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Introduction

The existence of the phenomenon of optical
activity, e.g. the rotation of the plane of polarisation
of a linearly polarized light beam by a piece of matter,
can be derived from the general properties of the
dielectric constant, the function that connects the
dielectric displacement and the electric field in the
macroscopic Maxwell theory. If this connection is
linear we have for a homogeneous medium:

expressing explicitly that D(x , t) is related to the
values taken by E in all space instead of just the
point x alone. One says that such a medium shows spatial
dispersion in analogy to the much more important and
better know frequency dispersion, a consequence of the
(t-t*) dependence of e_ . Since it is easier to handle
we shall use the Fourier transform of e designated by
the same symbol but depending on the frequency &> and
the wave vector k:

values of \ larger than a certain characteristic
distance a, which is taken to be of atomic dimensions.
For wave numbers in the visible region of the spectruiti

t
D(x,t) = ƒ d t y  dx't (t-t',x-x').E(x',t')

dT exp j-i(k.^-cuT)}

We now assume that e_ ( I; , t ) vanishes for

. _7we then have kxa« 20.000.10 s 0.002, small compared to
unity. Expanding e( <o , k) in terms of ka we can
therefore break off after the second term:

_e(<«>,k) = e_(to) + i ka
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It can be shown that g ( « ) is the refinement of
e ( w ) and therefore of the refractive index n that

gives rise to different velocities of right- and left-
handed circularly polarized light beams as well as to
different absorptions of these (the circular dichroism).

The aim of a microscopic theory of optical activity
now must be expressing fi ( « ) in terms of molecular quan­
tities, thus providing experimental access to these
quantities. Ve have again taken up this subject in order
to study the following main points:

1. In most theories £ ( o> ), or whatever equivalent
expression is used, is calculated for values of « that
do not coincide with the absorption frequencies of the
medium. The anomalies near these frequencies however
contain the most interesting information from a chemical
point of view.

2. In order to put through an expansion in ka one
usually encloses the molecules by a sphere of radius a
thereby confining the theory to rather small molecules.
Experimentally, media composed of large molecules (e.g.
polymers) hardly differ in their optical properties
from those composed of small ones. The same holds for
crystals in which often no isolated groups can be
pointed out, We have therefore tried to find out under
which general circumstances a characteristic length a
can be defined. This, by the way, is the reason for
slipping in the essential argument of any theory of
optical acitivity (viz. 0 < ka < 1) with the help of
the dielectric constant, which is a property of an
assembly of molecules not just one molecule. Usually
one finds this argument, due to Born, stated with respect
to one molecule saying that one has to take the finiteness
of the molecular radius and wavelength ratio or equi­
valently the variation of the electric field over the
molecule into account.
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In chapter I we develop the microscopic theory of
dispersion of a medium along the lines of Bom's theory
for ionic crystals in the infra-red region 7 . Huang
has extended this theory with a quantum mechanical

2)treatment 7 and we propose to do the same for the
visible region, where however the electrons are the
excitable particles. The basic idea is due to Ewald "̂,̂ 7
who assumed the medium to consist of charged bounded
particles vibrating under the influence of an electro­
magnetic field. In order to be self-consistent this
Tield must be just the field created by the vibrating
charges. The demand for self-consistency leads to an
eigenvalue problem from which the refractive indices
are determined. In this approach there is no place for
any external field that is expected to induce the vibra­
tions in the first place, in fact, as Ewald puts it,
there is no exterior to the crystal. His famous extinc­
tion theorem however shows that an external field
vanishes inside the medium, from which it follows that all
results derived for an infinite medium are also valid for
a finite one. This theorem has recently J ' been proved to
be valid also in the higher order needed for the theory
of optical activity, and we therefore feel justified in
using this theorem for once instead of proving it.

In chapter II we specify the medium somewhat more
and compare the results with those of previous theories
applied to such media, from which it appears that some
assumptions can be postponed till a much later stage
than is usual. We shall also derive the connection
between g ( 6) ) and the rotatory power 0 and the
circular dichroism e for a particular situation.

Finally in chapter III we diall estimate the
rotation dispersion of a NiS0^.6H„0 crystal and compare
the results with the experimental findings.
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Chapter 1
Introduction

We consider a system consisting of an electromagnetic
field and an assembly of charged particles in an infini­
tely big temperature bath. Such a system can be taken to
be conservative, i.e. its hamiltonian is independent
of time. Then there exists a very simple relationship
between the evolution operator of the system and the
resolvent G(z) = (z-H) of the hamiltonian. The latter
operator is particularly suited to obtain better than
first-order approximations in a perturbation theory,
necessary in the neighbourhood of eigenvalues of the
unperturbed hamiltonian even if the perturbation can be
considered small. Furthermore it appears that these
higher order corrections can be found using an algebraic
method without even expanding, thus circumventing any
problem of convergence.

The use of this conservative system implies however
that we have to interpret the field quantities as
operators, that is we have to quantize the fields. If
wè do this in such a way that the Lorentz condition is
fulfilled we have the advantage that all field quanti­
ties can be handled on the same footing. If the Coulomb
gauge is used the electrostatic part is hidden in the
particle interaction and this term has to be conjured
out at the end of the calculation. Both conditions give
rise of course to the same final expressions since no
different physics are involved. Of the several existing
methods of describing quantum fields subject to a
Lorentz condition we have chosen the Gupta-Bleuler
formalism, because they shift the difficulties that
occur to the state vectors, with the results that the
appearance of the equations between the observables
remains unmolested.
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From the hamiltonian one can derive the equations
of motion of the particles as well as the fields; these
equations are coupled and eliminating e.g. the material
observables the eigenvalue equations for the fields are
obtained, which determine the refractive indices of the
medium*

1. The coupled equations
The total time-independent hamiltonian can be

taken as:

W — ^particles . field interaction
H + H'o

where Hparticles + V . .i<J iJ

(1)
(la)

P. the momentum of particle i (possibly in a fiaü
other than that with circular frequency»*- in which
we shall primarily be interested - e.g* a constant mag­
netic field), nK its mass, the 3tatic Coulomb
potential between particles i and j. Further

lfield

H '

fdz{b (3ï )2* (ourl i)2*
+ (div A)2+ I» (gf)2+ (grad<p)2}

-1 /dx J[(x) *A(x) + Jiix p(x) <p(x)

(lb )

(1°)

Expanding the potentials in plane waves we have:

A a(x) ^ (*hc)* /d£ ua [a^(£) exp{-2ni*.x}+c.cj2*)

<p(x) = ( i h c ) ^ d Z uo[a;(£ ) expj^2Ki2;.x}+P,cj(2b )
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with u = ua ,uQ four unit vectors satisfying

g =  0 |i * v
U U s= ffH v e,oo

=  —  1

From now on we adopt the summation convention over
repeated indices of tensor components; in addition we
use the first letters of the Greek alphabet to denote
space variables alone (a, P ... = 1,2,3) the ones in
the middle for space-time variables (ft , v .... =0, 1,
2,3). Interpreting the coefficients a“ (̂ ;), a+(y)
as annihilation and creation operators, we have them
satisfy the following commutation relations:

all others zero.
Such an interpretation is possible if we postulate

that all expectation values of field operators must be

and having the following commutation relations with
the potential operators

LA a ’1,] = 0  [ ? j ,)J+ = 0
With this definition of the scalar product the

expectation value of the hamiltonian becomes positive

definite as of course it should be. It is impossible to
impose the Lorentz consition on the operators themselves;
instead one settles for a weaker relation in demanding
that the expectation values satisfy it:

(3)

computed using the indefinite Gupta scalar product .
defined by

 ̂ ^Gupta ”  ̂ ^ *71 X )
where tj a linear hermitian operator satisfying

<^|i()(div A + I §|)|^> = 0 (M
for all t.
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Together with (l) this relation makes it possible
to derive the Maxwell-Lorentz equations as relations
between expectation values Solutions of these
equations ares

Aa(-) "I ƒ d-
<p(x) - f  d*' P(*') ^

where, if we restrict ourselves to a field with circular
frequency :

2srik lx-x’1 a
G(x,x') = ---- -----  , 2Tk = Z-- li-i'l

It is perhaps good to note that only in the special
case of a free field do we have y = k • The actual
relation between y and k is just what we are
going to determine.

The charge and current density in (5) can also be
found from an equation of motion e.g. in the Heisenberg
picture:

j(£ ) = (!*)-'[ <6>

with immediate formal solution

l(x,t) = U+(t) i(x) u(t) (7)

where the evolution operator U (t) = exp -^Ht
and in the position representation:

j.(x) = ?  •(*-**_) + c *c -̂ (8)
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assuming point charges. is the velocity operator
of partiele i satisfying

(9)

(7/ gives us the total current density; in the
next section we shall split off a part that is linear
in the fields which we call the induced current density.
The expectation value of this term will then be
identified with the current density in (5). The consis­
tency of (5) and (7) determines which £ values can be
admitted in the expansion of A and 9 .

