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C H A P T E R  I

I N T R O D U C T I O N

Electron spin resonance (e. s. r . ) has become an important tool in the
study of paramagnetic molecules and ions [1,2] . Besides the purely chemical
applications such as the detection and identification of free radicals occurring
in chemical reactions, it offers a possibility to investigate the electron dis
tribution in paramagnetic molecules in a rather direct way. Especially the
hyperfine structure of e .s .r .  spectra is a valuable addition to data obtained e.g.
from absorption spectroscopy in the ultraviolet and visible region.
In this thesis we shall give a critical survey and an extension of the theory of
proton splittings in the e. s. r. spectra of organic radicals in solution. This
will be followed by a discussion of the e. s. r . spectra of triphenylmethyl and
related compounds.

When a system containing an unpaired electron spin is placed in a magnetic
field 3 , the spin momentum will be quantized parallel or anti-parallel with
respect to the direction of the magnetic field. The energy difference between
these two states is

AE = g p H

where g is the spectroscopic splitting factor and 0 is the Bohr magneton.
Transitions between the two states can be induced by irradiation when the
radiation frequency v satisfies the condition

h v  = AE = g p H

9



Instead of one single line, e .s . r .  measurements usually give a number of lines
because of the additional dipole-dipole interaction between the magnetic moments
of the electron and nuclear spins. The corresponding term in the Hamiltonian
can be written

r N) lV ^ N

where u and are the operators for the magnetic moments of electron and
nucleus respectively, r  is the distance between electron and nucleus and
6(re - r N) is the Dirac delta function. The first term can only be used outside
a small sphere surrounding the nucleus which can be taken infinitely small
after the integrations in the calculation of matrix elements have been carried
out.
The last term in 1.1, which is called the Fermi contact interaction, is isotropic.
The first term is the anisotropic dipole-dipole interaction. For e .s .r .  mea
surements in solution, where the orientation of the molecules changes rapidly,
the first term averages out although it may influence the line widths in the
e .s . r .  spectrum (see e.g. reference 3 for a review of line width effects). Then
the hyperfine structure depends on the second term only.

Because of the weakness of the hyperfine interaction, it will not have any
significant influence on the orbital motion of the electrons. Therefore it is
allowed to average the Hamiltonian over the orbital part of the wave function
whereby a spin-Hamiltonian remains containing spin-dependent operators
only. For measurements on solutions in strong magnetic fields 1.1 can be
written

HSop
N= a Sz  i z

S  *N 1.2

where S and I». are the electron and nuclear spin angular momentum operators
^  j j

in the direction of the magnetic field and a is the splitting constant of nucleus N.
NBecause of the Dirac delta function in 1.1, a is proportional to the electron

spin density p(r^) at the position of the nucleus where p( r„) is defined as the
probability of finding and electron with a-spin at r „  minus the probability of
finding an electron with 0,-spin at r^ . When more than one nuclei are present,
equation 1.2 must be summed over all nuclei.

In most of the radicals studied in organic chemistry the unpaired spin is
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part of the n-electron system. The wave function for the ground state is there
fore antisymmetric with respect to a reflection in the nodal plane of the n-elec
tron system and consequently the spin density in the nodal plane is zero. At
first sight one should expect that the splitting constants of nuclei in this nodal
plane vanish. This is not in agreement with the experiments, however. The
reason why this is so, is now well understood although there still remain dif
ficulties in the actual calculation of splitting constants (see chapter IV).

Besides the hyperfine structure due to nuclei in the nodal plane of the
n-electron system, further splittings can be observed caused by substituent
groups. This offers a possibility to study the interaction between a n-electron
system and a substituent in a direct way. Usually substituent effects are studied
by an investigation of the influence of a substituent on the properties of the
n-electron system (or of the whole molecule). In e .s .r .  measurements, however,
the splitting constants of the nuclei of substituents give a direct information
about the transmission of a property of the n-electron system (the unpaired spin)
into the substituent. This is especially important because it might give an
answer to the much discussed question of the significance of hyperconjugation
[4 ,5 ,6].

Hyperconjugation, which can be defined as the influence of the mi ving of
the usual wave function for the ground state with wave functions in which an
electron is transferred between a n-electron system and an alkyl substituent,
is one of the possible explanations of the electron-donating character of a
methyl substituent. The electron-donating character will be more effective
in positive ions than in negative ions so, if hyperconjugation is the mechanism
which causes the spin density in the methyl group, we should expect that methyl
proton splittings are relatively larger in positive ions than in negative ions.
From the observed large differences between positive and negative ions Bolton,
Carrington and Me Lachlan [7] and Colpa and de Boer [8] concluded that the
hyperfine splitting due to methyl protons must be ascribed to hyperconjugation.
These authors calculated the splitting constants according to a molecular orbital
approximation for the complete system including rr-electrons and electrons of the
methyl group. This type of approximation differs essentially from the usual theory
of the splitting constants of protons directly bonded to the unsaturated system
where the wave functions for the separated n -  and a-electron systems are
assumed to be calculated in the best possible way before the systems are
coupled together. From the comparison with the latter theory it will be clear
that the molecular orbital calculation of methyl proton splitting constants has
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several disadvantages:
1. It is often assumed that a valence bond approximation yields a better wave
function for a a-bond than a molecular orbital calculation. This can not be
taken into account in a molecular orbital calculation for the complete system.
2. Since the rr-electron system and the methyl group are from the beginning
considered as one system, the calculation does not yield a simple relation between
the spin density in the methyl group and the spin density distribution in the
t t -electron system. This applies especially for substituents bonded to atoms
for which the rr-electron spin density is negative, e. g. the meta carbon atoms
in triphenylmethyl.

We have tried to evaluate a more general model in which the wave functions
for the tt-  and a-systems are assumed to be calculated in the best possible way
before coupling effects due to the influence of charge transfer and mixing with
triplet states of the a-bonds are taken into account. The derivation of formulas
for the spin density in several types of a-bonds in organic radicals will be
discussed in chapter II. Because the derivation is rather lengthy and intricate,
we shall discuss a simple system in the introduction of chapter n.

Both the general formulas and the best possible wave functions for the
separated systems are too complicated for practical calculations. Therefore
approximations must be introduced. The approximations used in the calculations
for the rr-electron system are discussed in chapter HI.
In chapter IV we shall discuss the application of the formulas in the calculation
of the splitting constants of protons directly bonded to the unsaturated system
and of the a- and 0-protons of alkyl substituents. In the literature a large num
ber of papers on proton splittings have been published but in many of these
papers the theoretical foundation is rather questionable. Therefore the dis
cussion in chapter IV is combined with a critical survey of the existing literature.

In chapter V we shall discuss the e .s .r .  spectra of a number of substituted
triphenylmethyl radicals and corresponding 'biradicals'. This part of our in
vestigations is an extension of Lupinski's study of triphenylmethyl radicals [9].
The improvement of e .s .r .  spectrometers since the time of Lupinski's mea
surements enabled us to obtain much more accurate conclusions from the ob
served spectra.
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C H A P T E R  H

THEORY OF THE SPIN DENSITY IN THE a - B O N D S
OF A tt- E L E C T R O N  RADICAL

A. INTRODUCTION

For many organic radicals the wave function for the ground state is anti
symmetric with respect to reflection in the plane of the molecule. These
radicals are usually described as consisting of a n-electron system having an
odd number of electrons and of a number of a-bonds each containing two elec
trons with opposite spin. In this description the spin density on nuclei in the
nodal plane of the u-electron system vanishes because the n-electron density
is zero whereas in the a-bonds the probability of finding an electron with o-spin
is equal to the probability of finding an electron with 0-spin. As has been re 
marked in chapter I, the hyperfine structure of e. s. r. spectra in solution
depends on the spin density on the nuclei so for radicals such as the naphtalene
anion, where all nuclei are in the nodal plane, we should expect one single line
without hyperfine structure. Experimentally, however, a complex hyperfine
structure is observed which must be attributed to the hydrogen nuclei of the
naphtalene anion [1 ].
In order to explain this splitting several mechanisms might be proposed:
1. A non-zero spin density on the nuclei due to the out-of-plane vibrations.
2. Spin-orbit coupling effects.
3. A change of the spin density distribution in the a-bonds due to the presence

of an unpaired spin in the n-electron system (spin polarization).
These possibilities will be discussed in some more detail:
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1. The amplitude of the out-of-plane vibrations depends on the mass of
the nuclei so from this explanation of the hyperfine structure we should expect
that deuterium splittings are relatively smaller than hydrogen splittings. Exper
imentally, however, it appears that the ratio of corresponding hydrogen and
deuterium splittings is nearly equal to the ratio of the gyromagnetic factors of
these nuclei [2]. Therefore it is generally assumed that the influence of the
out-of-plane vibrations is of minor importance. In recent publications it has
been shown that this effect is not entirely negligible because it might explain the
slightly anomalous ratio of hydrogen and deuterium splittings and the temperature
dependence of the hyperfine structure which is observed e. g. in the methyl radical
(see references 3 and 4 and references cited therein).

2. McConnell and Chesnut [5] have discussed the possible influence of
pseudo-hyperfine interactions, i.e . cross terms obtained from the coupling
between the electron orbital momentum and the electron spin and nuclear spin.
For radicals containing only light nuclei this term is negligible but in other
cases it may be of some importance [6] .
Besides, one might wonder whether the electron-spin electron-orbit coupling
could mix the wave function for the ground state with wave functions in which
the number of a-electrons is odd. This mixing yields in second order a spin
density in the cr-bond. With a crude estimate it can easily be shown, however,
that the calculated splitting is much smaller than the observed one.

3. Spin polarization is generally accepted to be the correct explanation.
In the theoretical treatment of this effect the wave function for the ground state
is mixed with wave functions in which the a-part is a triplet function [5, 7] . In
these theories the zeroth order wave functions are written as products of the
wave functions for the separated n- and o-electron systems which are assumed
to be calculated in the best possible way. The mixing of these wave functions
is obtained by introduction of the n-a exchange interaction.

Besides splittings due to nuclei within the nodal plane, splittings are
observed caused by other nuclei such as the protons of a methyl substituent. In
this case the value of the n-electron wave functions at the position of the nuclei
does not vanish but a simple calculation shows that this explanation of the ob
served splitting constants is wholly unsatisfactory. Bolton, Carrington and
Me Lachlan [8] and Colpa and de Boer [9] have shown that the sign and the
magnitude of methyl proton splittings provide strong evidence for the importance
of hyperconjugation. It is noteworthy that a calculation according to the hyper-
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conjugation model differs essentially from the calculation of the splitting con
stants of nuclei within the nodal plane mentioned above. In the latter case the
wave functions for the rr- and ct-electron systems are calculated in the best
possible way before the systems are coupled together. In the hyperconjugation
method, however, the interaction within the tt-  and c r-systems and the inter
action between the two systems are introduced simultaneously. In view of the
smallness of the interaction between a tt -electron system and a methyl substi
tuent we should expect that a more realistic model is obtained when the calcu
lation of splitting constants of methyl protons is also performed by calculating
the wave functions for the tt-  and a -systems in the best possible way before
the interaction between the separated systems is introduced. The theoretical
evaluation of this model is presented in this chapter.

In order to illustrate the essential points in the rather lengthy discussion,
we first consider a simple system consisting of a carbon 2p -orbital and a
CH-bond which will be described with the bonding and antibonding molecular
orbitals ct and ct*. The wave function for the ground state is

i|<0 = J ^ p (1)ct(2)ct(3) g W tc*  (2)0(3) -  0(2)a(3)}
V2

where S& is the antisymmetrization operator and a and 0 are the spin functions
for one electron.
As has been remarked above, the spin density in a cr-bond in the nodal plane is
obtained from the mixing of i|i. with a doublet wave function in which the cr-part
is a triplet function:

,  _ rv,p(l){CT(2)CT*(3) — ct*(2)ct(3)} {20(1)0(2 )a (3) -  a(l)o(2)B(3) -  « (l)0 (2 )a(3 )}

*T VT V7

For CT-bonds which are not located within the nodal plane can also mix with
wave functions in which an electron is transferred from the cr-bond to the 2p -
orbital or vice versa:

i|r = J^p(l)p(2)CT(3) ~ ftU M 2)) o-(3)
CTp V2

i) = J ^ ct*(1)ct(2)ct(3) 7 ,ft(2)<*(3) j
./n

16



The final wave function

i|r +  X i|f_  +  +  v *  }
VN 0 T CTp 1)0

where N is the normalizationconstant, is easily calculated with second order
perturbation theory. The spin density becomes

P =  < + |P o p l + >

where p , the spin density operator, is defined by

p ( r  ) = 2 6 ( r .- r  )2S?op x  j i x' i

in which the Dirac delta function 6 ( r .- r  ) yields the probability of finding electron
I X

i at r x whereas the operator 2S. multiplies this probability by +1 when electron
i has a-spin and by -1 when electron i has [3-spin.
The spin density contribution due to the mixing of depends on the matrix
element

<M popl*T>

and is therefore proportional to X . The spin density matrix elements of i|r and
♦ with other wave functions are negligibly small for the protons of a methyl
substituent so, in this case, contributions are obtained from

< * a p lP o p lV  ^paMW
2 2only. These contributions are proportional to p and v respectively. Besides,

the introduction of f and f causes a change in the coefficient X of i>T because
of the mixing of >|iT via the interaction with ^  and i|i g . The corresponding
term in the spin density has a magnitude comparable to the magnitude of the

2 2terms proportional to p and v .

For a real radical with a larger number (N, say) of tt -electrons and a
more complicated wave function for the cr-bond the calculation becomes more
difficult. The main reason for this is the fact that wave functions for a system
having more than two electrons can not be written as a simple product of space
and spin functions.
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Consider e.g. the interaction between \|t- and i|i . Apart from the differences
in the spin functions, these wave functions differ by a replacement of a(2) in
♦q by P(2) in so the interaction depends on the resonance integral p A
simple calculation of the necessary overlap integrals of spin functions shows
that in fact

(*. IH I if ) = - (plH la) = -  p’0 op Tap r  op Kpa

In a general case the product p(l)a(l) in is replaced by the wave function
for the ground state of the tt -electron system

tt» (1 ..N )  = 1  tt„ ( 1 . . N) x , d . . N )
0 p, °> H

where x (1.. N) is one of the possible spin functions for N electrons.
In the same way, the product

p(l)p(2) tg WM2) ~ P(l)a(2)]
V2

in is replaced by a function

tt. ( 1 .  . N+l) = 2  n ,  ( 1 . . N+l) x  (1..N+1)j v jv v'

which is the wave function for one of the possible (ground and excited) states of
the system of (N+l) electrons.
In the calculation of the matrix element

( if. |H I\1i )'  T0 opITa p

the overlap integrals of the spin functions were easily calculated. In the general
case this is not possible without a further specification of the spin functions
X (1.. N) and x (1. • N+l). This problem can be solved by choosing the
X (1.. N+l) to be built up from the spin functions x (1.. N) by a combinationV p
with the spin functions for one electron (section B. 1). In this way a relation
between spin functions for different numbers of electrons is obtained which
enables a straightforward calculation of the overlap integrals.
In the further evaluation of the matrix elements we obtain instead of p an

18



interaction between functions of the type

PT(N+l) = | \ t (1 .. N)tt, (1. . N+l)dT, . .  d x ,TJ  j  o. p,  jg, I N

and corresponding functions for the a-systems. The exact form of the functions
P. is given in section B. 2 where they are written <p7. In the same way the matrix

*  “ 3
elements between and 4 can be reduced to an interaction between functions+ U P°

and corresponding functions for the cr-systems.
In section C it will be shown that the derivation of formulas for the spin density
in the a-bond can now be performed in the same way as for the simple system
discussed above. F irst the choice of the zeroth order wave functions will be
considered (C. 1). In section C. 2 the formula for a-bonds within the nodal plane
of the tt -electron system is derived. Our result is practically identical with
the formula given by Me Lachlan, Dearman and Lefebvre [7] but their deriva
tion differs from ours in so far as their wave functions are not eigenfunctions of
the total S -operator.
The formula for an arbitrary a-bond is derived in section C. 3.
A simple formula for the spin density distribution in the tt -electron system in
terms of the functions cp,. and cp, is derived in section B. 3. A comparison of this
formula with the formula for the spin density in an arbitrary a-bond shows that
a clear relation exists between the spin density in the a-bond and the spin
density distribution in the tt -electron system.

In several cases splittings have been observed due to protons for which
the direct interaction with the tt -electron system is very small e. g. the protons
of tert. butyl substituents. A formula for the spin density on these protons, in
which both the direct interaction with the tt -electron system and the interaction
via other a-bonds is included, has been derived by a straightforward but lengthy
calculation. This is discussed in section D.

B. WAVE FUNCTIONS FOR N-ELECTRON SYSTEMS

1. The s p i n  f u n c t i o n s

We consider a system of N electrons for which the wave functions are
eigenfunctions of the S and Sz operators (in the matrix elements of these
operators the factors 1i /2 tt will always be omitted). For each value of m = < Sz )

19



the num ber of linearly  independent spin functions x,. is  [10]

n(S, N) (2S+DN1
N  N< f-S )! (f+S+1)!

2 .1

These spin functions w ill be constructed from  orthogonal spin functions for
system s consisting of a sm aller number of electrons according to the theory
of angular momentum [11] . In this theory it  is  shown that, when two system s
of K and L electrons with spin quantum num bers S and S2 a re  coupled together,
the spin functions for the total system  can be w ritten

S m , S m„
Sxm ( l . . K+L) = 2 2 C(S , S_, S ;m ., m „, m) x (1- • K) X (K + l,. .  K+L)M- mi m2 1 * i t  x

2.2

in which the coefficients C(S ,S 2,S ;m 1,m 2,m ), which a re  called Clebsch-Gordan

coefficients, a re  zero  unless S takes one of the values |s 1"s 2 | ’ " * ' Ŝl +S2̂
m = m +m . The values for S„ = 1 /2  and for S„ = 1 a re  given in tables 2.1 and

1 2  *  *
2 . 2 .

m 2 "  1/2 m 2 = - l / 2

S = S +1/2
/S +m +l/2 I S  -m+1/2

V 2Sj+l V 2S +1

S = S -1 /2
/S ^ m + 1 /2 /S +m +l/2

‘ V 2S +1 V 2S +1

Table 2.1. Clebsch-Gordan coefficients for S ■ 1/2.

S = S-+1

m 2 = 1

/(Sj+mMSj+m+l)
2(2S1+1)(S1+1)

m 2 = °

(2S1+1)(S1+1)

m 2  =  - !

f(S1-m +l)(S1+m+l) /(S1-m)(S1-m +l)
2(2S1+1)(S1+1)

(Sj+mMS.^m+1)
2S1(S1+1) V s 1(s1+i)

KSj-mXSj^+m+l)
2S1(S1+1)

S = S j-1
f(S1-m)(S1-m +l)

2S1(S1+1)

U S ^ m )  (S^+m)
S1(2S1+1)

^(Sj+mHSj+m+l)
2S1(2S1+1)

Table 2.2. Clebsch-Gordan coefficients for S2 = 1.
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For a system which can be described as consisting of two or more sub
systems, e. g. the T T -  and a -systems of an aromatic radical, the total spin
functions are calculated from the spin functions for the sub-systems according
to equation 2.2. The spin functions for the sub-systems are obtained from the
spin functions a  and 3 for one electron by successively adding one electron,
each time calculating the new spin function with the coefficients given in table 2.1.

2. The t o t a l  wave  f unc t i on ,

2 zSince the total wave function is an eigenfunction of S and S we may write
it as a linear combination of the n(S,N) possible spin functions [10]. The space
dependent part of the wave function is then given by the coefficients of the spin
functions.

i | r ( l . .N ) = - p  “  cp ( l . .N )x  (1..N) 2 .3
Vn H=1 >  »*

g
We shall introduce as a rule that the spin functions x (1.. N) in this expansion

S —1 /2 P*are obtained from the p spin functions '  x (1- • N-l) for ^ = 1.. p and from
S+l /2 M*the q spin functions x (1.. N-l) for |j, = p+1,. .  p+q, where p+q = n.

