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Chapter I

INTRODUCTION

The scattering of thermal neutrons by crystals has been recognized
as an extremely powerful means for the study of lattice structures )
and lattice dynamics ^*^)> For the investigation of crystal structures
neutron scattering can be considered to be complementary to X-ray
scattering in samples containing both heavy and light elements, or
elements with neighbouring atomic number. In addition, because the
neutrons have a spin, they also allow the determination of magnetic
structures.

For the study of lattice vibrations the use of neutrons is almost
indispensable. Unlike other types of radiation, thermal neutrons have
both a wavelength which is of the same order as interatomic distances in
crystals, and an energy of the same order as that of the quantized
lattice vibrations, the phonons. Thus both exchange of momentum and
energy with the lattice vibrations can easily be detected by analysing
direction and energy of the scattered neutrons. The scattering process
in which the neutrons exchange energy with the lattice vibrations is
usually referred to as neutron inelastic scattering by phonons.

For the analysis of the neutron energies two methods are used. In
the first method, the diffraction technique, one determines the wave­
length of the neutrons from the angles at which they are Bragg reflected
from a single crystal. In the second method, the time—of—flight technique,
the velocities of the neutrons are determined from the time they need to
traverse a certain distance. For the study of phonon dispersion re­
lations in single crystals the diffraction technique is in general to be
preferred over the time-of-flight technique.

In this study the diffraction technique has been used for the de­
termination of the phonon dispersion relations in a-Fe and its alloy
Fe3Al.

For the case of simple metals such as sodium, magnesium and
aluminium, the experimental determined dispersion relations are
easily interpreted in terms of physical quantities. This is the case
to a lesser extent for more complicated metals, such as the transition
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metals. The lattice dynamics of these metals is usually described in
the more phenomenological Born-von Karman theory. The experimental
phonon dispersion relations yield the parameters, the interatomic
force constants, for this model. It is then expected that systematic
comparison of the results from properly chosen metals and alloys in­
dicates how the theory for the simple metals should be extended or
revised for more complicated systems.

The present study of the lattice dynamics of a-Fe and Fe3Al fits
also in this frame-work. There is a close relationship between the
two structures and comparison of the lattice dynamics of both sub­
stances might yield some of the fundamental quantities necessary for
arriving at the proper theory. In addition Fe3Al is very interesting
to investigate since it undergoes a phase transition under heat treat­
ment from the ordered D03 structure to the 50% disordered B2 structure.

In the chapters II and III of this report some of the elements of
the theory of lattice dynamics and neutron scattering by lattices are
reviewed. After that a short description is given of the diffraction
set-up, the triple-axis crystal spectrometer, together with the ex­
perimental methods which were applied. In chapter V the study of the
lattice dynamics of a-Fe is presented and in chapter VI the investigation
of Fe3Al is described. The Born-von Karman theory is used in the
description of the lattice dynamics of both specimens. The description
of Fe3Al includes a group-theoretical analysis of the normal modes.
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BORN-VON KARMAN THEORY OF LATTICE VIBRATIONS

2 .1 .  In t ro d u c t io n

The th e o r e t i c a l  tr e a tm e n t o f th e  l a t t i c e  v ib r a t io n s  as used  h e re

j_g o r i g i n a l l y  due to  Born and von Karman ^ ) .  I t  has  been d e s c r ib e d  ex

te n s iv e ly  a .o .  by Boro and Huang 2) and by M aradudin s t  clL% The

fo llo w in g  assum ptions and ap p ro x im atio n s  form  th e  b a s is  f o r  t h i s  th e o ry .

a . The a d ia b a t i c  a p p ro x im a tio n .
The e le c t r o n s  a re  alw ays a b le  to  ad ap t them se lv es  to  th e  in s ta n ta n e o u s

n u c le a r  p o s i t i o n s .  Thus th e  p o t e n t i a l  energy  may be w r i t t e n  as a

g e n e ra l T ay lo r s e r i e s  in  term s o f  th e  d isp la c e m e n ts  o f  th e  atoms from

t h e i r  e q u i l ib r iu m  p o s i t i o n s .

b . The harmonic a p p ro x im a tio n .
The a tom ic  d isp la c e m e n ts  a re  c o n s id e re d  to  be so s m a ll ,  th a t  th e

above s e r i e s  ex p an sio n  may be b roken  o f f  a f t e r  th e  q u a d ra t ic  te rm .

c . The re q u ire m e n t o f p e r io d ic  o r  c y c l ic  boundary c o n d i t io n s .
T his i s  e q u iv a le n t  to  r e p la c in g  th e  f i n i t e  specim en by an i n f i n i t e

medium w ith o u t boundary e f f e c t s .

In  th e  p r e s e n t  work th e  fundam ental th e o ry  i s  t r e a te d  c l a s s i c a l l y ,

i t  i s  in d ic a te d  how to  p ro ceed  to  o b ta in  th e  quantum m echan ical

r e s u l t s .  The l a t t e r  a re  used  in  th e  d e s c r ip t io n  o f th e  therm odynamic

q u a n t i t i e s .  In  th e  l a s t  p a r t  o f t h i s  c h a p te r  th e  r e l a t i o n  betw een th e

long w aveleng th  v ib r a t io n s  and th e  e l a s t i c  c o n s ta n ts  i s  d is c u s s e d .

2 .2 . C la s s ic a l  th e o ry

L e t us c o n s id e r  a g e n e ra l l a t t i c e  s t r u c tu r e  w ith  n atoms p e r

p r im i t iv e  u n i t  c e l l ,  th e  d i f f e r e n t  atoms in  th e  same c e l l  b e in g  d is

tin g u is h e d  by an in d ex  X and th e  d i f f e r e n t  c e l l s  b e in g  la b e l le d  by an

in d ex  £•

We can r e p r e s e n t  th e  p o t e n t i a l  energy  $ o f an a r b i t r a r y  l a t t i c e

as a f u n c t io n  o f th e  d isp la c e m e n ts  o f th e  atoms from  t h e i r  e q u i lib r iu m

p o s i t io n s  by expanding $ in  a T ay lo r s e r i e s  w ith  r e s p e c t  to  th e  atom ic

d isp la c e m e n ts  1»2 »3 »‘t ) .  For sm a ll v ib r a t io n s  i t  s u f f ic e s  to  tru n k a te
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after the second derivative of the potential energy, which leads to the
harmonic approximation. Therefore we write for the lattice potential

$ = $ + y y y $ (j u> u u a ) +o “ “ L a a£ A a

+ I I I l $cte(£A;£,A ’) ua (£A) u (£'A’) ,
££ * AA1 a 8

(2.1)

where is the potential energy of the static lattice, u^(£A) and
u (£’A*) are the a- and 8_component of the displacements of the atoms
(£A) and (£’A'), respectively. Furthermore,

3$
$a (AA) 3u (£A)

3^$and $ „(£A;£,A') ■ —--  . --  ., ,a$ * J 3u (£A)3u„(£'A')o a 8
, where the

subscript o indicates that the derivatives are taken in the equilibrium
state.

It is obvious that a displacement of the lattice as a whole does
not change the potential energy. This means in first order in the dis­
placement

I I I *0 W ua (AA) = N I I $a (X)£a = 0 , (2.2)
£ A a A a

where N is the total number of cells and the a-component of the dis­
placement vector _e of the lattice. Since (2.2) must hold for an arbitrary
vector e it follows that

y $ (A) = 0.u rv (2.3)

3$Likewise the value of gu (&x) can not affected by a translation of

the lattice over a vector u(£A) = je. Expansion of

series and substituting u0(£,A') = £. yieldsp p

3$
3u (£A)a

in a power

3$
3u (£A)a

M U )  + I * ft(£A;£'A')e0 + .
£ A 6

(2.4)
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Since (2.4) must hold independently of e., we obtain also

I * ea * ;A,A,) (2.5)
£'A

The -$> (£A;£'A') are usually called the interatomic force constants.Otp
-$ a (£A:£'X') is the a-component of the force on atom (£A) due to aap
unit displacement of atom (J4*X*) in the g-direction. From the formal
definition of the force constants it follows that they are symmetric
in the indices (£ A a) and (£'A'g)

$ _ (J4A; A' A *) = $c (£'A' ;£A) . (2.6)Otp pot

In view of (2.1), (2.3) and (2.6) the equations of motion for the atoms
of the crystal become

M(X) «0 <u> - -
a ,

- - l • (tAjt'A^u (t'X1) , (2.7)
£*A'e p

where M(A) is the mass of the atom of type A. Because of the periodicity
of the lattice $ _ (HA; ' A *) does not depend on the absolute positionsCtp
of the cells (£) and (£'), but only on the distance between them. Hence

$ae(£A;H,A') = ;AA') ,

and consequently we may write (2.7) as

(2.8)

M(A)u (£A) « - I $ (£“£';AA’)u (£'A ') . (2.9)
° A ' %  “ 6 6

The infinite number of equations given by (2.9) can be simplified to a
set of 3n equations by inserting the plane wave

u (£A)a u (A)/M(A)a exp i^*r^(£) - iut (2.10)
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The amplitude Qi (A)/M(A)*J is independent both of £ and the time t.
Further r(£) is the position vector of the origin of the £-th unit cell»
co is the angular frequency and the wave vector, is an arbitrary
vector in phase space, which has base vectors 2ir times the base vectors
of the reciprocal lattice. The reciprocal lattice is related to the
crystal lattice in the following manner: let a lattice point be given
by

3
r(£) - I I. a. , (2.11)

i=l

where the a. are the three base vectors of the normal lattice, while
the £^ are integers, then a reciprocal lattice point is determined by
a reciprocal lattice vector t̂ (h)

3
t.00 = £ h. b. (h. = integer) , (2.12)

j = l J J J

with b .-J the base vectors of the reciprocal lattice defined by

*i (2.13)

Substitution of (2.10) in (2.9) yields the following result for the 3n
equations of the reduced amplitudes ua (̂ )

“2u0t(A) =  I D cx3 (XX* ue^A’) » (2.14)A 6

where ^ag(AA';c[) are the elements of the so-called Fourier-transformed
dynamical matrix D(£), hereafter referred to as dynamical matrix.
These are given by

V ^ ' * )  - (m (A)M(A'))  ̂I ,$ag(A”£ ' ;AA')exp[j-i£‘ [r(£)-£(£'))]

(2.15)

For (2.14) to yield non-trivial solutions the following determinantal
equation should be fulfilled
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I “2fiAA 6 „ “ D.0(XX’;£)a$ ct6 = 0. (2.16)

Equation (2.16) is called the secular equation. For every wave vector
£  there are 3n solutions for u>2 , every solution uj? (£) corresponding to
one vibrational mode. The relations between the angular frequency <i) and
the wave vector of the lattice vibrations £  are called the dispersion
relations of the vibrational modes or normal modes. They consist of
3 acoustical and 3n-3 optical dispersion relations usually referred to
as branches. The acoustical branches are characterized by frequencies
which vanish with vanishing wave vector £, while the optical branches
always have frequencies different from zero. For small values of the
frequencies of the acoustical branches are linearly proportional to
|q| and all atoms in the same cell move in phase. Thus in the limit of
long wavelengths the acoustical branches are in fact identical to the
ordinary elastic vibrations. For the long wavelength optical vibrations,
the atoms within the same cell move in such a way that their centre of
mass is at rest. Such vibrations may be excited by light waves with
frequencies within the infrared region.

The solution of (2.16) is in fact the solution of an eigenvalue
problem; the ü k (£) are the eigenvalues of the matrix D(£), and the
u (X) the components of the corresponding eigenvectors. To show the
fact that ua(A) is unambiguously connected to «ƒ(£.), we change our
notation and replace the former by e . (A;<j). This brings us to theotj
following expressions for (2.10) and (2.14)

u . (£A) = [e . (X;£)/M(X)^]exp[i£*ir(Ji)-iii)-(£)t] (2.17)aj otj j
and

(£)eaj = I D03(AX’5£) e6j(x’;£) • (2.18)
X 8

The eigenvector ej(X;^) is composed of the n three-dimensional
polarisation vectors of the n different atoms in the unit cell.

It is now possible to derive some general properties of the
dynamical matrix which are of relevance for the further treatment of
the dynamical theory. From the definition of the reciprocal lattice as
given in (2.11), (2.12) and (2.13) it follows that the dynamical matrix
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D(q) defined by (2.15) is a periodic function of £  with the period of
the reciprocal lattice

Dag(AX';£+ = Dag(XA’;£) . (2.19)

Further (2.15) leads immediately to

DogCAX’;*) = âg(xx' * (2.20)

Combination of (2.6) and (2.15) yields the result

(X1X}£.) = ^a g(XX';£) , (2.21)

which means that D(jj) is a Hermitian matrix.
As a consequence of (2.19) it follows from (2.16) that the normal mode
frequency has the reciprocal lattice periodicity, hence

id. (£ + 2itt) = (oj (£) . (2.22a)

Moreover, we may choose

e/(X;£+ 2ttt) = e.j(X;£) , (2.22b)

where the arbitrary phase factor of unit modulus, which, strictly
speaking, relates the lefthand side of (2.22b) to its righthand side,
has been put equal to unity.

For a Hermitian matrix the eigenvalues are real, and the eigen­
vectors can be chosen to obey the following relations

I eaj(X;£) eaj,a;£) = öj j * (2.23a)
i Ot Aand

l e*j(xï£> egj<x'iS.) = 6ag 6XX’ * (2.23b)

Furthermore we may demand
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eaj(xi£) = e*j(x;-S> » (2.24a)

while from (2.20) we obtain

Wj(s.) = ü k (-£) • (2.24b)

The above relations give some of the fundamental properties of u and ê
of importance for the treatment in the forthcoming sections.

2.3. Quantum mechanical approach

The classical treatment sofar of the lattice dynamics explains
many physical aspects in a very elegant way. However, for a proper
description of some thermodynamic quantities, and also to understand
many of the neutron scattering properties a quantum mechanical des­
cription is needed. We will now sketch the quantum mechanical treatment.

It can be shown 5) using (2.17), (2.23) and (2.24) that the dis­
placement of atom (£A) from its equilibrium position can be written in
the general form

3n
u(£A,t) = I I £. (A;£){a. (A;£)exp[i£*£(£)-ia). (£)t] +

£j=l J 3 J

+ aT(A;-£)exp[l<i/r(£)+ia)j (c[)t]} . (2.25)

N is the total number of unit cells. The summation of is over N
points of the first Brillouin zone, which is the cell containing all
points in reciprocal space lying nearer to the origin than to any other
point of the reciprocal lattice. This restriction on ĉ, which simplifies
many of the lattice dynamical calculations, is obtained by adopting the
cyclic boundary conditions. The latter postulate that ij(£A,t) repeats
when going, say L cells in the direction of any of the base vectors of
the crystal lattice as defined by (2.11). This together with the lattice
periodicity, reflected by (2.10), enables us to confine ourselves to
the = N values of in the first Brillouin zone of reciprocal space.
The variables a.(A;c|) are complex numbers, containing the arbitrary
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am p litu d es  and p h ases  o f th e  3nN uncoupled  harm onie o s c i l l a t o r s  in to

w hich th e  movement i s  b roken  down. In  (2 .2 5 ) u (£ A ,t)  i s  always r e a l .

E x p re ss io n  (2 .2 5 ) i s  p a r t i c u l a r l y  s u i te d  fo r  p ro cee d in g  to  th e  quantum

m echan ical ap p ro ach , in  w hich ii(£ A ,t)  as w e ll as th e  v a r ia b le s  a * ( X } £ )

a re  c o n s id e re d  as o p e ra to r s .  The fo rm er th e n  m ust obey th e  com m utation

r e l a t i o n s

[ua ( £ A , t ) ,U g(£?A ' , t ) ]  = [ua ( £ A , t ) , u B(£ A ,t ) ]  = 0 ,

(2.26)
[ u ^ U . t )  .U g U 'A ' , t ) ]  = ”  M^xy * SU ,6 \ \ ' 6aB *

By in t r o d u c in g  th e  o p e ra to r s

a j (£) = (2nNM(A)aij (c[)/li)  ̂ ou(A;ci) ,

one o b ta in s

3n _ I
u (£ A ,t)  = J  £ (2nNM(A)aj. (£ ) /h )  * e.(A;S.) •

J! j  = l J J

*{a. (£)exp[i£*_r(£) -  iu i j ( £ ) t ]  + a^ ( -£ )  exp [!£•_£(£) + no j  ((j) t ]  } ,

(2 .27 )

in  which th e  a . (c[) s a t i s f y  th e  com m utation r e l a t i o n s

Eaj(s.)• a*.(£')] “ *
(2 .2 8 )

[a . (£) , n . , ( q ' ) ]  = [ a ? (£) , a * , (£ ' )J = 0 .

The Ham ilto n ia n  o f th e  c r y s t a l  can be w r i t t e n  in  term s o f th e se  o p e ra to rs

H = l T u a . ( 2 )  ( a ? (£ )  a .  (£) + J} , (2 .29 )
13

w ith  e ig e n v a lu e s

E = l  Iküj (£) (n . (£) + i)  ,
S i

(2 .3 0 )
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where the quantum numbers nj (S.) may have values 0, 1, 2, etc. At zero
temperature the crystal is in the ground state: all quantum numbers
nj (c[) are zero. The operators aj (c[) and aj (£.) represent the usual an­
nihilation and creation operators for the quanta of eigenvibrations, the
phonons. The average energy of a particular phonon is

<Ej> = Uto. (£) (<n, (£)> + i) . (2.31)

<n.(<j)> is obtained by statistical mechanical considerations 2) from the
partition function for harmonic oscillators,

<n. (a)>
coth(ftw./2kT)-1

exp (fio). /kT)-l
(2.32)

k = Boltzmann's constant and T the absolute temperature.

For a macroscopic crystal the number of phonons is very large and to
obtain the total energy of the crystal we may replace the summation of
(2.30) by an integration over the frequency v (=0)/2tt) .

1l + _______ ,______
exp(hv/kT)~l hvf(v)dv (2.33)

Here f(v) represents the density of phonon states, the so-called fre­
quency distribution function, which gives the total number of frequencies
per unit range at a particular frequency. Its normalisation is obtained
from the condition

ƒ f(v) dv = 3n , (2.34)

with n the number of atoms per primitive unit cell.

From (2.33) follows for the molar heat capacity at constant volume
due to the lattice vibrations

CV - f - V exp(hv/kT)

(exp(hv/kT)~l) 2
(jjf) f (v)dv , (2.35)
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where N. is Avogadro's number. For large T (2.35) approaches the classical
A

result, the Dulong-Petit law for the specific heat

Cy ^ 3 knN^ . (2.36)

The frequency distribution function plays also an important role in the
-2WDebye-Waller factor e . For the case of a cubic crystal with one atom

per primitive unit cell 2W can be written °>7) as

2W
00

r 1 + n  f ( v l
3M J '■exp(hv/kT)-l *' 2irv

o
(2.37a)

or
2W = R.C(T) . (2.37b)

R = ,h2Q2/2M is the recoil energy of a free scattering atom and

C(T) ^exp(hv/kT)-l * i) ^  dv . (2.38)
o

The Debye-Waller factor will be' discussed in more detail in connexion
with neutron scattering in the next chapter.

2.4. Long wavelength vibrations and the elastic stiffness constants

In the limit of infinitely long waves the atoms in a unit cell move
in parallel with zero frequency in the case of the acoustical modes.
For very small but finite values of the wave vector ^  this is still
approximately true. Such low frequency vibrations correspond to sound
waves in the crystal. Since the frequencies of sound waves in a solid
are determined by the macroscopic elastic constants and the frequencies
of the normal modes in a crystal by the atomic force constants, there
must exist relations between the force constants $ 0(£A, £'A ') and theOtp
elastic (stiffness) constants c or. These relations can be obtaineday, 86
by studying the equations of motion (2.18) in the long wavelength limit
and comparing them with the corresponding equations from the theory of
elasticity. For small values of (2.18) can be solved by a perturbation
method 2>’>®), originally due to Born ®), which here merely will be
sketched.



- 14-

chapter II

Both sides of equation (2.18) are expanded in powers of breaking
off after the first three terms.
For D „(AA';q) we write using (2.15)aB

Do6C»»’:a> aB (AA 'i3) + D<X) (XX';£ ) + (XX*;£ ) +(2)
a B aB

(2.39)
with

(XXf;£) = (M(X)M(X’))"i ^ *oe(lX;l,X,> , (2.40a)

(XX * ;c[) = -i(m (A)M(A'))”  ̂I $ g(£X ji'X') [3/ (r(£)-£(&’))] , (2.40b)Otp I ^

(XX';£) = -i(M(X)M(X’))"i I (i2'X5£'X’) (r(£)-r(*'))] 2. (2.40c)

The expansions for 0̂ (3 ) and ^^(Ajjj) are

ü). (q) = U<°> (q) + *<l> (£) + (£) + . . . ,  (2.41)
J J J J

= eaĵ  (x '>3) + (*>£) + eaĵ  X̂ + * * * ’ (2.U2)

For acoustic vibrations the zeroth order term w'° (g) = 0. As a con­
sequence of the fact that terms of the same order on both sides of
(2.18) have to be equal, it follows that the zeroth and first order
terms are zero. Hence

I D < “> (XX' U )
A'B

(X ;£) = 0

I (xx’i3) + (XX’;̂  elY (X';̂ )}(1) (1) (0)
X'B aB aB

For the second order terms the following relation holds

X ’B
W  «•■•<$ *  Ka  < » ' * >  < * ' * >

(2) (1) (1)
aB

+ D^2) (AX’* )  (X*;cl)

aB

«j1* (£) ^

(2.43a)

0.(2.43b)

(2.43c)
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From (2.5) and (2.AO) it is clear that (2.43a) has solutions
f nl . 1egj (̂ '>5.) = M(X )J*egj(^), with (c[) independent of X*. The

dependence will be determined below from a simplified version of
(2.43c). (2.43b) represents a system of 3n inhomogeneous linear
equations for the vectors e^ ^(X';£), when the e^°.^(X';ci) are known.