2. The induced current density

We have mentioned that j is to be considered as
a source of radiation, so it must be a field operator.
We now calculate this operator in terms of the creation
and destruction operators by projecting the material
subspace out. Say P& is the projector on the eigenstate
° f  Hparticles with eigenvalues E& , Q& its complement such
that

P + Q = 1a a
We use as our basic set products of particles and

field state vectors denoted by |<D> and IS>respectively.
For any state |'F> then

Pa |H>= Pa Z|<D>S>= |a>$ IE>
where |a> an eigenstate of Hparticles with eigen­
value E&. In the case of degeneracy this is to be
replaced by the subspace spanned by such eigenstates.

At time t the current density for a state |a> is
now given by:

i(x.t) = pau+(t) ^(x) u(t) pa (10)
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We -work this expression out using the algebraic
p \  '*method as given by Messiah using the representation

for the evolution operator

U(t) « J dz exp{fi z *} G(*) 1 t1'1)

where G(z) = ( z - H )"" and the contour C is taken
around the real axis with all singularities of G(z)
on its left. Using this (10) becomes

j(x,t) = (2ni) 2 f dz f  da' exp )tjJi(x,z>a')0Ö1I (12)
with J[(x, z , z ' ) = Pa^(z)jl(i)^(z' )P' a ,(1tm )
Now put H = H + H" (13)

H1 = PaHPa t QaH Qa = Ho + QaHI «a
H" = PaH Qa + QaH Pa PaH ’Qa + QaH ’Pa

Usefull properties of these operators are

P H,a 1 H 1Pa E Pa a H 1’Qa -° (1*0
Q H" = H ”Pa a

Using the identity

P H ”a H"Q,

(z - H)” 1 = (z - H 1)“ 1 + (z “ Hy) ,H"(z - H) (15)

we find for ^(x.z.z*)

^(x.z.z») = pa z z'- tt1 Pa +

+ 2 Re a z - H. p .j(x ) Q  . I,.T — Q H"P^ x^a z'- H, a a

x Pa z ’ — H a} (16)



In evaluating this expression we have taken P i(x)P
EL " ™

to be zero as this term gives rise to higher-order
contributions in H" only.
To find the diagonal part of G(z) we apply (15) once
again s

Pa(z-H)“1Pa = (z-H1)"1Pa + (z-H1)“1paH"Qa(z-H)~1Pa

= (z-H1)“1Pa(l + PaH"Qa(z-H1)"1QaH"Pa(z-H)"1Pa)

Solving we have:

Pa(z-H)"1 = (z-H1-¥(z))“1P{ (17)

where
¥(z) = PaH»Qa(z-QaHQa)“1QaH'Pa (I7a)

Assuming the interaction to be weak we shall retain
only terms linear in H', which boils down to replacing
H.j by Hq. Recognising the fact that j.(x) also contains
terms with h*, as follows from (9):

i± ( ± h )
- 1 x. ,H—i o

. oX .— 1

(ih) - 1 *i*H '
X'-i

we obtain for the induced part of j^x, z, z'):

o o

* 2 Re ^ r QaH ’Paz»-H (’8)
O O O  ' 7

In order to keep the equations from overflowing the
pages we write:

H 1 = (Thc)T J dz^(2:)H^(z) + aJ(z)HJ(z)^ (19)
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where

owing to the fact that H ’ must be a hermitian operator.
Replacing j^x) by here is: consistent with the
fact that we only take terms linear in H' into account*

Further the energy of a photon is Tlo> r since we
assumed a monochromatic field; we then have the following
property

(z-Ho)"1a“ (x) = a“ Cl) (z-Ho+h*>) 1 |20)

that we use to shift the creation and annihilation
operators around in (18). Substituting (T9) in (18)
the term between brackets with H e»g. becomes

(yhc)^ ƒ  d£ a^(x) z_H'̂ 7Ê PaJ- ^-^az * -HQ+ W Qa *|21:y
— / v T

X QaHj r ^ Pa x- *' —H q—W (. z ' )
When these are put into (T21) we can evaluate the inte­
grals by the method of residues. The induced current
density is then found to be:

i lnd(£.t) - j(ir,c)^Re|/dx  a - ( i ) ( x  JPb»'(x)Fa

_ “ <rt .■ \
x (—£L - eI.. ■ ■ ) exp |-iwt - ^W+ (Ea) t| + (ibid +signs)^

T <i~

- f d Z |a‘(X ) Fa *

* ? 2il [ii tfirSL) + c'c ’ (x)j paexp{ c-c^

with <T* = ^ w “

C” s u. — w —' ba

K¥tEa> -
iw+(Eb-hw) and
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where Qa = bTa Pb has been used axid <‘ta= ^ Eb“ Ea)‘
¥ (x) stands for lim W (x + i tj ) as a reminder that we
approach the real axis from the positive side. Taking
this limit we have :

due to the presence of the electromagnetic field.
It is seen that due tb the presence of the factor

the medium provides a sink for fotons. In order to
obtain steady state conditions we therefore need an
outside source to compensate for this loss. We assume
such a source to be present from now on, by neglecting
this factor.
Simplification of the ugly looking expression (22)
involves a lot of tedious arithmetic, which we there­
fore omit, mentioning pointwise a few of the arguments
used :

1. For large t the frequency dependent terms
between brackets of the form

will make negligible contributions only. This follows
from the fact that in actual experiments a monochromatic
lightwave will have a certain linewidth implying that
we- have to evaluate expressions such as

Q H»Pa x-H9

i juP&H * Qa 5(x-Hq )QaH 'P

= hA(x) - £ihr(x)

j stands for principal value.
A(x) corresponds to a frequency shift and can

therefore be taken in the eigenvalue of H ; we will• o
neglect it from now on. T(x) describes the decay of
the eigenstates of H « These are no longer stationary

exp -ĵ Wt = expj-iAt - ^Pt}

exp -i$t

g(« ) <T exp -ist
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owing to the rapid variation of the exponential this
integral vanishes. Since compared to line widths of
absorption in dense media g( <; ) peaks sharply around
some definite frequency we approximate it by a $-distri­
bution for the other terms.

2. Let us define a point x' such that the ex­
pectation value of Pa £. (x± -  x')Pfe is small compared
to unity. Whether such points can be found depends on
the medium and we shall not concern ourselves with it
here. Let us just note that this is obviously the case
when the wave functions, with respect to which the
expectation values are taken, happen to be different
from zero in a small region around x* only. Using the
formal property of the 8—function

j(x) = exp ikx &(x)
We rewrite terms such as ^ a ^ a ^ ^ b ^ j l ^ ^ a  as
follows:

P j°(x)P,_H“(y)P„a. av— / b (l'-*-' a

Ï ^ei{iiaa(̂ i ) + c,c)Pt

X p f 2-e±{xiv uvexp(-2rci£.xi)+ exp( ~ 2 « i x . ^

= exp£»2wi;£.x)Pa S ^e±{*iaeXp2tt±^ ‘ (x^x' ) *(x-x’) ♦ C»C»]x
(24)

x pb ? iei{ii^uvexp-27ti2 . (^-x* ) +

exp-27ii£. ( x ^ X ' ) *ivuv} *|j

exP (“ —

Expanding the exponentials we have
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»Z) = Jail'(ï) “ Zit±ym R„(l. (x,x« )a|i e a|ie

- '"'2y« \ sa|«, <£-S’ > (2 5)

3. Before expanding similarly

xia*(* " -i^ + c,c» Kil)
e .

p 2 - 4a i 2iïi

we simplify this expression with the help of the
commutation relations for x and x

x . , xi a ’ i p .
* *

nij *ij *ap
¥e find

P Y na A -  2ih
2

ia *(* “ X ). + c.c, H-(Z )

Pa a
' V  ipa Z  m“ ~ x±) exp(- Sïti^.x) u
i i '

u a exp(" 2wiZ-i) pa Z  *(i - i±) P

From J a^(i) we can separate just such a term with
opposite sign because, applying (9) once we have
amongst others

