very mobile
lattice defects remains valid, also when the influence of other lattice defects
is taken into account (see also chapter 2).

During glide motion a dislocation can reach considerable velocities. The ultimate veloc ity
limit is that of sound in the metal, but dislocations cannot reach this limit because of the
large energy dissipation that occurs by reason of the interaction with the lattice vibrations
(generation of heat or sound waves). An exact treatment of this problem has not yet been
possible. Associated with a moving dislocation is a kinetic energy, arising [from the
atomie motions constituting the dislocation motion. This ene rgy increases with the dis-
location velocity, particularly because the width of the dislocation decreases, This decrease
in width is similar to the relativistic contraction of a yard stick, the width tending to zero
as the velocity approaches its upper limit. The kinetic energy becomes comparable to the
elastic energy of a stationary dislocation at speeds of the order of one tenth of the veloc ity

of sound, which will therefore be the order of magnitude of the actual velocity limit of
dislocations,

1.1.3.2. Climb motion

Motion of a dislocation out of its glide plane necessitates a change of
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volume, as explained above. Such motion is illustrated in fig. 7. With a
dislocation of not pure screw character (for a pure screw dislocation each
lattice plane through its axis is a glide plane) is associated an extra half-plane
of atoms, as can also be seen from fig. 3. The motion of the dislocation
outside its glide plane is accompanied by a change of the dimensions of this
half plane. That is to say, some of the atoms belonging to the half plane have
to disappear somewhere in the lattice, or new atoms have to be added to it.
The transport of atoms through the lattice has to take place by diffusion.

!

B B

!

Fig. 7. Climb motion of a dislocation of not pure screw character (axis perpendicular to
the plane of drawing). When the dislocation axis moves from A to A’, the extra half-plane
BA becomes B’A’, that is, it becomes shorter. Some atoms have therefore to diffuse away.

(After A. H. Cottrell %).)

This does not seriously impede climb as a possible form of motion, if the
temperature of the crystal is high enough for diffusion to take place as
rapidly as is needed to maintain the structure during the motion. However,
for most metals at room temperature or below, diffusion is a slow process
and the climbing dislocation leaves in its wake a sheet of vacancies or
interstitial atoms. With climb of dislocations therefore an activation energy
is associated, either for diffusion or for formation of defects, or for both.

The reverse process is the absorption of vacancies or interstitial atoms
at dislocations, thereby causing the dislocation to climb. This process also
occurs only appreciably at fairly high temperatures, and is manifested e.g.
in the phenomenon of polygonization.

Consider a segment do of a dislocation line. Let the distance travelled by
the dislocation be dx. The change of volume associated with this motion is

equal to

AV = b.(do X dx), (1.11)
which can also be written as:

AV = dx. (b X do). (1.12)




From these formulae it can be inferred that the change of volume, that is to
say the number of vacancies or interstitial atoms left in the wake of a

dislocation of unit length, per unit area travelled is proportional to
b sin a cos f3, (1.13)

where « is the angle between Burgers vector and dislocation line and g is
the angle between the direction of motion and the normal to the glide plane.

The climb motion, or as it is also called the unconservative motion of
dislocations does oceur not only when absorption of vacancies or intersti-
tials takes place, but also after two dislocations on different glideplanes
have intersected each other. Then in each of the two dislocations a
jog is formed, the magnitude and direction of each being given by the
Burgers vector of the other dislocation (see for a detailed treatment the
book ') of Read). This jog can be considered as a short piece of dislocation.
According to the theorem of the conservation of the Burgers vector (section
1.1.1) the Burgers vector of the jog is the same as that of the dislocation in
which it occurs. Suppose now that one of the crossing dislocations (Burgers
vector b;) undergoes a glide motion (for instance under the action of a shear
stress), and the other dislocation (Burgers vector b,) is fixed. Then, after
crossing, the jog formed in the moving dislocation will have to move to-
gether with the dislocation to which it belongs. In general it will then per-
form an unconservative type of motion. The glide plane of the jog is defined
as the plane through its axis, that is a line parallel to the Burgers vector b,
of the fixed dislocation, and its own Burgers vector, that is the Burgers
vector b, of the moving dislocation. The direction of motion, given by the
vector dx, is such that for the element (considered straight) of the moving
dislocation dg, in which the jog occurs, the condition:

dx. (b, X doy) = do;.(dx x b)) =0 (1.14)
is fulfilled. The condition for glide motion of the jog reads however:
dx. (b, X by,) = b,. (dx x b;) = 0. (1.15)

The second edition can be fulfilled together with the first one when either
dx » b, = 0, that is when the moving dislocation has pure edge character,
or when b, lies in the glide plane of the moving dislocation. In general,
however, b, has a component normal to the glide plane of the moving disloc-
ation and the latter has not pure edge character; the jog will then leave a
trail of vacancies or interstitial atoms.

Thus, for example, two crossing screw dislocations (dx x b, is a
maximum) that are mutually perpendicular acquire jogs which on further
movement leave a trail of vacancies or interstitials that are spaced only one
atomic distance from each other (maximum efficiency of jog formation).
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In the general case of two dislocations of arbitrary character crossing
under an arbitrary angle, the efficiency of vacancy formation (or interstitial
formation) of the jogs formed can be found as follows. According to (1.12) the
volume change due to the motion of the jog in the moving dislocation is
given by

‘H‘:,' = b, . (dx x b,). (1.16)

Now dx can be taken perpendicular to do,, for the only physically interest-
ing component of motion of the dislocation line is that perpendicular to
itself, the component parallel to the line being of no interest. Thus it is

found from (1.16) that the efficiency of defect formation is given by
e ~ (by.do;) x (bymy), (1.17)

where n, stands for the unit vector normal to the glide plane of the moving
dislocation. This formula confirms the conclusions already reached in the
discussion above: jogs in moving edge dislocations (b;.do, = 0) produce
no defects, and the crossing dislocation must have a Burgers vector with
component perpendicular to the glide plane of the moving dislocation. For
two |wrpvmliculurl.\' crossing screws e = 1: this defines the scale of the
efficiency factor. It corresponds to the production of a close packed row
of defects. For arbitrary orientations the spacing of the defects is 1 /e lattice
parum(-tvrs.

The possibility must not be ruled out that the jog formed in the moving
dislocation will, on further movement of the latter, displace itself so as to
reduce the defect production. No defects are produced at all by the jog
when it moves purely by glide, that is parallel to the Burgers vector of the
moving dislocation. The character of the latter determines in how far the
jog can actually perform such a favourable motion. A jog in a pure screw
dislocation has to move along the dislocation axis. In view of the limit set

to the possible dislocation velocity, this seems impossible. No accurate

computation has been made as to the actual motion of a jog. It seems plaus-

ible however to deduce that the efficiency as given in (1.17) will be less in
practice, due to the sidewise motion of the jog. To take this into account,

another factor (b,.do;) could perhaps be added to the efficiency formula.

1.1.4. Formation of dislocations

In order to explain the phenomenon of plastic flow as being effected by
the motion of dislocations on their glide planes, one has to assume that
in undeformed crystals dislocations are already present in appreciable
numbers. Dislocations not being thermodynamically stable lattice defects,
there must be some mechanism or another by which they come into

existence during the growth of the crystal.
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Up till now, only hypotheses exist to the nature of the mechanisms
responsible for dislocation formation. As pointed out by Frank '), crystal
growth from slightly supersaturated vapour is greatly aided by the presence
of screw dislocations. These dislocations produce a step on the surface of
the erystal at which new atoms are preferentially absorbed, and which does
not disappear on further growth, as normal surface irregularities do. By the
aid of dislocation steps the rate of growth can easily be enhanced by a factor
of 100 (spiral growth!?)). In the growing crystal the dislocation growths
with it. Therefore vapour grown crystals will presumably contain dis-
locations, as those nuclei already containing them will grow much faster
than those without dislocations. An analogous mechanism probably holds
for growth from diluted solutions. The existence of dislocations in the origin-
al nuclei presents another problem. Recent experiments by Hollomon 1%)
show that they are probably formed in small numbers when two nuclei
encounter each other accidentally and stresses are set up. These can be
relieved by the formation of dislocations in the very small and thin nuclei.

However, metal crystals do presumably contain more dislocations then
can be understood in this way: various experiments !7) yield dislocation
densities of 10°-10% em™® in carefully prepared metal crystals. (In other
solids these densities may be much less, e.g. it is stated that very carefully
prepared germanium crystals would only contain as few as 102-10%
dislocations per em® *). We shall not go into the explanation of these dif-
ferences here.) Approximately the same densities are found in sublimized
and melt-grown crystals. A possible hypothesis as to the formation of so
many dislocations in metal erystals grown from the melt, has been advanced
by Teghtsoonian and Chalmers %), on the basis of experimental evidence
of so called striations in tin crystals grown from a seeded melt. The theory
has been further developed by Frank *), but as yet only qualitatively.
[t is based on the assumption that the vacancies present in large numbers
in thermal equilibrium in the high temperature zone near the solid-liquid
interface will, as the temperature falls, condense progressively into flat
disks perpendicular to the interface. When the temperature drops further,
these disks collapse and elongated dislocation loops more or less parallel
to the growth direction are formed, that grow on as the solidification
proceeds. Excess vacancies that remain in the cooler parts of the material,
having escaped the elimination process deseribed above, will presumably
collapse in their turn into smaller and more arbitrarily oriented dislocation
loops, by reason of the lesser diffusivity. By the action of the thermal stresses

*) These numbers are hased on countings of etch pits by Vogel, Pfann and their collaborators
at the Bell Laboratories. It seems, however, that the observed numbers depend greatly

>

on the method of attack: Ellis '¥) finds dislocation densities in Ge of 107 to 105 em™2.
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these loops rearrange themselves and form a dislocation network, the
presence of which has already been discussed. By several methods it has
been demonstrated that the probable maze width of this network should ly
in between 1072 and 1074 em (see e.g. section 1.1.6.2). The corresponding
limiting density of 10° to 10° cm ? is presumably intimately connected with
the unavoidable presence of small traces of impurities in even the purest
metals — zone-refined metals possibly excepted: not much is known about
the dislocation density in these metals at the moment —. Basing ourselves
on the available evidence, we shall accept the presence of a dislocation
network of the dimensions mentioned in well-annealed metal crystals. Its
existence seems fairly well established.

The stability conditions for such a network have been studied by Thomp-
son 22), Frank %) and others. In face centered cubic metals a stable arrange-
ment of the dislocations seems to be such that each time three dislocations
meet at so called nodes, and hexagonal cells are formed. At each node the
vector sum of the Burgers vectors of the three dislocations is equal to zero,
as required by the theory. Cells of this type have indeed been observed
by Hedges and Mitchell ) in single crystals of silver bromide.

Such a spatial network is relatively immobile under the action of a stress.
That is to say, a given network element acted upon by a suitable shear
stress tending to make it glide, cannot move in its glide plane as when its
end points were free, but is anchored at the nodes that form its end points.
It will however bend out, somewhat like an elastic wire. Frank and Read *)
have shown that if the shear stress becomes large enough, such an anchored
dislocation element can act as a source of an indefinite number of dislocation
loops. The source starts to work if the shear stress component along the
Burgvrs vector becomes (-(]uul to

aGb

7 =7 (1.18)

where @ is a numerical factor depending on the elastic constants of the
material and slightly on the type of the dislocation, it is of order unity:
l is the length of the network element. Figure 8 shows the mechanism of
a so-called Frank-Read source in detail.

Fisher 2¢) pointed out that a dislocation element ending on the surface of
the crystal and on a node in the interior could already act as a source at
one-half of the stress needed for a double-ended source. Hart *) discussed
the case of Frank-Read sources not anchored by other dislocations but by

foreign solute atoms, and derived the result that such sources could also

be activated by stresses considerably lower than that given by formula
(1.18).
Suzuki %) and Bilby #) studied the action of Frank-Read sources
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anchored at nodes in connection with the special properties of the crystalline
structure in closed-packed metals, and pointed out that there are in principle
various kinds of sources possible. Whereas that originally proposed by
Frank and Read emits its loops all in the same atomic plane, their work
shows that sources that emit loops on successive atomic planes are much
more probable.

lb

J
e
bl

Fig. 8. Frank-Read source. A dislocation element 1 of length I and Burgers vector b is
anchored at two points. When a shear stress is applied along b, the dislocation bends out
and takes the forms 1, 2, 3 ..... At a certain stress the critical half-circle-form 3 has been
reached. A further slight increase of the stress causes a spontaneous expansion 4, ... 6.
In the latter situation the two near lying serew parts eliminate each other, and the closed
loop 7 is formed together with the original piece of dislocation 1,

Whatever the detailed mechanism may be, the existence of dislocation
sources of some kind or another seems to be clearly established. One inherent
difficulty of the dislocation theory of plastic flow is herewith overcome:
not only can the dislocations move easily but they are easily formed, too
under the influence of the deforming stresses themselves.

.

The number of loops emitted by a source will in practice always be
limited by secundary phenomena, such as the action of the stresses set up
by the loops themselves, the interaction of the sources and the effect of the
formation of jogs and other lattice defects as mentioned in the foregoing
section. We shall return to this point below. In general, the observed sur-
face displacements in the so-called slip lines of between 10 and 2000 atomic
distances on one slip plane, can in principle be easily understood from the
action of dislocation sources.
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1.1.5. Dislocations in special crystal structures

In a given crystal lattice there is an infinity of possible Burgers vectors,
viz. any lattice vector. However, not all the corresponding dislocations are
stable. The energy of a dislocation is propoertional to the square of its
Burgers vector (this follows from a consideration of the stresses and strains
around the dislocation), when small terms arising from crystal anisotropy
and type of the dislocation are neglected. Therefore, only those dislocations
are stable that cannot split up into two dislocations with Burgers vectors
b, and b, (of which the vectorsum is of course equal to that of the original
dislocation, b), so that

b2 > b7 + b3. (1.19)

Frank and Nicholas 3) have, on the basis of this principle, worked out the
possible Burgersvectors for several often occurring crystal structures. As
our present interest lies primarily with simple cubic and close-packed cubic

crystals, we give here only their results for these structures.

Simple cubic lattice Close-packed cubic lattice
I: 6 vectors [1,0,0] ete, b* =1 I: 12 vectors [0,3,3] ete, b* = 1
I1: 12 vectors [1.1.0] ete, b* = 2 II: 6 vectors [1,0.0] ete, b* = 1

[11: 8 vectors [1.1,1] ete, b? 3

All further combinations of primitive vectors are unstable., Even the
stability of type I in the simple cubic lattice against dissociation into
pairs of type I, of type III in this structure into two dislocations of type 1
and I1. or into three of type I, or of type IT in the close-packed lattice into
a pair of type I is a matter of doubt. The sum of the squares of the Burgers
vectors is invariant against these dissociations, so other factors may play
a deciding role.

Dislocations with the Burgers vectors discussed here are all perfect
dislocations. The Burgers vectors are lattice vectors, thus the displacements
of the atoms occurring when a dislocation passes through the lattice are
cuch that the lattice is transformed into itself. The definition of a dislocation,
as given in section 1.1.1 is, however, of a wider scope; the Burgers vector
need not be a lattice vector. In the latter case one is concerned with an
imperfect dislocation. In the theory of plastic flow only such imperfect
dislocations play a role that transform the crystal lattice into a structure
that is directly related to it, viz. into a translation twin. A simple cubic
lattice has no translation twins that can be constructed in this way, and

therefore no imperfect dislocations can exist in this structure.

The close-packed cubic structure (face-centred cubic structure) can be
/
A

tions of these layers along the [111] axis occupy three different sets of

regarded as built of close-packed layers of atoms in }111{ planes. The projec-




positions, and the layers can be labelled a. b, ¢. In the perfect lattice the
layers follow upon each other in the sequence a, b, c; a, b, ¢, a;, - - « -- - ;
Now suppose in this sequence Iu_\'vr a is removed and the gap is closed |)}
bringing the neighbouring ¢ and b layers into contact by a di< lacement
X D L) t ) o ¢ l
normal to (111). Then the sequence is - - - - a. b.e. b, c.a. b, c. q. - - =« = = .
and a translation twin is formed, of the kind called intrinsic twin Sy
Another way of forming a translation twin, a so-called extrinsic twin. is to
o o

insert a plane of atoms, say b. between ¢ and a in the sequence. Then the
sequence reads: a. b. c. b. a. b. ¢, - - - - - .

If in a crystal only part of a layer is removed or added, then one must

have imperfect dislocations at the boundaries (figs 9 and 10). Several
a ‘ ’\0/‘3/‘\0/.\0/‘\0
|
\-/\/ |

c % a
b c
a X b
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c c
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Fig. 9. (a) Half dislocation of screw type in the f.c.c. structure according to Heidenreich
and Shockley, The dislocation line d runs along the direction of the Burgers vector, that is
along [112]. The dislocation is viewed perpendicular to its (111) glide plane: atoms in the
plane of drawing are denoted by open circles, atoms one layer above it by dots.

(b) On both sides of the dislocation the stacking is different: if that on the left hand side
is normal (abeabe. . ..), that on the right hand side of the dislocation has become
(abcbea. . . .) and a stacking fault is produced,
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types of imperfect dislocations can be distinguished, according to the type
of twin and to the boundary considered. The geometry of the possible
imperfect dislocations is rather complex, we refer for further particulars
to the paper of Frank and Nicholas 3). Special types of imperfect disloca-
tions have been discovered before a gvnvrul theory existed, such as the so-
called half-dislocations of Heidenreich and Shockley #2), illustrated in
fig. 9, and the sessile dislocation of Frank 7), illustrated in fig. 10. Half-
dislocations have a Burgers vector of the type 3 — 1 which represents
a displacement from a lattice point to the nearest twin position in the (111)
plane. Frank’s sessile dislocation is characterized by a Burgers vector
of the type [—4, — 4§ —14] normal to a (111) plane, and is directly associated
with the formation of an intrinsic twin. It is called sessile, as any glide

* —0 - O & © @ O
O— @ O . O ® o~ o
a
a
c
c
e R R e . T
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a X ,é
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b b
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Fig. 10. (a) Frank sessile disloeation in the f.c.c. structure. The plane of drawing is (101),
atoms in different elevations. The dislocation runs along
and its Burgers vector b is along [111]. (After
d to have been formed by the

open and filled circles denote
[101] normal to the plane of the figure,
W. T. Read 1).) (b) This dislocation can also be imagine
partial removal of a lattice plane a.
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motion of such a dislocation according to the definition of section 1.1.3
is impossible.

