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Chapter I

INTRODUCTION

The scattering of thermal neutrons by crystals has been recognized
as an extremely powerful means for the study of lattice structures !)
and lattice dynamics 233). For the investigation of crystal structures
neutron scattering can be considered to be complementary to X-ray
scattering in samples containing both heavy and light elements, or
elements with neighbouring atomic number. In addition, because the
neutrons have a spin, they also allow the determination of magnetic

structures.

For the study of lattice vibrations the use of neutrons is almost
indispensable. Unlike other types of radiation, thermal neutrons have
both a wavelength which is of the same order as interatomic distances in
crystals, and an energy of the same order as that of the quantized
lattice vibrations, the phonons. Thus both exchange of momentum and
energy with the lattice vibrations can easily be detected by analysing
direction and energy of the scattered neutrons. The scattering process
in which the neutrons exchange energy with the lattice vibrations is

usually referred to as neutron inelastic scattering by phonons.

For the analysis of the neutron energies two methods are used. In
the first method, the diffraction technique, one determines the wave-
length of the neutrons from the angles at which they are Bragg reflected
from a single crystal. In the second method, the time-of-flight techmique,
the velocities of the neutrons are determined from the time they need to
traverse a certain distance. For the study of phonon dispersion re-
lations in single crystals the diffraction technique is in general to be

preferred over the time-of-flight technique.

In this study the diffraction technique has been used for the de-
termination of the phonon dispersion relations in a-Fe and its alloy

Fe 3A1 .

For the case of simple metals such as sodium, magnesium and
aluminium, the experimental determined dispersion relations are

easily interpreted in terms of physical quantities. This is the case

to a lesser extent for more complicated metals, such as the tramsition
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metals. The lattice dynamics of these metals is usually described in
the more phenomenological Born-von Karman theory. The experimental
phonon dispersion relations yield the parameters, the interatomic
force constants, for this model. It is then expected that systematic
comparison of the results from properly chosen metals and alloys in-
dicates how the theory for the simple metals should be extended or

revised for more complicated systems.

The present study of the lattice dynamics of a-Fe and Fe3Al fits
also in this frame-work. There is a close relationship between the
two structures and comparison of the lattice dynamics of both sub-
stances might yield some of the fundamental quantities necessary for
arriving at the proper theory. In addition Fe3Al is very interesting
to investigate since it undergoes a phase transition under heat treat-

ment from the ordered DO3 structure to the 507 disordered B2 structure.

In the chapters II and III of this report some of the elements of
the theory of lattice dynamics and neutron scattering by lattices are
reviewed. After that a short description is given of the diffraction
set-up, the triple-axis crystal spectrometer, together with the ex-
perimental methods which were applied. In chapter V the study of the
lattice dynamics of a-Fe is presented and in chapter VI the investigation
of Fe3Al is described. The Born-von Karman theory is used in the

description of the lattice dynamics of both specimens. The description

of Fe3Al includes a group—theoretical analysis of the normal modes.
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Chapter II

BORN~VON KARMAN THEORY OF LATTICE VIBRATIONS

2.1. Introduction

The theoretical treatment of the lattice vibrations as used here
is originally due to Born and von Karman 1y, It has been described ex-
tensively a.o. by Born and Huang 2) and by Maradudin et al. 3). The

following assumptions and approximations form the basis for this theory.

a. The adiabatic approximation.
The electrons are always able to adapt themselves to the instantaneous
nuclear positions. Thus the potential energy may be written as a
general Taylor series in terms of the displacements of the atoms from

their equilibrium positions.

b. The harmonic approximation.
The atomic displacements are considered to be so small, that the

above series expansion may be broken off after the quadratic term.

¢c. The requirement of periodic or cyclic boundary conditions.
This is equivalent to replacing the finite specimen by an infinite

medium without boundary effects.

In the present work the fundamental theory is treated classically,
while it is indicated how to proceed to obtain the quantum mechanical
results. The latter are used in the description of the thermodynamic
quantities. In the last part of this chapter the relation between the

long wavelength vibrations and the elastic constants is discussed.

2.2. Classical theory

Let us consider a general lattice structure with n atoms per
primitive unit cell, the different atoms in the same cell being dis-
tinguished by an index A and the different cells being labelled by an

index .

We can represent the potential energy ¢ of an arbitrary lattice
as a function of the displacements of the atoms from their equilibrium

positions by expanding ¢ in a Taylor series with respect to the atomic

displacements 1,2,3,4%), For small vibrations it suffices to trunkate




after the second derivative of the potential energy, which leads to the

harmonic approximation. Therefore we write for the lattice potential

& 0 -;v"" 0 5.7' 1 X
l ,dﬁ(LA,, A) ua(gx) us(. ) S (2.1)

where & 1is the potential energy of the static lattice, uu(lk) and
o) (

uB(R'X') are the o— and B-component of the displacements of the atoms

(22) and (L'\'), respectively. Furthermore,

g N2 &
2 o9 O S ac®
¢ (RA) = —m———— and ¢ LA3LA = - ——— — where the
a( ) Jul(ik) ’ uB( ’ ) du_(&X)odu, (2'A") 2

0 o B 0

subscript o indicates that the derivatives are taken in the equilibrium

state.

It is obvious that a displacement of the lattice as a whole does
not change the potential energy. This means in first order in the dis-

placement
Z L Lo (2\)u (23) = N Z Lo, (MNe =0, (2.2)
e NI A QO

where N is the total number of cells and €y the o-component of the dis-

placement vector ¢ of the lattice. Since (2.2) must hold for an arbitrary

vector £ it follows that

P o () =o0. (2:3)
T O
Likewise the value of 5;2%IX7 can not be affected by a translation of
o 5
the lattice over a vector u(2i) = ¢. Expansion of TEE%TTT in a power
o o A
series and substituting uB(Q'A') = g yields
—2__ o5 )+ T e (aAR"Ae, + (2.4)
du_ (2X) o P ] 3 “g s '
o L'A'B
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Since (2.4) must hold independently of €go we obtain also

& . (2r32'A") = 0. (2.5)
iyt OB

The —@aB(iA;Q'A') are usually called the interatomic force constants.
-Q&S(QX;Z'X') is the a—-component of the force on atom (Z)) due to a

unit displacement of atom (2'A') in the B-direction. From the formal
definition of the force constants it follows that they are symmetric

in the indices (2 A o) and (L'A'B)

o (R'AT52)) . (2.6)

¢ AL'AY) = &,
up( Y ) “Ba

In view of (2.1), (2.3) and (2.6) the equations of motion for the atoms

of the crystal become

3
au (ZX))
a

M()) aa(zx)

- o LAz gt 247
1‘%'8 us(A A >u8( ) ( )

where M(A) is the mass of the atom of type A. Because of the periodicity
of the lattice ilﬁ(ik;z'k') does not depend on the absolute positions

of the cells (2) and (%'), but only on the distance between them. Hence

b _(2A32°'A") = ¢
aB

2, g(2=2"3A0") (2.8)

and consequently we may write (2.7) as

MO)G (R2) = - I o (a2 50 u (") (2.9)
Q'\*'S

The infinite number of equations given by (2.9) can be simplified to a

set of 3n equations by inserting the plane wave

ua(l,\) = [uu(k)/bi(k)ﬂ exp {iﬂ'l(ﬂ) - iwtj] . (2.10)
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The amplitude [;a(k)/M(A)%J is independent both of 2 and the time t.
Further r(&) is the position vector of the origin of the f2-th unit cell,
w is the angular frequency and g, the wave vector, is an arbitrary
vector in phase space, which has base vectors 2m times the base vectors
of the reciprocal lattice. The reciprocal lattice is related to the

crystal lattice in the following manner: let a lattice point be given

by
3
r®) = ) 2. a. , (2.11)

where the a, are the three base vectors of the normal lattice, while
the ﬂi are integers, then a reciprocal lattice point is determined by

a reciprocal lattice vector t(h)

1(h) = ) h., b. (h, = integer) , (2.12)

with Ej the base vectors of the reciprocal lattice defined by
B % b B0 (2.13)

Substitution of (2.10) in (2.9) yields the following result for the 3n

equations of the reduced amplitudes u_ (A)

wlu () = 1 D ON'@u (1Y) , (2.14)
( ‘)\',_ op >

<
o]

where DQR(XA';H) are the elements of the so-called Fourier-transformed
dynamical matrix D(q), hereafter referred to as dynamical matrix.

These are given by

o

(Ar'3q) = fM(,\)M(A.')}_li )

3 o1

wg 2" 302 Dexp[-ig: (£ (2)-x(8"))]

(2.15)

For (2.14) to yield non-trivial solutions the following determinantal

equation should be fulfilled
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[ uzé)\)\.éas = D o (\';9) | = o. (2.16)

Equation (2.16) is called the secular equation. For every wave vector
q there are 3n solutions for w2, every solution w? (g) corresponding to
one vibrational mode. The relations between the angular frequency w and
the wave vector of the lattice vibrations g are called the dispersion
relations of the vibrational modes or normal modes. They consist of

3 acoustical and 3n-3 optical dispersion relations usually referred to
as branches. The acoustical branches are characterized by frequencies
which vanish with vanishing wave vector q, while the optical branches
always have frequencies different from zero. For small values of ¢ the
frequencies of the acoustical branches are linearly proportional to

|g| and all atoms in the same cell move in phase. Thus in the limit of
long wavelengths the acoustical branches are in fact identical to the
ordinary elastic vibrations. For the long wavelength optical vibrations,
the atoms within the same cell move in such a way that their centre of
mass is at rest. Such vibrations may be excited by light waves with

frequencies within the infrared region.

The solution of (2.16) is in fact the solution of an eigenvalue
problem; the w?(g) are the eigenvalues of the matrix D(q), and the
ul(K) the components of the corresponding eigenvectors. To show the
fact that ua(l) is unambiguously connected to wf(g), we change our
notation and replace the former by elj(k;g). This brings us to the

following expressions for (2.10) and (2.14)

u s (L)) = [eaj (r39) /M) %j exp [:is_'i(i)'iwj (@)t] 2.1
and

WS (@e ;50 = [ D ON'30) eg 05 - (2.18)

A'R
The eigenvector gj(k;g) is composed of the n three-dimensional

polarisation vectors of the n different atoms in the unit cell.

It is now possible to derive some general properties of the
dynamical matrix which are of relevance for the further treatment of

the dynamical theory. From the definition of the reciprocal lattice as

given in (2.11), (2.12) and (2.13) it follows that the dynamical matrix
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D(q) defined by (2.15) is a periodic function of q with the period of

the reciprocal lattice
1% = [Tyt
DaB(M 3q + 271) DQB(M 3q) - (2.19)
Further (2.15) leads immediately to
e S Vs
DQS(AX 3q) DaB(AA 3=q) - (2.20)
Combination of (2.6) and (2.15) yields the result
A"A3q) = D, (A"; 2.21
DCLB(A ’_q) - D&B( )ﬂ) ] ( 9 )
which means that D(q) is a Hermitian matrix.

As a consequence of (2.19) it follows from (2.16) that the normal mode

frequency has the reciprocal lattice periodicity, hence

wj (g + 2n1) = wj (@) - (2.22a)
Moreover, we may choose

gﬁ(x;g_+ 2nt) = gj(x;g) ~ (2.22b)
where the arbitrary phase factor of unit modulus, which, strictly

speaking, relates the lefthand side of (2.22b) to its righthand side,

has been put equal to unity.

For a Hermitian matrix the eigenvalues are real, and the eigen-

vectors can be chosen to obey the following relations

*
d QZA es (3 e 51 () = 6544 (2.23a)
an
- . -
) en; (139 egs (A1) =8 85,0 (2.23b)

Furthermore we may demand
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*
eaj(k;_q) = eaj(k;-g) > (2.24a)
while from (2.20) we obtain
wj Q@ = wj (-q) - (2.24b)

The above relations give some of the fundamental properties of w and e

of importance for the treatment in the forthcoming sections.

2.3. Quantum mechanical approach

The classical treatment sofar of the lattice dynamics explains
many physical aspects in a very elegant way. However, for a proper
description of some thermodynamic quantities, and also to understand
many of the neutron scattering properties a quantum mechanical des-

cription is needed. We will now sketch the quantum mechanical treatment.

It can be shown °) using (2.17), (2.23) and (2.24) that the dis-
placement of atom (2A) from its equilibrium position can be written in
the general form

3n

u@i,t) =] ] e (s@) o Osgexp[iger(¥)-ivn, (@c] +

+ a;()\;-_cl)exp[:i_cl-z(ﬁ)+iwj (_q)tj} : (2.25)

N is the total number of unit cells. The summation of q is over N
points of the first Brillouin zone, which is the cell containing all
points in reciprocal space lying nearer to the origin than to any other
point of the reciprocal lattice. This restriction on q, which simplifies
many of the lattice dynamical calculations, is obtained by adopting the
cyclic boundary conditions. The latter postulate that u(fA,t) repeats
when going, say L cells in the direction of any of the base vectors of
the crystal lattice as defined by (2.11). This together with the lattice
periodicity, reflected by (2.10), enables us to confine ourselves to

the L3 = N values of q in the first Brillouin zone of reciprocal space.

The variables aj(k;g) are complex numbers, containing the arbitrary
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amplitudes and phases of the 3nN uncoupled harmonic oscillators into
which the movement is broken down. In (2.25) u(fi,t) is always real.
Expression (2.25) is particularly suited for p%oceeding to the quantum
mechanical approach, in which u(%A,t) as well as the variables aj(k;g)
are considered as operators. The former then must obey the commutation

relations

]

[u, (02 8)u, ("', 0)] = [u (44,8),u,(22,8)] =0,

(2.26)

Ll_xﬁ(!lk,t),ua(l'%',t)] M09 SaaSanSap
By introducing the operators
1
a, (@ = (2nNM<x>wj (g)/n)? a;(A39) »
one obtains
3n b
u(@r,t) =7 T (20MM(M)w.(Q)/n) ? e.(r3q) -
s 2\ J 4 |
q 1=1
{ay (Qexp[igrr(t) - iu; (@t] + a§<-3>expfiﬂ'£<i> * 1w, (@t]}s

(2.27)

in which the aj(g) satisfy the commutation relations

[2; @+ a5:(a")]
(2.28)

' * '
[3,@> a;0a"] = [a@, aj1@)] =0

The Hamiltonian of the crystal can be written in terms of these operators

H= J fuw (q) {a:(Q) a:(Q) + §} (2.29)
& ] ]

with eigenvalues

E = ij(g) (n.(q) + %) , (2.30)
aj 2
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where the quantum numbers nj(ﬂ) may have values 0, 1, 2, etc. At zero
temperature the crystal is in the ground state: all quantum numbers
nj(g) are zero. The operators aj(g) and a;(g) represent the usual an-
nihilation and creation operators for the quanta of eigenvibrations, the

phonons. The average energy of a particular phonon is
<Ef‘=ﬁgﬁg)ﬁgﬁgp + 4) . (2.31)

<nj(g)> is obtained by statistical mechanical considerations 2) from the
partition function for harmonic oscillators,
I coth(ﬁwj/ZkT)—l

<n.(g)> = = . (2-32)
J expfﬁwj/kT)-l 2

k = Boltzmann's constant and T the absolute temperature.

For a macroscopic crystal the number of phonons is very large and to
obtain the total energy of the crystal we may replace the summation of

(2.30) by an integration over the frequency v (=w/2m).

o

1
E=N [ [% + exp (hv/KD)=1 } hvf (v)dv . (2.33)

J

o]

Here f(v) represents the density of phonon states, the so-called fre-
quency distribution function, which gives the total number of frequencies
per unit range at a particular frequency. Its normalisation is obtained

from the condition
[ £(v) dv = 3n , (2.34)

with n the number of atoms per primitive unit cell.

From (2.33) follows for the molar heat capacity at constant volume

due to the lattice vibrations

exp (hv/kT)

kT

0E _ J hvy 2
C, = == = N,k (=) £fdv , (2.35)
B S M o (exp(hv/kT)-1)2
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where NA is Avogadro's number. For large T (2.35) approaches the classical

result, the Dulong-Petit law for the specific heat

C.. ~ 3 knN (2.36)

N = AL
The frequency distribution function plays also an important role in the
Debye-Waller factor e—zw. For the case of a cubic crystal with one atom

per primitive unit cell 2W can be written ©,7) as

(o]

_ 1Q? 1 £(v)
e J (exp(hv/kT)—] + }) 5oy AV s (2.37a)
(o)
or
2W = R.C(T) . (2.37b)

R = 12Q2/2M is the recoil energy of a free scattering atom and

e

L 1 1) f(v)
C(D) === J (exp(hv/kT)—l + 1) dv . (2.38)

o]

The Debye-Waller factor will be discussed in more detail in connexion

with neutron scattering in the next chapter.

2.4. Long wavelength vibrations and the elastic stiffness constants

In the limit of infinitely long waves the atoms in a unit cell move
in parallel with zero frequency in the case of the acoustical modes.
For very small but finite values of the wave vector q this is still
approximately true. Such low frequency vibrations correspond to sound
waves in the crystal. Since the frequencies of sound waves in a solid
are determined by the macroscopic elastic constants and the frequencies
of the normal modes in a crystal by the atomic force constants, there
must exist relations between the force constants @ag(ﬂk,i'k') and the

elastic (stiffness) constants c These relations can be obtained

by studying the equations of moiz;gé(Z.IB) in the long wavelength limit
and comparing them with the corresponding equations from the theory of
elasticity. For small values of g (2.18) can be solved by a perturbation
method 2,3,8), originally due to Born ?), which here merely will be

sketched.



4=

chapter II

Both sides of equation (2.18) are expanded in powers of g, breaking
off after the first three terms.

For DQB(AA';S) we write using (2.15)

Dqs(lkv;&) o= Dig) (AA';S) + Dé;) (AA';H) + Dé;) (**'33) g e oy
(2.39)
with

O(L ) o q) = (MOOMQ"))™ : ) ®,q (2234 2 X . (2.40a)

o] 2,'

1 ' : 1 =3 a3 1y '

is) (A '39) = -i(MOOMOQ")) ig. 3,5 (413522 ) [q- (x(2)-x(2"))], (2.40Db)
) (n'sg) = -3 M) ] 0,(052"A") [ (x)-r"))]%. (2.40¢)

L

The expansions for wj(g) and eaj(x;g) are

(0) (@ + w

; D@+ @, (2.41)

ug@) = @ ]

e s = e i + el W v e Qi+ @)
For acoustic vibrations the zeroth order term w(o) (g) = 0. As a con-—
sequence of the fact that terms of the same order on both sides of
(2.18) have to be equal, it follows that the zeroth and first order

terms are zero. Hence

( )

I (D 0n'39) g (i) = 0 (2.43a)
DIRCNSRICPETY e(J) ('30) + DS O's) eég) (A\'39)} = 0.(2.43b)

For the second order terms the following relation holds

) oz e (tig)

I 7
LD.,(EJ) ') e (g + 0l
6 ! -]

ap B3 af

=~
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From (2.5) and (2.40) it is clear that (2.43a) has solutions
(0)
BJ
dependence will be determined below from a simplified version of

e (A';q) = M(A')%'esj(g), with esj(g) independent of A'. The g-

(2.43c). (2.43b) represents a system of 3n inhomogeneous linear

1
equations for the vectors E; )(A';ﬂ), when the e

(2.43c) can be simplified by multiplying by M(A)% and then summing

(%)(X';g) are known.
over A. The first term then vanishes because of (2.5), (2.8) and

(2.40a). Hence (2.43c) transforms into
2 0 § IR 1) DR s T 5 R &
MZU M(”{Das OA'sQeg: " ('50) + MA") D o7 (X i@ egs (&)j -

. 2
) M(A)wj(l) (@e,; @- (2.43d)

Inserting the solution for the gél)(x';g) in (2.43d) provides the
final set of inhomogeneous equations for the gj(g). If we further
devide by Vo’ the volume of the unit cell,(2.43d) transforms into the

general form
K(g) *e;(@) = ow?(_q) re(@ - (2.44)

p = z M(X)/Vo, the macroscopic density.
A

Equation (2.44) is directly comparable with the macroscopic equation

describing elastic waves

K'(Q) * e = pwle , (2.45)
where
' =
Kug —_ggcuy,ﬁé i 45 - (2.46)

cay 86 the elastic constants, are the coefficients occurring in the
3

generalised Hooke's law, which gives the linear relationship between
the elastic stress and the elastic strain components. Written in tensor

notation

(2.47)

SGY = ay,B6 °gs
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The elastic constants in the more familiar Voigt notation with single
indices are obtained from those in tensor notation by a simple trans-

cription of the indices, (ay) - u, according the following scheme

Pair of indices: ay 11 22 33 23(32) 31(13) 12(21)

Single index s u 1 2 3 4 5 6

By equating the coefficients of same orders of g in (2.44) and (2.45)

one readily obtains the relations between the elastic constants and

the interatomic force constants.
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THEORY OF NEUTRON SCATTERING BY LATTICES

3.1. Introduction

The interaction involved in scattering of thermal neutrons by
bound atoms results mainly from two effects: a) the interaction of the
neutron with nuclei via nuclear forces, b) the interaction of the neutron
with unpaired electrons in atoms via magnetic forces due to the neutron
magnetic moment. In this work only the nuclear scattering will be en-

countered.