—  { Pa l  ®± - *i> QaI  ei i. P +i(3 a

P >  e . x . Qa*-r- 1 iB a .1 r iIn xia - £ ± > p,

I
i m , Pa *<S * il> P,

Replacing Q by unity is permitted because P x. Pa a ia a
k • R c (x,x*) reads explicitly, as follows from

its definition

R„ (x ,x *) = Pan*'— ’—  ’ aI
x P,In

* ei[*ia *<£ “ £ ± ).(X J - *d P, X
+b

i.„P - P1(1 a a/  | e . &. i(x - x.) P
± 1 ia “  -:L b ±

pbl *n [*in-(x: - xi« J
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It is convenient to split the anti-commutator into
its symmetric and anti-symmetric parts

a . c . (ih) - 1 x . x , _ 8( x-x . ) ,Hia xp v----i ' o
(26)

+ Ï ■/ x . x . _ (x-x. )PY Y&t) --- 1

where X Q«Py
satisfying

the completely anti-summetric tensor

■*Py

s 0 two indices equal
- + 1 even permutations of (123)
-  -  odd permutations of (123)

For the case of JA = 0 corresponding to terms in­
volving the scalar potential 9 we have to include the
second order term Sa<- since the second spatial deriva­
tive of this potential is connected with the first deriva­
tive of the electric field. When we work this term out we
can cast it into the same form as comes out of Rap^
using the fact that the curl of the gradient of any
function vanishes:

a2
Curl grad 9(i) = X ax 'Sx~ = °T *PY a p

Because of this we can add terms such as

a2
* aPY ̂ Ŷ fx*) *i& 3xa9Xp

wherever necessary. Further ^ olo vanishes since it
contains:

Q ?  e.x P = ic S  e ,QaP„ = 0^a x x io a x i a a
Note that we do not need the electric neutrality of the
system.

Doing the Fourier integration over £ and taking
expectation values we obtain finally

^(x.t)

Pap(x)
d
* 7

♦ pipT(s)3 y v ï)exp':L“t *

♦ p! p ï<£>3 r iE - ) ' < ï l eIp- 1‘,t (27)p Y
+ ia>
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where, if we assume --- to be small and realise
“bathat r is finite only in the neighbourhood of a

resonance frequency i.e. *», » co the p's take
the following simple form.

pa (*) - * Z)b
w b« paU)p, * t - * Im pa(* )pftcot — CO*04 +io>rl

where p (x) = <a| 2 e. x.i 10c 8(x - x*) |b> (28)

P (x)*av— 7 = <a| 2 e. x .i ia |b>

- tlaT(£)p») +pipï(£) * fi ^  i„r(Re(pa(̂ > V

(£)pf|
i(p (x)m y - + m (x ) y p„)V av— 7 s *e|3Y e v— 7 eay^p )

* iJ? “ Im l Pa(£>qpï - V^'V +
“ u* + itoT

+ i-

s *ePY e

+ m (x) y p.)]Re(p (x)m y - . ___w \^av— 7 f *epY e 7 '■eOCŶ P,

where q^Jx) =<s\ Z e. x x . *(x - xH ) IÜ>
Y i , T (29)

mt(x) =<p|Lie. x±>) k±b xt̂  8(x - x.) |b>

The definition of q^ and me is similar to that of
p in (28). This notation is only correct if we take
note of the order of the quantities in the equations.
Each symbol would however be hidden in its indices
were we to include a and b explicitly. Thus

p (x)p * p^p (x)a'— 7 ^p^av— 7

in fact we have instead

Pa(£>pp (pppa(x))"



Putting p^„ (x) = - Sa^Y * R b *>■ - «‘+i»r Kapy

we can readily show the important property

T Rab _ ob R apy

Since using (26) we have

“ ba H,{p« U ) v * ‘,«T<i)p>J * *

+ x.arpf)

s InK^I 2 ieixia*(x-£i)|li><̂)| ? ie±

+ Im<p|

(30)

x. ,x. | |a> +[ ip ’ XT J+
xia’xiy.

Im<a| 0 | a>.= 0

because Q  is a hermitian operator. A similar argument
applies to the remaining term, proving (30). From the
second line of this derivation we also obtain immediately
that

Rab = -RabRccPy pay
i.e. we can always write

Pip/-» ’ V .  S.Y(i)
Introducing the electric field strength given by

1 bA ,£ - -s st ‘ *r*dp
we can combine and obtain finally1

P̂  (x)v“
d

3x7

'E. )exp-i«t (31)

¥e note that the differentiation operates on E(x)
only. This is not problematic in the equation given here.
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We shall however in the next section multiply j(x) by
another function of x and this notation might then be
confusing.

3• The electric field
The electric field strength can now very easily

be computed from the current and charge density with the
help of (5)» The latter density is known because £ and
are connected by a continuity equation, a fact that
is conveniently expressed by a polarization density £
satisfying

£ = j. and = -div £
Substituting in (5) we have, omitting the time factor

A (x) = Ja'— ' c J
fdx * Pa(i')G(x,x»)

<p(x) =  -  J fdx’ d Pa(x’)G(x,x»)
ax1a

= J Cix» a

= ‘ Jfdx' pa^— * ̂ g|“ G (*>*')a

Combining we have for E:

Ea(*) = / d£ ’{s‘*ap+ Pf}<£')G(x,x') (32)

In view of the extinction theorem we do not have to
take solutions of the homogeneous equations into account.
This theorem also implies that the integration may be
taken over all space. The integral in (32) is improper
if for x* = x Pa(x') is different from zero because
of the singularity of G(x, x« ) at that point. This
singularity can be removed if we realise that the
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field acting on a charge does not include the field
of the charge itself. "This exciting field that occurs
in (31) and which we denote by E can be obtained-by
substracting from (32) the field at x due to the currents

gand charges at x, written as E i.e.:

Ee(x)av— '
limxT— >x E (x *) - ES(±')r r v—  ' nr '  — 'a'— 7 a

Similarly we have for the derivative of the exciting
field:

Ea« U) = xU| >}
We use the notation E®(x) in favour of the misleading

E® , which we reserve for the expression

* sir ) - Ea<ï’>}
which, because of the singularity of E(x) at x is not

0necessarily equal to E .
These definitions imply that E is given by (32)

if we exclude a volume v around x from the integration
and take the limit of vanishing v(x). In general the
charge and current distribution at x need not be symmetric

sand we therefore have to choose v such that E has the
same value everywhere on its surface s(x).
Substituting £(x) from (31) we have:

De(x) = / dx* T (x) p° (x ')e ®(x ') +a 1* '  / —  ap ' p t > «  • y f

where

and also

+ pJTt (**)E®( (x’) G(x,x')

P (x)a v—' “ *^ ap

T*

dxa?*p

Ee (x)atv— 7 d*' Tap(x)p°T (x»)E®(x’) j|-.G(x,x’)yv — ap'— ,rpT
This result is obtained because it is sufficient to go

gonly to zeroth order since E, will appear only in
first order terms. Furthermore we have used that for E
the order of integration and differentiation is
immaterial.
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To find the connection between E and Ee. we use
the fact that

dx* p(x') G( dx* p(x') G (x.x')

- I  dx» p(x») G(x,x *) nJg a
where n the normal to the surface s^xj, taken
positive in the outward direction. Applying this
relation a number of times, substituting higher

The first integral that appears in both expressions
is identical to the one that occurs in (32) except
for the exclusion of the valume v(x). If we calcu­
late the macroscopic value of E the singularities
vanish on averiging and we then have therefore that
the average values of these integrals are equal.Let
us transform this integral with the help of a repre­

derivatives of G(x ,x *) one can derive:

ƒ  d*' (p°y (*') E®(x') (x')E® (

fp° (x')Ee(x')I pr - Y -

(x')E^ (x*)}

dx' Pp° (x')E®(x') G(T „. (x)

(x»)E®(x')

(x«)E®(x') G(x,x')

sentation of G(x,x»), due to Ewald^'

G (x,x') i 2 2 2 2 —2dp exp |- |x-x *| p + it K p |2 ,2 -2
0
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Substituting at the same time the Fourier transform of
£,we get: I j  dx' J ■

idp 2 n~2 £(^) x
/ „ J . . „2 2 2. 2 -2 xexpt-27tl^. X ' - lx-x'1 P + 7T K P j

_ 1(d£ £,(^)exp-27ci^.x Jdp j dx'
. / a .2 2 2, 2 -2\-.x’J- |X-x'| p + 7t k p Jexp|

2tc fdX  y"dP P~^ £(z) exp̂ -27tî ;.x - ( n2y2- ̂ k 2) p 2)
J «

dZ e (z ) 1-ygr exp-27riz .x

Suppose now that the macroscopic behaviour of |>(x)
can be represented by a single plane wave. Opera­
ting with T(x) on l(x) we find in that case:

Tap(*)l<£) <?*«* + A : >  5 5 Jt.i pf expv a p tc y k T

4-<vn -1 K y "
(3*0

where n = r • This is the expression for a planekelectromagnetic wave propagating through a medium
with refractive index n.