M* —p

From the Pauli principle

♦ (1. .N) = 6p P*(1. .N)

in which P is a permutation operator

6p = +1 for even permutations
6p = -1 for odd permutations

we obtain by multiplying by xv and integrating

=6P X < % |x v >P*« 2-4

which yields

pi ><%IV<V%WV 2-5

On summing over all permutations the left-hand side is multiplied by N!. The
right-hand side can be simplified with the orthogonality relations from group
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theory [10 ,12 ].

J i <%!*»> W%> ' f  •«*,.
in which 6 .  = 0 if  a f  |3op

= 1 if  a=p

Equation 2. 5 then becomes

<*viy 5 2 W
Pv a= i n

which states that the cp are orthogonal and (cp^JcfO is independent of p. This
result can of course also be obtained from a direct application of group theory
to the cp . The cp constitute an irreducible set of eigenfunctions of the spinless

P P
Hamiltonian which must be combined with an irreducible set of spin functions
having the same dimension to obtain the completely antisymmetric total wave
function. When we take

<cp I cp ) = 6Tv IT p pv 2.6

then ^ r( l.. N) w ill be normalized.

On a permutation of the electron numbers 1 .. N the cp (1 .. N) are transform -
M»

ed into each other according to 2 .4 . When the cp (1 .. N) are divided in groups
P

dependent on the m ultiplicity of the spin functions x (!• • N-l) from which
X (1 .. N) is built up, then a permutation of the electron numbers 1 .. N -l w ill

P
cause a sim ilar transformation within these groups. For functions cp (1. .N)

P
belonging to the same group we then obtain besides 2. 6

Jcp^(l..N)cpv(l..N )dT 1. . . d r N_1 vanishes if p ^ v whereas the 2. 7
integral is independent of p
if  p=v

whereas for integrals over products of N - and (N -l)-e lectron  functions

J*cp (1 .. N)cpv( l . . N -lJd T j.. .  dTN 1  vanishes if  x^ (1- • N) is not 2 .8
built up from x (1* • N -l) whereas
the integral is independent of p
if  X (1 .. N) is built up from

P
XV(1 ..N -1 )
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The integrals in 2. 8 are very important in calculations with charge-transfer
wave functions. Therefore we introduce a short-hand notation for these integrals.
In our calculations on n-electron radicals we shall use for integrals over
TT-electron functions

cp|(N)
“J ' 0cpj l ( l . . N - l ) 1 /2 cp1 ( l ..N )d T 1 . . .d T N_1 for s in g le t  j

'pJ’(N )—J

N \  i d ;  • • N)dTr . .  dTN_x

2 .9

for  tr ip le t j

f t  (N+l)~j 1 2<Pj (1 . .N )  j ( l . . N + lJd T j.. .dTN for s in g le t  j

cp"(N+l) ■JWS1 /2  1
9 j ( l .  .N ) cp. ^ (1 .. N + l)d T j.. .  dT^

2 .1 0

for tr ip le t j

in which j enumerates the possible singlet and triplet states of the (N-l)- and
(N+l)-electron system.
The coefficients in 2.9 and 2.10 are chosen in such a way that simple formulas
will be obtained for the spin density distribution.
For integrals over the o-bonds the indices are altered somewhat:

%S(2) = J % 1 . 2 )  1/ 2oj (l)dT1

2 .11
2 jT (2) = J la (1 >2> 1 /2 CTj (DdT1

%S(3) = y r r « d . 2 )  l /2 a j>1(1.2,3)dT1dT2

__ 2.12
% (3 )  =  V2 J 1^ 1 ’ 2 ) 1/2^j ) 2 (1.2,3)dT1dT2

3. The c h a r g e  and s p i n  d e n s i t y

The charge density Q(?x) is defined as the probability of finding an elec
tron at r^. The spin density p(rx) is the difference between the probability of
finding an electron with a-spin and the probability of finding an electron with
B-spin. The corresponding operators for a system of N electrons are
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Q (r ) = 2 6 (r.-r  )op' x' j=1 j x'

p (r ) = 2 6 (r.-r  )2S.op' x ' j=1 j x ' j

in which 6 ( i\-rx) is the Dirac delta function.

Because all electrons are equivalent, the matrix elements can be written

Qij(?x} = N (*i(1- *N)li(?N ?x)l*J(1- * >

Pij( rx) = 2N<^(1. .N )|6 (?n - ? x)S^|*.(1..N)>

The charge and spin densities in a particular state are given by the corre
sponding diagonal matrix elements. The non-diagonal matrix elements are
usually called transition charge densities and transition spin densities. Because

is independent of spin, transition charge densities can only be obtained
between states having the same multiplicity. Transition spin densities may
exist between states of different multiplicity when the spin functions are partly
built up from the same spin functions x (!• ■ N-l) as is the case e.g. for singletsM*
and triplets.
On substitution of the wave function 2. 3 and application of 2. 7 we obtain for the
(transition) charge densities

= £  (p<*i, I*1- • 1(1- • N)>
2.13

+ q<tpi ,p f l (1- • N)l6(?N"?x)l'Pj,p ^ l(1- ‘N)>}

whereas (transition) spin densities between states of the same multiplicity are
given by

pi,(?x) {p<tPij i (1--NJlMrN- r x)|cpj , i ( 1- -N)> <x1(l--N )|S ^ |x 1(l..N )>
2.14a

+ q<cPi,^i(1. . N ) |6 ( V ? x ) l'Pj ,p+l (1- - N)> < V l (1- N),SN|Xp+l (1- - N)>}

and transition/spin densities between states of different multiplicity by

24



• N )>

2.14b

*  < x l i l t t . . M ) | ^ | x J_ ( l . . N ) > t ^ < » i i P i H.1( l . . N ) | S < ; N - ; ; i) | tP j, 1( l . . N ) >

X <XliP i.i< l..N )|S 'Nlx) t l<1..N » )

The values of p and q can be substitu ted fro m  2 .1  when the m u lt ip lic ity  of the

wave functions is  known.

Instead of 2 .13  and 2 .14  i t  is  m ore  p ra c tic a l to  use density m a trices  [13 ]. The

(trans ition ) charge density m a tr ix  (or sp in less one -pa rtic le  density m a tr ix ) is
defined by

Qi j (N’ n *  = [p  ƒ  2 f y ,  1(1- • N '1 ’ *> * . • N - l ,  M)

+ cpĵ  j ( l . . N - l ,  N)q> j d ,  . N - l ,  M) ] d T j . . .  dTN 1

*  ^  2 .15

+ q I I  \  p+1*1* ■N_1> **J, pH(1* * N-1'

+ 'Pj, p + l(1- • K - 1’ ^ i ,  p n < 1 ’ • N - l ,  M )]  dTr  . .  d r N -1 ]

The (trans ition ) spin density m a tr ix  is  defined in  an analogous way. Instead of

the genera l fo rm u la  we sha ll g ive the fo rm u las fo r  some spec ia l cases. These

are  obtained fro m  2 .14  by substitu tion  of sp in functions x  (1 .. N) w hich a re
M>

calculated fro m  spin functions x  (1- • N - l)  accord ing to 2 .2 . The values fo r
M»

p and q w ere ca lcu la ted fro m  2 .1 .

The (trans ition ) sp in density m a tr ix  fo r  doublets i  and j  becomes

P ij(N, M) = M . J  |  {cp^ jC L  . N - l ,  N)cpj t  ^ 1 . .  N - l ,  M)

+ <p. j d . . N -l,N )cpi  ̂j d . . N - l ,  M )} dTx . . .  dxN 1

2.16
(N - l)  p I

-  - r 1 J 2 K p f l (1* • * * •  "HPj. p f l» -  • N-1-

+ 'P j , p + l (1- • N '1- ^ i , p H * 1- • N - l ,  M )} dxr  . .  dxN _1

25



For i and j triplet states with m = +1 we obtain

p (N, M) = J |  [«pij x( l . . N -l, N)q> x( l . . N -l, M)

+ <p j d . . N-l, N)<p1( j d . . N-l, M)} drr  . .  dTN 1
2.17

-  ̂  JI l»i, ̂ i«l - •N-*-“>*i, pn(1- ' "-1' “ I

* » J ,p u tt-  • N - l .K * ,,p u d -  • N -l,M l) dT j.. . d r ^

The transition spin density matrix between a singlet and a triplet with m = 0
becomes

Pij(N, M) = - y g g p L J f  [ \ u xd .  • N -l, N ) ^  xd .  ■ N -l, M)
2.18

+ V  1(1.. N -l, N)°cp.( xd .  • N -l, M)} d T j .  • -d T N 1

In the following we shall prove that for a doublet state p (N, M) can also be
written

p(N, M) = £ e ^ N )  9*(M) 2.19

p(N,M) = 2  649T(N) 97(M)j J"i —J
2.20

in which 6, = +1 for singlet j
= -1 for triplet j

2.19 can easily be proved by expanding the functions 9 (1.. N-l, N) in a complete
M*

set of functions 9r  (1. .N -l)9 (N). The proof of 2.20, however, is more difficult.
First p(N, M) is expressed in terms of a complete set of one-electron functions
9 .Tr

p (N, M) = E E p 9 (N)9 (M)
r  s rB r  8
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P rs  = J  P(N’ M)cPr (N)?s (M)dTNdTM

= <«p1( l . .N - l,M )9r (N)|cp1(l..N -l,N)cps (M)>

- <'Pp+1(l- • N -l, M)cpr (N)|cp^f l ( l . . N -l, N)cps (M)>

Next the functions cp(l.. N -l, M)cpr (N) and cp(l.. N -l, N)cps (M) are  expanded in a
complete set of (N+l)-electron singlet and triplet functions. In general this is
not possible because these functions a re  not wave functions so the Pauli prin
ciple does not hold. When cp (1.. N -l, M) is written in term s of products of one-P*
electron functions, then term s will occur in 9 (1.. N -l, M)cpf (N) in which cp
contains three electrons. From the orthogonality of cpr  and cps it follows that
these term s can only give contributions for r  = s. From a calculation for N = 3
it appears that the contributions from the two term s cancel out. The expansion
in term s of (N+l)-electron functions is therefore permitted.

Prs  = ^  £  <'P1(l--N-l,M)cpr (N)|cpj j l ( l . .N - l,M ,N »

X <cp̂  j d . . N -l, M, N)|cp^ 1(1 .. N -l, N, M)> <cp  ̂^ 1 . .  N -l, N, M)|«p (1 .. N -l, N)q>g (M ) >

£  <‘Pp+l(1-*N- 1*M)'Pr (N)|cpj p f i a ..N -l,M ,N )>

X p+i d -  • N -l, M, N)|cpk>^ < 1 . .  N -l, N, M)>

* <cpk, p+i(1- • N -1’ N> “ > I V i (1, • N~1, ^ V 1*1»

The second integral in both term s vanishes for j ^k. From 2. 8 we then obtain

prs  = ?  ^ l (1‘ • N-1> M)9r (N)| cpj> 1(1. • N -l, M, N)> <cp̂  j d . . N -l, N, M)|cpjd.. N -l, N)cps (M)>

2.21
x{ d ^  <^ i ( i . . N -l, M, N)|cp j d .  • N -l, N̂ V1)>

-  <cPj, p+i^- • N"1- M> N)|cpj ,p f l (1- • N -1* N> “ » }

The overlap term s between brackets are  calculated from the overlap of the
corresponding spin functions. The two functions in the integrals differ by an
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odd number of permutations so, according to 2.4 and 2. 6, the overlap is opposite
to the overlap of the spin functions. After construction of the spin functions ac
cording to 2. 2 we obtain

for singlet j (cp, 1(1. . N-l,M,N)|cp. 1(1. .N-1,N,M)) =+1
J» J*

<9j ^ 1(l..N -l,M ,N )|cPj p+1( l . .N - l IN,M)> = -1

for triplet j (cp̂  ^(1.. N -l, M, N)|cpj j ( l . . N-l, N, M)) = -1

<cp (l..N-l,M,N)|cpj p+1(l..N -l,N ,M )> =-1 /3

After substitution 2.21 can be written

Because prg is the representation of p in the complete set cpr>cpg it follows
immediately that 2.20 holds.

£  6,(cpT.(N)|cp.(N)> <cp (M)|cp (M)>j j r  — j  —j »

It can easily be shown that analogous to 2.19 the charge density matrix for
a doublet state can be written

Q (N ,M )= L  e. cp*(N)cp+(M) 2 .22
j J -J - J

in which e . = +1 for singlet j
= +3 for triplet j

An equation analogous to 2.20 could not be obtained because in this case the
expansion in a complete set of (N+l)-electron functions is not possible.

C. ct-BONDS DIRECTLY COUPLED TO THE tt-ELECTRON SYSTEM

1. The z e r o t h  o r d e r  wave  f u n c t i o n s

We consider a doublet n-electron system of N electrons and a a -bond A
which will be regarded as a two-electron system.
According to the branching diagram [10]
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singlet (N-l)
(P)

singlet (N+l)
(p+q)

^doublet (N)'
(p+q)

-doublet (N+2)
(2p+3q+r)

triplet (N-l):
(q)

;triplet (N+l)
(p+2q+r)

quadruplet (N)
(q+r)

quintuplet (N-l)-
(r)

we obtain from the p singlet and q triplet functions for (N-l) electrons (2p+3q)
doublet spin functions for the (N+2)-electron system. The total wave functions
will be written in term s of the following expressions for these spin functions.

Xi = °x  (1.. N-l)of(N)°x(N+l, N+2)
M*

X ^  = 1/V ë{2 ^ ^ p d - .N - D e tN )  -V 2 V .p d - .N -D a tN )}  °X(N+l,N+2)

X3ti = °X (1. ■ N-l) l/V6{-2g(N)1x +1(N+l, N+2) + V̂ "(y (N)1X°(N+1 , N+2) }

X. = 1/*J~3{- 1x ° (1. .N-l)a(N)1x°(N+l,N+2) + 1X"1 (1.. N -l)Q'(N)1x+1(N+l, N+2)
’ M» M» P *̂”P

+ V ^ p d -  .N-l)a(N)1x"1(N+l,N+2)}

Xc , = 1/V6{ V 2 1X°_„d- • N-l)p(N)1x+1(N+l, N+2) +V2 V "1 (1.. N-l)p(N)1x°(N+l, N+2)
P*”P |Jk ”P

-  V *  (l-.N-DeKN^X 1 (N+l,n+2) + 1x "1 (l..N -l)a(N )1x+1(N+l,N+2)JM* P p«”P
in which p, = 1 . . .  p for Xj and Xg

= p+1 , . . .p + q  for xgp, X ^  a n d x 5^

The functions X j>  X2 • Xg -and l/V^tx^^+V^Xg^} may be regarded as being
built up from doublet spin functions for N electrons whereas l/V3{V2^ x4 ~X 5 }
can be obtained from the quadruplet functions for N electrons which are built
up from the triplet functions for N -l electrons.
In our calculations use will be made of the transformation matrix for a transposition
of electrons N and N+2 and of the matrix elements of the operators 2S^, 2S^+-
and 2S„+„. These are given in 2. 23 and 2. 24a, b and c.
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On combination of the wave functions for the ground states of the separated
systems the total wave function becomes

*1
1 P  n n+n

= p = {  2 tt (1.. N)UA(N+1, N+2)x, + I
V(p+q) M>-1 11 1(1 p=p+l

tt ( l . .N )0A(N+l,N+2)xo ]H* «g,

The combination of the ground state of the TT-electron system with the triplet ex
cited state of the a -bond yields

1 f E
'  I \ 2
V (p+q) V -1

n (1..N ) A(N+l,N+2)x„ +H 3p,
p+q

£
p,=p+l

tt ( l . .N )1A(N+l,N+2)
M»

On transfer of one electron from the n-electron system to the a-bond a doublet
function for the total system can be obtained in four different ways:
1. tt( 1 .  . N-l) singlet and A(N+1,N+2,N) doublet
2 .  tt( 1 .  .N -l) triplet and A(N+1,N+2,N) doublet
3. tt( 1 .  . N-l) triplet and A(N+1,N+2,N) quadruplet
4. tt( 1 .  . N-l) quintuplet and A(N+1, N+2, N) quadruplet
From 2. 8 it is obvious that

J  °A(1,2) 3/2A (l,2 , 3)dTldT2 = 0

From the further calculations it may be inferred that in consequence of this
result the wave functions corresponding to 3. and 4. do not mix with i|r and
can be neglected. The wave functions corresponding to 1. and 2. are

° V 1" N"1> {A1(N+1’ N+2’ N )X ^ -A 2(N+1.N+2,N)X3^}

On transfer of one electron from the cr-bond to the tt -electron system a doublet
function for the total system is obtained from the combination of the A(N+1)
doublet functions with the r r ( l . . N, N+2) singlet and triplet functions. The co rre 
sponding wave functions are

31

^
 

I
“

1 
to~

|



1 r P O { Xi + V 3 X rj j n+q rj
=  {  £  TT (1. .N,N+2)A(N+1) ------^ -------£iL_+ £ n . (1. . N, N+2)A(N+1)

M--P+1 V

{)%+xV ^ v

j s 1
Vp+2q+r ' p-1 ^

2 tt . (1. . N, N+2)A(N+1)

-}

{-V^Xi +X3 } p+q J
+  2 TT. (1 . .N ,  N+2)

p=p+l J ̂

X A(N+1) {~3x2 u+X4 u+ ^ ~ Xs J p+2q+r

2^3"
+ 2 { quadruplet (N) te r m s } [

p,=p+q+l J

The wave functions . . \(igj a r e  not an tisy m m etrized  w ith re s p e c t to  the p e r 

m utation  of a and tt e lec tro n s . The an tisy m m etrized  wave functions sh a ll be

w ritte n  . .  £ / \(ig.. In th is an tisy m m etriza tio n  and in  a ll fu rth e r  ca lcu la tions

the overlap  in te g ra ls  betw een a -  and TT-functions w ill be neg lec ted . A fu rth e r

approx im ation  is  the neg lec t of a ll wave functions in  which the ct- sy stem  is

exc ited  (except the low est tr ip le t s ta te  in  and of a ll wave functions in  which
two e lec tro n s  a re  tra n s fe rre d .

In the usual theories for the -spin density in a-bonds within the nodal plane
the zeroth order wave functions are assumed to be calculated with neglect of
all o - tt exchange integrals. In our method this is not necessary.
We consider two systems with wave functions

2 —  ■§ (1 . .N )X (1 ..N)
|j,=l Vr ^  ^

s 12_̂  - j = ^ lv  ( N + l , . . N+M)xv( N + l , . .  N+M)

which are coupled together. The wave function for the total system becomes

® (1..N+M) = 2 2 —  (1 ..  N) \l/ ( N + l , . .  N+M) x (1..N+M)
1 p=l v=l Vfs ^  lv  V '
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in which x^v is the spin function obtained from x and xv by application of 2. 2 .
The wave function for the i-system will now be calculated in such a way that a
wave function

r  s i
®.(1 . .N+M)= 2 E -p= i. Ü ..N )0 , (N+1,..N+M)x (1..N+M)
J n=i v=i £  lv  '

in which the ^-system is excited without a change of the spin function, does not
mix in first order with ®̂  which means

< j^® 1|H |jy® .> = o

Because in ®̂  all electrons within the i - and \j/ -system are equivalent we may
write this

<«1|H|BJ>-NM<®1|HTNNtM|«)) . 0

in which is the operator for a transposition of electrons N and N+M.
Higher order permutations do not contribute because the two systems are
supposed to be orthogonal.
On substitution of the Hamiltonian

N N+M .
H (l.. N+M) = H (1.. N) + H , (N+l,. .  N+M) + E 2 —

4 * i=l j=N+l r ij

we obtain as condition for the calculation of

<1 +
s
E NM

H=1 v=l N, N+M
$ , )

2.25

NM
rs

r  s
2 2 <S, &

(i=l v=l ^  lv r N, N+M N,N+M ^ * 1  u,vpN.N+M^p, v >

In terms of charge density matrices the second term becomes

K (1' 1)^ U (2' 2)dTl d r2la

The evaluation of the third term depends on the multiplicity of § , 11/ and ®. As
an example we shall discuss the calculation of the zeroth order wave functions
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and ili2.
For singlet-singlet, doublet-singlet and singlet-doublet combinations 2.25
becomes after substitution of the spin functions calculated from 2.2

<* l l M  V  + J Qï j (1’X) r ~ " Ql l (2,2)dTl dT2 " I J S V 1' 2) 4 *  QU (1* 2)dTl dT2 = °

2.26

This formula, which is the formula used in the theory of separated electron
pairs [14] and in McWeeny's group function method [13], is assumed to be
used in an iterative process for the calculation of the ground state of the tt-  and
a-systems.
For a triplet-doublet combination, for which the total wave function is a doublet
function, the condition for the calculation of the triplet state becomes

<1$n l Hl1 | i i > + K i  <1 . 1 )7 l - Q i V 2’2)dTi dT2 - I K V 1’ 2^  Q n (1’2)dTi dT2J J 12 1"
2.27

The triplet excited state of the a-bond is assumed to be calculated from 2.27.
In this calculation the wave function for the tt -system is taken to be the one
obtained from 2.26.
The charge transfer wave functions can be calculated in a similar way.