. . . ^(2.43c) can be simplified by multiplying by M(X)2 and then summing
over X. The first term then vanishes because of (2.5), (2.8) and
(2.40a). Hence (2.43c) transforms into

I M(X)
XX'B

A . ( 2 )D (*)(XX';£)e<P(X';£) + M(X') *D^' (XX' ;£ )egj (£ )c*B ' Bj
I M(X)ajp^ (a)e . (£) . (2.43d)

Inserting the solution for the e. (X';£) in (2.43d) provides the
final set of inhomogeneous equations for the e.(q). If we further
devide by V , the volume of the unit cell,(2.43d) transforms into the
general form

k (SL) * £ j (s) = puj (a) * (£) (2.44)

P = £ M(X)/V , the macroscopic density.
X °

Equation (2.44) is directly comparable with the macroscopic equation
describing elastic waves

K' (c[) • e_ = , (2.45)

where

^otB C c*y ,6<5 -̂ y  -^6yo
(2.46)

caY B6’ *’̂ie e^as^ c constants, are the coefficients occurring in the
generalised Hooke's law, which gives the linear relationship between
the elastic stress and the elastic strain components. Written in tensor
notation

Say A  Cay,6ö SB6 (2.47)
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The elastic constants in the more familiar Voigt notation with single
indices are obtained from those in tensor notation by a simple trans­
cription of the indices, (ay) -*• p, according the following scheme

Pair of indices: ay 11 22 33 23(32) 31(13) 12(21)

Single index : p 1 2 3 4 5 6

By equating the coefficients of same orders of £  in (2.44) and (2.45)
one readily obtains the relations between the elastic constants and
the interatomic force constants.
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THEORY OF NEUTRON SCATTERING BY LATTICES

3.1. Introduction

The interaction involved in scattering of thermal neutrons by
bound atoms results mainly from two effects: a) the interaction of the
neutron with nuclei via nuclear forces, b) the interaction of the neutron
with unpaired electrons in atoms via magnetic forces due to the neutron
magnetic moment. In this work only the nuclear scattering will be en­
countered.

Usually the theory of slow-neutron scattering by bound nuclei is
discussed 1»2 »3 »5»6) in terms of the first Born approximation by in­
troducing a special potential for the neutron-nucleus interaction.
Although the nuclear interaction potential cannot be regarded as a small
perturbation and the neutron wave function cannot be assumed to be a
plane wave within the range of nuclear forces, it is, however, possible
to calculate the scattering cross section by this approximation, because
of the fact that the form of the cross section is determined by the be­
haviour of the wave function well away from the scattering centre. It
is therefore possible to use the fact that the region within which the
interaction works is very small, in fact in the calculation of the
cross section it is put equal to zero. The form of the interaction
potential is then chosen such that the correct answer is obtained for
the experimentally determined scattering amplitude. In this approach
the interaction between the neutron and the target nucleus can not be
described by a true potential, but only by a delta-function of adjustable
strength, the so-called Fermi pseudo-potential

b is the neutron scattering length (which may be complex) and m is the
neutron mass. Such a "potential" leads to the required short range
nature of the forces and thus to isotropy of the scattering. The

2ïïh2b (3.1)

asymptotic form of the neutron wave function at large distances is 5)

ik zo b ik’r (3.2)¥ + 4»o e —  er



- 19-

section S. 1.

where ¥ represents the incident neutron wave function, and the
scattered one.

In case of scattering by a macroscopic system of nuclei, the
total scattering may be evaluated by proper summation of independent
but possibly coherent scattering from all nuclei present. Every nucleus
£ is accounted for by a scattering Fermi pseudo-potential

V(A) " b Ot)«(r-r,(£)) , (3.3)

where r* (£) = _r(£) + ii(£).
Schiff 7) gives for the cross section in first Born approximation for
a process in which the scattering system goes from a quantum state p
to a state p*, while the neutron is scattered from k to k' (k and k'

— O —  ''“ O —

are neutron wave vectors) with spin state s to s'

da _ k*
dJHps+p's') k T(r)

2
(3.4)

V(r) is the interaction potential, and (£ = - k' is the neutron
scattering vector, k' must satisfy the condition for energy conservation

2m * V
n2k 2
- 9 ° + E2m p (3.5)

where E and E , are the total energies of the state before and after
scattering, respectively.

To obtain the double differential cross section we must sum over
all final states p',s' and average over the states p,s, weighted ac­
cording to their probabilities P^ and Pg ,

d2° I V. ?, rps p s odfidE
r "\2m

^2irVi2]
<Cp 's ' dre1̂ *- V(r) 3̂ >

»2 *2k 2*rk_l + F ___ 2_ _ F
2m p' 2m p (3.6)
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In  th e  e q u i l ib r iu m  s t a t e  Pp i s  g iv en  by th e  Boltzm ann d i s t r i b u t i o n ,

exp(-E  / (kT))
3 — P
p I  ex p (-E _ /(k T ))

P

(3 .7 )

For an u n p o la r is e d  n e u tro n  beam

(3 .8 )

3 .2 .  E l a s t i c  s c a t t e r in g

When we r e s t r i c t  o u rs e lv e s  to  n u c le a r  s c a t t e r in g  we can e v a lu a te

th e  m a tr ix  e lem en ts  o f (3 .6 )  by s u b s t i t u t i o n  f o r  th e  p o t e n t i a l  V (r)

th e  one g iv e n  by (3 .3 )  summed o v er Z. E q u a tio n  (3 .6 )  th e n  becomes

d2g
dfldE J P PL p sp s

I
_  I _  IP S

k/
k < p ’ I p s >

ti2k 2■ft2k ' 2 (3 .9 )

In  th e  ca se  o f s c a t t e r in g  by a r i g i d  l a t t i c e ,  where u (£ ) = 0 , th e re  i s

no en ergy  t r a n s f e r  from  th e  n e u tro n s  to  th e  l a t t i c e  o r  o p p o s i te ly .  Thus

th e  s c a t t e r in g  i s  e l a s t i c  and k* = k Q. W ritin g  i:’ (£) = jr(£ ) and summing

o v er p ? , s ' ,  we o b ta in  by c lo s u re

P s
I  PpPs I  < p s |  [ b * ( i ' ) e ' ^ - ( 1 , )  p ' s >  < J ' s '  I b ( J D e ^ (£) p £ >

£ exp i(2_* ( r (£ )  -  r ( l ' ) )  ^ ^ b  »
ZZ’ >-

(3 .1 0 )

where b * ( J2.*) b(Jl)^> means th e  av e ra g e  v a lu e  o f b * ( £ ')  b ( £ ) .

L et us c o n s id e r  t h a t  th e  l a t t i c e  c o n ta in s  one a tom ic s p e c ie s  o n ly .

Then in  g e n e ra l b (£ )  i s  dependen t upon th e  a c tu a l  is o to p e  and n u c le a r

s p in  o r i e n t a t i o n  p r e s e n t  a t  r U ) .  We assume f u r th e r  t h a t  th e re  i s  no

c o r r e l a t i o n  betw een b(2.) and b ( £ ' }  i f  Z and Z 1 a re  d i f f e r e n t .
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In this case we have

<b(£)b (£*)> = <b(£)><b (£')> = |<b>|2 , if £ ^ £*, (3.11a)

|b(£)|:> =  < |b2l> , if £ = £ ’. (3.11b)

This we can write as

<b(£)b*(£')> = | <b> | 2 + {< |b| 2> - |<b> | 2> . (3.11c)

By substitution of (3.11) in (3.10) we may split the differential cross
section do/da in a coherent and an incoherent part

where

do
da coh da inc

do) i , i 9= <b> z y 0i£*i(£)
dftj1 ,k J coh £

(3.12a)

(3.12b)

and

inc
N{< |b| 2> _ |<b>|2} (3.12c)

For scattering vectors Q  equal to 2tt times a reciprocal lattice
vector j_, for which exp (2iriT_*r(£)) = ! (see (2.11), (2.12) and (2.13)),
the expression I exp[i2-£(£)J is equal to N2. As (£ moves away from
a reciprocal lattice point this factor rapidly drops to zero.
Consequently the (do/da)coh shows strong interference in certain
directions, the maximum value being proportional to |<b>12. The
(do/da)coh represents the well-known Laue—Bragg scattering. It is
interesting to note that it is only the mean scattering potential which
gives rise to interference effects. The deviations from the mean
potential, which are randomly distributed, can not lead to interference
effects and hence cause the incoherent scattering.
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3.3. Inelastic scattering

We will now evaluate the double differential cross section (3.9)
including energy transfer. We consider a harmonic crystal in which

r'(£) is time dependent

r'(£,t) -£_(£) + u(£,t) . (3.13)

Furthermore we write the délta-function for the energy in (3.9) as an

integral

6
"h2k 2

E >
P

00

1
2irh exp -icot+i dt, (3.14)

where
(3.15)

We now introduce the time-dependent Heisenberg operators

V° exp Yxp itH (3.16)

where
T = ^ ( O e x p ^ ^ / r /  (£)) (3.17)
£  £

and H is the hamiltonian for the lattice vibrations.

Then _
exp|i(Ep ,-Ep)t/h|<p,s ,|T^|ps> = < p ,s,|Ta (t)|ps> . (3.18)

With the help of (3.14) and (3.18) and making use of the closure
procedure we find that (3.9) transforms into

where

d2a = k'
dftdE 2irhko

<T*(°)T^(t)>

dt e lü>t<T*(0) T^(t)> T ,
“  00

T = I PpPs <ps|T*(0)Ta (t)|ps>

(3.19)

(3.20)
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means the thermal average of TQ(0)T-(t).

Let us now assume for simplicity that we have a random distribution
of the isotopes and spin orientations over the lattice sites of a
harmonic crystal, which has one atom per primitive cell only. Using
(3.13) we find for (3.19)

dfdE = (<b2>-<b>2)2^ k ƒ dt e ltüt<exp(-i^*u(0,0))exp(i^*u(0,t))>
o

+ <b>2 2rrÏÏk / dt e 1Ü>t I<exp(-i^*u(0,0))exp(i^*u(l!.,t))>Te1̂ ‘- ^ ^  ,
o -«o £ 1

(3.21)

where the cross section again has been split up in an incoherent and
a coherent part (cf. (3.12) for elastic scattering). The thermal
averages in (3.21) can be calculated by means of Bloch's theorem ®).
This theorem states for a harmonic crystal

<exp |i£* [u(£)-u(£'))j>>T - exp <J-|Q2 < u 2 (££»£) > T j> , (3.22)

where u(££'(}) is the component of the vector u(H) - ta(£') along the
vector (£.

In the quantum mechanical treatment of the lattice vibrations
(cf. section 2.3) the ii(£,t) are operators and we may write

<  exp ( -iC£*u(0,0)} exp{i£*u(£,t)}> =

= exp |i[^-u(0,0),^-u(£,t)]|<Êxp<ji^-(u(£,t)-u(0,0))|>T . (3.23)

Here the term between square brackets is the commutator of the two
operators. Equation (3.23) actually states Hausdorff's theorem ^), which
is valid when the commutator is a number. Combining (3.22) and (3.23)
we readily arrive at
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<  exp |-i^*u(0,0)j>exp<|i^*u(i.,t)|> > T =

- exp|-<(a*u(0,0))2> T + <(2.*u(0,0)) (2\ü(£,t)) >^>

{- I (Mae(°'0> - V ^ l w  •1 aB J
= exp

where a,3 stands for x,y,z<
We note that

(3.24)

- I (0,0)QaQ 4 - 2W(S)
a3

(3.25)

is the exponent in the so-called Debye-Waller factor exp(-2W(£)).

Combination of (3.21),(3.24) and (3.25) results in

d2ol
dftdE

. <b>2_Nkl_ e-2W(a)yeia*r(i) fdt e
coh 2irWco a

exp ( I *

-iwt

(3.26)

and
d2o

dQdE
. (<b2>-<b>2) e'2" ^  Jit .•i“te*p(lM(>6(«,t)Q<>Q6)

inc o “® “3
(3.27)

3.4. Phonon expansion

In order to perform the integration over t in (3.26) and (3.27)
we expand exp (J MagQaQg) in a Power series. This leads to the so-
called phonon expansion, the first term of which describes the
elastic scattering processes, and the second term the inelastic pro
cesses, in which a single phonon is created or annihilated. The
higher-order terms represent the multi-phonon processes. Before doing
this we first rewrite M (£,t) in a more explicit form. With the helpOtp
of (2.27), (2.28), (2.31), (2.32) and (3.24) one readily obtains
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cos (u. (£) t )  i  sinoj. (£) t
co th fu . (q ) /  (2kT))--------  ̂ . N—  + --------- ----------

1 J *  J w. (£) W. (£) (3 .2 8 )

where X has been o m itte d  in  £* (A ;£ ) b ecause  th e  c r y s t a l  has o n ly  one

atom p e r  p r im i t iv e  u n i t  c e l l .  For m acroscop ic  c r y s t a l s  th e  summation

o v er ^  may be re p la c e d  by an in t e g r a t i o n  o v e r th e  f i r s t  B r i l lo u in
zone 10) acc o rd in g  to  th e  r u le

NV
I  f ( £ )  » —4
£  8ir3

d£f (£) (3 .2 9 )

where V i s  th e  volume o f th e  u n i t  c e l l .  F u rtherm oreo

(2irh)“ 1 ƒ e " lü)td t  = 5(huj)

and

I * 1 2 - ( t )  - ^  i «(a-2»T(h)) ,

(3 .3 0 )

o h
(3 .3 1 )

where jr(h ) i s  a r e c ip r o c a l  l a t t i c e  v e c to r  as d e f in e d  in  (2 .1 2 ) .

Combining ( 3 .2 8 ) ,  ( 3 .2 9 ) ,  (3 .3 0 )  and (3 .3 1 )  w ith  (3 .2 6 ) and (3 .2 7 )
we o b ta in

d20
dftdE

.  „< „> *£ . e-w <2>
coh o

8tt3

o h
I  6 (g -2irT(h))6 (ftu)

+ è   ̂ /d £ |^ * e . (£ ) | 2 uT1 (£ ){c o th (jfi8 m . (£ ) )
j ,E  J J L J

+ e

’ I  6 (2“2irr (h )-e£ ) 6 (fior-etiu). (£ ))
Vi J

+ c o h e re n t m u lti-p h o n o n  p ro c e s s e s (3 .3 2 )
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and
d2g
dftdE

N[<b2>.<1)>2) t  e-™<2> 6 (fico) +

•hV
+ --- —  I /d£

32ir 3M  j ,e
S.'®j (a.)

2 _
u71 (£) { coth (jffiBWj (£)) + £ V *

6 (liüj-etiüjj (q)) + incoherent multi-phonon processes . (3.33)

Here e can only have the value +1 and -1, corresponding respectively
to the creation and annihilation of a single phonon by the neutron,

6 = 1/(kT).

The first terms of (3.32) and (3.33) are equivalent to the ex­
pressions (3.12b,c) for the elastic scattering, except for the factor
exp p2W(^)3 • Thus we see that if one takes into account the lattice
vibrations, but neglects energy transfer between neutron and lattice a
reduction of the cross section results by a factor exp p2W(£)] compared
to the scattering formula for the rigid lattice. The result obtained
by cutting off the expansion after the first term is usually indicated

as the static approximation.

3.5. One-phonon scattering

For the investigation of the lattice dynamics of crystals the
single phonon or one-phonon processes are of extreme importance.

Placzek and van Hove 11) have shown that in cases where the phonon
frequencies u>.(£) are independent of the polarisation suffix j it is
possible to replace the integration over £  in the second term of (3.33)
by an integration over oo using the frequency distribution function de­
fined in (2.33). The result is that the incoherent cross section for
single phonon processes is directly proportional to f(v). Actually, it
can be shown 7.12) that for cubic crystals with polarisation dependent
frequencies this cross section has the same simple form. This provides,
in principle, a direct method for measurement of the frequency dis­
tribution function, which thermodynamically is very important.
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In practice, however, the relation is much less simple because of
multi-phonon processes and coherent scattering.

More reliable results may be obtained by means of one-phonon
coherent scattering experiments. The coherent cross section for single
phonon processes (3.32) is only non-zero if

ftto 2m (k 2-k'2) = eüo). (q)o J ■a/ (3.34a)

and (£ = k - lc' = ec[ + 2irr (h) (3.34b)

are satisfied simultaneously, thus providing a direct method for
measurement of the dispersion relations <o.(q). Expression (3.34a)
represents the law of conservation of energy and (3.34b) is often
interpreted as the law of conservation of quasi-momentum.
This direct method of determination of the dispersion laws for harmonic
crystals has been applied in the experimental work described here, and
therefore special attention will be paid to expressions (3.32) and
(3.34). We split out from (3.32) the one-phonon part and write, using
(2.32),

fd2o(l)l
dfidE ■boh

N <b>2 T ---— ----.L 4Mk to. (q)j,e o J v-*'
r 2w(<P &*e. (£)

• | 2<ij(£)>+l+e j 6 (üoo-etïiOj (£)) (3.35)

under the restriction (3.34b).

The intensity in a single peak is obtained by integration over the
energy E = ■ft̂ k,2/(2m), which results in the total cross section for a
single phonon process

■ftk'{2<n.(£)>+l+e}
N <b>2 ------- J---------

4Mk to. (q) I J. Io J J 1
(£) |2 -2W(Q)C *

where

1J 1 — d (fito-eHto. (q))
'“j 1 dE h(o=ehto. (q[)

1 + 2Ë k ‘̂ ( cl)

(3.36)

(3.37)
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is the Jacobian involved in this integration.
At low temperatures <n^(£)> approaches zero and consequently the

cross section for phonon annihilation (e = -1) vanishes. In this case
only experiments with energy loss of the neutrons are possible. Further
it can be seen that (do(1)/dQ)coh is inversely proportional with the
frequency of the observed phonon and proportional with the square of
the scalar product of the scattering vector £  of the neutron and the
polarisation vector e_ of the phonon. The latter factor is of great
importance in the choice of the experimental conditions.

3.6. Inelastic structure factor

In our treatment of neutron scattering, sofar, we considered for
simplicity only lattices with one atom per primitive unit cell. The
result for the more general case of more atoms per primitive unit cell
can be obtained in an analogous but much more complicated manner. An
expression corresponding to (3.35) is then » )

where r (X), the position vector in the unit cell is defined by
r(£,X) = r(£) + r(X). In (3.38) is implied that e£ = £  - 2iTT_(h) is
satisfied. We define the structure factor for one-phonon scattering by

This we will call the "inelastic structure factor". For simple
structures, such as usually dealt with in inelastic neutron scattering,
it is meaningful to introduce a reduced structure factor, which under
certain circumstances is a periodic function of £. In the directi°ns
of higher symmetry the polarisation vectors e.(X;q) for a particular
mode are often all parallel. Put in formula

2<nj (£) >+1+eI 6 j (q))4k w.(£)d&dE

J -W X ® i n . r ( X ) (£*e. (X;£)£<b(X)> M(X)• I<b(X)> M(X)e
X

(3.38)

i(£-r(X)
gJ Q )  =  l < b(X)> M(X) (3.39)
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ej(X;£) = c(X;£)£j (3.40)

The reduced structure factor g r (C|) is now defined by

lêsr®l2 =
l <b(X)> M(X)‘ ! el2 -£<*>
■V J

-1 (3.41)
<b(X)> M(X) 2 2-e.(X;£ )

If (3.40) is satisfied and furthermore all fractional atom coordinates
are rational we have that

ggr(£± 2ir i) (3.42)

2ut  ̂being vectors of the "structure lattice", which is defined by
j t*j:(X) = integer.

It is obvious that knowledge of the inelastic structure factor is
of great importance for the measurement of the dispersion relations
u.(q). As the Debye-Waller factor exp(-2W^) usually can be estimatedJ X
the eigenvectors e^(X;c[) constitute the big uncertainty in the inelastic
structure factor, because they are dependent upon the dynamical behaviour
of the specimen under investigation. It will be shown in chapter VI
that the eigenvectors are to a large extent determined by symmetry and
that a crude guess at the dynamics of the crystal provides sufficient
initial information about the inelastic structure factor.
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EXPERIMENTAL TECHNIQUE

4.1. Description of the principle of the triple-axis crystal spectrometer

For the study of coherent one-phonon neutron scattering the triple­
axis crystal spectrometer has proved to be the most powerful instrument.
In the literature 1>2) excellent review articles can be found about the
theory of this method, and comparisons between its performance and that
of other instruments used in neutron scattering. Bergsma 3) has given a
rather detailed description of the triple-axis crystal spectrometer at
one of the beam holes of the Petten H.F.R., which has been used for the
experiments presented in chapter V and VI. For this reason we will con­
fine ourselves to an outline of the method, giving only those details
about the experimental set-up which are of importance for the under­
standing of the measurements.

A schematic diagram of the triple-axis spectrometer is given in
fig. 4.1. A neutron beam from the reactor impinges on a monochromating
crystal, which by Bragg reflection selects neutrons of energy Eq and
wave vector k in the direction of the specimen.Neutrons, which are

Fig. 4.1.