*1—|
The remaining integrals in (33 * ) are obviously

determined by local conditions only: the inner fields.
Their evaluation hinges on the knowledge of s(x); sin
since for general s(x) the equations become quite
ugly we shall shorten the arithmetic by choosing v(x)
to be a sphere i.e. the medium is isotrpic. In the
next chapter we shall treat the only a little more
complicated case of a uniaxial crystal and deriver its
rotatory power.For an isotropic medium we have

o

1p aPT
Expanding around x one

o,
p *<xpP *aPT
finds for the inner fields
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dx' p (x') jr—-G(x,x') n = Xr-£ p (x), p — oxp v— ’ a 3 °app»

h d~ p(l<£') Sx*4xto(ï*5') n - - lrpa(£>

* T3(SapS«. * oyo1-) ïl^P, <£>

Substituting into (33) we obtain:

Ea<*> = Ea(x) ♦ i£p°E°(x) *

Ea.<i) - * T5< V -

^Tp1 V  e?.<£> (35a)

+ cycl.) _È_p°E®(x)dx4 P “
(35b)

Introducing the divergence free dielectric displa­
cement D defined by:

D = E + 4Tl£

we have

Da = E + ^7Cp°E® + U p 1 x Eeu a a * A-aa* f»c.

which becomes with the help of (35):

D = e E + 4wp1 —  v „a a p 3 ^pySx^^p

where e = 1 + 4«p°(l _ it_Zp0)-1

Together with (3^0 this well-known expression
describes the optical behaviour of an isotropic
system.
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Chapter II
Introduction

In this chapter we discuss some more specialised
systems. First we take a medium composed of small
identical molecules, neglect their interaction at
first but use the same line of reasoning in calculating
the exciting field. This model has been used by Terwiel
and Maaskant  ̂ who have shown that the main overall
behaviour can be described by a simple plane wave.
Next we take the case of an ideal crystal, the results
of which we propose to apply to a specific compound.
Finally we give the explicit formulae for wave pro­
pagation in a crystal with tetragonal symmetry.

1. System of small identical molecules
Say we have a medium composed of N small identical

molecules and let us divide the particle hamiltonian
into sums of molecular hamiltonians and interaction
potentials between these molecules.

particles

where fr, kr2 mi

A similar procedure is adoptèd for the other operators

where t, a one particle operator.
We now approximate the wave function for the whole
system by a product of the eigenfunctions of

*b>«w 0
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For the ground state we have

y  = n tLa a Ta.a
for the excited, using only singly excited products :

y ,  b n d,b b<r p̂t«T Tap
This restriction is not really necessary because of
the occurrence of the 8-distribution in j.(x) from which
it follows that if the molecules do not penetrate one
another only one of them can contribute to j.(x) • That
molecules do not penetrate is expressed by the ortho­
normality condition we impose on the wave functions :

/dT 4'* 4l = $ iJ ao b̂p ab p a
Substituting in an expression such as Pa(*)P. W€
have :

p a (£ )pp “ f Ar tt. i  ek x k i ^ « ) i  x

x fdr <{,. I ek*p

- p«U)pi
where a denotes the molecule occupying that region of
space that contains x. Since we are dealing with small
molecules this region is but a few angstroms in any
direction and choosing x ’, assumed to exist in the
first chapter, to be the position of the centre of the
molecule we can surely expand obtaining :

tpi(x)p‘ - + w baqiTpp +

+ im1 X ~ P- S— r&(x-x’)t oxj —

Similar expansions are derived for the other terms;
for those we need only the first one to obtain the same
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order of magnitude. Substituting in (32) we meet
expressions such as:

where we have changed the differentiation of the
O-function from ±'to x,

The integration over all space in (32) can be
written as:

where the prime signifies that the molecule at x"
has to be excluded. We than find:

The polarizability tensors in equation (3) are
similar in appearence to those of ( ch.1 ,28)
and can be obtained from them by replacing all
the expectation values of the moments by primed
ones, independent of position. Further £
corresponds to that part of £ , that contains
terms with £ £ and £ m, to the one with
£ £ and m £. Except for the occurrence of T in the

PIR'S( i f f  +  p ccq p Y  * (

p 'pJ S( )E (x)G(x,x") + p'q' S(

x") + q )E a(i)

Ir - - S' /v r molc mol r

21 Tap(-̂  {afyE*(£(f )) G(*.*U)) +

+ G x , x>T« +

+ (i(r)) G(i»*(r )) (3)
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tensors this is just the equation found by Terwiel and
his starting point for the derivation of the integral
equations for the statistical averages. The influence
of v . , so far neglected is then accounted for* t p
in the configuration distribution functions used to
derive the macroscopic quantities. These macroscopic
fields turn out to consist of three contributions :
the average of the field and the inner field themselves,
fluctuation terms describing deviations of these average
values and an inner field reflecting the granular
structure of the medium. He shows that such a macroscopic
field satisfies indeed an equation of the type we have
derived in chapter I. He also includes in his derivation
an external field, proving on the way that such a field
vanishes inside the medium (extinction theorem), thus
making the theory valid for a finite piece of matter.

We would like to make some comment at this point
on T . From its defining equation (ch. I, 23) we see
that the total unperturbed hamiltonian Hq is involved,
which means that Tis a property of the whole system.
If the V. are not neglected in its calculation«••.xpit describes the thermal line broadening encountered in
dense media, a result that is difficult to obtain if
the response of the system is built up from those of
the individual molecules.
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2. Crystalline medium
Say the crystal consists of N unit cells and define

the position of any particle by

x± -- <-x(£) = *(1) + x(k)

where x( 1 ) the position vector of the 1* unit cell,
x(k) that of the kth particle in the cell. Choosing x*
of chapter I to be the x( 1 ) we expand in terms of
y.<^x(k) > , where the brackets stand for expectation
value. This implies that we have to check to what extent
particle k, when excited can be located. Using the fact
that the crystal wave functions transform under trans­
lations T over a lattice vector x( 1 ) according to :

T x^l)^ = exp-ic[a.x( 1)
we find that matrix elements such as p can only be
different from zero if

a* - 27C£(h)

where y(h) a vector in the reciprocal lattice :
^(h).x(l) = (h.l)

= { h i h 2h  } h. an integer.
For an expression as p (x)p we have, since

e x  ( )k avk'

P (x) p.

is invariant under T(xl,l)) for large 1:

r" 12 ^ < a | ^  ekxa^k^ exp{2«iz(h ) • )} |b>

(**)

V- 1

x < b l ‘‘n r  e k x p ^ k ^  l a >
Pa(h)p exp(2nix(h). X  )

Here we have substituted the Fourier transform of
6 (x-x(^) and V stands for the volume of the crystal.™  ™  Jv
Similar expressions are obtained for the other terms,
so that we can write j.(x) as :
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^exp[2ni^(h) .x}|p°

+ p1 (h ) E® (x )vaprv PT v— '
If we neglect short range correlations we have for the
macroscopic value of defined as the average over a
physically infinitesimal volume:

= i«v“1 (p° (o) **(*) + p^ t(°) ^

since only the term with h=0 survives averaging. In the
same approximation we have e.g:

which enables us to evaluate the innerfields. As the

we did not think it worthwile to go to the trouble of
including short range correlations.

3. Wave propagation in a tetragonal crystal

Let us now derive the dispersion equation for the
case of a uniaxial crystal. The surface s(x) occurring

p° (h)exp{2ni^(h).x} E®(x)j„(x)= i«V

\  P<LT(h )exp{2TTi£(h) .x}

dxl £(x')G(dx* e (x *)g (x ,x ') = / dx' £(x') G(x,x')

actual calculation of p° and p is rather uncertain,
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in the expressions for the inner fields is then the
surface of a rotation ellipsoid with axes a and c.
Taking the limit of vanishing v(x) the ratio — = x
has to be kept constant in order that ES has the
same value on s(x) everywhere. The normal to such a
surface is given by

where
1 - X

x* -xa a
I X-ÏÏ COS l|/

where

tan <J> =

from which
COSlJ/ =

cot# — X cot#
1 + A* cot#

2 21 - U cos #
| i i ( a + 1 )c o s îJ + lj

Further the distance r = |x—x*| from a point on the
surface to the centre is given by

r = a( 1 - u^cos% J"-*
and .lim G(x,x') = -x' *.x ' — ’ — ' r

With the aid of this we find expanding around x for the
surface integrals in polar coordinates

,di' pf <- ’ 3 ^ G(- ’5 ’)na *

T \ c o . » [ z\
1 Jo T

1 -  U ^cos^il

1 + U2(1 + X2)cos1

L p (x)a a'—'