2. o - b o n d s  in  the  n o d a l  p l a n e

For ct-bonds in the nodal plane the interaction between ^  and ♦ gj* • •
vanishes for symmetry reasons. The spin density is therefore determined
solely by and add becomes in first order

p <?x> “ " 2 (E2-Ei)

in which E^ = < j )

E2 = < ^ * 2 N J^ * 2 >
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The Hamiltonian matrix element in the numerator

< l|H | -  ^ i | H| ” 2N^ i | H TN, N+2I^ 2^

becomes on substitution of the wave functions, evaluation of the integrals over
the spin functions with the values given in 2.23 and application of 2. 7

: (i t , ( l .  ,N-1,N)°A(N+1, N+2)(p+q) 1 rN, N+2
r i j d . . N -l, N+2)UA(N+1, N)>

9 9ft

V l ( l . . N -l, N)°A(N+1, N+2)
N,N+2

(1.. N -l, N+2)aA(N+1, N)>p+1

According to 2.16 and 2.18 this is identical to

< ^ 1 ^  J* > 2> = -  J P n( l ,  2 ) PgT(l ,  2)dT ldT2
12

in which pgT is the transition spin density m atrix between the singlet and triplet

state of the a-bond.

In the calculation of the matrix element of the spin density operator the permu
tations between tt-  and a-electrons can be omitted because pQp is a sum of one-
electron term s. From the integral values given in 2 .24c we obtain

< |p| ^ 2> = -|V 3 < °A (N + 1 ,N + 2 )|6 (?n +2- ? x) | 1A(N+1,N+2)>

Substitution of the matrix elements yields for the spin density

f p"<l, 2) p^T( l ,  2)dTldT2
p (r ) = -  2 --------------12- ^ f----------------- <°A(N+1, N+2)| 6(?n+2-? x)| a (N+1,N+2)>

*  ABa

in which Ae T = E -E , the triplet excitation energy of the a-bond
A  L i J.

35



In term s of spin density m atrices this becomes

p A (1,2) = ---------------- l 2 ~ ~ f

* EA

Jpn( l , 2) —  p gT ( l , 2)dT xdT 2
pg T ( l,2 ) 2.29

This form ula can be generalized by a summation of the right-hand side over a ll
possible trip le t states of bond A.

3. a - b o n d s  n o t  l o c a t e d  i n  the n o d a l  p la ne

For a -bonds which are not located in  the nodal plane the t t -  and a -functions
are no longer orthogonal. The firs t order term  2.29 must therefore be used in
a more general form  in  which the l / r 12 operator is  replaced by the complete
Hamiltonian. This is especially im portant in  valence bond calculations.

I t  must be noted that fo r an exact calculation the in tegral in  the numerator must
be regarded as a short-hand notation of the complete term  which is obtained
from  2.28 by replacing l / r M „  „  by the complete Hamiltonian and m ultiplying
by -  2v3/3. In the usual valence bond approximation, however, 2. 30 may be
regarded as the correct expression.

Besides 2. 30, contributions w ill be obtained from  the charge-transfer
wave functions ijig ,.. .  tyg.. In a firs t order approximation m atrix elements of
the spin density operator between a -  and tt -functions occur. In calculations of
the spin density on methyl protons these terms are usually neglected but i t  is
by no means sure that this is correct fo r a ll types of a-bonds. Therefore,
this term  w ill also be considered. Second order term s are obtained from  the
diagonal m atrix elements of the spin density fo r • • tg j an<̂  from  the mixing
of {  2 via tg .,(. v tg j w ith Second order term s from  the m ixing of 4 3j- • • t 6j
via + and from  the d irect m ixing of if2 w ith ^  are neglected w ith respect to

the firs t order term  2. 30.
On neglect of the overlap integrals of a -  and n-functions the contribution from
the charge-transfer wave functions is then given by

J > (1 ,2 ) H pgT(l,2 )dT1dT
pST( l,2 )

* e a

2. 30
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Ac t P - 2 I
i=3

< ^ | H |

<E1J-EX>

6
+ 2 1

i=3 ] 1 (Ei f E l ) 7
2.31

6 ( J * ^  |H| < ^ V i i |H| ^ 2> < ^ 2 |P| ^ » i >
X < ^ ij ïP l  ^ i j )  + 2 i?3 ?  (Ei j -E 1H t;2-i!;1)

In the calculation of the m atrix elements between t 2 311(1 ♦sj*"  ^6j
is important to note that the number of permutations with respect to which the
wave functions are already antisymmetrized is not the same for all wave func

tions. These numbers are for

lbTcov = *1**2 : N! 2'.

iytt a

•y

>II (N-l)! 3!

tcjtt = :
(N+l)!

The energy matrix elements are  obtained as follows

i------------- N -l
< ^ c o v lH'- * \ c >  ■ « ^ ♦ c o v N 1- ^  V l * n ° >

From TjN*cov = -  *cov we obtain

< ^ c o v |H| =^ < * c o v lH |*na>

whereas

<J2^ c o v ,H* J ^aTT> = m  <’l'cov|H(1" TN+1.N+2)| *arr>

= ^2(N+1) <* |H|* >Tcov 1 t cjtt

Now we assume that in the evaluation of these m atrix elements the Hamiltonian
operator may be approximated by an effective one-electron operator (this is
identical with neglect of differential overlap). In this way we obtain on sub-
stitution of 2 .9, 2.10, 2,11 and 2.12
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<j^ xi m ^ 3j>= <^|H|V
< = V3<T^+|H|A^>

< j ^ 2im ̂ 3j> = -V3 <t̂  |h| a ,̂>
< ^ 2|H| J ^ 4j> = <Î +|H|A^>

J^|r5J> = <ü"|H|A^>

^ g . >  = -V3 (iij" |H|A^>

<J^i|r2 lH| ^ 5j> = Vi (tTj'IHIA^,)

( Jtf'ijfg |H| J^l|r > = < T T j |H|At >

The spin density matrix elements between ^  and +3-- . .  +6j are obtained in the

same way:

^ ♦cO vIP l^ T T C T ^  ^  <+cOvlPl*TTO>

( ^ C O V  M = V2<N+1) <*CCV lPl +QTT >

which yields

J5^4j> = - l/Vi ^(Djfi^-r^lA^d»
(J ^ ^ lP lJ ^ tg j) = -  <u"(l)|6(?1- ? x)|A^(l)>

|P|^ * 6J> = - l/Vi” (^"(Dls^-Ï^IA^d»

In the diagonal matrix elements of the spin density operator for t g. . . .  ^  only
the contributions in the a-bond are of importance. In terms of spin density

m atrices these are

(J^ gjjp ) ^ * 3j> : Pa<1 . 2)

<^+4j|P| J^ 4j> : - 1/3 pJ (1>2)
<J^*5j|p| ^ 5j> : p fd .2 )

< ^ 6j |P| J^ * 6j> ! " 1 /3  Pl (1,2)

in which p and p„ are the spin density m atrices according to 2 .16 for N=1 and
1 3

N=3 respectively.

The excitation energies of the charge-transfer states are approximated for

*3j’ *4j aS V EA+AI| +CJA

*5j'+6j “  IA - ETT+AEj’ + CAj
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in which V XA the ionization energies of the t t  and A system

V e a
the electron  affinities of the t t  and A system

ae+, a e '
j j

the excitation energies of the n-elec tron  system
after charge tran sfe r

CjA,C AJ correction  te rm s for the difference in Coulomb
energy before and a fte r charge tran sfe r

On substitution in 2. 31 and combination with 2. 30 the spin density in the a-bonds
becomes in term s of spin density m atrices:

A _ <e J’ |H |A ^>| {nj'(1)A^(2) + (2)}
p (1,2) = -  2 S 6. ---------------- 1-------+----------------1

i j V EA+AEj +CJA)

<ttT|H|A^>5- £ttT(1)A^(2) + a!(1)tt:(2)}
+ 2 2 6 .  J -----~ S 2 ^ ----— -------  *------ + T  6

<t̂+ |h | a^ ) 2

j J (Ia - V ^ i ^ a j)
£j  u .  —”  X  r  o
j J (I - E A+-hEa+C.Ar

p td .2 )

+ E 6,
j 1

<nj~|H|A^>2
Pi (1,2) + 2 { - f »

rr A j jA

I'p lAil Hj<2* |H| A^) (A'^Ih I tt̂  )
,

< V e a +* Y V * e Ï

2.32

+ £  6
< I L  H  A ^ > )

(IA -En +AEj +CAj)AEA
2

J p TT(1.2)H  pgT(l,2)dTldT21 A
-} Ps t (1' 2)

The application of this form ula to actual problem s and the relation  to m ore
usual methods such as hyperconjugation will be discussed in chapter IV.

D. a-BONDS COUPLED VIA ANOTHER ct-BOND

We consider a  system  consisting of N n -e lec trons, 2 a -e lec tro n s inbond A
and 2 a -e lec trons in bond B. The tt-B  in teraction is  assum ed to be much sm aller
than the n-A interaction. Consequently the spin density in B is  calculated by
f ir s t  taking into account the tt -A in teraction and then coupling B to the n -A
system .
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1. The z e r o t h  o r d e r  wave  f u n c t i o n s

In the calculation of the spin density in B the following wave functions will
be considered:

V * 1 2  5

*13’ *14
*15’ *16
*17’ *18
*19’*20

the wave functions given in section C multiplied by the singlet
ground state wave function of B
wave functions obtained from ..  i|u by excitation of B to the
lowest triplet state
tt- * B  charge-transfer wave functions
B-*tt charge-transfer wave functions
A-* B charge-transfer wave functions
B - A charge-transfer wave functions

In f . .  t lg  the a-bond A is in its singlet ground state; in ^17- •. t 2o the
rt-electron system is in its ground state. t 17 and *19 wiU be chosen in such a
way that the tt-A  system is in a singlet state whereas in t lg and t)20 it is in a
triplet state. From the ground state of the rt-A system, which is calculated
from $ . . .  as in section C, wave functions can be obtained by transfer of
one electron in which A contains zero or four electrons and wave functions
in which the rr-system contains (N-2) or (N+2) electrons. These are neglected.

From the p singlet and q triplet spin functions for (N-l) electrons (5p+9q)
doublet spin functions for (N+4) electrons can be built up. These are given in
table 2. 3. The total wave functions expressed in terms of these spin functions
are given in table 2.4.

Table 2.3. Spin functions for (N+4) electrons built up from singlet and triplet spin functions for (N-l) electrons

Xl =°x (1. .N-l)a(N)°x(N+l,N+2)°x(N+3,N+4)
lp  p

X = 1/V6{2 Y _  (1. . N - D P I N t ^ V j l .  .N-l)a(N)}°x(N+l,N+2)°x(N+3,N+4)
2us p* P P* P

x = °x (1. .N-l) (N+l,N+2)+^a(N)1x0(N+l,N+2)]°x(N+3,N+4)
3p p

X 4 = 1A/3 t-X ®_p( l  • .N -l) x (N+l  ,N+2)+1x”_p(l • .N -l)x +(n+1 .n+2)

+ Y _  (I - .N-l)V(N+l,N+2)}o(N)0x(N+3>N+4)

40



X5^ •N-l)e(N)V(N+l,N+2W 21x^_p(l. .N-l)g(N)1x0(N+l,N+2)

-V_p(l. .N-l)a(N)1x"(N+l,N+2)+1x~_p(l. .N-l)a(N)1x+(N+l,N+2)}°x(N+3,N+4)

X~ =°x (1. .N-l)°x(N+l,N+2) l/V6{-2p(N)1x+(N+3,N+4)-tV2a(N)1x0(N+3,N+4)J
op, p,

X 7 =a(N)°x(N+l,N+2) lW 3 { -V _ p(l- .N -l)1x0(N+3,N+4)+1x^_p( l .  • N -l)1X+(N+3,N+4)

+V J l .  .N-l)V(N+3,N+4)}
M>“P

Xg = °x(N+l,N+2) .N -l)p(N )V (N +3,N +4)-^1x^_p( l.  .N-l)g(N)

X 1x°(N+3,N+4)- V . J 1 .  .N-l)o(N)V(N+3,N+4)+V_n(l- .N-l)a(N)Y(N+3,N+4)}
P»*“P P* P

X9 = ° x ( l .  .N -l)a(N ) 1AS{-1x°(N+1,N+2)1x0(N+3,N+4)+1x'(N+1,N+2)1x+(N+3,N+4)

+V(N+1 ,N+2)V(N+3,N+4)}

x10p, = °XM,(1* *N-1> 1/^6{W2 p (N )xV + l,N + 2)V (N + 3 ,N + 4)^ p (N )xV l,N + 2)

X1x°(N+3,N+4)-o(N)1x+(N+l,N+2)1x"(N+3IN+4)+a(N)V(N+l,N+2)1x+(N+3,N+4)}

Xl1 =lW l8{2 x° (1. -N-l) e w V W l  ,N+2)V(N+3 ,N+4) W2 V  J l . .N-l)a(N)
lip t p«”P M* P

X V W l ,N+2)1x°(N+3,N+4)-21x" (1. .N-l)e(N)1x+(N+l,N+2)1x+(N+3, N+4)
P»”P

<1. .N-1)cKN)V(N+1 ,N+2)1x°(N+3,N+4)-2 V  JL. .N-l)p(N)fc(N+l,N+2)
p,-p H“P

X 1x+(N+3,N+4)+v2 V _ J 1  • .N-l)a(N)1x "(N+l>N+2)1x°(N+3,N+4)}
P» K

X19 = l / 6 [ - 2 [ - ^ 1x° (1. ■N-l)a(N)1x'(N +l,N +2)-^1x" (1. .N -l)a (N)1x0(N+l,N+2)H“P p.-p

-V J l .  .N-1)P(N)V(N+1,N+2)+1x+ _J1. •N-1)P(N)V(N+1,N+2)}1x+(N+3,N+4)P* P P»”P

(1. .N -l) e L N iW + l ,N+2)+^2 V  (1. .N -l) P (N ji^N + l ,N+2)
P*“P P»“P

-V J l .  •N-1)q'(N)1x'(N+1 ,N+2)+V j l . . N -l)a(N )1x+(N+l,N+2)]1x0(N+3,N+4)]
P» P P» P
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Xlo = l / 6 [ - ^ V  ( l ..N -l)e (N )1x0(N+l,N+2)1x0(N+3,N+4)-tA/5’1x° ( l..N -l)g (N )
13gi |i~P P"P

X 1x+(N+l,N+2)ilX0(N+3>N +4)+^1x+_p(l- .N -l)e(N )1X'(N +l,N+2)1x+(N+3,N+4)

-■Jz V  (1 • -N -l) p(N)V (N +l ,N+2)V(N+3,N+4)+3 V  J 1  • .N-l)o<N)
|JL-P P*"P

X W + l  ,N+2)V(N+3,N+4) -3  V (1. .N - lM N ^ x V + l  ,N+2)V(N+3,N+4)
P»”P

+ 1X° (1. • N -l)a(N )V (N +l,N +2)1x+(N+3,N+4)-1x '  (1. ,N -l)a(N )1x 0(N+l,N+2)
p -p  P~P

X V (N +3,N +4)-2  V (1- •N-1)o(N)1x“(N+1,N+2)1x0(N+3)N+4)
M»"P

+ 2 V (1- .N-1)<x(N)1x+(N+1,N+2)1x0 (N+3.N+4)}
P“P

X, „ = 1 /0^5{V ^V  (1. .N-1)0(N)1X"(N+1,N+2)1x+(N+3,N+4)+^ V „tt- • N-l)P(N)14p, j*-p P- P

X V (N + 1 )N+2)1x+(N +3,N +4)+2^1x°_p( l  • - N - l W ^ Y W l  ,N+2)1X +(N+3,N+4)

-  3 ^ V  (1. .N -lJecV x°(N + 1  ,N+2)1x°(N+3 , N + 4 ) (1. .N -l)p(N )
|X“p M*“P

X 1x+(N+1,N+2)1x°(N+3, N + 4 )+ 6 ^ 1x^_p( l .  .N -l)0(N )V (N +l,N +2)1x” (N+3.N+4)

-  3 \ °  (1. .N - l)<y(N)V(N+l,N+2)1x+(N+3, N+4)-3 V (1. .N -1)q!(N)
p,-p H,“‘F

X 1x°(N+1,N+2)1x+(N+3,N+4)+2 V  _(1. .N -l)a(N )1x"(N+l,N+2)1x°(N+3,N+4)
P*“P

+ 2 V (1- .N -1 M N )V  (N+1,N+2)1x°(N+3,N+4)+4 V JU- .N -l)a(N )p,-p P- P

X x°(N+l,N+2)1x°(N+3,N+4)- 3 V  J 1  • .N -l)» (N )x0(N+l,N+2)1X"(N+3,N+4)
P*“P

- S V  (1. .N -l)a(N )1x+(N+l,N+2)1x" (N+3.N+4)}

Table 2.4. Wave functions used in the calculation of the spin density in B.

* = = * = { £  n ( l .  .N)Xi + *£* tt(1..N>Xo }°A(N+l,N+2)°B(N+3,N+4)
1 Vp+q V=1 11 lki p=P+l  ̂ ^

* = J L  [  I  n ( l . .N )x 3 ♦ ^  tt (1. .N) ^  ^ X̂ -] 1A(N-t-l,N4-2)0B(N+3,N-i-4)
2 V p+q ^ ^ ^ PT»4-!  ** V 3
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3j = ƒ =  S ° r y i .  .N-1){A1(N+1>N+2)N)x1^-A^N+1,N+2,N)x3m<}0B(N+3,N+4)

1 p+q 1 r
=  -p= Z TT, (1. .N -l)|A 1(N+l,N+2,N)Xo.,-Aj(N+l,N+2,N) —Sü___®k.