Schematic diagram of a triple-axis
neutron crystal spectrometer.
Mon.=monochromator crystal, An.=
analyser crystal, Spec.=specimen
and Det.=detector. k and k ’ are
neutron wave vectors3 S and Sf are
scattering vectors, 20^, cf> and 2©.
are scattering angles 1 and V isH
the orientation angle of the
specimen.

scattered by the specimen through
an angle <j> are analysed with
respect to their energy E'
(wave vector k') by Bragg re­
flection at the analyser crystal,
which scatters neutrons obeying
the Bragg condition into the
neutron detector. Collimators
may be placed at different
positions in the beam in order
to reduce the spread in direction
and energy of the neutrons. It
is possible to set automatically
all four angles 20.,, 20. , <J> and
V, which are the scattering
angle at the monochromator
crystal, the analyser crystal
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and the specimen, and the orientation of the specimen in the horizontal
plane, respectively.

For neutrons scattered as indicated in fig. 4.1 the wave vector
diagram in reciprocal space is displayed in fig. 4.2. It is obvious
from this diagram that by a proper choice of the different variables
the experiment may be arranged to satisfy the conditions for conservation
of energy and quasi-momentum, given in (3.34). For given (), for instance,
it is possible by varying only two of the angles to obtain the situation
that k - k* = Q = q + 2rrx(h), i.e. the condition for conservation of— o —
quasi-momentum. After this has been realised one may vary the parameters

Fig. 4. 2.

Wave vector diagram for a neutron
scattering experiment corresponding
to fig. 4.1. t_ is a reciprocal
lattice vector3 q_ the wave vector
of a phonon.

Fig. 4.3.

Wave vector diagram illustrating
the "Constant Q" method. The dia­
gram changes gradually from the
arrangement with k^d) and k_'(l)
to that of k (2) and kf(2). Q_ and
\kf(l)\ - |)É/Y2) | remain fixed.

in the way as displayed in fig. 4.3. The length of k' is kept fixed,
while its endpoint moves along a circle of radius k'. As soon as the
energy conservation law fim = h2/(2m) (ko2-k'2) = ±ftu).(cj), is satisfied
a peak in the scattered intensity may be observed. This mode of operation
of the triple-axis spectrometer is called the "constant momentum
transfer1-or shortly "constant (J" method **). The great virtue of this
method is that the parameters, determining the energy transfer of the
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neutrons "ftw, are varied without changing (k - k'). With this method it
is therefore possible to observe phonons at any desired q-value.

Other modes of operation are the "constant energy transfer'1- and the
"normal to the gradient" methods. In the first case k as well as k'o
are kept fixed, while (1^ - k) is changed in order to satisfy eqs. (3.34).
In the latter method the path in reciprocal space is chosen in such a
way that the scan in (oi - c[)-space is normal to the gradient of the ob­
served dispersion relation. In the latter two methods it is to be under­
stood that is in the plane of and k', the scattering plane. In fig.
4.4 the three scans in (to - c[)-space are illustrated.

Fig. 4.4.

Paths in (u - gj -space of three
different methods for observing
the phonon dispersion relation
with a triple-axis neutron crystal
spectrometer. I: constant Q; II:
constant energy; III: normal to
the gradient.

The natural width of an observed phonon peak, which in the har­
monic approximation would be a delta-function, is determined by the
finite phonon lifetime. Additional broadening is caused by the ex­
perimental resolution and geometrical effects, the minimizing of which
is usually referred to as focusing. The possibility of optimizing the
experimental resolution by operating the spectrometer under focused
conditions has been discussed by several authors 5»6»7»8). The ex­
perimental resolution arises because of finite collimation and because
of the mosaic spread of monochromating and analysing crystals. Hence
for a particular scattering configuration, instead of one single

4.2. Focusing of the spectrometer
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energy transfer, a certain range of energy transfers is possible for
neutrons arriving at the detector. Because of the relation between the
energy and direction of the neutrons at different positions of the
scattering system, this range of energy transfer in (to -3.)-space is an
ellipsoid with a rather large ratio between the major and minor axes.
The flexibility of a triple-axis crystal spectrometer often enables
one to obtain a particular orientation of this ellipsoid at a given
value of Ha) and - k') 6) . Operation under focused conditions means
now that during a scan in (w - cj)-space, the long axis is kept parallel
to the gradient of the dispersion relation. Scattering is only observed
when the ellipsoid coincides with the dispersion relation, and it is
therefore obvious that under focused conditions the observed peaks are
of minimum width. In fig. 4.5 scans in (w - £)-space under focused and

defocused conditions are illustrated.

Elsewhere 6) a description has
been given of a simple graphical
method to find the parameters which
establish focused conditions. Since
in a real spectrometer the angular
parameters are limited, optimum
focusing can not always be achieved.
The smaller the gradient to the
dispersion curve, the more difficult
it is to obtain focused conditions.
For zero gradient the scattering
angles 20„ and 20^ have to be 180°,
which is, of course, experimentally
impossible.

In fig. 4.6 some selected phonon
paths correspond to a "constant peaks in a-iron (see chapter V) are
Q" scan, but in case A the displayed. These phonons have been
scattering ellipsoid is parallel
to the gradient of the dispersion measured when the spectrometer set-
re Hatton, while in case B it is . in & varying degree was removed
perpendicular to it. This results
in a sharp, high peak for case A from complete focusing. The con-
and a low peak for case B. ditions for complete focusing 6) are

Fig. 4. 5.
Illustration of the path in
(u-q)-space for the observation
of a phonon under focused (A)
and under defocused (B) condi~
tA.nne nf the svectrometer. Both
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ï  k„.

q=1.357

F r e q u e n c y  ( 10'2 s~’ )
Fig. 4
Some selected neutron groups due to scattering by phonons in a-Fe to­
gether with the corresponding Wave vector diagrams and the scattering
arrangements o f the spectrometer. This picture illu stra tes qualitatively
the dependence o f the observed peak widths on the extent o f focusing o f
the spectrometer: the smaller the angles between (k^-jf) and S~ and between
(k'-m) and Sf 3 the smaller the peak width o f the observed phonon. The
horizontal line a t half  height o f the peak indicates the line width for
incoherent scattering.
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that the vectors (k — in) and (k1 — m) are parallel or anti—parallel
to and S', respectively, where — m = is the gradient to the
dispersion relations and S and IS' are the scattering vectors at the
monochromating and analysing crystal, respectively. In fig. 4.6 the
actual settings are shown by the wave-vector diagrams. The horizontal
line at half-height indicates the resolution of the spectrometer for
an incoherent scatterer as specimen. This resolution is the same as
that in the unfocused case of neutron group 7, where m is zero.

4.3. Technical data of the spectrometer

In fig. 4.7 a cutaway view of the triple-axis crystal spectrometer
is shown.

Zinc crystals are used as monochromator and analyser. They show
a better performance than the copper crystals used previously. The
spectrometer is normally operated with a 40' or 20 soller slit
collimator between the reactor and the monochromator, while a 60' or
30* collimator is placed in front of the analyser. The angular ranges
are approximately from -5° to +78° for 20M , from -100° to +100° for
20 and $ and from 0° to 360° for V. As neutron detector a 2" BFg-A
counter with a ceramic endwindow is used.

The electronics of the spectrometer is controlled by punched tape.
From the Philips-Electrologica X-8 computer in Petten the tapes are
obtained by means of which the spectrometer can be operated in "constant
Q", "constant w", or "normal to the gradient" modes. Mainly the
"constant mode has been used. Output data are printed and also
punched on tape, which can then be handled by the computer to obtain
sheets on which the phonons are plotted by means of the lineprinter
and on which all relevant output data are printed.

The monochromatic beams in the spectrometer may be contaminated
by neutrons of higher order wavelength, because a single crystal
scatters not only neutrons of the desired wavelength X, but also those
of wavelengths X/2, X/3, etc., if such neutrons are present. Since the
spectrometer is always operated with energy loss of the scattered
neutrons, especially the analyser crystal may suffer from second order
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J: beam shutter, 2: Soller s l i t  collimator, 3: rotating monochromator shield, 4: half-angling cylinder, 5: mono­
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contamination, because it is adjusted to reflect neutrons of longer
wavelength than those incident on the specimen. In order to suppress
the second order neutrons sometimes a pyrolytic graphite filter is
used in front of the analyser crystal. The ratio between the scattering
cross sections for first and second order neutrons o^/o^ ^as i^s maximum
for first order neutrons of wavelength around 2.6 X. Elsewhere ) the
properties of this filter have been described in more detail.

Sometimes the energy analysis of the neutrons is performed by
means of the "inverse beryllium" method 10»3). In that case the
analyser crystal is replaced by a 15 cm thick piece of polycrystalline
beryllium, through which the neutrons scattered from the specimen have
to pass. This beryllium filter transmits almost exclusively neutrons
with energies lower than 5.2 meV. The latter method turned out to be
very powerful for the observation of the less intensive high energetic
optical phonon branches. The interpretation is, however, not always
as straightforward as with an analysing crystal, while the experimental
flexibility is greatly reduced because the energy is fixed.
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INVESTIGATION OF THE LATTICE DYNAMICS OF ct-IRON

5.1. Introduction

Several authors have discussed the lattice dynamics of b.c.c.
metals, and different attempts have been made to account for the effect
of the conduction electrons )̂. For the case of a—iron, which has the
b.c.c. structure, inclusion of this effect is rather difficult due to
its complicated electronic structure. At the time that this investigation
was started the experimental data about the phonon dispersion relations
of a—iron consisted of the work by Curien , based on diffuse X ray
scattering, and the rather incomplete neutron scattering data by
Iyengar et al. 3) and Low h). These data were rather inaccurate and
could not be used for a detailed comparison with the different
theoretical approaches. The reason for the lack of neutron data was
the difficulty to obtain suitable samples, in spite of the excellent
scattering properties for neutrons that result from the high coherent
scattering cross section. The growing of single crystals of sufficient
size and quality had been a major problem, stemming from the two phase
transitions during cooling down from the melt, which can be seen in the
phase diagram of iron 5). Only recently a special technique has been
developed to grow single crystals of sizes of the order of some cubic
centimeters, needed in elastic neutron scattering experiments. As soon
as such a crystal was at our disposal the measurements were started.

Since our first report 6) on the preliminary experimental results
a large number of experimental neutron studies on a-iron were published
7»8»9»10), amongst which only those of Brockhouse et al.7) and
Minkiewicz et al.8) are about as extensive as the one reported here.
Therefore, in the discussion of our experimental results, attention
will also be paid to their data.

5.2. Lattice dynamics of a—Fe in the Born—von Karman model

Treatment of the lattice dynamics of ci-Fe in the Bom-von Karman
model following the line of chapter II is rather straightforward. The
dynamical matrix is given by a simplified version of (2.15); because



- 41-

section 5. 2.

b.c.c. iron has only one atom per primitive unit cell there are no
X-indices. In the development of the dynamical matrix we shall include
interactions out to fifth neighbours.

Symmetry considerations lead readily to the general form of the
force constant matrices, which are the three times three matrices that
contain the interatomic force constants -$ defined in section 2.2.a 8
In table 5.1 these matrices are given for the interactions with the
first five neighbours.

Table 5.1.

Force constant matrices for the first five neighbours in a-Fe.

s atom
position r ns

force constant
matrix

1 (111)a/2 Ja /3 8

2 (200)a/2 a 6

3 (220)a/2 a /2 12

4 (31l)a/2 /ll 24

/3 8

°1 61 61
al

8, 8, a.l 1 1

°2 0 0
0 B2 0
0 0 CM

CO.

a3 Y3 0

Y3 a3 0
0 0 e3

a 6 6i+ k k
YU
K

8r5 5 5eca _ 8_5 5 5
8, a5 5 5J

5 (222)a/2
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The -$ are replaced by a , $ ... etc., according to the generallya3 s s
adopted convention n ), where s indicates the neighbour concerned, ng
is the number of neighbours of a particular kind and r the distance to
these neighbours. Since only symmetry considerations have been used,
no assumptions have been made about the nature of the interatomic
forces, i.e. we are dealing with general forces.

Inserting the data of table 5.1 in (2.15) leads to the expressions
for the elements of the dynamical matrix given in table 5.2. Here the
suffix i runs from 1 to 3, corresponding to x,y,z. The values i + n
are to be counted modulo 3.

If the wave vector £  of a phonon lies along one of the symmetry
axes flOdl» [lio] or D 1 0 > either the dynamical matrix is diagonal for
all values of £  or can be diagonalised by an appropriate rotation of
axes 12). Such phonons correspond to displacements in the lattice in
which all atoms in a plane perpendicular to the symmetry axis move as
a whole. Such a vibration can be considered as the motion of a one­
dimensional lattice in which each point represents a plane of atoms in
the three-dimensional lattice. It is straightforward to show that for
the lattice vibrations in these directions the following relation

holds 12»13)

1 - cos(nirq/q )Tnax (5.1)

where the <|> J , which can be written as linear combinations of the
interatomic force constants, must be interpreted as interplanar force
constants for the j-th branch. q v  is a function of the direction.max

In the symmetry directions exist purely longitudinal (polarisation
vector along the direction of £) and transverse (polarisation vectors
perpendicular to £) modes. For £—vectors of the form QjOCQ and
the transverse modes are degenerate.

For phonons with propagation vector of the form (ccQ and [lisj
the dynamical matrix can also be diagonalised and similar relations,
except for a constant term, as (5.1) hold, although this can not be
associated with movements of planes of atoms as a whole.
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Table 5.2.

Coefficients of the dynamical matrix D(q) for a-Fe

with interactions out to fifth neighbours.

Di£(£) " 80^1 C.C. C. „)11+1 1+ 2'

+ 2az(l C2,i> * 262<2 - C2,i+1 - °2.i«)

+ 4 a 3 ( 2 C2,i(C2,i+l + C2,i+2)}

+ 4B3(1 C2,i+lC2,i+2^

+ 8a (1 c„ .C.^,C. 0)3,1 l+l 1+2'

+ 88 {2*t C.(C„ . ,C. + C. C . )}iv 3,1+1 1+2 l+l 3,i+2y

+ 8a (1 C .C . C . )2,1 2,1+1 2 ,1+2

D. (q) = 88 S.S. C.^1,1+1 1 l l+l 1+2

+ 4y „S .S .'3 2,1 2,1+1

+ 8ylfSisi+1c3>i+2

+ 86itCi+2(S3,iSi+l + 8i83,i+i)

+ 86..S. .S . C .5 2,1 2,1+1 2,1+2

where = cos(aq^), = sin(aq^)

C .. = cosfmaq., ), S = sin(maq. ),m,i+n y  l+n m,i+n i+n

i = 1,2,3 means x,y,z. The suffix i+n is counted modulo 3.

The relations between the <p of these particular directions and
the interatomic force constants are presented in table 5.3.
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Table 5.3.
Relations between the interplanar force constants and the interatomic

force constants including 5-th neighbours.
a 1 »1 a 2 B2 a 3 6 3 Y 3

a
if 6 .

6
If

a 5 6
5

[ooc] l +8 +0 +0 +0 +0 +0 +0 +0 +16 +0 +0 +0 +0
+0 +0 +2 +0 +8 +0 +0 +0 +0 +0 +0 +8 +0

Y2
♦3 +0 +0 +0 +0 +0 +0 +0 +8 + 0 +0 +0 +0 +0

[ o o c j  T ♦ 1 +8 +0 +0 +0 +0 +0 +0 +8 +8 +0 +0 +0 +0
$ +0 +0 +0 +2 +4 +0 +0 +0 +0 +0 +8 +0
It*3 +0 +0 +0 +0 +0 +0 +0 +0 +8 +0 +0 +0 +0

I--
-1 n <r< l£

i
r< +4 +4 +2 +2 +4 +4 +0 +4 +8 +4 -8 +0 +0

♦2 +0 +0 +0 +0 +2 +0 +2 ••■4 +4 +0 +8 +4 +4

Ts s o I t , +4 -4 +2 +2 +4 +4 +0 +4 +8 -4 +8 +0 +0
7 1<b +0 +0 +0 +0 +2 +0 -2 +4 +4 +0 -8 +4 -4

[550] T„ +4 +0 +0 +4 +8 +0 +0 +4 +8 +0 +0 +0 +0
+0 +0 +0 +0 +0 +2 +0 +0 +8 +0 +0 +4 +0

+6 -4 +0 +0 +0 +0 +0 +2 +4 +4 -8 +0 +0
+0 +0 +2 +4 +0 +0 +0 +0 +0 +0 +0 +6 -4

T2
<j)„ +2 +4 +0 +0 +0 +0 +0 +4 +8 -8 +0 +0 +0
* 3 +0 +0 +0 +0 +4 +2 +4 +0 +0 +0 +0 +0 +0

+0 +0 +0 +0 +0 +0 +0 +2 +4 +4 +8 + 0 +0

*6
+0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +2 +4

[ c « J t +6 +2 +0 +0 +0 +0 +Ó +2 +4 - 2 +4 +0 +0
+0 +0 +2 +4 +0 +0 +0 +0 +0 +0 +0 +6 + 2

+2 -2 +0 +0 +0 +0 +0 +4 +8 +4 +0 +0 +0

«V +0 +0 +0 +0 +4 +2 - 2 +0 +0 +0 +0 +0 +0

♦ 5 +0 +0 +0 +0 +0 +0 +0 +2 +4 - 2 -4 +0 +0

*6 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 + 2 - 2

[ J U ] a <Pn +8 +0 +0 +8 +16 +0 +0 +8 +16 +0 +0 +0 +0
d>
r 2

+0 +0 +2 +0 -8 +0 +0 +0 +0 +0 +0 +8 +0

[J k ]n +8 +8 +4 +4 +8 +8 +0 +8 + 16 +8 -16 +0 +0
+0 -8 +0 +0 +0 +0 +0 +0 +0 +0 +16 +0 +0

<pn +0 +0 +0 +2 -4 -4 +0 +0 +0 +0 +0 + 8 +0
I 2
*3 +0 +0 +0 +0 +0 +0 +0 +0 +0 -8 +0 +0 +0

[ c d ]  A +16 +0 +0 +0 +0 +0 +0 +16 +32 +0 +0 +0 +0
<P -4 -4 +2 +2 +4 +4 +0 -4 -8 -4 +8 +0 +0

♦ i
+0 +0 +0 +0 +2 +0 +2 -'4 -4 +0 -8 +4 +4

[ C C 0 * 2 s>n +16 +0 +0 +0 +0 +0 +0 +16 +32 +0 +0 +0 +0
<b, -4 +0 +0 +4 +8 +0 +0 -4 -8 +0 +0 +0 +0

♦ i +0 +0 +0 +0 +0 +2 +0 +0 -8 +0 +0 +4 +0

f c c i l n <j>_ +16 +0 +0 +0 +0 +0 +0 +16 +32: +0 +0 +0 +0
1° -4 +4 +2 +2 +4 +4 +0 -4 -8 +4 -8 +0 +0

♦2 +0 +0 +0 +0 +2 +0 -2 -4 -4 +0 +8 +4 -4

The maximum value of n in * for the different directions is related to
the type of neighbours included in the following manner:

[0 0 c ]  : n^ = m a x ( h ^ ) ; | ? ? 0 |  : n 2 = max { ( h . + k . ) / 2 )  ;
m 1 1

[ « 5]  : n j  = m a x ( h i + k i + £ i ) ; I H r  I : n 4 = n 1 + 1;• 2 1 m m
r « f l :  n 5 = n 2 + 1.m m

h k and £. are the atomic coordinates of the neighbours under thei’ l i
restriction h. > k^ > .
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In fig. 5.1 the (llO)-plane
is shown of the reduced zone of
a-Fe, in which the polarisation
vectors for the different
branches in the above-mentioned
directions are indicated.

Fig. 5.1.

The (UO)-plane of the reduced
zone of the reciprocal lattice
of a-Fe3 in which the polarisation
vectors for the different phonon
branches in directions of high
symmetry are indicated. A circle
with dot denotes a polarisation
vector perpendicular to this
plane.

5 .3. Measurements and experimental results

Using the previously described triple-axis crystal spectrometer,
a large number of neutron groups, scattered by phonons belonging to
branches in the three main symmetry directions and along an<̂
QiSJ of a-Fe were collected. All measurements have been performed at
room temperature. The experimentally determined dispersion relations
for these directions are displayed in fig. 5.2. In table 5.4 the
numerical values of the frequencies of the phonons are presented for
the different branches.