The last equality follows immediately from the 0 depen­
dence. Similarly we find that the indices have to be
pair-wise equal in :
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-  ' 5T ^ r G ( £ ' S ' ,n <ƒ » Pa (x' )
/s r

f dx' p
s “  P ( 5 0  {-^a.|3(xa~xix)(_x>~V ’}

- L. 53^ pa(i) + (Ko»5af SJ. * oycl')5 ^  pf (i)

The integrals L and can be expressed in terms
of elliptic integrals of the first (F(k,<|/)) and
second kind (E(k,d/)). These are tabulated for
different values of their arguments. With k = (X2+ 1)
and l|> = arcsin n( X + 1) we find:

l 3 = X *  n"3 ( X2 + i )"*{\2e  + H2E - nx3 (x2+ 1)^} (7a )
bi = l 2 2Tt|i- 1 ( x2 + 1 )"^E - ih. (7b )

It turns out that the K drop out from the equa-
°T rtions so that their evaluation will not be given

here. This is a consequence of the tetragonal sym­
metry from which

o
OLf 0 CP 6 .ap

2)and for the class Dr 'in which we will be interested
in the next chapter:

1
0C6E

Substituting these results into (l,33) we obtain:

a(x) - ®a(x) + La PaEâ -̂  + La E|>e ̂
(° )

Ea«^-^ = sl"Ea^-^ +(La"Lt^ öl7paEa^^ +

+ (K S S c + cycl.) jJ^-p °e !t(x )v ai ap St . ’ oxj p p 11
(8b )
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With sufficient accuracy we have

A  E 65x7 a (1 - L p°)"1 E' a a' oxj a

from which together with (8):

E e (x) = (1 - L p°)“ 1 E (x) +or— 7 ' a *a' a'— 7

(L„-L. )P.
1 - L por a 0' * L p̂  / ctp p. ja |xe öxt P

Substituting this expression into D = E + we
obtain:

D = ( 1 + ---------a v 1 - L prv r

«’ ♦ T -

a r a
L„ P

)Ea + ^  ̂  jjgp

(L a“Lt ^Pp \ f a  ̂a
T T pT M 1 - L P 1)
f *> a a

L E + 4Tt y g & f ( £ )a a fi |i« ' 7

E P

3 E
^ 7  E f

where fc = 1 + ^TtP ( 1 — L p )a v±a x a cl'
- 1 (9)

From the wave propagating equation (l,3^) and the
definition of D we can eleminate ja obtaining the
more familiar:

n2{S y qy>
ap

For light travelling along the optical axis of the
crystal the normal to the wave front is in the 3-
direction and we have:

D i - n E i D2 = n 2 E 2 D 3 = 0 (10)

Rewriting the dispersion equation such that E is
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gi ven as a (’unction of D, substituting the possible
values of the indices and eliminating E we obtain:

(n*~- )Dj = -i f(e)g^

( n “ ~ - e 7 l ) D o  = i

from which, since for tetragonal crystals * t

D1 ± iD2 = 0

This corresponds to a right and lefthanded circularly
polarized wave each travelling withpa different speed,
which we determine by eliminating -g-;

- 1- 1 ) S? + f U )̂ — '3,

2 _ ,
showing that the difference between n and is of the
order of g so that we can write:

n = t2 1 * rTr(t)s3 (1 1)

Now the rotatory power is defined by

0 s ? (n - n ) (12)v X T+ T-

where 0 the rotation angle in radians per cm, 1 the
wavelength in vacuo, n+ and n_ the refractive indices
for right and lefthanded circularly polarized light in
the medium. If n is complex, as it is in an absorption
region, then so is 0; its imaginary part then describes
the phenomenon of circular dichroism 0 .According to (11)
and (12) we have:

0 = J^f(i)g3 =
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fig, 1, The crystal structure of -NiSO
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Chapter III

In this chapter we shall try to calculate the
rotatory power for a definite substance for which .we
have chosen the tetragonal modification of NiSO^.óH^O.
The structure of this compound has been determined by
Beevers and Lipson 1 .̂ It can be considered as built up
from Ni(H20)^ octahedrons and SO. tetrahedrons, these
groups lying on a helix along the crystal C-axis.
All together there are h octahedrons and consequently
k tetrahedrons per unit cell (using a modified unit
cell with c = 18. 3 A and a = 6.8 A) with their centers
on the special points of the space group k 8or D°,
these being each others mirror image . The oxygen ions
and water molecules are situated on the general positions
The necessary parameters are :

X y z
Ni x = 0 . 7 1 H 2° (1) .67 .^5 .0 5 ^
S x = 0.21 (2) .97 .75 .05^

(3) .56 .86 .077
0 (1) .12 .12 . 0 6 8

(2) • ̂ 3 .86 .000
Part of the structure is illustrated in fig. 1.

Now the absorption spectrum of the crystal in the visible
region does not differ markedly from that of the equeous
solution, which can be interpreted satisfactorily in terms
of excitations of an octahedrally coordinated Ni2+ ion.
Therefore we take as our wave functions products of wave
functions pertaining to the individual octahedrons there­
by neglecting the sulphate groups. For the ground state :

\  = (nN!)* A f (1)

with n = the number of particles in a unit cell,
N = the number of unit cell in the crystal,
A = the antisymmetriser :

A = (nN!)"1 £  *p Up (2)



U is the unitary operator that induces the transformed
state under the permutation p of the variables, 8 thea i Pparity pf that permutation. + (0) represents the wave
function of the ground state of the octahedron at the a th

t hposition in the 1 cell. Similarly for excited states :

. (nNl)* A *f(J) (3)
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Lifting the positional degeneracy by choosing a linear
combination of such functions and using the translational
symmetry of the crystal we obtain :

\pttb (nNi)“2 ^  Bff exp|ik,x(l)|

The coefficients Bff are determined from the set
of equations one finds in diagonalising the hamiltonian.
For non-trival solutions we have the usual secular equa­
tion of the n degree in the energy leading to n different| 2values labelled In all one obtains n Coefficients

whose values can also be found from the following
’ 2)

' i according to (k) the probability ofconsiderations
finding an excited octahedron at ( 1 ) is given
(nN)
have

-1 by
|Ef 2 ®and as all positions are equivalent we must

IB*: constant

Moreover we demand the functions

\  * ( n N ) ^ ^  B^exP |ik.x(l)|^
to form an orthonormal set from which for B

(6)
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where |a I ~ = | b | ~  = |c I ~ = |d I = 1.
We want to find the expectation values of the sums of
one-particle operators such as e^^k) = ^j3(r)
where jd(<t) is the dipole moment operator of an octahe­
dral group. Similar expressions represent the quadrupole
and magnetic dipole operators. Substituting we find e.g.
for an expression as

P 0.* a  pt (nN!)2(nN)‘ 1^ lt<. .(J;)a .| Alpa(«r)A|

*  <  • ( i ” ) „ •  • lA| q (>i {r)A 1 • BS - *

x expf i>t. ( x( 1)-x( 1'") )|

pa V of equation (4) ch. II :

(7)

V n" ’2 < 'IV  I pa^w  ̂ (■*) l O BW<T(T'

The socalled Davydov splitting (states differing
2)only in Ll) is small ' so that we can take , to beba

independent of |i and stun over these neighbouring states
from now on i.e. :I _  I . id)b [Xfji fx n (8)

Using (6) we have :

pa> = +° lP«<r > I V>< V I» fl <'■) < 9)
O'

The operators jd, c[ and m are defined with respect to
fixed point in the unit cell (x(l) ). To obtain an
expression in terms of the octahedral quantities
themselves we put :

x([) = *'(*) + LX

a

(10)
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where x' measures the distance from the positions of the
Ni2+ ions, r the distance of these ions to the fixed
point (9) then becomes :

»v>f. rt *
* < + Ï P a ( i ) ' l ' ^ p t (i)'t'ï>rj * < „ >

♦ <r p.(i) q'M(tr ♦?>
I i i i  i i i  1 1

+ + P aq p*-r- p p rx t

in an obvious abbreviated notation. The total quadrupole
contribution becomes, since real wave functions will be
used : y i i i= ̂ rp p r .x̂ crt p

i i i
p tp pra + p aq pt

i i
Ppqat

Similarly for the magnetic contribution, using £ -
(ih)"1[x,Hr] »

Im(pan>yX ♦ %  *watV * Mb*frp£»|r» * pM fa +
+ Iro(pam, xypt t ">y Xya!pf )