43 sfrq  g,=pH 3’^'p L 1 ^  2 VT

°B(N+3, N+4)

t  = ^ r  £  ° tt. (1. -N.N+2) + PS 1
5J V p+q Lpr=l 3p 2 P=P+:

Vö a.0 . * p + Q  n
-s— S TT. (1. .N.N+2)
2 p,=p+l 3m-

X *4  ̂ ^~Xs H' ^A(N+1)0B(N+3,N+4)

♦61 = , 1 - [  § n. (1. .N.N+2)
63 Vp+2q+r LP=1 3̂

Cl u +X3u} ^ *5* 1

t ’ 8x2u % u4^ x«tt} . P*2^
2^  - f r

PTq 1
Z tt.  (1 ..N.N+2)

p=p+l IP

*̂"2? { quadruplet(N) terms j"| A(N+l/*B(]
p,=p+q+l J

(N+3.N+4)

(N+3.N+4)* _  = — = f  £  t t ( 1 . . N ) x  +  PZq TT (1. .N) °A(N+1,N+2)1B(]
7 Vp+qLP=1 p ^  P=P*1 * v3  J

1 r  P {“Xg “^^X-1 n } P*q (Xi 1 +l'^"x i2 iL3n
* Q  = ^ L F e  TT (1. .N) ƒ -  ^  +  Z  TT (1. .N) ---i i lL —-----12jè.n

8 vp+q^P-1  p V3 p=p+l ^ V3 J

X 1A(N+1, N+2)1B(N+3, N+4)

1 p o r  tx g  +‘'/2 x io  }
♦Q4 = - p = - £  tt,  (1. .N -l) A (N+l,N+2,N)xfi +AJN+1.N+2.N) a>* A U p
93 V 2pp=l JP L 1 ”P * V3 J

X 1B(N+3, N+4)

1 P+q 1 r  {x7i1+V2x }
*101 = 1 —  2 n <1. ,N-1) A <N+1,N+2,N) ^  -  BP ~ AJN+1.N+2.N)

J V2q p=p+l p L 1 V3 ^

tX n  V2 X-j o , j
X -  V — i = M  B(N+3, N+4)

V3 J
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, , , =  ^ "• (!• -N.N+2)
113 Vp+q LH=1 ^

t x « - x 9lf ^ x 1 0 J  p+q o—HU:— ^ ------i^Ë_ + '£  un . (1..N.N+2)
H=p+1

—-J------- -̂ J A(N+l)1B(N+3,N+4)

= = r  £ Vt, (1. .N.N+2)  ̂ ^ -----*L2l^+ *2* *- (1..N.N+2)
A ^ u .U is1  JP* Oa/q M=p+11 2 3  Vp+2q+r Ln=l

( * * ,  r ^ X o , ,+xn ,,+^ X i  o,,} p+2q+r -1
_____ IË------ °t_  1J,Ë----- =—Ë_+ 2 {quadruplet(N) terms}

2i3 p,=p+q+l J

X A(N+1) B(N+3, N+4)

1 £  0y13j = ^  tt̂ ( 1 .  .N -l)UA(N+l>N+2){B1(N+3,N+4>N)xl t i -B^(N+3,N+4,N)x6^ }

1 P+q 1 n r
* , = - £ = .  S tt. (1. .N-l)A(N+l,N+2) B(N+3,N+4,N)x9 +B (N+3.N+4.N)

143 V i q Ë ^ l  J .p -P  L I  'Zp, 2

{~ x 7^+V2 x 8 a  } ,

1 r  g  o
*153 V ^ l p= i

r  £  TT, (1. .N.N+4)U .=1 3 p*
[Xi + ^ X C } p+q a

1Ë „ + ‘ 2 * %  ( i . .N,N+4)
p=p+!

X * 7ë ^ .ë I i  °A(N+1, N+2)B(N+3)2 J

= 1 [  1 1tt. (1. .N.N+4) [ ^ XlP ^ ï + n .  (1. .N.N+4) - ^  ^
2V3

+ ^+2;£ r  [quadruplet(N) term s }J ^A(N+1, N+2)B(N+3)
p=p+q+l

* = 1 f  S tt (1. ,N)A(N+1){b  (N+3.N+4.N+2)-----^ - 5 -----5ë_+B (N+3.N+4.N+2)
17 V2(p+q) LP=1 P L 1
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^X6u,+X9u+'V̂ X10 J

, [' X2g+X4q+^ X5u}

2-----------} + n f1- •N)a (N+1){b 1(N+3,N+4,N+2)

bc7l,+V2xft -V3 X, ! - a/ öXio  3i
+ B (N+3.N+4.N+2) —^ 11^ 12lt] 1

2 2V 3

t ig  ~V 2(p+q) -,= 1  V 1’ •N^A(N+1){Bi<N+3>N+4>N+2) -— ~1^ X3^^+B2(N+3, N+4.N+2)

+  p + q
2‘w T  ■* , = p + l  P

{3x2a+x4 u+^ X 5u}

■} + V *  tt (1. .N)A(N+1)|b i (N+3,N+4,N+2)

2 r - - - - - - - - - - - +  b ^ n + 3 , N + 4 , N + 2) { 1 / 6 x 7^ W 2 / 6x 8(jl+ V 3/ 18x 1 1 ^

X 12,  ' 2^ /9  x 1 3 ,-2^ /9  x 14^ }  ]

1 r p r (xi +V3 x„ }
♦l9 ~^2(pf L ,= l V 1’ •N)B(N+3){ A1(N+1’N+2, N+4> -----tL2---- +A2(N+l,N+2,N+4)

x — ^  X&U2----^  TT^l. .N)B(N+3){a i(N+1,N+2,N*4>

9.4/9 J  j

1 r £
V  2 ( p + q )  ^ - y r - l

P p - {-V Jx +x 3
[  2 n(l..N)B(N+3){A1(N+l,N+2,N+4) --------^ — &fc-Y — ^ —+A2(N+1 ,N+2 ,N+4)

^ x 3u,+ 3 x 9 i r ^ 2 x 10 3 p + q  ,~  $ -------^••N)B(N+3){Ai(N+1,N+2,N+4)

C ”^Xo "̂ "Xir ^  }
- - - - - - - - ^ - - - - - - - - “ - * A 2 ( N n , N « , N * 4) U / 6 X 4 ^ / 6 x 6i i - 7 ; / i e X n i i

- V e / i 8 X 12 , +  2^ / ® X 13p i +  2V Ü /9  x 14 } } ]



2. The  m a t r i x  e l e m e n t s  of the  H a m i l t o n i a n

In the matrix elements of the Hamiltonian terms arise which are deter
mined by the rr-A, tt- B  and A-B interaction but besides these, terms occur which
are dependent on integrals such as (tiA|H| B tt)  . In order to simplify the calcu
lations, the latter terms are neglected. In this case the non-diagonal matrix
elements between the wave functions \|ij.. .  i(ig. are equal to the ones given in
section C whereas the matrix elements between the wave functions
can be obtained by setting

M  = <^tr .6 (HI -* V 6>

for r , s  = 7. . .  12j

The matrix elements between these two groups of functions are dependent on
B - ( tt- A )  exchange integrals. The exact form of these terms is not needed because
the spin density in B caused by these matrix elements can be calculated directly
from the formulas given in section C. The remaining non-diagonal matrix ele
ments as far as they are used in our calculations are given in table 2. 5.
The approximation of the excitation energies introduced in section C will be
used for the wave functions For and and for i|fig and
this would give equal excitation energies. In the spin density in B, however,
terms arise which are dependent on

respectively. In these terms the differences (E^-E^g) and (E^g-Egg) mus*-
taken into account. In all other terms we assume

E17-E1 * E18-E1 * ' a - EB + CAB

E19-El * E20-El “ B - EA * CBA

E17~E18 311(1 E19~E20 can be calculated in a general way. In the molecular
orbital theory the energy difference between corresponding singlet and triplet
states depends on the exchange integral between the singly occupied orbitals.
In our case a similar relation holds:
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Suppose two doublet system s with wave functions R ( l . . N) and S(N+1,. . .  N+M) are
coupled together. Then the total wave function is  a singlet f . ( l . . N+M) or a
triplet tn ( l . . N+M)

X’ X V1- • •  •M*M) £  K1/v * “>
-  X̂ l / 2 ( l . . N)x^1 /2 (N+1, . .  N+M)}

1 1 1 +1 / 2  l / 9

+ x"1 /2 ( l . . N ) / 1 /2 (N+1,. .  N+M) 3p V

The energy difference becomes

„  „  , , N N+M N N+M
i n ■ ,£i,.s+i VI V - «'np'1 - £  ,,g+1 V  t„>

2NM nW
= n(R) n(S) £  £  <^<1- .N)S jH+1.. .N+M)( H T ^ ^ i y i .  .N+M)>

X <x^(l. .N)xv(N+l,. .N+M)|Tn >n +m | x^(1. .N)xv(N+l,. ,N+M)>

From the ca.lcula.tion of the integrals over the spin functions as in previous
sections we obtain

EI " En  = 2 J  pR(1’2) H pSd.2)dT1dT2

which yields

E17 " E18 = 2 J  pTT(1’ 2) H p fa .2 )d TldT2

E19 “ e 20 = 2 ƒ Pna . 2 )  H p^(l,2)dT1dT2
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Table 2.5. Non-diagonal matrix elements of the Hamiltonian used in the calculation of the spin density in B

*1

*2

*L3J

V3<t£  IH| R , >
J '0

(nT |H| Bg ) -V3<n:|H|Bg>

(A^IHlBg)

<Ag|H|Bg>

t r -V3<tl IH|Bt > <t̂ |H |B “ > V3<jt. |H |B^>

-< A ^ |h | b £>

<tl |h | b t >

+8

*9j

*im

-V3<Ag IH|BT >

1/&<A^|H|B~>

»11J -V3(A^|H|B^)

1 //3<A ^|H |B ^>
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*17 *18 *19 *20

-1 /^< A ^ |H |B ^> \^ /2 < ^ |H |B ^ > i / £ < a ^ |h | ^ > - ^ 2 ( A ^ |H |^ >

^ / 2 < 4 | h | b ^> 1 /^ < A ^ |h | B^> >^/2<a ' | h1b J> l/^ < A ^ tH |B ^ >

I / ^ fkIh Ib J ) ^ / 2 ( ttT|H|B^>

-^ /2 < t^ |H |B ^ > l-AfiRst m i ^ >

1A/2(tt7 |h |B^> V6/2<rir|H |B^)

^ / 2 < tt7|H |B^> - i / ^ tl' I h I b ^ )

V 5/2<A ^|H |B“ > i A&<a J | h | b "> v£/2<A ^|H |B +> l/\£F<A^|H|B*>

-3A k<A * |H |B^> lA ^K A ^jH lB ") 3a /2<a ^ |b 1b ^ ) -1A/6<A^1H|b J>

^ / 2 < il  1h | b ^> - i / £ < il  W b £>

- 3 /^ < t̂ | h |B ^> - 1 / £ < tt*1H|b £>

W 6/2<tt: | h |B '> 1 //2 < tt: | h |B ‘ >

-3/^"< tT |H |B "> -l/V6(TTr|H|B” >

^ + |H |^ >

|H| A^>

^ I H I A , - )

^ < H jlH |A^>
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3. I n t r o d u c t i o n  of the  t t -A  i n t e r a c t i o n

From the matrix elements given in section D. 2 it may be inferred that on
introduction of the tt- A  interaction the following combinations of wave functions
are obtained.

The ground state wave function before the coupling with B is

,V E i , ~ ’.i
; 1 6  <j/*-|h| y

t ' - J l - f s  S ------- ---------^
1 L 2 1=3 ] (E..-E y

6 S/if . . )
r r ______- _______

ij 1'

6 _ < | H | . P I  S / ) 2 > < J ^ 1|H lJ ^ 2>l  ^

^ = 3  J (E -EjHEg-Ej) -E 1 * 2 -l(E2- E l)

in which, as in the calculation of the spin density in A, the second order terms
obtained from the interaction between and ^  are neglected.

The corresponding wave function in which B is excited to the triplet state
becomes

,21S£ £
i=9 j (E..-E7) i=9 J (E..-E7)

j (Ei r r,)(E 8-E'7r  « w

From the charge-transfer wave functions and >17 we obtain

v2
I /  . Q/'t

’13]

>2

♦U ■ t1 -I .J” .  i  } {•»'♦«,-----,*1 .  •“'htf
2 (Ei7 -Eia>

1 ^ ^ 1 7  ̂ ^ * 1 3 1 ^ 1  f -  < * ^ * 1 7 ®  —  ^1317 .  \

If ■ t1 •- * f *̂ (e1-eJ13j 17' J13j‘E17)

The pairs of wave functions ^g), ^g) and +20  ̂ com^ ne *n a
similar way.
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4. M a t r i x  e l e m e n t s  of t he  s p i n  d e n s i t y  o p e r a t o r

The spin density obtained from the first order mixing of ♦J^. • • wit*1
depends on matrix elements of the spin density operator between tt and B

functions and between A andB functions. In the calculation of proton splittings
we may neglect the matrix elements between A and B functions but matrix
elements between tt and B functions can easily be of importance e. g. for the
protons of tert. butyl substituents. Then the matrix elements needed in the
first order calculation are:

< ^ * 1 | P | ^ l 5j>

< ^ 3j |P |^ i 9 >

< ^ 3 j  |p| J ^ 20>

< ^ 4 j |P | - ^ 1 9 ^ = V6/2<tt|6|B^>

= - l /^ i ip e lB ^ ) < ^ 4j|P| ^ + 2 0 > = |6| B^>

-<TTj |6|B^> (J^ * 5 j|p| ^ 17> = 1A ^<I!“ |6 |B ^ >

= - l W s ^ i e l B ^ ) < ^ 5j l Pl J ^ + l S > = -l/^<Trr|6|B^>

= - l A f t f  |6|B^> <J ^ 6 j l pl J ^ * 1 7 >
= ï/6/2<tÜ6|B^>

= l/Vö <tt̂  |5l Bg) < ^ 6 j|P t^ + 18> = V2/6<t]“|6|B">

where (ttT[6|B£ ) = <tt*(1)|6 (r-^-r^lBgU)) etc.

The first order mixing of ^  and the second order mixing of ♦jgj* • • ♦go
leads (among others) to terms dependent on matrix elements between B functions.
In terms of spin density matrices the contributions in B are

< ^ |P lV 7> » 1/^T  PgT (l,2 )

<+13jlp| W  * 5 p3 (1,2)

<n4jM n4j> • <n8n v  : -l/3 p?(i-2)
<n#jW  v  > v  ! pi (1,2)

<n«J'p' n 6J> ■ <»2o»p« +2o> : - i / a p f a » 2)

5. The s p i n  d e n s i t y  in B

The first order term obtained from the interaction of ♦' with can be
written down immediately from the general formula 2. 30
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2.33
B f t  pn ( l ,  2) + pA( l ,  2) j  H p® (1 ,2)dT d r

ArpP ( lf  2) — m
a£ b

2 BpgT(l,2 )

in which p (1,2) is the spin density in A according to 2. 32.

In the calculation of the spin density contributions caused by the intro
duction of the wave functions terms of different order in the tt-A ,

■n-B and A-B interaction are obtained. Of each type of term only the lowest
2order contribution will be considered, e. g. terms in ( tt |H| B) (B|p| tt) (tt |H| A)

are neglected with respect to terms in (tt|H|B)(B|p|tt) .
In this approximation the normalization constants of f ' , . .  can be omittedlo j  16j
and the excitation energies (E J„-E J),. . .  (E ^ -E ^ ) can be set equal to
(E^g.-E^),. . .  respectively. For ^ 7, . . .  the normalization constants
must be taken into account whereas e. g. for i|r^ the energy becomes

Ei7 = E17 - I
< ^ 17lHlj^y13j)2

(E13j“E17)

The spin density obtained from the first order mixing of f ' . • • 1®

s(l) B
ACTp

-__i__-Jj_

Substitution of the Hamiltonian matrix elements given in table 2. 5 and of the
spin density matrix elements given in section D. 4 yields

{ <tl |H |jO  + -3 ^  ^  - S ...
1 ^  « W ^ b *

PB(1.2) = - ?
u.
j

1 <VV“ i*V  ^
<1l Ih| Ag> <Ag|H| Bg>,

< V EA+AEj++CJA>
} llL (1)18(2) + B‘ (l)^+(2)}

+ E
i (Ib -e ^+ae .+c ^.) 1 “J

{<il"|h |b^> -
j Bj

(il"|h| A^>(Ag Ih] Bg>

W S a *

2.34
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< T T . |h | a^><a ^ |h | b ^>
______________

Aj)
-} { ^ ( 1 ) ^ ( 2 )  + B^(1)tl (2)}

<tn"|h | A^><A^|H|Bg>

3 3 <lA - E B+CA B ^ A ~ E^ +CAi>
-  2  6, { ^ (D B g tf )  + Bg(l)T^(2)}

-  2  6
<i l |h | a :> < a : w k . )  .

f  ^ -----—  +---------  lü , (l)Bg(2) + Bg(l)TT. (2)}
3 J <IB -EA+CB A > V EA+AEj +CjA) ^  ^

In the sam e way the second o rder ch a rg e-tran sfe r contribution

20 <t|rl |H|i|r!.>/o\ B 20 \*i
p ( l,2 )  = 2 2 — *-

1=13 j (E! - E l ) 'l j  I 7
<*ii|p|»Ii>

<♦* 1 H | H i t *  >.
_ 1 ------ ----------------7_ < V p | t . ;

i~1 3 j (E* -E ^)(E ^-E ^)

20
+  2 2 2

becomes on substitution of the m atrix  elem ents

, ®  pB(l',2) -  4 { -  i 1
<tt. lH |A !)< A l|H |r r .>^ y - , ^ Q D 1 "1

3 3V EA+AEl +CjA>AEA 3 ' « W W
■+ E 6.

+ 2
!  J p n(1 . 2) H PgT ( l , 2)dTidT2 .  < B gblA ^>  <A^|H] Bp,)

a b - t  j  L '
B,

(Ia - e b +c a b )
2 P3 (1’2)

< 1 |3 Ih | a t > < A ^ | h | b s >
- - - - - - - - - - - - - - - - - - - 2- - - -  P i  " » z )  +  1

j- %  |H| A^> (A* |H| B^,)+(Bt  |Hj A^> <A* |H| B^>

(Ia - e b +c a b >a e b

< N  Ag><A” |h | B^,> + <B^|HlAg) <A“ |H |b£> fi

^ b ”e a +c b a 3̂ e b

Jpffq.«) h Pjd.^dx^Tg , <b Îh| ^ > 2

rd ,2 ) ]

ÎA-E B+CAB3
T  p j d . 2 )

(B glH |A ^) <A^|H|Bt >
■- Pqrn(l» 2) T +

Va - e b +c a b ^ b
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J p n(l,2 )  H Pa (l,2 )d TldT2

V ^ b a )
------------------- 2 Pi (1>2> +
^ b ^ a ^ b a )

^ |H |A ^)<A ^|H |B ^,>  B
T P QH

« V E a ^ b a ^ b

. (1 ,

[f s){
(lij iHlBg)

ÖTT- EB ^ j+C jB)

<2^|H|A^)(A^|H| B^)

<ia - e b +c a b ) ^A -E fi^ A B ) W ^ B »

<n, |H| Ag)^Ag|H| B^>

W ^ J B ) V EA+AEJ++CJa )
£  6 .
j i

<^[H|A^)2 (A ^H lg g )4

< W c a b >4

(nT |H| > < a !  N  > < B_ |H| rrT>
+ 2 £ 6 ^  "**---- I I

j j (IA-E n+AE-+CAj)(IA-E B+CAB)ï ]  P3 (1’2) 2.35

[ ?  6i t

(n lH lB g )

L) 1 '« B - E„*“ i%CAi>

(nTlHjAgXAglHlB^)

< W CBA> « b -E a ^ b a ) V E / ^ b j»

<il" |h | a ^ > ̂ Ag Ih I > .2  <It: | h | a:>2 <A Jh1b !>2
I  6 i_U-----fË ---- ^  ~ S

(ÏB -E T T M E j^B jH ÏA -E /A E ^C A j)r * »j W W

2 £  6
<IL N  Ag > < Ag |H| B^ > <B^ |Hl tl >

J ‘ ( W ^ V ^ b - ^ b a I1
: ] » ? « • »

[:. 2 £  6 .
j (Ïtt-E b ^ E ^ ^ A E b

r + <i l Ih | a !><a ! |H |b :>

^ a -E b ^ a b »

(TL|H|Ag><A^|H|B^>

V e a +4EJ * V

I  |H|4 )<^ S |H|^T> <gj |h ! Ag)<A^M  Brp>|
J  *■ J  ^  /T  _ F  + f !  \  /T  _ F  + A Ü + + T  \  J

« a -E b^ a b ) W " j * V

- 2 £ 6j
<Il‘ |h |A^> { ^ M B ^ X B ' I hItt̂ )  + <A^|H|B"XBg|HlT]">}

+ 2 £  6
]r  ’I (IB-E n+AE-+CBj)AE j

(i a - e b +c a b )(ia - e tt̂ e j> c a .)aeb

, { ( T T - N ^ > - <I[j N ^ s ) ' ^ s W ^ )
^ b -E a ^ b a )
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<ttT|H|A^><a! |H |b£>,+ r ^ - | H| B+ y <IL| M A g X A g W ^ ) ^ (tt̂  iHlAgXAglHlB^.)