The existence of imperfect dislocations implies that stable perfect
dislocations in some orientations can become unstable since they can
dissociate into two imperfect dislocations. In such a dissociation an area of
translation twin is generated between the two imperfect dislocations that
is called a stacking fault (the term thus being used in a rather narrow
sense). The combination of two imperfect dislocations and the associated
stacking fault between them is denoted as an extended dislocation. An
extended dislocation can e.g. be built up out of two half-dislocations,
dissociation products of a perfect dislocation of the type I in face-centred
cubic lattices. Dissociation of perfect dislocations into extended dislocations
is possible in many ways *). Whether it occurs in actual crystals is deter-
mined by the gain of elastic energy associated with this process. The energy
of an extended dislocation is made up of four parts: the energies of the two
imperfect dislocations, the interaction energy of these two, which can be
shown to be usually positive (the dislocations repel each other) and the
energy of the stacking fault itself. It is generally assumed that a disso-
ciation of the kind described above will indeed take place in f.c.c. metals.
Computations by Seeger ® %) have shown considerable distinctions to
exist between the form andebehaviour of such extended dislocations in
various metals. In copper thstacking fault energy is very small, whereas
in aluminium for instance it is large. The separation of the half-
dislocations in Al is probably smaller than 7 A, whereas that in Cu, Au,
Ag ete. is much larger, greater then 20 A.

For the theory of plastic flow it is of importance that the dissociation of
a perfect dislocation into an extended one may influence considerably its
mobility in the glide plane. Both parts of an extended dislocation, like that
of Heidenreich and Shockley, are confined to the plane of the stacking fault,
and the formation of jogs therefore becomes a process for which an additional
activation energy is needed, namely that to bring the two half-dislocations
together, to form a small piece of perfect dislocation at the site of the jog.
This activation energy is according to Seeger 331 of the order of 0-5 eV
in the case of Cu, and of the order of a few hundredths of an ¢V in the case
of aluminium.

1.1.6. Physiecal properties of dislocations

1.1.6.1. Influence on electrical resistivity

One of the most important properties of dislocations, in addition to their
effect on the mechanical strength of materials, is their influence on the

electrical resistivity. Dislocations are perturbations of the perfect lattice




and therefore act as scatterers for the conduction electrons. Confining our-
selves to metals for which the deseription of the conduction electrons by
an effective mass can be regarded as a reasonable approximation (such
as Cu for example). the scattering matrix element of a dislocation can be
computed in the following way 9.30) The region of the lattice surrounding
the dislocation is in a state of strain. Therefore the energy spectrum of the
conduction electrons, which in a perfect cubic lattice is given by:

E . hl".l >

i(k) = Eq , (1.20)
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must be supplemented by a number of terms depending on the strain
tensor. In (1.20) k is the wave vector of an electron, A is Planck’s constant
divided by 2z and m, is the effective mass of the electrons. The influence
of the strains on the (originally) periodic lattice potential can in first
instance be expressed as a potential, viz. a deformation potential. This
deformation potential depends primarily on the dilatation of the lattice.
Consider a metal erystal where the ions are perfectly sereened. thus where
the electron density will closely follow the ion density. In an energy band of
standard form, the width of the filled portion of the conduction band is given
by:
2
E, Oh (32n) ",

2m,
where n stands for the number of conduction electrons per unit volume.
When the ionic density varies, so does the electronic density and thus E.
Owing to the constancy of the Fermi energy, a variation 0E, is necessarily
associated with an opposite variation of the bottom of the conduction band,

OE. It is easily seen that

g Sl OB ~ v ;
0E = — % E, - —2 F, A, (1.21)
n
where on/n — A is the relative density variation, thus the dilatation of the

lattice. Therefore, the conduction electrons can be regarded as moving in
an additional electrostatic potential V= % Eg/e-A. This potential is taken
as the scattering potential by Landauer 35) and Dexter %). Of course (1.21)
only presents a first approximation, where effects of the strain on the effec-
tive mass of the electrons or directly on the shape of the band edge have
been neglected. These have been considered in detail by Hunter and
Nabarro 37). Furthermore, the sereening is never perfect and all variations
of the band edge energy are accompanied by small charge shifts to flatten
the Fermi surface again. The corrections to (1.21) due to this are only

small, however.




As the dilatations around a suitably oriented serew dislocation in a cubic

crystal are zero, such a dislocation is expected to scatter but slightly, at
least in metals where the electrons are ne arly free. The latter assumption is
best realized in the alkali metals and Hunter and Nabarro 57) indeed find
that in these metals serew dislocations only produce ve ry small scattering.
In the noble metals such as copper, the contribution to the scatte ring arising
from the other causes mentioned is already comparable to that arising from
the dilatation associated with an edge dislocation, and screw dislocations
produce thus also appreciable scattering.

Once the deformation potential has been ¢ omputed, the scattering matrix
element of a dislocation can be derived and from it the change in the distri-
bution function f(k)dk caused by the scattering by such a defect. A different
way to deseribe the distortion of the lattice is to take as the scattering
potential the difference of the sums of the sereened ionic potentials before
and after the distortion. This has been done originally by Sondheimer and
Mackenzie ). Dexter 97) has shown that the results of both w ays of attack
differ but slightly in the case of good screening.

We shall assume in the following that Matthiesen’s rule applies, that is,
that the scattering by the dislocations is independent of the thermal
scattering. Experiment has confirmed the approximate correctness of this
hypothesis. Under the influence of an electric field the equilibrium shape

of the distribution funection is then governed by the “Boltzmann equation”

df 7(01'] (Y
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) can be derived from the thermal resistivity when it is assumed
ol 2

lattice

that the lhormzll fluctuations can be described by a single relaxation time

7: the l«rm( also yields no difficulties. Only the third term needs

)
ot /roa
to be considered here.

It is easily seen that a straight dislocation line cannot induce a change in
the component of k parallel to it. Thus such a dislocation does not produce
a resistivity change in the direction of its axis. A dislocation with not pure
screw character prmlm €8 non-symme tric strains; the re ~|~h\-|l\ tensor thus
depends on the dislocation orientation. In a lattice with ¢ ubic symme try the
resistivity tensor of a straight dislocation has only three components. The
component along its axis being furthermore zero, there are only two com-
ponents to consider, ¢, in the glide plane perpendicular to the dislocation
line and g, perpendicular to the glide plane. The result of the calculations by
Hunter and Nabarro %) are the following:
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For parallel straight edge dislocations of densitity N, with Burgers yvectorb:

a2 Nhb® ( o o
Ne = a -+ Pf)s L
01 80 hye* 1+ ff) (1.22)
37* Nhb* b 50
o @t - (1.23)

For a set of straight screw dislocations of density N, with Burgers vector b:

32% Nhb* | { 94
")S ’Jls 'I."-!S v 8“ I\'f(l! Y ( h )

Here kyis the magnitude of the wave vector of the conduction electrons at

the Fermi level and e is the electronic charge. As is well known, kf depends

on the number n of conduction electrons per unit volume according to
A e
kf = (32%n)"; (1.25)

« and [ are constants of order unity which depend only on the value of
Poisson’s ratio, and f is a factor in which the dependence of the s attering
on the exact form of the periodic lattice potential is expressed. fis equal to
zero for perfectly free electrons: it is of order unity in the case of the noble
metals.

The resistivity of an edge dislocation perpendicular to its glide plane is
thus three times that in the glide direction: the ratio between the resistivi-
ties caused by an edge and a serew dislocation respectively is completely
governed by the magnitude of f. Numerical values for copper (dislocations
of type I with Burgers vector along [110]) have been given by Hunter and
Nabarro:

Resistivity in glide direction of one edge dislocation per em?
01e = 0-44.10 14 4y Qcm,
perpendicular to glide plane of dislocation (1.26)
03¢ = 1:32.10 14 5L£2('m._\
of screw dislocation Os 0:26.10 14 pQem. /

The resistivity produced by an edge dislocation in an arbitrary direction
can be computed according to the tensor rule (fig. 11). Let r be the direction
along which the resistivity is to be computed. Then

0e(r) = 010 cos? (x1) + O2e cos® (yr). (1.27)

Introduction of the pulur angles ¢ and @ with respect to the dislocation axis

yields:
e (¢, 0) = sin? @ (01¢ cOs* @ + Oz sin? @) . (1.28)




The resistivity produced by a screw dislocation in an arbitrary direction
follows from (1.28) by replacing gy, and s, both by os, thus

0s(@) = ossin 6, (1.29)
VA
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Fig. 11. On the derivation of the angular de vendence of the dislocation resistivity.
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A random arrangement of N edge and screw dislocations per em? in
o L=l

copper gives rise to a resistivity of
& (016 + D30 205) 0-38.1071 N yQcm.

A circular loop of dislocation of radius unity and with coplanar Burgers
vector has an anisotropic resistivity that can be computed as follows (fig.12)

A line element ds can be regarded as the superposition of a short piece

of edge dislocation with Burgers vector b cos ¢ directed normal to ds. and a

Fig. 12. On the derivation of the resistivity of a disloeation loop.
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piece of screw dislocation of Burgers vector b sin ¢ directed along ds. The
resistivity dog, in the glide direction (that of b) of this element of dislocation
is according to (1.28) and (1.29) and noting that the resistances depend
quadratically on the lengths of the effective Burgers vectors (formulae
(1.22) to (1.24)):

dog, (010 cos® ¢ + 05 sin? ¢ cos® @) dg . (1.30)
The resistivity dog, in the glide plane pt-rlwmlirnlur to the glide direction

of the element is given by:

dog, = (01 sin® ¢ cos® p ossint @) dg . (1.31)
The resistivity normal to the glide plane is found to be:

dop = (02¢ cOS® ¢ + 0s sin® @) dg . (1.32)

Averaging over the whole loop, one has:

Ogy $o1e {05
£g2 fore + 10+ (1.33)
On -_‘1’]20 4 Os «

In the case of copper one finds for the resistivity caused by the presence

of one loop of radius R per cm?® of the metal:

0-40.10 ¥ R pQem,

g
0gs = 0-31.1074 R pLlem, (1.34)
On 0-79.10 ¥ R pflem.

There remains thus an anisotropy of the resistivity of about 2: 1 for the
resistivity perpendicular to the glide plane with respect to that in the glide
plane. The anisotropy in the glide plane itself has pl‘uclic;lll) t|i~‘:|plu-uro-¢l.

In the computation of the dislocation resistivity use has been made of
the expressions for the displacements of the atoms as they follow from
ordinary linear elasticity theory. However, near to the dislocation lines these
expressions are no longer valid. As to the atomic structure in the dislocation
core, only tentative assumptions can be made. Read %) has pointed out that
one could in prim'ipl«' distinguish between two extreme Lypes of edge dis-
locations, so called open and closed dislocations. In the first case the lattice
is extended |wr|wm|ivu|;lr to the slip plane, in the second case it is not,
but voids appear between the atoms (compare fig. 13). The actual state will
(|v|wn(| on the “softness’ of the atoms. In order to estimate the influence of

the core of a dislocation on the resistivity, one might compare a dislocation

with a row of vacancies. According to computations of Jongenburger 1),
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one row of length 1 em per cm® would contribute in the mean 1:5.1077
u.Qem to the resistivity; this is about 4 times as much as an average dis-
location. Evidently this comparison is a gross overestimate of the import-
ance of the core; thus we can put with safety that the influence of the core
rannot alter the results of the calculation by more than a factor 4. and is
probably much less important. *)
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Fig. 13. (a) Closed dislocation (soft atoms), (¢) open dislocation (hard atoms), (b) inter-
mediate case. The atomie interaction in copper corresponds to a bubble size hetween (b) and
(¢). From photographs of the bubble model by W. L. Bragg and J. F. Nye, Proc. roy. Soc.
A 190, 474, 1947,

The dissociation of a dislocation into two imperfect ones gives rise to an
increase of scattering, mostly due to the influence of the stacking fault.
Klemens %) has estimated the effect of such a fault. He finds that the stack-
ing fault has an effective reflection coefficient of about !/,, that is the same
as that of a plane of vacancies according to Jongenburger’s computations ).
A stacking fault of 10 atom spacings width might therefore be responsible
for not less than about 40 times as much additional resistivity as a perfect
*) Note added in proof. Recent calculations by A, Seeger (unpublished) gave the

result that the effect of the core on the resistivity is about the same as that of
the extended strain field, thus confirming Jongenburger's estimate.
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dislocation. In Chapters 3, 4, and 5 various experimental evidence is dis-
cussed that actually the effective scattering cross-section of dislocations is
larger by this order of magnitude than that obtained by Hunter and Nabarro.

X-ray scattering by dislocations

1:1:6.2:

The X-ray scattering of a single dislocation can in principle be determine :d
from the theoretical expressions for the displacements associate d with it.
latter have been derived by several authors *%) for a continuous
medium. For a crystal the atomic displacements can be computed from them
with sufficient accuracy. Consider e.g. a straight screw dislocation along the
axis of a crystal of eylindrical cross-section. In a perfect crystal the atoms
are situated at positions

jia + b + Jae - (1.35)

When the dislocation is assumed to lie along the c-axis, it follows from the

theorv that the atoms are now situated at

where y is an angle measured from some fixed direction perpe sndicular to

¢, and ne is the Burgers vector of the dislocation (n is generally unity).

Let

denote the vector difference between the normals to the wavefronts of the
incident and the reflected beams divided by the wavelength 4 of the

monochromatic radiation. Then the amplitude of diffraction is given by:

Judwls
where @ depends on the nature of the crystal. Ina perfect crystal where the
positions of the lattice points are given by (L. 35) (r' = r), the sum only

differs apprumhl} from zero when

and h. k, I, are integers. In the dislocated crystal only the last condition
| retains its validity, owing to the indepe .ndence of y on j, in (1.36).
That is, any spreading of the regions of strong diffraction in reciprocal space
18 pcrpcndiculur to the dislocation axis 4%); an obvious result if one remembers
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the infinite repetition of the crystal pattern in the axial direction. The
summation of formula (1.37) over j, and j, cannot be performed exactly.
By replacing it by an integration over the cross-section of the cylinder, it
is found that the amplitude of reflection is no longer large in the points of
integral h, k, I, but on loops lying in integral [-planes with these points as
centres and with radii that increase about linearly with /. Only for | = 0
the diffraction pattern remains unaffected by the presence of the dislocation.
In all other planes the intensity of diffraction is exactly zero in the points
of integral h and k. Frank **) has pointed out that these results follow from
the facts that the screw dislocation displaces no atoms out of planes through
the dislocation axis, and displaces atoms out of planes intersecting this axis
by amounts ranging continually and uniformly from 0 to ne. The expressions
that can be derived %) for the integrated intensities are very complicated
and have presumably little practical use.

In a perfect crystal of not too small dimensions the so-called dynamical
theory of X-ray diffraction should hold. In this theory, the effects of
multiple scattering and interference among the waves reflected from all
planes in the crystal are taken into account. The result can be expressed as
follows: the erystal is completely transparent for X-rays except in very
small regions of reflection angle, corresponding to the ordinary Bragg-
reflections, where total reflection occurs. The width of these regions (of the
order of seconds of are) is proportional to the structure factor F(h, k, 1)
that depends on the positions of the atoms and on the reflection considered.
The integrated intensity of the diffracted radiation is in each reflection
region proportional to F' (due to the fact that total reflection occurs).

In practice it is found that the integrated intensities are rather better
proportional to F2, Such a result is obtained theoretically in the much
simpler kinematical theory of diffraction. In this theory multiple scattering
is neglected, and the intensity of the incident radiation is assumed to be
constant throughout the material. Then no total reflection, but a smoothed-
out intensity profile occurs for each reflection.

[t is generally assumed that the dynamical theory does not apply in most
crystals because of local deviations of the crystal perfection, that destroy
the very sensitive phase relations necessary for the considerations of the
dynamical theory to hold. When for instance the distance between two
successive lattice planes deviates locally from the “perfect” value by a
relative amount that corresponds to a variation of reflection angle of more
than the very narrow width of the reflection, the dynamical theory breaks
down. The at first sight rather amazing applicability of the kinematical
theory is thus explained by the natural imperfectness of most crystals.
However, in most natural or carefully prepared synthetic crystals traces of

the effects of multiple scattering and interference remain. They appear most
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conspiciously in the strong reflections. The latter are broad (in the dynamical
theory width and intensity are proportional) and small distortions of the
crystal do in general therefore not completely destroy the interference
conditions. For weak reflections however, the effect of multiple scattering
can usually be completely neglected. The result is that, starting from the
kinematical theory, the weak reflections are usually observed with about
the “correct” integrated intensity, whereas the strong reflections are
affected by backscattering, and are observed too weak. This is called
primary extinction, it is the more apparent if the crystal is more perfect.

In order that the dynamical theory should partially break down, the
local distortions of the crystal should be at least so near to each other
that nowhere perfect regions occur, large enough for the considerations
of this theory to apply in full. Darwin 1) has therefore proposed that in
natural crystals the structure is perfect only over regions of dimensions
of the order of 107 cm or less. Each crystal should be regarded as built up
out of perfect blocks of this dimension, that differ slightly from each other
in orientation (mosaic structure). Bragg *) has pointed out that in such a
structure, although the primary extinction is limited, another cause of
extinction occurs, the so-called secondary extinction. This is due to the fact
that the intensity incident on a particular mosaic block will not be equal
to the intensity incident on the surface of the crystal (as originally assumed
in the kinematical theory); the upper blocks differing but slightly from it in
orientation may reflect part of the intensity responsible for reflection, and
similarly the outgoing reflected beam may be partly reflected backwards on
its way out by mosaic blocks of about the same setting. Even if no primary
extinction where present (blocks not exactly perfect), this secondary
extinction would appear. Hall and Williamson ) have shown that by a
careful study of the integrated intensity of the various lines it is possible
to separate the effects of primary and secondary extinction. They found that
in cold-worked as well as in annealed metals only secondary extinction
appears. They could further determine the apparent particle size of the
corresponding mosaic structure from the width of the lines: it is of the
order of 107* ¢m in most annealed metals.