Owing to the symmetry of the crystal 11 is easy to
express the different £ etc. in terms of one another;
so the 3-component is not changed at all by the symmetry
operations i.e, = p^ for all and for tfre 1- ®-hd
2-components we find using the fourfold rotation axis :

p i p 2 m 1 m2 q23 q 13

1 p i P 2 m2 q23 q 13
2 ~P 2 P 1 ~m2 q 13 ~q23
3 ~P 1 "P 2 - m 1 ~m2 ”q 13 (
h P 2 -Pi -ro1 "q 13 q23
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We have seen that for light travelling along the
optical axis we only have to know g_ and since

papY = xap|i
only Pill for this case. Substituting and using (14)>23 a|̂
we have for the rotation strength in :

(1) 2 ^  1 ab
p 123 " E  h o i a“ 0)+ia>r R 123

+

/ 1 3 2 k\ „ . / 2 1+
2 • W l p3(r2 -r2 -r1 -r 1 '-2 “ bap 1p3(r2 -r2 *

r 11-rl3)t4(p1q23-p2q )3).'l I” (p ,” , *P2m Z^
which becomes with the values of r* as found from the
position parameters :

R?23 - °-32 “baa(pr p2>p3*,‘ “ba

+4 3m (p1m 1+p2m2) (16)

where a the base length of the unit cell. (16) consists
of three contributions which we shall call the relative
dipole moment (Rr) » quadrupole moment (R ) an{* magnetic
dipole moment (R ) rotation strength, respectively.
To estimate these we make use of ligand field theory,
which is able to explain the observed absorption spectrum
of octahedrally coordinated nickel as transitions between
the possible electron configuration of 8 equivalent d-like
electrons or since 10 such electrons constitute a filled
shell 2 d-like holes. In reducing the symmetry of the free

Q
Ni +-ion to octahedral symmetry the degeneracy of the F
•ground state is lifted and three new energy levels result.
The relevant termscheme together with the electron con­
figuration is depicted in fig. 2.
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P
D

free ion in 0. synun,

T^P )

E
3r

electr. conf.

U  , 5 J
t2 e +t2
. 6 2
*2 e -

*aV

. 6 2t2 e

According to this scheme the energy of the

splitting A . Assigning the absorption at 8400 cm
to this transition the mixing of the two states with
IT symmetry can be calculated as well as their respective
energies. One finds

T ^ p )
T 1 (F)

energy
25.000 cm

13.350 cm

-1

-1

electron conf.
0.67 t 2 + 0.?4 t^e
0»?4 t22 <- 0.67 t2e

in reasonable agreement with experiment. We have also
drawn the ^(D) state, about which some controversy

3)exists. According to Ballhausen and Liehr , who cal-»2+
Culated the complete term scheme of Ni in 0^ symmetry
including spin»-orbit coupling, the energy of this state

T  as proposed by Jörgensen4)is nowhere near that of the
Moreover their calculation gives much too small a value
fof the transition probability. However in addition to

5) eextensive new experimental evidence in favor of
Jörgensen’s assignment we think that the optical activity
of NiSO..6H20 can be explained better by assuming the
given term scheme.

Dipole moments calculated for these electron confi-»
gurations vanish and one has to take the vibrational
motion of the water molecules into account to obtain
finite values for the pa . For an estimate of these
integrals We shall follow Englman in assuming that
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the charge transfer states in the ultraviolet are by
far the most important electronic states to which the ex­
cited states of interest are connected by a vibrational
hamiltonian Hv# For this hamiltonian we take the odd
part of the total vibrational hamiltonian in cartesian
coordinates given by (Koide and Pryce '') :

HV - *<X1 + x4 - 2x o > A < v! ♦ V  * *<x2 * x3 + x5 -

x g— (V2 + V3 + V5 + V6) + i(X1 - X3 + X5 - X6) x

X 3 ^ V2 " V3 + V5 “ V6̂  +***
where X. (i = 0, . 6 )  the displacement in the x-direc-
tion of the molecules, V. the potential due to the i n
molecule in its equilibrium position acting on an
electron. With the help of perturbation theory the
p become :a

pa =? (EA2" Ec)"1<A2;n'| Hv |C5$><C;n|pa |T;iO +

+^T (ET~ EC^”1<̂A25n'l palC5I£><£ ;n,l Hv lT *rC>

where C stands for the charge transfer states, thus
rejecting all others and n, n* for vibrational states.
The electronic d-like wave functions are given in the
following table. The correct symmetry bahaviour was
found in the tables of Griffith’s book ® . Brackets
denote antisymmetrisation e.g.

further
(6c) = 2"* ( 10 ( 1 ) c(2)>- |«(1)0(2)> )

2 2c ~ x - y
A /o  2 2 2 \ö ~ 3 (2z - x - y )

I yz » v xz , £ ~ xy.
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Table I
octahedral state

* A2
3 T1x (F)

y
z

3 t  c2
*)
%

3t
1x
y
z

wave function
8 e

0.74(2; T) )+ o.34( | e )+ 0.59 \ \  0 )
0.7M £ X. )+ 0.34( ri £ )- 0.59( T) 6 )
o.74(T) 5 )- 0.67( 2; e j

v -j( 5 e )+ £ ( 5 0 )
£ v -j( *) ® )+ 1 ( ■'J 0 )

- i i  « )
0.67(2: >1 )- 0.37 ( I e )- 0.64( t 0)
0 .67( S 2; )- 0;37 ( yi t )+ 0.64( i, 8)
0 .67(t, I )+ 0.74 ( X. t )

Ehglman now fiirther argues that ■, disregarding för the
taOmeht the vibrational matrix elehient bf the cdres*, the
dbminant term for say thé £-component Of T is

and a sitaiidi? expression fob |34 ; p giving éëi?ö; ttëbë 'Ö.y Z X
represents a charge transfer wave ftlhction extending along
the X-axis. H ie second and third term Of H, give rise to
integrals in Which the integrand contains tiirëë fab tors,
each large in a different fëgioh arid Will fhëfeföfë be
n e g l e c t e dA s in i i ia r  argument holds for tertis siibh as \

("a ,- R,.r'<S:lirrv t * vi, ) | a ^ y ipy |8>

artd these Will accordingly be heglebted;
Putting <5 I py jax>  = OQ

< c l s ^ v 1 + v4^l ax> 3T i

We firtd for tiie remaining one-electron integrals i
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< U px lay >  - < 1 1 Pz I ax >  =<I |px |«z >= <S |py |az >=
= <S|pJay> = eQ . <*|5Ë_(v 2 ♦ V5)|a^= -3* I

<8l5T^V3 + v6^laz>= 2 1 » <*l$^tv3 + v6^laz> = 0

< 0l A ( V1 + V^)lax>= < el ^ ( V2 + V5)la3>= -1

The expectation values of the components of the dipole
moments are collected in the following table

transition px py Pz
3a 2— 3t iX (f ) 0 0.68 0.68

y m 0.68 0 0.68
z 0.68 0.68 0

0 -V3 V 3
>) V 3 0 - V 3
z ■ V 3 V 3 0

3T1x (P) 0 -0.74 -0.74
y -0.74 0 -074
z -0.74 -0.74 0

all to be multiplied with Tt W<j>lHv |n>

As follows for the expressions for the wave functions
these quantities refer to an orientation of the
octahedrons such that the water molecules lie on the
coordinate axes. In (l6) however they are expressed in
the coordinate system of the unit cell. We therefore
rotate the first system over the following Euler
angles, as calculated from the X-ray diffraction data,

9)using Goldstein’s ’ definition of these angles :
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9
a «

7 Tl
312 6'
TI

The rotation matrix is found to be :
/-O.16
I -0.8k
\ 0.52

0.84
o. 16
0.52

-o.52\
0.52 J
0.67 /

with the help of which the dipole moments in the new
coordinate system become :
transition P 1 P2 p3

3a2 3t,* (F) 0.22 0.46 0.81
y 0.46 -0.22 0.81
z 0.46 VO#01 0.71

3t 2* -2.36 0.62 0,26
0,62 0.55 ,-0.26

X. 1.73 1.73 1 .00
^T^x (P) -0.24 -0.50 1 o 6 00 00

y oir\•o 0.24 -0.88
Z -0.50 0.50 1 o -J -4

again times ri w <*Ihvin*>
The observed p are given by

v ^ Z + p22 = k(-2~Ë QI Hvl

where k a numerical factor derived from the table.
For simplicity we use these experimental values in our
further calculation of R^. Englman calculated these
integrals and obtained reasonable agreement with the
experimental values of their products. With his value
of Q we might expect to be able to predict the rotation
strength of the charge transfer band. However it turns
out that the R term vanishes when only this kind of
integral is taken into account. One also has to know
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£he value of integrals of the type <a | p I Q>. which wex y*
discarded in the foregoing as relatively unimportant.
From the experimental rotation strength we can make
an estimate of such integrals giving |<a |p |(Cd