Usually the theory of slow-neutron scattering by bound nuclei is
discussed 152,3,4,5,6) in terms of the first Born approximation by in-
troducing a special potential for the neutron-nucleus interaction.
Although the nuclear interaction potential cannot be regarded as a small
perturbation and the neutron wave function cannot be assumed to be a
plane wave within the range of nuclear forces, it is, however, possible
to calculate the scattering cross section by this approximation, because
of the fact that the form of the cross section is determined by the be-
haviour of the wave function well away from the scattering centre. It
is therefore possible to use the fact that the region within which the
interaction works is very small, in fact in the calculation of the
cross section it is put equal to zero. The form of the interaction
potential is then chosen such that the correct answer is obtained for
the experimentally determined scattering amplitude. In this approach
the interaction between the neutron and the target nucleus can not be
described by a true potential, but only by a delta-function of adjustable
strength, the so-called Fermi pseudo-potential

V(e = ZBEB 5oy, (3.1)
55 0 L%
b is the neutron scattering length (which may be complex) and m is the
neutron mass. Such a "potential" leads to the required short range
nature of the forces and thus to isotropy of the scattering. The

asymptotic form of the neutron wave function at large distances is %)

kX
o

e . (3.2)
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where ¥ represents the incident neutron wave function, and ¥, the

scattered one.

In case of scattering by a macroscopic system of nuclei, the
total scattering may be evaluated by proper summation of independent
but possibly coherent scattering from all nuclei present. Every nucleus

% is accounted for by a scattering Fermi pseudo-potential

21h2
m

v(2) = b(e)s(r-x'(®)) (3.3)
where r'(2) = r(2) + u(2).

Schiff 7) gives for the cross section in first Born approximation for
a process in which the scattering system goes from a quantum state p
to a state p', while the neutron is scattered from k  to k' (k, and k!

are neutron wave vectors) with spin state s to s'

2 . )
do = k' ( m | o [ 1Q°r
dQ(ps»p's') k_ | 2J <<P s !JdE e V(x) pé:> . (3.4)
o ‘2rh
V(r) is the interaction potential, and Q= Eo - &v 48 Ehn neabron

scattering vector. k' must satisfy the condition for energy comservation

12k 2
21,12
Tk + E = e

2m p' 2m p

> (3.5)

where Ep and Ep. are the total energies of the state before and after

scattering, respectively.

To obtain the double differential cross section we must sum over
all final states p',s' and average over the states p,s, weighted ac-—

cording to their probabilities Pp and Ps 5

d20' . k’ m “ rt
dQdE z PpPs Z k_ [ } \<:p °
pPs p's o
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In the equilibrium state Pp is given by the Boltzmann distribution,

exp[-Ep/(kT))
P = : (3.7)
P ) exp(-Ep/(kT))

P

For an unpolarised neutron beam

P =1. (3.8)

3.2. Elastic scattering

When we restrict ourselves to nuclear scattering we can evaluate
the matrix elements of (3.6) by substitution for the potential V(x)

the one given by (3.3) summed over %. Equation (3.6) then becomes

2
d?g - k' iQer' (L
e A Ol B I b LM pe > |
ps prg =g )
2k 2
12k ' 2 - L
8 { o + Ep' o= EpJ - (3.9)

In the case of scattering by a rigid lattice, where u(2) = 0, there is
no energy transfer from the neutrons to the lattice or oppositely. Thus
the scattering is elastic and k' = ko. Writing r'(2) = r(2) and summing
over p',s', we obtain by closure

1

p(2)eld %)

ps> |
,’:
I exp [ig- @ - g(i')}] v @b > (3.10) |

28"

do v
10 ) PpPS Z ' <::ps
Ps P's

N
)
L
L

Z b*(2|)e‘i9_'£(2')\pcs.> stv
P

where <:b*(i') b(2)> means the average value of b*(z') b(L).

Let us consider that the lattice contains one atomic species only.

Then in general b(X) is dependent upon the actual isotope and nuclear

spin orientation present at r(2). We assume further that there is no

correlation between b(2) and b(2') if 2 and &' are different.
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In this case we have

<b(L)b (L')> = <b(R)><b  (&')> = |<b>|2 , if 2 # &', (3.11a)

<|b(r)|%> = <|p2|> , if 2 = &', (3.11b)
This we can write as

<b(2)b (£')> = |<b>|2 + {<|b]|2> = |<b>|2} & (3.11¢)

28!

By substitution of (3.11) in (3.10) we may split the differential cross

section do/dQ in a coherent and an incoherent part

do _ [do (QE
dn " dQ] ’ LdQJ. ’ (3atem
‘ coh inc
where
o i = £ 2
£ R S D (3.120)
coh %
and
o] - wiclp|z - (]2 ity
\ inc

For scattering vectors Q equal to 27 times a reciprocal lattice
vector 1, for which exp(Zﬂii-E(i))=l (see (2.11), (2.12) and (2.13)),

the expression lZ exp[ig'Eﬁi)] 2 is equal to N2. As Q moves away from

a reciprocal la %ice point thii factor rapidly drops to zero.
Consequently the (do/dR)coh shows strong interference in certain
directions, the maximum value being proportional to |<b>|2. The

(do/dQ) coh represents the well-known Laue-Bragg scattering. It is
interesting to note that it is only the mean scattering potential which
gives rise to interference effects. The deviations from the mean

potential, which are randomly distributed, can not lead to interference

effects and hence cause the incoherent scattering.
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3.3. Inelastic scattering

We will now evaluate the double differential cross section (3.9)

including energy transfer. We consider a harmonic crystal in which

x'(2) is time dependent

r'(2,t) = r(2) + u(L,t) . (3.

Furthermore we write the delta-function for the energy in (3.9) as
integral

o«

2! 2 ﬁzkoz

| —- E s=E 7
5 7= - 7 - Ep,— Ep = m JeXP‘:‘lwt*‘l—uﬁ t_l dt, (3.
where
w = ll'(k-z‘ kY2) 3.
2m (o)

We now introduce the time-dependent Heisenberg operators

Tg(t) exp[ T J Tgéxp{ h 3 (3%
where
T = Jb(2)exp(iQ-r'(2)) (3.

Q™ f

and H is the hamiltonian for the lattice vibrations.

Then

-

With the help of (3.14) and (3.18) and making use of the closure

procedure we find that (3.9) transforms into

o

d%o 5 k' ( -iwt #*
dQdE 2mhk 4dt € <T9_(0) Tg(t)>r ’ (3.
where
N g BT I
<TQ(O)TQ(t)> o PpPS<ps‘TQ(O)T9(t) |ps > (3.

ps i

J- = o - ol |
EXPlI(Ep' Ep)t/ﬁ <p's .Tglps> <p's iTg(t).ps> : (3.

13)

an

14)

15)

16)

17)

18)

19)

20)
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means the thermal average of T*(O)T (t).

98

Let us now assume for simplicity that we have a random distribution
of the isotopes and spin orientations over the lattice sites of a
harmonic crystal, which has one atom per primitive cell only. Using
(3.13) we find for (3.19)

o

2 1 e
0d - (<b2>"‘b>2)2§§ko Tiiese H e (~1Q-u(0,0) ) exp (iQ-u (0, £))>
+ <b>2 zﬁ}ﬁck [ at e T<exp [‘ig'g(o,O)Jexp(ig'g(l,t)bTeig'f(Q) :
0o = 2

(3.21)

where the cross section again has been split up in an incoherent and
a coherent part (cf. (3.12) for elastic scattering). The thermal
averages in (3.21) can be calculated by means of Bloch's theorem 8),

This theorem states for a harmonic crystal
Lexp {ig- (3(@‘3(2')}} pa eXP{'%Q2<u2(Ei'Q)>T} ; (3.22)

where u(ﬁi’g) is the component of the vector u(&) - 5(2') along the

vector Q.

In the quantum mechanical treatment of the lattice vibrations

(cf. section 2.3) the u(f,t) are operators and we may write
< exp {-iQ-u(0,0)} exp{iQ-y_(R,t)})T =

= exp {% [Q'E(O’O) )Q'E(Q’t)J}éxp{ig' (g(i,t)'g((),o))} >T . (3'23)

Here the term between square brackets is the commutator of the two
operators. Equation (3.23) actually states Hausdorff's theorem ?), which

is valid when the commutator is a number. Combining (3.22) and (3.23)

we readily arrive at
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< exp {-i_q-E_(O,O)}exp{ig'g_(l,t)} >0 =

exp {- <Q-u(0,0))2>, +<(Q-u(0,0)) (Q-u(2,0)) >T}

UL

eXp {' P (M,500,0) - MQB(R,t)}QaQ%} , (3.24)
ap

where o,R stands for x,y,z.

We note that
- [ M ,(0,00Q.Q, = - W@ > (3.25)
aB
is the exponent in the so-called Debye-Waller factor exp(-ZW(g)].

Combination of (3.21),(3.24) and (3.25) results in

d2%0 L, NK' _=2W(Q)t.iQ-x(R) 4, .miot
[deE)C P T © e Jat e

2 -0
-exp (] Mag(l,t)QqQSJ . (3.26)
af
and
d2g e —apnty NI 2. —iwt
{deE] inc > ( b <b ) kao e _i’)dt e exP(aZPMaB(o’t)QGQB)

(3.27)

3.4. Phonon expansion

In order to perform the integration over t in (3.26) and (3.27)
we expand exp (Z.MQSQQQB) in a power series. This leads to the so-
called phonon é%bansion, the first term of which describes the
elastic scattering processes, and the second term the inelastic pro-
cesses, in which a single phonon is created or annihilated. The

higher-order terms represent the multi-phonon processes. Before doing

this we first rewrite MlB(L,t) in a more explicit form. With the help

of (2.27), (2.28), (2.31), (2.32) and (3.24) one readily obtains
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T " (@, (geld"E®
aB 2NM = aj %34

.

M (Bst) =—o= }
q ]

cos[w.(g)t] i sinw.(g)t
J J s (3.28)

w. (g) N ws (@)

coth (wj (g)/ (2kT))
j

where A has been omitted in gj(k;g) because the crystal has only one
atom per primitive unit cell. For macroscopic crystals the summation
over q may be replaced by an integration over the first Brillouin
zone 10) according to the rule

NV

) £(g) = —OJ dgf(q) » (3.29)
q 873

where V0 is the volume of the unit cell. Furthermore
[+ <}

(2mh)~! [ e

-0

“l0tay o 5 (hw) (3.30)

and

iQ-r(e) _ 8n3
i "N

|

} §(Q-2nt(h)) , (3.31)
h

(o]

where 1(h) is a reciprocal lattice vector as defined in (2.12).
Combining (3.28), (3.29), (3.30) and (3.31) with (3.26) and (3.27)

we obtain

2 v o 3
{dgdf}J T N<b>211:_ e MW 8\7; ) 6(Q-2m1(h))6 (hw) +

coh o o h

+

Zl_M 1 ,f'd51|9.-9_j (@ |2 w-j-l(_q) coth(%ﬁswj(_q)} + Elr

Js€

- ) §(Q-2mt(h)-eq) & [ﬁw—e'hwj (@) +
h

+ coherent multi-phonon processes} % (3.32)
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and

dS{dE

[___dzo] = N(<b2>-<b>2) 11:—' e—ZW(Q_) {:5 (hw) +
inc o

hv 1

2
W,
J

+

(q) {coth(éﬁ&uj (@) + s.:> .

= ] fda\.Q_'s- (@)
3213M j,e ]

G(ﬁw—eﬁwj(g)) + incoherent multi-phonon processes}. (3.33)

Here € can only have the value +1 and -1, corresponding respectively
to the creation and annihilation of a single phonon by the neutron,

B = 1/(kT).

The first terms of (3.32) and (3.33) are equivalent to the ex-
pressions (3.12b,c) for the elastic scattering, except for the factor
exp EFZW(Q)]. Thus we see that if one takes into account the lattice
vibrations, but neglects energy transfer between neutron and lattice a
reduction of the cross section results by a factor exp [EZW(gj] compared
to the scattering formula for the rigid lattice. The result obtained
by cutting off the expansion after the first term is usually indicated

as the static approximation.

3.5. One—phonon scattering

For the investigation of the lattice dynamics of crystals the

single phonon or one-phonon processes are of extreme importance.

Placzek and van Hove 11) have shown that in cases where the phonon
frequencies mj(g) are independent of the polarisation suffix j it is
possible to replace the -integration over g in the second term of (3.33)
by an integration over w using the frequency distribution function de-
fined in (2.33). The result is that the incoherent cross section for
single phonon processes is directly proportional to f(v). Actually, it
can be shown 7»12) that for cubic crystals with polarisation dependent
frequencies this cross section has the same simple form. This provides,

in principle, a direct method for measurement of the frequency dis-—

tribution function, which thermodynamically is very important.
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In practice, however, the relation is much less simple because of

mul ti-phonon processes and coherent scattering.

More reliable results may be obtained by means of one-phonon
coherent scattering experiments. The coherent cross section for single

phonon processes (3.32) is only non—zero if
g R e AT (3.34a)
W= o Mo @3 41 '

and Q= - k' = eq + 2n1(h) (3.34b)

CEW

are satisfied simultaneously, thus providing a direct method for
measurement of the dispersion relations wj(g). Expression (3.34a)
represents the law of conservation of energy and (3.34b) is often
interpreted as the law of conservation of quasi—momentum.

This direct method of determination of the dispersion laws for harmonic
crystals has been applied in the experimental work described here, and
therefore special attention will be paid to expressions (3.32) and
(3.34). We split out from (3.32) the one-phonon part and write, using
(2:32),

Sy SN ) ik e—zw(g)‘g'e.(g)’z :
[m-_]c h j’EZ‘Mkowj (S) =

{2<hj (g)>+1+e} 8 (m—eﬁwj Q) (3.35)

under the restriction (3.34b).

The intensity in a single peak is obtained by integration over the
energy E = ﬁzk'Z/(Zm), which results in the total cross section for a

single phonon process

(1) _ Hk'{2<n,(g)>+1+€} ~
[dodﬂ J At shes - Qe (g) [2e Q) 1 336
coh 4Mkowj (@) |Jj ]
where [
d hw-eﬁw.(g))
IJJl = J = |1 +%E'.y_ﬂw3(ﬂ) (3.37)
dE hw=eﬁwj(g)
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is the Jacobian involved in this integration.

At low temperatures <nj(g)> approaches zero and consequently the
cross section for phonon annihilation (e = —1) vanishes. In this case
only experiments with energy loss of the neutrons are possible. Further
it can be seen that (do(l)/dQ)coh is inversely proportional with the
frequency of the observed phonon and proportional with the square of
the scalar product of the scattering vector Q of the neutron and the
polarisation vector e of the phonon. The latter factor is of great

importance in the choice of the experimental conditions.

3.6. Inelastic structure factor

In our treatment of neutron scattering, sofar, we considered for
simplicity only lattices with one atom per primitive unit cell. The
result for the more general case of more atoms per primitive unit cell
can be obtained in an analogous but much more complicated manner. An

expression corresponding to (3.35) is then 2,9)

( (1) 1
(d%0 . 7 _Nnk Sl i g Lo o 2 Yo
e %, ) oo (@) >+1+ep § (hw efw. (q) )
UdadE | o 5oc bk (@) j | j
=§ “WAQ) .. %
c Ib0> woYe * e EMgetasg) (3.38)
A

where r(A), the position vector in the unit cell is defined by
£(2,1) = (L) + r(A). In (3.38) is implied that eq = Q ~ 2nt(h) is
satisfied. We define the structure factor for one-phonon scattering by

: wf W AQ)
g,(@ = [b()> M(\e AT E(A)Q'S;()\;_q) . (3.39)

This we will call the "inelastic structure factor'". For simple
structures, such as usually dealt with in inelastic neutron scattering,
it is meaningful to introduce a reduced structure factor, which under
certain circumstances is a periodic function of Q. In the directions

of higher symmetry the polarisation vectors gj(k;g) for a particular

mode are often all parallel. Put in formula
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eslhigy = c(Asges (3.40)
The reduced structure factor gsr(g) is now defined by

I 0> u T EED guetig)
lg. (@2 = - — : (3.41)
B I|<o 0> u0) : Q'QE(X;Q)}Z

If (3.40) is satisfied and furthermore all fractional atom coordinates

’ 2

are rational we have that

Q% 27 1) ’ (3.42)

r - —_

2
g |

2
gsr(g)‘ =

2nt being vectors of the "structure lattice", which is defined by

T+ xr()) = integer.

It is obvious that knowledge of the inelastic structure factor is
of great importance for the measurement of the dispersion relations
wj(g). As the Debye-Waller factor exp(-ZWA) usually can be estimated
the eigenvectors gj(k;g) constitute the big uncertainty in the inelastic
structure factor, because they are dépendent upon the dynamical behaviour
of the specimen under investigation. It will be shown in chapter VI
that the eigenvectors are to a large extent determined by symmetry and

that a crude guess at the dynamics of the crystal provides sufficient

initial information about the inelastic structure factor.
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Chapter IV

EXPERIMENTAL TECHNIQUE

4.1. Description of the principle of the triple-axis crystal spectrometer

For the study of coherent one-phonon neutron scattering the triple-

axis crystal spectrometer has proved to be the most powerful instrument.

In the literature !»2) excellent review articles can be found about the

theory of this method, and comparisons between its performance and that

of other instruments used in neutron scattering. Bergsma 3) has given a

rather detailed description of the triple—axis crystal spectrometer at

one of the beam holes of the Petten H.F.R., which has been used for the

experiments presented in chapter V and VI. For this reason we will con-

fine ourselves to an outline of the method, giving only those details

about the experimental set—up which are of importance for the under-

standing of the measurements.

A schematic diagram of the triple-axis spectrometer is given in

fig. 4.1. A neutron beam from the reactor impinges on a monochromating

crystal, which by Bragg reflection selects neutrons of energy Eo and

wave vector 50 in the direction of the specimen.Neutrons, which are

Fig. 4.1.

Schematic diagram of a triple-axie
neutron crystal spectrometer.
Mon.=monochromator crystal, An.=
analyser erystal, Spec.=specimen
and Det.=detector. k_ and k' are
neutron wave vectors, S and S' are
geattering vectors, 20,,,¢ and ZOA
are scattering angles = and ¥ 78
the orientation angle of the
specimen.

scattered by the specimen through
an angle ¢ are analysed with
respect to their energy E'

(wave vector k') by Bragg re-
flection at the analyser crystal,
which scatters neutrons obeying
the Bragg condition into the
neutron detector. Collimators

may be placed at different
positions in the beam in order

to reduce the spread in direction
and energy of the neutrons. It

is possible to set automatically

all four angles ZOM, 20 ¢ and

A,
¥, which are the scattering

angle at the monochromator

crystal, the analyser crystal
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and the specimen, and the orientation of the specimen in the horizontal

plane, respectively.

For neutrons scattered as indicated in fig. 4.1 the wave vector
diagram in reciprocal space is displayed in fig. 4.2. It is obvious

from this diagram that by a proper choice of the different variables

the experiment may be arranged to satisfy the conditions for conservation
of energy and quasi-momentum, given in (3.34). For given Q, for instance,

it is possible by varying only two of the angles to obtain the situation

that k- k' =Q=gq + 2n1(h), 72.e. the condition for conservation of
LR T )

quasi-momentum. After this has been realised one may vary the parameters

1 l — - e kt?v
K v
S -Hl 7/
7/
2T ML
] a $
L P L .
!Qf/
/
/
AL
k /
Y i i
/
7
/
Fig. 4.2. Fig. 4.3.
tor diagram for a neutron Wave vector diagram illustrating
ng experiment corresponding the "Constant Q" method. The dia-
4.1. T 18 a reciprocal gram changes gradually from the
vector, q the wave vector arrangement with k (1) and K'(1)
R e ok T £ 1 19) 297 L'(2). @ and
nonon. to that 0] iqlu/ ana K &/)e  ana
|k'(1)| = |k"(2)| remain fixed.

in the way as displayed in fig. 4.3. The length of k' is kept fixed,
while its endpoint moves along a circle of radius k'. As soon as the

energy conservation law huw = ﬁz/(Zm)(koz—k'g) - ihwj(g), is satisfied

a peak in the scattered intensity may be observed. This mode of operation

of the triple—axis spectrometer is called the "constant momentum

transfer'- or shortly "constant Q" method “). The great virtue of this

method is that the parameters, determining the energy transfer of the

—
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neutrons fw, are varied without changing (50 - Ef). With this method it

is therefore possible to observe phonons at any desired g-value.

Other modes of operation are the "constant energy transfer'- and the
"normal to the gradient" methods. In the first case ko as well as k'
are kept fixed, while (50 - k) is changed in order to satisfy eqs. (3.34).
In the latter method the path in reciprocal space is chosen in such a
way that the scan in (w - g)-space is normal to the gradient of the ob-
served dispersion relation. In the latter two methods it is to be under-
stood that g is in the plane of Eo and k', the scattering plane. In fig.

4.4 the three scans in (w - gq)-space are illustrated.