The spectrometer was mainly operated in the "constant Q" mode with
energy loss of the neutrons (phonon creation). Copper (111)-reflections
were used both for the monochromator and for the analyser. Focusing was
applied to the extent as was allowed by the gradient to the dispersion
relations and the lattice spacings in the monochromator and analyser
crystals. For the observation of high energetic phonons it is quite
well possible that the scattered energy E' is close to one quarter of
the incoming energy E . This may give rise to spurious neutron groups

10011=11111

(0001
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(Vtih) V/i.'h.O)

Fig. 5.2.
Phonon dispersion re la tions o f  a-Fe. The open and so lid  c irc le s  are
experimental po in ts . The so lid  curves correspond to a 5-th ne-iahbour
Born—von Karman models and the dashed cvrves to Krebs model
The labelling  o f  the branches i s  according to f ig .  5.1.
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c' -V \> <• V V

[t , C. c]T (we. s]l t , C. c]T

0.10 2.10 ± .05 1.05 + .03 0.90 7.00 ± .05 7.40 + .10
0.15 3.15 ± .07 1.55 t .03 0.95 6.71 ± .04 7.55 + .07
0.20 4.25 ± .05 2.23 ± .03 1.00 6.38 ± .05 7.80 ± .10
0.25 5 .00 t .05 2.65 ± .03 1.05 6.03 t .04 8.00 ± .10
0.30 5.90 t .07 3.15 t .03 1.10 5.80 t .05 8.20 ± .10
0.35 6.65 t .05 3.70 ± .03 1.15 5.74 ± .03 8.25 ± .10
0.40 7.29 i .03 4.25 i .05 \  .20 5 .80 t .07 8.40 + .10
0.45 7.98 t .05 4.80 ± .03 1.25 6.00 ± .03 8.50 + .10
0.50 8.31 ± .05 5.25 ± .03 1.30 6.31 ± .03 8.60 ♦ .10
0.55 8.72 t .07 5.65 i .03 1.35 6.60 t .03 8.40 t .07
0.60 8.64 t .06 6.05 + .05 1.40 6 .90 ± .07 8.67 ± .07
0.65 8.58 ± .10 6.35 ± .04 1.45 7.30 ± .05 8.67 ± .12
0.70 • 8.25 t .07 6 .54 ± .06 1.50 7.75 ± .07 8.70 ± .07
0.75 8.10 ± .04 6 .80 ± .04 1.55 8.10 ± .05 8.60 ± .07
0.80 7.75 ± .05 7.00 t .06 1.60 8.37 t .10 8.60 1 .07
0.85 7.40 ± .03 7.20 t .10 1.65 8.65 ± .07 8.62 t .07
0.865 ( 7.27 t . 03) ( 7.27 ± . 03) 1.70 8.75 ♦ .10 8.65 + .07

1.71 8.72 ♦ .07
1.73 8.75 ± .10 8.75 £ .10

(  . V V V V

[o ,o ,t]L  [o ,o , c ] i  Q .è .c ]»  [} ,i,c ]A
0 (9.80 ± . 07) (6 .52 ± . 05)
0.10 1.97 ± .03 1.33 ± .03 9.50 ± .10 6.70 ± .10
0.15 2.82 ± .03 2.05 1 .03 9.15 ± .10
0.20 3.68 ± .03 2 .70 ± .03 9 .00 ± .08 6.95 ± .10
0.25 4.55 ± .03 3.35 ± .03 8.80 ± .10
0.30 5.25 t .03 3.93 ± .03 8.45 ± .07
0.35 6.00 ± .05 4.52 ♦ .03 8.25 ♦ .07
0.40 6.50 ♦ .05 5 .10 ♦ .03 7.95 .05 7.15 ± .07
0.45 7.05 1 .05 5 .60 ± .03 7.50 + .06
0.50 7.55 ± .05 6.10 ± .03 ( 7.27 ♦ . 03) 7.27 ± .03
0.55 7.90 ± .05 6.55 ± .03 6 .90 ± .04
0.60 8.30 ± .07 7.00 1 .03 6.65 * .03
0.65 8.56 ± .06 7.40 ± .05 6.30 ♦ .03
0.70 8.58 ± .08 7.65 + .05 5.95 ± .03
0.75 8.80 ± .04 7.90 ♦ .05 5.62 ± .03
0.80 8.80 ± .04 8.15 .05 5.35 ± .03
0.85 8.85 ± .08 8.30 1 .07 5.05 ± .03
0 .90 8.85 1 .06 8.55 ± .10 4.85 ± .03
0.95 8.78 ± .07 8.65 ± .10 4 .65 ♦ .03
1.00 8.75 ± .10 8.75 + .10 (4 .58 ♦ . 04)

V V * * V

[t , c, o] i 2 [t . t . OjT, [c, c, o]L [c, c, 0 a

0* 8.75 .10 8.75 t .10
0.05 8.65 .10 8.70 ± .12
0.100 1.28 ± .03 1.92 * .03 8.40 ± .10 8.55 ± .08
0.125 1.60 ± .03
0.150 1.93 ± .03 1.35 t .03 2.95 ± .03 8.25 ± .10 8.30 ± .08
0.175 2.27 ± .03
0.200 2.62 ± .03 1.82 t .03 3.85 ♦ .03 8.05 ± .07 8 .20 ± .05
0.225 2.93 ± .03
0.250 3.25 t .03 2.27 ± .03 4.82 ± .03 7.82 ± .05 7.95 ± .10
0.275 3.58 ± .03
0.300 3.83 ± .03 2.72 * .03 5.65 i .05 7.50 t .05 7.75 i .10
0.325 4.15 ± .03
0.350 4.45 ± .03 3.12 ± .03 6.57 ± .04 7.10 1 .05 7.50 t .08
0.375 4.70 ± .03
0.400 4.93 t .03 3.55 ± .03 7.25 ± .03 6.70 ± .10 7.40 ± .08
0.425 5.20 ± .03 3.70 1 .03
0.450 5.37 t .03 3.88 ± .03 7.90 ± .04 6.22 f .08 7.10 ± .10
0.475 5.62 ± .03 4.00 ± .03
0.500 5.82 ♦ .03 4.13 ± .03 8.42 ± .03 5.75 t .07 6.95 ± .07
0.525 6.02 ± .03 4.27 ± .05
0.550 6.21 i .03 4.37 ± .03 8.87 ± .03 5.25 ± .07 6.75 ± .07
0.575 6.32 ± .04
0.600 6.40 t .03 4.52 + .07 9.38 ± .05 4.85 + .08 6.55 ± .07
0.625 6.50 i .08
0.650 6.50 4 .03 4.62 ± .07 9.68 ± .08 4.65 ± .07 6.40 t .07
0.675 6.55 ± .03
0.707 6.52 ± .03 4 .58 t .04 9 .80 t .07 4.58 ± .07 6.52 ± .10

Table 5.4.
Phonon frequencies in a-Fe
at room temperature (in
units of 7012s -1 7,
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from second order reflections in the analyser crystal. For such cases
the analyser crystal was set at 13 meV and pyrolytic graphite was used
as second order filter. Almost all measurements were carried out on a
single crystal of pure iron of cylindrical shape, 0.94 cm in diameter
times 7.5 cm long. This sample, which had a mosaic spread of 7', was
obtained from Research Crystals Incorporated, Richmond, Virginia,
U.S.A. A few phonons, of high energy near the jj 10]-boundary are due to
scattering by a larger crystal, 3 cm in diameter and 7 cm long, which
contained 3.5% solicon. This crystal was kindly put at our disposal by
C.E.N. - S.C.K., Mol, Belgium,through the courtesy of Dr Hautecler.

From (3.36) it is clear that the maximum intensity in the observed
neutron peaks is obtained when the scattering vector £  is parallel to
the polarisation vector of the phonon. Fig. 5.1 shows that this con­
dition can be satisfied for the majority of the branches by scattering
in the (lTo)-plane. Only those phonons, which have their polarisation
vectors perpendicular to this plane, were measured in the (100)-plane.

In fig. 5.3 the (1Ï0)- and (lOO)-plane of the reciprocal lattice

2' 2_

'y'(2 2 0|

(0 2 Ö)

Fig. 5.3.
The (120)- and (lOO)-planes of the reciprocal lattice ofa-Fe with zone
boundaries indicated. The numbered points indicate positions which are
particularly suited for observation of longitudinal (1,2 and 3) and
transverse (1’,2' and 3') phonons.
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of a-Fe are shown. Positions 1,2 and 3 are typical for observation of
longitudinal phonons, 1',2* and 3' for measurement of transverse
phonons.

In addition to the data displayed in fig. 5.2 also phonons in
off-symmetry directions in the (llO)-plane have been measured. These
measurements, the results of which are shown in fig. 5.5, were carried
out in order to check the accuracy of the model used in the analysis.

5.4. Analysis of the experimental results

The experimental data of fig. 5.2 have been analysed in terms of
a general forces Born—von Karman model. The range of the interactions
was established by making a least squares fit of the individual dis­
persion relations to the cosine series given by (5.1) (of. ref. 13)).
After that a simultaneous least squares analysis was made for all
measured branches using all data presented in table 5.4. In this
analysis the <j>n3 are replaced by a linear combination of the inter­
atomic force constants according to table 5.3. The elastic constants
were also included in the analysis. We could have put constraints on
the interatomic force constants by means of the relations (2.44) and
(2.45), but for the sake of simplicity, only (2.45) was used; the
frequencies obtained from this expression for very small values of the
wave vector in the different directions were inserted as experimental
data with infinite weight. The polarisation vectors needed in (2.45)
are shown in fig. 5.1. The elastic constants for a-Fe have been taken
from Rayne and Chandrasekhar ***). They report the room-temperature
values c ^  = 11.78, c ^  = 23.31 and c = 13.55 in units of 10^dyn/cm^

The analysis in which forces out to third neighbours had been
taken into account gave already good qualitative agreement with the
experimental data. But for reproducing the details of the dispersion
relations also fourth- and fifth-neighbour forces had to be included.
The 13 interatomic force constants resulting from this analysis are
given in table 5.5 together with the results of Minkiewicz et ail. ®)
and those of Brockhouse et al. 7).

Dispersion relations calculated from these interatomic force
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Interatomic force constants for a-Fe (102 dyn/cm).

present Minkiewicz Brockhouse
results et at. ®) et at.

a l (1XX) 178.6 ± 1.0 168.8 162.8

e l (1XY) 149.1 ± 1.3 150.1 148.5

“ 2 (2XX) 149.2 ± 2.5 146.3 155.2

*2 (2XY) 3.6 ± 1.4 5.5 5.4

a 3 (3XX) 12.4 ± 0.8 9.2 11.8

*3 (3ZZ) -10.9 ± 1.3 - 5.7 - 8.8

Y 3 (3XY) 3.0 ± 1.2 6.9 12.7

(4XX) - 6.0 ± 0.8 - 1.2 - 2.3

(4YY) - 0.6 ± 0.4 0.3 2.4

*4 (4YZ) 2.8 ± 0.8 5.2 3.9

(4XZ) 1.0 ± 0.5 0.07 0.7

°5 (5XX) - 2.3 ± 0.7 - 2.9 - 4.6

(5XY) - 2.4 ± 1.0 3.2 - 3.0

constants are displayed in fig* 5.2 as solid lines.

Assuming that the interatomic force constants deduced from measure­
ments in particular symmetry directions are also valid for all other
directions we are now in a position to solve the dynamical matrix for
all ^-values in the first Brillouin zone of the reciprocal lattice.
Actually, to obtain all frequencies present it is only necessary to
solve for those £-values which lie within the irreducible unit which
has a volume of 1/48-th of that of the first Brillouin zone. For b.c.c.
iron the boundaries of this irreducible unit are determined by the
planes £ z = 0, qx = qy, qx = qz and qx + qy = 1* Fig* 5.4 shows the
first Brillouin zone and its irreducible unit for the body—centred
cubic structure. In figs. 5.5a,b lines of constant frequency are shown
in the boundary planes of the irreducible unit, unfolded in the plane
q =0. Here also some experimental points are displayed which give'‘z

indication about the accuracy of the calculation.some
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Fig. 5.4.

First Bri1touin zone of b.c.c.
iron3 with its irreducible unit
indicated by the heavy lines.

The phonon frequency distribution function f(v) (<?ƒ. section 2.3)
has been calculated following the method given by Gilat and Raubenheimer
15) and is shown in fig. 5.6. This is an extrapolation method based on
the exact calculation of the frequencies for a number of q-values at
regular intervals in the irreducible unit. By determining simultaneously
the gradient in the x~, y-, and z-direction for those ^-values one
obtains by extrapolation all frequencies belonging to a continuous set
of (̂ -values in the region around each of the selected points. The total
number of diagonalisations (exact calculations) which have been per­
formed in the computation was 3287, the frequency channel width used
was 3.109 cps.

The resulting frequency distribution function was applied in the
calculation of the contribution from the lattice vibrations to the
molar heat capacity at constant volume according to (2.35). Also the
temperature dependent part C(T) of the Debye-Waller factor, which,
apart from a factor "ft2/2M, represents the mean square displacements of
the atoms (expression (2.36)), has been calculated. The results are
shown in fig. 5.7a,b.

Inserting Debye's frequency distribution function defined by

f„(v) = const*v2 for v <. vD max
for v > vfD (v) = 0 max

(5.2)
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(OIO)

Fig. 5. 5a.

( 010)

(000)

Fig. 5 .5b
Lines o f  constant frequency in  the boundary planes o f  the irreducible
u n it o f  the f i r s t  B rillou in  zone3 unfolded in  the plane qz = 0 (see
f ig .  5 .4). a: highest frequency bronchi b: loner lying branches.
For symmetry d irections compare m th  f ig .  5.2. The dots are observed
frequencies. The experimental poin ts o f  f i g . b belong to the frequency
series indicated  by dashed lines.
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Fig. 5.6.

Phonon frequency distribution function of a-Fe3 obtained from a 5-th
neighbour Bom-von Karman model.

in expressions (2.35) and (2.38), it is possible to determine the
Debye temperature 0^ = hv /k, as a function of the temperature.
The Debye temperature is determined by the condition that both
frequency distribution functions f(v) and fQ (v) should yield equal
values for C„ and C(T). Because of the fact that f(v) is differently
weighted in (2.35) and (2.38), it is not surprising that different
results are obtained for the "specific heat"- and the "Debye-Waller
factor"- Debye temperature. The results of such calculations are dis­
played in fig. 5.7c.
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1000

a:

b:

c :

Fig. 5. 7.
The la ttice heat capacity calculated from the frequency distribution
function o f f ig . 5.6.
The temperature dependent part C(T) of  the Debye~Waller factor
calculated from the frequency distribution function o f f ig.  5.6.
Calculated Debye temperatures. The solid  line corresponds to the
specific heat data3 the dashed tine to the Debye-Watier factor data.
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5.5. Discussion

One of the striking points of the dispersion relations of fig. 5.2
is their relative smoothness compared with other b.c.c. metals like Mo,
W, Ta and Nb 16»17»18»19). Not much of the complicated electronic band
structure is reflected in an apparent way, although some irregularities
show up, e.g. in the longitudinal mode in the [jcccj-direction for
(a/2n)q between 0.5 and 0.6, in the transverse branch of the same
direction around (a/2ir)q equal to 1.4 and in the £00y —direction for
the longitudinal branch at (a/2ir)q equal 0.7. As first shown by Kohn 20)
the phonon dispersion relations will be greatly influenced by the inter­
action of the conduction electrons with the phonons at positions in
wave vector space, where the Fermi surface has its boundaries.

Sofar in the calculations of dispersion relations several models
have been used in which the electronic contribution in some way or
another has been taken into account 21,22,23,24,25^ None of these,
however, yields better results than the more phenomenological des­
cription of the Born-von Karman model with an equal number of ad­
justable parameters. On the other hand, Schneider and Stoll 26) ob­
tained a rather good fit to the observed dispersion relations of Na, A1
and Mg with a four parameter pseudo-potential model, while in a Bom-
von Karman analysis one needed at least as many parameters as used
for a-Fe. It may thus be concluded that the electronic structure of
a-Fe plays an important but as yet not well understood role in its
lattice dynamical behaviour.

In fig. 5.2 the dashed curves have been obtained from calculations
with a model after Krebs 22), which may be considered as a representative
example of models accounting for the electrons. This model is based on
the screened Coulomb interaction between ions, the influence of the
electrons is considered through the screening parameter of the Coulomb
interaction. The interaction between closed ion shells is accounted for
by central interaction between first and second neighbours. The short
range forces are deduced from the elastic constants, the screening
parameter is determined by the number of free electrons ng.

In our calculation variation of n was found to be of very little
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influence on the discrepancy between calculated and observed data.
Since then Krebs and Holzl further refined this model 21+), but the fit
25) obtained by them to our experimental data with a model having 6
adjustable parameters» is no better than a Born—von Karman fit including
third neighbours, which uses 7 parameters. Hence we may conclude that,
as yet, the Born-von Karman model provides the best available inter­
polation scheme, and in view of the experimental data shown in fig.
5.5 we may safely assume that the derived frequency distribution function
is rather accurate.

Comparing the force constants of table 5.5 we observe a rather
good agreement between the three sets. A small difference between the
three sets occurs in oî , mainly reflecting a small overall frequency
shift with respect to each other, the largest giving the largest
frequencies. An interesting feature is the fact that tx̂ is larger than
6 , which is characteristic for all b.c.c. transition metals that have
been studied to date-tungsten, tantalum, niobium and molybdenum. This
means that forces between first neighbours are attractive, if considered
as arising from a potential. This could indicate that in the b.c.c.
transition elements the d-electrons are involved in some sort of quasi-
covalent bonding, as pointed out by Brockhouse ei> clI. )•

In the discussion of the specific heat data it is rather hard to
compare the calculated and experimental contribution from the lattice
vibrations to the specific heat. To do so the experimental data would
have to be corrected for the contribution from the electrons 27), ther­
mal expansion and anharmonic effects 28), and for the magnetic con­
tribution due to spin waves. Especially the latter becomes important
when approaching the Curie temperature (1043 K). The anharmonic con­
tribution is estimated by Foreman 28) to be of the order of 5-10 per­
cent of C , but could also be considerable less» The magnetic con­
tribution represents the greatest uncertainty at higher temperatures.
Stringfellow 29) reports the strong temperature dependence of the spin
waves of long wavelengths, which implies a strongly temperature
dependent spin wave frequency distribution function. Moreover, spin
waves of the shorter wavelengths have not been observed as yet, and
therefore frequency distribution functions can only be obtained by
extrapolation.
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It is more meaningful to compare the results for the Debye—Waller
factor with experimental data obtained from X-ray experiments 30,3 ).
Houska and Averbach 31) made a study at room temperature and deduced
a Debye temperature of 420 K, well in agreement with the value calcu
lated from the present experiment. Haworth 30) studied a higher tem­
perature range, and deduced Debye temperatures, appreciable lower than
those from our calculations. However, the scatter in his experimental
data is rather large, hence they must be considered as less reliable.
Furthermore, we may expect discrepancies between observed data at high
temperatures and the calculated data because of neglect of lattice
expansion and anharmonicity in the calculation.
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INVESTIGATION OF THE LATTICE DYNAMICS OF Fe^Al

6.1. Introduction
The investigation of the lattice dynamics of Fe3Al in the ordered

phase by inelastic neutron scattering is of interest for a number of

reasons.
From the experimental point of view very few detailed studies

have been made as yet of the dispersion relations of substances which
have as many as four atoms per primitive unit cell and hence, in
general, twelve phonon branches for each direction. For the observation
and identification of the phonon branches it is therefore of paramount
importance to make use of the symmetry properties of the system by
group-theoretical methods. The application of these methods to lattice
vibrations have been reviewed by Maradudin and Vosko 1) and by Warren
2). They have been used a.o. by Chen in the analysis of the lattice
vibrations of 6-tin 3) and by Waeber for the lattice vibrations of
gallium **) •

Knowledge of the lattice dynamics of Fe3Al in its ordered phase
can be of importance to understand the order-disorder transformation,
which Fe A1 undergoes at about 550 °C, and which has been the subject
of a great number of studies Because the structure of FfigAl
closely resembles that of a-Fe, comparison of the lattice dynamics of
ct-Fe, Fe3Al and disordered Fe3Al could provide information about the
character of the acting forces.

Also the magnetic behaviour of ordered Fe3Al has been and still
is the subject of several investigations 15»16»17). Other reasons for
an accurate determination of the lattice dynamics of Fe3Al are found
in a recent theoretical treatment of its dynamical magnetic properties
17). The results will also be of help for the interpretation of Mossbauer

1 fi \measurements 1 ° .

A preliminary theoretical analysis of the lattice vibrations of
Fe3Al in the ordered phase has been given by Borgonovi et at. )• They
presented a symmetry classification of the normal modes and calculated
some longitudinal phonon branches using a simple Born-von Karman model
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with interactions extending out to second neighbours. The necessary
interatomic force constants were estimated from the dynamic properties
of a-iron.

The present work describes an experimental inelastic neutron
scattering investigation of the phonon dispersion relations. A group-
theoretical analysis of the data is carried out following Maradudin
and Vosko l). Applying a third neighbour Born-von Karman model inter­
atomic force constants were deduced, which were used for the calculation
of the phonon frequency distribution function and some related thermo­
dynamic quantities.

6.2. Crystal structure and some other physical properties of Fe^Al.

According to Bradley and Jay 5) Fe3Al has the structure as
illustrated in fig. 6.1. It is the same as that of a large class of
Heussler alloys of composition ABC2. As the figure shows there are two
types of iron atoms. The Fe(l) atoms have as nearest neighbours eight
Fe(2) atoms, while the Fe(2) atoms are surrounded by four Fe(l) and
four A1 atoms. This DO type structure can be described as four inter­
penetrating- f.c.c. lattices, one of Al, one of Fe(l) and two of Fe(2).
The lattice constant a = 5.792 X is approximately twice that of a-iron
(a = 2.860 X). The positions of the four atoms within the primitive
unit cell, which has base vectors a. = £(011) , £  = £(101) and £  =

2 2'£(110), are the following:
2

position 1 Al a(000)
II 2 Fe(2) a(Hi)
II 3 Fe(l) a(H£)
II 4 Fe(2) a(i H)

The primitive unit cell is indicated in fig. 6.1 by dashed lines.

Although the order-disorder transformation in Fe^Al and its phase
diagram are still being investigated, mainly by X~ray and Mossbauer
studies, there remains a number of discrepancies in the results.
However, we may say that the iron-aluminium alloy which contains 25
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© Fe(l)• Fe (2)
Fig. 6.1.

The crystal structure of ordered Fe^Al. The dashed lines indicate the
primitive unit cell.

atomic percent aluminium, has the DO^ superlattice structure below
about 550 °C, above about 750 °C a fully disordered structure, while
in between a CsCl-type structure is found. The CsCl-type structure, in
which the A1 atoms are distributed randomly over atom sites 1 and 3,
may be quenched down.

It is clear that the D03~structure of Fe3Al can be thought of as
the b.c.c. iron structure, of which the cell has been doubled in all
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directions, and where in the primitive unit cell, chosen as in fig. 6.1,
the atom in the origin has been replaced by aluminium. This relationship
in structure will certainly extend to the dynamics of both substances.