_ozr 2 2  ^s= 0.7 x 10"J as compared t o e Q  = 2 . 1 x 1 0
The n derived in the above way give no contributionra

to R and R since positive and negative values areq m
equally likely to occur while £ and m do not change
sign. Realizing that the octahedron is embedded in
the crystal the vibrational motions of the water molecules
are much more restricted and deviations from the equili­
brium positions need no longer be equal in opposite
directions. Because an evaluation of the resulting p
is discouraged by the complexity of the problem we have
settled for taking the magnitude of the p to be
proportional to those for an isolated octahedron. It
might be thought that a static distortion of the octa­
hedral field is responsible for the non-vanishing pa
in these terms. The potential acting on an electron at
x to be added to the octahedral hamiltonian is given by

where p(x) the static charge distribution of the crystal.
Taking the origin at the center of an octahedron we can
expand ^ i n  Legendre polynominals giving

V(i) = - ƒ * .  5 Id ep(£ .) Pl(coSa)
x.x'

where cos (X = . ' ■ l

which with the help of the spherical addition theorem
becomes in polar coordinates :

V(x) = jdx' ) lif |x,|"l"1y^(^,?)Y^(® .<*)fe as* *?<*.♦>
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with
Ylm = f d- ePU’)|x1 " 1“ 1 *^(*r*)

The static charge distribution p(x) is invariant
“ kunder the symmetry operations of the space group D. or

8 ^. Now the general equivalent points of these groups
can be taken in pairs such that their distances to the
x=y plane as well as the z=0 plane, on the intersection
of which the Ni^+ ions are situated, are equal, which
amplies that for every 6 its complement( v - 6 ) occurs.
Since the parity of the Y° is (-)^ we have that for
odd 1 all the v, vanish; but in these coefficients lies'lo
the difference between the two enantiomorphous space
groups as the projecting on ‘the z=0 plane is the same
for both. We can therefore expect no contribution to
optical activity from the static deformation of the
octahedral field.

The situation is less complicated for the magnetic
dipole and quadrupole moment. Since d-electrons are so
called for having an angular momentum of 2 atomic units
the states connected by magnetic dipole transitions will
have the absolute value for this quantity
tal * 2mc 2fl = 2 ^b *
The only state that can thus be reached from the A^ ground
state is the T„ one because m transforms as the
direct product T.. x A^ = Due however to spin-orbit
coupling the other states can also obtain some T„
character; using perturbation theory the states |T ^
corrected for spin-orbit coupling are given by :Y . _<t<i t-£iTi>

4 -  lT j > Ê ( t .  J - E 'l 'f  ” 7
where T. * Agf E , T^ or Tg.
Instead of diving into extensive arithmetic it is

worth while to consult tables of the values of the
spin-orbit coupling matrix elements such as have been

8)compiled by Griffith . To use these we first have to
find the function corresponding to the different
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J = L + S and M _ = M + M values or their analogues—  ■“ J Jj b
in the reduced 0, symmetry. The necessary Clebsch-Gordon
coupling coefficients can also be found in Griffith’s
book. For a 3T2 state the addition of L and S3 leads to
J values corresponding to the irreducible representa­
tions contained in the direct product x since
for S = 1 I transforms as T.., Taking e.g. the E com­
ponent we have from the tables:

o i _i .|E ;jT2> = 2"t |S1T21>+ 2 * |s-1T2-1>
The value of<E; 3T.jL . S | E; 3T2> is found to be

where £ the integral over the radial part of
the above expressions and therefore a constant within

Othis d configuration. Combining we have that one term
3of the corrected is given by

2'*|s-'V1>
Proceeding similarly for all other terms and neglecting
the spin-orbit splitting within a term we find the
following absolute values of the magnetic dipole moments

configuration m

2
e AE

1.08CV AE
+ 2 2.1 6 E LLt2 AE

Due to the same mechanism of spin-orbit coupling
1 3mixing between the E and T^ states occurs. From

perturbation theory we derive as the approximate
configurations, normalised to second order

state configuration
1E 0.39 t2e +0.92 e

3T (F) 0.74 t| - 0.59 t2e + 0.38 e2
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from which incidentically it can be seen that the expecta­
tion value of the dipole moment of the spin-forbiddenjjjA „ • -itransition is 0.66 times that of the one to the r (f )
state, in good agreement with the experimental estimate.

Finally the quadrupole moment gives non-zero results
only for the T states, because the operator behaves
as x x- and these products transform as either or E.

* 3. 1 *The transition A ---- E being spin-forbidden we have
only

£ | 3A 2>  ~ T2 * a 2 * T 1
Writing the operator in polar coordinates the

evaluation of its expectation value is a straighforward
matter. We find !

<  T 1 I*.* I Ao>
2 e

ip' '2 '  7y3
Since the order of magnitude of the quadrupole motnent
times the frequency is much smaller than the Bohr
magnetron it is pointless to take a spin-orbit coupling
refinement into account.

In order to obtain values that can be compared with
experimental results we assume the values of the dipole
moments in R and R to be about 6% of the ones derivedq m
from the spectrum. From the absorption spectrum we derive
the following values for the dipole moment per
octahedron :

state energy (cm ) p (x 10
3t 1 (p ) 26000 0.56
h 15400 0.31
3T 1 (F) 14100 0.45
3t 2 8400 0.63
Taking the spin-orbit coupling parameter 4 From

\  «I» ll .
' +• r\ Viairo f h o  tra 1 n o  JL — 3 ^ 0  CIT1 d.XlCl I*experiment ’ to have the value £

> be abou
0,69 $) we obtain the following estimate for R ï

<* /  A  9  1to be about 0.48 x 10 cm (ionic radius of Ni
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1 ( P )

1 ( F )

R x 10r

O..O 3

-ko

0.01

0.003

^ V 10" 1*0 4R x 1 0 -Zf0 R x 1 0 ”^°m q tot

0.08

0. 1U

0.18

2.80

0.05

0.02

0.02

Ö. 16

0. 16

0.21

2.80

fig. 2. The absorption spectrum of -NiSO 0
h* 2

0 degrees /m m

10 J cm

fig» 3. The circular dichroism spectrum
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Experimental
Tetragonal crystals of the hexahydrate of nickel-

sulfate were grown from slightly acidified solutions
at room temperature by evaporation or by controlled
cooling down in a thermostat from 35°C. Large faultless
crystals were easily obtained, that could be cleaved
into thin plates, with smooth surfaces perpendicular
to the optical axis. The direction of this axis was
checked by inspection of the interference figures under
the conoscope.

The absorption spectrum was measured with a Gary,
model 14 spectrophotometer, circular dichroism with a
Dichrographe Roussel-Jouan (Paris) and finally the
optical rotation dispersion with the spectropolarimeter
built by Emeis ^  , For a complete description of this
instrument as well as its performance we refer to his
thesis. The results are given in fig. 2-U. For k values
below 12.500 cm"”1 we have used the data obtained by
Ingersoll ,et al. as far as the rotation and
circular dichroism spectra are concerned. With the
help of numerical integration of the Kramers-Kronig
relations 1 '̂ the partial rotation due to the measured
absorption bands was calculated from the circular
dichroism data, the results of which are also given
in fig. 4. The connection between 0 and used in this
calculations is:

*(k) = 2  9fdk'---,^'9ik ’> (17)
T Jo k* - K

It is seen that 0 (o) is possibly different from zero
since 0( k ) is only known for a restricted part of
the spectrum. The rotation must however vanish at zero
frequency for any band separately because we then cannot
have any spatial dispersion. Complete knowledge of 0( k )
would give the correct 0 because as we will see -in the
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following 51 Rab ~ /dk - and 51 Rab_ = 0
has been shown to hold for any medium in chapter I.

If we therefore substract the value for
*(°)= i/dkJ^i ' ■

from the calculated rotation we have the correct
behaviour at zero frequency. The values thus obtained
are given in fig. k, where we also show the difference
between experimental and calculated rotation. It is
seen that a smooth curve result, which we have tried
to attribute to a single absorption band, obviously
in the far ultraviolet i.e.