Fig. 4.4.

Paths in (w - g)-space of three
different methods for observing
the phonon dispersion relation
with a triple-axis neutron crystal
spectrometer. I: constant Q; II:
constant energy; III: normal to
the gradient.

—q

4.2. Focusing of the spectrometer

The natural width of an observed phonon peak, which in the har-
monic approximation would be a delta-function, is determined by the
finite phonon lifetime. Additional broadening is caused by the ex-
perimental resolution and geometrical effects, the minimizing of which
is usually referred to as focusing. The possibility of optimizing the
experimental resolution by operating the spectrometer under focused
conditions has been discussed by several authors 5:657,8). The ex-
perimental resolution arises because of finite collimation and because

of the mosaic spread of monochromating and analysing crystals. Hence

for a particular scattering configuration, instead of one single
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energy transfer, a certain range of emergy transfers is possible for
neutrons arriving at the detector. Because of the relation between the
energy and direction of the neutrons at different positions of the
scattering system, this range of energy transfer in (w -g)-space is an
ellipsoid with a rather large ratio between the major and minor axes.
The flexibility of a triple-axis crystal spectrometer often enables

one to obtain a particular orientation of this ellipsoid at a given
value of fiw and (50 =k 6). Operation under focused conditions means
now that during a scan in (w - q)-space, the long axis is kept parallel
to the gradient of the dispersion relation. Scattering is only observed
when the ellipsoid coincides with the dispersion relation, and it is
therefore obvious that under focused conditions the observed peaks are
of minimum width. In fig. 4.5 scans in (w = g)-space under focused and

defocused conditions are illustrated.

Elsewhere ©) a description has
i been given of a simple graphical

/B method to find the parameters which
A : establish focused conditions. Since

in a real spectrometer the angular

parameters are limited, optimum
focusing can not always be achieved.
The smaller the gradient to the

dispersion curve, the more difficult

it is to obtain focused conditionms.
For zero gradient the scattering

Fig. 4

2

“Os angles 20, and 20, have to be 180°,
M A

Illustration of the path in which is, of course, experimentally
(w-gq)-space for the observation
of a phonon under focused (A)
and wnder defocused (B) condi-
tions of the spectrometer. Both
paths correspond to a "constant peaks in a-iron (see chapter V) are
gcan, but in case A the
scattering ellipsoid ts parallel
to the gradient of the disperstion measured when the spectrometer set-
relation, while in case B it i&
perpendicular to it. This results
in a sharp, high peak for case A from complete focusing. The con-

n
.

and a low peak for case B

impossible.

In fig. 4.6 some selected phonon

&

displayed. These phonons have been

ting in a varying degree was removed

ditions for complete focusing 6) are




_35_

section 4.2.

ko, 7 y ‘A -
"EEolT, | ’\ 1 *[£.z0]T, ] ,s’-.{« R
=.375/| E—T\Se ; ‘ Tt
%{q"' ‘ % = & q=.30 [ | [ A 5
s ,“ | \L} i i | —1x%
b . A E || - .
l ) I& ¢ | “
= r 12 ‘ AP
LAk { | ﬂ
2x \\'. o /\\ 1 | W
-2 ) ] 5 \\_x 7 ;'-'J R:
: 1 A ' ' A L 1 '
L. Ko 7\ ]
. [0,0 r]T 2 /o 3 [ [bog]T S/ 4
- ~ K / ok \
_a_q_ 0 =Y o 2q:=80 /\ <m s
(1 WA\ J b \ 2
L6 ﬁ \ 43 fis 0 'Y W 4
| ¥ So\ .!“‘ \ ‘/7
e <\ / S
1 \\ / \
| | \ = o\
[ y ‘» /) 2.* x’d S o _°_/\
"‘ 3 / [ 2L/-"' . .‘-\;'_. * \\ﬁ 3
~ it (e s = "7 8 9
m A - ;‘v L ok L A L ! ' ' 1
e TROMUM e S 5 Tlezel /) & |
4 \ KR kn o |\ bg—F o
O |==qQq=/ \ 5 i\ q=. i ) N ~\
o |2 ‘ \ ﬁ* ZTT f \ \ ; A A
’ to_ = 5 .»‘, \(:-'_' k,,_,,‘mjs" *;* \* \ m \s,
G LN el | §' it 7
> L / 2 \.\o /
z / N { 4 -8 \
" e e ) L% » P
5 2 . /
' E’ 1 ,EL n n 1 ? 1 ? " /i 1 ? i h
- ~ [
= ['[eer]L 7 [EEXL ” g A
?qﬂ 15/ \ K@\i kg, " Ea?i q=1 35.‘ \ kl'(’z:'_’ L(}'\
| 1 Y | \ A
X o S A O, T
‘ / féﬁ/ o\ ' T \s,
L2 /. \'\.\ m=0 . /7 7] y “.\ /7 |
./- \\ (/4 ..;. y \'-.\ 5 y
N / o" 3 /../ S . \‘{ !
; .E‘, i | Z i : ‘15 I -|7 A *7//
L ’ :
| D el {1 o O |MmElv f T
, 7 3=90 | //«A 2.9=.65 ; /’/,§4
‘) % ‘,‘ <;,i,ﬁ_1 “‘!S \Se “_ 1y <\/:,/mh‘ \Se il
f v 0T >
‘ ‘ oV K
2 b~ ; 1 fha 5
[ i o == | A : T S
@, 5 N 6 . _/)"‘ 5 o .7 ]
L2 .l I A it 1 Sowy L L (|l I
Frequency (10'%s™)
Fig. 4.6.
Some selected neutron groups due to scattering by phonons in o-Fe to-
gether with the corresponding wave vector diagrams and the scattering
arrangements of the spectrometer. This picture illustrates qualitatively
the dependence of the observed peak widths on the extent of foecusing of
the spectrometer: the smaller the angles between (k,~m) and S, and between
(k'-m) and S', the smaller the peak width of the observed phonon. The
horizontal Zzne at half height of the peak indicates the line width for
incoherent scattering.




.—36_

chapter IV
that the vectors (50 - m) and (E' - m) are parallel or anti-parallel
to S and S', respectively, where Ehl = yﬂe(g) is the gradient to the

dispersion relations and §o and S' are the scattering vectors at the
monochromating and analysing crystal, respectively. In fig. 4.6 the
actual settings are shown by the wave-vector diagrams. The horizontal
line at half-height indicates the resolution of the spectrometer for
an incoherent scatterer as specimen. This resolution is the same as

that in the unfocused case of neutron group 7, where m is zero.

4.3, Technical data of the spectrometer

In fig. 4.7 a cutaway view of the triple-axis crystal spectrometer

is shown.

Zinc crystals are used as monochromator and analyser. They show
a better performance than the copper crystals used previously. The
spectrometer is normally operated with a 40' or 20' soller slit
collimator between the reactor and the monochromator, while a 60' or
30" collimator is placed in front of the analyser. The angular ranges
are approximately from -5° to +78° for 20y, from -100° to +100° for
ZGA and ¢ and from 0° to 360° for Y. As neutron detector a 24 BF3—
counter with a ceramic endwindow is used.

The electronics of the spectrometer is controlled by punched tape.
From the Philips-Electrologica X-8 computer in Petten the tapes are
obtained by means of which the spectrometer can be operated in "constant
Q", 'constant w", or "normal to the gradient'" modes. Mainly the
"constant Q" mode has been used. Output data are printed and also
punched on tape, which can then be handled by the computer to obtain

sheets on which the phonons are plotted by means of the lineprinter

and on which all relevant output data are printed.

The monochromatic beams in the spectrometer may be contaminated
by neutrons of higher order wavelength, because a single crystal
scatters not only neutrons of the desired wavelength 2, but also those
of wavelengths A/2, A/3, etc., if such neutrons are present. Since the

spectrometer is always operated with energy loss of the scattered

neutrons, especially the analyser crystal may suffer from second order
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Fig. 4.7 A cutaway view of the triple-axis crystal spectrometer.
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contamination, because it is adjusted to reflect neutrons of longer
wavelength than those incident on the specimen. In order to suppress

the second order neutrons sometimes a pyrolytic graphite filter is

used in front of the analyser crystal. The ratio between the scattering
cross sections for first and second order neutrons 01/02 has its maximum
for first order neutrons of wavelength around 2.6 2. Elsewhere ?) the

properties of this filter have been described in more detail.

Sometimes the energy analysis of the neutrons is performed by
means of the "inverse beryllium" method 10,3), In that case the
analyser crystal is replaced by a 15 cm thick piece of polycrystalline
beryllium, through which the neutrons scattered from the specimen have
to pass. This beryllium filter transmits almost exclusively neutrons
with energies lower than 5.2 meV. The latter method turned out to be
very powerful for the observation of the less intensive high energetic
optical phonon branches. The interpretation is, however, not always

as straightforward as with an analysing crystal, while the experimental

flexibility is greatly reduced because the energy is fixed.
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Chapter V

INVESTIGATION OF THE LATTICE DYNAMICS OF a-IRON

5.1. Introduction

Several authors have discussed the lattice dynamics of b.c.c.
metals, and different attempts have been made to account for the effect
of the conduction electrons ). For the case of a-iron, which has the

b.c.c. structure, inclusion of this effect is rather difficult due to

its complicated electronic structure. At the time that this investigation

was started the experimental data about the phonon dispersion relations
of a-iron consisted of the work by Curien 2), based on diffuse X-ray
scattering, and the rather incomplete neutron scattering data by
Iyengar et al. 3) and Low “). These data were rather inaccurate and
could not be used for a detailed comparison with the different
theoretical approaches. The reason for the lack of neutron data was

the difficulty to obtain suitable samples, in spite of the excellent
scattering properties for neutrons that result from the high coherent
scattering cross section. The growing of single crystals of sufficient
size and quality had been a major problem, stemming from the two phase
transitions during cooling down from the melt, which can be seen in the
phase diagram of iron 5). Only recently a special technique has been
developed to grow single crystals of sizes of the order of some cubic
centimeters, needed in elastic neutron scattering experiments. As soon

as such a crystal was at our disposal the measurements were started.

Since our first report °) on the preliminary experimental results
a large number of experimental neutron studies on a-iron were published
7,8,9,10) ) amongst which only those of Brockhouse et al.”) and
Minkiewicz et al.®) are about as extensive as the one reported here.
Therefore, in the discussion of our experimental results, attention

will also be paid to their data.

5.2. Lattice dynamics of a-Fe in the Born-von Karmin model

Treatment of the lattice dynamics of a-Fe in the Born-von Karman

model following the line of chapter II is rather straightforward. The

dynamical matrix is given by a simplified version of (2.15); because
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b.c.c. iron has only one atom per primitive unit cell there are no
A-indices. In the development of the dynamical matrix we shall include

interactions out to fifth neighbours.

Symmetry considerations lead readily to the general form of the
force constant matrices, which are the three times three matrices that
contain the interatomic force constants -¢ _, defined in section 2.2.

J.,J

In table 5.1 these matrices are given for the interactions with the

first five neighbours.

","/v:--[ln 3 gl
AU Joe .

AR = ’ S o) 1, e e A NS I EN = R -
Force constant matrices for tne jirst five neignbours in o~k

©
.

5 atom L, " force constant
position S matrix
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[¥y g 8
1 (111)a/2 la V3 8 1B, @, B, ]
e A
(B 1|
1 0 0]
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0 0‘ 3
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The _¢&B are replaced by s BS . +» « ete., according to the generally
adopted convention 11y | where s indicates the neighbour concerned, n
is the number of neighbours of a particular kind and r the distance to
these neighbours. Since only symmetry considerations have been used,
no assumptions have been made about the nature of the interatomic

forces, Z.e. we are dealing with general forces.

Inserting the data of table 5.1 in (2.15) leads to the expressions
for the elements of the dynamical matrix given in table 5.2. Here the
suffix i runs from 1 to 3, corresponding to X,y,z. The values 1 &R

are to be counted modulo 3.

If the wave vector q of a phonon lies along one of the symmetry
axes [lOQ], [110] or [jl]], either the dynamical matrix is diagonal for
all values of g or can be diagonalised by an appropriate rotation of
axes 12), Such phonons correspond to displacements in the lattice in
which all atoms in a plane perpendicular to the symmetry axis move as
a whole. Such a vibration can be considered as the motion of a one-
dimensional lattice in which each point represents a plane of atoms in
the three-dimensional lattice. It is straightforward to show that for
the lattice vibrations in these directions the following relation
holds 12,13)

2

2 - ]

Mw. = 1 = cos(nm |

M L%[ ( q/qmaxﬁ (5.1)
n

where the ¢nJ’ which can be written as linear combinations of the

interatomic force constants, must be interpreted as interplanar force

constants for the j—-th branch. ek is a function of the direction.

In the symmetry directions exist purely longitudinal (polarisation
vector along the direction of g) and transverse (polarisation vectors
perpendicular to g) modes. For g-vectors of the form [QOO] and [C,;;]

the transverse modes are degenerate.

For phonons with propagation vector of the form [;;[] and [ié;]
the dynamical matrix can also be diagonalised and similar relations,

except for a constant term, as (5.1) hold, although this can not be

associated with movements of planes of atoms as a whole.
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s B
Table 65.2.

v v

Coefficients of the dynamical matrix D(q) for a-Fe

A A T ) =S ; £ RGP,
to Jifth neirghbours.

1. +h Tnteractione out
Wwirn inreracriong oOur

Drpa) = Ba Gl = G Dol
* 20,001 =C, ;) + 28,2 =0C, 141 " Cp 540)
+ 4o {2 - Cz’i(cz’i+1 i C2,i+2)}
Toafa(l e Cg,i+1cz,i+2)
8] > C3,ici+1ci+2)
* 88,12 = C;(Cy 1418140 * €141, 1400}
+ 8&5(1 = Cz’icz,i+lcz,i+2)

Dy fep18) = OB 8584, Crvo

NS oS
Y3°,,i%2,i+1

Y55 Y T
® 854Ci+2(s3,isi+1 3 Sisz,i+1)
g 865sz,i82,i+1cz,i+2
where Ci - cos(gqi), Si - sin(%qi)
m,i+n B COs(m-g—qhn)’ Sm,i+n i Sin(m%qi+n)’
i=1,2,3 means X,y,z. The suffix i+n is counted modulo 3.

The relations between the ¢nJ of these particular directions and

the interatomic force constants are presented in table 5.3.
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[00Z]L ¢, 48 +0 40 +0 40 +0 +0 40 +I6 +0 +0 40 +0
4, +0 +0 +2 +0 +8 +0 +0 +0 +0 +0 +0 +8 +0
38 +0 +0 +0 +0 +0 +0 +0 +8 +0 +0 +0 +0 +0
[00C]T ¢, +8 +0 +0 +0 +0 +0 +0 +8 +8 +0 +0 +0 +0
¢, +0 +0 +0 +2 +4 +4 +0 +0 +0 +0 +0 +8 +0
¢, +0 +0 +0 +0 +0 +0 +0 +0 +8 +0 +0 +0 +0
[ooflny gy | th %k 42 62 Ak a6 #0) ¥4 48, #4. =B 0. 40
¢ +0 +0 +0 +0 +2 +0 +2 +4 +4 +0 +8 +4 +4
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b, +0 +0 +2 +4 +0 +0 +0 +0 +0 0 +0 +6 -4
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. +0 +0 +0 +0 +0 +0 +0 +2 *4 -2 -4 +0 40
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: +0 -8 +0 +0 +0 +0 +0 +0 +0 +0 +I6 +0 +0
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value of n in ¢ for the different directions is related

the neighbours under the

+
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In fig. 5.1 the (110)-plane

(0ON=(111) A T, tn? 1% 1%1) is shown of the reduced zone of
N ' | oot
N a-Fe, in which the polarisation
\\ipiT A vectors for the different
L \\\\\ =i branches in the above-mentioned
N P ; Z ry
\\\t\‘ 5 directions are indicated.
IO» R
\\
\}
¢t Ya)
,//’{‘
2 N Fig. &.1.
A i N -
Vo ' The (110)-plane of the reduced
/){j zone of the reciprocal lattice
7 ‘/\ of a-Fe, in which the polarisation
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5.3. Measurements and experimental results

Using the previously described triple-axis crystal spectrometer,
a large number of neutron groups, scattered by phonons belonging to
branches in the three main symmetry directions and along :"1T and
L22%J of a-Fe were collected. All measurements have been performed at
room temperature. The experimentally determined dispersion relations
for these directions are displayed in fig. 5.2. In table 5.4 the
numerical values of the frequencies of the phonons are presented for

the different branches.

The spectrometer was mainly operated in the 'constant Q" mode with
energy loss of the neutrons (phonon creation). Copper (111)-reflections
were used both for the monochromator and for the analyser. Focusing was
applied to the extent as was allowed by the gradient to the dispersion
relations and the lattice spacings in the monochromator and analyser
crystals. For the observation of high energetic phonons it is quite

well possible that the scattered energy E' is close to one quarter of

the incoming energy Eo. This may give rise to spurious neutron groups
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(R AI}A [z:5.8]T [e.2,5]1 yCo0]T
0.10 2.10¢ .05 1.05% .03 0.90 7.00% .05 7.40.% .10
0.15 3.15% .07 1.55% .03 0.95 6.71 % .04 7,552 .07
0.20 4,25 ¢ .05 2.23% .03 1.00 6.38¢ .05 7.80% .10
0.25 5.00 ¢+ .05 2.65% .03 1.05 6,03+ .04 B.00% .10
0.30 5.90% .07 3.15+ .03 1.10 5.80% .05 B.20% .10
0.35 6.65% .05 3.70% .03 1.15 5.74+ .03 B.25% .10
0.400 7.29 % .03 4.25% .05 1,20 5.80 % .07 8,40 2 .10
0.4 7.98 ¢+ .05 4.80°% .03 1.25 6.00 % .03 8.50 % .10
0.50 B.31 % .05 5.25% .03 1.30 6,31 ¢.03 B8.60¢ .10
0.55 8,72+ .07 5.65% .03 1.35 6.60+ .03 B.40 £ .07
0.60 8.64+ .06 6.05¢ .05 1.40 6.90 ¢ .07 8.67 £ .07
0.65 B.58% .10 6.35% .04 1.45 7,30 2 .05 B8.67 % .12
0.70 +B.25 ¢ .07 6.54'% .06 1.50 7.75% .07 8.70 % .07
0.75 8.10% .04 6.80% .06 1,55 B.10% .05 8.60 ¢ .07
0.80 7.75+ .05 7.00% .06 1.60 8.37% .10 B.60 ¢ .07
0.85 7.40 ¢ .03 7.20% .10 1.65 B.652 .07 8.62 + .07
0.865 (7.27 ¢ .03) (7.27 % .03) 1.70 8,75+ .10  B.65 ¢ .07
1.71 8.72 + .07
1.73  B.75 % .10 8.75 % .10
[
[0.0,2]L 0,0,z]T Lo de]e [,4.c]a
0 (9.80 & .07) (6.52 ¢ .05)
0.10 1.97 ¢#.03 1.33% .03 9.50 % .10 6.70 ¢ .10
0.15 2.82+ .03 2.05% .03 9.15¢ .10
| 0.20 3.68 % .03 2.70 %+ .03 9.00 ¢ .08 6.95 % .10
| 0.25 4.55+ .03 3.35% .03 B.80 ¢ .10
0.30 5.25+ .03 3.93% .03 B8.45 ¢ .07
0.35 6.00 + .05 4.52 % .03 B8.25 + .07
0.40 6.50 &+ .05 5.10 4 .03 7.95% .05 7.15 ¢ .07
‘ 0.45 7.05% .05 5.60 ¢# .03  7.50 % .06
0.50 7.55% .05 6.10 % .03 (7.27 + .03) 7.27 % .03
0.55 7.90 ¢+ .05 6.55% .03  6.90 £+ .04
0.60 8.30 + .07 7.00 £+ .03  6.65 % .03
0.65 8.56+ .06 7.40 + .05 6,30 + .03
0.70 8.58 ¢+ .08  7.65+ .05 5.95 % .03
‘ 0.75 8.80 % .04 7.90 + .05 5.62 ¢ .03
0.80 8.80+ .04 B.15% .05 5.35 + .0
0.85 8.85% .08 B.30 %+ .07 5.05% .03
0.90 8.85% .06 8.55% .10 .85 2 .03
0.95 8.78 % .07 B.65% .10 4.65 ¢ .03
1.00 8.75+ .10 8.75 % .10 (4.58 & .04)
Ledr,  [uedr, v e
0" 8.754+ .10 8.75+ .10
0.05 8.65 ¢ .10 8,70 £ .12
0.100 s . 1.92# .03 8.40 % .10 8.55+ .08
0.125 ts
0.150 " 1.35 4 .03 2,954 .03 8.25% .10 8.30% .08
0.175 Fo
0.200 +. 1.82 # .03 3.85+ .03 B8.05% .07 8.20 £ .05
0.225 +.
0.250 s 2.27 ¢+ .03 4,822 .03 7.82% .05 7.95% .10
| 0.275 *
0.300 t . 2,722 .03 5.654% .05 7.50% .05 7.75% .10
0.325 .
0.350 +. 3.124 .03 6.57 ¢ .04 7.10% .05 7.50 % ,08
0.375 53
0,400 : 3.55+ .03 7.25% .03 6.70% .10 7.40 % .08
‘ 0.425 5.20 & . 3.70 £ .03
0.450 5.37 ¢ .03 3.88+ .03 7.90% .04 6.22% .08 7.10 % .10
0.475 5.62 &£ .03  4.00 % .03 Table 6.4.
‘ 0.500 5.82 % .03 4.13% .03 8.424% .03 5.75 % .07 6.95 % .07
0.525 6.02 ¢+ .03  4.27 ¢ .05 > . A Ly
0.550 6.21 £ .03 4.37 &£ .03 8.87 & .03 5.254 .07 6.75%¢ .07 Phonon frequenczes in a—Fe
| 0.575 6.32 % .04
0.600 6,40 ¢ .03  4.52 % .07 9.38 % .05 4.85 ¢+ .08 6.55 & .07 .
‘ 0.625 6.50 + .08 . > at room temperature (in
| 0.650 6.50 % .03 4.62 % .07 9.68 % .08 4.65% .07  6.40 % .07 12 1
0.675 6.55 + .03 . P -
| 0.707 6.52 ¢ .03 4.58 % .04 9.80 ¢ .07 4.58 ¢ .07 6.52% .10 unitts of 10*“s ):

' = &,
=
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from second order reflections in the analyser crystal. For such cases
the analyser crystal was set at 13 meV and pyrolytic graphite was used
as second order filter. Almost all measurements were carried out on a
single crystal of pure iron of cylindrical shape, 0.94 cm in diameter
times 7.5 cm long. This sample, which had a mosaic spread of 7', was
obtained from Research Crystals Incorporated, Richmond, Virginia,
U.S.A. A few phonons, of high energy near the [}lQ]-boundary are due to
scattering by a larger crystal, 3 cm in diameter and 7 cm long, which
contained 3.5% solicon. This crystal was kindly put at our disposal by

C.E.N. - S.C.K., Mol, Belgium,through the courtesy of Dr Hautecler.