6.3. Lattice dynamics of Fe:Al in the Bom-von Karman model

The formal theory has been treated in chapter II. We want now to
write down explicit expressions for the coefficients of the dynamical
matrix (2.15) for ordered Fe3Al, including general interactions for
first and second neighbours, and central forces for third neighbours.
As in a-iron the force constant matrices involved are easily found
from simple symmetry considerations. They are for first neighbour inter­
actions:

A1 - Fe(2) :
otj (12) ^(12) 3X(12)

0^(12) ^  (12)
0̂ (12)

Fe(2) - Fe(l) :
ot1 (23) ex(23) 3:(23)

ax(23) 6X(23)
a,(23)

for second neighbour interactions:

A1 - Fe(l) :
a2 (13) 0 0

B2(13) 0
B2(13)

a2(24) 0 0
Fe(2) - Fe(2) : B2(24) 0

B2(24)

and for third neighbour interactions:
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a3(ll) ot 3 (11) 0
a 3 (11) 0

0

Fe(2) - Fe(2) :
a3(22) a3(22) 0

a3(22) 0
0

Fe(l) - Fe(l) :
a 3(33) a3(33) 0

a3(33) 0
0

The convention for a , 3 , etc. is the same as used in chapter V.s s
The indices in parenthesis indicate to which type of atoms the inter­
action refers. In appendix VIA,the coefficients are listed of the
dynamical matrix including third neighbours as obtained from (2.15).
The elaboration of the coefficients is facilitated by using some of
the results of the group-theoretical treatment of the next section.

As shown in section 2.4.the elastic constants can be expressed in
terms of the force constants using the method of long waves, i.e.
expanding the coefficients of the dynamical matrix up to the second
order in the components of the wave vector ^ .

The results obtained in this way for Fe3Al are:

ac = a1(12)+a1(23)+a2(13)+a2(24) +2a3(ll)+4a3(22)+2a3(33), (6.1)

ac. = a (12)+a (23)+B0(13)+B0(24)+a (ll)+2a3(22)+a_(33)“g, (6.2)

ac12 = 2ei(12)+2B1(23)-a1(12)-a1(23)-B2(13)-S2(24)+a3(ll)+2a3(22)+

+ a 3(33), (6.3)



- 65-

section 6.4.

where

(6.(12) - 6,(23)}2
g ------------ --------- ---------------  . (6.4)

(12) + cxx (23) + a2(24) + 26£(24)

In the force constant matrices there are eleven independent parameters.
The above relations may be used as constraints to reduce this number.

6.4. Group-theoretical treatment of the lattice dynamics of Fe^Al

6.4.1. Theory

By group-theoretical methods it is possible to simplify the
dynamical matrix considerably for values of £  lying at points of
symmetry inside or on the boundary of the Brillouin zone. This is of
great help for the determination of the form of the eigenvectors.

The method used in this work is based on the so-called multiplier
or weighted representations of the point group of the wave vector ĉ,
i.e. of that crystallographic point group whose operations applied to
q leave it invariant (modulo 2ir times a reciprocal lattice vector).
This method has been worked out in great detail by Maradudin and Vosko
1), hereafter referred to as MV. No extensive description will there­
fore be presented here, but only the main features will be given
together with those results which are of importance for the description
of the lattice dynamics of Fe Al. The notation used is the same as that
of MV, except for the wave vector c[ and the reciprocal lattice vector
j_, which by MV are called k and b̂, respectively.

Let us consider the space group G of the crystal. The symmetry
operations can be written (S|v(S) + _r(m)}. These are thus the operations
which take the crystal into itself. Here S is a 3 « 3 real orthogonal
matrix representation of the proper or inproper rotations of the point
group of the crystal. v(S) is a vector which is smaller than any
primitive translation vector of the crystal, and r_(m) is a translation
vector of the crystal. Space groups for which v(S) is identically zero
are called symmorphic and contain no screw axes and glide planes. The
space group of the wave vector G , is a subgroup of G. The symmetry
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o p e ra t io n s  o f G , w hich i s  a s p e c ia l  c l a s s  o f o p e ra t io n s  o f G, a re  h e re

deno ted  by {r | v (R) + r(m )} . The r o t a t i o n a l  e lem en ts  R o f G have th e

p ro p e r ty

R& = fL “  2ïït/£ ,R )  • (6 .5 )

The t r a n s l a t i o n  v e c to r  t_(£,R) o f th e  r e c ip r o c a l  l a t t i c e  can be nonzero

o n ly  i f  q l i e s  on th e  boundary  o f th e  B r i l lo u in  zone. The p u re ly

r o t a t i o n a l  e lem en ts  {R} o f th e  space group G ta k en  by them se lv es  com­

p r i s e  a p o in t  group G (<|_) c a l le d  th e  p o in t  group o f th e  wave v e c to r

W ith each  e lem ent R o f th e  p o in t  group Gq (£) a m a tr ix  T(£;R) i s

a s s o c ia te d .  T h is m a tr ix  i s  d e f in e d  as fo llo w s :

T (XX' | q;R) = R ró (x ,F  (X ';R )) x expUcL* [r  (X )-R r (X') ]  } , (6 .6 )
d p  P 7*

w here F (X’ ;R) i s  th e  l a b e l  o f  t h a t  atom in to  w hich th e  atom la b e le d  X'

i s  tran sfo rm e d  by th e  o p e ra t io n  {R| v(R)+jt(m) }. Thus Ta g(XX' |<1>R) i-s
nonzero  o n ly  i f  Fq (X ';R ) = X. MV show th a t  th e  m a tr ic e s  {T(£;R)> p ro v id e

a 3 n -d im en sio n a l u n i ta r y  m u l t i p l i e r  r e p r e s e n ta t io n  o f th e  p o in t  group

G (c[) o f  th e  wave v e c to r  cĵ , i . e .  th e y  obey a m u l t ip l i c a t io n  r u le  o f th e

form

T(s.»Ri )T(s.;Rj) = < (̂s.;Ri» Rj ) T(£ ;Ri Rj )  (6 ,7 )

w ith  ^ ( £ ;Ri» Rj )  = exp(2ïïiT_(a.,Ri “ 1)* v (R j)]  •

For symmorphic space groups <f> (.£.»R^ > Rj ) e q u a ls  u n i ty  and th e  s e t  of
m a tr ic e s  {T(^;R )} form  an o rd in a ry  r e p r e s e n ta t io n  o f  th e  p o in t  group

go(<l).
The T -m a tric e s  have fu rth e rm o re  th e  p ro p e r ty  o f commuting w ith

th e  dynam ical m a tr ix  D(c[) d e f in e d  in  s e c t io n  2 .2 .  Hence

d (£) = T- 1 (£ ;R )D (£)T (£ ;R ) . ( 6 . 8 )
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Equation (6.8) yields relations between elements of D(£), reducing the
number of them which are nonzero and independent, as imposed by spatial
symmetry. Sometimes there are additional conditions imposed by time-
reversal symmetry, this is the case as the point group of the crystal
contains a rotational element S_, such that S_ 3̂  = (hence is in
the "star" of 3). The element S_ forms with the operators of G (3^ the
coset S_Gq Oj) with elements S_R. The point group Gq ((j) together with
S_Gq (£) form the point group G {3^-3) in which Gq (£) is an invariant
subgroup. By associating to each element S_R matrices as defined in
(6.6) and multiplying these matrices by the anti-unitary operator K q
MV define the anti-unitary matrix operator T(c^;S_R). The anti-unitary
operator K is defined by its effect on an arbitrary vector in the
3n-dimens i ona1 space:

K ! = f* . (6.9)

The extra conditions imposed by time-reversal symmetry are now that
also the T(c^;S_R) commute with the dynamical matrix D(£). In case
S_ = i, the inversion, then what has been said before is valid for
general q. In that case one has, for any two atoms X and X ', related
by i, the simple relations

< 6c x ' x ' ; a )  -  V X A i a ) (6.10a)

and D ^ t i ' X i a )  - Da B ( x x ' ; a )  - D ^ c x - x j a )  . (6.10b)

The spatial symmetry also imposes restrictions on the form of the
eigenvectors of the eigenvalue equation (2.18). From (6.8) it follows
that

(6.11)D(£){T(cL;R)£j (3) } w. (£){T(£;R)e. (3) }

which tells us that if 3.(3) is an eigenvector of 0(3) with an eigen-
2 Jvalue (1)j (3) , then so is T (3;R)̂ j (3) for every operation R of the point

group G (3). Consequently T(3^R)^e. (3) is in general a linear combination. * 2of the eigenvectors of D(c[) corresponding to the eigenvalue wj (3) ,
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which is expressed by

fa

y =1
(6.12)

The suffix j in has been replaced by the double index ay, where a

dependent eigenvectors associated with the eigenvalue (^(cl). MV show
that the ƒ -dimensional matrices {t ^(£;R)> provide a multipliero
representation of G^(c^). In view of the general result of group theory,
that the eigenfunctions corresponding to each eigenvalue of an operator
transform irreducibly under the symmetry transformations which leave
the operator invariant, if no accidental degeneracy is present, the
set of matrices {t ^(£;R)} constitute an /^-dimensional irreducible
multiplier representation of the point group Gq (£). In order to account
for the fact that different eigenvectors may transform according to the
same irreducible representation, in (6.12) a is replaced by s and a
label t is introduced, which numbers the eigenvectors, transforming
according to the sth irreducible representation. Equation (6.12) then
takes the form

The number of times the sth irreducible representation is con­
tained in the representation {T(j^;R)} is given by the familiar de­
composition formula

j 2 + a
labels the distinct values of u. (£) for given ^  and y the linearly in-

. J ............ , 2 .

T(S.;R)e tll(£) (6.13)

(s)
The irreducible representation matrices {xv '(£;R)} have been

tabulated for all 230 space groups by Kovalev 20).

R

where h is the order of the group, x(jl»R) = TrT(^;R) and

ca = r 1 J x(a;R)x(s)(a;R)* »o —
(6.14)

X(s )(£;R) = Trx(s)(£;R).

The general form of the eigenvector is obtained by applying
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Cs)projection operators, the 3nx3n matrices P v , (q) defined byyy

P,^<<L> = Cfjh) l T(£ ;R) .(s) (6.15)

Application to an arbitrary 3n-dimensional vector results in the
so-called symmetry adapted eigenvector E(q^sy) ,

E(£;sy) = P^®} CS)1 > (6.16)

which transforms in the same way under the application of T(c^;R) as
does the eigenvector e ^  (<j_) for any In general, I2(q;sy) is a linear
combination of the c eigenvectors (e. (q)} (£ = 1,2, . . c ) corres-3 “ 6  t|l ^  8
ponding to the distinct eigenfrequencies {w , (q)}. Hence

3 u

D(£)E(̂ ;sy) = (£L)E(£L*sy) (6.17)
O  “

yields the c independent complex homogeneous equations in the c
©  3

unknown complex components of the vector IS(q;sy), from which the c
“  3

eigenvectors {e , (q)} and the c associated eigenfrequencies {co (q) }
S -u \l S  S~C

are found. Hence the problem of solving a 3n*3n eigenvalue equation
has been simplified to the problem of the solution of a number of
generally smaller c *c eigenvalue equations. The total number ofo S

these smaller blocks is determined by the condition that

I JgCs - 3n , (6.18)
8

where ƒ , the dimensionality of the sth irreducible representation,
2usually denotes the degeneracy of the {w (q )}.s

If for a particular wave vector or crystal point group the symmetry
group of the dynamical matrix can be enlarged to include anti-unitary
operations, this may impose extra conditions on the form of the eigen­
vectors and of the irreducible multiplier representations. Under the
assumption that the eigenvectors e (q) of T(q;R) can be chosen to be

S w|i
eigenvectors of the anti-unitary operators T(q;S_R) one obtains
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* , (X’sa) - -e*pfia- r(X')-S-r(X) • ‘6-19>a sty I L -J 1$ J
where X is sent into X' by the operation (S_|v(S_)}. The symmetry
adapted eigenvectors E(£;sy) found from (6.16) are not necessarily
compatible with (6.19). The criterion for comparability given by MV is
that the irreducible representations t (s )(£;R> corresponding to those
T(£;R)'s which commute with T(£;S_R) must be real and that as many as
possible of these t (s )(^;R) should be in diagonal form.

Time-reversal symmetry may give rise to extra degeneracies. From
the fact that the anti-unitary matrix operator T(£ ;S_R) commutes with
D(^) it follows that, if ^ ( a )  is an eigenvector of D(£) with eigen­
value ü)2 (£), then so is T(a ;S_R)esty(£). This means that T ^ S . R ) ^ ^ )
is a linear combination of the eigenvectors of D(^) whose eigenvalues
are equal to m2^ ) .  However, if the two sets of eigenvectors are
required to be*linearly independent by time-reversal symmetry, there
must be an additional degeneracy. The transformational.behaviour of
7  (£) a T ^ J S - R ^ O D  and under the operations T(a ;R)
provides the criterion for additional degeneracy. This has been for­
mulated according to the behaviour of their irreducible representations,
in which three cases have been distinguished, corresponding to:
1) linear dependence of I  and e, referred to as type one representations,
2) no linear dependence of 7  and e but with equivalent irreducible re­

presentations, called type two representations, and
3) no linear dependence of 7  and e and corresponding inequivalent re­

presentations, referred to as type three.
The criterion is:

£'<K£;S_R,S_R)x(8)(a;S-R S-R) “ ~h second type , (6.20)
h first type

R third type

where

i £+(S_R)-1£  *v (S_R)<j)(£;S_R,S_R)

is the multiplier in the soi-called multiplier corepresentations of
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G (£;-£) formed by the matrices T(£;S_R) and

X(S)(£JS_R S_R) = Trr(s) (^;S_R S_R).

For symmorphic space groups and S_ = i, the inversion operator, (6.20)
gets the simple form

The type one representations does not give additional degeneracy, while
the second and third type double the degeneracy.

The above presented compilation of the most relevant results of
the multiplier representation theory provides the tools for the block-
diagonalisation of the dynamical matrix of Fe3Al and for the deter­
mination of the general form of its eigenvectors and the number of
degeneracies present in the different eigenfrequencies.

6.4.2. Application

In the application of the group theory to a specific problem the
question arises of which notation to use, extensively discussed by
Warren 2). Here we follow closely the treatment of MV, which more or
less implies the use of the tables of irreducible representations given
by Kovalev 20). Therefore it is tried to keep to their notations as far
as this does not lead to confusion with symbols used in other parts of
this work. Contrary to these two references we use c[ instead of k for
the wave vector, but retain their numbering (hence k. = and choose
the notation R for the rotational elements in accordance with MV,
while Kovalev has the notation h, again retaining the numbering.
Because it is becoming common to label branches of phonon dispersion
relations according to the BSW—system 2^), we will do the same but
present also the corresponding t—representations from Kovalev. For the
point groups the Schoenflies notation 22) is used.

I x's;(a;R2)
h first type

second type
third type

(6.21)
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The space group of ordered Fe3Al
In fig. 6.2 the first Brillouin zone

is 0?, which is symmorphic.
Fe3Al is displayed with the
different points of symmetry
indicated in the BSW-notation.
We consider first the E-direction.

Fig. 6. 2.

The first Brillouin zone for a
f.o.o. lattice3 in which special
directions of higher symmetry
are indicated by the B.S.W.-
notation 21j.

Symmetry_direction_E

E = Sj = —  ( M . 0 )  » 0 < y < I .

The point group of the wave vector , G (c^) is ^2w' ^as ^our
rotational elements, R, , R.,, R_Q» and R , which are given in matrix1 lb Zb i /
form in Appendix VI.B. The irreducible representations are given in
table 6.1.

Table 6.1.

Irreducible representations of the group (g^) = C

Ref.20 Rx R37 R28 R 16 Ref.21

T(l) 1 1  1 1

r<2) 1 -1
x<3)

T(o

-1

-1

E1
E2
E
it

Z31 1 -1 -1
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The 12x12 T(£.,R) matrices are obtained from (6.6) using the
atomic positions given in section 6.2. We present them here in a
compact way of 4 x 4 matrices, of which each position is a 3 x 3  matrix.

T < V V

~R.1 37
R 10 1 0R

R,_
» T (£Lt »R 37^ ~ 0 37 0R1 37

R, R1 37_

1oOo
CO

erf
r 1 ---
Ooo00cm

l*

0 0 0 P l R 16 0 0 0 p Rit 28oCO
pVoo o00CM
P4OO

1
o ■o -p- M o> O O

1 __
_

_ °  % R 28 ° ° _

where = exp(i2iry).
The traces for the different T-matrices are:

x(*!*;*!> = .12, x(a*i*16) = -2. x (£1+;r28) = 2-

The number of times a certain irreducible representation is contained
in the T-representation is obtained using (6.14) and table 6.1. One
finds c1 = 4, c2 = 1, c3 = 3 and c^ = 4. Hence,

(T(£4,R)} - (T(i:,R)} = 421 © Z2 © 31^ © 4 E 3 . (6.22)

Since all irreducible representations are one-dimensional, spatial
symmetry does not cause degeneracy of the normal modes. Because the
space group of Fe3Al is symmorphic and contains the inversion
operator i, time-reversal symmetry may be invoked using (6.21). Since
R  ̂= Ri f°r aH  four operators, all representations are of the first
kind and therefore time—reversal symmetry does not produce any addi­
tional degeneracy.

The symmetry adapted eigenvectors I£(<̂ ;sy) are obtained using
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(6.15) and (6.16). The different steps leading to the results presented
below are given in Appendix VI.C.

a l ~
o ' V o

a l
o

o _a3 o

o o a 4

b l
b 1

a2
“a2

b 3

_b 3

\

C 1

d ld,
, £ ( ^ 5 2 0  =

o
o

, E(il+;31)=
0

C 3

, E(a^;41)= c4
o

o "C 3
o

1
o o o d 4

V l "V2 P 4b 3 ■p 4b 4

p 4b l P*fa 2 - p 4b 3
- p , b.^4 4

■ P 4 C 1
o o p Ch 4 4

Application of (6.17) using the dynamical matrix presented in
Appendix VI.A and the derived E vectors, provides the different blocks
of the dynamical matrix, which transform according to the different
irreducible representations. This is presented in Appendix VI.D. As
can also be seen from (6.22) the 12 x 12 matrix D(^) blocks down to a
4 x 4, a single valued, a 3x3 and a 4x4 matrix.

Symmetry_direction_A

A = « « —  (0,0,1) , 0 < y < 1.a

The point group of i<* < V  It has eight rotational elements as
shown in the irreducible representation table 6.2. The elements R are

given in Appendix VI.B.
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Table 6 .2 .

Irred u c ib le  re-presen ta tions o f  the group Gq (£ g) -

n f  nA n P P ]R R R R R Rfif »2 1R ef-2 0  Kj %  K11+ «.15 ^ 26 ^ 27 3? it0

\

( 2 )

(3)

1 1

-1  -1

-1 -1 -1 " I

-1  -1

A *1

T ^ >  1 1

X ( 5 ) 1 0 1 0

.0 1. .0 I

t . ( 5 ) 1 o' T o'

0 1, o 7

-1 -1 "I

i O' i 0 o r
0 I 0 i .1 Oj

0 1 o r o r
1 0 T o. .1 0,

-1 1 1

0 1 0 i 0 i '

T  o. i o. J  o.

0 l 1 o' 1 o'

TV 0 . o 7 0 1,

A *
2

E q u atio n  (6 .6 )  p ro v id e s  th e  T -m a tr ic e s :

"R1

1-----A
1*

T< V V  - 0 R1 0
R1

, n v V  - 0 R<4 0
R.

\

-R ,, 0 0 0 "
1** *

R, c 0 0 0
*

II 0 0 0 P6R1If
» T ( £ 6 ’R15^

o o o p6r 15

O

3-
pCoo 0 0 r 15 0

0 p R 0 0_ 6 1*+ «6*15 0 0

T< a , i R« >

R 0 O o [Rn-, 0 o o —
1

26
0 0 0 P6R26 » T(fl.6;R27^

27
0 0

*
0 P6R27

0 0 R26 ° 0 0 R27 °
0 p R26 0 0 0 r*CM

P4CO
Q

_ 0 0
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T^ 6 ;R37̂

"r R37 40 ,

© &
CO © , T(£6;RltQ) 0 R40 0 ,

R R37 40
R R37 4Q_

where p = exp(iiry).6
We find for the characters x(j£L6 5R) :

X C V * ! > = 12 ) = '4
x ( q  ; R  ) =  2

^*•6 14
X ( q  ; R  ) = 2
A ^  15

= 2 *<VV -  2
x ( a 6 ; R 3 7 )  = * x ( a 6 i R il 0 )  ■ 4

D ecom position g iv e s :

oIICO
ooiiCM
OCOIIa

C4 m U  C5 =

and hence

{T(£6;R)} = (T(A,R)} = 3Aj + A2' + 4A5. (6.23)

Since A is two-dimensional the four branches belonging to this irre­
ducible representation are twofold degenerate by spatial symmetry.
Applying (6.21) shows that all representations are of the first kind
(R2 = R2 = R, and R2 = R.) and, consequently, time-reversal11 15 I I
symmetry gives no additional degeneracy.

For the derivation of the symmetry adapted eigenvectors E(qg;sy)
one has now to remember what has been said in subsection 6.4.1 about
the compatibility of these vectors from (6.16) with (6.19). We may
include here the anti-unitary symmetry operations T(cLg;S_), where
S_ = R25 = i, the inversion operator, which according to its definition

given in subsection 6.4.1 is
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t(£,;s_)
'25
O
O
o

o o
o o
O R.25

O

P6R25
O
o

Here Kq is defined by (6.9). One can easily verify that T(cl6;S_) com­
mutes with T(^gjR) for all R. Consequently, on the corresponding irre­
ducible representations the restrictions are imposed that they are
real and that as many of them as possible are diagonal. For this reason
in table 6.2 also the representation iV 5' has been included. This irre­
ducible representation is obtained from the one listed by Kovalev.(5) . . # 3 ’
t , by a similarity transformation with a unitary matrix )̂.