0 * f(n)

A plot of f(n)k‘
0

k2A
k? - k2„ ba

(18)

should then give

a straight line as shown in fig. 5, from which we
find

k = 56.000 cmba
A = 15,8 °/mm

f(n) as given in (il, 9 ) was calculated with
the help of the formula given by Slack and Rudnirvk
far the refractive index :

n - 1 = 1.2461 +

and L
Taking the axis ratio —

k n: a

0.012126
^-( 0 .1 3 5)*

2 we find L 4 n x 1.020
x 1.205» together with the definition of3 ^ 3

f(n) is then easily obtained. From the thepry we find
that

0 l44rcpN _/ \ k F
■ w r  rs-— 2k. - " k (19)

*1when expressed in degrees / mm, where p = 2.07 g/cnr
the density of the crystal, N Avogadro1s number, M the
molecular weight of NiSO^.óH-O. Combining (18) and (19)
we obtain an R value for the absorption band at



f (n) o 2
6  (<*>)

10® cm-2
10 20 30
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56,000 cm" ; H = 0.59 x 10-38
The experimental values for the dipole, moments are

calculated as follows. Neglecting spatial dispersion we
have

~p _n = I 21m n lm i

The absorption coefficient a is defined by
t -r -azI = I eo

where I and I the intensities of a lightbeam before and
after traversing a medium through a distance z. Combining
we find:

2«k Xm t

Now for weak absorptions, with which we are dealing here
Im t is small compared to unity so that from (ll,9) we
get:

_ - .__/n2-1 \2 2u )Im £ - ^ ( ^ p o  ) chV ̂ --(k* -k*)*+ k*P
k, k pba

b v oa
Integrating over a frequency range tf1 which a single

is finite we obtain:
+■««

dk k"1 a nTr2/n2-lx2 2Np2 i / T
' ^ttp °  phVn *7 2 ê r,2

'*> .2 .2 " " "  - -  *
k  ~where x = — r—   . Extension of the integration limits

is avowed because T vanishes for large Ixj, Poing the
integral we have:

chnV /k p°\2
8n*N ' n* - 1 * dk k" a

Similarly for the circular dichroism we have:

0 = Im 0 = ^nk( a - a ) = jTrk Aa

and from (11,13) therefore:

Aa = 8ïr2k2 f(n) Im g,

Ex
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so that for the rotation strength:

Rab chV
327I*N {f(n)}‘ 1 dk k

Experimental results and calculated estimates of the
rotation strength and dipole moment are collected in
the following table:

transition

3a 2 3t 1(p )

1E
3t 1(F)
3T2

p2x10"38 R ,x10r expt

1.23 0.12

0. k2 0.20
coo 0.21

1.59 2.8k

-U0 R , xio'*0calc

0 . 1 6

0 . 1 6

0.21
2.80

It is seen that the calculated values of R are in
good agreement with the experimental ones, though we
have to keep in mind that the dipolemoments were adapted
to the experimental strength of the band. An inters
esting point is that the different contributions to R
are all essential to obtain this agreement, especially
the electric quadrupole moment of the Ag T..(p) tran­
sition; a-NiSO^.ÖH^O is therefore an example where the
the quadrupole moment cannot be neglected.

We calculated the rotation spectrum with the term
scheme as proposed by Jorgensen. Liehr and Ballhausen's
objection that the oscillatorstrength of the spin-
forbidden transition is too small, is not in agreement
with our own estimate. Moreover if one assumes their
assignment, a splitting due to spin-orbit interaction

Owithin the jT.(f ) states, the bands would have to share
more or less their rotation strength, while the con­
tribution of the E term would be "lost", leading to
too low values. We therefore think that the optical
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measurements of this crystal support Jorgensen's
proposal. This by the way shows that optical activity
might be an important tool in solving questions of
band assignment and that, when at least the crystalline
form is gyrotropic, the compound itself doesn't have
tc be asymmetric. It is seen that the calculations are
relatively easy for transition metal compounds and
that, since for the forbidden d-d transitions the R
are small, the crystal structure need not be known.

Finally the rotation dispersion, being easier
accessible than that of the refractive index, affords
a means of obtaining information of absorption bands
in the far-ultraviolet, as we have seen. One could
even hope for more, because according to the sumrule
for the R still another strongly active band with
opposite sign must be present. The only thing that
can be said on the basis of our experimental data is
that this band should be situated at 96,000 cm
even higher.

or
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Samenvat t ing

Metingen van de natuurlijke optische activiteit
vormen een waardevolle uitbreiding van de gebrui­
kelijke absorptie metingen, daar hieruit informatie
over het magnetisch dipool en het electrisch qua-
drupool moment te verkrijgen is, In de anorganische
chemie echter komen slechts een gering aantal ver­
bindingen voor, die de voor de eigenschap van op­
tische activiteit noodzaklijke asymmetrie bezitten.
Deze asymmetrie is echter door inbouw in een ge­
schikt kristal aan te brengen; een voorbeeld hier­
van is het octaëdrisch omringde Ni +-ion, dat als
zodanig te symmetrisch is, maar in het a-NiSO.. 6H„0
optische activiteit vertoont.

In het eerste hoofdstuk wordt met de oorzaak van
het verschijnsel van optische activiteit, de op
atomaire schaal merkbare variatie van het electro-'
magnetische veld, in een niet nader omschreven
medium rekening gehouden. Om ook de in de scheikunde
juist zo interessante anomale rotatie dispersie en
het circulair dichroisme te beschrijven wordt uit-
gegaan vein een modelsysteem bestaande uit een on­
eindig uitgebreid medium waarin zich licht bevindt.
Tengevolge van de wisselwerking van dit licht met
de geladen deeltjes die het medium vormen kan dan
op eenvoudige wijze worden aangetoond dat er lieftt
verdwijnt en er dus absorptie optreedt. Hiertoe is
het echter noodzakelijk ook het electromagnetisehe
veld te kwantizeren, hetgeen met behulp van het
Gupta-Bleuler formalisme gedaan wordt. Nadat de
reactie van het materiële< systeem op het electro-
magnetisch berekend is worden verwachtingswaarden
genomen en kan verder de klassieke theorie worden
toegepast. Met behulp van Ewald’s uitdovingsstelling
wordt een connectie met de physische realiteit van
een eindig medium verkregen. Tevens wordt een kri-
terium aangegeven dat bepaalt wanneer de toepasbaar-
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heid van een eerste orde ontwikkeling van de ruimte­
lijke dispersie gerechtvaardigd is( zodat de theorie
ook voor grote moleculen van toepassing kan zijn.

In hoofdstuk II wordt aangetoond dat de verkregen
uitdrukkingen leiden tot de resultaten voor kleine
moleculen en wordt een voor experimentele doeleinden
bruikbare macroscopische vergelijking van de licht-
voortplanting in kristallen afgeleid.

Deze wordt tenslotte in hoofdstuk III op het
a-NiSO..éHgO toegepast. Hierbij blijkt dat het elec-
trisch quadrupool moment een niet te verwaarlozen
bijdrage levert en dat de door Jorgensen op experimen­
tele gronden voorgestelde interpretatie van het
spectrum van Ni^+ in een liganden veld kan worden
onderschreven.

Met behulp van de Kramers-Kronig relaties wordt
de rotatie van een in het verre ultraviolet gelegen
absorptie band van die in het zichtbare gebied ge­
scheiden en de ligging van de eerst genoemde bepaald.
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Op verzoek van de Faculteit der Wiskunde en
Natuurwetenschappen volgt hier een overzicht van
mijn academische studie.

Na het behalen van het diploma gymnasium-B aan
het Maerlant Lyceum te Den Haag in 1956, begon ik
dat jaar met de scheikunde studie aan de Rijksuni­
versiteit te Leiden. Het kandidaatsexamen, letter F,
werd in 1959 afgelegd, waarna ik mij onder leiding
van de hoogleraren Dr. A.E. van Arkel, Dr. L.J.
Oosterhoff en Dr. C. Visser op het doctoraal examen
voorbereidde, dat in 1962 werd afgelegd, met als
hoofdvak anorganische scheikunde.

In i960 werd ik als assistent aan het Laboratorium
voor Anorganische en Fysische Chemie aangesteld,
in 1962 als hoofdassistent, later dat jaar tot weten­
schappelijk ambtenaar benoemd.

Sedert 1967 ben ik als wetenschappelijk medewerker
werkzaam op het Natuurkundig Laboratorium van de
N.V. Philips' Gloeilampenfabrieken.

Na mijn doctoraal examen werd onder leiding van
Prof.Dr. A.E. van Arkel, naderhand onder Prof.Dr.
E.W. Gorter een onderzoek uitgevoerd aan gemengde
verbindingen van zuurstof en stikstof. In 196^ werd
met het in dit proefschrift beschreven onderzoek een
begin gemaakt.
Bij het tot stand komen van dit proefschrift wil ik
graag van mijn dankbaarheid blijk geven jegens
Dr. C.A. Emeis die de metingen van de optische
rotatie dispersie deed en Mevr. G. de Vries, die
de computer berekening van de Kramers-Kronig relaties
uitvoerde.

De directie van het Natuurkundig Laboratorium
ben ik zeer erkentelijk voor de gelegenheid die zij
mij gegeven heeft het manuscript te voltooien.
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