J  ̂ ”1 ** / t _ r  j .n  \ / t  _ p  x A r " x n  \ J
W "  j ^ a ,)

- 2 2 6
j :

<m |H| A^> [ < Ag |H| B+> <bJ, |H| t/ >  + <A^ |H) B+) <B* |H| m > }

<IB -EA+CBA)(ITI- EA+AEj++CjA)^EB
'] Ps t 1̂ ,2^

On combination of 2. 33, 2. 34 and 2. 35 the total spin density in B can be w ritten

pB( l, 2) = K (l, 2) + L (l, 2) + M (l, 2) + N (l, 2) 2.36

K (l,2) is the spin density obtained from  the f irs t  o rder mixing of the B trip le t
state:

K(l,2)
J tp n(1.2) + pA( l ,  2) ] H PgTq ,  2)dT1dT

2 PgT(l,2 )

L (l,2) is  the ch a rg e-tran sfe r contribution in the spin density in B caused by
the spin density term s in A which a re  obtained from  the f irs t  and second order
mixing of the A trip le t state:

m ,  2) =

+ Ï *

U  Ih |^ > < A *  |hU :>
■ + E 6. ' n  ^  N—T(Uj iH lA g X A 'lH l^ )

1 (Ia -E ^ A E ’+ C ^ A E ^

+ 2
j  Jpn( l ,2 ) H  p ^ d ^ ld T jd T ^  r  <Bg|H)Aj><A^|H|B^>

T ƒ [_- 2 ----------------------- 5----- PQ (1> 2)
W a B*

<B^|H|A ><^(h | b^>+ 2 J=§------T 3 . zb b (1> 2) + (B g |H l^>  (A^.|H|B~ > + <B" tH| A^>(A* lH|B^>

+ 2
<®g|H| Ag><A^,|H| B* ) + <B^|H|Ag> <A" M b^

^B -E A+CB A ^E B

<ia -e b+cab)aEb

■} PST^1>2^]

M (l,2) is the spin density in B obtained from  the energy differences (E ^-E ^ g )
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^  (E1 9 'E20):

M(l, 2) =

J(jn ( l ,2 )H  Pjd^JdTjdTg ,  <B^|H|A^>2

(Ia "e b+c a b ) (Ia - e b+c a b^

<^slHI^S><^slHl—T> B .
” * rp Pcrp'̂ ">

<ia - e b+c a b )a e b

Pgd^JdTjdTg * < ^ N ^ > 2

w i  ^2 < v v s 7

jB jlH lA g -X A ^ lH lB ;)  B ^  m
2 r p  P q  r p \ *  t  “ )

p j d . 2 )

p f ( l , 2 )

On inspection of the remaining term s it appears that most of them can be ob
tained from the charge-transfer term s in the formula for a a-bond A directly
coupled to the tt-electron system (2. 32) by replacing A by B and

+ ,

~3+
T T . by

+
Es“j “3

T T , by X L*
“3 ~ 1

^ +Ih |a^>

(IA EB+CAB)

W ° ba>

(ITT-EA+AEj +CjA)

<Sj~|H|A^>A^

We now assume that this substitution in the formula for one a-bond is a reasonable
approximation of term  N. In this way a relatively simple formula is obtained
which can easily be generalized for systems having a larger number of a-bonds.
The application of formula 2. 36 in the calculation of p-alkyl proton splittings
will be discussed in chapter IV.
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C H A P T E R  HI

THE SPI N DENSI TY IN THE n - E L E C T R O N  SYSTEM

In chapter H it has been shown that the functions n. and tt. and the spin
TT ■ 'density distribution in the n-electron system p (1,2) play an important role in

the calculation of the spin density in the o-bonds of a n-electron radical. In
this chapter we shall discuss how tt. , jn and pn(l, 2) can be obtained from
n-electron wave functions which are written as linear combinations of Slater
determinants. This will be applied to wave functions obtained from approximation
methods within the molecular orbital theory. The relative validity of these
methods will be investigated by calculation of the spin density distribution in
naphtalene anion and in benzyl.

A. GENERAL FORMULAS

In calculations on Tr-electron systems the wave functions are usually
written as linear combinations of antisymmetrized products of space and spin
functions. In this notation the ground state of the N-electron system and the
ground and excited states of the (N-l)- and (N+l)-electron system are

1 /2 * J 1 . .N )  = £  C* S f tt ( 1 . . N)x ( 1 . . N)
U g  S  S  o

° ’V (1 ..N -1 ) = E c f ' 1 J^TT ( l . .N - l)x ( l . .N - l)
J r Jr r T

0,1y (1..N+1) = E c*+1 J*TTt (1 ..N +I)^(1 ..N+l)

We assume that the antisymmetrized products in these wave functions are eigen-
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functions of the S -operator and that tt , rr̂  and are symmetric or antisym
metric with respect to the permutations for which the corresponding spin func
tions are antisymmetric or symmetric respectively. For all other permutations
we assume

< P tt| R tt> =  6 p R

Then the functions tt introduced in chapter II are

1/2
tt (1..N)

I n(l/2,N)v (N)
N!-----  *  Cs ^6pPTT8(1 * * *-*N)<PX8(l--N)IX^(l..N)>

0 ,1 TT. (1..N-1)
Jm-

n(S,N-l)vR_j N - l ^ ”l)
----- (N-1); 2 cjr 2 ' 6p PTTr ( l .  .N -lX P x ^ l. .N-1» X <1. .N-l)>

0 , 1 TT. (1..N+1)Jm-
/  n(S,N+l)vR+j  (N+l)

V ----- (N+ïjl-----  2 cjt | ,6P PTTt(1- .N+l)| x^(l. • N+l)>

where vR) and vR+- are the number of permutations for which the spin
functions are transformed into itself. The N! permutations for N electrons
can be divided in groups of permutations which give an equal term in tt ( 1 . .  N).
In the summation over P we consider only one permutation out of each group.
This has been demoted by the prime on the summation symbol.
On substitution in 2. 9 we obtain for singlet j

4™ «-«yi.wdv • •
1 m+a" 11 r

~ n(0,N-1) v T  J i  J " j li(1--N -1)nti(1. .N)dT i...dT N_i

I (N+3) n(l/2,N)vN 1  vN n N N , (N-1) (N)
' V  4n(0,N-l)N! (N-1)! J °s Cjr  5P 6R

X < Px^l- .N -l)|x (l. .N-l)Xx([l. .N)|Rxs(l. .N)> JPTTr(l. .N-1) R tt̂ I .  .N)dTr . .dTN 1

The summation over p, can be removed by substitution of

<Pxr ( l . .N - l) |x^(l..N -l)> = <Pxr (l..N )|x ti(l..N)>

where XI.(1. • N) is the doublet spin fimction obtained from y (1.. N-1) by combi-
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nation with the spin function for one electron according to the method described
in section B. 1 of chapter II. Then the summation over p, becomes an expansion
in a complete set of N-electron spin functions. On removal of this set, substi
tution of P = Q and application of 2 .1  we obtain

=j+(N>: N - l
2 2 c N c ? - 1r s s  jr

(N )

S 6Q<Xr (1,,N )|Q xs (1' ,N)>

Jnr ( l . . N -l) Qtts (1. . N)dT l. . .  drN 1

Because of the fact that the numbers of electron-pairs in i|i(l.. N -l) and in
* (1 .. N) are equal, the wave functions are in general chosen in such a way that

Vvt = VXT . ,  hence for singlet jN N -l

xi*(N) = E £ cJ  c j -1 (|  6Q<Xr d -  • N) |Qxs d . . N)> JiTr ( l . . N -l) Qtt̂ I .  . N)dxr  . .  d x ^

3. la

In the same way it can be shown that for triplet j

Ih (N )- r
• V3

1 „ N N -l— 2 2 c  c.s jrr s

(N)
2 ' 6
Q

Q <Xr(l- -N) |Qxs( l. -N)> Jnr(l. .N -l) Qns(l. .N)dxr . d x ^

3.1b

In the calculation of v. it must be noted that we have one more electron-pair in
i|r (1 .. N+l) than in f ( l . . N), so vN+1 = 2vN- For both singlet and triplet j we

obtain

Ttj” (N+l) = 2 2  cJJ+1 c »  <N2 '6 q <X8(1. .N+lJlQXjd. .N+l)> Jtts(1. .N) 0^ (1. .N+l)dxr  .dxN

3.2

In many calculations the wave functions are written as linear combinations
of antisymmetrized products of one-electron functions From these the
functions can easily  be obtained by adding a 'ghost' orbital $x to the (N -l)-
electron system  in such a way that the total wave function is  a doublet (see
section B. 1 of chapter II) and calculation of the overlap of this doublet

function with ( u ( l . . N).
When t Q( l . . N), f (1 .. N -l) and ^ (1 . .  N+l) are expressed in terms of the same
set of one-electron functions, then the overlap has the form

Y l  a* < W
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Equation 3.1 can now be rewritten as

+ +
" .  a . .  'X ,

^  k Jk k
for singlet j

3.3

■J V5 k jk k
for triplet j

tt.  is calculated by adding the 'ghost' orbital to f ( l . . N). For both singlet and
triplet j equation 3.2 becomes

The factor 1/V2" arises from the fact that vXT, , = 2v,T.N+l N

The spin density distribution pn(l,2) is calculated from ttT  or tt." by appli
cation of 2.19 or 2.20 respectively.

These formulas can be used for wave functions obtained from both molec
ular orbital and valence bond methods. In the following we shall restrict our
selves to molecular orbital methods.

B. APPLICATION IN THE MOLECULAR ORBITAL THEORY

1. The wa ve  f u n c t i o n s

We consider a system of an odd number (N) of rr-electrons moving over m
atomic orbitals f of 2pz~type. From the molecular orbitals

which are calculated by a Hiickel or self consistent field approximation, the
ground state wave function is constructed as an antisymmetrized product function
(Slater determinant):

*3 =^ k a*
3.4

*0tt..N) =|
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in which represents (j)or(j)

i 1 represents §jU)0(J)

$ is the singly occupied orbital
Q.

The singly excited states are [1]

i . » " 1» -  1*1*1' * ■. § § • • • $  1 £ 1p a a-1 a|

■ W q |

•*pV • V l * a l + I*li l ” *. $  i  . . .q p

> ' N> % V 2 M r .. $ § . . .  i  1 + 1 •«p a a-1 q| 1 1 1 . M  ..p q

where 1 <  p < a
a < q< m

After inclusion of configuration interaction with the singly excited states, the
wave function for the ground state becomes

*0 °0  *0
a-1  A A

+ E c * +
n= i pa pa

m B , B a-1 m C , C
E c ^ + E  E c ^  +

q=a+! a<l aq p=i q=a+i  P<1 Pq
a-1 m D ,DE E c u /
p=l q=a+l P«1 M

In an exact calculation the wave functions in which two or more electrons are
excited must also be considered but in practice this is impossible. For large
radicals it is even impossible to calculate the mixing of the singly excited states
by a diagonalization of the Hamiltonian matrix. E. g. for the radicals we have
studied the number of singly excited states varies from 180 for triphenylmethyl
until 684 for tri-p-biphenylylmethyl. These numbers are much too large for
practical calculations. Therefore, is usually calculated by a first order
approximation:

*0
<*0ihK>

<E f E o >

The matrix elements in this expression are
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h + G + (pan aa)pa pa

h + Gaq aq< * o « C >  ■

where h is the operator for the kinetic energy and the interaction with the core
(nuclei and a-electrons),

^ { h p q  + G + (paiiqa) -  l/2<pal|aq>J

W 2  <pa||aq)

(pa||aq> = f i (1)§ (2) ( l ) i  (2)dT1dT„j  p a  r ._  a q x ^

a-1
Gn o = £ t 2<3P« " < jPM<U>}PQ j= i

On substitution ^  becomes

£
P=1

+ G + <panaa>]a-1  thpa T ^ p a  T ^ l|aa'-> A
( E ^ -E )pa 0

m ^ a a  + Gaa ̂  B-  2 - V -  -2-
pa q=a+l (EB -E„) aqaq 0

a-1  m
-  £ £

p=l q=a+l

3.5

w(pa|iaq)^ thrv, + Gnn + <Pa ||qa ) ” l/2<paiiaq> } r  a-1  m____ ca___ cH___ ___________________  ^  2  ___ -
(EC -E .)  1X1 P=1 q=a+l 2(ED - E Jpq O' '  pq 0'

The further evaluation of this wave function depends on the method which has been
used for the calculation of the molecular orbitals. For radicals different types
of self consistent field operators have been proposed in the literature:
Molecular orbitals calculated according to Longuet-Higgins and Pople’s method
[1] satisfy the condition

hii + G y + -  {2 (aillaj) - <aillja>} =0 for i /  j

so, the matrix elements become

<^()!Hl^pa> = (pallaa)

^ 0lHl^aq> = -<aa)|aq>

< V HI*w >  = 0

<^0|H|^ ° >  = ~^<Paiiaq>
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If Roothaan's method [2] is used, then

^ 0 IIfl*pq> — ^ ^ pallaq^

For calculations on positive and negative radical-ions it may be advantageous
to use the self consistent field orbitals for the neutral molecule. In this case
we have the conditions

hjj + Gy + 2 (iallja) -  (iailaj) = 0 for positive ions

hy + Gy = 0 for negative ions

from which the formulas for the matrix elements are easily obtained.

2. The c a l c u l a t i o n  of t he  s p i n  d e n s i t y  d i s t r i b u t i o n

The functions v'j’ and vj

The functions tt. and t n  are defined as integrals of products of the exact
wave functions for the (N-l)-, N- and (N+l)-electron systems. However, the
exact wave functions can not be calculated. When the wave function for the N-
electron system is obtained from a Hückel-approximation, then it is reasonable
to use the same method in the calculation of the wave functions for the (N-l)-
and (N+l)-electron system. In our calculation of the wave function for the N-
electron system we use first order configuration interaction. In this case the
choice of the wave functions for the (N-l) -  and (N+l)-electron system is less
obvious. We shall assume that a good approximation of the functions tt.  and
TTj is obtained when both (l(1. . N-l), ^ (1 ..  N) and f . ( l . . N+l) are calculated
with first order configuration interaction starting with a common set of
molecular orbitals.

In order to illustrate the calculation of ttT  and tt. we consider the wave
function for the ground state of the (N-l)-electron system before configuration
interaction:

I 1 1 a-1 a-11
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Combination with a 'ghost' orbital 5 according to the method discussed in
section A. 1 of chapter II yields

l* l i l - '- * a - l* a - l , xl

The overlap of this function with ^ (1 . .  N) is

m
<4al4x>"ai x q=a+l

[h +G J

(Eaq-E0> Q
I* >x

so, according to 3. 3, tt̂  becomes on neglect of configuration interaction in the
(N-l) -electron system

= 0=$a
m ^ a a  + ^aa ̂

q=a+l (E -E ) qaq 0'
3.6

In the same way we can obtain functions tt̂  from the $ -» §a singlet and triplet
excited states of the (N-l)-electron system. The contribution of other excited
states in the spin density appears to be negligible in a first order approximation.
The functions rr̂  and tt are obtained in a similar way by adding the 'ghost'
orbital to (r.(l. . N).

Inclusion of configuration interaction in the (N-l)- and (N+l)-electron
systems leads to a mixing of these functions. This mixing can easily be calcu
lated from the well-known formulas for the matrix elements for a closed-shell
system [3]. In order to simplify the calculations, we shall neglect the influence
of the charge in the a-bond. Then the functions tt. after first order configuration
interaction become

#a + a - l t y y p * " » * ) ]  t _ m

<Epa-E0> q=a+l

{h +G +(qa(laa)}aq aq ^ /J
(ES - E jaq 0'

-  m l .  1 r  ^ a q ^ a q ^

S a< 1^  q L (E®q-E0)

2{h +G +(qal|aa)}_L aq aq 1

< - E0>

, i ' ; ‘ lhl«|,C p0<<P‘ l'1“>- 1/2l>la,a,'>l , + (pftllaq) ,  ,

affp-I P ( Ê ^ 0 >  P
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1 m {h +G +(qa||sa>+(qa||as>}
— -m E —3-----3------------ _-----------------* fo r singlet i  $

*h s=a+l (Eö -E ö ) 8 as^q as aq '

-  = 1 + J_ h g * aq} t + 1 a"1 {hpq+Gpq+(pa;lqa>~l/2<pa||aq)}
^  ^2 q (E® - E )  a ^2 P=1 (EC -E  ) paq 0 pq 0

_ ^ a’ l  <pa||aq> t _ 1 “  ^ q S+̂ qs+ q̂a||sa  ̂~ q̂al|a s^  f
4 P=! (E® - E ') p - J ï  s-a+1 (ET -E T ) 8pq 0' Hén ' a s  aq'

for tr ip le t $ -• §a q

— S Tw here E^, E& and E& a re  the energies of the ground sta te  and the $a -•
singlet and tr ip le t excited sta tes of the (N +l)-electron system .
For the functions ttT s im ila r form ulas can be derived.

The spin density distribution pn(l,2)

By application of 2.19 or 2 .20, pn( l ,  2) appears to be

a-1  {h +G +<pa||aa>}
PTT(1.2) = $ (1)*n(2) + 2 E ^

a  a P=1 (E -E ft)'  pa 0'
2 t i a (1)V 2) + V 1)$a(2)}

-  2 E
m fh +G } ,“ 1 aq a q J 1 { * ( ! ) •  (2) + i  (1) ® (2)}

q=a+l (e  -E  ) 2 *q'‘ '* a v
aq 0

a-1
+ 2 E

P=1
2 <^Haq> I  { ,  (1) * (2) + « (1) i  (2)}

q=a+l (E -E„) z p q q Ppq 0

Usually pTT(l,2 )  is  w ritten in te rm s of an atomic orbital spin density m atrix:

Pna .2 )  = 2 P l U D U 2 )  + E p ^  {fa (l)fp(2) + fp(l)fa (2)}aa a a (a$

w here p ^ ,  the spin density in atomic orbital f ^ , is

3.8

66



2 . .  a - 1 t hDa'K3na+<Pa lla a >]+2 s -2 v *pa 0'  ' a aq o’

+ 2 a£X “  <pa||aq) c c
p=l q=a+l (£u  _e  \ P® Q®

pq 0'

This formula for has first been derived by Hoytink [ 4 ] .

paB might be called the overlap (or bond) spin density

p" = c c + 2 V  —P* ?a<* ap
a^  {V V +<pa|laa>} l  f , . m {h "K} }

2 {c» c„ 0 + c^ oD} - 2 s  — a  aqP -1 (E“ -E ) 2 ao  pp P« ap q=a+1 Ö
pa o ' aq 0'

3.10

X j ( c  c + c c J  + 2 V  ?  Jpa||aq) 1 <• + ,
2 ao qp qa apJ p=i q^ +1 D _£  2 lCpcrCqp Cq<*Cppj

pq 0'

3. A p p r o x i m a t e  e x p r e s s i o n s  f o r  t h e  s p i n  d e n s i t y  d i s t r i b u t i o r

For molecular orbitals calculated according to Longuet-Higgins and Pople's
method [1] equation 3. 9 becomes

p" = cf  + a s 1 -f f i |aa) c c + “  <qallaa)
“  P=1 (Epa -E 0) a“  P° q=a+l (E“  -E 0) a« <**

+ 2 * ?  2 - ^ » aq> c c
p=l q=a+l (e u  _e  ) P® q®

pq 0

3.11

From 3.10 a similar expression for the overlap spin densities can be derived.
On neglect of differential overlap and replacement of the excitation energies by
the differences in orbital energy, p^ and p^ becomeao/ op

ïï . 2  1 2 1
o» Ca« ’ 2 £ "ap Ypp %  “ 2 (^v) na , n v V Ca / a v

tt _ 1 „
~ c„..c„a * ö  2 TTaP aa ap 2  ̂ o P ,p Ypp ap 2 "ap.pv^pv cap°a

3.12
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where y ^  = <uvlh*v>. ^ ^  and ^  are quantities introduced
by Coulson and Longuet-Higgins [5, 6] . For systems of an odd number of elec
trons they are defined by

_ a a^1 “  CjaCkaCjuCkii . ‘f 1 ^ c / W ^ a n
<v « F  -j=i V V

2 Z
k=a+l

m C, C C| C111 key acy kp, â ,
W

(atom-atom polarizability) 3 .13a

a, ulv
4 Z Z

j=l k=a+l
'kgCja [cjuCkv+cku,Cjv^ g CaaCja ^ ju ,Cav °a|j,C jv^

(VV j=l V f
m C C. fc. C +C C. }

2 Z aa ko kp, av a|j, kv (atom-bond polarizabiUty) 3 .13b
k=a+l (V V

^ag.p, 2 Trp,ag
(bond-atom polarizability) 3 .13c

_ „ a "1 ®  Ĉja ckp+ckofcj p j uCkv+CkuCj v |
V  V» j=l k=a+l (V V

3.13d

K 1 [cja CaB+CaaCjB] tcjuCav+cauCjv} ”  tckttCaB+CagCkB} C c ^ c ^ + c ^ }
*— (ea '® / k=a+l (ek"ea)j=l

(bond-bond polarizability)

For molecular orbitals calculated according to Roothaan's method [2] ,
the second and third term of 3.11 have to be omitted. It is then also possible
to use 3.12 provided the polarizabilities are defined by the first term of 3.13
only.
For calculations of the spin density distribution in radical-ions from the self
consistent field orbitals of the neutral molecule the polarizabilities of the
neutral molecule have to be substituted in 3.12. These can be obtained from
3.13 by considering the first term only and taking j to be the orbitals which
are occupied in the neutral molecule and k to be the unoccupied orbitals.