The symmetry adapted eigenvectors are again obtained by applying
(6.15) and (6.16) using the real representations of table 6.2. The
result is

" 0 0 " ~ a 5 * — a c"
0 0 a a5 5
•al 0 0 0
0 0 b5

*
" P 6d 50 0 b5

bl
0

» E(£6;41) = a4
0

, E ,(£6;51)= 0
C5

, E'(£6;52)= 0
-c 50 0 c c5 5

C1 0 0 0
0 0 d5 -p 6b 50 0 d5 P 6b 5P b

. 6 1 ; p6v 0 0

Since the anti-unitary operators could be included in the group we may
impose (6.19) on the symmetry adapted eigenvectors. This gives the ad­
ditional information: bj = real, a^ = imaginary and d5 = pgb 5*.
Furthermore from the normalisation condition it follows that a = i/2/2

The different blocks of the block-diagonalised dynamical matrix
for this direction obtained by applying (6.17) are presented in
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A ppendix V I.D . E *(£6 ;51) and E ' ( £ ^ 5 2 )  r e p r e s e n t  th e  two s e t s  o f e ig e n ­

v e c to r s  c o rre sp o n d in g  to  th e  tw o fo ld  d e g e n e ra te  4 * 4  m a tr ix .

Symmetry d i r e c t i on  A

A = q = - 0 » 1  > 0 » 0 < y < 0 . 5 .-15 a

The p o in t  group o f  £ 5 i s  C3v. I t  has  6 r o t a t i o n a l  e le m e n ts , shown

to g e th e r  w ith  th e  i r r e d u c ib le  r e p r e s e n ta t io n s  in  t a b le  6 .3 .  E x p l ic i t

e x p re s s io n s  f o r  th e  R o p e ra to r s  can be  found in  Appendix V I.B .

Table 6.3.

Irreducible representations of the group GQ(cL5) -

R e f .20 r 5 R9 R37 R45 R ef*21

. 0 )

( 2 )

. ( 3)

.,(3)

1

1

1 0

10 I )

1 0

0 1 /3

/3
2

_ 1
2

- 1 -

/3

/3

-1
2

-1

1 0

0 -1
5

- i

/3

/3

1

-1

e 0 0 o r 0 e '0 e2>

0 £2V. > 0 e 1 0 e2 0 .e

- 1  - — I
S 2

/3
2

e = exp ( i2 f r /3) .

The T m a tr ic e s  o b ta in e d  w ith  (6 .6 )  a re

"R1 R5

T < V V  -
R1

0 Rl 0

\

, T (£ 5 ;R5) =
R

0 5 R 0
5

R5_
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RS

1--CO
L*

R q R37
t <45; V  - a e

R9
, t (£L5;r37)

J  /0 0
R37

\ R 37_

\ s
R R , r

T< V V >  - 9 R 6 • * < V * * 5> - 9 r  641 5
R R ,4i_ 45

The characters xOj ;R) are:

x(a5;Ri) " i2,
x(a5;R5) = o.
x ( a 5 ;R 9 ) ■  o,

x (i 5;r37) = * »

x(a5;R< ^  = 4 ’
*(l5lR»5) ■ 4 •

Decomposition gives:

c = 4, c = 0, c = 4.1 2  3

Hence

{T(£5;R)} = (T(A;R)} - U l © 4A3 . (6.24)

Since A^ is two-dimensional the four branches belonging to this
irreducible representation are two-fold degenerate by spatial symmetry.
Similar arguments as for the E- and A-directions can be used to Show
that time-reversal gives no additional degeneracy.

For the same reasons as for the A-direction the real irreducible
('3)representation t ,v has been included in table 6.3.

The symmetry adapted eigenvectors are:
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" a l ~ a 3 a 3

a l a 3 - a 3

a. - 2 a 3 0
A

b l b 3
b ’
3

b l b 3 - b ;

b “2b 3 0
1

C1
, E' (<L5 ;31) =

O

C 3
, E ' ( £ 5 ;32) =

c 1 C 3 - C 3

C1 ' 2 C 3
d

d ! d 3 d 3

d l d 3

d l
" 2 d 3 0

_

The irreducible blocks of the dynamical matrix obtained with these
vectors are presented in Appendix VI.D. E'(£5;31) and E'(c[5;32) re­
present the two sets of eigenvectors for the two-fold degenerate Ag
representation.

The ultimate goal of the group-theoretical analysis of the
lattice vibrations set in this work is the acquisition of the frame­
work in which the solution of the dynamical matrix in the main sym­
metry directions can be found in the most simple way. Since solutions
for special points of higher symmetry like the origin and points at
the zone boundaries can be obtained by continuity from those of the
symmetry lines, a group-theoretical analysis of these symmetry points
does not simplify the problem of solving the dynamical matrix. For
this reason no explicit block-diagonalisation by group theory has been
made for these points. For completeness, we will present the result for
the decomposition of the representations in their irreducible repre­
sentations, again in Kovalev and BSW notation, and their compatibility
relations with the representations of the lines of symmetry.

Because the point groups of the wave vectors along the symmetry
lines A, E and A are subgroups of the point group of the wave vector
at a terminal symmetry point, the irreducible representation for such
a point must provide a reducible representation of its subgroups (see
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e.g. Warren 2)). The irreducible representation of the subgroup is said
to be compatible with the irreducible representation of the group at
the symmetry point, when the former is contained in the decomposition
of the latter. This can easily be checked with (6.14). These compatibi­
lity relations may also be found in tables given by Koster et clL. 2 )•

Symmetry point r

T * ^  = (0,0,0>. The point group is 0^, which has 48 rotational
elements 20»22). Following the now familiar procedure one finds by
decomposition:

(T(£n ;R)} = {T(T;R)} = t (1+) © 3x(l0) = rj5 9 3rlg . (6.25)

Both representations are three-dimensional. They have the following com­
patibility with the irreducible representations in A-, E- and A-
direction:

r25 : T<*> +

inH = A2 + V  *

115 : TC1> + x (5) s A1 + A5 *
r' :25 x(l) + t (2) + (*0T = Ei + Z2 + ,

r :15 x<X> + X<3) + x ( - ) = Ei + E^ + E3 ,

r25 : X(1> + x < 3> s A1 + A 3. ’

ri5 ' x(1> + x<3> = A1 + A3 *

Symmetry_point_L

L = c[g = —■ (1,1,1). The point group is D ^ »  which has 12 rotational
elements 20>22). Decomposition in its irreducible representations
gives

{T (£.9 5 R)} = (T(L;R)} = 2t (1) © 2x(1+) © 2t (5) © 2t (6) ,

= 2L: © 2L’ © 2L © 2L* .
(6.27)

3
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L and L' are one-dimensional, L and L' are two dimensional.
1 1  3 3

The compatibility with the irreducible representations in the A-
direction is as follows:

A-j : L x + L ’ A3 : L3 + L3 (6.28)

Symmetry_point_X

X = £  = —  (0,0,1). The point group is D ^ ,  which has 16 rotational
elements 20»22). Decomposition gives:

{T(£10;R)> = {T(X;R)} = x (l) © 2t (1+) x<6> © t <9> © 3x(l0)
(6.29)

Mx © m'2 © M3 © M5 © 3Mg .

M , M' and M' are one-dimensional, M5 and Mj. two-dimensional. The1 2  3
compatibility with the irreducible representations of A- and in­
directions is:

M : V E1 ; M' :3 E 3 ;
M' :2 V E3 J M' :5 V V ;
M : A . E , I. .5 5 2 3

(6.30)

6.5. Inelastic structure factors of Fe;Al

As already mentioned in section 3.6, knowledge of the inelastic
structure factor, defined by (3.39), is of great importance for the
proper performance of neutron scattering experiments, in which the
phonon -dispersion relations are measured. In the calculation of these
structure factors the eigenvectors of the dynamical matrix are needed.
As shown in section 6.4 some of these eigenvectors are completely
determined by symmetry, while others are found to have a relatively
simple general form. The consequence of this is that the inelastic
structure factors are not very sensitive to the parameters used in the
model for which the dynamical matrix is solved, but depend mainly on
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the lattice structure. This insensitivity to the model parameters is
demonstrated by the success in estimating the inelastic structure factor
by comparing Fe^Al with a-Fe.

It is possible to describe the dynamics of a-Fe with respect to
the same lattice as that of Fe3Al. For this purpose one must double
the iron cell axis. In fig. 6.3a,b the effect of doubling the iron cell
on the (lTo)-plane and the (OOl)-plane of the reciprocal lattice is
shown. The dashed lines indicate the zones of the original reciprocal

1004)
(002)

(400)
(2001

f j  1220) A
(000)

A
(000)

(040)
1020)

Fig. 6. 3.

The (UO)-plane (a) and the (OOl)-plane (b) of the reciprocal lattice
of Fe Al (zones indicated by solid lines) and a-Fe (zones indicated

by dashed lines).

cell (corresponding to the b.c.c. lattice), while the solid lines mark
the zones of the reciprocal lattice corresponding to the new f.c.c.
lattice. For the description of the dispersion relations with respect
to this lattice there are groups of equivalent line segments which
were inequivalent in the original a-iron lattice. Such line segments
are for instance in the Q)0Q— direction! A—B; C-B and E—D, and in the
Q10l-direction A-F, E-B and C-D. Thus in the new description the parts
of the dispersion relations originally corresponding to such a group of
segments are now compressed in each single segment of the group, the
consequence being an increase in the number of different phonon branches.
In fig. 6.4a phonon dispersion relations of a-iron in the [OOIJ-direction
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in  the new d e sc r ip t io n  are d isp la y ed . The curves are based on a second
neighbour Born-von Karman model. In f i g .  6.4b an analogous c a lc u la t io n

r*
O

Fig. 6.4.
Calculated phonon dispersion re la tion s in a-Fe (a) and Te^Al (h) by
means o f a second-neighbour Bom-von Karman model. The dvsperszon
rela tion s o f both systems are described with respect to the reciprocal

la tt ic e  o f Fe^Al.

w ith  p relim inary  parameters fo r  F e3Al i s  p resen ted . The branches o f
f i g .  6 .4a  can be obtained  from a com bination o f  the branches in  the

[00c] -d ir e c t io n  and along Q k ]  in  the normal d e sc r ip tio n  (compare
f i g .  5 . 2 ) .  For in sta n ce  and T20 are eq u iv a len t to  the part o f  the

T branch in  the QjO tQ -direction between 0 -  0 .5  and 0 .5  -  1» r e s p e c t i­

v e ly ,  and Tx0 i s  eq u iv a len t to  II between 0 -  0 .5  along Q k ]  •
The c lo se  r e la t io n s h ip  between the two s tru c tu res  i s  borne out in
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fig. 6.4a,b by the qualitative behaviour of the dispersion relations
of both substances. Because of lower symmetry in Fe3Al some of the
branches which cross for a~Fe deflect away from each other in Fe3Al
since they belong to the same irreducible representation 2), while the
L 0 branch of a-iron splits up into two branches.

It seems reasonable to expect that related branches have to be
observed at related positions in reciprocal space. For instance, for
the observation of the T A branch of fig. 6.4b, one would choose the
same configuration in reciprocal space as for the first part of 1\A
and the second part of T 0 of fig. 6.4a. This procedure was followed
when the experiments were started. In many cases this turned out to
be quite satisfactory, especially for those q-values where the branch
under investigation had no strong interaction with other branches.

As soon as more information was obtained about the dispersion
relations better estimates could be made about the force constants
used in the Born-von Karman model. With these parameters rather ac­
curate calculations could be made of the inelastic structure factor,
which in turn could improve the assignment of the phonons.

In section 3.6 the structure lattice has been defined, which is
meaningful when the conditions are satisfied for (3.42), i.e.
je. (A;^) = c(A;c[)ej with c(A;^) a complex number. It is obvious that
for Fe A1 the structure lattice is just the a-Fe lattice. From the
symmetry adapted eigenvectors found by the group-theoretical analysis
of the previous section it can be seen that the reduced structure
factor has the form (3.42) for all branches of the A- and A-directions,
and for the E2 and the three 1^ branches of the E-direction.
The reduced inelastic structure factors for these branches, calculated
with a third-neighbour Born-von Karman model with central interactions
between third neighbours, are presented in fig. 6.5. The labelling is
consistent with the group-theoretical treatment of section 6.4.
The parameters used are those of table 6.5, first column, which will
be discussed below.
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Table 6.4.
Phonon frequencies in  F e ^ l  a t room
temperature (in  u n its  o f 1012s-1).
The estim ated  accuracy i s  b e t te r
than 0.10j except fo r  the values
marked by *3 which have an accuracy
between 0.10 and 0.15.

j r - "
V V • » ' * V V V

* ?
6 « >

0 7.10 10.45* 6 .40
0.05 6 .40
0 .1 0 6 .95 6 .40 6 .15 7 .20
0 .15 6 .00
0.20 1.90* 6 .95 10.50* 6 .4 0 5 .95 7.45
0 .25 2.40* 2 .00 5.65
0 .30 2.90 6 .80 6 .40 2 .35 5 .50 7 .70
0 .35 2 .65 5.25
0 .40 3.80* 6 .9 0 10.25* 6 .45 3.05 5.05 7.75
0 .45 3 .4 0 4.80
0 .50 4.70* 6 .80 3 .80 4.55 7.70
0.525 3.95
0 .55 4.15 4.40 7.75
0 .58 4 .20 4.35
0 .6 0 5 .20* 6.75 10.20* 6 .50 4 .10 4 .50 7.60 10.60*
0 .65 3 .90 4 .80
0 .7 0 5.70* 6.75 6 .60 3.75 5 .05 7.45 10.60*
0.75 3.55 5.35
0 .80 6 .15* 6.75 3 .8 0 * 6.65 3.35 5 .55 7.25 10.60*
0.85 3.20 5 .90
0 .90 6.50* 6 .60 3.10 6 .10 6.85 10.80*
0.95 3.05 6.35
1.00 6.50* 9 .70* 3 .00 6 .60 10.90*

I t - i
V * V V V « y

i < ; > * « > £ < ? > * « > £<” t < » £ < » i < 2 > j O )
4 4 3 3 3

0 6.30 10.50* 10.50* 7 .10
0 .10 6.20

10.50*0 .2 0 5 .80 10.50* 7.45
0.30 3 .30 5.45

10.40*
1.00

10.55*
2.25 7.60

0 .40 4.35 5.10 1.30 2 .95 7 .6 0
0 .50 4 .80 5 .35 7.60

10.20*
3 .65

0 .60 4 .35 6.00 7.15 1.85 10.55* 4 .25
0 .70 4 .20 6.60 6 .80

10.20* 10.70*
4 .75

0 .80 4 .40 6.20 7 .30 2.30 5 .30
0 .90 4 .65 7.50

10.45*
5 .75

1.00 (4 .9 5 ) 4 .95 7.70 2 .70 10.80* 6 .15
1.10 4 .20 5 .30 7.70

10.80* 10.90*
6 .55

1.20 3 .70 5.75 7.40 3.05 6 .70
1.30 3 .20 6 .10 6 .80
1.40

10.90*
10.90*

1.414 3 .05 6.50 3 .10 6 .70

f r - q * * » V * V

4< j > *(?) a <;> * ?
0 7.10 10.50* 6 .40 7.10
0 .05
0 .10 6.05 7.20 6 .10 7.20
0 .15
0 .2 0 2 .40 5 .70 7.60 10.30* 5.80 7.25 10.45*
0 .25 2.95
0 .3 0
0 .3 3

3 .60 5.25 7.75
1.50

5.65 7.40

0.35 4.10
10.25*0 .4 0

0 .44
4.55 4.95 7.80

2 .00
5 .50 7.55 10.55*

0 .45 5 .10
0 .5 0 4 .70 5.45 7.50 5.25 7.65
0.55 5 .90

10.05*
2.50

0 .60 4 .70 6 .30 7.10 5 .10 7.75 10.80*
0.65 4 .90 6.65 3 .00
0 .70 5.05 6 .60 6.75 4 .60 7.75
0.75
0.765

5 .25 7.00
3 .50

0.80 5.45 6 .10 7.20 9.90* 4 .15 7.75 10.55*
0.852
0.866 5 .80 5 .80 7.35 4 .00 4 .00 7 .80

6.6. Experiment and results
By means of the previously

described triple-axis crystal
spectrometer a great number of
phonons has been observed in a

*single crystal of ordered Fe„Al.
The crystal was 2.2 cm in dia­
meter and 5 cm long. It was
obtained from Metaalinstituut
T.N.O., Delft.
Although strong super-reflections
were found, it was not possible
to determine quantitatively the
degree of ordering by neutron
scattering, due to strong ex­
tinction in a crystal of such
large size.
From the literature 8) it may,
however, safely be concluded
that for an alloy of the
stoichiometric composition the
ordering is very close to 100%.
The full widths at half height
of rocking curves for the (220),
(400), (222) and (333) re­
flections were around 20'.

The experimental technique
was mainly the same as described
in chapter V for the measurements
of ot-Fe, except that improved
monochromator and analyser
crystals were utilized. In the
present experiment zinc
crystals were applied, which
gave a higher intensity than

A short report about these measurements appeared in Physics Letters
41

) .
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the previously used copper crystals. For the observation of the optical
branches of high energy the alternative analysing technique was used
of the inverse beryllium method, described in chapter IV.
The great advantage of this technique over the conventional diffraction
technique, its much higher intensity in the final beam, made it in­
dispensable for the observation of the high energetic phonons. A dis­
advantage is that the scattering data have to be interpreted with con­
siderable care. Since not only neutrons scattered by a single spot in
q-space can reach the detector, but also those scattered by a whole
line in q-space 2t+), there is a chance of getting contributions from
phonons belonging to different branches because of abrupt variation of
the inelastic structure factor in the region of observation.

The observed phonon frequencies for the different branches are
presented in table 6.4 and also displayed in figs. 6.6 and 6.7.

r x x k p r l
(000) (100) (110) (000) (000) (%%%)

Fig. 6.6.

Phonon dispersion relations of Fe-Al. The dots are experimental points.
The solid lines represent a least squares fit to the experimental
points with a third-neighbour Bom-von Karman model with central inter­
actions between third neighbours. The elastic constants were imposed

as constraints on the force constants.
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n x x ie r r l
(000) (100) (110) (000) (000) (%'/.%)

Phonon dispersion relations of Fe^Al. The dots are experimental points.
The solid lines represent a least squares fit to the experimental
points with a third-neighbour Bom-von Karman model with central inter­

actions between third neighbours.

The labelling is in accordance with the treatment of section 6.4. All
data were collected at room temperature. For the A- and A-direction the
experimental set is complete, but in the E-direction some branches
have been measured incompletely, or not at all because of experimental
difficulties, e.g. lack of scattering intensity or mixing with other
branches. As the E2 branch has zero structure factor both for measure­
ments in the (110)- and the (OOl)-plane it could only have been
measured in a non-symmetry plane, which is very complicated.

Not only scattering by more phonons at the same time, but also
the occurrence of a great number of parasitic Bragg reflections caused
by the larger cell of Fe3Al, made it much more difficult to perform
the experiments than in the case of a-Fe. Bragg scattering from the
sample in the direction of the analysing system always gives rise to
spurious peaks in the observed intensity. The observation of the A^1 -
branch and A^1 -branch especially suffered from this parasitic scattering.
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6.7. Analysis of the experimental results

The neutron data of table 6.4 have been analysed in terms of a
third neighbour Born-von Karman model with central interactions between
third neighbours. As discussed in section 6.3 this model uses eleven
independent parameters. In the analysis use was made of a non-linear
least squares method, in which it is possible to introduce constraints
on the parameters. For our purpose the Algol procedure described by
Rietveld 25) was modified to fit our special requirements arising from
the iterative solution of the secular equation. For the least squares
analysis the block-diagonalisation by group theory proved to lead to
a great reduction in computational effort. Without this block-
diagonalisation the program would have had to diagonalise a 12x12
complex hermitian matrix for every q-value, while now only 3 x 3 and
4 x 4  matrices had to be diagonalised. The Algol procedure used for the
diagonalisation of a hermitian matrix was based on the Jacobi method 26).

In the least squares analysis it is necessary to calculate not
only the quantities which have to fit the experimental data, i.e. the
frequencies v., but also their derivatives with respect to the model
parameters p^. These derivatives were obtained by a perturbation-like
method in the following way:

where B is the unitary matrix of the eigenvectors obtained from the
solution of the secular equation for the frequencies

2v. ''*■
I Bti dD'£m mi£m mi

l

or

3 vi (6.31)
2 v .l

D(jj) - 4tt2v2 E = 0

and dD is a matrix, whose elements are those of the dynamical matrix
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D(q) differentiated with respect to p^.
Since the Jacobi procedure yields in addition to the eigenvalues also
the eigenvectors, the method of calculating the 3v./3p^ according to
(6.31) is much faster than that of performing a new calculation with the
Jacobi procedure for the derivatives.

The experimental data have been analysed in two ways, one by im­
posing on the parameters the constraints of the elastic constants,
(6.1), (6.2) and (6.3), and the other without any constraint. The
elastic constants of Fe3Al have been measured by Leamy et al.27) using
an ultrasonic method. They determined the ultrasonic velocities in the
[no] propagation direction. We used the data quoted for the sample
which had 25.05 ± 0.15 at. percent Al. They correspond to cn  = 17.10,
c = 13.17 and c12 = 13.06 in units of 1011 dyn/cm2. The quoted error
is around 1.5%.