From (3.36) it is clear that the maximum intensity in the observed
neutron peaks is obtained when the scattering vector Q is parallel to
the polarisation vector of the phonon. Fig. 5.1 shows that this con-
dition can be satisfied for the majority of the branches by scattering
in the (lTO)-plane. Only those phonons, which have their polarisation

vectors perpendicular to this plane, were measured in the (100)-plane.

In fig. 5.3 the (170)- and (100)-plane of the reciprocal lattice
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of a-Fe are shown. Positions 1,2 and 3 are typical for observation of
longitudinal phonons, 1',2' and 3' for measurement of transverse

phonons.

In addition to the data displayed in fig. 5.2 also phonons in
of f-symmetry directions in the (110)-plane have been measured. These
measurements, the results of which are shown in fig. 5.5, were carried

out in order to check the accuracy of the model used in the analysis.

5.4. Analysis of the experimental results

The experimental data of fig. 5.2 have been analysed in terms of
a general forces Born-von Karman model. The range of the interactions
was established by making a least squares fit of the individual dis-
persion relations to the cosine series given by (5.1) (ef. ref. 13y).
After that a simultaneous least squares analysis was made for all
measured branches using all data presented in table 5.4. In this
analysis the ¢nJ are replaced by a linear combination of the inter-
atomic force constants according to table 5.3. The elastic constants
were also included in the analysis. We could have put constraints on
the interatomic force constants by means of the relations (2.44) and
(2.45), but for the sake of simplicity, only (2.45) was used; the
frequencies obtained from this expression for very small values of the
wave vector q in the different directions were inserted as experimental
data with infinite weight. The polarisation vectors needed in (2.45)
are shown in fig. 5.1. The elastic constants for a—-Fe have been taken
from Rayne and Chandrasekhar !%). They report the room-temperature

values ¢, = 11.78, ¢\, = 23.31 and ¢ _ = 13.55 in units of 10'!dyn/cn?

The analysis in which forces out to third neighbours had been
taken into account gave already good qualitative agreement with the
experimental data. But for reproducing the details of the dispersion
relations also fourth- and fifth-neighbour forces had to be included.
The 13 interatomic force constants resulting from this analysis are
given in table 5.5 together with the results of Minkiewicz et al. 8)

and those of Brockhouse et al. 7).

Dispersion relations calculated from these interatomic force




_50_

chapter V
Table &.5.

Interatomic force constants for a=Fe (10% dyn/cm).

present Minkiewicz  Brockhouse

results et gls 8 . et als 7)
0y (1XX) 178.6 + 1.0 168.8 162.8
81 (1XY) 149.1 + 1.3 150.1 148.5
a, (2XX) 149.2 * 2.5 146.3 155.2
B; (2XY) 3.6 £ 14 503 5.4
qy (3%XX) 12.4 + 0.8 9.2 11.8
B3 (32Z) =10.9 * 1.3 =-5%7 - 8.8
Y4 (3XY) 3.0 & L2 6.9 127
a, (4XX) - 6.0 £ 0.8 il 5 = 2.3
B, (4YY) - 0.6 + 0.4 0.3 2.4
Yy (4YZ) 2.8 £ 0.8 Sl 3.9
Sy (4XZ) 1.0 £ 0.5 0.07 0.7
o (5X%X) = 2v3 T = 2.9 - 4.6
B. (5XY) - 2.4 % 1.0 0 - 3.0

constants are displayed in fig. 5.2 as solid lines.

Assuming that the interatomic force constants deduced from measure-

ments in particular symmetry directions are also valid for all other
directions we are now in a position to solve the dynamical matrix for
all g-values in the first Brillouin zone of the reciprocal lattice.
Actually, to obtain all frequencies present it is only necessary to

solve for those g-values which lie within the irreducible unit which

has a volume of 1/48-th of that of the first Brillouin zone. For b.c.c.

iron the boundaries of this irreducible unit are determined by the

planes g, = 0, q = dys g = 9,

first Brillouin zone and its irreducible unit for the body-centred

and g qy = ]. Fig. 5.4 shows the

cubic structure. In figs. 5.5a,b lines of constant frequency are shown
in the boundary planes of the irreducible unit, unfolded in the plane

q, = 0. Here also some experimental points are displayed which give

some indication about the accuracy of the calculation.
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Fig. 5.4.

First Brillouin zone of b.c.c.
iron, with its irreducible unit
indicated by the heavy lines.

The phonon frequency distribution function f(v) (ef. section 2.3)
has been calculated following the method given by Gilat and Raubenheimer
15) and is shown in fig. 5.6. This is an extrapolation method based on
the exact calculation of the frequencies for a number of q-values at
regular intervals in the irreducible unit. By determining simultaneously
the gradient in the x—, y-, and z-direction for those g-values one
obtains by extrapolation all frequencies belonging to a continuous set
of gvalues in the region around each of the selected points. The total
number of diagonalisations (exact calculations) which have been per-—
formed in the computation was 3287, the frequency channel width used

was 3.10% cps.

The resulting frequency distribution function was applied in the
calculation of the contribution from the lattice vibrations to the
molar heat capacity at constant volume according to (2.35). Also the
temperature dependent part C(T) of the Debye-Waller factor, which,
apart from a factor ti2/2M, represents the mean square displacements of
the atoms (expression (2.36)), has been calculated. The results are

shown in fig. 5.7a,b.

Inserting Debye's frequency distribution function defined by

= o2 s
fD(v) const*v or v < L

(5.2)

]

0 for v > v
max

fD(v)
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L)

f(v) (arbitrary units)
w

10

F1a.. 5.6,

o

” o o

Phonon frequency distribution function of o—Fe, obtained from a 5-th
netghbour Born-von Karman model.

in expressions (2.35) and (2.38), it is possible to determine the
Debye temperature QD = hvmax/k, as a function of the temperature.
The Debye temperature is determined by the condition that both
frequency distribution functions f(v) and fD(v) should yield equal
values for Cv and C(T). Because of the fact that £(v) is differently
weighted in (2.35) and (2.38), it is not surprising that different
results are obtained for the "specific heat'- and the "Debye-Waller
factor'- Debye temperature. The results of such calculations are dis-

played in fig. 5.7c.
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5.5. Discussion

One of the striking points of the dispersion relations of fig. 5.2
is their relative smoothmess compared with other b.c.c. metals like Mo,
W, Ta and Nb 16,17,18,19), Not much of the complicated electronic band
structure is reflected in an apparent way, although some irregularities
show up, ¢.g. in the longitudinal mode in the [ﬁcé]-direction for
(a/2m)q between 0.5 and 0.6, in the transverse branch of the same
direction around (a/2m)q equal to 1.4 and in the [pOc]-direction for
the longitudinal branch at (a/2m)q equal 0.7. As first shown by Kohn 20y
the phonon dispersion relations will be greatly influenced by the inter-
action of the conduction electrons with the phonons at positions in

wave vector space, where the Fermi surface has its boundaries.

Sofar in the calculations of dispersion relations several models
have been used in which the electronic contribution in some way or
another has been taken into account 2!,22,23,24,25), None of these,
however, yields better results than the more phenomenological des-
cription of the Born-von Kdrmdn model with an equal number of ad-
justable parameters. On the other hand, Schneider and Stoll 2°) ob-
tained a rather good fit to the observed dispersion relations of Na, Al
and Mg with a four parameter pseudo-potential model, while in a Born-
von Karman analysis one needed at least as many parameters as used
for a-Fe. It may thus be concluded that the electronic structure of
o-Fe plays an important but as yet not well understood role in its

lattice dynamical behaviour.

In fig. 5.2 the dashed curves have been obtained from calculations
with a model after Krebs 22), which may be considered as a representative
example of models accounting for the electrons. This model is based on
the screened Coulomb interaction between ions, the influence of the
electrons is considered through the screening parameter of the Coulomb
interaction. The interaction between closed ion shells is accounted for
by central interaction between first and second neighbours. The short
range forces are deduced from the elastic constants, the screening

parameter is determined by the number of free electrons n,.

In our calculation variation of n, was found to be of very little
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influence on the discrepancy between calculated and observed data.

Since then Krebs and Holzl further refined this model 24), but the fit
25y pbtained by them to our experimental data with a model having 6
adjustable parameters, is no better than a Born-von Karman fit including
third neighbours, which uses 7 parameters. Hence we may conclude that,

as yet, the Born-von Karmdn model provides the best available inter-—
polation scheme, and in view of the experimental data shown in fig.

5.5 we may safely assume that the derived frequency distribution function

is rather accurate.

Comparing the force constants of table 5.5 we observe a rather
good agreement between the three sets. A small difference between the
three sets occurs in a,, mainly reflecting a small overall frequency
shift with respect to each other, the largest o, giving the largest
frequencies. An interesting feature is the fact that o, is larger than
B., which is characteristic for all b.c.c. transition metals that have
béen studied to date-tungsten, tantalum, niobium and molybdenum. This
means that forces between first neighbours are attractive, if considered
as arising from a potential. This could indicate that in the b.c.c.
transition elements the d-electrons are involved in some sort of quasi-

covalent bonding, as pointed out by Brockhouse et alatNe

In the discussion of the specific heat data it is rather hard to
compare the calculated and experimental contribution from the lattice
vibrations to the specific heat. To do so the experimental data would
have to be corrected for the contribution from the electrons 27y, ther-
mal expansion and anharmonic effects 28y, and for the magnetic con-
tribution due to spin waves. Especially the latter becomes important
when approaching the Curie temperature (1043 K). The anharmonic con-
tribution is estimated by Foreman 28) to be of the order of 5-10 per-
cent of CV’ but could also be considerable less. The magnetic con-
tribution represents the greatest uncertainty at higher temperatures.
Stringfellow 29) reports the strong temperature dependence of the spin
waves of long wavelengths, which implies a strongly temperature
dependent spin wave frequency distribution function. Moreover, spin

waves of the shorter wavelengths have not been observed as yet, and

therefore frequency distribution functions can only be obtained by

extrapolation.
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It is more meaningful to compare the results for the Debye-Waller
factor with experimental data obtained from X-ray experiments 30,31y,
Houska and Averbach 3!) made a study at room temperature and deduced
a Debye temperature of 420 K, well in agreement with the value calcu-
lated from the present experiment. Haworth 30) studied a higher tem—
perature range, and deduced Debye temperatures, appreciable lower than
those from our calculations. However, the scatter in his experimental
data is rather large, hence they must be considered as less reliable.

Furthermore, we may expect discrepancies between observed data at high

temperatures and the calculated data because of neglect of lattice

expansion and anharmonicity in the calculation.




References

1,

11.

12.

13.
14.
15.
16.
17.
18.
19.

20.

_58_

chapter V

A. Sjolander, Inelastic Scattering of Neutrons by Condensed Systems,
Proc. Symp. Brookhaven, 1965, BNL940, (1966), 29.
H. Curien, Bull. Soc. Frang. Minér., 75 (1952), 197.

P.K. Iyengar, N.S. Satyamurthy and B.A. Dassannacharya, Inelastic

Scattering of Neutrons in Solids and Liquids, Proc. Symp. Vienna,

. G.G.E. Low, Proc. Phys. Soc., 79 (1962), 479.

. M. Hansen and K. Anderko, Constitution of Binary Alloys, second

. V.J. Minkiewicz, G. Shirane and R. Nathans, Phys. Rev., 162 (1967),

1960, Vienna, IAEA (1961), 555.

edition, Mc-Graw Hill, New York, 1958.

J. Bergsma, C. van Dijk and D. Tocchetti, Phys. Letters, 24A (1967),
270.

B.N. Brockhouse, H. Abou-Helal and E.D. Hallman, Solid State Commun.,
5 (1967), 211.

528.

W. van Dingenen and S. Hautecler, Physica 37 (1967), 603.
P. Schweiss, A. Furrer and W. Buhrer, Helv. Phys. Acta, 40 (1967), '
378.

See e.g. A.D.B. Woods, Imelastic Scattering of Neutrons in Solids

and Liquids, Proc. Symp. Chalk River, 1962, Vol. II, Vienna, IAEA
(1963), 3.

G.L. Squires, Inelastic Scattering of Neutrons in Solids and Liquids,

Proc. Symp. Chalk River, 1962, Vol. II, Vienna, IAEA (1963), 71.
A.J.E. Foreman and W.M. Lomer, Proc. Phys. Soc., B70 (1957), 1143.
J.A. Rayne and B.S. Chandrasekhar, Phys. Rev., 122 (1961), 1714.

G. Gilat and L.J. Raubenheimer, Phys. Rev., 144 (1966), 390.
A.D.B. Woods and S.H. Chen, Solid State Commun., 2 (1964), 233.
S.H. Chen and B.N. Brockhouse, Solid State Commun., 2 (1964), 73.
A.D.B. Woods, Phys. Rev., 136 (1964a), A 781.

Y. Nakagawa and A.D.B. Woods, Phys. Rev. Letters, 11 (1963), 271

Y

Nakagawa and A.D.B. Woods, in Lattice Dynamics, edited by R.F.

Wallis, Pergamon Press, London, 1965, 39.

W. Kohn, Phys. Rev. Letters, 2 (1959), 393. See also:
E.J. Woll, Jr, and W. Kohn, Phys. Rev., 126 (1962), 1693.




21.
22.
23.

24.
25.
26.

27.
28.
29.
30.
31.

_59_

R.P. Gupta and P.K. Sharma, phys. stat. sol., 12 (1965), 305.

K. Krebs, Phys. Rev., 138 (1965), A 143.

P.K. Sharma, Satya Pal and R.P. Gupta, Rev. Roum. Phys., 14 (1969),
247.

K. Krebs and K. Holzl, Solid State Commun., 5 (1967), 159.

K. Krebs and K. Holzl, EUR 3621 e (1969).

T. Schneider and E. Stoll, Neutron Inelastic Scattering, Proc. Symp.
Copenhagen, 1968, Vol. I, Vienna, IAEA (1968), 101.

8.S. Shinozaki and A. Arrott, Phys. Rev., 152 (1966), 611.

A.J.E. Foreman, Proc. Phys. Soc., Zg_(]962), 1124.

M.W. Stringfellow, J. Phys. C, ser. 2, 1 (1968), 950.

C.W. Haworth, Phil. Mag., 5 (1960), 1229.

C.R. Houska and B.L. Averbach, J. Phys. Chem. Solids, 23 (1962) 1763.



_60_

Chapter VI
INVESTIGATION OF THE LATTICE DYNAMICS OF Fe3A1

6.1. Introduction

The investigation of the lattice dynamics of Fe3A1 in the ordered
phase by inelastic neutron scattering is of interest for a number of

reasons.

From the experimental point of view very few detailed studies
have been made as yet of the dispersion relations of substances which
have as many as four atoms per primitive unit cell and hence, in
general, twelve phonon branches for each direction. For the observation
and identification of the phonon branches it is therefore of paramount
importance to make use of the symmetry properties of the system by
group—theoretical methods. The application of these methods to lattice
vibrations have been reviewed by Maradudin and Vosko 1y and by Warren
2). They have been used a.o. by Chen in the analysis of the lattice
vibrations of g-tin 3) and by Waeber for the lattice vibrations of

gallium “*).

Knowledge of the lattice dynamics of Fe,Al in its ordered phase
can be of importance to understand the order-disorder transformation,
which Fe Al undergoes at about 550 °C, and which has been the subject
of a great number of studies 5-14y | Because the structure of Fe3A1
closely resembles that of a-Fe, comparison of the lattice dynamics of
a-Fe, FeaAl and disordered Fe3A1 could provide information about the

character of the acting forces.

Also the magnetic behaviour of ordered Fe,Al has been and still
is the subject of several investigations 15,16,17), Other reasons for
an accurate determination of the lattice dynamics of Fe Al are found
in a recent theoretical treatment of its dynamical magnetic properties
17). The results will also be of help for the interpretation of Mossbauer

1R
measurements *°).

A preliminary theoretical analysis of the lattice vibrations of
Fe Al in the ordered phase has been given by Borgonovi et al.'?). They

presented a symmetry classification of the normal modes and calculated

some longitudinal phonon branches using a simple Borm-von Karman model
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with interactions extending out to second neighbours. The necessary
interatomic force constants were estimated from the dynamic properties

of a-iron.

The present work describes an experimental inelastic neutron
scattering investigation of the phonon dispersion relations. A group-—
theoretical analysis of the data is carried out following Maradudin
and Vosko !). Applying a third neighbour Born-von Karman model inter-
atomic force constants were deduced, which were used for the calculation
of the phonon frequency distribution function and some related thermo-

dynamic quantities.

6.2. Crystal structure and some other physical properties of Fe.Al.

According to Bradley and Jay %) Fe3A1 has the structure as
illustrated in fig. 6.1. It is the same as that of a large class of
Heussler alloys of composition ABC,. As the figure shows there are two
types of iron atoms. The Fe(l) atoms have as nearest neighbours eight
Fe(2) atoms, while the Fe(2) atoms are surrounded by four Fe(l) and
four Al atoms. This DO3 type structure can be described as four inter-
penetrating f.c.c. 1atEices, one of Al, one of Fe(l) and two of Fe(2).

The lattice constant a = 5.792 & is approximately twice that of a-iron

(a = 2.860 R). The positions of the four atoms within the primitive

unit cell, which has base vectors a = a(o11) , &, - a(101) and a, =
a(110), are the following: 2 i 2 E
2
position | Al a(000)
" 2 Fe(2) a(itl)
" 3 Fe(1) a(331)
TR Fe(2) a(21d)

The primitive unit cell is indicated in fig. 6.1 by dashed lines.

Although the order-disorder transformation in FelAl and its phase
diagram are still being investigated, mainly by X-ray and Mossbauer

studies, there remains a number of discrepancies in the results.

However, we may say that the iron-aluminium alloy which contains 25
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\\\\‘\\\\\\\\\\\\\“ O Al
®© Fe(1)

® Fe(2)

Fig. 6.1,
The crystal structure of ordered Fe,Al. The dashed lines indicate the
primitive unit cell

atomic percent aluminium, has the DO, superlattice structure below
about 550 °C, above about 750 °C a f;lly disordered structure, while
in between a CsCl-type structure is found. The CsCl-type structure, in
which the Al atoms are distributed randomly over atom sites 1 and 3,

may be quenched down.

It is clear that the DO.-structure of Fe.Al can be thought of as

the b.c.c. iron structure, of which the cell has been doubled in all




_.63...

section 6.3.
directions, and where in the primitive unit cell, chosen as in fig. 6.1,
the atom in the origin has been replaced by aluminium. This relationship

in structure will certainly extend to the dynamics of both substances.