It can easily be shown that for alternant hydrocarbons tt̂  v = 0 if p, and v
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do not belong to the same set. The contribution of the third term in p n will
oar

therefore be small and is usually neglected. The value of is especially
important for a and B nearest neighbours. In this case the second term
vanishes; the third term will be considered for p, and v nearest neighbours only.
Assuming y  and y  to be independent of p, and v and introducing(J|V

1 y
x = _ I  la l
1 2 b

1 'p,v
2 B

we obtain from 3.12

n _ 2 , , _ 2P -  C + 2 TT Caot &a 1 ap, ap,

= c„ c _ + 1. S tt - c co?B aa aB 2  ̂ j aB.pv ap av

3.14

where tt̂  and are expressed in units 1/B.

The formula for p ^  has first been derived by Me Lachlan [7] from an approx
imated unrestricted Hartree-Fock wave function.

It is usually assumed that these formulas can also be used for Hiickel-
orbitals. In these calculations the Hiickel-orbitals must be regarded as an
approximation of self consistent field orbitals according to Longuet-Higgins
and Pople for neutral radicals and as an approximation of the self consistent
field orbitals for the neutral molecule in the case of radical-ions.

According to the pairing principle [8] simple relations must exist between
the spin densities in positive and negative ions of alternant hydrocarbons. From
the pairing properties of the molecular orbitals it can easily be shown that

/ M i _ , TT .
^aa positive ion ''̂ aa negative ion

/  tt \ _  _ . n  .
pc*B positive ion pof) negative ion

whereas for neutral alternant radicals

3.15
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3.16

For the functions tt. and an approximation similar to 3.14 can be used.
In chapter II it has been shown that in the spin density in the a-bonds these
functions appear in terms of the type

E
"+AV -

In the approximations used above the singlet and triplet excitation energies for
an excitation i -* § in the (N+l)-electron system can be written e -e anda q q a
e -  «a -  2 (qa||aq) respectively. After substitution the terms for corresponding
singlets and triplets can be added together. Then a formula is obtained in which
the same approximation for the exchange integrals can be introduced as has
been used in 3.14. This has been applied for the calculations of cr-alkyl proton
splittings in chapter IV.

C. COMPARISON OF SOME APPROXIMATION METHODS

In order to investigate the reliability of the simplified formulas 3.14, we
have calculated the values of for naphtalene anion and benzyl according to
several approximation methods.

Naphtalene anion

The spin density in naphtalene anion (which, in our approximation, is equal
to the one in the cation) has been calculated according to the following methods:
1. Configuration interaction with all singly excited states starting with the self

consistent field orbitals of the neutral molecule.
2. In a second calculation we have included the doubly excited states which, in

terms of differences in orbital energy, have the same excitation energy as
one of the singly excited states.

3. F irst order configuration interaction starting with the self consistent field
orbitals for the neutral molecule (equation 3.9).

4. Me Lachlan's formula 3114 applied to Hiickel-orbitals. The constant X- has
been given the usual value of 1.2.

5. Hückel approximation without configuration interaction.
The resulting spin densities are collected in table 3.1.
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1

1 2 3 4 5
TTpn 0.232 0.232 0.222 0. 229 0.181
T T

p22 0.040 0.041 0.049 0.043 0.069
n

p99 -0. 045 -0.044 -0. 041 -0.044 0

Table 3.1. Calculated spin densities in napbtalene anion

From previously published calculations it appears that for ions of alternant
hydrocarbons the spin densities calculated according to Me Lachlan’s formula
are in very good agreement with the ones obtained from first order configuration
interaction. From our results it seems quite reasonable to assume that
Mclachlan's formula is also a good approximation of a calculation in which con
figuration interaction is taken into account by diagonalization of the Hamiltonian
matrix. It is not quite clear if this will also be true for non-alternant hydrocar
bons. It is usually assumed that in this case Mclachlan's formula is less correct
but calculations on fluoranthene and acenaphtalene according to Mclachlan's
formula or with first order configuration interaction do not give largely different
results (see references 7 and 9).

Benzyl

The spin density in benzyl has been calculated from self consistent field
orbitals obtained according to Roothaan's method and from Hückel-orbitals in
the following approximations:
1. Configuration interaction with all singly excited states starting with self

consistent field orbitals.
2. First order configuration interaction starting with self consistent field

orbitals.
3. Me Lachlan's formula applied to self consistent field orbitals (see text after

equation 3.13).
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4. Mc Lachlan's formula applied to Hiickel-orbitals.
The resulting spin densities are shown in table 3. 2.

3 2

1 2 3 4

TT

pi i -0.101 -0.092 -0.096 -0.123

TT

p22 0.183 0.123 0.121 0.164

TT

P33 -0. 065 -0. 039 -0. 031 -0. 075

C
L 0.160 0.084 0.077 0.137

t=
C

L 0. 706 0.848 0.842 0.810

Table 3.2. Calculated spin densities in benzyl

From the spin densities given in table 3.2 (which are in good agreement
with values given by Carrington and Smith [10]) it appears that Me Lachlan's
formula applied to self consistent field orbitals, calculated according to
Roothaan, is in good agreement with first order configuration interaction. In
this case, however, the agreement with the complete calculation is much less
satisfactory. In fact, Me Lachlan's formula applied to Hiickel-orbitals is a
much better approximation of the complete calculation. As Hiickel-orbitals
can be regarded as an approximation of self consistent field orbitals according
to Longuet-Higgins and Pople, this could mean that these orbitals are superior
to the ones obtained according to Roothaan's method.

From the calculations on naphtalene anion and on benzyl we may conclude
that for ions of alternant hydrocarbons and for neutral alternant radicals
equation 3.14 applied to Hiickel-orbitals is a good approximation of spin densi
ties obtained from configuration interaction methods. This formula will there
fore be used in all further calculations.
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C H A P T E R  IV

THE CALCULATION OF PROTON SPLITTIN GS

In chapter H formulas have been derived for the spin density in the o-bonds
of a TT-electron radical. In this chapter we shall discuss the application of these
formulas in the calculation of the splitting constants of protons in the nodal plane
of the TT-electron system and of a -  and B-protons of alkyl substituents.

A. THE WAVE FUNCTIONS FOR THE ct-BONDS

1. G e n e r a l  f o r m u l a s

As in many theoretical discussions we assume that a-bonds can be described
in a sufficiently accurate way with wave functions which are calculated in a basis
of two atomic orbitals. Then, molecular orbitals can be chosen such that the
best wave functions for the one- and three-electron systems consist of one Slater
determinant. In general, the sets of molecular orbitals for the one- and three-
electron systems are different e. g. by differences in the coefficients of the
atomic orbitals and by differences in the effective nuclear charges for the atomic
orbitals. Writing the bonding and antibonding orbitals , $* and , i*

for the one- and three-electron system respectively, we obtain from the for
mulas given in section HI. A for the functions introduced in chapter II

a(l) = i (1) 4.1
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4.2

^ ( 1 , 2 ,3 )  = V §  { § ^ ( 1 ) ^ ( 2 )  1*^(3) - | « a  <1)4* (2)§a  (3)

" 2  4a (1)ia l 2 ) ia (3>}2 G3 G3 a 3

CT a . 2 ,3 )  = - i  [i* (1)§ (2)$ (3) -  i (1)4* (2)4 (3)}
a 3 ° 3  G3 G3 a 3 a 3

The singlet ground state wave function for the two—electron system is a linear
combination of the three possible singlet functions

a(l,2 ) = p 4 (1)* (2) + - ^  { * <1)4* (2) + 4* (1)* (2)] + v 4* (1)** (2)
2 °2  ct2 CT2 a2 °2  a2 a2

4.3

In addition there is only one possible triplet function

1(̂ 1 .2) =— {« (1)4* (2) -  4* (1)4 (2)} 4.4
<J2 ° 2 ' a 2 ' a 2 ' ct2'

The molecular orbitals for the singlet and triplet functions may be different,
e .g . by differences in the effective nuclear charges for the atomic orbitals.

In a molecular orbital approximation without configuration interaction the
coefficients in 4. 3 are p= l, X = v=0 whereas, when the coefficients of the atomic
orbitals in 4^ are  equal, the covalent valence bond wave function can be obtained
by substitution of

p = -  v =— , X = 0
&

if the overlap is neglected and substitution of

u =  , (1+Sl .
V(2+2S2)

V (i-s) (
V (2+2S) ’

X = 0

if the overlap is included.

It is always possible to choose molecular orbitals in such a way that X = 0
in the exact wave function for the ground state. For a symmetric a-bond the
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coefficients of the atomic orbitals in these molecular orbitals are equal to
the coefficients in the molecular orbitals for the one- and three-electron
system. For bonds having a small polarity, as is usually assumed to be the
case for all normal o-bonds, it seems quite reasonable to suppose that the
coefficients in the molecular orbitals for the one- and three-electron system
can be set equal to the coefficients in the molecular orbitals for the two-
electron system for which X = 0. Because this assumption greatly simplifies the
calculations, we shall use this approximation in most applications.
If we assume the molecular orbitals in 4.1 until 4.4 to be identical, then we
obtain on substitution in 2.11, 2.12, 2.16 and 2.18

g ^ = u § +  —  f* gc =u,§*--^-i
“ S  a  °  a  x/2 CT

+ _ 1 ** 1 .
Orr.----------i a™ = -----------4
" T V2 a  " T 4 Ï  CT

4.5

P j( l, 2) = 4ct(1)4ct(2)

PgU.2) = 4*(1)4* (2) 4 .6

PgT (l,2 )  = { 4a (l)4*(2) + 4*(l)4a (2)} + X {4a (l)4a <2) - 4*(1)4*(2)}

where X = 0 in most applications.

When we assume that the molecular orbitals for the one-, two- and three-
electron systems are different because of differences in the effective nuclear
charges for the atomic orbitals, then the factors p,, X and v in 4. 5 and 4. 6
must be multiplied by overlap integrals such as (4^ | 4a ) . In practice, how

ever, these integrals can be set equal to 1. The error introduced in this way
is very small, e. g. the overlap integral between hydrogen ls-orbitals with
effective nuclear charges of 1.0 and 1.2 is 0.98.

2. The i n f l ue nc e  of a change  in the n - e l e c t r o n  s y s t e m

In section C. 1 of chapter II it has been remarked that the wave functions
for the a-bonds are assumed to be calculated in the presence of the rr-electron
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system (and, of course, of all other u-bonds). Therefore the wave functions
for the a -bonds are dependent on the charge and spin density distribution in
the TT-electron system according to equations 2.26 and 2. 27. In the following
we shall calculate the influence of a change AQtt(1, 2) and Ap^l, 2) on the wave
functions for the a -bonds with first order perturbation theory. In this calculation
we assume that the atomic orbitals in the perturbed and unperturbed wave
functions are identical. The molecular orbitals are chosen such that \  = 0 in
the wave function for the unperturbed ground state:

= p. § (1)4 (2) + v 4* (1)4* (2)1 r  a a a a

The perturbation causes a mixing of the wave functions for the excited states
with ¥-, • The wave functions for the excited states are assumed to be

*9 = v 4 (1)4 (2) -  p, 4* (1) 4* (2)
O  O  O  O

*3 = ^ { 4 a (l)4*(2) + 4* (1) 4^(2)}

These wave functions are exactly correct for a symmetric a-bond such a s a C - C
bond in benzene. For C-H bonds this will not be true but in a first order calcu
lation the errors introduced in this way will be small.
The matrix elements of the perturbation operator are calculated from 2.26 to
be

<¥i Jh 'I ) = £ £ Aq ô [2p,2 <aa||ap> -  p,2 <aa||pa> + 2v2 <a*ar|a*p> -  v2 <c7*o'||pd*>}
a 6 09

<*1|K,I O  = E E Aq^ p.v{2 <acy||ap) -  (aallPa) -2 <a*o'||CT*p>+ <a*or||ea*>}1  ̂ a p
<♦, lHU„> = Z  S Aq" {2 ir«»a*8> -  <o«||pa"*»

1 d a 8 V 2

where A Qn( l , 2) is written in terms of the charge-density bond-order matrix
q ^ . From 2.27 the first order correction in the energy of the triplet state
appears to be

<1a ( l ,2 ) |H '|1a(l,2 )>  = £ £ Aq”  {<ffc*rp> -  -  <aa;||pa> + <a*a|a*p> -  ^<a*a|lea*>}
Off ~  2  z

+ S E Ap™ {<ao||ea>+ <a*oi||pa*>}
a  8 06
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A fter substitution of the m atrix  elem ents in the f irs t  o rder form ula

*1 - 2
3 = 2 , 3

<*ilH' l y

-Ei>

the coefficients in the singlet ground sta te  wave function become

2
n ' =  \L- , T ^ -VF  > 2  2  Aq77,  [2 < w ||a B >  -  < a a  |l&a> r2 (a*a  lla*B >  +  ( c ^ a l lB c r * ) }

' 2  1 ' a  8 ap

X' = -  - ^ ^ - = 2  2 Aq77. {2 <oa||a*B> -  <aa||Ba*>}
( E g - E j ) ^  a 8 “p

2
v' = v + w i 2 2 Aq" {2 (aallap) -  (aallBa) -2 <a*a|a*0> + fa*a||Ba*>}

^ 2 ” r  a  B “P

from  which we obtain on substitution in 4. 6

( P o T ( 1 . 2 ) ) ’ = { §  (1)§*(2) +  §*(1)J (2)}
D  J. . / q  O  O  O  O

+ ktjÉ - 2 2 Aq" ,F t {2 <ao'||CTB> -  (oa||3cr> -2 <a*o'||a*B>

+ <a*a||Bcr*>} t§a (l)**(2) + **(1)^(2)} 4. 7

-  (E zë ) t2 < H CT*P> " <Mlea*>} ( l 0 (l)#ff(2) -  £<1)#*<2)}]
3 1

The excitation energy of the trip le t sta te  becomes

2 2
(AET)' = AET + <v  ̂ 2 2 Aq" {2 fca||aB> -  <aa||&a> -2 <a*a||cT*0> + <a*oJ| Ba*>}a  a & a g ap

4 .8

+  2 2  Apn fl { < o e | |B ® >  -  < ü * a ||B < 7 * )}
a  B °P .
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B. PROTONS IN THE NODAL PLANE

The spin density in a-bonds in the nodal plane of a n-electron radical is
given by equation 2.28. Writing the spin density distribution in the rr-electron
system in terms of the atomic orbital spin density matrix, we obtain on sub
stitution of 4. 6 (with \  = 0)

2
p°(l. 2) = <ao || |5a*) |  (yi)$*<2) + $*(1)^(2)} 4.9

In the calculation of splitting constants of protons bonded to unsaturated carbon
atoms usually only the terms arising from the spin density pn on the carbon
atom C to which the proton is bonded are considered. In this approximation

o  ®p (1,2) becomes
2

P °d,2) =-2<V~ ^ (aolloct*) |  {4a(l)#*(2) + y i ) * a (2)} p ^  4.10

In order to obtain an impression which terms are important in 4.10 we assume

$CT

4* =
<7

where f , f. are the atomic orbitals and Vn" , Vn* are the normalization con-c n (y (j
stants. On substitution in 4.10 we obtain

2
p"d.2) = - ^ ^ ^ - { ( a c l l c a ) -  <«h|ho>}{f (l)f (2) -  f. (l)f. (2)} pn
® N N* aE c c n H a aCT CT CT

In the calculation of the proton splitting, which depends on the spin density at
the nucleus, the contribution of the spin density in the carbon orbital is usually
neglected. Usual (semi-empirical) values for the exchange integrals are, e. g.
in a valence bond calculation with neglect of overlap [1]

(Qfc||caf) = 1.26eV
<ah||ha > = 0. 79 eV
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From these figures it is clear that the interaction of f with the hydrogen orbital
is very important and can not be neglected. On substitution of the integral values
the spin density in the hydrogen orbital appears to be negative for positive values
of p17 . This is in agreement with experimental results [2] .

If it is assumed that the properties of the C-H bond will be the same in
J J

different molecules, then the splitting constant a can be calculated from

where the coupling constant Q is about -28 gauss. 4.11 is usually called
McConnell's formula [3,4] .

A comparison of this formula with experimental results is very difficult
because possible deviations might also be caused by errors in the calculated
TT-electron spin densities. Two problems in the calculation of proton splittings
will be discussed in some detail:
a. The differences between the splitting constants of positive and negative ions

of alternant hydrocarbons.
b. The influence of configuration interaction in the n -electron system on the

calculated splitting constants of ions of alternant hydrocarbons.

a. The differences between the splitting constants of positive and negative
ions of alternant hydrocarbons

As has been discussed in chapter III (equation 3.15), the spin densities
p77 in positive and negative ions of alternant hydrocarbons should be equal
according to the pairing principle. Experimentally, however, the splitting
constants appear to be different (see table 4.1). The experimental results
are usually summarized by saying that the splitting constants are larger in the
positive ion than in the negative ion but this is not completely correct because
for some of the small splitting constants the reverse is found. It is very un
likely that the differences between positive and negative ions can be explained
completely by differences in p^ . If we assume, e.g. for the anthracene ions,
that Q is a constant, then it follows from the experimental splitting constants
that the difference in p17 for the carbon atoms C ,, until C, . must be abouta a  11 14
0.03. This seems to be almost impossible in view of the fact that p ^  itself
is 0.008 according to a Hiickel approximation and -0.023 if first order confi
guration interaction is included. Moreover, Bolton and Fraenkel [8] have
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Table 4 .1 . Splitting constants and spin densities in positive and negative ions of alternant hydrocarbons

H Ma cation Ha anion Ha
averaged

TT
P

Hückel

ITP
Me Lachlan

TTP
f ir s t  o rder

-Qexp.
Hückel

-Qexp.
Me Lachlan

-Qexp.
f irs t  order

Xj = 1 .17 conf. int. conf. int.

re f . 5 re f. 5 re f. 6 re f. 6 re f. 7

anthracene
1 3.061 2.740 2.901 0.097 0.119 0.112 29.9 24.4 25.9

O C O 2
2 1.379 1.509 1,444 0.048 0.031 0.040 30.1 46.6 36.1
9 6.533 5.337 5.935 0.193 0.257 0.242 30.7 23.1 24.5

tetracene
1 1.694 1.541 1. 618 0.056 0.067 0.060 28.9 24.1 27.0

coco2
5

2 1.030 1.162 1.096 0.034 0.022 0.020 32.2 49.8 54.8
5 5.061 4.226 4.644 0.147 0.196 0.197 31.6 23. 7 23.6

perylene „
1 3.054 3.043 3.049 0.083 0.106 0.102 36.7 28.8 29.9w« 2 -0.446 -0 .450 -0.448 0.013 -0. 023 -0. 018 — 19.5 24.9

55 3 4.053 3.493 3. 773 0.108 0.152 0.145 34.9 24.8 26.0

pyrene 2
YY. 1 5.38 4. 75 5.07 0.136 0.188 0.162 37.2 27.0 31.3co 2 -1 .18 -1 .09 -1 .14 0.000 -0. 053 -0 . 038 — 21.5 30.0

u 4 2.12 2.08 2.10 0.087 0.093 0.085 24.1 22.6 24.7



shown that the differences in the C splitting constants of the anthracene ions
are much smaller than the differences in the proton splittings which, according
to these authors, is most readily interpreted as implying that the pairing
theorem is valid to a high degree of approximation.