Since, because of the values of the different structure factors,
some of the 2-branches could not be observed individually, an analysis
was made first for the different irreducible representations of the
A- and A-directions. In this analysis the elastic constants were im­
posed as constraints on the parameters, the force constants. Fig. 6.6
shows the least squares fit to the experimental data of such an analysis
In order to avoid that too much weight was given to those branches
which had very many experimental points, an equal mesh in q-space for
the experimental points was used, thus omitting some of the data in the
analysis. In a second analysis no constraints were put on the parameters
but now also the data of the 2 -branches were included. The fit to the
experimental data is shown in fig. 6.7. In figs. 6.6 and 6.7 the group-
theoretical labelling according to section 6.4 is used. The label
assignment in the symmetry points X and X is uniquely obtained from
(6.26) and (6.30). For the assignment in the point L, in addition to
(6.28) the form of the polarisation vectors had to be considered.

The fit of fig. 6.7, based on the analysis without constraints, is
better than the one of 6.6, showing a discrepancy between the ultra­
sonic and neutron data. This will be discussed in section 6.8. The two
sets of force constants deduced in the two different analyses are given
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in table 6.5. Here also the elastic constants deduced from the inter­
atomic force constants by means of (6.1) - (6.4) are presented.

Table 6.5

Interatomic force constants of Fe Al

(units 102 dyn/cm)

1) 2)
otx (12) 177.8 ± 2.3 177.1 ± 1.4
ox(23) 146.9 ± 3.8 147.8 ± 2.5
3 x(12) 191.4 ± 3.9 193.8 ± 2.6

(23) 144.7 ± 4.0 143.8 ± 2.8
a2(13) 58.7 ±10.3 111.3 ± 6.9

(24) 21.0 ± 9.0 30.5 ± 5.1
8203) 1.9 ± 5.8 -24.2 ± 4.2
b2(24) 13.9 ± 4.4 7.8 ± 2.6
a3(H) 3.1 ± 2.5 2.6 ± 1.6

013 (22) 14.2 ± 1.9 15.1 ± 1.3

013 (33) 14.6 ± 3.1 19.6 ± 2.1

1) With the elastic constants c ^  = 17.10,
c,, = 13.17, and c19 = 13.06 in units of
1011 dyn/cm2 imposed as constraints.

2) Analysis without constraints; the resulting
values for the elastic constants are
C11 = 19*9» citit = 12.2, and c12 = 14.6x]0n  dyn/cm2.

The second set has been used for the calculation of the frequency
distribution function. The program used for this is the same as that
for iron, except that the diagonalisation of the dynamical matrix for
the points in the irreducible unit of the first Brillouin zone of
Fe A1 now had to be done with the Jacobi procedure for complex matrices.3
Since this procedure is rather time consuming for a 12 x 12 matrix, the
total number of diagonalisations has been limited to 217. A frequency
channel width was used of 0.006x 1012cps. The resulting frequency
distribution function is displayed in fig. 6.8. We also calculated
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three functions which
we will call weighted
frequency distribution
functions. In this cal­
culation the weight of
the frequencies is taken
as the square of the
absolute value of the
polarisation vector of
the different atoms for
every in reciprocal
space. It can be shown
that, if the weighted
frequency distribution
functions are used for
the calculation of the
specific heat (2.35)
and the mean square
displacements of the
atoms (2.38), the con­
tributions of the par­
ticular atoms are ob­
tained. For the definition
of the Debye-Waller factor
of different atoms in
the primitive unit cell
ref. 28) may be con­
sulted.

Fig. 6. 8.

Phonon frequency distri­
bution function of Fe~Al
together with the weighted
frequency distribution
functions of Al3 Fe(2)
and Fe(l). In the interest
of clarity these curves
have not been normalised.

Fe3AI
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Fig. 6.9.
Calculated heat capacity C and temperature dependent part C(T) o f  the
Debye-Waller factor for Fe^Alt together with the individual contri­

butions o f Alt Fet2) and Fe(l) to these quantities.
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The weighted frequency distribution functions are also displayed in
fig. 6.8. The calculated Cy and C(T) for the different functions are
shown in fig. 6.9. The derived Debye temperatures are displayed in
fig. 6.10.

P 470

Fig. 6.10.

Calculated Debye temperatures for Fe^Al and for the individual atoms
Al3 Fe(2) and Fe(l). The solid lines apply to the calculated specific

heat and the dashed lines to the Debye-Waller factor.
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6.8. Discussion

As already mentioned in the previous section the fit to the ex­
perimental data shown in fig. 6.7 is better than that shown in fig. 6.6,
in which the elastic constants as measured by an ultrasonic technique
have been imposed as constraints on the interatomic force constants.
Also for other substances neutron scattering measurements have led to
deviating values for the sound velocities, e.g. nickel 29), potassium
30), aluminium 31) and nickel-iron alloys 32). For uranium dioxyde 33)
and lead telluride 31+) no consistent set of elastic constants could be
obtained.

Cowley 35>36) has explained that discrepancies arise because of
the interaction of the elastic waves with other excitations in the
crystal: phonons, electrons or magnons. This interaction depends on the
frequencies of the elastic waves. If the frequency is much less than
the inverse collision time of the excitations, the latter are able to
follow the sound wave in thermodynamic equilibrium. This "collision
dominated" mode of propagation is referred to as the hydrodynamic or
first sound regime. In the opposite case, where the frequency is larger
than the inverse collision time, there is insufficient time for thermo­
dynamic equilibrium to occur in each period and the wave propagates in
a "collision free" or zero-sound mode.

The lifetimes of excitations in anharmonic crystals may be of the
order of 10-11s. Since for the measurements of the sound velocities in
Fe3Al the ultrasonic frequency used by Leamy et at. 27) was 107s-1, it
is obvious that these measurements belong to the first sound region.
The phonon frequencies detected in the present experiment were of the
order of 10*2s-1 and may therefore be dominated by the zero-sound regime.

It has been shown by Cowley 35>3 )̂ that the corrections to the
elastic constants from anharmonic effects are different for the two
regimes. Moreover, the corrections for the high-frequency region have
only the point group symmetry of the crystal, whereas the low-frequency
elastic constants have higher symmetry.

In table 6.6 four sets of elastic constants for the three acoustic
waves in the I-direction are presented.
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Table 6.6.

Elastic constants for Fe^Al in units of I011 dyn/am2

1) 2) 3) 4)
P V2 ( E 1 ) 28.2 ± 0.4 29.4 ± 0.3 28.6 ± 1.2 29.3 ± 0.6
p V2 ( E l t ) 2.02 ± 0.03 2.65 ± 0.03 2.60 ± 0.25 2.38 ± 0.05
pV2(e3) 13.2 ± 0.3 12.2 ± 0.2 13.0 ± 0.6 13.8 ± 0.3

M 27).1) Room temperature values ref.
2) Calculated from the interatomic force constants of table 6.5.
3) Determined from the slopes of the experimental dispersion relations

in the E-direction.
4) Values at 0 K of ref. 27).

V is the sound velocity and p the crystal density.

The first set gives the room temperature values reported by Leamy
et al. 27). The second set has been calculated from the interatomic
force constants from the second analysis (table 6.5). The third set
has been obtained by taking the slopes to the experimental dispersion
relations in the E-direction. The last set are the 0 K values reported
by Leamy et al. 27).

It is remarkable that the agreement between the third and the
fourth set is within the error limits. It has been reported by Svensson
and Buyers ^7) that the temperature dependence of the elastic constants
in KBr in the zero sound mode is much less than in the first sound
mode. Since at 0 K both modes should yield equal results, the fair
agreement between the last two sets of table 6.6 indeed suggests that
zero sound modes have been observed in Fe Al.

The calculated dispersion curves of figs. 6.6 and 6.7 have a
feature that could not always be observed experimentally, namely that
branches belonging to the same irreducible representation never cross.
Crossing of such branches can only occur in very special cases, as has
been discussed by Warren 2). Since in none of our calculations crossing
of branches belonging to the same representation was found it is believed
that accidental degeneracies of such branches in Fe3Al are not possible.
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However, the phonon branches A and A,.̂ 2  ̂ have been measured very
carefully near the point of "accidental degeneracy", and within the
experimental resolution no discontinuity was observed when we passed
over from A,. 1 to A,. 2 . Even no change in linewidth was detected, in­
dicating that there is very little interaction between the two branches
in this point.

The two sets of interatomic force constants give some indication
about the changes in the interactions due to the presence of A1 atoms
as compared to a-Fe. First of all it seems remarkable that in Fe A1
0^(12) - 8 (12) < 0. This indicates that the interaction between first-
neighbour A1 and Fe atoms is repulsive, contrary to the first-neighbour
interactions in a-Fe. This was considered as an indication of some
quasi covalency in a-Fe. The repulsive force seems in contradiction
with the prevailing conception that in Fe3Al some quasi-covalent
bonding exists between first neighbours, caused by hybridization of s,
p and d electrons 38).

Pauling 39) explained on the basis of the resonating-valence-bond
theory **8) the observed lattice parameter and the difference in magnetic
moments between the Fe(l) and Fe(2) atoms as found by neutron dif­
fraction 15). A1 is a so-called hypoelectronic atom, which has an
excess of orbitals over electrons in the valence shell. Such an atom
can increase its valence by accepting an electron from a hyperelectronic
atom, which has an excess of electrons over orbitals in the valence
shell, or a buffer atom. The latter can donate or accept electrons
without change in valence. Fe is such a buffer atom. By removing half
an electron from the Fe(2) to the A1 atoms the metallic radius of A1
is decreased so much that it would fit in the iron lattice without
causing too much strain. Pauling 39) estimates the metallic radius of
A1 originally 13% larger than that of the Fe atoms, and after electron
transfer only 3.7%. This electron transfer to A1 from the Fe(2) atoms
implies that the magnetic moment of the Fe(2) atoms decreases from 2.22
Bohr magnetons to 1.64, while that of the Fe(l) atoms remains almost
the same, 2.14. The observed values are 1.50 and 2.18, respectively l5),
in good agreement with this. In line with the reasoning given above the
repulsive force between A1 and Fe(2) may be explained by assuming that,
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although quasi-covalent bonding occurs, the attractive interaction not
completely compensates the repulsive force because the metallic radius
of the A1 atom is still somewhat too large*

Since 0^(23) - $ (23) it may be concluded that the first-neighbour
interaction between Fe(l) and Fe(2) has become neutral, but has not
changed considerably otherwise. However, the second-neighbour interaction
between Fe(2) atoms has decreased drastically. If this interaction in
iron was determined by overlap of d orbitals, then this is much less
the case in Fe3Al. The fact that the force constants for the second
neighbour interaction between Fe(l) and A1 are larger, but still much
smaller than the corresponding parameters in a-iron could indicate a
preference for overlap with the p orbitals of Al.

That the interaction is predominantly determined by first neighbours
is also reflected in the weighted frequency distribution functions.
Fig. 6.8 shows that the contribution from the Al atom to the total
frequency distribution stems mainly from the high energy region of the
optic phonons, while the Fe(l) contribution mainly stems from the
acoustic region. Comparison with the frequency distribution of a-Fe of
fig. 5.6 shows that the Fe(l) atoms behave much the same as the Fe
atoms in a-iron, while the-Fe(2) atoms represent more the average
behaviour of the Fe3Al lattice. This is also demonstrated by the Debye
temperatures derived for the individual atoms.

In the relatively small interaction between second neighbours may
also be a clue for understanding the phase transition at about 820 K,
above which temperature the Al and Fe(l) atoms redistribute themselves
randomly over the lattice sites 1 and 3.

Since the description of the lattice dynamics in a Bom-von Karman
model is phenomenological rather than physically realistic, one must be
careful in attributing too much physical meaning to the individual force
constants of this description. Moreover, including more parameters,
which would lead to a better fit, could change the value of some of the
force constants. Other force constants would also be obtained if one
allows a certain amount of disorder, the possibility of which is not
excluded by experimental investigations. However, a calculation per-
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formed under the assumption that only 94% of the A1 atoms were in
position 1 and 6% randomly distributed over the other lattice sites
showed that the force constants maintained their general character
as discussed above.

It may here also be concluded that for the description of the
lattice dynamics of Fe3Al, just as for a-Fe, the Born-von Karman model
provides a good interpolation scheme, and it is believed that the
calculated frequency distribution function represents the real lattice
dynamical behaviour of Fe A1 at room temperature. The extrapolation of
the derived thermodynamic quantities to other temperatures is much less
reliable, since for instance no anharmonic effects have been in­
corporated.
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Coefficients of the dynamical matrix D(£) for ordered Fe3Al, derived
from expression (2.15).

- ;|8«1(12)+2«2(13)+462(l3)*8(.3(U)-4o,3(ll)C2i.{C2>ltl.C2ji<.2}_

4a,(11) S„ .S,3 2,1 2,1+1

Dii(12;i) (mM)i 4a1(12){CiCi+1Ci+2 - l SiSi+1si+2> 'l ’

Di,i+l(12;i) (mM)i 4M ,2){SiSi+lCi+2 - i C.Ci+1Si+2} * P1 »

Dii(13;-a) ~(mM)* 2a2<13>C2,i + 2M 13>C2,i+l + 2B2(13>C2,i+2 2 *

Di i+l^13’-^ = 0)

Dii(14;a ) (mM) ■ 4a1(12){C.Ci+1Ci+2 + i SiS.+1Si+2} * P3 *

Di,i+l(14’a) " (mM)i 461(12){S.S.+1Ci+2 + i C.Ci+1S.+2} • P3’

Dii<22*> = M 4a1(12)+4a1(23)+2a2(24)+432(24)+8a3(22)+

-4a,(22) C .(C . +C }3 2,1 2,1+1 2,1+2

J ,  .1 ,1+1 (22 is) =  i 4a,(22) S, .S,3 2,1 2 ,1+1

Dii(23;£) 4a1(23){CiCi+1Ci+2 - i S.S.tlS1 ) P1 1
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Di,i+l(23>ia> ' M 461(23){S1S.+]Ci+2 - i C.Ci+1Si+2} * P1 »

Du (24;a) - - j  2a2(24> C2>. + 262(24) C2>1+1 * 2$2(24) C2>i+2] • p2 ,

Di,i+i^24’̂  °’

Dii(33;a,) 8a1(23)+2a2(13)+4e2(13)+8ol3(33)-4ol3(33)C2>i(C2>i+1+C2>i+2)

Di,i+1(33;̂  ~ M 4a3<33> S2,iS2,i+l

J>ij(3̂ 5£) = Dij(23;£) ,

Di. <44 ;s.) = ^ij (22 ;_cl) ,

Di.(AX';£) = Dji(AA';£) = (A’A;^)

The meaning of the symbols is as follows:

C* = cos j  qi , Si = sin |  q£ , C2>i = cos ® ^  and S2,i sin

with i = 1,2,3 corresponding to x,y,z.
Further:

P, ■ Cc,c2c3-  s ^ c , -  Slc2s3- p,«2. ?) * u s1s2s3- c,c2s3- Slc2c3),

P = (p^)2 an<j P3 " (px)3• m and M are the 11108868 of A1 and Fe»

respectively. The value of i,i+l, i+2 has to be taken modulo 3.

N3|
(B
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Matrix representation of the rotational elements used in the T-repre­
sentations of the E-, A", and A-directions of Fe Al. The elements are
presented in two groups: under the first group of rotational elements
the four sublattices of Fe Al go into themselves, while under the3 6
second group the sublattices 2 and 4 interchange.

1

1 0 0
0 1 0o o T

f l 0 0 T 0 0
R
1

= 0 1 0 ident. , R4 = 0 I 0
0 0 1 0 0 1

i \
' 0 1

\
0

f
0 0 1

R5 = 0 0 1 240° rot. [ill] , R9 WÊ 1 0 0
1 0 0 0 1 0I

/ \ /
10 T 0 0 0

r40 « T 0 0 refl.(HO) , r 37 = 1 0 0
0 0 1 0 0 1

\ / „0 0 1 1 0 0

R 45 = 0 1 0 refl.(Toi) R41 = 0 0 1
1 0 0 0 1 0I I

r >
^00 I 0 1 0

r 14 m 1 0 0

(--
\

o01 _14Jou

ooo\ R 15 = T 0 0
0 0 1 0 0 1

r / _
0 1 0 1 0 0

r 16 = 1 0 0

'o’4Jouoooo r 25 = 0 T 0
0 0 I 0 0 T\

/ _ 1 (1 0 0 1 0 0
r 26 = 0 1 0 ref1.(100) , r27 = 0 T 0

0 0 1 0 0 1

ref1.(001) .

180° rot. [OO l] ,

120° rot. [ill] ,

refl.(llO) ,

refl.(Oll) ,

270° rot. [00lj 9

inversion ,

ref1.(010) ,
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We present here the steps leading to the symmetry adapted eigenvectors
lï for the E-direction of Fe Al.

We first apply the operation T(<j;R) on an arbitrary vector
where

♦xO)
* y O )

*z(0
ŷ(2)

ij>z (2)
W  ss

*y(3)
*,<3)
\|>x (4)
*y<4)
♦2(4)

The result is:

' M 1) - V 1-)'
*yO) ♦x(0
♦«(»)
*x<2> P*^y(4)
♦y(2) P ^ x (4)

*«<2>
M 3> i T<a4^i6)f =

■ "
4»y(3)

*y<3> *x(3)
*,(3) "*Z(3)
*x<*> P^y(2)
^y(4) P|»**<2>
*«(*> -P ^ z(2)
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" y i > “

* y ( 0 *x( , )

- * z O> '♦ « 0 )
P > x (4) *y(2)

P ^ y ( 4 ) ^x (2)
-pJV (4) ♦*(2)

♦xC3)
> T (qk ;R37) f  =

^y(3 )

*y(3) *x<3 >
~^Z(3) *z<3>

P ^ x (2) ^ ( 4 )

P ^ y ( 2) M 4 )
- P ^ z (2) ^ z ( 4 ) _

Using (6 .1 5 )  and th e  d a ta  o f  t a b l e  6.1 we g e t :

P ( 1) (q lt) = *{T(qif;R1) + T ( V R 16) + T ^ j R ^ )  + T(qif;R37)}

P U ) (q1+) = i l T C q ^ R j )  + T ^ j R ^ )  -  K q ^ )  -  T ^ j R ^ ) }

p ( 3 ) ^ >  “  l { T < V Rl> "  TK ;R16) + T(5 i+’R28) ‘  T (V R37} }

p ( 4 ) (q lt) = H T C q ^ R i )  -  TCq^jR^) -  T ^ j R ^ )  + K q ^ ^ ) }

A pplying (6 .1 6 )  we o b ta in :

K q ^ l l )

2<PX( 1 ) + 2\py(l )
2iIjx (1)  + 2 * y ( l )

0
1px (2) + \py(2) + P*{^X(A) + l|jy(4)}
^x (2) + ^y (2) + P*{4>X(4) + l|>y(4)}
2^Z(2) -  2p* i\>z (4)
2ipx (3) + 2ipy (3)
2^x (3) + 2ipy (3)

0
\px (4) + î y (4) + p1+{4»y (2) + i|ix (2)}
^x (4) + <jjy (4) + ptt{^y (2) + i|>x (2)}
2^z (4) -  2 p ^ z (2)
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E(3lt;21 )

O

0

0

*x<2> “ *y (2)
“ [ ^ ( 2 )  -  ^y(2)

i .