6.3. Lattice dynamics of Fe. Al in the Born-von Karman model

The formal theory has been treated in chapter II. We want now to
write down explicit expressions for the coefficients of the dynamical
matrix (2.15) for ordered FejAl, including general interactions for
first and second neighbours, and central forces for third neighbours.
As in a-iron the force constant matrices involved are easily found
from simple symmetry considerations. They are for first neighbour inter-

actions:

G1(12) 81(12) 81(12)T
Al - Fe(2) @ a1(12) 81(12)
a1(12)

a1(23) 81(23) 81(23)

Fe(2) - Fe(l) : Q1(23) 81(23) >
a1(23)

.

for second neighbour interactions:

a2(13) 0 0
Al = Fe(l) 62(13) 0
82(13)
a2(24) 0 0
Fe(2) - Fe(2) : 82(24) 0 >
82(24)

and for third neighbour interactions:
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a3(11) ag(ll) 0 T
Al = Al 3 ag(ll) 0 >
0
a3(22) u3(22) 0
Fe(2) - Fe(2) : o, (22) 0 A
0
(&3(33) a3(33) 0
Fe(l) - Fe(l) : a3(33) 0
0

The convention for % ES, ete. is the same as used in chapter V.

The indices in parenthesis indicate to which type of atoms the inter-
action refers. In appendix VIA the coefficients are listed of the
dynamical matrix including third neighbours as obtained from (2:15)s
The elaboration of the coefficients is facilitated by using some of

the results of the group-theoretical treatment of the next sectiom.

As shown in section 2.4.the elastic constants can be expressed in
terms of the force constants using the method of long waves, Z.e.
expanding the coefficients of the dynamical matrix up to the second

order in the components of the wave vector q.

The results obtained in this way for Fe_ Al are:

8e. . = 4,(12)+J](23)+a“(13)+1ﬂ(2h)-+21:(11)+4a](22)+2¢,(33), (6.1)
5 11 ] 1 2 2 3 3 3

ac,, = a (12)+a, (23)+8,(13)+8, (24)+a, (11)+2a,(22)+a, (33)~8, (6.2)
2 i 4 = 2 ) 3 >

ac, = 251(12)+2{:11(23)—11(12)-:1}(23)-32(13)-5f(24)+13(11)+233(22)+

+ ;3(33), (6.3)
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where

(8,(12) - B,(23)}"
g = . (6.4)
al(IZ) + al(23) + 32(24) + 262(24)

In the force constant matrices there are eleven independent parameters.

The above relations may be used as constraints to reduce this number.

6.4. Group—theoretical treatment of the lattice dynamics of Feaél

By group—theoretical methods it is possible to simplify the
dynamical matrix considerably for values of q lying at points of
symmetry inside or on the boundary of the Brillouin zome. This is of

great help for the determination of the form of the eigenvectors.

The method used in this work is based on the so-called multiplier
or weighted representations of the point group of the wave vector g,
z.e. of that crystallographic point group whose operations applied to
q leave it invariant (modulo 27 times a reciprocal lattice vector).
This method has been worked out in great detail by Maradudin and Vosko
1), hereafter referred to as MV. No extensive description will there-
fore be presented here, but only the main features will be given
together with those results which are of importance for the description
of the lattice dynamics of FeaAl. The notation used is the same as that
of MV, except for the wave vector q and the reciprocal lattice vector

T, which by MV are called k and b, respectively.

Let us consider the space group G of the crystal. The symmetry
operations can be written {S)X(S) + E(m)}- These are thus the operations
which take the crystal into itself. Here S is a 3 x 3 real orthogonal
matrix representation of the proper or inproper rotations of the point
group of the crystal. v(S) is a vector which is smaller than any
primitive translation vector of the crystal, and r(m) is a translation
vector of the crystal. Space groups for which v(S) is identically zero

are called symmorphic and contain no screw axes and glide planes. The

space group of the wave vector g, Gg, is a subgroup of G. The symmetry
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operations of G _, which is a special class of operations of G, are here
denoted by {Ryx(R) + r(m)}. The rotational elements R of Gﬂ have the

property
Rq = q ~ 2n1(q,R) (6.5)

The translation vector l(S’R) of the reciprocal lattice can be nonzero
only if q lies on the boundary of the Brillouin zone. The purely
rotational elements {R} of the space group G_ taken by themselves com=~
prise a point group Go(g) called the point group of the wave vector g.
With each element R of the point group Go(g) a matrix T(q;R) is

associated. This matrix is defined as follows:

T o O\ |g5R) = Ragd(A,Fo(k';R)] x exp{ig*[L()-Re(A")]},  (6.6)
where FO(X';R) is the label of that atom into which the atom labeled A!
is transformed by the operation {Rix(R)+£(m)}. Thus Tag(lk’lg;R) is
nonzero only if FO(X';R) = A. MV show that the matrices {T(q;R)} provide
a 3n-dimensional unitary multiplier representation of the point group

Go(ﬂ) of the wave vector ¢, ¢.e. they obey a multiplication rule of the

form
T(_q;Ri)T(g;RJ-) - é(g;Ri,Rj)T(g;RiRj) (6.7)
with ¢(3;Ri,Rj) = exP[?”il(ﬂﬁRi_l)'X(Rj)l

For symmorphic space groups ®(3;Ri,Rj) equals unity and the set of
matrices {T(q;R)} form an ordinary representation of the point group

Go (q)-

The T-matrices have furthermore the property of commuting with

the dynamical matrix D(g) defined in section 2.2. Hence

D(g) = T (Q3R)ID(QT(LR) - (6.8)
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Equation (6.8) yields relations between elements of D(q), reducing the
number of them which are nonzero and independent, as imposed by spatial
symmetry. Sometimes there are additional conditions imposed by time-
reversal symmetry, this is the case as the point group of the crystal
contains a rotational element S_, such that S_ q = —-q (hence —-q is in

the "star" of q). The element S_ forms with the operators of Go(g) the
coset S_Go(g) with elements S_R. The point group Go(g) together with
S_Go(ﬂ) form the point group Go(ﬂ;-g) in which Go(ﬂ) is an invariant
subgroup. By associating to each element S_R matrices as defined in
(6.6) and multiplying these matrices by the anti-unitary operator Ko
MV define the anti-unitary matrix operator T(q;S_R). The anti-unitary
operator K is defined by its effect on an arbitrary vector ¥ in the

3n—-dimensional space:
KY =y . (6.9)

The extra conditions imposed by time-reversal symmetry are now that
also the T(gq;S-R) commute with the dynamical matrix D(gq). In case

S_ = i, the inversion, then what has been said before is valid for
general q. In that case one has, for any two atoms A and A', related

by i, the simple relations

» T, "
D2 (A"A'3g) = D_ (AA3Q) (6.10a)

#* *

and Das(x'x;ﬂ) D B(XA';S) = DSQ(A'A;Q) . (6.10b)
The spatial symmetry also imposes restrictions on the form of the

eigenvectors of the eigenvalue equation (2.18). From (6.8) it follows

that
D(@{T(giRe; @)} = wj(g)mg;R)gj(g)} . (6.11)

which tells us that if e, (g) is an eigenvector of D(q) with an eigen-
value w (g), then so is T(Q,R)e (g) for every operation R of the point

group G (3) Consequently T(g}R)e (g) is in general a linear comblnatlon

of the eigenvectors of D(g) correspondlng to the eigenvalue w (g),
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which is expressed by

8]

T(_q;R)gﬂu(_q) = Z lT'('?ZJ (Q;R)gou'(g) . (6.12)
U =

The suffix j in eJ has been replaced by the double index ocu, where o
labels the distinct values of w (g) for given q and u the linearly in-
dependent eigenvectors assoc1ated with the eigenvalue w (3) MV show
that the f —dlmen31onal matrices {T( )(g)R) provide a multlpller
representatlon of Go(g). In view of the general result of group theory,
that the eigenfuncticns corresponding to each eigenvalue of an operator
transform irreducibly under the symmetry transformations which leave
the operator invariant, if no accidental degeneracy is present, the

set of matrices {r(o)(g;R)} constitute an fq—dimensional irreducible
multiplier representation of the point groub Go(g). In order to account
for the fact that different eigenvectors may transform according to the
same irreducible representation, in (6.12) o is replaced by & and a
label % is introduced, which numbers the eigenvectors, transforming
according to the sth irreducible representation. Equation (6.12) then

takes the form

T(g;R)gs,._u(_q) - ZA f‘(?? (g,R)gN (@) - (6.13)
t GTop w'e

o
(8

The irreducible representation matrices {T )(g;R)} have been

tabulated for all 230 space groups by Kovalev 20y,

The number of times the sth irreducible representation is con-—
tained in the representation {T(q;R)} is given by the familiar de-

composition formula

x(_q;R)x_(s)(_q;R)* R (6.14)

el

where # is the order of the group, x(q;R) = TrT(q;R) and

x(s)(_q;R) - Trr(s)(_q;R).

The general form of the eigenvector is obtained by applying
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projection operators, the 3nx3n matrices PSi?(g) defined by
(s) P 13 @), . .on® 3 I
P (@ = (fy/) g T, (R T(QR) - (6.15)

Application to an arbitrary 3n-dimensional vector ¥ results in the

so-called symmetry adapted eigenvector E(g;su),

pCl@y (6:16)

Hu

E(g;su) =

which transforms in the same way under the application of T(q;R) as
does the eigenvector E°tu(g) for any ¢. In general, E(gq;su) is a linear
combination of tﬁe Cg eigenvectors {gstu(g)} GErm 120 e Cs) corres—

ponding to the distinct eigenfrequencies {w (g)}. Hence

D(Q)E(g;81) = w2 (QE(g;em) (6.17)

yields the c, independent complex homogeneous equations in the Cq
unknown complex components of the vector E(q;su), from which the Cq
eigenvectors {Estu(ﬂ)} and the cy associated eigenfrequencies {u;t(g)}
are found. Hence the problem of solving a 3nx3n eigenvalue equation
has been simplified to the problem of the solution of a number of
generally smaller c xe, eigenvalue equations. The total number of

these smaller blocks is determined by the condition that

) f.e. =3, (6.18)
8
where fé, the dimensionality of the sth irreducible representation,

usually denotes the degeneracy of the {wi(g)}-

If for a particular wave vector or crystal point group the symmetry
group of the dynamical matrix can be enlarged to include anti-unitary
operations, this may impose extra conditions on the form of the eigen-
vectors and of the irreducible multiplier representations. Under the

assumption that the eigenvectors Es*u(ﬂ) of T(q;R) can be chosen to be

eigenvectors of the anti-unitary operators T(q;S-R) one obtains
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*

eaStU(K';g) = —exp —ig-L;(k')~S_£ﬁk)]} E(S_)aéesstu(X;EA} ; (6.19)
B

where A is sent into A' by the operation {S_|v(S_)}. The symmetry

adapted eigenvectors E(Hﬁsb) found from (6.16) are not necessarily

compatible with (6.19). The criterion for compatability given by MV is

that the irreducible representations I(S)(S;R) corresponding to those

T(Q;R)'s which commute with T(q;S_R) must be real and that as many as

possible of these T(S)(S;R) should be in diagonal form.

Time-reversal symmetry may give rise to extra degeneracies. From
the fact that the anti-unitary matrix operator T(Q;S_R) commutes with
D(q) itafollows that, if gstu(g) is an eigenvector of D(gQ) with eigen-—
value w;j(g), then so is T(ﬂ;S_R)e tL(ﬂ)' This means that T(Q;S_R)e

—S8Tu

()

is a linear combination of the eigenvectors of D(q) whose eigenvalues

are equal to wit(g). However, if the two sets of eigenvectors are

required to be linearly independent by time-reversal symmetry, there

must be an additional degeneracy. The transformational. behaviour of

Es:;(g) = T(E;S'R)Seﬁu(g) and gs:u(g) under the operations T(gq;R)

provides the criterion for additional degeneracy. This has been for-

mulated according to the behaviour of their irreducible representations,

in which three cases have been distinguished, corresponding to:

1) linear dependence of E and e, referred to as type one representations,

2) no linear dependence of E_and e but with equivalent irreducible re-
presentations, called type two representations, and

3) no linear dependence of E and e and corresponding inequivalent re-
presentations, referred to as type three.

The criterion is:

h first type

i‘;(g;S_R,S_R)X(S)(g;S_R S_.R) = =h second type 5 (6.20)
R :
0 third type

where

t(g}S_R,S_R) = exXp 171£?+(S_R)_:§7'X(S_R)J

is the multiplier in the so-called multiplier corepresentations of
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GO(S;—S) formed by the matrices T(gq;S-R) and
X(S)(S;S—R S_R) = Trrt (S)(R;S_R S_R).

For symmorphic space groups and S_ = i, the inversion operator, (6.20)

gets the simple form

h first type
Z X(S)(S;RZ) = -h second type 5 (6.21)

& o third type

The type one representations does not give additional degeneracy, while

the second and third type double the degeneracy.

The above presented compilation of the most relevant results of
the multiplier representation theory provides the tools for the block—
diagonalisation of the dynamical matrix of Fe,Al and for the deter-
mination of the general form of its eigenvectors and the number of

degeneracies present in the different eigenfrequencies.

In the application of the group theory to a specific problem the
question arises of which notation to use, extensively discussed by
Warren 2). Here we follow closely the treatment of MV, which more or
less implies the use of the tables of irreducible representations given
by Kovalev 20). Therefore it is tried to keep to their notations as far
as this does not lead to confusion with symbols used in other parts of
this work. Contrary to these two references we use q instead of k for
the wave vector, but retain their numbering (hence Ei = gi) and choose
the notation R for the rotational elements in accordance with MV,
while Kovalev has the notation h, again retaining the numbering.
Because it is becoming common to label branches of phonon dispersion
relations according to the BSW-system 21y | we will do the same but

present also the corresponding t-representations from Kovalev. For the

point groups the Schoenflies notation 22y is used.
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The space group of ordered Fe. Al is Oi, which is symmorphic.
In fig. 6.2 the first Brillouin zone of Fe,Al is displayed with the

different points of symmetry

o indicated in the BSW-notation.

We consider first the I-direction.

I

Fig. 6.2.

The first Brillouin zone for a
f.c.c. lattice, in which special
directions of higher symmetry
are indicated by the B.S.W.-
notation 21).

The point group of the wave vector g,, GO(gL) is sz. It has four

R,é, R and R._, which are given in matrix

I 28° 37
form in Appendix VI.B. The irreducible representations are given in

table 6.1.

rotational elements, R

Table 6.1
Irreducible representations of the group GO(iL) = C,
Ref.20 R, Ry, R,e R1€ Ref.2]
(1) I 1 1 I
 (2) I -1 -1 1
-(3)

(W)
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The 12 x12 T(gq,R) matrices are obtained from (6.6) using the
atomic positions given in section 6.2. We present them here in a

compact way of 4 x4 matrices, of which each position is a 3 x 3 matrix.

= ] Bs7
Rl R:7 -
T(q,5R,)=| © e » T(g,3Ry,) = B .
1 37
L Rl_ L R37d
R, 0 0 0 | R.. O 0 0 |
16 & 28 " 1
0 R 0 0 0 R
T(ﬂq;R16)= g i P 16, T(&;R28)= DQ ?_;ﬂl)
| 0 0 Rlb 0 0 0 R?: 0
| 0pRg 0 0 | (0 pRyp 00

| where p, = exp(i2mu).

The traces for the different T-matrices are:

X(GisBy) = 12y x(q 4R o) =43 © (g R, ' =2, (g 5K, ) = 2.,

The number of times a certain irreducible representation is contained

in the T-representation is obtained using (6.14) and table 6.1. One
finds c, = 4, c, = l, c, = 3 and €, = 4. Hence,
{T(q, R)} = {T(Z,R)} = 4z, ® L, & 3%, @ 4I_ . (6.22)

Since all irreducible representations are one-dimensional, spatial
symmetry does not cause degeneracy of the normal modes. Because the
space group of Fe3A1 is symmorphic and contains the inversion
operator i, time-reversal symmetry may be invoked using (6.21). Since
R2 = R, for all four operators, all representations are of the first
kind and therefore time-reversal symmetry does not produce any addi-

tional degeneracy.

The symmetry adapted eigenvectors E(q;su) are obtained using
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(6.15) and (6.16). The different steps leading to the results presented

below are given in Appendix VI.C.

[ =] Mo T [ e ( 0
] a, L o l | =a ] 0 !
l (o] ‘ (o) 1 1 0 ] a, ‘

| b | a, k b, \ | b,
[1:%] | s | P3| \ by 1|
E(g,;1D=| 1 ] E(g,321)=| |, ECg,33D=| ° , E(g,;41)=| % |
1 d: | o | | Cq | (o) |
o e e o
1 0 1 o " ° ‘ ‘ d, ]
| PuP1] ‘_Oua:l | oubs ]_Dubu‘

‘ PPy | | cuaf‘ 1_Dhb3w Y_SAbu
7P 4% | o | L i | t uC4;

Application of (6.17) using the dynamical matrix presented in
Appendix VI.A and the derived E vectors, provides the different blocks
of the dynamical matrix, which transform according to the different
irreducible representations. This is presented in Appendix VI.D. As
can also be seen from (6.22) the 12 x 12 matrix D(q) blocks down to a
4 x4, a single valued, a 3% 3 and a 4 x4 matrix.

Symmetry direction .

dmm e E S —— -

[=

The point group of g. is CAV' It has eight rotational elements as

shown in the irreducible representation table 6.2. The elements R are

given in Appendix VI.B.
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»  T(g. 3R =

II,I-,',;a’ucii; ;L" )”EE_?I‘QS'.:VLL:Q L1ONSE /_l’ Tne YOUlL G’::( | 6 = C4{,7
Ref.20 R, R, R, R, R R, R._ R, Ref.21
L 1 1 I I I ! I ,

T HE 1 1 I 1 -1 -1 -1 -1 a2
(3) 1 1 -1 -1 1 1 -1 -1 A,
o 1 -1 -1 -1 -1 ! ! A"

I(5) L o} (1 0} :1 o] (i 0] (o 1\ (0 T} (0 I] (0 i)

] ) B — - -
lo1) (o1 (01i) !o iJ L1 0f {1 0J ,l 0) (i OJ
U“)Wﬂ Fd (01 Pw Pw PW (10 Fq ,

10 1) WTJ‘IW lTo/ (1o (Tof o1 (01 ’
Equation (6.6) provides the T-matrices:
ES R,
'l J RI s L‘
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T(qiR,,) = 0 37 ‘

where p_ = exp(imu).

_

We find for the characters X(SG;R):

x(ge 3R, ) = 12 x(g 3R, ) = —4
x{g iRi) = 2 x(g R, ) = 2
x(qgsR, ) = 2 x(qg3R,.) = 2
x(_qg;R,‘.T) - 4 X(ES;RLC) = 4
Decomposition gives:
C - 3: C7 £ O’ C3 = 0’ C.‘ = ]’ Ce = 4

and hence

{T(A,R)} = 38, + &) + 4o

{T(SC;R)} — £

~
L

Since A,

40
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40

(6.23)

is two—-dimensional the four branches belonging to this irre-

ducible representation are twofold degenerate by spatial symmetry.

Applying (6.21) shows that all representations are of the first kind

ol WSS

symmetry gives no additional degeneracy.

and R™ = Rl) and, consequently, time-reversal

For the derivation of the symmetry adapted eigenvectors E(q. ;&u)

one has now to remember what has been said in subsection 6.4.1 about

the compatibility of these vectors from (6.16) with (6.19). We may

include here the anti-unitary symmetry operations T(q,;S.), where

S_. = R,

given in subsection 6.4.1 is

= i, the inversion operator, which according to its definition
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Ry (W) 2D 70
T(&F;S_) = K 0 0 0 Q6R25
o (¢]
0 0 R. _
5 25
i 0 ﬁ6R25 0 i

Here KO is defined by (6.9). One can easily verify that T(ge;s_) com—
mutes with T(QB;R) for all R. Consequently, on the corresponding irre-
ducible representations the restrictions are imposed that they are

real and that as many of them as possible are diagonal. For this reason
2(5)

in table 6.2 also the representation has been included. This irre-

ducible representation is obtained from the one listed by Kovalev,

T(s)

» by a similarity transformation with a unitary matrix !).

The symmetry adapted eigenvectors are again obtained by applying
(6.15) and (6.16) using the real representations of table 6.2. The

result is

FOW T 0 ] [a, ] =]
0 0 a_ ‘ a,
a, o | o | | o
0 0 b, | |=pd,
0 0 b, | | o¥d_
b |

EQ@g:1D=| °1 |, EQggsaD=| % |, E'(gg35D=| © |, B'(ge352)= O |
0 0 | c. | ] ~c_|
O 0 C” Csi

3 l

c 0 0 0 |
1 | |
0 | d -0 b_|
l 5 6 5|

0 0 d | 0. b
8 | | "6 5|
o b ~o,a:J [ 0 i r oAl
L 6 1_. 218 o L J L |

Since the anti-unitary operators could be included in the group we may

impose (6.19) on the symmetry adapted eigenvectors. This gives the ad-
ditional information: b1 = real, 5, & imaginary and d,_ = p-b-*
2 6 O

Furthermore from the normalisation condition it follows that a = iv2/2.

The different blocks of the block-diagonalised dynamical matrix

for this direction obtained by applying (6.17) are presented in
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Appendix VI.D. E'(S(;SI) and E'(gﬁ;SZ) represent the two sets of eigen-

vectors corresponding to the twofold degenerate

4

x 4 matrix.

The point group of q_ is C3V. It has 6 rotational elements, shown

together with the irreducible representations in table 6.3. Explicit

expressions for the R operators can be found in Appendix VI.B.