It has been proposed that the hypothetical mosaic structure should be
identified with the presence of a network of dislocations. From Wilsons
considerations discussed above, it is possible to derive, be it in an approxi-
mate way, the secondary extinction associated with the presence of a given
density of parallel dislocations. The effect of the dislocations is that the
lines become in first instance broadened, thus the same as that of mosaic
blocks of a certain average size. This “apparent particle size” associated
with the presence of dislocations is about equal to the average distance

between them. An observed mean parti('lv size of 107* ¢em thus corresponds
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to a density of parallel dislocations of 108 em 2. The identification of the
mosaic structure with the presence of a dislocation network seems therefore
well warranted, although a determination of the characteristies of this net-
work from X-ray data is not yet possible. Also the observation of Hall and
Williamson that no primary extinction occurs, can now be explained:
the “blocks™ in between the dislocations are not exactly perfect, due to the
long-range strains of the dislocations. Therefore the very sensitive phase
relations necessary for primary extinction are not obeyed and consequently
only secondary extinction occurs.

47, IR) are th('" [hul

The results of these and many other investigations
presumably in well-annealed metals a network of dislocations is present
with a mean maze-width of about 107* em. Assuming the dislocations to be
randomly distributed as to the possible crystallographic orientations of
line and Burgers vector, this corresponds to a density of 108 dislocations
per em?, in accordance with the assumptions made in section 1.1.4. How-
ever, the “randomness™ of the dislocation distribution may be far from
realized (Seeger '*) ); and thus this number might easily be wrong by a
factor 10.

The presence of stacking faults also influences the diffraction image.
The effect has been studied theoretically by Paterson 19): stacking faults
on one parallel set of :l]lf planes in an f.c.c. lattice result in broaden-
ing and displacement of those lines for which the sum of the indices
h+k+ 1= 3n+ 1, where n is an integer or zero. The displacement
is towards larger Bragg-angles when the - sign applies and to smaller
angles when the —sign applies. The other lines remain sharp. It is
possible to distinguish the stacking fault broadening from that due to
other causes by performing a Fourier analysis of the line shapes, as
has been proposed by Warren and Averbach ). No reliable observational
data have as yet been published.

1.2. Vacancies and interstitial atoms in metal erystals

Vacancies and interstitial atoms, in the following together to be called
point-defects, are presumably present in large numbers in materials de-
formed plastically at a temperature low enough to prevent diffusion. Their
presence, as has been explained in section 1.1.3.2, is caused by the motion
of dislocations that necessarily contain jogs. These defects have an appreci-
able effect on the physical properties of the materials: moreover, they
influence the mechanical properties, although in a lesser degree. It is there-
fore relevant to study the point-defects here somewhat in detail. We shall
confine ourselves to the physical properties of point-defects in face-centered
cubic metals,




1.2.1. Energy and free energy of point-defects in metals

Whereas the energy necessary to form a dislocation is practically comple-

tely an elastic energy, and can be estimated once the displacements around
the dislocations are known (in Cu for example a dislocation of mixed
character represents an energy of about 6 eV per atomic planv 51), see also
section 1.1.2), the energy of formation of a vacancy is largely an electronic
energy. This is partly due to the fact that the elastic strains around a vacan-
cy are so small that for all practical purposes they can be neglected, and also
due to the important charge disturbance caused by the removal of a positive-
ly charged metal ion from the lattice. The same holds true for an inter-
stitial, although then the elastic strains are not entirely negligible. The
energy of formation of vacancies in monovalent metals has been calculated
by Huntington and Seitz ) and very recently by Fumi ). As the results
of the latter author seem the most reliable, we shall discuss them here.
Fumi considered the energy change of the electron gas in a metal sphere
when a positively charged ion is removed from the centre and its charge
distributed over the surface. The electrons were considered to be perfectly
free. In order to compute the perturbed wavefunctions in the Born approx-
imation, it is not necessary to know the exact shape of repulsive potential
around the vacancy, if a rule first proposed by Friedel %) is used. This rule
relates the phase shifts of the perturbed wavefunctions of the electrons to
the effective charge due to the vacancy, that is — e in monovalent metals.
The change in electronic energy can then be directly related to their Fermi
energy Ep (= 7-2 ¢V in Cu); Fumi finds AE, = § Ej. From this must be
subtracted the contribution to the energy made by the positive charge
smeared out on the surface, viz. 2/5 Ep. There remains then 4/15 Eg as
the electronic energy needed to form a vacancy. In a better approximation
for the s-wave functions the Born approximation is replaced by the exact
computation of the phase-shifts, and the total electronic energy is found to
be somewhat smaller, viz. &~ 1/6 E. In the noble metals there is another con-
tribution to the energy of a vacancy that arises from the closed-shell ion-ion
repulsion. According to earlier calculations by Huntington ) and Hunting-
ton and Seitz 5!), this energy amounts to about —0-3 eV in copper and gold.
Thus it is found that the energies of formation of a vacancy in the noble
metals have the following theoretical values:
Ug

Cu 0-87 eV

Ag 0:62 eV

Au 0:62 eV .
From an analysis of the calculation %) it seems plausible that these values
have an uncertainty of about 0-1 eV,
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No exact calculations exist for the case of an interstitial in the noble
metals. Even the structure of such a defect is not accurately known. As
Lomer and Cottrell ) have pointed out, it is possible that interstitial
atoms have a one-dimensionally extended structure, presumably along
[111]-directions, of several atoms length. Such a structure has been termed
crowdion by Paneth 7). It is due to the relatively large strains that are
caused by an interstitial atom (displacements of nearest neighbours of
209, are present in the Cu lattice %) ), which can be relieved by the extension
into a crowdion. One might suppose that the electrostatic contribution
to the energy of formation of an interstitial or erowdion is again of the order
of 1 eV in Cu. That due to the elastic strains may easily amount to about
4 eV. We shall therefore take F; = 5eV as a plausible value for the energy
of formation of an interstitial in copper, silver or gold. An estimate of
this order is in agreement with experimental determinations to which we
return in following sections *).

Introduction of vacancies and interstitials produces a large increase of
the configurational entropy of the crystal ). In an ideal crystal that con-
tains N atoms, the introduction of n vacancies (that is, the removal of n

atoms) can be realized in N1
m =

(N—n)!n!
ways. The increase in entropy resulting from this is

% \ \ ¢ )
S =klogm ~ kn (lng . l\-
n
which is proportional to the volume of the erystal, as must be. Thus per
additional vacancy the entropy increases with the amount

ASeons = k log N -k 10g prac (1.38)
n
where p,qc stands for the vacancy concentration.

An increase of the entropy of the same order is associated with the intro-
duction of an interstitial atom. Apart from these contributions to the
configurational entropy. there exists a contribution arising from the change
of the vibrational frequencies of the atoms near the point-defect. In an
Einstein solid (frequency »;) the vibrational entropy between room tem-
perature and the melting point (kT > hyy for the monovalent metals)
is given by: BT

Svitr ~ 3 Nk log e
hyv g

*) Note added in proof: A. Seeger has estimated the effect of the relaxation of the
electron gas around the interstitial. He arrives at the much lower value of 2 eV for
the total energy of formation (unpublished).
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Assuming that only the nearest neighbours (12 in an f.c.c. lattice) change
their vibrational frequency by an amount Ay, the change in vibrational
entropy associated with the removal of one atom amounts to
kT 1y
J(vac . 2oL
A8 = — 3 klog — —36k —- (1.39)

vibr g g
In the case of a vacancy v is negative and presumably |4v| < vg; as
a = log is of order unity in the temperature region between room

W
temperature and the melting point,

e 1y
{SHa0| (3()' ]l —3(1)/.‘ ~ k.

“vibr Vi
Seeger ) derives I\::'Ifr — 3-4 k in copper, from an analysis of recovery
experiments of the electrical resistivity. As we shall see below, the equili-
brium vacancy concentration in copper is generally so small (e.g. 10°'% at
room temperature) that the contribution of the vibrational entropy is
relatively insignificant. Only near the melting point, where pyac approaches
1073, the configurational entropy becomes of some significance.
For an interstitial atom the change of the vibrational frequency is
Ay
|vrr.~'unmhly much greater and positive, it may easily amount to ~ 0-1.
VE
Furthermore. not only nearest neighbours change their frequency, also next
nearest neighbours do so appreciably and the total change in vibrational
entropy may become of the order

dint) . i
1St ~ — 30k. (1.40)

This large value of lS'('l',:L) is comparable to the configurational entropy
for all practically encountered interstitial concentrations. In the alkali-
metals, where moreover the energy of formation of these defects is very
small, the vibrational entropy plays therefore an important role in deter-
mining the equilibrium concentrations. This is not so in Cu, Ag and Au, as
the equilibrium concentrations of interstitials are there always immeasurably
small, These are obtained by minimizing the change of free energy of the

crystal due to the introduction of the defects. One has:
N Uvae/kT ¢, - I pE
n=alNe for vacancies, (1.41)

n=f Nelin * for interstitials, (1.42)

where Upge and Ujpe stand for the energies of formation, and «
\ lq(mr)

vibr

‘k: is a factor slightly larger than unity, (= cxp) g slin )k: a

exXp} vibr
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factor of order 0-1 to 0-01. Due to the large value of Uj,,. even at the melting
point the thermal equilibrium concentration in the noble metals of inter-
stitials is completely negligible. (In the alkali metals this is not so.)
Vacancies, however, can oceur in appreciable concentrations at reasonably
high temperatures. For copper one finds for the atomic concentration
Puacs if @ = 1z

iy | 300° K I 600° K I 900° K | 1200° K | 1356° K
0|

Do , 1015 | 3 % 108 17 % 10 | 45 % 107

At the melting point the concentration of vacancies is thus of the order of
0-19;.

1.2.2. Diffusion of point-defects

The diffusion of point-defects is governed by a diffusion constant D
which depends on the temperature in the usual way:

D = D, e Y (1.43)

where () is the activation energy for diffusion. D, is in good approximation
given by an expression of the form

D, = v, a® ¢*°P/%, (1.44)

where v is the mean frequency of vibration of the atoms (~ 10" sec™?),
a is the lattice constant and 4S5, the change in entropy associated with the
elementary vacancy or interstitial diffusion process, that is, the change of
entropy in moving an atom from a lattice site to the potential barrier
separating it from the neighbouring vacancy, or in moving an inter-
stitial over the neighbouring potential barriers %% %)) The reason for
the occurrence of an entropy of activation is that in studying the energy
of a diffusing atom at the saddle point separating two equilibrium sites,
one should actually consider the free energy, as this maxium potential
depends on temperature through the elastic constants and the density,
and the diffusion can be regarded as an isothermal process. The value of
1S, can be derived from the temperature variation of the latter quantities;
it follows from LeClaire’s ') computations that for vacancies in copper
ASp/k ~ 6, i.e. for vacancies, D, is of order unity. The estimate is rough,
however, so in practice D, may vary between 0-1 and 10 cm?/sec, in agree-
ment with experimental determinations %2). For interstitials . 1S, is probab-
ly about 5 times as great, and D, thus about 100 times as large as for
vacancies,




By far the most important quantity in (1.43) is Q. A few theoretical
attempts, based on much the same ideas as those used in the computation
of the formation energy, have been made to calculate the activation energy
for migration of vacancies and interstitials. Huntington and Seitz °') and
Huntington 5%) obtained approximately 1 eV for Quac in copper; Hunt-
ington %?) found the diffusion energy of interstitials to be very small:
Qine ~ 0-:25 eV or even less. Seeger has recalculated the height of the poten-
tial barrier for interstitial diffusion in the noble metals, and finds the
much larger value 0-6 eV for Qint (to be published shortly). Fumi %)
also derived more or less approximate values of @ for vacancy diffusion,
he found Qugc = 1-2 eV in copper.

The determination of the value of Quqc 18 directly connected to that of
the energy of formation. This is so in theory as well as in experiment,
as most determinations relate to the coefficient of self-diffusion in metals,
that is assumed to follow a vacancy mechanism. The self-diffusion coefficient
is the product of the fractional concentration of vacancies as given by (1.41)
and the diffusion coefficient of these vacancies as given by (1.43). In the
final expression for the self-diffusion coefficient an activation energy thus
appears which is equal to the sum of Upge and Qpact

Qsetf = Uvac + Qvac- (1.45)

As seen above, it follows from theory that in copper both are of the order
1 eV. Indeed the activation energy for self-diffusion in Cu is found to be
2:03 eV 63), The same conclusion holds true for all noble metals; even
numerically very much the same values apply.

Le Claire 81) has studied the kinetics of the self-diffusion process more
in detail and has derived the values Quac = 1-24 ¢V and thus Upgc = 0:79
eV in copper, in fair agreement with Fumi’s computed value o Ut
although this computation follows completely different lines.

As will become clear in the following, a precise knowledge of Upyac and
Qpac is of the utmost importance for the interpretation of the recovery
phenomena displayed by deformed metals and thus for a precise under-
standing of the mechanism of plastic deformation. As shown above,
theoretical arguments point rather unambiguously to the conclusion that
in the noble metals copper and gold the energy of formation of vacancies is
appreciably smaller than the energy of migration. The most probable
values are, for copper: Upac = 0-85 + 005 eV, Qac = 1:2 + 0:05 eV;
for gold: Upee = 08 & 0-1 eV, Qpac = 1:3 & 01 eV. The theory is not
sufficiently accurate for these values to be regarded as final.

The case of interstitials is still less satisfactory. Except for the recovery

experiments to be discussed in Chapter 5, no effects directly related to the
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formation or migration of interstitials in the noble metals can be studied
experimentally. We are therefore obliged to use the very rough theoretical
values quoted above, viz. both in copper and gold: Uj,, 5V, Oins =
0-25-0-6 e¢V.

1.2.3. Experimental determination of activation energies of formation and
migration of vacancies in the noble metals

The available evidence to the values of Q4 and Uyge in the noble metals
has been reviewed by Jongenburger ). There exist in principle three classes
of experiment, called in the following respectively high-temperature, low-
temperature and recovery experiments. To the latter category, that yields
results that are most difficult to interpret, we shall return in chapter 5.
In the high-temperature experiments the deviations at high temperatures
from the theoretical temperature dependence of a physical quantity are
studied and interpreted as being caused by the presence of appreciable
numbers of vacancies in thermal equilibrium at these temperatures. From a
study of the electrical resistivity Meechan and Eggleston %) found for
copper Upge = 0-90 4 0:05 eV. Jongenburger %) analyzed data in literatu-
re on the temperature coefficient of thermal expansion of copper and gold,
and derived from them values of U, in copper between 0-7 and 0-9 ¢V, in gold
between 0:6 and 0-8 eV. These are all in excellent agreement with the theo-
retical data quoted above. Whereas the recovery experiments also yield
results that can be interpreted in accordance herewith, the experiments of
the low-temperature category yield quite different results. In these experi-
ments a metal wire is quenched. very rapidly from a high temperature,
and its electrical resistance at a very low temperature is compared with that
of an unquenched wire. The (positive) difference is attributed to quenched-
in vacancies, and the dependence of this difference on the quenching
temperature yields again a value for Uyg. Kauffman and Koehler )
quenched thin gold wires in a helium blast and found Ugpar =128 &V,
a value very much larger than that expected theoretically. Jongenburger %)
has reanalyzed the published data of Kauffman and Koehler and found
the slightly smaller value of 1-1 eV for U, in gold, which is, however,
still very large. Lazarev and Ovcharenko 97) performed essentially the same
experiment, but used lower quenching temperatures and lower quenching
rates. They found 0:7 eV for U, in gold, in disagreement with Kauffman
and Koehler. They also recovered the quenched wires, and observed a
migration energy of the defects of only 0:5 eV'!

Still more discrepancies arise when one compares the absolute densities
of vacancies e.g. extrapolated to the melting point as they follow from
these results. Then it appears that the high temperature results yield

absolute densities that are in good agreement with the theory, whereas the
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low-temperature experiments yield densities that are too low by at least a
factor of 20. It seems to the author that the quenching experiments do not
yield reliable results, as the underlying assumption that practically all
defects are frozen in during the quench, is probably incorrect. Even when
cooling in a helium blast (dT/dt = — 10* °C/sec), the vacancies still carry
out 107 jumps. Diffusion of vacancies, resulting in the possible formation of
vacancy pairs, which in their turn can move very rapidly to dislocations,
must then surely be taken into account (compare also Bartlett and
Dienes %) ).

Preliminary experimental evidence on these phenomena has been
published by Maddin and Cottrell *), who observed a rise in the critical
shear stress of Al single crystals after quenching from a high temperature,
and by Levy and Metzger ), who noted a decrease in internal friction under
the same conditions. These effects must be interpreted as caused by a
condensation of quenched-in vacancies or pairs at dislocations, which
process already starts at an appreciable rate during the quench. We shall
not discuss the theory of the quenching-in of vacancies more in detail here;
the mathematical difficulties that arise are rather forbidding, and a dis-

cussion would lead us too far astray *).

1.2.4. Electrical resistivity caused by vacancies and interstitials in metals

Two factors contribute to the scattering matrix-element of a point-defect:
one takes into account the elastic strains of the lattice in the neighbourhood
of the defect. and another describes the influence of the removal or addition
of an extra positive charge. Dexter 71) made an estimation of the relative
importance of the first factor and found it to be negligible in f.c.c. metals
for both vacancies and interstitials. This conclusion is doubtless correct for
the case of vacancies that produce only very small short range strains;
for an interstitial, however, the strains are much larger. A recent estimate
by Jongenburger %), based on a (necessarily crude) comparison between the
deviations of the atoms from their equilibrium places caused by the
presence of an interstitial and those caused by thermal vibrations, yields a
rather appreciable value for the influence of the strains: interpreted in
terms of resistivity, the strain around an interstitial in copper contributes
as much, possibly even 2 or 3 times as much as the (screened) extra positive
charge associated with it. Applying the same argument to estimate the
resistivity of a dislocation, he finds a value that compares very well with
that derived on a firmer theoretical basis. The same holds true for quite
*) In a recent study by Friedel (to be published shortly) the possibility of the

formation of “dislocation tunnels” by absorbed vacancies is advanced. This process,
when occurring during quenching, could be responsible for a very rapid decrease

of the vacancy concentration,
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another case, viz. the resistivity caused by solute carbon atoms in a-iron.

In Dexter’s treatment, the summation over the displacement of the neigh-
bouring atoms is replaced by an integration. It is suggested that this
explains the difference between the results of Jongenburger and Dexter.
The individual perturbations of the lattice potential by the displaced atoms
are smeared out in Dexter’s computation, and their influence on the electron-
ic scattering is lowered by about a factor of 10. Moreover, for the atomic
displacements Dexter uses too small values: according to the most recent
computations by Huntington ), the values used by Dexter must be
multiplied by at least a factor two, resulting in an increase of the scattering
matrix element by a factor 4. This, together with the factor 10 dealt with
before, is enough to invalidate Dexter’s estimate and to make that of
Jongenburger fairly plausible.