+ P*{^y C4> -  ^X(A)}

+ pjifyW “ ♦*($)}]
0

0

0

o

♦x (4) -  lpy(4) + P^i^PyCZ) -  t/̂x(2)}
- f rx(4) -  ^y(4) + P^i^yC2) -  i|)x (2)}]

E(q ,31)
~k

2<PX0 )  ~ 2ipy ( l )
-{2ipx ( l ) ~  2ipy (J )}

O
ipx (2) -  \py (2)  + P*{^x (4) -  (4)}

- fy x<2> -  *y (2)  + p ; { ^ x ( 4 ) - ^ y ( 4 ) g

1 . 0
2ipx (3)  -  2ipy ( 3 )

-{2*x(3) -  2\py (3 ) }
O

^x (4) -  ^y (4)  + P ^ x U )  -  ^y (2)}
” [<l»x( 4 ) “ i py ( 4 )  + P1+{'̂ X(2) -  ŷ (2 )Q

O
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E(q ;41)
“ it

0
0

4*z(l)
4'x ( 2) + “ P*{'l'x (4) + 4>y (4)}
4*x (2) + 4^(2) -  P*{4»x (4) + tpy (4)}

2\l>z (2)  + 2p* 4» (4)4 "

o
H z(3)
4>x (4) + 4»y (4) - P ^ ^ U )  + 4>y (2)}
4̂x (4) + 4-y (4) - Plt{^x (2) + 4'y (2)}

2^z (4) + 2p^ 4>z (2)

The general form of these vectors is equivalent to that given in sub­
section 6.4.2.
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As an example how the different blocks of the block-diagonalised
dynamical matrix are obtained by applying (6.17), we choose here
the block of the symmetry adapted eigenvector ECq^jSl) of the E
direction. (6.17) then results in two equivalent sets of four
homogeneous equations:

{D l l ( 1 1 ; Sif> "  D l 2 ( U ; 3 ‘|)}a3 +  "  D l 2 ( 1 2 ; 2i+) ^ p ib 3 +

{D11.(12sq|f> - D12(12;qi+)}p*a3 + ^ ( 2 2 ; ^ )  - D12(22;qit)}b3 +

+ {Du (23;qlf) -D12(23;qlt)}p1c3 + DX1 (24;q1+)p2Pttb3 = «3?t>3 j

DH (,3;qi+)p2a3 + {D11(23;ql+) - Dl2(23;qlt)}p*b3 +
2

+ {̂*i l (33jq^) ~ D^2(33;q^)}cs + {Du (23;q̂ ) ~ ̂ 12^3»^) jPiP^b^ * W3C3

iDll(I2-SSu) “ Di2(,2;S‘»)}p3*a3+ D1i(24;S.t)P2*b3 +

+ {Dn (23;qlt)-D12(23;qt|)}p*c3+ {D11(22;q1+) " D>2 (22 jq̂ ) = cyD2 b 3

p , p , p are the symbols defined in Appendix 6.A.
Since for the E-direction the phase factor Pl+ = p2 > the second and
fourth equation are equivalent, so that the set may be reduced to
three homogeneous equations:

= 0)23S3[D ll(11)_D12(11)] a3 + ̂ li)ll(12)'I)12(12)IlP l,/2 b 3+ D ll(,3)P2C3
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/2[Dn (12)-D12(12)]p*a3+ [ü11(22)+Dn  (24)-Dlz(22)]i/2 b3 +

+ /2[Ö11(23)-D12(23)]p 1C3 = ^ b 3

D11(13)V 3 + ^ ^ 1 1 (23)’D12(23)-JV2 b3 + HDn ( 33>"Dl2(33)3 C3 = “ 3 c3

Here we have left out in the notation. The reason for y7 b3 every­
where, is that it allows the corresponding simplification of the

. . . . . . 2normalisation condition for ]S(a ;31), in which b occurs twice as often
2 2 . ** ,as a^ and c . In this way all blocks may be obtained for the different

E. The result is:

E-direction

V
Dn (]]) + Di2(ll) ^2[D11(12)+D12(12)]p1 2Di3(12)pi Dll(13)p2

/2[d11(12)+D12(12)]Pi* [D11(22)+D11(24)
+DU (22)]

0 /2|D11(23)+D12(23)]p1

-2D13(12)Pi* 0 D33(22)-D33 (24) 2Di3(23)pi

Dli(13)p2* »̂ [b11(23)+D12(23)]p1* -2Di3(23)pi* Dn (33)+D12(33)

I2:

D11(22)-D11(24)-D12(22)
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Z :3

D i i(11)-Di2 (11) /2[Dh (12)-D1 2 (12^P i D ll(1 3)P2

/2[Dn (12)-Di2 (12)]pi* [D11(22)+D11(24)-D12(22)] /2[Dn (23)-D12(23)]Pl

D i i(13)p2* ^ [ d 11(23)-D12(23)]Pi* D n (33)-D1 2 (33)

d 3 3 o i ) 2D 1 3 (1 2)pi /2 D n (12) D 3 3 0 3 )P2

“2Di3 (1 2)pi [Dn(22)-Dn (24)
+Di2 (22)]

0 2 D 13(23)Pi

/2 D n (12)p* 0 [p3 3 (22)+D 3 3 (2 4 )] S2 D n (23)Pl

D 33(13)p2 -2D13(23)Pl* Jï D n (23)Pl* D 3 3 (33)

A-direction

D 3 3 (ll) *̂2 Dn (12)Pl D 33(13)p2

S2 D n (12)Pl* [d 33(22)+D33(24)] /2 Dn (23)pi

D33(13)p2 /2 Dn (23)pi* D 3 3 (33)
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D33(22)-D 33(24)

V

A5 :

D n ( l l ) [d 11(12)+D12(12)]p i D n (1 3 )p 2 [Pi  1 (12) -  D12O2  2  P1

[ D u C ^ j - D n C ^ ) ] ? ! * D l l (22) [D11(23)+D12(23)]p1 D n  (24)

D ll(1 3 )p 2 [d 11(23)-D12(23)]p 1* D n  (33) |p1l(23)+D1̂ 23)]pi*

|p 1l(1 2 )+ D 2 2 (1 2 )]p 1* D n (2 4 ) [D11(23)-D12(23)]p1 D n (2 2 )

A -d irec tio n

Al :

|b 11( l l ) + 2 D 12 ( l l ) ] [D11(12)+2D12(12)]p1 d h ( 13)P2 (Ï)1i (12>i-2d2(122p3

[dJ ( 12)+2D]̂ (12)]Pi* [d 11(22)+2D12(22)] [D11(23)+2D12(23)]p1 Dl 1 (24)p2

D1 1 ( 13)p2 [D!*(23>-2D J(23 )] Pl* [Pil (33)+2D12 (33)] (p11(23)+2D^23)]Pl

[D11(12)+2D12(12)]p3* Dl 1 (24)p2 (Pu (23)+2Dj2( 23)J p 1 * [ü 11(22)+2D12(22)]

A 3 :

[d u ( 1 1 ) - D 1 2 (1 1 ) ] [? i i ( 1 2 )-D 12 ( 1 2 ^Jpj D1 1 ( 1 3 ) P2 ^)*1(1 2 ) -D i(1 2 ) ] p 3

I ? u (  12) - d 5 (1 2 ) ]  f t* [D U ( 2 2 ) - D 1 2 (2 2 ) ] [D11(2 3 ) -D ]2 ( 2 3 ) ]p 1 D n ( 2 4 ) p 2

D1 1 ( 1 3 ) p 2 * [D i* (23 )-D ^ (23)JPr [D n ( 3 3 ) - D 1 2 ( 3 3 ) ] [D 1 1 ( 2 3 ) - D 12(2 3 )]p 1

[P u d Z )-0 ^ 0 2  ) ] p 3* Di 1 (2 4 )p 2 [P ll(23 )-D 12 ( 2 3 )J p * [Dn ( 2 2 ) - D 1 2 ( 2 2 ) ]
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Chapter VII

CONCLUDING REMARKS

The present study shows that coherent inelastic neutron scatter­
ing not only may provide a complete picture of the lattice vibrations
of structurally simple systems such as a-Fe, but also for more compli­
cated substances such as Fe Al, which has 4 atoms per primitive unit cell.
For these more complicated systems in particular it is of great impor­
tance to perform a group-theoretical analysis of the lattice vibrations.
Such an analysis enables one to recognise those features which are
conditioned by the symmetry of the crystal.

By means of the Born-von Karman model the dynamics of both a-Fe
and Fe^Al could phenomenologically very well be described. This opens
the possibility of separating the contribution of the lattice vibra­
tions to the thermodynamic quantities from those due to other excita­
tions in the crystal. For example, the magnetic contribution to the
specific heat for a-Fe might be calculated as a function of temperature
by subtracting from the experimentally determined specific heat the
contribution of the lattice vibrations (fig. 5.7) and that of the
electrons, which is known from other experiments.

The force constants obtained in the Born-von KarmSn description
give some insight in the character of the acting forces and the differ­
ences in the interatomic potentials of a-Fe and Fe3Al. However, due to
the lack of an adequate theory, not much information is obtained about
the role that the electronic structure plays in the lattice dynamics
of these two specimens. Moreover, the observed dispersion relations do
not exhibit clear effects, which can directly be related to the shape
of the Fermi surfacej and thus no direct experimental evidence is ob­
tained about the electron-phonon interactions of the systems studied.
One might, however, expect more information on this from a study of
the phonons at liquid nitrogen or lower temperatures. Changes of phonon
line widths would occur if strong electron-phonon interactions take
place. In the case of Fe^Al such a study might also aid in clarifying
the discrepancies between the velocities of sound measured by ultra­
sonic and neutron scattering techniques.
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It is well known that in many of the phase transitions occurring
in crystalline solids the lattice vibrations have a decisive influence.
One may wonder what kind of information the present study of the lat­
tice dynamics of Fe^Al bears on this problem, or which additional
studies should be made to better understand this phenomenon in Fe Al.
It is clear that a description of the lattice dynamics within the
framework of a harmonic theory, which has temperature independent
parameters, never will predict a phase transition. This is not even
the case when anharmonic terms are introduced by means of a pertur­
bation method. More succesful in this respect would be methods using
self-consistent potentials *).

An additional difficulty resides in the fact that the situation
for Fe Al is somewhat unclear. From the literature it can not be
uniquely decided what exactly happens at around 550°C. It is very well
possible that two phases, D03~ and B2-structure (CsCl), are in equi­
librium above this temperature 2). Furthermore a double Curie-point
has been observed in this neighbourhood, depending upon the thermal
history 3). For this reason the vibrational spectrum is certainly not
the only factor which plays a role in the phase transformations, but
knowledge about changes in the vibrational behaviour will still pro­
vide more insight in the system. A neutron study of the 50% disordered
alloy probably can be made at room temperature, since by quenching
from above 550°C the B2-structure is obtained 3). A fair guess of its
vibrational behaviour can already be made on the basis of what is now
known about ordered Fe^Al, allowing for the change in symmetry. In the
B2-phase the positions 1 and 3 (see fig. 6.1) are randomly occupied
by Al and Fe(l) atoms. Hence there are only two inequivalent positions,
say 1 and 2. A set of force constants may be obtained from table 6.4,
second column, by taking for the first neighbour interaction the aver­
age interactions of (1-2) and (1-3), for the second-neighbour (1-1)-
interactions the (l-3)-interactions and for (2-2) the (2-4)-interaction.
For the third-neighbour interactions between (l-l)-atoms, the average
of (1-1)- and (2-2)-interactions is taken and for the (2-2)-interactions
the (2-4)-interactions. With these force constants the dispersion re­
lations in the symmetry directions of B2-type Fe3Al have been calcu­
lated. They are displayed in fig. 7.1, together with, for comparison,
the calculated dispersion relations of ordered Fe3Al and a-Fe.
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Fig. 7.1. Calculated phonon dispersion relations for a-Fe, CsCl-type
Fe A l  and ordered Fe ̂ Al, displayed with respect to the D0̂ ~
la ttice . The labelling for  a -Fe is  according to Fig. 5.2
and that for CsCl-type FeJFl to the group-theoretical des­
cription with respect to the CsCl-lattice.
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The relation between the B2- and DO^-structures in reciprocal space is
shown in fig. 7.2 (that between the D03~ and the a-Fe structures was
shown in fig. 6.3), for the (llO)-and (OOl)-planes of the reciprocal
lattice.

<£ 4 -}

(OOO)

Fig. 7.2. The (110)- and (OOl)-planes o f  the reciprocal
la tt ic e  o f  ordered Fe Al (so lid  lines) and
CsCl-type F'eJLl (dashed lin es).

The frequency distribution functions for the disordered crystal have
also been calculated and are shown in fig. 7.3. Comparison with fig.
6.8 reveals as most remarkable difference the disappearance of the
frequency gap in the spectrum. The Debye temperature, shown in fig.
7.4, deduced from the Debye-Waller factor calculation is about the
same as that for ordered Fe3Al and is in rather good agreement with
X-ray measurements of Nemnonov et al. **), which reported 380°C and
390°C, respectively, for the DO - and B2-type alloy. The specific
heat Debye temperature differs by about 20°, which indicates that as
a consequence of the different vibrational spectrum the thermo­
dynamic functions may be different.
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Fe3AI ( Cs Cl - s t r u c t u r e )

Fig. 7. 3. The frequency distribution function for CsCl-
type Fe At together with the weighted frequency
distribution functions (cf. fig . 6.8) for the
(Fe(l)-Al)- and Fe(2)-atoms.
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Fe,AI (C s C I -s t ru c tu re )

^  440

H g .  7.4.

Debye temperatures calcu­
lated from the specific
heat (solid curve) and the
Debye-Waller factor (dashed
curve) using the frequency
distribution functions o f
Fig. 7.3.

Other useful informa­
tion could be obtained by
the investigation of the be­
haviour of the high optical
phonons at the zone boundary
of the A-direction during
heating from below to beyond
the transition temperature.
Fig. 7.1 shows that on pas­
sing the transition temper­
ature the frequency gap,
which exists in ordered Fe3Al,
must disappear.
Very often phonons are well

defined also in the neighbourhood of the transition temperature and
consequently frequency changes as a function of temperature can pro­
bably be determined rather accurately by neutron inelastic scattering.
This method could thus be superior for the study of the character of
the phase transition to that of critical X-ray scattering, where the
intensity of a vanishing reflection has to be established.
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SUMMARY

This thesis describes the investigation of the lattice-vibra­
tional spectra of a-iron and ordered Fe^Al by means of inelastic
neutron scattering. a-Fe and ordered Fe3Al are structurally related,
which will be reflected in their dynamical behaviour. Ordered Fe3Al
partly disorders into a CsCl-type structure beyond about 550°C.

In chapter II a short review is given of the description of the
lattice vibrations in the Born-von Karman theory. After the classical
treatment of the lattice vibrations, the quantum mechanical approach
is sketched. Expressions for the specific heat and the Debye-Waller
factor are presented. In the last section relations between the elas­
tic constants and the interatomic force constants in crystal lattices
are derived by applying the method of long waves.

In chapter III a review of the theory of neutron scattering by
harmonic crystals is presented. The most important results for this
investigation are the coherent single-phonon cross section and the
expression for the inelastic structure factor.

The applied experimental technique is described in Chapter IV.
A brief description of the triple-axis crystal spectrometer and its
possible modes of operation is given. Experimental data on a-Fe are
presented, which demonstrate the effect of operating the spectrometer
under focused and defocused conditions.

The investigation of the lattice dynamics of a-Fe is reported
in chapter V. Experimental phonon dispersion relations for directions
of higher symmetry are presented. A least-squares analysis was made
with a fifth-neighbour Born-von KSrman model. This analysis yielded
interatomic force constants which were used for the calculation of
the lattice-vibrational frequency distribution function and some re­
lated thermodynamic quantities. The data are compared with those ob­
tained by other neutron studies and X-ray investigations. The experi­
mental dispersion relations are also compared with a calculation
according to Krebs' model, which takes into account electronic effects
on the lattice vibrations.
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In chapter VI the investigation of the lattice dynamics of
ordered Fe^Al is presented. The treatment is also in the phenomeno­
logical Born-von Karman model. The number of parameters is restricted
to 11 by considering interactions out to third neighbours, with cen­
tral interactions between third neighbours. Since the phonon spectrum
of Fe3Al, which has 4 atoms per primitive unit cell, is rather compli­
cated, a group-theoretical classification was made of its normal modes
using the method of the multiplier representations. Such a treatment
is important to obtain a simplification of the dynamical matrix and
information about the polarisation vectors of the different vibrations.
The polarisation vectors are needed for the calculation of the inelas­
tic structure factors. Reduced inelastic structure factors are presen­
ted for purely longitudinal or transverse phonon branches. Experimental
dispersion relations were analysed by means of a least-squares method,
which yielded two sets of interatomic force constants. One of the sets
was obtained by imposing on it the constraints of the elastic constants
as measured by an ultrasonic technique. The difference between the two
sets is attributed to the different ways in which sound waves and low
frequency phonons are affected by anharmonic effects. The interatomic
force constants were also used for the calculation of the frequency
distribution function and related thermodynamic quantities.
A striking feature in the force constants is the relative small inter­
action between second neighbours as compared to that in a-Fe.

Chapter VII contains some general remarks about the two neutron
studies. A few speculations are made about the change in the vibra­
tional spectrum of Fe3Al in the neighbourhood of the phase transition
from the ordered structure to the CsCl-type structure.
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SAMENVATTING

In dit proefschrift wordt het onderzoek van de roostervibraties
in a-ijzer en in geordend Fe3Al met behulp van inelastische neutronen-
verstrooiïng beschreven. a-Fe en geordend Fe^Al vertonen een structu­
rele verwantschap, die ook in het dynamisch gedrag tot uiting zal
komen. Geordend Fe3Al ondergaat een gedeeltelijke ontordening boven
ongeveer 550°C, waar een CsCl-type structuur ontstaat.

In hoofdstuk II wordt een kort overzicht gegeven van de beschrij­
ving van roostervibraties in de born-vonkarmantheorie. Na de klassieke
behandeling van de roostertrillingen, wordt de overgang naar de quan-
tummechanica kort geresumeerd. Uitdrukkingen worden gegeven voor de
soortelijke warmte en de debye-wallerfactor. In de laatste paragraaf
worden relaties afgeleid tussen de elasticiteitsconstanten en de in-
teratomaire krachtconstanten in kristalroosters door grote golflengten
te beschouwen.

Een overzicht van de verstrooiingstheorie van neutronen in har­
monische kristalroosters is te vinden in hoofdstuk III. De belang­
rijkste resultaten in verband met dit onderzoek zijn de uitdrukkingen
voor de coherente werkzame doorsnede voor één-fononverstrooiing en
voor de inelastische structuurfactor.

Hoofdstuk IV geeft een beschrijving van de toegepaste experimen­
tele techniek. In het kort wordt hier de drie-kristalspectrometer be­
schreven en een aantal mogelijke wijzen van bedrijf behandeld.
Experimentele gegevens betreffende a-ijzer worden gerapporteerd als
een demonstratie van het effect dat optreedt, wanneer de spectrometer
onder al of niet gefocusseerde omstandigheden wordt bedreven.

In hoofdstuk V wordt het onderzoek van de roosterdynamica van
a-Fe weergegeven. De experimenteel bepaalde dispersierelaties voor de
fononen in de symmetrierichtingen en in bepaalde richtingen langs de
grens van de brillouinzone worden hier gepresenteerd. Deze gegevens
worden met behulp van een kleinste-kwadratenmethode geanalyseerd in
termen van het bom-vonkarmanmodel, waarbij interacties tot en met de
vijfde buren in aanmerking worden genomen.
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Het resultaat is een groep van 13 interatomaire krachtconstanten, waar­
mee de frequentieverdeling van de roostertrillingen werd berekend. Met
behulp van deze verdeling werden de soortgelijke warmte en de debye-
wallerfactor bepaald en de hiermee corresponderende debyetemperaturen
afgeleid. De gegevens worden vergeleken met die verkregen uit andere
onderzoekingen met neutronen en met die uit röntgenwerk. De experimen­
tele dispersierelaties worden ook vergeleken met een berekening volgens
een model van Krebs, dat bepaalde invloeden van elektronen op het ge­
drag van de roostervibraties in aanmerking neemt.

In hoofdstuk VI wordt het onderzoek van de roosterdynamica van
Fe^Al in de geordende fase beschreven. De behandeling is eveneens met
behulp van het fenomenologische born-vonkarmanmodel. Het aantal para­
meters blijft beperkt tot 11 door slechts wisselwerkingen tot en met
de derde buren in aanmerking te nemen, waarbij centrale wisselwerking
tussen de derde buren wordt verondersteld. Omdat het fononenspectrum
van Fe3Al, dat 4 atomen per primitieve eenheidscel bezit, nogal ge­
compliceerd is, werden de normaaltrillingen met behulp van groepen­
theorie geclassificeerd, waarbij gebruik werd gemaakt van de methode
van de multiplicatorvoorstellingen. Een dergelijke behandeling is van
belang voor het verkrijgen van een vereenvoudiging van de dynamische
matrix en van inzicht in de vorm van de polarisatievectoren van de
verschillende roostervibraties. De polarisatievectoren zijn nodig voor
de berekening van inelastische structuurfactoren. Voor de zuiver longi­
tudinale of transversale vibraties worden gereduceerde inelastische
structuurfactoren gegeven. De experimenteel bepaalde dispersierelaties
werden geanalyseerd met behulp van een kleinste-kwadratenmethode, het­
geen resulteerde in twee stellen interatomaire krachtconstanten. Eén
stel werd verkregen door te eisen dat ook werd voldaan aan de voor­
waarden opgelegd door de elasticiteitsconstanten, gemeten met een
ultrasone methode. Het verschil tussen deze twee stellen krachtcon­
stanten wordt toegeschreven aan de verschillende invloeden, die ge­
luidsgolven en fononen van lage frequentie ondervinden van anharmo-
nisch gedrag van het kristalrooster. De interatomaire krachtconstanten
werden ook gebruikt voor de berekening van de frequentieverdeling en
verwante thermodynamische grootheden.
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Hoofdstuk VII bevat enige algemene opmerkingen betreffende de
twee gemaakte studies met behulp van neutronen. Enige speculaties
worden gemaakt over de verandering in het vibratiespectrum van Fe3Al
in de buurt van de fase-overgang van de geordende naar een CsCl-type
structuur.
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Teneinde te voldoen aan de wens van de Faculteit der Wiskunde
en Natuurwetenschappen volgen hier enkele persoonlijke gegevens.

Na het behalen van het diploma H.B.S.-B in 1952 aan de Christe­
lijke Hogere Burgerschool te Veenendaal, begon ik mijn studie aan de
Rijksuniversiteit te Utrecht. Het candidaatsexamen wis- en natuurkunde,
letter a, werd in 1956 afgelegd en het doctoraal examen natuurkunde
(experimentele richting) met bijvakken wiskunde en mechanica in 1960.
In de periode 1958 - 1960 maakte ik als wetenschappelijk medewerker
met studietoelage deel uit van de F.O.M.-werkgroep voor thermo-
nucleaire reacties TN II-Plasmafysica-Utrecht, gedurende welke periode
het experimentele hoofdonderzoek voor het doctoraal examen werd ver­
richt.

In juni 1960 trad ik in dienst van de Stichting Reactor Centrum
Nederland, welke mij gedurende 3 jaren detacheerde bij het Institutt
for Atomenergi te Kjeller in Noorwegen, waar ik verbonden was aan de
Noors-Nederlandse Reactorschool. Sedert 1963 ben ik werkzaam in het
onderzoekcentrum te Petten in de groep Neutronenfysica.

Het experimentele deel van het in dit proefschrift beschreven
werk werd uitgevoerd bij de Hoge Flux Reactor te Petten in de jaren
1967 - 1970.
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