In the literature two formulas have been proposed which give a difference
in the proton splittings without a difference in the rr-electron spin densities:

Colpa and Bolton’s formula

Colpa and Bolton [9] and Higuchi [10] have discussed the influence of the
charge density distribution in the n-electron system on the relation between
a and p17 in a molecular orbital approximation. Their calculations can beor ota
repeated in a somewhat more general way by substitution of 4. 7 and 4. 8 in 2.28
When we restrict ourselves to terms in Aq17 and neglect terms in A p17 , whichaa aa
are equal for positive and negative ions, then we obtain instead of 4.10

P ° ( l ,2 )  = 2 (v ~H')2 |  { y i ) $ * ( 2 )  + 4*(1)§ct(2)} p £ a [ l

AEo
, 2  2. * "(v -p ) Aq

+---------— [ 2  <CTo:||cra) -  <aa||aa> -2  fc*a||a*ar>+ (o*a ||ar<7*>]

13

{■
4pv

(v-p) (Eg-Ej) AE-tM] 4.12

(v2-p 2) f2 (ao'lla*») -  (o a lla a * )]

<E3‘El )AEa
T-------------- p77 Aq77 [ (ao-ll Qfa*>1 ora- aa

X {4a ( l ) 4a (2) -  $*(!)§* (2)} + {(ao-ilQ-o) -  <o *q-||qo*>}

X h  {* <1)§*(2) + **(1) # (2)}]si O O (7 O

All charge dependent terms in this expression are proportional to (v+p) so they
vanish in a covalent valence bond approximation with neglect of overlap. If the
overlap is included, however, the results from a molecular orbital and a
valence bond calculation will have the same order of magnitude. From Higuchi's
calculations we should conclude that the charge dependent terms are not negligible.
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The resulting splitting constants, however, are larger for negative ions than
for positive ions which is not in agreement with the experiments.

In our opinion the charge effect is much more complicated than is assumed
in Colpa and Bolton's and Higuchi's papers (and in the derivation of 4.12). The
magnitude of this effect is dependent on the shift of charge in the C-H bond
caused by the charge in the 2pz -orbital. According to Higuchi's calculation this
shift is about 0.2 electron per unit change of charge in the 2p -orbital (from
Colpa and Bolton's figures the same order of magnitude can be calculated). If
we assume this to be correct, then we should, in many cases, expect about the
same shift in the C-C bonds, e.g. for the Cg-Cn  and C -Cx bonds in the
anthracene ions where the charge on Cg is much larger than the charge on
c u  and C14. Then, in view of the large magnitude of the shift, the Coulomb
interaction between the a-bonds would considerably reduce the magnitude of
the calculated effect for the proton bonded to Cg. On the other hand, no shift
is expected in the C2-C3 bond for reasons of symmetry whereas in the C^Cg
bond a shift of charge from C  ̂ to Cg is expected because the charge on C is
larger than the charge on Cg. Therefore the charge effect for the proton bonded
to Cg is not reduced by the interaction between the a-bonds and will be more
important than the effect for the proton bonded to Cg. This might explain the
fact that the splitting of the proton bonded to Cg is larger in the negative ion
than in the positive ion but this conclusion must await further investigations.

Due to a sign error, Colpa and Bolton assumed that the charge dependent
terms discussed above should give larger splittings for positive ions. Instead of
McConnell's formula they therefore proposed

a = (Q  + K e"  ) p"a aa aa

where en = 1 - qnaa aa

4 .13

In a later paper Bolton [11] has derived this formula by assuming that the
effective nuclear charge for the carbon atomic orbitals is smaller in the
negative ion than in the positive ion. In this way larger splittings for positive
ions are obtained [11,12] .
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Giacometti, Nordio and Pavan’s formula

Giacometti, Nordio and Pavan [13] ascribed the differences between
positive and negative ions to the overlap spin densities p17- which are oppositeop
for positive and negative ions for and C nearest neighbours (see chapter III).
They therefore proposed

Q, pn  + 2 Q„ p"1 raa a 2 'oB 4.14

It can easily be shown from the secular equations that in a Hiickel approximation
4.14 can also be written

ao = (Q1 + maQ2> cao 4’15

where m is the coefficient of the resonance integral in the energy of the singly
3 -

occupied orbital $ . In a Hiickel approximation the splitting constants will there
fore be larger for positive ions than for negative ions whereas the coupling
constant Q in 4.11 is a constant within one radical-ion. If configuration inter
action is included, however, 4.15 is not correct. It is difficult to see whether it
is possible that in some cases configuration interaction should give larger
splitting constants for negative ions. Because this could explain the difference
e.g. for the 2-position in the anthracene ions, we have calculated (p ^  + P^g)
in the anthracene positive ion according to 3.14 from Hiickel-orbitals. The
inclusion of configuration interaction yielded a smaller value for (p^g + Pgg)
than is obtained from the coefficients in the singly occupied orbital but the
correction was too small to explain the experimental differences for the
2-position.

Besides the charge dependent terms and the overlap spin densities several
other effects might influence the difference between positive and negative ions.
The e .s . r .  spectra of these ions are measured in strongly different solvents;
negative ions in solvents such as dimethoxyethane and positive ions in sulfuric
acid or dichloromethane-SbC 1 _. It is therefore not impossible that solvent effects

0
are of importance.
In all mechanisms discussed before it is assumed that, apart from the effects
studied, the o-bonds in positive and negative ions have equal properties. How
ever, differences e.g. in the bond lengths could easily cause differences in the
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splitting constants. The theoretical values for (ohllha) for C-H bond lengths of
1. 09 and 1.11 X. are 0. 71 and 0. 68 eV respectively. From the figures given
before it can be seen that, though the difference between these two values is
small, it yields a difference in the splitting constants of 5 to 10%. One might
of course consider this to be negligible but the experimental differences are
not very much larger.

From comparisons of 4.11, 4.13 and 4.14 with experimental splittings it
has been concluded that 4.13 and 4.14 predict splitting constants equally well
[7,14,15]. Bloor, Gilson and Daykin [7] even conclude that the extra terms
in 4.13 and 4.14 do not improve the agreement with the experiments obtained
from 4.11. Their conclusions have been criticized by Bolton [16,17].

For a further study of the differences between positive and negative ions
13it would be of importance to know more about the C splittings. A correct inter

pretation of the differences in the proton splittings must also explain why the
13differences in the C splittings in the anthracene ions are much smaller. It is

difficult to see how Bolton's explanation of the differences in the proton splittings
13can be in accordance with the observed differences in the C splittings. The

influence of the overlap spin densities, however, may be different for H and
13C splittings (compare e.g. the influence of the overlap spin densities on
nitrogen splittings as discussed by Henning [18,19]). At present, however,

13the theory of C splittings [1] is insufficiently developed to draw reliable
conclusions from the experimental observations.

b. The influence of configuration interaction in the n-electron system on the
calculated splitting constants of ions of alternant hydrocarbons

Besides the differences between positive and negative ions, a second
problem in the calculation of the splitting constants of ions of alternant hydro
carbons has been discussed in several papers. For the negative ion of naphtalene
the spin densities obtained from a Hiickel calculation show a better agreement
with the experimental splittings than spin densities obtained from more accurate
methods [20] . According to Colpa and Bolton [9] this could be due to the effects
causing the differences between positive and negative ions but, when we assume
that these effects are opposite for these ions, we can exclude this possibility
by comparing the theoretical results with the averaged splittings. The experi-

85



mental Q-values in table 4.1 are calculated from these averaged splittings and
from spin densities obtained from several approximation methods. In a Hiickel
approximation no negative spin densities can be obtained but for atoms having
a positive spin density the experimental Q-values show smaller deviations from
a constant value than Q-values obtained from more accurate calculations.

The reason for this discrepancy, which occurs especially at the 2-position
in the anthracene and tetracene ions, is not clear. According to Schug, Brown
and Karplus [21,22] a valence bond approximation should give better results
but their calculations are of a very approximate nature and it is easily possible
that an improvement would give the same difficulties as are encountered in
the molecular orbital theory. These authors suggest that parameter changes in
the molecular orbital calculation which cause a reduction of the q /q a ratio inct p
the naphtalene ions might improve the agreement with the experimental splittings.
It must be noted, however, that this is only correct for parameter changes which
do not alter the alternant character of the neutral hydrocarbon, i.e . variations
in the 8-values. If we assume p to be proportional to the overlap, then a calcu
lation for the naphtalene anion based on the bond lengths in naphtalene does not
show a significant improvement in the agreement with the experimental splittings.
A variation of the a-value for atoms bonded to three other carbons has a negli
gible effect on the spin density distribution because these atoms are in a nodal
plane of the singly occupied orbital. For the other atoms a change in the a-value
which reduces the q^/q^ ratio leads to an increase of the p ^ / r a t i o  whereas
the opposite change is opposite to the variations which are usually accepted, e. g.
in oi-technique calculations [23] .

From these considerations it is clear that it is at present impossible to
predict splitting constants very accurately. On the other hand, in view of the
crude approximations in even the most accurate calculations, the agreement
with the experimental splittings is surprisingly good.

C. a -PROTONS OF ALKYL SUBSTITUENTS

In the calculation of the spin density on the a-hydrogen atoms of alkyl
substituents in n-electron' radicals the most important terms will be caused by
the direct interaction of the C-H bond with the n-electron system. Besides,
terms will occur in which the spin density is transferred via another a-bond of
the substituent. The latter terms are assumed to be negligible. Consequently
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the spin density will be calculated according to equation 2. 32.
In the following we shall first discuss the question whether it is possible to
calculate the spin density from the first order term 2. 30 only. After this the
complete formula 2. 32 will be considered and finally some remarks will be
made about the question spin polarization versus charge transfer and about the
influence of the substituent on the spin density distribution in the tt -electron
system.

1. The f i r s t  o r d e r  t e r m  2.30

On neglect of the charge transfer wave functions, the spin density in the
C-H bond depends on the first order term 2. 30 only. This type of approximation
has been used by Me Lachlan [24] in his valence bond discussion of the splitting
constants of the protons of methyl substituents. In this calculation the usual
assumption has been made that, due to the ct- tt overlap, the exchange integrals
between a-  and rr-orbitals are negative. A positive spin density on the carbon
atom to which the substituent is bonded then leads to a positive spin density
on the hydrogen atom. This is in agreement with the experimental observations
[25]. According to Me Lachlan the magnitude of the calculated splitting also
agrees with the experiments. On closer inspection, however, it appears that
the first order term 2.30 is not sufficient for an explanation of the observed
splittings:

a. In Me Lachlan's calculation the interaction of the n-electron wave
function with the hydrogen orbital is completely neglected. In the preceding
section it has been shown that this is certainly not correct for protons directly
bonded to the unsaturated system. For methyl protons the tt- H  interaction is
probably even more important because the difference between the distances from
the carbon and hydrogen orbitals to the TT-electron functions is relatively smaller
than in the former case. Therefore the inclusion of the tt- H  interaction should
considerably reduce the proton splittings calculated by Me Lachlan.

b. From 2. 30 we should conclude that a formula similar to McConnell's
formula 4.11 is valid e.g. for the protons of freely rotating methyl substituents.
As will be shown later, this is not in agreement with the experimental e. s .r .
spectra e. g. of the ions of methyl substituted alternant hydrocarbons and of
methyl substituted triphenylmethyl radicals.

c. In the derivation of the contribution of the charge transfer wave functions
in 2. 32 the overlap of the a and tt wave functions has been neglected. It can
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easily be shown that on inclusion of the overlap a first order charge transfer
term is obtained which has a magnitude comparable to the value obtained from
2.30.

2. E v a l u a t i o n  of t he  c o m p l e t e  f o r m u l a  2.32

It is important to note that the overlap has been neglected in the derivation
of the charge transfer contribution in 2. 32. As has been remarked above, the
inclusion of overlap leads to a first order term comparable to 2. 30. Because
a calculation without neglect of overlap is very complicated, we shall assume
that the a and n wave functions have been orthogonalized. Consequently we
shall also assume that the exchange integrals in the first order term 2. 30
are positive. Then the spin density in the hydrogen orbital due to this term has
a negligibly small negative value. For a-alkyl protons the value of the n-electron
wave functions at the proton will be small so the first order charge transfer
contributions in 2. 32 are also neglected.

After expansion of the functions tt,  and tt. in atomic orbitals, the Hamil-
tonian matrix elements with the a-functions are calculated by neglecting all
terms except those involving the 2pz-orbital f of the carbon atom C to which
the substituent is bonded. The interaction of f with the a-functions is assumeda
to vary as the cosine of the angle 9 between the plane of the C-H bond and the
C^-Caj j .  bond and the plane of the z-axis of f^ and the bond.
Equation 2. 32 then becomes

po (1 , 2) cos 6 ^ q q * * a (1)*a(2)
a  -E +AeT+C. )2

TT a j  ja
+

2u,(v-u.)g 8 *otootc*
(I -E +AET+C. )AET' n a  j jo' a

x | { §  (Df*(2) + *M1)*<2)}}z a a a cj J 4.16

. . .  . - . 2 .  $ $ • * * * * > .+ E 6, (c. ) i + ------------------------- T
i 1 >a  L(I -E  +AE +C ,) a  -E  +AE.+C .)AEJ a n  j a) a n  j aj a

x I  t V 1)4£ (2) + * a (1)$a (2)}} ]
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where 0
for 0«. - W i

cT , c. are the coefficients of f in ttT  and tt.of - ja  a  -̂ Qf respectively.

In the calculation of the splitting constants it is in general necessary to average
(1,2) over all possible orientations of the C-H bond. When we assume that

the energy terms in the denominator are independent of the orientation, then
p̂  (l, 2) can be averaged by taking the averaged value of cos^0 . For a freely
“ g-

rotating methyl substituent cos 0 = 1/2 but for other substituents the averaging
is more difficult, e .g . for ethyl substituents it has been observed in several
radicals that the a-hydrogen splitting is about 50% of the splitting constant of
the protons in a corresponding methyl substituent. This is usually interpreted
as being caused by a preferred orientation of the ethyl-group such that cos 0
for the two C-H bonds has its minimum value of 1/4 which means that 0 = ± 60°
or ± 120° (see e .g . ref. 26).

In the following we shall discuss some general properties of equation 4.16.
After this some simplified approximation methods will be considered.

a. The influence of differences in the excitation energies

If for a number of radicals the ionization energies, the electron affinities
and the correction terms in the Coulomb energies are nearly equal and the
contribution of the terms for which j /  0 is small, then it follows from 2.19 and
2.20 that McConnell's formula 4.11 should be valid e. g. for the protons of
freely rotating methyl substituents in these radicals. In this case the coupling
constant Q has a positive value but the magnitude of Q will be different for
different series of radicals. An example of a series of radicals for which
McConnell's formula is valid is the series of symmetrically substituted dimethyl-
naphtalene anions [27,28,29].  In general, however, McConnell's formula will
not be valid for methyl protons. Important deviations are expected for radicals
where configuration interaction can not be neglected in the calculation of the
TT-electron spin density distribution, e. g. methyl substituted triphenylmethyl
radicals, and in comparisons of radicals having a large difference in the energy
terms in the denominator, e.g. positive and negative ions of methyl substituted
alternant hydrocarbons. These two examples will be discussed in more detail.
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Methyl substituted neutral alternant radicals

From the formulas given in section B. 2 of chapter HI it follows that the
functions tt̂  and tt. for j ^ 0 are closely related to the configuration interaction
terms in the tt -electron wave functions. Then, according to 4.16, the configuration
interaction terms in the tt -electron spin density distribution will have an influence
on the spin density in the a-bond which is different from the influence of the
n-electron spin density distribution before configuration interaction (i.e. the
distribution in the singly occupied orbital). This effect is clearly demonstrated
by the e. s . r .  spectra of methyl substituted triphenylmethyl radicals. As will be
shown in chapter V, the n-electron spin density distribution in unsubstituted,
mono- and tri-para-substituted and mono-meta-substituted triphenylmethyl is
almost equal. In the spin density on the para position the contribution of the
singly occupied orbital is the most important one whereas the spin density on
the meta position depends on configuration interaction terms only. Therefore
we should expect from 4.16 that the meta- and para-methyl proton splittings
correspond to different Q-values. This is in agreement with the observed ratios
of the methyl proton splittings and the corresponding ring proton splittings in the
unsubstituted radical (table 4.2).

Ha .ring
unsubstituted

H
amethyl

H . H
amethyl aring

para (from mono-para) 2.80 2.97 1.06
para (from tri-para) 2.80 2.93 1.05
meta (from mono-meta) 1.13 0.84 0. 74

Table 4.2. Methyl proton splittings (gauss) of substituted triphenylmethyl radicals

Positive and negative ions o f  methyl substituted alternant hydrocarbons

It is usually assumed that a  methyl substituent is an electron-donor in a
neutral molecule. Because the electron-donating properties will be more im
portant in positive than in negative ions, we should expect that methyl proton
splittings are larger in positive than in negative ions. This conclusion can not
be derived from 4.16 in a general way but it is certainly more probable than
the opposite possibility. Bolton, Carrington and McLachlan [30] and Colpa and
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de Boer [31] have shown that, indeed, a-alkyl proton splittings are larger
in positive than in negative ions (see table 4.3.).

positive ion negative ion
9 ,10-dimethylanthracene [30]
9-methylanthracene [30]
pyracene [31]

8.00 3. 88
7.79 4.27

12. 80 6. 58

Table 4. 3. a  -alkyl proton splittings of ions of substituted alternant hydrocarbons

It must be noted that the observed differences can not be explained with an
inductive effect. Calculations show that this should cause a much smaller diffe
rence between positive and negative ions. Moreover, the inductive effect leads
in many cases to a larger splitting in the negative ion, e. g. in pyracene.