Blatt 7%) recently rediscussed this question and arrives at the opposite
conclusion, viz. that the influence of the strains around an interstitial in
copper on the resistivity can be neglected. Neither his arguments, however,
can be regarded as conclusive, as he himself is aware. In view of these facts,
we accept in the following Jongenburger’s result as being the most probable
one.

The influence of the extra positive or negative charge has been treated
LS o

by Jongenburger ™), by Abeles (for vacancies only) ), and by Blatt
(for interstitials only) 7). They take account of the redistribution of the
electrons by using a screened Hartree potential, and normalize this in such
a way that certain phase relations derived by Friedel ) are obeyed.
These relations are so stringent that the exact form of the scattering
potential becomes unimportant 77), and Jongenburger ) has shown that
the use of a simple square well potential, suitably adapted, works equally
well. All investigators agree that, for vacancies and for interstitials, the
influence of the extra charge is about the same, viz. 1-3-1-4 ullem per
atomic percent of defects in copper and gold. Recent (unpublished)
-alculations by Seeger result in the slightly larger value 1:67 pQem
in Cu. For the total resistivity caused by point-defects in copper we
shall adopt here the results of Jongenburger’s computations:

Resistivity increase caused by one racancy per em?: 1-53.1072! ;Qcm;
Resistivity increase caused by one interstitial per cm®: 5-7.1072 yQem.
The latter value is built up of 1:5.102" yQem due to the charge and
4:2.1072 yQem due to the strains.

The experimental evidence as to the resistivity caused by point-defects
has been reviewed by Blatt 7). The most direct results can be derived from
measurements of the release on heating of the stored energy in low-tempe-
rature irradiated metals and of the simultaneous decrease of the electrical

resistivity. Overhauser ) thus found (accepting Jongenburger’s value




for the vacancy resistance) for the resistivity of interstitials about 10 9
ullem/em 2, if it was further assumed that the energy of formation of
a \'uuum‘_\'-inlc‘rstilial pair is 5 eV. another uncertain value. If this latter
value were actually smaller (as is probable), the resistivity caused by inter-
stitials chould be smaller too. The results seem to indicate, however, that

the influence of the strains can certainly not be neglected. Exact

determinations of the resistivities caused by vacancies and interstitials
have not vet been carried out. For vacancies the theory can, however, be

ro'gurd(-d as rather accurate: for interstitials this is not the case.

1.3. Summary of the results of chapter 1.

In the following table I the most important numerical data discussed in
this chapter have been compiled. All numerical values refer to pure copper
and are to be considered as most plausible estimates. For gold about the
same numerical values apply.

The data referring to vacancy pairs are based on the considerations of
Bartlett and Dienes %)
published). The energy
by the latter author to be 0-3 eV, the energy of migration was estimated by

and on very recent calculations by Seeger (un-
of association of two vacancies was calculated
the former investigators to be about !/, of that of a single vacancy. The
resistivity prmlucv(l by a vacancy pair does not differ alnprc-(‘iubl_\' of that

of two single vacancies ()

TABLE 1

Ph_\'sivul properties of lattice defects in copper.

. Energy of Migration ! ! o 1L
Defect 7 = Electrical resistivity
defect energy ’
edge | &~ 8eV) Per ~ 2eV (climb ; ;
Dislocation K ¢ atomic ( )| 04 — 3.1071° NuQem
serew| &~ 5 plane ) ;
Vacancies 0-85 1-2 1-53.10 2 n,, p.Qem
Interstitials ~ 5 0-25 ? 5:7.102 n; pllem
Vacancy pairs ~ 15 ~ 0-6 ~ 3.107% np pllem
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2. PLASTIC DEFORMATION OF METALS

2.1. Action of dislocation sources

The facts and theories compiled in chapter 1 lead us to the following
schematic outline of the atomic mechanism of plastic deformation in simple
f.c.c. metals, of which copper may be taken as an example " *1:#% ). The
treatment applies only at very low temperatures, where no thermal activa-
tion takes place.

Consider a metal crystal containing a network of dislocations. In well-
annealed metals the density d, of dislocations is probably 106 —10% ¢m 2
(section 1.1.6.2). Supposing that the elements are homogeneously distribut-
ed in the lattice and that in each node three elements meet, the mean length
of the elementsis [ = 107% to 107! em. and their total number amounts to
N =10°—10' cm™3. Most of these dislocations have presumably Burgers
vectors of the type [0,4,4] (section 1.1.5), of which 12 possible orientations
can occur. Given a stress component along one [110] axis, only 1/6 of the
network elements can therefore in principle act as sources (Frank-Read
sources of a more general kind). Most of the dislocations are presumably
split up into partial dislocations; however, this does not affect in an appreci-
able way their activity as sources, One may thus assume that one tenth or
less of the network elements can act in principle as sources under a given
shear stress, that is N, < 10" per em®. Consider a network-element of
length [ with Burgers vector parallel to the shear stress 7. When 7 reaches
the critical value (1.18):

7, = aGb/l, (2.1)

the source starts to work. Let the number of emitted loops be n, and the
mean area covered by them be 4. Each loop has crossed in the mean d,A
dislocation elements and has formed dyA jogs. Suppose that each loop has
a circular shape (fig. 14). The jogs in the loops have each run a certain
distance (we assume that every jog retains its place in the loop, compare
section 1.1.3.2). According to formula (1.17), the efficiency with which the
jogs have formed vacancies or interstitials depends on the orientation of the
Burgers vectors b’ of the crossing dislocations with respect to the glide plane
and on the azimuth of the site of the jog in the expanding loop (fig. 14).

Consider an element of the loop (radius R) with azimuth between ¢ and

¢ - dg. The efficiency with which this element forms point-defects is
according to (1.17) given by
=
ep = sin @ - (b'.y) (2.2)

where the bar means averaging over all possible orientations of b’ and v

denotes the unit vector perpendicular to the plane of the loop. When we
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assume that the Burgers vectors b’ are indeed all oriented according to
[110] directions,
v
Fai L o als
(b'v) = 4 13
and thus
ep = :"l 3 sin . (2.3)

The loop of radius R contains 7R, jogs, the element in question has
therefore !/,R?d,dg jogs and on expansion of the radius to R + dR (leaving
out second order terms), the number of point-defects formed is

x/2

£ ; .. dR . .= R3d,
df ~ 4 | dg.} R%, —ep =14 /'3 ¢

IR. (2.4)

D

Fig. 14. On the formation of vacancies and interstitials by expanding dislocation loops.

A loop that has reached an ultimate area A4 has thus formed

d
flA) =413 A" (2.5)

point-defects. This holds for circular loops; in general, owing to the larger
drag excerted by the defect formation on the screw parts, the loop will
assume an elliptical shape. However, as pointed out by Mott 81), the axial
ratio will probably ultimately reach a constant value, say !/,, and formula

(2.5) can be written approximately as:

g
£(A) ~ 004 ‘1" Ah, (2.6)

D

The energy stored in the metal due to this expansion is given by the sum

of three terms:

R LI R I8 (2.7
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(1) The energy of formation of the total length of dislocation of the loop.
Calling the mean energy of a dislocation per atomic plane crossing its
axis Ug (about 6 eV, section 1.1.2), we have:

4l

E, ~ 4 Uy (2.8)
b

(the numerical factors in this and the following formulae depend on the
shape of the loop).

(2) The energy of formation of the total number of jogs. Denoting the mean
energy of a jog by Uj (of the order of Uy, as a jog is an element of dislo-
cation of length b), we have:

E, = AdyUj;. (2.9)

(3) The energy of formation of the defects. Denoting the mean energy of
formation of a defect by Uy, then we have
v ‘I() ] -
E, =004 ~ 4" Uy, (2.10)
b :
Uris 0-85 eV for a vacancy and between 2 and 5 eV for an interstitial
(table I). Presumably interstitials are formed in lesser amounts then
vacancies, due to their high energy, and we shall therefore take as a
weighted mean Ur =1 eV.

The energy supplied by the applied stress is simply
E;= v4b, (2.11)

where 7 stands for the local shear stress component parallel to b in the
vicinity of the loop.

With the expansion of dislocation loops is associated a dissipation of
energy in the form of vibrations of the lattice. resulting from the atomic
motion coupled with the propagation of a dislocation %). To take account of
this we put the available energy for defect production equal to 1FE,, where
4 is a numerical factor smaller than unity: Z denotes the fraction of the strain
energy that is used for defect formation. I'ts magnitude depends very sensiti-
vely on the velocity of the dislocations: 1 is presumably of order unity.

The energy balance thus reads:

A l—’.ll 3 T (I(l r E 9 19
Ardb = 4 == A + doUyd + 00452 Upd'h, (2.12)

The mean source length is 1074 em, thus A is larger than 108 cm?.

In that case it is easily found by inserting the numerical values quoted




above, that the second term at the right hand side of (2.12) is completely
negligible compared to the first and third terms: this means that the forma-
tion of jogs only cannot enhinder the expansion of dislocation loops at all.

Solving (2.12) for 4, therewith leaving out this second term, the result is:

i Ab*t “ 3. l T 0:64 d,UsUyq 'f (2.13)
(0-08d,Up* 2birt /) :

Of course the formula is only valid when the root occurring in it is real, thus when

T == ) 0-64 d,UgUa/ 26" . (2.14)

An imaginary root simply means that the source has not been activated at all. This gives
rise to the following conclusion: by reason of the necessary formation of point-defects
there exists, apart from the fundamental condition (2.1) for the activation of a source,
«till another condition, viz. (2.14). The latter becomes of importance when:

aGb/l < ) 0-64 d,l '_/l.“l'/'."'b‘l A (2.15)
Putting Ug ~ Gb* (compare (1.3a) ), (2.15) goes over into
1> A, = 2} *Gb*/0-64 d,Uy. (2.16)

This means that for sources of length [ > il;ordinary activation at the critical shear strength
7, = aGb/l will not take place, the formation of point-defects preventing this. Only at
appreciably higher stresses can the critical circular shape of the source dislocation be reached,
and even then probably no source action will occur, that is, the segment will expand but
none or only a few new segments will be formed subsequently. [, stands thus for an upper
limit to the length of the sources that can be activated, For copper 1, is about 4 x 107 em.

The emitted loops produce a back-stress at the site of the source. The
component of this stress that opposes the local activating shear stress is
given by

nGh

o (2.17)

=%
where y is a numerical factor of order 01, depending on the value of
Poisson’s ratio and on the shape of the loops. For 4 in (2.17) one must read
the mean area covered by the loops; in view of the uncertainties inherent
to the theory one may simply assign the same value of A to all loops.
Even if the loops run with a velocity of only 0-01 or 0:001 of that of sound,
the time for a loop to attain its final area is of the order of 1077 to 10 % sec. In
this time the local shear stress has (under normal experimental conditions)
not changed appreciably and we may insert in (2.17) the momentary value
of A following from (2.13). We then find:

0-08 ;r(}d(,lff n 1
b 7 f(7)

Th = (2.18)




where

f(xr) = 431 4 F'1—0-64 d,U f Ua/ % l:

The source will be activated again when the shear stress at the site of the
source, T — Tp, attains anew the value 7,, thus when:

0:08 yGd,Ur n 1 aGh
T— - - e . (2.19)
b 7 f(7) l

According to a hypothesis of Fisher, Hart and Pry * %), a source, once
activated, can continue emitting dislocation loops until the resultant stress
at the source has dropped to a value as low as 7,/p,» where p is about 3.
This dynamic generation of loops will occur when the dislocations move with
approximately the velocity of sound in the material, so that their kinetic
energy becomes comparable to the potential energy of the source. In the
case that this presumption is not realized (static gene ration), the loops are
emitted one at a time. Then in formula (2.19) n takes as a value successively
all positive whole numbers, whereas. should the hypothesis of dynamic
generation hold, n jumps in amounts appreciably larger than unity. Solving
the (]h('untmuuus equation (2.19) for n, one gets thus a function displaying
a large number of small jumps, or a function characterized by a smaller
number of larger j jumps. However, as will be shown below. in practice the
total number of loops emitted already attains very quickly rather large
values, of the order of 100, and we may safely replace the discontinuous

solution by a continuous one in the former case. As the number of loops
emitted per burst in the dynamic case is of the order of 10, also in this
case this replacement is allowed. One finds, using (2.1) and the definition

of I, (2.16):

b ;";\ T (A
n = ;'f(r) 2 (( T,)_-TI\. (2.20)

2.2. Formation of defects by plastic strain

Single glide

Suppose there are N, sources per cm? working under the influence of
a local stress 7.

These contribute to the total strain the amount:
e= N,nbA. (2.21)

The total number of defects formed by these sources is according to (2.6)

T4

> . ‘In 3 9 9¢
F= Ngn x 0:04 5 A, (2.22)
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whereas the total length of dislocation formed is:
D = Nen x 44", (2.23)

The dependence on 7 is governed by the expressions (2.13) and (2.20) and
by an unknown relation, if it exists, between N, and 7. Presumably, N,
will increase with the stress as successively shorter sources will be activated.
The function N,(7) depends on the distribution of stress in the material and
on the distribution of source lengths. As both are completely unknown,
we shall take NN, simply constant. As most of the strain is contributed
to by sources that have been activated from the beginning and the activa-
tion of new sources will probably be strongly hindered by the action of the
stress fields of the sources already activated, the error made in this approxi-
mation will not be too serious.

The quantity 7 describes the local stress in the immediate vicinity of
the source. It is related in an intricate way to the applied stress; explicit
determination of T would require knowledge of the work-hardening charac-
teristics of the material. We assume that on the average 7 scatters not very
much from source to source and can therefore be eliminated from (2.21),
(2.22) and (2.23). When 7/7, is at least so much larger than unity that it

can be considered negligible compared to (7/7,)%in (2.20), and when we take

f(7) = 1, as is indeed practically true, this elimination yields:
" o
[ yAGds
F = 0-06 | i L (2.24)
b® Uj‘_‘\‘-(.
)
"d,UsN, e
b 24 |/ 0% 1, 229
v AGb®

These formulae no longer depend on [. A further advantageous property of
these expressions is that they contain the parameters y, 4, Urand N, under
the fourth power root sign; the uncertainties in the values of these parameters
do therefore affect the accuracy of the result but slightly.

Taking y=01, 1=1, G = 4.10" dyn/em? b = 2:5.10"% cm and
lf = 1-2.107"2 erg, values pertaining to copper as well as to silver and
gold, one finds:

F = 7.105 g« N;'i* '+ em™3; (2.24a)
D = 1-4.10° ds NJ* /¢ em™. (2.25a)

2.2.2. Multiple glide

The formulae (2.24) and (2.25) have been derived under the assumption

that d,, the density of intersecting dislocations, does not change during the
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slip process. This assumption is realized in the case of single glide: in multiple
glide, however, the “forest”™ of dislocations crossed by a given loop thickens
continually. This effect can be taken into account schematically as follows.

Suppose there are g active slip systems. The total number of activated
sources being again N,, the density of sources on a given glide plane,
belonging to slip system i, is then

N,
fj=—s (2.26)
g

sources per em?, where s is the mean spacing between successive glide planes.
Suppose all dislocation zones are circular, with the same radius R on all
slip systems. Consider an activated source surrounded by its loops on an
intersecting glideplane belonging to system j. The length of the intersection
of this zone with a given glide plane of system i be L: then the average
number of zones on the latter glide plane that intersect the first zone is
(fig. 15):

N; = 4; 2RL + =nR?). (2.27

N; is of course a number much smaller than unity. A given dislocation
zone on system j intersects in the mean R/s glide planes of system i. The
average length L amounts to 4R/z, thus the total number of sources on

system i intersected by a given source on system j is:
J ” o P

[ Ll

O
o

#7981

Fig. 15. On the computation of the mean number of dislocation zones on a given glide
plane, cut through by a dislocation zone on an intersecting glide plane.
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As there are g—1 intersecting glide systems, we find for N, using (2.26):

N, = AN :r) N R® &~ N, A™. (2.28)

g—1 ( 8
g 7
Suppose that each source has emitted n loops. Then in addition to the
density of originally present crossing dislocations d. the effective density
NenA'* of newly formed dislocations must be counted. That is, instead of

d, one should write in the case of multiple glide:
T t & &
d=dy + NenAd". (2.29)

Jquation (2.12) describing the energy balance of an expanding source now

becomes:

4Ug |, s — N, Uy
At Ab LA 4 004 20 Uy 4 004 ——
b k

nA2; (2.30)
and when NonA'*=d, the state of affairs is completely changed. We shall

consider here only the limiting case that

Ny nA'l*> d,. (2.31)

In this case the first term on the right hand side of (2.30) can also be neglect-
ed and we have

. NT; .
AtAb ~ 0-04 b ~ nA?

.

from which it follows that

Ath*
L g A (2.32)
0:04 N Uy
As in this case we also have:
d ~ NonA'l,
we get according to (2.21) and (2.22):
b?
S 7 (2.33)
0-04 LJ
and
NenA)? A%b®
FeGoasid . AV (2.34)

©0-04 Up?

From this it follows that instead of (2.24) for single glide, we are left with

the simple relation

L o Baa
ﬁr—nn4b3n, (2.35)




in the case of multiple glide. Numerically one has for the noble metals:
F ~ 2:5.10% ¢, (2.35a)

In this theory the interaction of dislocations other than that of a purely
geometrical nature has been neglected. In multiple glide the change of
elastic interaction energy with the distance between dislocations may appre-
ciably influence the energy balance. Equation (2.35) must therefore be

considered with care.




3. ELECTRICAL RESISTIVITY OF PLASTICALLY STRAINED METALS

3.1. Introduction

The theory discussed in chapter 2 has primarily been developed to study
the defect concentrations in plastically deformed metals; it is not suited to
describe e.g. the work-hardening of a metal. The defect concentrations can
also be studied experimentally, viz. by measuring physical quantities that
depend on them. One of the quantities most suited for this is the electrical
resistivity. This increases appreciably by plastic strain, due to the scattering
of the conduction electrons by the defectsintroduced during the deformation.
In this chapter we shall discuss the available experimental data on the sub-
ject of the electrical resistivity of deformed metals, and compare them to the
theory.