Table 6. 3.
Irreducible representations of the group GO(QS) =C,,»

Ref.20 Rl R R9 R37 RL'1 Rug Ref.21
L, ] 1 1 ] I 1 A,
12 1 1 1 -1 -1 -1 A
(3 (10 I 0 ) (2 0] (0 1‘; (0 ¢ (0 2] :
L | = | ‘ A

o IJ |0 €2) lo e‘ 1\1 0) le* 0 o,I
fL V3 V3] | [ aa) | V/3)
-l —— -l e - g | oo
b (R R S Bl [£2| |2 25
(" 3 ( Il 1 % l ¥
AL 3 _ | 12 53
o b2 5 ) 2 bF Y

e = exp(i2n/3).

The T matrices obtained with (6.6) are

R
1 =

|
T(RS;RZ) = 1 €] R e) -

P{] i R, 1
) § | o ;
I L
e g I

l
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T(gs;Rg)

T(gs;Rul)

x(gS;RS)
x(4¢3Ry)

representation T

x(q:3R)) =

I

Decomposition gives:

1 (3)

{T(g 3R} = {T(A3R)}

_79_

The characters x(g 3R) are:
5

RS/
¥ ’ T(&:;RQ—') e O
9 -
R%- L
Rys
R ° y Tl iR, O = ;
41
R
141_ S
:<(9‘5;R37) =4 ,
x(q:3R,,) =4,
x(gs;RqS) = 4
4.
- Z&A e A.‘"‘k
1 3

that time-reversal gives no additional degeneracy.

has been included in table 6.3.

The symmetry adapted eigenvectors are:

45

(6.24)

Since A, is two-dimensional the four branches belonging to this
irreducible representation are two—-fold degenerate by spatial symmetry.

Similar arguments as for the I- and A-directions can be used to show

For the same reasons as for the A-direction the real irreducible
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T '

al_} l— a37 r a37
=y
a, a, a;
a —2a1 0
\}
b1 b3 b3
= =
b1 b3 b3
b1 —2b3 0
E(g.311) = s B'(g.331) = : E'(g.332) = -
5 c1 5 Cq 5 c3
|
% €3 €3
<, -2c3 0
|
d1 d3 d3
d1 d3 —dé
d =2d 0

N (7555 ] L

The irreducible blocks of the dynamical matrix obtained with these
vectors are presented in Appendix VI.D. g'(gs;Bl) and Ef(gé;BZ) re—
present the two sets of eigenvectors for the two-fold degenerate A,
representation.

The ultimate goal of the group-theoretical analysis of the
lattice vibrations set in this work is the acquisition of the frame-
work in which the solution of the dynamical matrix in the main sym-
metry directions can be found in the most simple way. Since solutions
for special points of higher symmetry like the origin and points at
the zone boundaries can be obtained by continuity from those of the
symmetry lines, a group—theoretical analysis of these symmetry points
does not simplify the problem of solving the dynamical matrix. For
this reason no explicit block-diagonalisation by group theory has been
made for these points. For completeness, we will present the result for
the decomposition of the representations in their irreducible repre-
sentations, again in Kovalev and BSW notation, and their compatibility

relations with the representations of the lines of symmetry.

Because the point groups of the wave vectors along the symmetry
lines A, . and A are subgroups of the point group of the wave vector

at a terminal symmetry point, the irreducible representation for such

a point must provide a reducible representation of its subgroups (see




oo AtT OV A 4
S8ecrion b.4.

_8]..

¢.g. Warren 2)). The irreducible representation of the subgroup is said

to be compatible with the irreducible representation of the group at

the symmetry point, when the former is contained in the decomposition

of the latter. This can easily be checked with (6.14). These compatibi-

lity relations may also be found in tables given by Koster et al. 23).

Y o= di7 = (0,0,0). The point group is Oh’ which has 48 rotational

elements

decomposition:

{T(T;R)}

()

20,22y, Following the now familiar procedure one finds by

(10) _ rt @ 3r

25 15

® 371 (6.25)

Both representations are three-dimensional. They have the following com-

patibility with the irreducible representations in A-, I- and A=

direction:

-

i 99 T ;

elements 20,22),

gives

{T(gq3R)} =

()

(1)

()
(1)

(1)

{T(L;R)}

(5)
(5)
(2)
(3)
(3)
(3)

(1,1,1). The point group is D3d’ which has 12 rotational

Decomposition in its irreducible representations
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L1 and Ll are one-dimensional, L, and L' are two-dimensional.
) 3

The compatibility with the irreducible representations in the A-
direction is as follows:

N VL, L{ : U 1 PSR L; . (6.28)

1

w
w

Gl e e (0,0,1). The point group is DAh’ which has 16 rotational
0 2)

Decomposition gives:

(1) g 2.8 g (6) g (9) g 5.(10)
(6.29)

{T(g, ;3R)} = {T(XR)}

M, & 2M] @M, OM. 6 3M]

M., M; and M! are one-dimensional, M. and M! two-dimensional. The

compatibility with the irreducible representations of A- and I

directions is:

-
—
L
<

(6.30)

g

6.5. Inelastic structure factors of Fe Al

As already mentioned in section 3.6, knowledge of the inelastic
structure factor, defined by (3.39), is of great importance for the
proper performance of neutron scattering experiments, in which the
phonon dispersion relations are measured. In the calculation of these
structure factors the eigenvectors of the dynamical matrix are needed.
As shown in section 6.4 some of these eigenvectors are completely
determined by symmetry, while others are found to have a relatively
simple general form. The consequence of this is that the inelastic

structure factors are not very sensitive to the parameters used in the

model for which the dynamical matrix is solved, but depend mainly on
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the lattice structure. This insensitivity to the model parameters is
demonstrated by the success in estimating the inelastic structure factor

by comparing Fej Al with a-Fe.

It is possible to describe the dynamics of a-Fe with respect to
the same lattice as that of Fe3A1. For this purpose one must double
the iron cell axis. In fig. 6.3a,b the effect of doubling the iron cell
on the (]TO)—plane and the (001)-plane of the reciprocal lattice is

shown. The dashed lines indicate the zones of - the original reciprocal

— S8 S . ° . © o
%’ > % S 25N 255N
- ~ - ~ N7 i & N
Dy = So” o’ < X 7o X
! 1 i o SRR x” / 5
7 / X
I \ 1 /
| \ 7/ ’ Y Y
) (004) I = i N (400} N s Nk
. .
: (002) | I SN (200) 7N \
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S ’ ~ PN X X X X,
Al c -5 2 2N \ v ’
L. D % \C~ (220) \ 7
g L83 . B * ° Py
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pL 2O — ° “ - ° °
2 A
a b

Fig. 6.3.

The (110)-plane (a) and the (001)-plane (b) of the reciprocal lattice
of FeaAZ (zones indicated by solid Ziqes) and o-Fe (zones indicated

by dashed lines).
cell (corresponding to the b.c.c. lattice), while the solid lines mark
the zones of the reciprocal lattice corresponding to the new f.c.c.
lattice. For the description of the dispersion relations with respect
to this lattice there are groups of equivalent line segments which
were inequivalent in the original a-iron lattice. Such line segments
are for instance in the [QOI]—direction: A-B; C-B and E-D, and in the
[1ldj-direction A-F, E-B and C-D. Thus in the new description the parts
of the dispersion relations originally corresponding to such a group of
segments are now compressed in each single segment of the group, the

consequence being an increase in the number of different phonon branches.

In fig. 6.4a phonon dispersion relations of a-iron in the [OOIj-direction
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in the new description are displayed. The curves are based on a second

neighbour Born-von Karmdn model. In fig. 6.4b an analogous calculation

T T T T T T T T
1o L [00%] 3 [o0%] T,0
T,0
g LO | i
.5 T.0 LO'
o - R - -
o L,O L,0
<6
> T,0 i
1
T,0
I 4+ LA = - 4
A
; i A - 5wk !
- - ol —~
0 1 1 1 1 L 1 1 1
0 . A 6 .8 10 0 2 & 55 "8 LY
a a
R L s nui )
a b
Fig. 6.4.
Caleulated phonon dispersion relations in a-Fe (a) and Fe. Al (b) by
means of a second-neighbour Borm—von Ka srmén model. The dispersion
relations of both systems ave described with respect to the reciprocal

lattice of Fe.AlL.

with preliminary parameters for Fe Al is presented. The branches of
fig. 6.4a can be obtained from a c;mbination of the branches in the
OO -dlrectlon and along ['1 ] in the normal description (compare
flg. 5.2). For instance T A and T 0 are equivalent to the part of the
T branch in the OO' -dlrectlon between 0 - 0.5 and 0.5 = 1, respecti-

vely, and T O is equivalent to Il between 0 - 0.5 along [“;1 .

The close relatlonshlp between the two structures is borne out in
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fig. 6.4a,b by the qualitative behaviour of the dispersion relatioms
of both substances. Because of lower symmetry in Fe3A1 some of the
branches which cross for a-Fe deflect away from each other in Fe3A1
since they belong to the same irreducible representation 2y, while the

L.O branch of a—iron splits up into two branches.
1

It seems reasonable to expect that related branghes have to be
observed at related positions in reciprocal space. For instance, for
the observation of the TlA branch of fig. 6.4b, one would choose the
same configuration in reciprocal space as for the first part of T,A
and the second part of T10 of fig. 6.4a. This procedure was followed
when the experiments were started. In many cases this turned out to
be quite satisfactory, especially for those q-values where the branch

under investigation had no strong interaction with other branches.

As soon as more information was obtained about the dispersion
relations better estimates could be made about the force constants
used in the Born—-von Karman model. With these parameters rather ac-
curate calculations could be made of the inelastic structure factor,

which in turn could improve the assignment of the phonons.

In section 3.6 the structure lattice has been defined, which is
meaningful when the conditions are satisfied for (3.42), Z.e.
gj(x;g) = c(k;g)gj with c(A;q) a complex number. It is obvious that
for Fe3A1 the structure lattice is just the o—Fe lattice. From the
symmetry adapted eigenvectors found by the group—theoretical analysis
of the previous section it can be seen that the reduced structure
factor has the form (3.42) for all branches of the A- and A-directions,
and for the I, and the three I, branches of the I-direction.
The reduced inelastic structure factors for these branches, calculated
with a third-neighbour Born-von Karman model with central interactions
between third neighbours, are presented in fig. 6.5. The labelling is
consistent with the group-theoretical treatment of section 6.4.

The parameters used are those of table 6.5, first column, which will

be discussed below.




4 AHA; A,;A’z

| P 120 . [ ]
| 2 > s Yo X \
e | A\7 / = = J N e = \i' Ji
0 N — obes e — L -
(000) (001) (002) (110) (111) (112) (000) (001) (002) (110) (1) (112)
& Al 4 A:!
/ : \ oSl o
\ | } M \Li s ! S | o [
o ) ! ‘ | / A
o \! / / \' [\ F o« \ 4
o [ ! \ I n \ /
[
m? | \ X I “ /4 m? 2 “ 4
{ / h | ¢ \ ¢ —
(P f I T G \ > olo
o Aoh A F \ - 2
| ¢ ) \ 3 | \ - I
NG \ [y I\ 2 | ot A
) b= \L ~—— — S \ N ——~ 0 = Y B B e
(000) (%%%) (111) (%% (002) (000) (%% %) (111) (% % %) (002)
) =z
(i (i) (i) (i) W
A| ' As ' 1 P
iI=1 —— —
NU; 22 : —————————
) l.= 3
- - 124 — =i —_
0
{000) (110) (200) S
é\l
&
Fig. 6.5. Reduced inelastic structure factors for Fe A L, R
?:
~




_87...

section 6.6.

Table 6.4. 6.6. Experiment and results

Phonon frequencies in Fe Al at room
temperature (in units of 10'%s~1).
The estimated aceuracy 18 better described triple-axis crystal
than 0.10, except for the values
marked by *, which have an accuracy

By means of the previously

spectrometer a great number of

between 0.10 and 0. 15. phonons has been observed in a
— -
+.a ) v v ; single crystal of ordered Fe3A1.
all a@ gD D @ g (b The crystal was 2.2 cm in dia-
S:ds RGSEATS AW Cio meter and 5 cm long. It was
0.10 6.95 6.40 6.15 7.20
0.15 6.00 : 1 1
020 1900 6.95 10.50" 6.40 e obtained from Metaalinstituut
0.25 .40, 2.00  5.65
0.30 2.90 6.80 40 2.35 5.50 7.70
0.35 L . N 2.65 5.25 T.N.O., Delft.
0.40 3.80 6.90 10. 25 6.45 3.05 5.05 7.75
0.45 3.4 4.80 -
BN o i i e Although strong super-reflections
0.525 3.95
I 0.55 4.15 4,40 7.75 1 1
oh3s . . B . were found, it was not possible
0.60 5.20 6.75 10.20 6.50 4.10 4.50 7.60 10.60
0.65 3.90 4.80 1 1 1
0.70 5.70° 6.75 6.60 3.75 5.05 7.45 10.60° to determine quantltatlvely the
0.75 3.55 5.35
oo BB 80 n0a83 IS Rt 10:50 degree of ordering by neutron
0.90  6.50 6.60 3.10 6.10 6.85 10.80" :
0.95 3.05 6.35 P
1.00  6.50° 9.70° 3.00  6.60 10.90° scattering, due to strong ex
tinction in a crystal of such
large size.
n-
From the literature ©) it may,
;(l') ._(2) ‘(3) ‘(LJ ‘(l) _(3) (1) +(2) (3)
? 2 : P4 e 73 73 73 however, safely be concluded
0 6.30 10.50" 10.50" 7.10
520 A . . 7.3 that for an alloy of the
0.20 5.80 10.50 10.50 7.45 y
0.30 3.30 5.45 ¢ 1.00 & 2,25 7.60
0.40  4.35 5.10 10. .3 5 3 7 : s 1 1 t1
DT bt T RS R 760 gtoichiometric composition the
0.60 4.35 6.00 7.15 10.20° 1.85 10.55° 4.25
0.70 4.20 6.60 6.80 5 1 1
0.80 4.40 6.20 7.30 10.20° 2.30 10.70° l:;; ordering 1s very close to 100%.
0.90  4.65 7.50 = . 5.75 i .
I . S o A AN 0K o) The full widths at half height
1.20  3.70 5.75  7.40 10.80° 3.05 10.90" 6.70
) el s . A 88 of rocking curves for the (220),
1.4)04 3.05 6.50 10.90 3.10 6.70
(400), (222) and (333) re-
flections were around 20'.
= 9
TR y )
L 7 o S T v S ¢ TN 2 S S e The experimental technique
1 ek = 18 =y b s Ao "3
0 7.10  10.50" 6:40 7:10 was mainly the same as described
0.05
035 s SEEE in chapter V for the measurements
g.;;? i.;g 5.70  7.60 10.30" 5.80  7.25 10.45° :
0.30 3.60 5.25 7.75 s of o-Fe, except that improved
0.33 1.50
0.35 4.10
0.40 4.55  4.95 7.80 10.25° sl s noee monochromator and analyser
0.44 2,00
850 40 348 7.3 5.25  7.65 crystals were utilized. In the
0.55 5.90 2.50
4 . - . .
gzzg 2:;3 ::Z? 7.10 10.05 N s 5.10 7.75 10.60 present experlment zinc
0.70 5.05 6.60 6.75 4.60 7.75 .
oges o L0 S50 crystals were applied, which
g.g(;v’ 5.45 6.10 7,20 9.90° 4.15  7.75  10.55° i . .
0.866 5.80 5.80  7.35 4.00 4.00 7.80 gave a higher intensity than
A short report about these measurements appeared in Physics Letters ) I
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the previously used copper crystals. For the observation of the optical
branches of high energy the alternative analysing technique was used

of theinverse beryllium method, described in chapter IV.

The great advantage of this technique over the conventional diffraction
technique, its much higher intensity in the final beam, made it in-
dispensable for the observation of the high energetic phonons. A dis-
advantage is that the scattering data have to be interpreted with con-

siderable care. Since not only neutrons scattered by a single spot in

q—-space can reach the detector, but also those scattered by a whole
line in q-space 2%), there is a chance of getting contributions from
phonons belonging to different branches because of abrupt variation of

the inelastic structure factor in the region of observation.

The observed phonon frequencies for the different branches are

presented in table 6.4 and also displayed in figs. 6.6 and 6.7.
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Phonon dispersion relations of Fe,Al. The dots are experimental points.
The solid lines represent a least squares fit to the experimental
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Phonon dispersion relations of Fe,Al. The dots are experimental points.
The solid lines represent a least squares fit to the experimental
points with a third-neighbour Born-von Kdrman model with central inter—
actione between third neighbours.
The labelling is in accordance with the treatment of section 6.4. All
data were collected at room temperature. For the A- and A-direction the
experimental set is complete, but in the I-direction some branches
have been measured incompletely, or not at all because of experimental
difficulties, e.g. lack of scattering intensity or mixing with other
branches. As the ZZ branch has zero structure factor both for measure-
ments in the (110)- and the (001)-plane it could only have been

measured in a non-symmetry plane, which is very complicated.

Not only scattering by more phonons at the same time, but also
the occurrence of a great number of parasitic Bragg reflections caused
by the larger cell of FeaAl, made it much more difficult to perform
the experiments than in the case of a-Fe. Bragg scattering from the

sample in the direction of the analysing system always gives rise to

(1)_

1
-branch especially suffered from this parasitic scattering.

spurious peaks in the observed intensity. The observation of the A
(1)
3

branch and A
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6.7. Analysis of the experimental results

The neutron data of table 6.4 have been analysed in terms of a
third neighbour Born-von Karman model with central interactions between
third neighbours. As discussed in section 6.3 this model uses eleven
independent parameters. In the analysis use was made of a non-linear
least squares method, in which it is possible to introduce constraints
on the parameters. For our purpose the Algol procedure described by
Rietveld 2°) was modified to fit our special requirements arising from
the iterative solution of the secular equation. For the least squares
analysis the block-diagonalisation by group theory proved to lead to
a great reduction in computational effort. Without this block-
diagonalisation the program would have had to diagonalise a 12 x 12
complex hermitian matrix for every q-value, while now only 3 x3 and
4 x 4 matrices had to be diagonalised. The Algol procedure used for the

diagonalisation of a hermitian matrix was based on the Jacobi method 26y,

In the least squares analysis it is necessary to calculate not
only the quantities which have to fit the experimental data, Z.e. the
frequencies Vi but also their derivatives with respect to the model
parameters p, . These derivatives were obtained by a perturbation-like

method in the following way:

LS. F sl et B, = ] B B = dA

: e 1l Zm “mi L 21 Zm mil k

P X oM % oM

k
or
s fo gl
= dﬂk > (6.31)

9 Py Zvl

where B is the unitary matrix of the eigenvectors obtained from the

solution of the secular equation for the frequencies

‘D(g) - 4m2y?2 Ei = 0

and de is a matrix, whose elements are those of the dynamical matrix
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D(q) differentiated with respect to Py *

Since the Jacobi procedure yields in addition to the eigenvalues also
the eigenvectors, the method of calculating the Bvi/apk according to
(6.31) is much faster than that of performing a new calculation with the

Jacobi procedure for the derivatives.

The experimental data have been analysed in two ways, one by im-
posing on the parameters the constraints of the elastic constants,
(6.1), (6.2) and (6.3), and the other without any constraint. The
elastic constants of Fe.,Al have been measured by Leamy et al.2’) using
an ultrasonic method. They determined the ultrasonic velocities in the
[llQ] propagation direction. We used the data quoted for the sample
which had 25.05 + 0.15 at. percent Al. They correspond to €, = 17.10,

c 13.17 and c,, = 13.06 in units of 10!! dyn/cm?. The quoted error

12

e
is around 1.57%.

Since, because of the values of the different structure factors,
some of the I-branches could not be observed individually, an analysis
was made first for the different irreducible representations of the
A- and A-directions. In this analysis the elastic constants were im-
posed as constraints on the parameters, the force constants. Fig. 6.6
shows the least squares fit to the experimental data of such an analysis.
In order to avoid that too much weight was given to those branches
which had very many experimental points, an equal mesh in q-space for
the experimental points was used, thus omitting some of the data in the
analysis. In a second analysis no constraints were put on the parameters,
but now also the data of the Zu—branches were included. The fit to the
experimental data is shown in fig. 6.7. In figs. 6.6 and 6.7 the group-—
theoretical labelling according to section 6.4 is used. The label
assignment in the symmetry points I and X is uniquely obtained from
(6.26) and (6.30). For the assignment in the point L, in addition to

(6.28) the form of the polarisation vectors had to be considered.

The fit of fig. 6.7, based on the analysis without constraints, is
better than the one of 6.6, showing a discrepancy between the ultra-=

sonic and neutron data. This will be discussed in section 6.8. The two

sets of force constants deduced in the two different analyses are given
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in table 6.5. Here also the elastic constants deduced from the inter-—

atomic force constants by means of (6.1) - (6.4) are presented.