The relative change of resistivity on deformation of a metal is very
sensitive to purity and temperature. For obvious reasons it is advisable, in
order to obtain an insight into the fundamentals of the effect, to study very
pure metals and to measure their resistance at very low temperatures. Also
to avoid unwanted effects due to diffusion phenomena the temperature
of deformation should be very low. Only a small part of the literature

that exists on the subject ***) conforms to these restrictions, and even there

really systematic observations are rather scarce. The metals studied most
accurately are the noble metals Cu, Ag and Au. These metals are casily
deformable at low temperatures and also easy to obtain in a pure state
(impurity content less than 0-019,). We have therefore also chosen these
metals, especially copper and silver, as the subject of out investigations. It
should be mentioned here, however, that a study of other metals, e.g. of those
with different erystal structure such as iron and the alkalis, is badly needed.

3.2. Resistivity measurements on noble metals deformed at very low tem-
peratures

3.2.1. Extension and torsion experiments

The first systematic observations of the resistivity changes of deformed
metals were carried out in Delft by Druyvesteyn and his collaborators
Molenaar and Aarts %), They measured resistivity and stress as a function
of plastic strain on wires of polycrystalline copper, silver and gold (and
aluminium) stretched at the temperature of liquid nitrogen. These experi-
ments have been repeated by Manintveld ?°). The present author showed 87)
that the observed resistivity-strain relations could all be represented re-

markably accurately by the relation:

Agle = c(AI)™h, (3.1)
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in which Al/l stands for the elongation, Ap/o for the relative increase of
resistivity, The coefficient ¢, of order unity, varies a little between the
various experiments.

In order to check the validity of this relation, the other available data
on polyerystalline copper deformed at a low temperature were analyzed.
The results are given in fig. 16. It was found that an exact 3/2-exponent has

not been observed by other authors, although the deviations are but slight.

uLem
0.015

ap

0 15 20 25

— & (%) s

7982

Fig. 16. Observed resistivity-strain relations of extended polycrystalline copper wires.
Plotted is the absolute amount of additional resistivity against the mean shear strain
according to (3.3), measured at 78 “K or less. (1) Observations by Molenaar and Aarts:
(2) by Druyvesteyn and Manintveld; (3) by Berghout: (4) by Aarts and Jarvis: (5) by
Pry and Hennig (extrapolated):; (6) by Jongenburger and the author (mean of 9 series
of measurement, see fig. 17).

The results of all experiments can be described by the more general formula:
lo ae? (3.2)
where £ is the mean shear strain that can be defined as

te = 2:24 All (3.3)

in fine-grained polycrystalline wires that are stretched 1), and approximate-

ly as

3 r )
& =—0 ] (3.4)

9
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in wires that are twisted. Here @ is the angle of twist and r and [ are radius
and length of the wire. Expressing Ap in pQem, the coefficient a lies be-
tween 0:04 to 0-16 pQem, and p varies between 1-3 and 1-5.

The observations used to construct fig. 16 are as follows. They all refer to
copper. the other metals have been studied far less and no reliable compari-
son is possible. The curves denoted 1 and 2 represent measurements of
Molenaar and Aarts 8), and of Druyvesteyn and Manintveld %) respecti-
vely, and are described in detail in Manintveld’s thesis ). Curve 3 has
been obtained also in Delft by C. W. Berghout: these measurements have
not been published. Curve 4 represents observations by Aarts and Jarvis %%),
All these observations are on OFHC copper (99-98%,) annealed in vacuum
for at least one hour at 5507 C, and extended at 78 “K. As has been shown
by Manintveld 92), careful annealing is necessary to remove all traces of
former treatment. An annealing temperature of at least 400 “C is needed
for copper. This condition was not met in the work of Pry and Hennig %),
who annealed their wires at 250° C. Furthermore, they measured resistance
at 78 °K after 5 minutes anneal at room temperature. It is possible, by
making use of other information contained in their paper, to “correct”
their measurements in such a way that they can be compared to those of
other investigations, and it is these “corrected” observations that are
represented by curve 5.

Curve 6 represents mean data obtained by Jongenburger and the author %%);

the individual measurements are represented in fig. 17.
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Fig. 17. Resistivity-strain relation of polyerystalline copper wires extended at the tempera-
ture of liquid nitrogen or hydrogen, The figures near the curves correspond to the specimen

numbers of table II.




Polycrystalline copper (of two grades of purity) and silver wires were
annealed for one hour at 650 “C in vacuum and deformed at 78 “K (liquid
N;) or 20 °K (liquid H,). The apparatus consists of a small tensile machine
driven by a synchronous motor and provided with a torsion head, in order
that both twisting and extension experiments can be carried out. The
specimen, in the form of a 0-5 mm wire, is immersed in liquid hydrogen or
nitrogen, together with a comparison wire. Copper potential leads were
soldered to the wire at a sufficient distance from the clamps and resistances
are compared in a Diesselhorst compensator. Elongation is measured
by a simple strain gauge, and a rough measure of the stress can be
obtained by measuring the extension of a helical spring mounted in the
loading rod.

The values of the coefficients and exponents pertaining to the various
observations are given in table II.

For copper, except in one case, viz. specimen 3, the exponents all lie
between 1-3 and 1-55, with the mean value 1-45. The exception (not used in
the computation of the mean) is probably caused by impurities present in
the OFHC copper that make their presence known in the resistance at very
low temperatures. A systematic dependence of p on temperature of deforma-
tion or on purity could not be detected. On the contrary, the coefficient a
seems to be appreciably larger at 78 “K (mean value 0:08 1Qcm) than at
20 °K (mean value 0-05 pQcm). This effect can also be expressed as follows:
whereas the average resistivity increase of copper wire extended 109, at
20 "K is 0-004 pQem, the same extension at 78 °K results in a resistivity
increase of about 0:007 p.Qem.

As to silver, too few experiments have been performed to reach more than
one conclusion, that p seems to be appreciably less than in copper, viz.
about 1-2. The one twisting experiment carried out so far yields essentially
the same result (when strains are compared according to (3.3) and (3.4) ).

Those observations of other authors that have been published in a suffi-
ciently extensive form can also be analyzed in the way described, although
unknown differences in the experimental conditions, purity, pre-treatment
ete. make the comparison considerably less accurate. Table III lists the
relevant data.

The conclusion can be drawn that the other authors have obtained results
that do not fundamentally deviate from our own. The scatter between
the various data in table III, especially in a, is too large to allow further
inference to be drawn.

3.2.2. Combined deformation methods

As we have seen in table II, the dependence of the additional resistivity

on plastic strain is roughly the same in extension and in twisting experiments.




Observed constants in power-law expressions (3.2) of copper and silver
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TABLE 11

Wire Metal and temperature a ,

No. of deformation (2Qem) E

1 OFHC Cu, 78° K 0-073 1-52

2 ibid. 0-056 1-45

3 OFHC Cu, 20° K 0-073 1-7

4 99.9989, Cu, 20 °K 0-048 1-40

5 ibid. 0-051 1-47

6 ibid. 0-052 1-55

¢ ibid. 0-048 1:50

8 99-9989, Cu, 78 °K 0-100 1-41

9 ibid. 0-091 1-32
mean value Cu 0-065 1-45

10 99-999%, Ag, 20° K 0-052 125

11 99-99 9/ Ag. 78° K 0-055 1-15

12 99-999, Ag, 20° K 0-040 1-21

(torsion)
mean value Ag 0-052 1:20
TABLE II1
Constants a and p of powerlaw (3.2) by other authors

TRl Metal and temperature a !

g of deformation (Qem) I
Manintveld 92) OFHC Cu, 78 °K 0-138 1-51
Berghout, unpubl. ibid. 0-16 143
Molenaar-Aarts 89) ibid. ? 0-09 1-3
Aarts-Jarvis 93) ibid. 0-1 1-4
Manintveld 92) 99.989, Ag, 78 "K 0-140 1-53
Aarts-Jarvis 9%) 99.999%, Ag, 78 °K 0-1 1-4
Manintveld 92) 99.98%, Au? 78 °K 0-129 1-52
Aarts-Jarvis %) 99.999% Au 78 "K 0-07 1-4




This is what might have been expected in polycrystalline metals. As the
spatial distribution and the type of dislocation produced will presumably
differ between the two methods of straining (but not the total number), it
was thought that particular effects might possibly be observed when the
two ways of deformation were applied one after the other. The results
obtained are presented in fig. 18. The curve in this diagram refers to a
polyerystalline 99-999, Ag wire first twisted (at 20 “K)) to a “mean torsional
strain” (equation (3.4) ) of 219, (part OA), then twisted in the opposite
sense by 7%, (AB); afterwards stretched by an amount corresponding to
319, strain (BC), then twisted again in the original sense by 149, (CD) and
ultimately stretched to fracture (DE). After each change of deformation a
slight stand-still of the resistivity increase was observed. This is probably
due to the influence of the elastic part of the deformation and to the dead
range of the torsion head, and not to some kind of “Bauschinger™ effect.
In the further parts of the curve nothing peculiar was observed: twisting
and stretching produced about equal changes of resistivity, although a
power law could not be fitted to the later parts of the curve.

['7*7 — —_— X S =3 P "
4% |

T Ag 20°K D /E

15}

0]
0 20 40 60 80 100
——»=E(%) a5

84
Fig. 18. Relative resistivity increase of a polycrystalline silver wire extended and twisted
alternatively at 20 °K. 04 vwist 219,; AB twist — 7%;: BC extension 317 CD twist 149%,:
DE extension to fracture. All strains are expressed as mean shear strains according

to (3.3) and (3.4).
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A more detailed study of the effect of combined deformations was under-
taken 99), bearing the following idea in mind. An intermediate twist given
during a stretching treatment produces naturally dislocations with orienta-
tions different from those of the dislocations formed during the stretching
itself. On further stretching the latter dislocations have to cut through the
newly formed “torsion™ dislocations, in addition to through those already
present before the twist. The efficiency of formation of point-defects will
therefore be increased by a “multiplication factor™ that is some function
of the ratio between the density of intersecting dislocations after the
twist and before it:

+ AD
D,

D,
m :ff(

B (3:5)

where D, is the density before the twist and 4D stands for the effective
density of the “torsion™ dislocations.

The experimental evidence is presented in fig. 19. When the second part
of the (logarithmically plotted) elongation curve is compared to the extra-
polated first part. with the effect of the twist simply added to it, (thin
curves in fig. 19), differences are observed in the case of silver. These are
thought to arise in the manner explained above. The multiplication-
factors derived by this procedure are presented in table IV.

In the case of copper no such analysis was possible, as the two curves

coincided within the errors of measurement.

TABLE 1V

Effect of intermediate twist on resistivity-extension curve of silver

; Extension Mean
l'emperature : : : AD D,
s : before twist torsional R

of deformation 5 LR em 2
(%) strain (%)

/0

19 ' ~3.108
38 1-7.108
1-7.108

A further point of interest is the definite occurrence of a “Bauschinger™-
effect on deformation at 78 °K, after reversion of the twist direction as well
as in the beginning of the second stretching region. With wires deformed at
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20 °K the effect is so small that it cannot be separated from the unavoidable
effects of the machine (compare the discussion of fig. 18). At the temperature
of liquid nitrogen, however, an appreciable drop in the resistivity occurs

on changing the method or direction of deformation.
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Fig. 19. Effect of an intermediate twist (vertical portions of the curves) on the relative
resistivity-extension relation of Cu and Ag at 20 “K and 78 “K. Strains are again mean
shear strains according to (3.3) and (3.4). The thin curves are extrapolations of the primary
extension parts, based on the assumption of additivity of the effects of torsion and exten-
sion.
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3.3. Interpretation of the observations

3.3.1. Resistivity-strain relation

The observed values of a and p (tables IT and III) in the empirical re-
lation (3.2) can be directly compared to the theoretical formulae (2.24a),
(2.25a) and (2.35a), bearing in mind that the resistivity increase on
straining is caused by the formation of lattice defects. The averaged results
of the observations can, according to table II, be written as:

o
l‘ or ('()ppvr:

lo = 0065 £ pQem (3.0)
and for silver:
Ao = 0:052 £"* yQem . (3.7)

The data of table III are in reasonable agreement herewith.

Comparing these expressions with the theory, it is clear that the exponents
agree rather well (especially in the case of silver) with the assumption of
“easy glide”. In that case, depending on the relative influences of dislocations
and point-defects, an exponent between 0-75 and 1-25 must be expected. In
the range of strains investigated by us (less than 409,) the effect of multiple
glide on the vacancy formation is rather small. It seems to be notably
present in copper, however, as the exponent there is larger than 1:25.

It may be remarked here that Blewitt, Coltman and Redman %) have
strained copper single crystals by more than 1009, and found a quadratic
dependence of resistivity on strain, as is expected in multiple glide. The
absolute amount of resistance increase was much smaller than that predicted
by equation (2.35a), however. Polyerystalline wires cannot be stretched by

)% so that no check has been possible in this respect.

more than about 4(

Assuming for the moment that the exponents do agree, we can compare
the coefficients with the theoretical expectations. According to the simple
theory outlined in chapter 2, vacancies and interstitials should occur in
about equal numbers. However, the energy of formation of interstitials
being much larger than that of vacancies, it is very probable that the geo-
metry of the jog motion is changed in such a way as to reduce as far as
possible the formation of interstitials. Therefore, most point-defects formed
will be vacancies (a similar argument was used to estimate the energy of
formation of point-defects in chapter 2). To translate densities of point-
defects into resistivities, we thus take as a yardstick a value in between those
relating to vacancies and interstitials, but closer to the former, viz. 3.107%
uwQem/em? (compare table 1). As to dislocations, as explained in section
(1.1.6.1) the mean resistivity caused by these defects must be deseribed
by a factor « X 107 pQem/em?, where theory prediets that « ~ 1, but

various experiments (see below and chapters 4 and 5) indicate a to be
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of order 10. From formulae (2.24a) and (2.25a) one obtains then for the
theoretically expected resistivity increase caused by point-defects and
dislocations:

3 1
dg \**

Ao = 2:1.1078 (2 ) & 4 1-2a.107 (doNp)/* &' uQem.  (3.8)

¢

Comparing with (3.6) and (3.7) numerical agreement (at least to order of
magnitude) is obtained when we put d3/N, ~ 10 em 3. Remember-
ing that d, must be about 10° cm 2, one arrives at the set of values
dy ~ 10% em™, N, ~ 101 cm3, which gives satisfactory agreement with
experiment and also with a priori expectation.

As we shall see later, evidence exists that dislocations cause about as
much of the additional resistivity as point-defects, Assuming both contri-
butions to be equal at a strain of 20%, we can estimate ¢ and find ¢ — 26.

Of course all these values can only be regarded as estimates, the assump-

tion of easy glide and other simplifying suppositions do not allow a more
exact comparison. The combined deformation experiments provide a means
for checking these assumptions.

3.3.2. Effect of intermediate torsion

According to Paxton and Cottrell 97) one can estimate the amount of

dislocations formed during the twist of a circular wire from the formula:
AD = @/bl = § &/rb. (3.9)

From this and the observed multiplication factors in table IV one can
estimate the density of dislocations D,, active as intersecting dislocations
before the twist, according to formula (3.5). When formula (2.25) is assumed
to hold, (3.5) can be written in the more definite form:

D, + AD\'s g
D, ) . (3.5a)

m :(

From this one finds the values of D, that are entered (together with AD)
in table I'V. D, is found to be about 10° em ™2 after 209, strain. This can be
compared to the total density as given by formula (2.25a), using the values
for dy and N, derived above. One finds after 209, strain: D = 1-5 x 1010
cm ®, which means that the increase of the dislocation density on the active
glide systems has indeed been much larger than that on other systems,
and that the assumption of single glide is more or less justified, at least in
the case of silver deformed less than 209,. This is not true in copper, where
the effect of torsion is practically completely additive. It is interesting to
compare this difference in behaviour between the two metals with the



— 62 —

observed difference in the value of the component p (section 3.2.2). Where-
as in silver p is fairly well in accord with theory for single glide as far
as the formation of vacancies is concerned, in copper it is obviously
too high. One must conclude that the assumption at all allowed of single
glide is not in copper. This same conclusion holds, as follows from the
data of table IV, for silver extended by 409%,.

Summarizing, one can conclude that the observational evidence on the
change of resistivity by deformation seems to agree at least semi-quantitati-
vely with the assumption that point-defects and dislocations produced in
the way described in chapters 1 and 2. are both responsible for the increase
of the resistivity. A second conclusion is that the original density of
dislocations in well-annealed copper and silver is about 10° em 2, that
about 10'° sources per cm?® are activated during plastic strain, and that in
polycrystalline silver deformed less than say 309, the state of deformation
with regard to the defect production resembles somewhat that of easy glide
as observed in single crystals. In copper this is not so, or in a much lesser
degree.

As to the observed temperature dependent phenomena, such as the
systematic variation of the coefficient @ and the “Bauschinger™ effect, a
theory that takes the effect of temperature into account is needed, as are
more detailed experiments. A theory that does take account of temperature
effects has been recently published by Seeger #.34) The observed differences
between the results of deformation at 20 °K and 78 °K cannot, however, be

easily explained by his theory.




— 63 —
4. MAGNETORESISTIVITY OF PLASTICALLY STRAINED METALS

4.1. Introduction

The resistivity experiments described in the foregoing chapter render
information on the effects of all kinds of lattice defects simultaneously. It
is of great importance to know the relative contributions to the resistivity
of dislocations on the one hand and of point-defects on the other. It then
becomes possible to study the dependence on strain of the concentrations
of the various defects separately.

The series of observations on the effect of combined deformations was
:arried out originally with this purpose in mind; however, the accuracy
obtained was not high enough to distinguish definitively between disloca-
tions and point-defects. Another way of separating the influence of point-
and line-defects is to study the recovery behaviour of deformed metals. We
shall discuss this in the following chapter, but it should be remarked here
already that the conclusions reached from such a study alone, contain in-
formation only as to the concentrations of the defects after complete or
partial recovery, not on the concentrations directly after the deformation.
[t is not a priori certain that a temperature treatment does not change these
concentrations in an uncontrollable way.

Dislocations differ from point-defects in that they scatter the conduction
electrons anisotropically (compare section 1.1.6.1). This is primarily due
to the fact that they are line-defects, and in the case of edge or mixed
dislocations also to the anisotropic strains around them. Repeated attempts
have been made to detect this anisotropy in the resistivity of deformed
metal wires. So far, no definite results have been obtained.

Theoretically, it is not certain that a finite anisotropy would indeed occur in stretched
polycrystalline wires. When it is assumed that the deformation is caused by edge disloca-
tions with their axes perpendicular to the wire axis and with Burgers vectors under 45
to that axis, and further that dislocations produce a fraction y of the total additional
resistivity in the length direction of the wire, it can easily be computed from the formulae of
section (1.1.6.1) that the ratio between the resistivities in the wire direction and perpendi-
cular thereto should be 2/(2 — y). Putting y — } (see chapter 5) this ratio becomes 4/3.
The dislocation arrangement chosen is optimal in the following respect: should only screw
dislocations under 45° with the axis be present, the ratio would become 2/(2 -+ y) = 4/5,
The real dislocation arrangement in actual metals might very well be such that no resultant
anisotropy of measurable magnitude were present.

The presence of anisotropic scatterers should show up also in the magneto-
resistivity of deformed metals. As is well-known. vacancies as well as
interstitials are essentially isotropic scatterers and will therefore (at least
in cubic metals) diminish only the mean free path of the conduction electrons
but will not change the distribution over the directions in momentum space.
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They diminish only the absolute magnitude of the magnetoresistance, but
their presence remains undetected in a socalled reduced or Kohler diagram.
In such a diagram the relative increase of resistivity due to the magnetic
field is plotted (preferably logarithmically) against the fieldstrength H
divided by the resistivity o(0) in field zero. Its significance was first stressed
by Kohler %) who showed that, if it is assumed that the collisions of the
electrons with the lattice can be described by one single isotropic relaxation
time 7, Ao/0(0) will quite generally be a function of H/o(0) only. The intro-
duction of isotropic scatterers such as vacancies or impurity atoms only
causes an isotropic decrease of the relaxation time, and therefore leaves
the form of this functional dependence unaltered. That is, metals with
and without additional isotropic scatterers will confirm to the same
Kohler curve. This curve is thus a characteristic of the metal, it being
fairly independent of the impurity content. Only by destroying the
isotropy of 7, or by introducing other features into the model that depend
on the direction of the momentum vector, deviations from the Kohler
curve are obtained.

The applicability of the Kohler diagram can be defended also in more
intricate theoretical models of the electronic situation in metals, when
certain further conditions are met with. In the so-called two-band model %),
in which it is assumed that the current is carried by two kinds of carriers
each characterized by its own relaxation time and effective mass (e.g.
electrons of the s-band and holes of the d-band in copper), a general relation
of the kind Ap/0(0) = f(H/g(0)) will apply if and only if the ratio of the
partial conductivities produced by both kinds of carriers does not depend
on these conductivities %), That means that in this case the presence of
additional isotropic scatterers will only then not affect the shape of the
Kohler curve, when the relative effect of these scatterers is the same in both
bands. It can be shown that this condition also determines the applicability
of Matthiesen’s rule.

There is much experimental evidence ') that indeed, at least in the mono-
valent metals, Kohler’s deductions apply. Thus it can be expected that the

presence of vacancies and interstitial atoms will have only a very slight
effect (if any) on the Kohler curve of copper and gold. This is confirmed by
our own experiments, as described below. Dislocations as anisotropic

scatterers, however, might have an appreciable and essential influence
on the magnetoresistance. It was therefore thought that by studying the
(transverse) magnetoresistance of deformed metal wires at very low tem-
peratures the presence of dislocations might possibly be detected. This
expectation was indeed confirmed. In the following section we shall discuss
the theoretical background of the magnetoresistance effects caused by
dislocations. The observations will be described in section 4.3.
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4.2. Theory of the magnetoresistivity of dislocated metals

Lattice defects can affect the magnetoresistance as plotted in the reduced
diagram in three ways. They can (1) scatter the charge carriers anisotropical-
ly. (2) deform the Fermi-surface by the elastic strains around them, or,
lastly, they may, when present in more or less ordered arrays, produce
so-called size-effects 191), It is improbable that point-defects can make
their presence known in either way, as they scatter isotropically, produce
only short-range strains and cannot make up efficiently reflecting layers
when present in the densities as encountered in practice. The same holds
true for chemical impurities in disordered alloys and experiment confirms
this (see sections 4.3 and 5.2.2).

Dislocations, however, produce appreciably anisotropic scattering. More-
over, they have long-range strains associated with them and they often occur
in ordered arrays (sub-boundaries).

It is quite possible that at low temperatures size effects might be associat-
ed with the presence of dislocation walls, as the latter need to be separated
for this only by distances of the order of the mean free path or less, that is
107% ¢m or less in pure copper at 20 “K. However, the dependence of the
magnetoresistance on the fieldstrength would then be expected to be quite
typical, and the observations, to be discussed in the next section, seem to
rule out this possibility.

To estimate the effect of the dislocation strains on the shape of the Fermi-
surface, the method of Hunter and Nabarro %) could, in principle, be follow-
ed. In view of the huge theoretical differences that then arise and of the
inherent incertainties of their treatment as shown by the poor agreement
with experiment, we have refrained from a theoretical investigation of
this effect. The only phenomenon that yields to semi-quantitative treatment
is the influence of the anisotropic scattering. We shall deal only with that
here 102),

Consider a metal wire in a transverse magnetic field H, containing N
parallel edge dislocations per em®. When the current j runs in an arbitrary
direction with respect to this set, the resistivity due to dislocations is
given by (compare (1.27) ).

Apdist = Np, cos?(b.j) + No, cos®(n.j), (4.1)

where b is the Burgers vector and n the unit vector normal to the glide plane
of each dislocation. In order to simplify the derivation, we shall restrict the
possible orientations of the dislocations as follows (fig. 20). We take the
angle between glide planes and wire axis to be 45° and assign the same value
to the angle between the Burgers vector (slip direction) and wire axis. In
polyerystalline wires of small grain size these seem plausible assumptions.
We can specify the orientation of the dislocation set by one angle y, viz. the
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angle between the axes of the dislocations and a given direction perpendicu-
lar to the wire axis, for which we take the direction of H. Introducing
rectangular coordinates x along H, y perpendicular to H and to the wire
txis and z along this axis and defining the current direction with respect to
ahis system by the polar angles @ and ¢ (the z-axis being taken as polar
axis), equation (4.1) becomes:

,\-’.‘1‘3.’-1\ U S O el T )¢
lodias = N =——— jcos® © +- sin® O cos® (p — y)
N(o, — 05) sin @ cos @ cos (g —7y). (4.2)
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Fig. 20. Geometry of the configuration of dislocations with respect to the magnetic field and
the wire dimensions, as adopted in section 4.2,
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This formula for the anisotropy of the dislocation resistance has been derived
by considering the scattering matrix element of a dislocation, without any
implication such as the supposition of the existence of a relaxation time ete.
Assuming Matthiesen’s rule to hold (this assumption reaches far deeper),

the resistivity of the dislocated metal is given by:
0 = 0p + -"_‘(liJe (}3)

where g, is the resistivity of the undeformed wire. The contribution to the
resistivity caused by dislocations will be supposed to be small, so that in
terms of the conductivity (4.3) can be written as
Aodis) :
6=0o|1— E (4.3a)
Oy
The resistivity of a metal can be found by solving the so called Boltzmann
equation that governs the equilibrium shape of the distribution function
f(k) in momentum space of the conduction electrons. An often used
approximation to facilitate the solution is to describe the effect of the
collisions of the electrons with the lattice by a relaxation time 7. The
Boltzmann equation then takes the simple form

€ 1 .’ './0

— —(F+— viE x H) vif +

0. (4.4)
h he )

Here E(k) is the energy of the electrons with wavevector k, F and H are
the electric and magnetic field strengths and f; is the undisturbed distribu-
tion function. The equation holds only when

eHr

me

1; (4.5)

otherwise the deviations of the electrons from their path due to the magnetic
field become comparable to the mean free path and quantum effects come
in.

The current j is given by

i=— ||| VkE.f .dk; dk, dk;, (4.6)
47°h . :

where the integration is over the whole of momentum space.

The introduction of 7 can be defended rigorously only in very simplified
models where 7 is essentially independent of k.

Quite generally we can write for the distribution function:

afo[ 5, e
‘”';[‘rl Wi VkExH|.1,

J=Ts
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where 1 is a kind of generalized mean free path vector that may depend on k. Then, if
Py denotes the transition probability for dislocation scattering from wave vector k to k’,
it is easily found by counting the numbers of electrons entering and leaving a unit volume
of k-space because of collisions, that the following integral equation holds:

ds’
oFE/kn
where the integration is over the Fermi surface in k'-space. Now, the introduction of a
relaxation time means the replacement of this equation by the much simpler one
1(k)
(k)
This is only allowed when always 1 is parallel to Y E, which need not be at all true for
arbitrary Py It is of course allowed when Py does only depend on |kw-k'|.

ViE = [ 31(k) - I(k'){ Puw

ViE = %

We now make the fundamental assumption that equation (4.4) will
describe, at least to a first approximation, also the state of affairs in a dis-
located metal. Due to the anisotropy of the resistance, T must now necessari-
ly depend on k, and the use of such a 7 in Boltzmann’s equation is thus open
to criticism. However, we may expect that the results of this assumption
will give us at least some insight in the problem under consideration. An
exact treatment with the aid of anisotropic transition probabilities leads
to considerable mathematical difficulties.

The relaxation time must be chosen in such a way that on computing
the current in the direction of the applied electric field from (4.4) and (4.6),
the correct anisotropic resistance (4.2) is obtained. We shall write

T = 75— 71(k), (4.7)

where 7, applies to the undislocated metal (and is thus independent of k).
Denoting the polar coordinates of k in the coordinate system defined before
by @' and ¢', we try the assumption that 7, can be expanded in terms of
spherical harmonics of orders zero and two. The coefficients of the expansion
can than be determined by the procedure mentioned above, viz. by
comparing the ordinary resistivity according to (4.2) with the expression
resulting from (4.4) and (4.6) that contains these coefficients.

This comparison can only be made when the dependence of E on k is
known. This dependence must be such that: (a) the undeformed metal,
with its presumed isotropic relaxation time, shows a finite magnetoresistivi-
ty, of the order of magnitude as that observed in the noble metals, and (b)
the introduction of isotropic scatterers in the metal must not change the
reduced magnetoresistivity as measured in a Kohler diagram. The latter
condition follows from the experimental results: neither the impurity con-
tent of copper nor the presence of point-defects affects the Kohler curve
(sections 4.3 and 5.2.2). Condition (a) implies that the simple assumption of
one spherical energy surface is not allowed. The simplest model that can be
adapted in such a way that also the second condition is obeyed, is the
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previously discussed two-band model ), in which it is assumed that the
current is carried both by electrons and holes, characterized by the con-
centrations n, and n, and the effective masses m, and m, respectively.
We assume that in each band 7 can be written in the form (4.7), where the
anisotropic part can be expanded in spherical harmonics. Limiting the
expansion to second order harmonics. we have

™ =7l :(l“‘ — b' c0s20@" — ¢l cos? (¢" — ») sin2@’ —

~d" sin (¢" — ) cos (¢ — ) sin® @' — €' cos (¢ y) sin @’ cos @'

- £ sin (¢’ — y) sin @' cos @', (4.8)

for each band (the bands are denoted by the superscript 7).

Making use of the special properties of metals, viz. that a well defined
Fermi surface E = E, exists and that to the integral (4.6) only those
electrons possessing an energy very near to F; contribute, we can write
(compare %) ):

a( 6, ®) — 3 / /

-3 o2 " (B, | sin @dO'dg, (4.9)
ah= e ’ el 4

‘B
where a(6,¢) stands for the conductivity of the metal (in the absence of
a magnetic field) when the current runs in the direction (@,p). The integrals
in both (spherical) bands can be evaluated; the result is:

"(:pT(i). blr) | (.(l'? 9
¢ 0 | - g . 5.
a(O,p) =e*y a') — ' ') cos®@ " eos? (p—y) sin2@-
T m" 5 5. A

d" sin (p—y) cos (¢ y) sin? @ -+ ¢ cos (¢ —7) sin® cos @

= [ sin (g—y) sin @ cos Of|.  (4.10)

The anisotropic scat tering by dislocations follows the same rule. as expressed
by (4.2), in both bands. However. the expression (4.2) must be modified in
accordance with the adoption of the two band model. The effect of disloca-
tions will now be described by adding to the resistivity in each band an
anisotropic term of the form (4.2), where g, and 0, need not be the same in
the two bands. With the aid of formula (4.3a) we thus arrive at the following

formula for o(@, ¢) that includes the effect of dislocations (compare 99))

e Il“)‘(“,” ,\’i'|” 1+ ptd) h Ly .
a(0@, @) = X o N /' 5 (c0s*O + sin?6 cos?(p—1y)) 4
m'" | 204
) )
-+ @ sin @ cos @ cos(g — y)!| . (4.11)
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The comparison of (4.10) and (4.11) yields no unambiguous result for the
coefficients @), b ete. However, there is no priori reason to prefer one ‘
solution for the 12 constants to another, and we thus take the simplest one,
by equating the coefficients in (4.10) and (4.11) to each other in each band
separately. The result are the following completely analogous expressions

for 7' in both bands:

(i) M s (i) o ()
(i) _ i) NG T 90T 0 g a8 (o !
T 75! |1+ IN ————N . 3c0s20" 1 sin* @’ cos? (¢ — p)¢ —
4 2‘.’11" 4 '.'l(b'l
I N @ 8in @' cos O’ cos (¢ — )|, (=12). (4.12)
&~ 9

We shall use these expressions, however formally derived, in the
following discussion.

We are interested in the change of resistance by a transverse magnetic
field when the current flows in the direction of the wire axis (€ = 0) and
the only existing field components are Hy, Fy and F;. A similar problem has
been studied by Davis 19), and his results can be directly applied here. We
can carry through the computation for each band separately. For the co-

efficient of transverse magnetoresistivity the following expression holds:

o) —e(®) _ (e V[V 1) LD+ - UIP IO
o - 9 g Y P - 9 Tl -9 e
o(0) 1 e [0+ 19] - (10 + 1]
where o(H) and p(0) stand for the resistivities of the dislocated metal in
fields H and zero respectively, and I, ..., I\ are integrals, to be evaluat-
ed in each band, that are defined as:
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The operator L is in each band defined as:
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Making use of the fact that of,/0E only differs appreciably from zero near
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the Fermi surface E(k) = E, the integrals can be evaluated exactly (in the
spherical bands adopted).

Putting () = N =

, we find, up to linear terms in '), the follow-

ing general expression for the coefficient of transverse magnetoresistivity:
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O stands for the higher order terms.
When only one spherical energy band exists (n'®) = 0), all linear terms in
t") vanish and only quadratic and higher order terms remain. That means
that in the simple model of one spherical energy surface the influence of
dislocations is in first approximation proportional to the square of the
dislocation density. This peculiar result arises from the special manner in
which we have described the dislocation scattering, viz. by adding an aniso-
tropic term to the relaxation time.

This can be illustrated in the following very schematic manner. When an electric field F
is applied, the momentum vectors of the conduction electrons are changed by the (time)
averaged amount;

o € T -
ok F—, (4.17)
h m
if the time of averaging is long compared to the mean free time between two collisions with
the lattice, that is, long compared to the relaxation time 7. A magnetic field H at right
angles to F produces on the ' electron a force G; directed perpendicular to H and to the
instantaneous momentum k:
. eh
G; H x k;. (4.18)
-
Averaging over a sufficiently large number of collisions, between which the ki change in
such a way as to leave only the resultant momentum (4.17), the resultant Lorentz force
becomes simply:
~ eh
G

H x k. (4.19)

¢

This mean force is compensated by the Hall field and no current flows perpendicular to F
when all electrons undergo the same change of momentum (4.17). If the latter condition is
not fulfilled, there results on a given electron a net force (averaged again over many
collisions):

~ eh

G; H x (0ki — < ok >). (4.20)
=




Here the - - sign stands for averaging over all electrons, thus over k-space (the ~ sign
denotes time averaging).
s : ~ -
Deviations from the mean momentum < 0k > occur when dk as given by (4.17) is a

function of k, either through the occurrence of an anisotropic term in 7 or through a
departure from spherical symmetry of the energy surface, that is through the occurrence of

an anisotropic term in the effective mass. If we put quite generally 7 Ty 713 1/m
1/my + 1/my, where 7, and m, are these anisotropic contributions, we have
~ € = i To Ty T T . € T
Ok F}—2 5 bt Ll <ok > F -t (4.21)
h m, my m, my Vi h my

Thus there occurs an average component of momentum perpendicular to the applied

. : . - . i Wighes IO
field which to a first approximation (assuming —* and — << 1) is given hy:
m 5
0 1
~ (oot 7 T T
O ki = ) H % F ) 0 4 M (4.22)
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for it electron. The mean value of the momentum of all electrons in the direction of
the applied field is thus diminished in the ratio

o o~ e ! L. m T 2 j
V(Gky — <6 ki>2/10k] ~ 1 ——C H <370 4 LS, (4.23)
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The coefficient of magnetoresistivity is thus given by
ety \*, _ yTy | mgy’ .
B ~ | <)+ % (4.24)
mge To | My
where the averaging is over k-space.
When the energy surfaces are spherical (m o), the effect of the magnetic field on
£) 1 g
the resistivity is proportional to < 7,*>. In general the magnitude of B will be governed
my T i :
by the averaged product < —°. ! and will thus depend on the correlation between
° m T
1 To

the anisotropy of the effective mass tensor and that of 7.

As discussed in section 4.1, in order to fulfill condition (b) of page 68, it
is necessary to assume that isotropic scatterers affect the conductivities in
both bands by relatively the same amount. This can easily be verified by
investigating the form of (4.16) when only an isotropic contribution to 7 is
present. Also experiment points strongly to this conclusion (validity of
Matthiesen’s rule). We shall extend its field of applicability to the case of
dislocations in the following (although in fact no theoretical basis is present

for this assumption) and write therefore:

Sl
o) + o V40" o toes (4.25)
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Assuming as before
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N 21 (4.26)
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i.e. that the relative influence of dislocations in both bands is small, we have
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where O stands for the higher order terms.
The ordinary conductivity in the direction of the wire axis can. when
(4.26) is fulfilled, be written in the form
(1)(1) (2) (2)
(Y n' 7y O
I)'(()) = (‘2\ 1 I 2 ¢ ‘1 . ‘l, .‘\
¢ m" m'* ) ( -

: (4.28)
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of the ordinates of the Kohler curve at a constant value of H 0(0). That is,
we are interested in the quantity

What we are interested in, is the relative increase. caused by dislocations

) Bio*(0) ¢y :B!’_‘z(()):u.