Table 6.5
Interatomic force constants of Fe Al

(units 10% dyn/cm)

1) 2)
al(12) 1778 £ 2.3 Wy s e Sl
a1(23) 146.9 + 3.8 147.8 £ 2.5
31(12) 191.4 + 3.9 193.8 £ 2.6
8,(23) W47 5450 143.8 £ 2.8
a2(13) 58.7 £10.3 1113 = 69
32(24) 21.01% 9.0 30.5 = 5.1
8,(13) 1.9 5.8 =242 £ W2
82(24) 13.9 % 4.4 7.8 £ 2.6
o, (11) gLl 955 2.6 + 1.6
a,(22) 14.2 + 1.9 156005 153
43(33) {456t Sl 1956 £ 241

1) With the elastic comstants c . = 17.10,
Chi ™ 13.17, and ¢, = 13.06‘in units of

10!! dyn/cm? imposed as constraints.

2) Analysis without constraints; the resulting

values for the elastic constants are

Cig = 199 ¢, . = 12.2, and S 14.6x1011 dyn/cm?.
The second set has been used for the calculation of the frequency
distribution function. The program used for this is the same as that
for iron, except that the diagonalisation of the dynamical matrix for
the points in the irreducible unit of the first Brillouin zone of
Fe_Al now had to be done with the Jacobi procedure for complex matrices.
Si;ce this procedure is rather time consuming for a 12 x 12 matrix, the
total number of diagonalisations has been limited to 217. A frequency

channel width was used of 0.006 x 10}2cps. The resulting frequency

distribution function is displayed in fig. 6.8. We also calculated
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three functions which
we will call weighted
frequency distribution
functions. In this cal-
culation the weight of
the frequencies is taken
as the square of the
absolute value of the
polarisation vector of
the different atoms for
every q in reciprocal
space. It can be shown
that, if the weighted
frequency distribution
functions are used for
the calculation of the
specific heat (2.35)
and the mean square
displacements of the
atoms (2.38), the con-
tributions of the par-
ticular atoms are ob-
tained. For the definition
of the Debye-Waller factor
of different atoms in

the primitive unit cell

ref. %) may be con-

sulted.
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- 1 7 . ~ = 7 Ay n/m £ )/
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Debye-Waller factor for Fe Al, together with the inaiviaual contri=

butions of AL, Fel2) and Fe(1) to these quantities.
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The weighted frequency distribution functions are also displayed in

fig. 6.8. The calculated C, and C(T) for the different functions are

\Y
shown in fig. 6.9. The derived Debye temperatures are displayed in

fig. 6.10.
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Caleculated Debye temperatures for Fe Al and for the indi

Al, Fe(2) and Fe(1). The solid lines apply to the calculated spect
heat and the dashed lines to the Debye-Waller factor.
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6.8. Discussion

As already mentioned in the previous section the fit to the ex-—
perimental data shown in fig. 6.7 is better than that shown in fig. 6.6,
in which the elastic constants as measured by an ultrasonic technique
have been imposed as constraints on the interatomic force constants.
Also for other substances neutron scattering measurements have led to
deviating values for the sound velocities, e.g. nickel 29), potassium
30y, aluminium 3!) and nickel-iron alloys 32), For uranium dioxyde 33)
and lead telluride 3%) no consistent set of elastic constants could be
obtained.

35,36) has explained that discrepancies arise because of

Cowley
the interaction of the elastic waves with other excitations in the
crystal: phonons, electrons or magnons. This interaction depends on the
frequencies of the elastic waves. If the frequency is much less than
the inverse collision time of the excitations, the latter are able to
follow the sound wave in thermodynamic equilibrium. This "collision
dominated" mode of propagation is referred to as the hydrodynamic or
first sound regime. In the opposite case, where the frequency is larger
than the inverse collision time, there is insufficient time for thermo-

dynamic equilibrium to occur in each period and the wave propagates in

a "collision free'" or zero-sound mode.

The lifetimes of excitations in anharmonic crystals may be of the
order of 10”!!s. Since for the measurements of the sound velocities in
Fe Al the ultrasonic frequency used by Leamy et al. 27y was 107s71, it
is obvious that these measurements belong to the first sound region.
The phonon frequencies detected in the present experiment were of the

order of 10'2s~! and may therefore be dominated by the zero-sound regime.

It has been shown by Cowley 35:‘5) that the corrections to the
elastic constants from anharmonic effects are different for the two
regimes. Moreover, the corrections for the high-frequency region have
only the point group symmetry of the crystal, whereas the low-frequency

elastic constants have higher symmetry.

In table 6.6 four sets of elastic constants for the three acoustic

waves in the I-direction are presented.
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Table 6.6.
Elastic constants for Fe,Al in units of 10" dyn/cm?

1) 2) 3) 4)
pV2(Zl) 28.2 + 0.4 29.4 + 0.3 28.6 + 1.2 29.3 + 0.6
sz(Zq) 2.02 + 0.03 2.65 + 0.03 2.60 + 0.25 2.38 + 0.05
pv2(z3) 13.2 + 0.3 12.2 + 0.2 13.0 + 0.6 13.8 + 0.3
27) :

1) Room temperature values ref.

2) Calculated from the interatomic force constants of table 6.5.

3) Determined from the slopes of the experimental dispersion relations
in the I-direction.

4) Values at O K of ref. 27y,

V is the sound velocity and p the crystal density.

The first set gives the room temperature values reported by Leamy

et al. 27). The second set has been calculated from the interatomic
force constants from the second analysis (table 6.5). The third set
has been obtained by taking the slopes to the experimental dispersion
relations in the I-direction. The last set are the O K values reported

by Leamy et al. 27).

It is remarkable that the agreement between the third and the
fourth set is within the error limits. It has been reported by Svensson
and Buyers 37) that the temperature dependence of the elastic constants
in KBr in the zero sound mode is much less than in the first sound
mode. Since at O K both modes should yield equal results, the fair
agreement between the last two sets of table 6.6 indeed suggests that

zero sound modes have been observed in Fe3A1.

The calculated dispersion curves of figs. 6.6 and 6.7 have a
feature that could not always be observed experimentally, namely that
branches belonging to the same irreducible representation never cross.
Crossing of such branches can only occur in very special cases, as has
been discussed by Warren 2). Since in none of our calculations crossing
of branches belonging to the same representation was found it is believed

that accidental degeneracies of such branches in Fe3A1 are not possible.
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(1) (2)

However, the phonon branches AS and AS have been measured very
carefully near the point of "accidental degeneracy', and within the
experimental resolution no discontinuity was observed when we passed
over from As(l) to AS(Z). Even no change in linewidth was detected, in—
dicating that there is very little interaction between the two branches

in this point.

The two sets of interatomic force constants give some indication
about the changes in the interactions due to the presence of Al atoms
as compared to a-Fe. First of all it seems remarkable that in Fe3A1
a1(12) - 81(12) < 0. This indicates that the interaction between first-
neighbour Al and Fe atoms is repulsive, contrary to the first-neighbour
interactions in o-Fe. This was considered as an indication of some
quasi covalency in a-Fe. The repulsive force seems in contradiction
with the prevailing conception that in Fe,Al some quasi-covalent
bonding exists between first neighbours, caused by hybridization of s,

p and d electrons 38y,

Pauling 39) explained on the basis of the resonating-valence-bond
theory 40y the observed lattice parameter and the difference in magnetic
moments between the Fe(l) and Fe(2) atoms as found by neutron dif-
fraction !°). Al is a so-called hypoelectronic atom, which has an
excess of orbitals over electrons in the valence shell. Such an atom
can increase its valence by accepting an electron from a hyperelectronic
atom, which has an excess of electrons over orbitals in the valence
shell, or a buffer atom. The latter can donate or accept electrons
w?thout change in valence. Fe is such a buffer atom. By removing half
an electron from the Fe(2) to the Al atoms the metallic radius of Al
is decreased so much that it would fit in the iron lattice without
causing too much strain. Pauling >°) estimates the metallic radius of
Al originally 137 larger than that of the Fe atoms, and after electron
transfer only 3.7%. This electron transfer to Al from the Fe(2) atoms
implies that the magnetic moment of the Fe(2) atoms decreases from 2.22
Bohr magnetons to 1.64, while that of the Fe(l) atoms remains almost
the same, 2.14. The observed values are 1.50 and 2.18, respectively 15),

in good agreement with this. In line with the reasoning given above the

repulsive force between Al and Fe(2) may be explained by assuming that,
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although quasi-covalent bonding occurs, the attractive interaction not
completely compensates the repulsive force because the metallic radius

of the Al atom is still somewhat too large.

Since a1(23) 2 81(23) it may be concluded that the first-neighbour
interaction between Fe(1) and Fe(2) has become neutral, but has not
changed considerably otherwise. However, the second-neighbour interaction
between Fe(2) atoms has decreased drastically. If this interaction in
iron was determined by overlap of d orbitals, then this is much less
the case in Fe3Al. The fact that the force constants for the second
neighbour interaction between Fe(l) and Al are larger, but still much
smaller than the corresponding parameters in a-iron could indicate a

preference for overlap with the p orbitals of Al.

That the interaction is predominantly determined by first neighbours

is also reflected in the weighted frequency distribution functions.

Fig. 6.8 shows that the contribution from the Al atom to the total
frequency distribution stems mainly from the high energy region of the
optic phonons, while the Fe(l) contribution mainly stems from the
acoustic region. Comparison with the frequency distribution of a-Fe of
fig. 5.6 shows that the Fe(l) atoms behave much the same as the Fe

atoms in a-iron, while the-Fe(2) atoms represent more the average
behaviour of the Fe Al lattice. This is also demonstrated by the Debye

temperatures derived for the individual atoms.

In the relatively small interaction between second neighbours may
also be a clue for understanding the phase transition at about 820 K,
above which temperature the Al and Fe(l) atoms redistribute themselves

randomly over the lattice sites 1 and 3.

Since the description of the lattice dynamics in a Born-von Karmian
model is phenomenological rather than physically realistic, one must be
careful in attributing too much physical meaning to the individual force
constants of this description. Moreover, including more parameters,
which would lead to a better fit, could change the value of some of the
force constants. Other force constants would also be obtained if one

allows a certain amount of disorder, the possibility of which is not

excluded by experimental investigations. However, a calculation per-
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formed under the assumption that only 947 of the Al atoms were in
position 1 and 6% randomly distributed over the other lattice sites
showed that the force constants maintained their general character

as discussed above.

It may here also be concluded that for the description of the
lattice dynamics of FeBAl, just_as for a—Fe, the Born-von Karman model
provides a good interpolation scheme, and it is believed that the
calculated frequency distribution function represents the real lattice
dynamical behaviour of Fe3A1 at room temperature. The extrapolation of
the derived thermodynamic quantities to other temperatures is much less

reliable, since for instance no anharmonic effects have been in-

corporated.
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Coefficients of the dynamical matrix D(gq) for ordered Fe3A1, derived

from expression (2.15).

N A 4 3 . .
Dli(ll,_cl) = m[&ul(12)+2¢2(13)+4b2(13)+8\z3(l1) 4‘13(1])Cz,i{c2,i+1+c2,i+2ﬂ s

1|, :
Di,i+1(113) = 5 {_4‘“‘3(11) sz,i%,iﬂ} -
D..(12;q) = —— (40, 2)(C.C.. C - i8.5..8,..}] D
T @t [ Yivie17ie2 e 0 o R TR
= l ’—_ﬁ [ - -..
1 1+1(12’3) _—(mM)% (_4.;1(12)«_Sisi_”ci+2 1 G C1+lsi+2}y Py o
R [ ’ i
Dli(l3,_q) (mM)% I_2,4,2(113)C;"i + 2"1,.(]3)C2,i+1 + 2,;2(13)C2,i+;_j P, »
+1(1359) =0,
;3 (1439 = = Ty E‘u (12)1C4C141C50p * 1 53840184508 " 3
D1,1+1(14;ﬂ) N (mM)? P’B (IZ)JS S 1Ci+2. * % Cici+;si+2"_JJ o
T
D, (2259) = 3 |ba, (12)+4a, (23)+2a, (24)+48,(24)+8a,(22)+
M| ;
~ha (22)- €, L AC: o ¥C. o 3L 5
3 231 gAY T2 TED _j

) T A :
D e =ag) S g E‘"“e(zz) Sz,isz,iﬂj x

1 [
2ls 3 = - { _ il .
D, (23;9) - iLzu (23)"Cici+1ci+2 i Sisi+1si+2}] P, >
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q) =+ - % :
Dygey £23030) =3¢ [%31(23){sisi+lci+2 i Cici+1si+z{J o

s e i i
Dii(24{1) M [?uz(Zé) C, ; % 282(24) C2,i+1 ) 282(24) C2,i+é} * Py »

3

D; 54,26, = 0,

£ ifvpes 4 1 i
Dii(33’ﬂ) 55 L?al(23)+2u2(13)+482(13)+843(33) 4J3(33)C2,i(C2,i+1+C2,i+2)J’

-

<=

e Mo
D',i+1(33’3) =

; 4d3(33) S

I
-

S
251 2,1+1

Dij(aa;g) = Dij<22;3) >

- a - ain o = 2 = a
Cl = cos 7 4q; > S sin 7 q; » Cz,l cos 5 q and S:, sin 7 q
with i = 1,2,3 corresponding to X,y,z.
Further:
p, = (€,C,C,m 5,5,C,= §,C,8,= C,8,8,) * i(8,8,5,~ €,C,8,- C;5,C,= §,C,C3)s

P, = (pt)z and p_, = (pI)B. m and M are the masses of Al and Fe,

respectively. The value of i,i+l, i+2 has to be taken modulo 3.
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Matrix representation of the rotational elements used in the T-repre-

sentations of the

)

-, /-, and A-directions of FeaAl. The elements are

presented in two groups: under the first group of rotational elements

the four sublattices of Fe3A1 go into themselves, while under the

second group the sublattices 2 and 4 interchange.

. (1
R = 0
1

0
0
RS oz O
|
0
RAO = 1
0

R45 =
1

r

2 0
Ryy = 1
0
(0
Rl6 o~ 1
0
1
R26 = 0
0

—

o O

© O =i

ident. -

240° rot.[111] ,

refl.(110) ,

refl.(101)

90° rot.[001] ,

180° rot.[110]

refl. (100) 3

(T 0
R, = [01

o
(=)

w
N
W
Il
O O =i
—

—

0
Ry 01
0

refl.(001) .

- O O

180° rot.[001] ,

120° rot.[111]

]

refl.(110) ,

refl.(011) @

270° rot.[001] ,

inversion ,

refl.(010) ,




~104-

Appendix VI.C

We present here the steps leading to the symmetry adapted eigenvectors
E for the I-direction of Fe3A1.

We first apply the operation T(q;R) on an arbitrary vector VY,

where
[ v (1) ]
¥y (1)
¥, (1)
V5 (2)
by (2)
¥,(2)
L2 ux(3)
¥y (3)
v, (3)
Vx (4) |
by (4) |
L‘LZ(4) J
The result is:
[ vge(1) | by (1) T
| by (1) (1) l
v (D) v, (D) |
‘ b, (2) \ pry(&) r
| ¥y (2) ARON
| ¥,(2) | ~o¥y,(4) |
Bkt = i | 8 TR E | o) ]
: by (3) v (3) :
vz (3) ~¥,(3) |
x| P52 |
| ¥y (&) | PV (2) |
L b, (4) ] 7P, ,(2) J




=305~

NON [y (1) ]

by (1) Py (1)

=, (1) b, (1)

Oy Uy (4) by (2)

piby (4) b, (2)

~afY,(4) 4,(2)

T(q, Ry = | 4 (3) | 3 T(q,3Ry)¥ = by (3)

by (3) ¥, (3)

~02(3) v, (3)

0, ¥y (2) by (4)

| 0¥y (2) by (4)
o0, (2) | RACH

Using (6.15) and the data of table 6.1 we get:

(1) f : . ; .2 )}
PP17(g,) = 41T(q, 3R ) + T(q, 3R () + T(gq,3R, ) + T(q 3R, )]

2 :
p )(g“) = %{T(g“;RI) *+ T(q, 3R, ) - T(q 3R, ) - T(q 3R, )}

P (q ) = 1{T(q sR.) - T(q ;R..) + T(q ;R..) - T(q ;R.)]
4 -k 1 L 16 -4 28 4 37

P4 (q,)

HT(q,sR)) - T(qysRye) - T(q 3R, ) + T(q,3R,.)}

Applying (6.16) we obtain:

[ 20 (1) + 295(1) 1
2y (1) + 2@y(1) |

0 |
Ux(2) + g (2) + o {ug(4) + 4y ()} |
b (2) + ¥o(2) + o{uy (4) + vy (&)} |
202(2) = 2p% ,(4)
205 (3) + 20y (3)
20x(3) + 20,(3)

0 (
bx(8) + ¥y (4) + 0, {Uy(2) + 1, (2)}
Vx(4) + Uy (4) + o, {0 (2) + 4y ()}
20,(4) = 20, 9,(2)

E(g;11) = {.
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+F O O O

Ix(2) = ¥,(2)

p;{wym -y (@)} w
_wa(z) = LJ-)y(z) L

o, 1o (4) - v, (W }]

E(q,;21) = {.

2 D) © OF Y P

bx(4) = vy (4) + o {1 (2) = Ux(2)]
[ @) - by (4) + 0, {0 (2) - v, (2)}]

0
L -
2y_(1) - zwy(l)- 1
~{2y_(1)- 2y (1) } Y
0 |

0x(2) = Uy (2) + pp{Yx(4) - vy (W)}
[0 @ - v, @) + oty () -y ]]

E(q ,31) = }. -
7 294(3) = 20y (3)
~{20,(3) - 2y,(3)}
. |
Vg(4) = v (4)

0, {05 (2) - ¥ (2)]
p, {0 (2) - vy (1]

= [u, (®) = vy (4)

o + +
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4y, (1)
U (2) + 0 (2)- = oy fu, (4) +u ()]
v, (2) + win) - oxfu, (4) +y (D)}
295(2) + 2p, ¥, (4)
0
0

-+

40,(3)

b (4) + ¥y (4) = 0, {0, (2) +4y(2)}
be(8) + by (4) = 0, {4, (2) + v (2)}
205(4) + 20, ¥,(2)

~

The general form of these vectors is equivalent to that given in sub-

section 6.4.2.
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As an example how the different blocks of the block-diagonalised
dynamical matrix are obtained by applying (6.17), we choose here
the block of the symmetry adapted eigenvector E(gu;Bl) of the I
direction. (6.17) then results in two equivalent  sets of four

homogeneous equations:

o = . | . L . ]
{p,,(1159,) = D, (1139, )}a, + {D,,(1259,) - D , (1259 )fp b+

-+

D,,(13;9,)p,¢c, +{D11(12;EL‘) - D12(12;g“)fp3pub3 = w

¥
. - . } o X N - . l
{Dll(IZ,gu) D12(12’gu)’p133 + {D11(~2,Sb, DIQ(ZZ,SH))b3 +

+

* .
i I : - S
D,,(1339,)p,2; + {D,,(2359,) = D;,(2359,)}p b; +

+ {D,1(335q,) - D, (3359 ) ey + {D;;(2339,) =D}, (2359,) fpye b, = w3cy

[ SR *
{D),(1259,) - D,,(12;9,)1py a5+ Dy, (2459 Jp, by +

+ {D,,(233q,) - D, (2339, ) }p e, + {D, (225q,) -D,, (229,
P,» P,» P, are the symbols defined in Appendix 6.A.
1 2 3 i
Since for the I-direction the phase factor p, = p, , the second and

fourth equation are equivalent, so that the set may be reduced to

three homogeneous equations:

D,,(11)-D _ (11)]a, +VZ[D,,(12)-D,,(12)]p,¥2 b+ D,  (13)p,c, = wia,

{D;;(233q,) =D, ,(233q,) }p,c, +D (2439, )p,0,b, = 0, b




2 2
as a_ and ¢c_ .
3 3

E. The result is:

Izdirection
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+ /2[511(23)—D12(235]p1c3

D (13)p a +v2[D, (23)-D ,(23)]VZ b, +[D,(33)-D,,(33)]ec,

*
/2[D,,(12)-D,,(12)]p a + [D,,(22)+D,,(24)-D,,(22)]¥2 b, +

]
[

]
E
0

Here we have left out g in the notation. The reason for V2 b, every-
where, is that it allows the corresponding simplification of the
normalisation condition for E(g“;3l), in which b, occurs twice as often

In this way all blocks may be obtained for the different

Dy (11) + Dyp(11)

i /é[Du(lZ)*‘Dlz(]Z )] P]

2D,3(12)p; |

4

D11(13)p2

/é [Dl 1 (12) +D12(12)]p1*

R
-2D;3(12)p,

[D11(22)+D11(24) 0
+D12(22)]
0 D33(22)-D33(24)

D11 (13)psy

s

V2[D11(23)+D1(23)]pr | -2D13(23)py

V2[Dy3(23)+D15(23) ] p,

_

2D13(23)p1

D11(33)+D;15(33) ‘
|
¢

Dy,(22)-Dy;(24)-D;5(22)
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& _ .