= (4.29)
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where the subscript N denotes the dislocated state, the sul)s('ript 0 the
undeformed state. From (4.27) and (4.28) it follows that, when (4.26) is
fulfilled, the very simple relation applies:

B=4sinty N2 o (4.30)
9
0O’ contains terms of higher order in NV that depend in an intricate way on
the band constants, Only by a very detailed study of the anisotropy of the
undeformed metal this dependence could be checked experimentally, In
this study we shall restrict ourselves to the linear term only.

The following conclusions can be drawn from (4.30).

1. The effect of dislocations on the magnetoresistivity disappears when
the dislocations are parallel to H and is maximum when they are
perpendicular to the field.

2. In the linear approximation the effect does not depend on the aniso-
tropy of the resistance perpendicular to the dislocation axis: the result
therefore applies to dislocations of arbit rary character.

3. When the orientations are arbitrarily distributed except for the condi-
tions imposed on them in the beginning of this section, one obtains by
averaging:

2 P01 Qs ¢
P = { N 0, (1“)
0
a result that should apply to polyerystalline metals. The relative effe
dislocations on the ordinary resistivity follows from (4.28) to be

ct of




(4.32)

and thus
Bla=1/, (4.33)

in the model used.

4.3. Observations of the magnetoresistivity of deformed copper wires

The theoretical results of the foregoing section have been derived under
various simplifying assumptions, two of which impose restrictions on the
experimental conditions. The first is that expressed by (4.5) and can also
be written as:

H/p(o) <= nec. (4.5a)

The second one is the supposition that the dislocation resistivity is relatively
small ((4.26)). Both assumptions are verified in the case of copper strained
less than 109, and observed in fields not stronger than 10000 Oe, at the
temperature of liquid hydrogen.

We have carried out experiments on 99-9989%, pure polyerystalline wires
0-5 mm thick, in the apparatus deseribed in chapter 3. The magnetic field
was produced by an electromagnet with pole diameter of 9 em. All wires
were first annealed for two hours at 550 “C in vacuum. After extension by
0, 5, 109, etec. respectively the resistance of the wires was measured to-
gether with that of a very much less pure dummy wire, in the magnetic
field. The field strength was varied in steps from zero to 19000 Oe. The
results, plotted in a Kohler diagram, are shown in figs. 21 and 22.

It is seen that the impurity content of the wire has indeed no effect at
all on the reduced magnetoresistivity, as the same curve applies to the
undeformed pure metal and to the much less pure comparison wire.

Plastic strain results in appreciable deviations from this curve: the
relative magnetoresistivity increases with the strain, and in not too strong
magnetic fields the relative increase is primarily proportional to the strain
and fairly independent of the field strength.

At higher field strengths the effect of the strain diminishes and even seems
to disappear.

The lack of influence of impurities, together with the absence of any
effect of an annealing treatment below 200 “C on the magnetoresistivity,
as will be discussed in chapter 5, have lead us to conclude that the additional
magnetoresistivity is indeed caused by dislocations only, in agreement with
the theoretical arguments of section 4.2.

To compare the observed magnetoresistivity increase with the increase of

the ordinary resistivity, the relative effect of dislocations on the latter




must be known. It follows from a combined analysis of the magnetic and

the recovery experiments, to be presented in the next chapter, that the

effect of dislocations on the ordinary resistivity of copper can be found by

annealing the wire at a temperature of about 200 “C. In table V the compar-

ison is made, ¢ and j denoting, as in section 4.2, the relative increase of

ordinary and magnetoresistivity due to dislocations.
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Fig. 21. Relative magnetoresistivity 10/0(0) of polycrystalline copper at 20 °K as a function
of the reduced fieldstrength H 0(0). Plastic strain results in an observable increase of the
magnetoresistance, impurities have no effect,

The quantity « was measured as the relative increase at 20 °K in resistivity,
after deformation at 20 °K and annealing at 225 °C. p was derived from the
individual Kohler curves at the constant value H/o(0) = 300 kOe/uQem,
that is in that region of the diagram where the observations are most re-
liable; brackets denote uncertain measures. It is seen that the observed

values of f/a are indeed of the order of the theoretical value 0-5. The best
agreement is obtained with wires deformed 109). This can be easily

explained: more heavily strained wires do no longer follow the simple

theory, and less deformed wires do allow but very inaccurate measuring.
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TABLE
Observed increase of resistivity («) and magnetoresistivity (/) at H/p(0)
300 kOe/.Qem and critical reduced field strength [H/p(0)] .., of polycrystal-

line copper deformed at 20 “K.

Wire no | Extension :1 p pla [H/0(0)]cr
1 209, 1649, 589 035 —
2 20 165 065 0-36 450 kOe/uQcem
2 8 (49) 31 (0-63) 350
3 10 79 50 0-63 500
4 10 71 48 0:68 350
3 5 (30) (32) (1-1) 400
4 5 (27 19 (0-70) 350
1.5 — — :
\ ‘ T
10 {— |
A | [
p/er'/:O 1
Cu 99-998°%
0'5 I~ = [ | 1
|
\
|
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Fig. 22. Analogous to fig. 21, but now on a logarithmic scale.



Better fit with theory can hardly be expected, as the various approximations
introduced in the theory, especially the use of an anisotropic relaxation
time in the computation, may have influenced appreciably the value of
f/a. Also the specific orientation chosen for the dislocations is not realized
in practice, many dislocations with screw character being present.

A certain critical reduced field strength [H/p(0)]., could be estimated
from our experiments. At this field strength the relative effect of disloca-
tions begins to abate. As is also demonstrated in table V. this eritical
reduced field strength is found to be fairly independent of the resistivity
in field zero, and equal to about 400 kOe/pQcm. This constancy gives rise
to the obvious conclusion that the existence of a critical field strength is
closely associated with the condition expressed in equations (4.5) and (4.5a).

Expressed numerically in the units used, (4.5a) becomes
H/o(0) < 512 kOe/pQem,

and is therefore indeed in fair numerical agreement with the observed

critical field strength. A completely different theoretical treatment is

necessary, however, to explain the influence of dislocations in high fields.




5. RECOVERY OF ADDITIONAL RESISTIVITY AND MAGNETO-
RESISTIVITY CAUSED BY PLASTIC DEFORMATION

5.1. Introduction

Up till now we have only discussed the physical properties of metals de-
formed at very low temperatures. Apart from the obvious reason that the
specific consequences of the deformation show up most conspiciously under
these circumstances, another reason compelled us to this restriction. At
temperatures higher than that of liquid hydrogen, the possibility of diffu-
sion of the lattice defects over appreciable distances in the time of the experi-
ment, cannot be ruled out. It is indeed observed that on heating a low-
temperature-deformed metal to e.g. room temperature, an appreciable
decrease of the additional resistivity takes place. This must be attributed

to the diffusion of the lattice defects, originated by the deformation, out of

the metal or to sites where their influence is less. It is of great interest to
study this and related recovery phenomena. Due to their different diffusive
properties, the relative concentrations of the various kinds of lattice defects
vary during recovery, and the possibility exists that in this way more can
be learned of the influences of these defects separately.

Lattice defects are formed in a metal not only by plastic deformation but
also by irradiation with neutrons, deuterons or a-particles, and even with
very fast electrons. We shall not discuss the theory of formation of lattice
defects by irradiation here, as extensive discussions on this subject can be
found elsewhere ™). We only mention the important result that by
irradiation preponderantly vacancies and interstitials are produced, in
equal quantities (the metal atoms being knocked off their sites). For
instance, irradiation by 10'7 deuterons/cm?® at a sufficiently low tempe-
rature produces about as much vacancies and interstitials as deformation
by say 109%,.

J. A. Brinkman %) has drawn attention to the possibility of a completely
different effect caused by the impinging particles. Whereas it is usually
supposed that the vacancies and interstitials originally produced along
the path of the particle, remain in the material in this form during the
so-called “thermal spike™ also associated with the latter, Brinkman has
discussed the possibility of local annealing, resulting in the formation of
“displacement spikes™ containing, for example, dislocation loops instead
of many of the point-defects. He concludes on semi-quantitative arguments
that this mechanism will indeed take place in nearly all, except the very light
metals. Only experiment can decide whether this conclusion is allowable.
The observations now available, to be discussed in the next section, seem
to point to the conclusion that if indeed dislocations are produced at all,
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then only in densities very much less than those encountered in deformed
metals,

There is a third way in which defects can be introduced into a metal, that
is by quenching rapidly from a high temperature. This process has already
been discussed in section 1.2.3. One can be reasonably sure that under
careful experimental conditions only excess vacancies are retained in the
metal, by reason of their low energy of formation, and that the accidental
formation of dislocations by the internal stresses set up during the quench
does not occur in appreciable measure in the noble metals.

In order to have at our disposal as many experimental data as possible,
we shall discuss the recovery characteristics of cold-worked, irradiated and
quenched materials simultaneously. We confine ourselves again to the
noble metals, especially copper and gold. As we have seen in section 1.2.3,
the differences between the diffusion characteristics of these metals are so
slight that they can safely be used in the same comparison.

In table VI the salient distinctions between the differently treated metals
are reviewed; it will be shown that these distinctions, together with the

differences in recovery behaviour, allow interesting conclusions to be drawn.

TABLE VI

Lattice defects produced by cold-work, irradiation and quenching of metals

Treatment Dislocations Yacancies Interstitials

Cold-work many many rather many, but less

than vacancies *)

Irradiation very few or none many many
Quenching few or none many none

*) See sections 2.1 and 3.3.1,
5.2. Review of data on recovery

5.2.1. Recovery of electrical resistivity of copper and gold

The results of the recovery experiments on quenched, irradiated and cold-
worked copper and gold that we were able to find in litterature *), together
with some results of our own, are summarized in table VII. The recovery
phenomena can be characterized by three quantities, viz. the activation
energy () associated with them (if any), the temperature region T in which
they can be observed within a reasonable time, and the percentage dimuni-

*) up to the end of 1955,




TABLE VII

Recovery of resistivity in copper and gold

Step 11

1T Q| p
¢ [ev| o

Step 111

Treatment Refer-

ence

Author

Cu, cold-work| Manintveld 130 9 !
at 78 K or | light work S § Pl
20 °K 60 ‘

Manintveld
heavy work

18 | 10 0-88 18

to

50
-70
to
0

70 1 0-25| 25 0-82 25
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Fammann et
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at 78 °K

Manintveld
light work

0-69
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or less

Eggleston
et al.

Overhauser
Idem

Marx et al.
Meechan and
Brinkman
Cooper et al.

Me.Reynolds
et al.
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tion of the resistivity. p, which they represent. As Lomer and Cottrell 19)
and Nowick 1°7) have shown, it is of interest to compute formally a fourth
quantity, n, from (, the mean recovery time t and the temperature T, by
means of the formula

n = »t exp (— Q/kT), (5.1)

where 7 is the atomie vibration frequency T=0 (ca. 10'® sec¢™?). The formal
meaning of n is the number of atomic jumps made by the defect, whatever
it may be. The uncertainty in n is very large, viz. a factor 10 to 100, due
to the inaccuracy in () in most determinations. Possible dependence of the
additional resistance on temperature by reason of the invalidity of Matthie-
sen’s rule has not been considered at all: if present, it is presumably very
small (p < 19,), as it has not been detected in specially designed experi-
ments.

It has been possible %2) to classify the various data in five groups, corres-
ponding to five recovery steps. These steps have been numbered I to V.
From a close inspection of table VII the following characteristics for each
step can be deduced.

Step 1. Activation energy (-1 eV, occurs at about 40 °K only in irradiated
metals, where a 409, decrease of the additional resistivity is observed.
The step has been observed only once but very accurately; it is certain that
it does not occur in deformed metals. Mean number of jumps is 103,

Step I1. Activation energy between 0-15 and 0-4 eV, with a mean value
at 0-2 eV. Occurs at about — 100 °C in irradiated and in deformed metals,
and is associated with a 209, resistivity decrease. It has not yet been observ-
ed in quenched metals, although a recovery step of 0-4 eV seems once to have
been noticed by Kauffman and Koehler '*°). This observation has not
been confirmed, however %). The mean number of jumps is 10° — 10%.
The observation of R. R. Eggleston 1) of this recovery step forms an
exception as to the values of ) and n. Possibly this observation applies
really to the third step.

Step I11. Activation energy between 0-5 and 0-9 eV, with a mean value at
0-72 eV. Oceurs at about 0 °C and produces between 20 and 409 resistivity
decrease, depending on the method of treatment. The step seems to appear
relatively stronger in irradiated and quenched metals Tthan in deformed
metals. It is not possible to define a mean number of jumps, as the relevant
figure varies between 1 and 107.

Step IV. Activation energy about 1-2 eV. Has not been found in irradiated
metals. The percentage decrease of additional resistivity associated with it
seems to depend sensitively on the temperature of the previous deformation
procedure. In room temperature deformed metals p is about 40%;, in metals

worked at much lower temperatures it amounts only to 10%,.
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A dependence of the recovery phenomenon on temperature of deformation seems to be
detectable already when copper wires deformed at 20 °K and 78 K are compared. This is
shown by the following observations by Jongenburger and the author (dashes mean no

observations available):

Percentage recovery | Percentage recovery

of steps IT and II1 of step IV

Cu deformed : 109, 37:7%

at 20° K £ 209%, 13-2 89
Cu deformed & 109, 47 —
at 78° K £ = 209, 45 105

We shall not diseuss this interesting effect further, nor the possible dependence of the
recoverable fraction on pre-strain, as is also suggested by the above observations.

The recovery step has only once been observed in a quenched metal,
viz. the alloy CuzAu, although from a detailed study of the original ob-
servations of Lazarev and Ovcharenko one is tempted to believe that it is
present in quenched gold also. It would occur there at a temperature of
about 200 °C, quite comparable to the observed recovery temperature of
step IV in all other cases. The value of n associated with this step amounts
to about 103,

Step V. Activation energy about 2:1 eV. This step at about 300 "C com-
pletes the recovery of the resistivity. It seems to be less conspicuous in
irradiated or quenched metals than in cold-worked metals. The number of
jumps associated with it has the impossible value 1072

These observations are summarized in table VIII and fig. 23.

TABLE VIII

Characteristics of recovery steps in copper and gold

Step I 11 111 IV V
Temperature (°C) — 230 | — 100 0 200 300
Activation energy (eV) 0-1 0-2 0-7 1-2 2-1
“Number of jumps™ 103 1091010 - 108 —
Cold-work 0 20 20 10-50%) 50
Percentage de-
crease of addi- Irradiation 40 20 30-40 - 10
tional resistivity - = ==
RS RO Quenching | no obs. 0? 50 307 207

*) The latter value refers to room-temperature deformed metals, in which steps 11
and III are obviously absent.
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It should be borne in mind that the numerical data contained in table
VIIT only represent rough averages.
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Fig. 23. Schematic representation of the recovery of the resistivity of cold-worked, irradiated
and quenched copper and gold. The five recovery steps I,.... , V, are characterized by
more or less well defined energies of activation (). The hatched regions denote the limits
within which Q varies according to different observators.

5.2.2. Recovery of the magnetoresistivity of cold-worked copper

The recovery of the additional magnetoresistivity of polycrystalline
copper deformed at 20 °K follows a much simpler pattern. As is illustrated
in fig. 24, heating the wires up to a temperature of 175 °C (that is including
step IV in the scheme of s

:ction 5.2.1) produces no decrease at all of the
additional magnetoresistivity. Even a slight increase of this quantity can
be observed, possibly caused by experimental errors, however. Only by
heating above 300 °C does the magnetoresistivity return to its original
value pertaining to the undeformed wire. It is thus found that the recovery of

the magnetoresistivity is characterized by only one recovery step, viz. step V.

5.3. Interpretation of the recovery phenomena

The interpretation of the complex recovery behaviour of deformed,
irradiated or quenched metals in terms of diffusion-like processes of the
lattice defects contained in them, is intimately tied up with the determina-
tion of the physical properties of these defects, such as their contribution

to the electrical resistivity and the magnetoresistivity, and the activation

energies of formation and migration. As we have seen in this and the pre-
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ceding chapters, the numerical description of these properties is still very
uncertain, and therefore the interpretation cannot vet be unambiguous.
However, by comparing the information contained in table I (chapter 1)
on the physical properties of lattice defects, with the evidence presented
in chapters 3 and 4 and the contents of tables VI and VIII, the following
explanation of the origin of the various recovery steps emerges.

We start with recovery step V. It occurs in that temperature region in
the noble metals where also the well-known phenomenon of mechanical re-

covery takes place. In fact, mechanical hardness decreases together with
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Fig. 24. Recovery of the magnetoresistivity of deformed polycrystalline copper, measured
at 20 °K. Heating to 20 °C and 175 °C produces no decrease of the magnetoresistance
(maybe even a slight increase can be observed; this has not been confirmed in later ex-
periments). By heating above the mechanical recovery temperature, however, complete
recovery is obtained,
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electrical resistivity during step V '*!). The recovery is associated with an
activation energy that is comparable to that of self-diffusion, that is, to the
simultaneous formation and migration of vacancies. From these argu-
ments it seems plausible to assume that the fifth recovery step is closely
related to the climb-motion of dislocations, (section 1.1.3.2), resulting in
the formation of “polygonized” dislocation walls ete. and associated with
an appreciable reduction in number of these lattice defects, hence in resisti-
vity and in hardness.

This conclusion is strengthened by the observations discussed in the
preceding section, viz. that the magnetoresistivity recovers in this step only.
Only one recovery step presumably means only one kind of defects re-
sponsible for the additional magnetoresistivity, and we have seen in chapter
4 that this kind of defect is very probably the dislocation. One thus obtains
complete mutual agreement between theory and experiment when associat-
ing with step V the thermally activated motion, that is the climb motion, of
dislocations. It is now also clear why the fifth step occurs most conspicuously
in cold-worked metals; these contain by far the most dislocations. That also
in irradiated and quenched metals step V has been traced can be under-
stood when it is realized that quenching and irradiation may also
introduce a few dislocations into the metal and that, when self-diffusion
becomes possible, all kinds of more complex faults of the lattice, possible
consequences of earlier diffusion stages, or caused by the treatment itself,
can be removed.

The evidence on the recovery of the magnetoresistivity allows another
conclusion to be drawn, viz. that, this effect being presumably caused by
dislocations only, also much or all of the additional ordinary resistivity
remaining in the noble metals after recovery at 200 °C, that is about 509 of
the total resistivity increase, is due to the dislocations. That is, dislocations
are probably responsible for half of the additional resistivity caused by
cold-work at very low temperatures. Of this conclusion we have already
repeatedly made use.

The latter conclusion rests on the tacit assumption that no lattice defects of a more
complex kind than dislocations have been introduced by cold-work. There are no reasons,
however, to believe in the production of complex defects in any appreciable amounts under
these circumstances.

The absence of any recovery of magnetoresistivity below 300 °C allows us
to be reasonably certain that none of the other recovery steps is due to the
motion of dislocations. except perhaps the first step, that occurs only in
irradiated metals. As we have seen in section 5.1, it has been proposed that
displacement spikes exist at the end of the path of each impinging particle.

These spikes must be considered as molten zones that have rapidly solidified.

Naturally the lattice in such zones is highly disturbed and unstable. Only
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small energy barriers have to be overcome to produce a more stable situa-
tion, e.g. by the condensation of many vacancies into a few dislocation loops,
a process already discussed in section 1.1.4. Such processes, requiring only a
very small activation energy of the order of 0:1 eV, might very well be
responsible for the first recovery step in irradiated metals. This has been
originally proposed by Brinkman himself '%), and is supported by Seeger
122) Tt is yet rather difficult to understand why this step should be so
narrow, as many processes occur simultaneously, with different energy.
Recently, Meechan and Brinkman ') have proposed that step I should
be caused by the annihilation of close pairs of vacancies and interstitials
formed during the bombardment with heavy particles. At present it is
not possible to decide between the various possibilities.

The remaining three recovery steps must be explained in terms of the
diffusion of vacancies and interstitials. It seems at first sight quite a plausible
assumption that the second step is caused by the diffusion of interstitials, as it
has not been observed in quenched noble metals where no interstitials are
present. Moreover, the activation energy for interstitial migration, 0-25 eV
according to Huntington’s calculations (section 1.2.2), agrees very well with
the observed activation energy for the second recovery step, viz. ~ 0-2 eV.

A similar comparison between the activation energy for diffusion of
vacancies (12 eV according to chapter 1) and the observed activation
energy for recovery leads to the identification of step IV with vacancy
diffusion. A problem arises then in the explanation of the inconspicuousness
of step IV in irradiated metals, where vacancies have been formed in great
numbers. This difficulty can be more orless explained, when it is remembered
that vacancies and interstitials are presumably formed in about equal
numbers, and that the diffusion of interstitials, in step Il (and 17), has
already led to appreciable interstitial-vacaney recombination. Presumably
not all the vacancies have disappeared by this mechanism, as part of the
interstitials will have diffused to dislocations, grain boundaries, ete. before
meeting with a vacancy. Possibly the remaining vacancies diffuse to
dislocations or form clusters in the third recovery step, not as single
vacancies, but as vacancy pairs. We have already discussed the possible
formation of vacancy pairs in section 1.2.3. An estimate by Bartlett
and Dienes %) of the energy of migration of vacancy pairs yields 0-6 ¢)
in copper, in good agreement with the observ ed recovery energy of 0:7 eV
of the third step.

It is now clear why the fourth step is less difficult to observe in deformed
metals and occurs quite strongly in quenched metals. By the processes
mentioned above, presumably nearly all vacancies have been used up already
in irradiated metals where interstitials and vacancies have been formed

in about equal numbers and close together in located regions, viz. where




— 88 —

the impinging particles have passed. In cold-worked metals the interstitial
concentration is appreciably smaller than that of vacancies, and moreover
vacancies and interstitials are formed at more arbitrarily distributed sites
in the lattice. The mutual elimination is therefore not complete, and some
single vacancies remain. In quenched metals there are no interstitials at all,
and vacancies are formed quite irregularly, thus the fourth step occurs
relatively strongly.

The five recovery steps of the resistivity in the noble metals can thus
be explained without the ad hoe introduction of any new concepts. Table IX

reviews the results of this section.

TABLE IX

Processes responsible for the recovery of resistivity in copper and gold.

Step 1T I I IV v
Rearrangement of | Diffusion of in- | Diffusion of [ Diffusion of | Climb motion
the lattice in dis-| terstitial atoms | pairs of va- | remaining of
placement spikes, | resulting e.g. in | cancies. single vacan- | dislocations;
resulting in the| interstitial-va- cies, self-diffusion.
formation of cancy recombi-

small dislocation | nation.
loops, or
annihilation of
close interstitial-
vacancy pairs

5.4. Other theories of the recovery phenomena

There exist many other theoretical explanations of the recovery phenome-
na discussed. However, most of these theories consider only one or two
recovery steps in the light of a particular kind of experiment. This is a very
dangerous procedure, as one is then easily tempted to reject other evidence
on different recovery steps, not agreeing with ones own theory. Only two
discussions on a more general basis have been published. Lomer and
Cottrell 1) have based themselves on the computed values of n, the “num-
ber of jumps”. By applying rather strong corrections to the values of n as
they follow directly from the observations (but that might yet fall within
the experimental errors), they were able to show that step II is characteriz-
ed by a mean value of n of about 108 to 108, and step III and IV both by a
mean value of about 1-102. As is seen from our table VII, this is a rather

rigorous schematization. The authors deduced from it that steps IIT and IV
are really identical, but that the activation energy for recovery is a func-
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tion of temperature, They could explain a behaviour of this kind by assum-
ing the presence of impurities in the material that act as traps for vacancies.
The second recovery step would then be connected with the diffusion
of vacancies to the traps. On increasing the temperature between 0 °C and
200 °C the traps continually release the vacancies, which then diffuse to
e.g. the dislocations. This represents a continual recovery. The temperature
dependence of the overall concentration of free vacancies can then indeed
be described by a varying energy of activation.

We have advanced arguments in chapter 1 to show that probably the
energy of migration of vacancies is much too large (1-2 eV), that diffusion
at — 100 °C (step II) could take place. Furthermore, it seems pretty clear
(and has been found experimentally, for example, by Berghout 1%) and by
Jongenburger and the author) that there exists a distinet separation between
the steps IIT and IV. Lastly, the distinctions between the recovery be-
haviour of differently treated metals remain unexplained. Therefore, and
in view of the uncertainties in n, it seems improbable to us that the theory
of Lomer and Cottrell presents a completely sufficient explanation of
the observed phenomena. However, these authors brought to light one
peculiar difficulty in our own explanation, viz. the low value of n in step 1V,
But now, the same difficulties apply to the other recovery steps. Whereas
with steps I and V obviously n has no meaning, in the other steps a definite
meaning might be assigned to n. One would expect at first instance that n
would be about equal to the square of the number of atomic distances to be
travelled by the defects to the sites where they are recovered. If these sites are
dislocations, the observed numbers deviate appreciably from expectations,
and moreover n would be expected to depend sensitively on the method of
treatment. This has not been observed. Possibly part of the trapping sites
are thus indeed impurity atoms. It is not possible to say more on these

problems at the moment with any degree of certainty.

One might associate the value of n in step II with the square of the mean distances
between interstitials and dislocations and between vacancies and interstitials. This dis-
tance would then have to be of the order of a few times 10* atomic distances, which is
rather large. The value of n instep II1 might have no real meaning as the formation of pairs
comes in, and for step IV no reasonable explanation ean be found at all.

Another theory, differing but slightly from our own and also based on the
presence of five discrete recovery steps, has been advanced by Seeger 1*?)
and is seconded by Meechan and Brinkman %), The energy of interstitial
migration has been recalculated by Seeger '?%): he found Qjy = 0:75 eV
in copper. The authors mentioned therefore associate step III with
interstitial diffusion and step Il with the diffusion of vacancy-pairs,
the migration energy of which is of course not very well known either and
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might indeed be as small as a few tenths of an eV. The other steps are
explained as in this paper. The occurrence of “step I1I” in quenc hed metals
is explained by Seeger as the result of the low density of trapping
centres (dislocations) in these metals. Then step I1 would occur at tem-
peratures about 100 °C higher than normal. that is, in the region of
temperature where normally step 111 occurs.

It should be mentioned here that the many difficulties in the interpreta-
tion of the recovery phenomenon that have arisen and still arise, are caused
by the fundame :ntal disagreement that exists in litterature as to the values
of the energies of formation and of migration of vacancies and interstitials
in the noble metals. Once this disagreement has been removed, the natural
explanation of the various recovery phenomena will follow suit. More

experiments are needed. however. to realize this zeal.
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6. CONCLUSIONS AND SUMMARY

From the work presented in this thesis the following conclusions can be
drawn.
(1) The increase of the electrical resistivity of copper, silver and gold on
plastic deformation at very low temperatures is caused in about equal parts
by dislocations and by point-defects.
(2) According to the observations, the scattering cross-section of disloca-
tions must be larger by a factor of about 25 than that derived from theory.
This might be due to the effect of stacking faults.
(3) The dependence of the additional resistivity on strain in polyerystalline
materials is, at low strains, in satisfactory agreement with the results of a
simple theory that is based on energy considerations and that describes the
formation of the various kinds of defects in a purely geometrical manner
only. The existence of several temperature dependent phenomena in the
observations point, however, to the need for a theory in which also the effect
of temperature is included.
(4) Dislocations can be studied independently by observing the magneto-
resistivity of deformed metals; the relevant observations are in good
agreement with the results of a theoretical study of this effect.
(5) On annealing the deformed metals, first the point-defects diffuse out of
the metal or to sites where they have less influence (dislocations), and after
heating at about 200 “C only dislocations are left within these metals. A
comparison of the recovery phenomena displayed by irradiated, quenched
and deformed metals yields interesting evidence on the diffusion of vacancies,
vacancy-pairs and interstitials in metals. In total five discrete recovery
steps can be observed. Only one of them occurs in the recovery of the
magnetoresistivity; four steps (but not all of them the same) have been
observed in the resistivity of deformed and irradiated metals, and three in
quenched metals. An explanation of this complex recovery, without making
any ad hoc assumptions, is possible, although not yet unambiguously.
These conclusions have been reached by the following route. First a
detailed study was made of the physical properties of dislocations, vacancies
and interstitials; it was based on the numerous data available on these prop-
erties in litterature. The results of this study are represented by table I.
The behaviour of the electrical resistivity of plastically deformed copper
and other noble metals was then studied experimentally as well as theoretic-
ally. The results of our own experiments and those of others are represented
in tables II and II1. It appears that the additional resistivity can be repre-
sented remarkably accurately by a simple power law with exponent
between 1:2 and 1-5. Such a relation could also be derived on purely

theoretical grounds, assuming dislocations to be formed by Frank-Read
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sources under the action of the applied stress, and point-defects by the
mutual intersection of dislocations (formulae (2.24), (2.25) and (2.35)).

The comparison of these formulae with the observations leads to satisfac-
tory agreement when it is assumed that 10® dislocations per em*® are present
in the undeformed material and that about 10" Frank-R s:ad sources per
em? can be activated by the stress. However, it is not possible to deduce
from them the relative influences of dislocations and point-defects. Even by
applying combined deformation methods this distinction does not become
possible, although interesting phenomena, like a temperature dependent
“Bauschinger”-effect and the existence of a multiplication factor in com-
bined extension-twist experiments emerge.

Theory yields, to a first approximation, very simple expressions for the
effect of dislocations on the reduced magnetoresistivity as illustrated in a
Kohler diagram (formulae (4.30) and (4.33) ), whereas vacancies and inter-
<titials should have no influence at all on this. The observations (table V)
confirm this conclusion very well: indeed an additional reduced magneto-
resistivity is observed in cold-worked metals that is of the right order of
magnitude. It does not decrease on any annealing treatment below 200 “C
and is therefore indeed caused by dislocations only (fig. 24).

From a study of data published in literature on the recovery of cold-
worked, irradiated and quenched metals, the existence of five discrete
recovery steps emerges, characterized by different activation energies and
occurring at different temperatures. They are presented in table VIII and
fig. 23. A discussion of these recovery steps based on the assumption
that the different recovery stages are associated with distinet diffusion
processes of the various lattice defects, is presented in chapter 5 and sum-

marized in table IX.
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SAMENVATTING

Het eerste hoofdstuk van dit proefschrift bevat een korte beschrijving
van de voornaamste eigenschappen van dislocaties in metalen. De nadruk
wordt hierbij gelegd op de fysische eigenschappen, zoals de invloed op het
elektrisch geleidingsvermogen. De literatuur op dit gebied wordt aan een
kritisch onderzoek onderworpen, evenals die over de fysische eigenschappen
van vacatures en interstitiéle atomen in metalen. De resultaten van deze
beschouwingen zijn, voor zover zij op de metalen !mper en goud betrekking
hebben, samengevat in tabel I. Vervolgens worden in het tweede hoofdstuk
de elementaire processen welke zich afspelen bij de plastische deformatie van
kubische metalen aan een studie onderworpen. Met opzet worden problemen
die verband houden met het verschijnsel der versteviging vermeden, en
wordt de aandacht geheel gericht op de berekening van het aantal rooster-
fouten van verschillende soort dat tijdens de deformatie ontstaat. In het
door ons beschouwde geval van zeer lage temperaturen blijkt het mogelijk,
door het toepassen van een energiebeschouwing, deze concentraties uit te
drukken in de plastische rek, zoals door de formules (2.24), (2.25) en (2.35)
wordt aangegeven. In hoofdstuk 3 worden deze theoretische uitdrukkingen
vergeleken met het experiment. De waarnemingen van diverse onderzoekers
alsmede onze eigen observaties van het gedrag van de elektrische weerstand
van koper, zilver en goud tijdens plastische deformatie bij stikstof- en
waterstoftemperatuur worden besproken en proefondervindelijke uit-
drukkingen worden geponeerd betreffende het verband tussen de additionele
weerstand en de plastische rek (formules (3.6) en (3.7) ). Deze uitdrukkingen
kunnen zonder moeite in overeenstemming worden gebracht met de hier-
boven genoemde theoretische, indien bepaalde numerieke waarden aan de
concentratie van dislocatiebronnen en aan de dislocatiedichtheid in goed
uitgegloeide metalen worden toegekend: waarden, die goed overeenstemmen
met die welke men langs andere weg heeft verkregen (pag.61). Het is niet
mogelijk gebleken uit dit onderzoek alleen eenduidig vast te stellen welke
de relatieve bijdrage is van dislocaties enerzijds en puntdefecten anderzijds
op de additionele weerstand. De studie van de invloed van gecombineerde
deformatiemethodes leverde geen betrouwbare nieuwe gezichtspunten
hieromtrent. Teneinde op dit belangrijke punt meer klaarheid te verschaffen
werd de magnetische weerstandsverandering, veroorzaakt door het plastisch
vervormen van koper bij waterstoftemperatuur, zowel experimenteel als
theoretisch onderzocht (hoofdstuk 4). Uit theoretische beschouwingen blijkt
dat dislocaties deze grootheid op zeer speciale wijze zullen beinvloeden dank
zij hun anisotrope verstrooiende eigenschappen. Door de relatieve magneti-
sche weerstandsverandering als functie van de zg. gereduceerde magnetische

veldsterkte te beschouwen (Kohlerdiagram), kan men de invloed van punt-
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fouten vrijwel volledig elimineren, terwijl de gevolgen van de aanwezigheid
van dislocaties zich zullen uiten als een toeneming van de relatieve mag-
netische weerstand. In eerste benadering zal deze toeneming, wederom in
relatieve maat uitgedrukt, de helft moeten bedragen van de toeneming van
de normale weerstand veroorzaakt door dislocaties (formule (4.33) ). Deze
conclusies blijken door onze experimenten zeer goed te worden bevestigd
(tabel V).

De onderzoekingen over de magnetische weerstandsverandering krijgen
pas hun volle betekenis indien zij worden gecombineerd met experimenten
over het thermisch herstel hiervan en van de elektrische weerstand, in bij
zeer lage temperaturen vervormde metalen. Deze experimenten worden in
hoofdstuk 5 gediscussieerd. Uit een kritische beschouwing van de in de
literatuur bekende resultaten, aangevuld met enkele van onszelf, blijkt dat
in koud vervormde metalen vier herstelstappen optreden. Betrekt men ook
met nucleonen bestraalde en afgeschrikte metalen in de discussie, dan blij-
ken er in totaal zelfs vijf herstelstappen aanwezig te zijn. Deze herstel-
stappen worden verklaard als diffusieprocessen van de tijdens de behandeling
gevormde roosterfouten. De associatie tussen de diverse mogelijke diffusie-
processen en de vijf herstelstappen is nog niet geheel eenduidig. De resulta-
ten van herstelmetingen van de magnetische weerstand maken het echter
vrijwel tot zekerheid dat diffusieprocessen waarbij het aantal dislocaties
vermindert alleen bij hoge temperaturen optreden (polygonisatie, mecha-
nisch herstel). Een tweede conclusie die uit de combinatie van beide soorten
metingen met zeer grote waarschijnlijkheid valt af te leiden, is, dat dis-
locaties relatief evenveel tot de weerstandstoeneming van plastisch ver-
vormd koper bijdragen als puntvormige roosterfouten. Uit herstelproeven
alléén kon deze conclusie niet getrokken worden. Zij heeft grote betekenis,
daar een theoretische behandeling van de dislocatieverstrooiing aanleiding
gaf tot de verwachting dat dislocaties slechts ten hoogste 109, van de
weerstandstoeneming zouden veroorzaken. De discrepantie moet waar-
schijnlijk aan het bestaan van stapelfouten worden geweten.

Dit onderzoek werd uitgevoerd in het Natuurkundig Laboratorium van
de N.V. Philips” Gloeilampenfabrieken te Eindhoven. Mijn dank gaat uit
naar de directie van dit laboratorium voor de gelegenheid, de aanmoediging
en de adviezen die zij mij heeft geboden. Mij speciale dank wil ik uitspreken
voor de bijzondere steun die ik verkreeg tijdens de gereedmaking en be-
spreking van het uiteindelijke manuscript, toen ik ernstig in het werk be-
lemmerd werd door een langdurige ziekte. Het experimentele gedeelte van
het onderzoek is slechts mogelijk geworden dank zij de deskundige mede-
werking van mijn collega Ir. P. Jongenburger, die ik daarvoor hierbij
van harte dank zeg. Behalve van zijn raad heb ik geprofiteerd van kritische
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Meyer en van taalkundige assistentie door C. McD. Hargreaves, M.A.

Aan allen ben ik oprechte dank verschuldigd.
