3
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Dll(]l)—D12(ll)

/§[D11(12)-D12(

— e

v2[D11(12)-Dy, (12)p;

D11(13)p2

12)]?1”E

[Dy;(22)+Dy; (24)-D;,(22)]

/—2- [Dll (23)"1)12 (23)]1)1

D11(13)p, V2[D11(23)-D1,(23)]p1 ™ D;1(33)-D;,(33)

Zu:

D33(]]) 2D13(12)p1 V2 D11(12) D33(]3)p2

-2D33(12)p;" | [D11(22)-Dy;(24) 0 2D;3(23)p,

+D12(22)]

V2 Dy1(12)py 0 [D33(22)+D33(24)] | v2 D;1(23)p;
#* #* #*

D33(13)p, -2D;3(23)p, V2 D11(23)p; D33(33)

A-direction

D33(l])

v¥2 D11(12)p,

D33(13)py

*
/E D11(12)P1

[D33(22)+D33(24)]

V2 D1,(23)p;

E 3
D33(13)p2

*
/é D11(23)p1

D33(33)
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D33(22)-D33(24)

AS:

Dll(]l) [D11(12)+D12(12)]p1 D11(13)p2 [Dn(]Z)"Dlz(n):]pl
[011€12)-D11(12)]py" | D11(22) [D11(23)+D(23)]p; | D11(24)
Dy1(13)ps [D11(23)D12(23)]py* | D11(33) D11(23)+D1£23)]py "
[D11(12)+D1,(12)]p1 ™ | Dy1(24) Du@3rD@3))p; | D11(22)
A-direction

/\1:

D) +20,(11)] | [D11(12)+ 2D, (12))p; | D11 (13)p2 D11(12)+2Dy5 (12)] ps
P 2+205 (12 py" |[D11(22)+20122)] | Pru@3+201423)]p1 Dy1(24)p2
DiliDps [D23%205523)]py" | [D1133)+2D 15 (33)) [D11(23)+2D1423)]p;
[011(12)+2D1,(12)Jp3 | D11(24)ps " Dy (B)+2D15(23)]py " [D11(22)+2D 15(22)]
A.

3t

[Dy7(11)-D35(11)]

[D13(12)-Dy, (12)]py

D11(13)p2

B11(12)-D5(12)] p 3

Dn (12)-D15012)]py

[D11(22)-Dy,(22)]

[D13(23)-Dp(23) ] py

D11(24)p>

*
D;1(13)p2

[D13(23)-Dy5 (23)] 1

[D11(33)-D12(33)]

[D11(23)-D;, 23)]p;

@11(12)’ Dy(12 )] P3*

*
D11(24)p;

D11(23)Dy3 (23)] p1

[D11(22)-Dy5(22)]




=] .}2=

Chapter VI

References

R N O LN

10.
11.

12.

13.

14.

15

16.

17.

18.

19.

20.

21.

22.

. A.A. Maradudin and S.H. Vosko, Revs. Modern Phys., 40 (1968), 1.

J.L. Warren, Revs. Modern Phys., 40 (1968), 38.

S.H. Chen, Phys. Rev., 163 (1967), 3.

W.B. Waeber, J. Phys. C, 2 (1969), 882, 903.

A.J. Bradley and A.H. Jay, Proc. R. Soc., Al36 (1932), 210.

A. Taylor and R.M. Jones, J. Phys. Chem. Solids, 6 (1958), 16.

. YA.P. Selisskiy, Fiz. metal. metalloved., 21 (1966), 894-UDC.548.53.

. Tetsuo Eguchi, Hidehiko Matsuda, Kensuki Oki, Shin-ichiro Kiyoto,

and Kikue Yasutake, Trans. Jap. Inst. Metals, 8 (1967), 174.

L. Cser, J. Ostanevich and L. Pal, phys. stat. sol., 20 (1967),
581, 591.

F.W. Schapink, Scripta Met., 2 (1968), 635.

V.V. Nemoshkalenko, O.N. Rasumov, and V.V. Gorskii, phys. stat.
sol., 29 (1968), 45.

L. Guttman, H.C. Schnyders, and G.J. Aray, Phys. Rev. Letters,
22 (1969), 517.

L. Guttman and H.C. Schnyders, Phys. Rev. Letters, 22 (1969), 520.
M.R. Lesoille and P.M. Gielen, phys. stat. sol., 37 (1970), 127.
S.J. Pickart and R. Nathans, Phys. Rev., 123 (1961), 1163.

M.B. Stearns, Phys. Rev., 168 (1968), 588.

F. Leoni and C. Natoli, Physica, 40 (1969), 553.

W. Glaser, Neutron Inelastic Scattering, Vol. I, Proc. Symp.
Copenhagen, 1968, Vienna, IAEA (1968), 242.

G. Borgonovi, G. Logiudice, and D. Tocchetti, J. Phys. Chem. Solids,
28 (1967), 467.

0.V. Kovalev, Irreducible Representations of the Space Groups,

Academy of Sciences of the Ukrainian SSR, Kiev, 1961 (English
transl.: Gordon and Breach Science Publishers, New York, 1964).
L.P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev., 50
(1936), 58.

G.F. Koster, Space Groups and their Representations, in "Solid

State Physics'", Vol. V, edited by F. Seitz and D. Turnbell,

Academic Press, New York, 1957.




=313=

23. G.F. Koster, J.0. Dimmock, R.G. Wheeler, and H. Statz, Properties
of the Thirty-two Point Groups, M.I.T. Press, Cambridge,

Massachusetts, 1963.

24, J. Bergsma, thesis Leiden, (1970); also RCN-121, (1970).

25. H.M. Rietveld, RCN-67, (1967).

26. J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press,
Oxford, 1965.

27. H.J. Leamy, E.D. Gibson, and F.X. Kayser, Acta Met., 15 (1967), 1827.

28. I.I. Gurevich and L.V. Tarasov, Low—energy Neutron Physics, Physics

Institute of the Academy of Sciences of the USSR, Moscow (English
transl.: edited by R.I. Sharp and S. Chomet, North—Holland
Publishing Company, Amsterdam, 1968).

29. R.J. Birgeneau, J. Cordes, G. Dolling, and A.D.B. Woods, Phys.
Rev., 136 (1964), A1359.

30. R.A. Cowley, A.D.B. Woods, and G. Dolling, Phys.Rev., 150 (1966), 487.

31. R. Stedman and G. Nilsson, Phys. Rev., 145 (1966), 492.

32. E.D. Hallman and B.N. Brockhouse, Can. J. Phys., 47 (1969), 1117.

33. G. Dolling, R.A. Cowley, and A.D.B. Woods, Can. J. Phys., 43 (1965),
1397.

34. W. Cochran, R.A. Cowley, G. Dolling, and M.M. Elcombe, Proc. Roy.
Soc., 293 (1966), 433.

35. R.A. Cowley, Proc. Phys. Soc., 90 (1967), 1127.

36. R.A. Cowley, W.J.L. Buyers, E.C. Svensson, and G.L. Paul, Neutron
Inelastic Scattering, Vol. I, Proc. Symp. Copenhagen, 1968, Vienna,
TIAEA (1968), 281.

37. E.C. Svensson and W.J.L. Buyers, Phys. Rev., 165 (1968), 1063.

38. L. Brewer, Electronic Structure and Alloy Chemistry of the

Transition Elements, edited by P.A. Beck, John Wiley and Sons,
New York, 1963, 221.

39. L. Pauling, Quantum Theory of Atoms, Molecules, and the Solid State,

edited by P.—-0.Lowdin, Academic Press, New York, 1966, 303.

40. L. Pauling, The Nature of the Chemical Bond, third edition,

Cornell University Press, New York, 1960.

41. C. van Dijk, Phys. Letters, 32A (1970), 255.



=114=

Chapter VII
CONCLUDING REMARKS

The present study shows that coherent inelastic neutron scatter—
ing not only may provide a complete picture of the lattice vibrationms
of structurally simple systems such as a-Fe, but also for more compli-
cated substances such as Fe3A1, which has 4 atoms per primitive unit cell.
For these more complicated systems in particular it is of great impor-—
tance to perform a group—theoretical analysis of the lattice vibrations.
Such an analysis enables one to recognise those features which are

conditioned by the symmetry of the crystal.

By means of the Born—von Kirmidn model the dynamics of both a-Fe
and Fe3A1 could phenomenologically very well be described. This opens
the possibility of separating the contribution of the lattice vibra-
tions to the thermodynamic quantities from those due to other excita-
tions in the crystal. For example, the magnetic contribution to the
specific heat for a-Fe might be calculated as a function of temperature
by subtracting from the experimentally determined specific heat the
contribution of the lattice vibrations (fig. 5.7) and that of the

electrons, which is known from other experiments.

The force constants obtained in the Born-von Karmdn description
give some insight in the character of the acting forces and the differ-
ences in the interatomic potentials of a-Fe and Fe3Al. However, due to
the lack of an adequate theory, not much information is obtained about
the role that the electronic structure plays in the lattice dynamics
of these two specimens. Moreover, the observed dispersion relations do
not exhibit clear effects, which can directly be related to the shape
of the Fermi surface, and thus no direct experimental evidence is ob-
tained about the electron-phonon interactions of the systems studied.
One might, however, expect more information on this from a study of
the phonons at liquid nitrogen or lower temperatures. Changes of phonon
line widths would occur if strong electron-phonon interactions take
place. In the case of Fe3A1 such a study might also aid in clarifying

the discrepancies between the velocities of sound measured by ultra-

sonic and neutron scattering techniques.
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It is well known that in many of the phase transitions occurring
in crystalline solids the lattice vibrations have a decisive influence.
One may wonder what kind of information the present study of the lat-
tice dynamics of Fe3A1 bears on this problem, or which additional
studies should be made to better understand this phenomenon in Fe3A1.
It is clear that a description of the lattice dynamics within the
framework of a harmonic theory, which has temperature independent
parameters, never will predict a phase transition. This is not even
the case when anharmonic terms are introduced by means of a pertur-
bation method. More succesful in this respect would be methods using

self-consistent potentials 1y,

An additional difficulty resides in the fact that the situation
for Fe3A1 is somewhat unclear. From the literature it can not be
uniquely decided what exactly happens at around 550°C. It is very well
possible that two phases, D03- and B2-structure (CsCl), are in equi-
librium above this temperature 2). Furthermore a double Curie-point
has been observed in this neighbourhood, depending upon the thermal
history 3). For this reason the vibrational spectrum is certainly not
the only factor which plays a role in the phase transformations, but
knowledge about changes in the vibrational behaviour will still pro-
vide more insight in the system. A neutron study of the 507 disordered
alloy probably can be made at room temperature, since by quenching
from above 550°C the B2-structure is obtained 3). A fair guess of its
vibrational behaviour can already be made on the basis of what is now
known about ordered Fe3A1, allowing for the change in symmetry. In the
B2-phase the positions 1 and 3 (see fig. 6.1) are randomly occupied
by Al and Fe(l) atoms. Hence there are only two inequivalent positions,
say 1 and 2. A set of force constants may be obtained from table 6.4,
second column, by taking for the first neighbour interaction the aver-
age interactions of (1-2) and (1-3), for the second-neighbour (1-1)-
interactions the (1-3)-interactions and for (2-2) the (2-4)-interaction.
For the third—-neighbour interactions between (1-1)—-atoms, the average
of (I-1)- and (2-2)-interactions is taken and for the (2-2)-interactions
the (2-4)-interactions. With these force constants the dispersion re-
lations in the symmetry directions of B2-type Fe3A1 have been calcu-

lated. They are displayed in fig. 7.1, together with, for comparison,

the calculated dispersion relations of ordered Fe3A1 and o-Fe.
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The relation between the B2- and D03-structures in reciprocal space is
shown in fig. 7.2 (that between the DO ,- and the o-Fe structures was
shown in fig. 6.3), for the (170)—and (001)-planes of the reciprocal

lattice.
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Fig. 7.2. The (110)- and (001)-planes of the reciprocal
lattice of ordered Fe Al (solid lines) and
CsCl-type Fe Al (dashed lines).

The frequency distribution functions for the disordered crystal have
also been calculated and are shown in fig. 7.3. Comparison with fig.
6.8 reveals as most remarkable difference the disappearance of the
frequency gap in the spectrum. The Debye temperature, shown in fig.
7.4, deduced from the Debye-Waller factor calculation is about the
same as that for ordered Fe3A1 and is in rather good agreement with
X-ray measurements of Nemmonov et al. “), which reported 380°C and
390°C, respectively, for the DO3- and B2-type alloy. The specific
heat Debye temperature differs by about 20°, which indicates that as

a consequence of the different vibrational spectrum the thermo-

dynamic functions may be different.
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distribution functions of
Fig. 7.3.

Other useful informa-
tion could be obtained by
the investigation of the be-
haviour of the high optical
phonons at the zone boundary
of the A-direction during
heating from below to beyond
the transition temperature.
Fig. 7.1 shows that on pas-—
sing the transition temper-
ature the frequency gap,
which exists in ordered FeszAl,
must disappear.

Very often phonons are well

defined also in the neighbourhood of the transition temperature and

consequently frequency changes as a function of temperature can pro-

bably be determined rather accurately by neutron inelastic scattering.

This method could thus be superior for the study of the character of

the phase transition to that of critical X-ray scattering, where the

intensity of a vanishing reflection has to be established.
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SUMMARY

This thesis describes the investigation of the lattice-vibra-
tional spectra of a—-iron and ordered Fe3A1 by means of inelastic
neutron scattering. o-Fe and ordered FeyAl are structurally related,
which will be reflected in their dynamical behaviour. Ordered Fe Al

partly disorders into a CsCl-type structure beyond about 550°C.

In chapter II a short review is given of the description of the
lattice Vibrations in the Born-von Kidrmdn theory. After the classical
treatment of the lattice vibrations, the quantum mechanical approach
is sketched. Expressions for the specific heat and the Debye-Waller
factor are presented. In the last section relations between the elas-
tic constants and the interatomic force constants in crystal lattices

are derived by applying the method of long waves.

In chapter III a review of the theory of neutron scattering by
harmonic crystals is presented. The most important results for this
investigation are the coherent single-phonon cross section and the

expression for the inelastic structure factor.

The applied experimental technique is described in Chapter IV.
A brief description of the triple-axis crystal spectrometer and its
possible modes of operation is given. Experimental data on a-Fe are
presented, which demonstrate the effect of operating the spectrometer

under focused and defocused conditions.

The investigation of the lattice dynamics of a-Fe is reported
in chapter V. Experimental phonon dispersion relations for directions
of higher symmetry are presented. A least-squares analysis was made
with a fifth-neighbour Born-von Kirmin model. This analysis yielded
interatomic force constants which were used for the calculation of
the lattice-vibrational frequency distribution function and some re-
lated thermodynamic quantities. The data are compared with those ob-
tained by other neutron studies and X-ray investigations. The experi-
mental dispersion relations are also compared with a calculation

according to Krebs' model, which takes into account electronic effects

on the lattice vibrations.
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In chapter VI the investigation of the lattice dynamics of
ordered Fe3A1 is presented. The treatment is also in the phenomeno-
logical Born-von Karman model. The number of parameters is restricted
to 11 by considering interactions out to third neighbours, with cen-
tral interactions between third neighbours. Since the phonon spectrum
of Fe3A1, which has 4 atoms per primitive unit cell, is rather compli-
cated, a group-theoretical classification was made of its normal modes
using the method of the multiplier representations. Such a treatment
is important to obtain a simplification of the dynamical matrix and
information about the polarisation vectors of the different vibrations.
The polarisation vectors are needed for the calculation of the inelas-
tic structure factors. Reduced inelastic structure factors are presen—
ted for purely longitudinal or transverse phonon branches. Experimental
dispersion relations were analysed by means of a least-squares method,
which yielded two sets of interatomic force constants. One of the sets
was obtained by imposing on it the constraints of the elastic constants
as measured by an ultrasonic technique. The difference between the two
sets is attributed to the different ways in which sound waves and low
frequency phonons are affected by anharmonic effects. The interatomic
force constants were also used for the calculation of the frequency
distribution function and related thermodynamic quantities.

A striking feature in the force constants is the relative small inter-

action between second neighbours as compared to that in a-Fe.

Chapter VII contains some general remarks about the two neutron
studies. A few speculations are made about the change in the vibra-

tional spectrum of Fe,;Al in the neighbourhood of the phase transition

from the ordered structure to the CsCl-type structure.
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SAMENVATTING

In dit proefschrift wordt het onderzoek van de roostervibraties
in a-ijzer en in geordend Fe3Al met behulp van inelastische neutronen-—
verstrooilng beschreven. a-Fe en geordend Fe, Al vertonen een structu-
rele verwantschap, die ook in het dynamisch gedrag tot uiting zal
komen. Geordend Fe,Al ondergaat een gedeeltelijke ontordening boven

ongeveer 550°C, waar een CsCl-type structuur ontstaat.

In hoofdstuk II wordt een kort overzicht gegeven van de beschrij-
ving van roostervibraties in de born-vonkarmantheorie. Na de klassieke
behandeling van de roostertrillingen, wordt de overgang naar de quan-—
tummechanica kort geresumeerd. Uitdrukkingen worden gegeven voor de
soortelijke warmte en de debye-wallerfactor. In de laatste paragraaf
worden relaties afgeleid tussen de elasticiteitsconstanten en de in—
teratomaire krachtconstanten in kristalroosters door grote golflengten

te beschouwen.

Een overzicht van de verstrooiingstheorie van neutronen in har-
monische kristalroosters is te vinden in hoofdstuk III. De belang-
rijkste resultaten in verband met dit onderzoek zijn de uitdrukkingen
voor de coherente werkzame doorsnede voor één-fononverstrooiing en

voor de inelastische structuurfactor.

Hoofdstuk IV geeft een beschrijving van de toegepaste experimen-—
tele techniek. In het kort wordt hier de drie-kristalspectrometer be-
schreven en een aantal mogelijke wijzen van bedrijf behandeld.
Experimentele gegevens betreffende a-ijzer worden gerapporteerd als
een demonstratie van het effect dat optreedt, wanneer de spectrometer

onder al of niet gefocusseerde omstandigheden wordt bedreven.

In hoofdstuk V wordt het onderzoek van de roosterdynamica van
a~Fe weergegeven. De experimenteel bepaalde dispersierelaties voor de
fononen in de symmetrierichtingen en in bepaalde richtingen langs de
grens van de brillouinzone worden hier gepresenteerd. Deze gegevens
worden met behulp van een kleinste—kwadratenmethode geanalyseerd in

termen van het born-vonkdrmanmodel, waarbij interacties tot en met de

vijfde buren in aanmerking worden genomen.
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Het resultaat is een groep van 13 interatomaire krachtconstanten, waar-
mee de frequentieverdeling van de roostertrillingen werd berekend. Met
behulp van deze verdeling werden de soortgelijke warmte en de debye-
wallerfactor bepaald en de hiermee corresponderende debyetemperaturen
afgeleid. De gegevens worden vergeleken met die verkregen uit andere
onderzoekingen met neutronen en met die uit rontgenwerk. De experimen-
tele dispersierelaties worden ook vergeleken met een berekening volgens
een model van Krebs, dat bepaalde invloeden van elektronen op het ge-

drag van de roostervibraties in aanmerking neemt.

In hoofdstuk VI wordt het onderzoek van de roosterdynamica van
Fe3A1 in de geordende fase beschreven. De behandeling is eveneens met
behulp van het fenomenologische born-vonkdrmanmodel. Het aantal para-
meters blijft beperkt tot 11 door slechts wisselwerkingen tot en met
de derde buren in aanmerking te nemen, waarbij centrale wisselwerking
tussen de derde buren wordt verondersteld. Omdat het fononenspectrum
van FejAl, dat 4 atomen per primitieve eenheidscel bezit, nogal ge-
compliceerd is, werden de normaaltrillingen met behulp van groepen-—
theorie geclassificeerd, waarbij gebruik werd gemaakt van de methode
van de multiplicatorvoorstellingen. Een dergelijke behandeling is van
belang voor het verkrijgen van een vereenvoudiging van de dynamische
matrix en van inzicht in de vorm van de polarisatievectoren van de
verschillende roostervibraties. De polarisatievectoren zijn nodig voor
de berekening van inelastische structuurfactoren. Voor de zuiver longi-
tudinale of transversale vibraties worden gereduceerde inelastische
structuurfactoren gegeven. De experimenteel bepaalde dispersierelaties
werden geanalyseerd met behulp van een kleinste-kwadratenmethode, het-
geen resulteerde in twee stellen interatomaire krachtconstanten. Eén
stel werd verkregen door te eisen dat ook werd voldaan aan de voor-
waarden opgelegd door de elasticiteitsconstanten, gemeten met een
ultrasone methode. Het verschil tussen deze twee stellen krachtcon-
stanten wordt toegeschreven aan de verschillende invloeden, die ge—
luidsgolven en fononen van lage frequentie ondervinden van anharmo-
nisch gedrag van het kristalrooster. De interatomaire krachtconstanten

werden ook gebruikt voor de berekening van de frequentieverdeling en

verwante thermodynamische grootheden.
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Hoofdstuk VII bevat enige algemene opmerkingen betreffende de
twee gemaakte studies met behulp van neutronen. Enige speculaties
worden gemaakt over de verandering in het vibratiespectrum van Fe,Al

in de buurt van de fase-overgang van de geordende naar een CsCl-type

structuur.
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