The possibility that the effects, which cause the differences between the
ring proton splittings in the unsubstituted ions, are also of importance can not
be excluded. However, these effects are not well understood so a correction
is impossible. Moreover, the differences in the a-alkyl proton splittings are
much larger than the differences in the ring proton splittings so the neglect
of these effects seems to be reasonable.

b. Comparison of the spin densities in the carbon and hydrogen orbitals of the
C-H bond

In their discussion of a-alkyl proton splittings Colpa and de Boer [31]
have compared Mulliken's hyperconjugation model and the pseudo-hetero-atom
approximation (these methods will be discussed later) by calculation of the
ratio of the spin densities in the carbon and hydrogen orbitals of the C-H bond.
The magnitude of this ratio is strongly dependent on the choice of the parameters
in 4.16.
In order to illustrate this, we consider a radical for which the configuration
interaction terms in the rr-electron spin density distribution can be neglected
so only terms for j = 0 are taken into account. In a molecular orbital approxi
mation for the C-H bond is p, = 1 and v = 0 whereas the excitation energies can
be approximated as
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I -E +C. = e *-e
tt a Oa a* a

I -E +C „ = e -e
g  tt ctO a ct

TAE = e *-eg a* a

where and e& are the orbital energies of the bonding and antibonding
cj-orbital and the singly occupied tt -orbital respectively. From these figures
it is clear that in this approximation

A E = I  - E  +C„ +1 - E  + C .a tt a  Oa a  tt ctO

On substitution in 4.16 (1,1) for a freely rotating methyl substituent becomes

p! u , d
1_ 2 r f ^ Q g*CCT*C ^OCTCCTC*l f .... f Ôfg*Cg*h
2 Cag L L (ê - e a) '  c '

6 c ,hqp oh
(e -e )' a g

2

4.17

From the usual assumption that the polarity of a C -H bond is small it follows that
c k s c . and c * -c  c * , i s  taken to be negative; the other coefficients

ctc oh g*c g*h g*h
are positive. If we assume | P f f C J >  pa h |’ e , ®‘ r̂om overlap integrals for
Slater orbitals [32]

S =0.157 cos0
CTC

S . = 0.082 cos0ah

then 0  ̂ and 0 * will be negative. It follows that the spin density in the
hydrogen orbital depends on the sum of two positive terms whereas the spin
density in the carbon orbital depends on the difference of these terms. There
fore the spin density in the carbon orbital will have a value somewhere between
zero and a value in the neighbourhood of the spin density in the hydrogen orbital.
In a better approximation for the C-H bond v will be negative so

2

Besides, it seems reasonable to assume

AET < I - E  + C„ + I - E  +C nCT TT g  OCT CT TT CTU
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If this is  taken into account, the ratio of the spin densities in the carbon and
hydrogen orbitals becomes sm aller than the value obtained from 4.17. It might
even be possible that the spin density in the carbon orbital is  negative.

From these considerations it is  clear that for a correct choice of the
parameters in 4 .16  the spin density in the carbon orbital is  of equal importance
as the spin density in the hydrogen orbital. From e . s . r .  spectra, however,
only the spin density in the hydrogen orbital can be obtained. Therefore the
choice of a set of parameters, which allows a reliable prediction of the spin
density in the carbon orbital, is  very difficult.

c . Simplified approximation methods.

The splitting constants of a  -alkyl protons are usually calculated in a
molecular orbital approximation for the complete system  of tt -electrons and
a  -bond. Two different methods have been used in the literature, the pseudo-
hetero-atom approximation and Mulliken's hyperconjugation model. The calcu
lations are carried out by a diagonalization of the Hiickel or s . c. f. matrix or by
application of perturbation theory. These two procedures yield comparable
results (see e .g . reference 33).

The pseudo-hetero-atom approximation

In the pseudo-hetero-atom approximation the wave functions in which an
electron is  transferred to the o-bond are completely neglected. This is  achieved
by replacing the methyl group by one pseudo-atomic orbital of tt-symmetry
which contributes two electrons in the ground state of the molecule. A charge
transfer to the methyl group then becomes impossible. In this approximation
equation 4 .16  reduces to

P
CT
a (1 , 2) = cos20 Z 6. (cT )2

j  j  H a '

H2P2 4 (1)4 (2) ̂ Kcya ct o '

(I -E  +AE.“+C ,)2o  tt j  a j '

4.18

Bolton, Carrington and Me Lachlan [30] have used this model in a discussion
of the e . s . r .  spectra of the ions of 9 -  and 9,10-m ethyl substituted anthracenes.
Their parameters were calculated from the Couls on-Crawford parameters [34]
for the hyperconjugation model. In this way a qualitative description of the
methyl proton splittings could be obtained but the absolute magnitude of the
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calculated splittings is too small [ 31 ] whereas the ratio of the splittings in
the positive and negative ion is too large. For these reasons Colpa and Bolton [31]
rejected the pseudo-hetero-atom approximation.

We have tried to obtain a better agreement with the observed splittings
2

by parameter changes. From calculations in which we assumed p, =1 and
neglected terms for j ^ 0 and the correction terms in the Coulomb energy,
we obtained an 'experimental' value 3OCT »  1.253q where 3q is the value of the
resonance integral in tt -electron calculations. By substitution of the overlap
integrals given in the preceding section in the usual formula 3 = 4S3q we ob-

* tained on neglect of the overlap in the a-bond 3 = 0. 73ft which is much smaller
QO w

than the 'experimental' value. So, 4.18 is not sufficient for a calculation of the
splitting constants.

Mulliken’s hyperconjugation model

The hyperconjugation model [35,36] is essentially a molecular orbital
calculation for the complete system of n-electrons and methyl substituent. This
calculation is simplified by replacing the original atomic orbitals by linear com
binations. Because of the trigonal symmetry of the methyl group, both the three
carbon orbitals and the three hydrogen orbitals of the C-H bonds can be combined
to one totally symmetric orbital and one degenerate pair of orbitals. For the
latter the combinations are chosen which are symmetric and antisymmetric
with respect to the nodal plane of the tt -electron system. In this way the three
C-H bonds can be replaced by two pseudo-a-bonds and one pseudo-rr-bond. In
the calculations only the pseudo-n-bond is considered because, for reasons of
symmetry, the pseudo-a-bonds do not mix with the tt -electron wave functions.
An essential point in the hyperconjugation treatment is that this choice of
pseudo-atomic orbitals is combined with a rather strong interaction between the
C-H bonds. This leads to a higher energy for the pseudo-rr -bond and one of
the pseudo-a-bonds whereas the energy of the totally symmetric pseudo-a-bond
is lowered with respect to the energy of the original C-H bonds.

In many hyperconjugation calculations a set of parameters proposed by
Coulson and Crawford [ 34] has been used:

s ,arc' = 0.19 Pa c ' = 0. 763(

Sah ' = 0 Pah ' = 0

Sc'h ' = 0. 625 Pc'h' = 2.580

“c* = a 0 ' ° - 1P0

«V =ao"°-5po
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where c' and h' represent the pseudo-rr atomic orbitals for carbon and hydrogen
respectively.

Colpa and de Boer [31] have used these parameters (except S^,^, and
ec ,h, which were chosen to be 0. 5 and 2gQ) in a calculation of the o-alkyl proton
splittings of the ions of pyracene and acenaphtene and of cyclohexadienyl. A
good agreement with the experimental splittings was obtained. As we have seen
before, the pseudo-hetero-atom approximation could also give a good agree
ment with the experimental splittings but has been rejected because the necessary
parameter values were assumed to be not very realistic. In our opinion this is
also the case for the parameters used in the hyperconjugation model.

In the hyperconjugation model it is assumed that, due to the interaction
between the C-H bonds, |acl|<  |ofQ| , |a^,|< |a0| and |Pc ,hj) < |Pch| • If the
interaction between the C-H bonds is neglected, then the calculated splittings
would be larger for negative ions than for positive ions because both joj and
Jck̂ I are larger than |a I. Moreover, the change in Pcljj, would lead to a smaller
averaged splitting. In view of the magnitude of the calculated splittings, it is
therefore clear that in the hyperconjugation model the splitting constants are
strongly dependent on the interaction between the C-H bonds: It is difficult to
give an exact value of the magnitude of this interaction because this also depends on
parameter values for an isolated C-H bond. In a crude estimate, however,
the interaction between the bonding orbitals of the C-H bonds is about half the
interaction within a bond. Because this value seems to be very large, we shall
discuss the interaction between the C-H bonds in some more detail.

The ground state wave function for a system of N rt -electrons and two
a-bonds A and B, which are symmetrically located with respect to the nodal
plane of the n-electron system, can be written

= S * tt<1. . N)°oa (N+1, N+2)°aB(N+3, N+4) x , ( l . . N+4)

The a -• tt charge transfer wave functions are

*2 = (1 .. N, N+2)oA(N+l)°a B(N+3, N+4) x - U . . N+4)

* 3 = . N, N+4)°cta (N+1, N+2)ctb (N+3) X - d . . N+4)

The interaction between the a-bonds is introduced via the mixing of <|t0 and (r„.
a  O

This mixing leads to a change in the charge transfer excitation energy which is
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equal to

where a and b represent the bonding orbitals as introduced in equation 4. 3
for A and B respectively (this change in the charge transfer excitation energy
corresponds to the lifting of the energy of the pseudo-n orbital in the hyper
conjugation model). The function ^o (1,2) in 4.3 is the best possible one of
this particular form. In calculations on the hydrogen molecule a variation of
the effective nuclear charge for the hydrogen orbitals leads to = 1.2 instead
of Zjj = 1 (see e.g. table XVIII-1 in reference 37). It is often assumed that this
value should also give a better wave function for C-H bonds. In the same way
it seems reasonable to suppose that the effective nuclear charge for the carbon
orbital is larger than the value for the 2pz-orbitals. Due to this contraction of
the atomic orbitals the interaction between the o-bonds will be smaller than is

2assumed in the hyperconjugation model, even if we take p, =1.
From these considerations it will be clear that the explanation of the

differences between the a -alkyl proton splittings in positive and negative ions
according to the hyperconjugation model is not correct.

A much simpler explanation is obtained on introduction of the tt- H  inter
action which is neglected in the hyperconjugation model. For Slater orbitals
Sac  «  2 S ^  so, on neglect of the overlap within the o-bond, pff& ss
difference in the 8-values causes a stronger mixing with the a —tt charge transfer
wave functions than with the tt -* a charge transfer wave functions which leads
to larger splitting constants in the positive ion. (if the overlap within the a-bond
is not neglected p ^ * will be nearly equal to p ^  but then (1̂  -E^) > (1̂  -E^)
which has the same effect). It is of course not certain that the interaction be
tween the a-bonds is completely negligible, therefore I and E^ in 4.16 must
be regarded as semi-empirical parameters for a C-H bond in a substituent
instead of the values for an isolated C-H bond. For a methyl substituent I
can be set equal to the ionization energy of methane but, in view of the fact
that the ground state of the methane anion will be totally symmetric, E^ must
be regarded as the second electron affinity of methane. The semi-empirical
parameters may be different for different alkyl substituents. It has been observed
in some cases (see e. g. reference 38) that the a-alkyl proton splitting of an
ethyl substituent in a positive ion is smaller than the minimum value of half the
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corresponding methyl proton splitting. This may be due to the interaction be
tween the a-bonds of the substituent in which case I and must be given
other values than for a methyl substituent.

One might argue that the contraction of the a-electron wave functions also
leads to a smaller interaction between the a-bond and the n -electron system.
This effect, however, is compensated by the proportionality of the splitting

3 * O Qconstant with Z„. In order to illustrate this we have calculated S , Z.T. For2 3 “  oh H
Zr  = 1> S ^ Z jj = 0.0067 whereas for Z^ = 1.2 the even slightly larger value
of 0. 0085 was obtained.

A semi-empirical formula for aralkyl proton splittings

From the assumption >jPTia*| follows that in equation 4.16 the first
term can be neglected with respect to the third term. If the overlap in the
a-bond is neglected, then the second and fourth terms will have about the same
magnitude. However, as has been remarked above, the inclusion of overlap
leads to B »  P „* and (I -E ) > (I -E ). Therefore, we also neglect the

TTCT TTO TT O O  TT
second term. Then we obtain from 4.16 for the splitting constant of a-alkyl
protons

2 .  ^cos 6 Z
j 6j v2 a  - e  +ae.)2a tt j '

(I -E +AE,)J
CT TT j '

(I_-E +AE.)
4.19

where and A^ are constants and the terms have been neglected.
For a calculation of the splitting constants three parameters are needed. For
methyl protons we have tried the formula

aH = E 8 . (cT )2
a  j  j (2-e0-Ae“)2 ( 2 - 6 0 - A S j )7} 4.20

where c ^  is calculated as discussed in chapter HI and and Ae7 are the orbital
energy of the singly occupied orbital and the excitation energy of the negative
ion in units Bq>
For methylene protons as in pyracene and in acenaphtene cos 0 = 3/4 instead
of 1/2. For these protons 4.20 must be multiplied by 1. 5. For methylene
substituents bonded to two unsaturated carbon atoms a and B , c~ must be

, - _ ~ ia
replaced by (c ^  + £jg)- This is important for molecules such as cyclohexadienyl
and cycloheptatriene anion.
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In this way we have calculated the a-alkyl proton splitting constants for a num
b er of rad ica ls . The resu lts  a re  given in table 4 .4 . The term s for j f  0 have
been neglected for a ll rad ica ls  except diphenyl-m -tolylm ethyl and cyclohepta-
triene  anion w here the te rm s for j = 0 do not contribute.
In the case of the cycloheptatriene anion our re su lt d iffers essentially  from
the splitting constant obtained by application of Me Lachlan's form ula 3.14 to
m olecular orbitals calculated according to the hyperconjugation model. A ccor
ding to Levy an M yers [39] the la tte r method yields a sm all negative splitting
constant w hereas in our approximation a positive splitting constant is  obtained.
The influence of the substituent on the spin density distribution in the tt- electron
system  has been included by introduction of an inductive effect of -0. 3fJ_ (see
section C. 4).

experim ental equation 4.20

9-m ethylanthracene cation [30] 7.79 8.2
anion [30] 4 .27 5.2

9 ,10-dim ethylanthracene cation [30] 8.00 9.2
anion [30] 3.88 4 .2

pyracene cation [31] 12.80 12.2
anion [31] 6. 58 6.2

acenaphtene anion [31] 7.53 6.7
1-methylnaphtalene anion [40] 3.86 4 .0
2-methylnaphtalene anion [40] 1.81 1.27
diphenyl-p-tolylm ethyl 2.93 2 .4 2)
diphenyl-m -tolylm ethyl 0.84 0.87 1) 2)
tri-p-to lylam inium  ion 3. 89 3.9 2) 4)
di-p-tolylnitrogen [41] 4. 70 6.0 3) 4)
cyclohexadienyl [31] 47. 7 60. 5)
cycloheptatriene anion [39] 2 .16 4 .3 1)

1) Terms for j ̂  0 included

2) Phenyl rings 30 rotated out of the plane of the three central bonds

3) Calculated for the planar radical

4) Nitrogen parameters: ®N + L  50fl; 0 CN = &c c
5) In view of the large spin density on the methylene protons it might be better to renormalize the spin

density. The calculated splitting then reduces to about 56 gauss.

Table 4.4. or-alkyl proton splittings (gauss) calculated according to equation 4.20
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3. Spin p o l a r i z a t i o n  v e r s u s  c h a r g e  t r a n s f e r

In several papers the question has been discussed whether the spin
density on a-alkyl protons is caused by spin polarization or by charge transfer
effects. In most of these papers, however, different definitions of spin polari
zation have been used.

From the correspondence between the equations 2.28 and 2. 30 it seems
reasonable to define spin polarization for a-alkyl protons as the first order
mixing leading to 2. 30. This definition has been used by Bolton, Carrington
and Me Lachlan [30] . As we have shown before, this term might give a small
contribution in calculations in which the overlap between a -  and tt-orbitals is
included but 2. 30 alone is insufficient to explain the splitting constants of a-alkyl
protons. Because Bolton, Carrington and Me Lachlan accepted Me Lachlan's
valence bond calculation of 2. 30, which leads to a non-negligible contribution,
they have used the experimentally observed differences between positive and
negative ions as an argument for the importance of charge transfer effects.
In other papers [39,42] it has been argued that the influence of charge transfer
effects can be investigated by a measurement of the e . s . r .  spectra of compounds
such as cyclobutenyl and cycloheptatriene anion where the methylene protons
are in a nodal plane of the singly occupied orbital. For these molecules charge
transfer will ha,re a very small influence on the splitting of the methylene

U
protons whereas a spin polarization formula a = Q(Pa + p„ ), where a and g
are the two atoms to which the methylene group is bonded, predicts a large
splitting. In cycloheptatriene anion a small splitting is observed [39] , which
has been considered as a proof of the charge transfer mechanism. This, how
ever, is not correct because a spin polarization mechanism should also lead
to a small splitting. From equation 2. 30 it follows that the spin polarization
contribution depends on

<• • •Traa |H| . . . a * n a > = c a a < . . . a o  |H| . . . a *  a) + caa  cap t<*• • <*a  lHl +

+ < . . .  ga]H| . .  .a*a>] + c < ...  ga|H| . .  .a*g>
“ P

where the spin density in the tt -electron system is approximated as the electron
J J

distribution in the singly occupied orbital 4 . The formula a = Q(p + p_) is
a  a  p

based on the neglect of the integrals ( . . . a n  |h | . . .  a*g ) and ( . . .  go |h | . .  .a*a).
This is certainly correct for orthogonal tt - and a-orbitals. However, the spin
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density on a-alkyl protons is known to be positive for positive tt -electron spin
densities. Therefore the overlap terms within the exchange integrals can not
be neglected and the exchange integrals will be negative. In this case the four
integrals will have about the same value so for radicals where c = - caa ag
spin polarization also predicts a very small splitting.

Colpa and de Boer [31] define spin polarization as the interaction of the
t t -electron system with the pseudo-a bonds of the hyperconjugation model. In
this case spin polarization yields a very small splitting (the corresponding
term for ring protons is always neglected). In a discussion which compares two
possible mechanisms this definition does not give a reasonable alternative for
charge transfer effects because a spin polarization of the pseudo-n bond is
neglected. Moreover, a splitting in pseudo-n and pseudo-o bonds can only be
correct in molecular orbital calculations. Therefore this definition can not be
used in a general discussion.

In Lazdins and Karplus' definition [33] the second order terms in equation
2.32 which are dependent on the triplet state of the C-H bond are considered
as spin polarization terms. From our derivation of equation 4.17 it is obvious
that in this case a large part of the charge transfer terms is called spin polar
ization even when the charge transfer terms are calculated in the hyperconju
gation approximation. Therefore it is incorrect to conclude from Lazdins and
Karplus' discussion that charge transfer effects can only explain about 50% of the
experimental splitting constants (in a later paper with Colpa and de Boer [43]
Lazdins and Karplus have corrected their original conclusion). If one adopts
equation 4.20, it might be possible to consider the first term as the spin density
obtained from a pseudo-hetero-atom approximation and the second term as the
spin polarization contribution as defined by Lazdins and Karplus. This, how
ever, is somewhat dangerous because a clear separation into two non-over
lapping terms is only possible when the tt -• a charge transfer terms are
completely neglected.

4. The i n f l u e n c e  of t he  s u b s t i t u e n t  on the  s p i n  d e n s i t y  d i s 
t r i b u t i o n  in t he  t t - e l e c t r o n  s y s t e m

The influence of substituents on the wave functions for the t t -electron sys
tem is usually discussed in terms of inductive and conjugative effects. An in
ductive effect is introduced by a change 6 g  ̂ in the cr-value for the carbon
atom(s) C to which the substituent is bonded. This change causes a mixing of the
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molecular orbitals for the unsubstituted system. In firs t order we obtain

§!i §.i
c. c. 6 B«s  g iu Jn n »

j /i  I* (ej V
i.
j

e! = e. + I  c. 6 (3.1 1 p, Jp. p. °

For simplicity we consider a radical where the electron distribution in the
singly occupied orbital is a good approximation of the spin density distribution
in the n-electron system. Then the spin density in the 2p -orbital of carbon
atom C becomes

(c' )av
o c c. c c, 6 BA

c2 -  2 Z 2 an ju, av Jv n 0
av # a  n f y v

A conjugative effect causes in f irs t order a mixing of tt -  and a-electron
wave functions whereas in second order a mixing of the n-electron wave func
tions via the a-functions is obtained. When we assume that the wave functions
for the a-bonds are  calculated in a molecular orbital approximation, then the
molecular orbitals for the perturbed n-electron system become

r  2p fl $ p p Q 5)

»! = i . - E I  V >  g + 2 2  2
1 1 r  n (er -e.) jr i  M- r  (er -e,)(e.-e.)o i  a  1' j l

2 „2
Cin ^u,r
(er -e.)a l

i.l
2

The orbital energy is

e!l e. -  2 2
1 r  n

c

(e

2 B2in Pur

where r  enumerates the a-orbitals.
The spin density in the perturbed system becomes

(o' )av ,{*-
c aap,
7 r  7ÏÏ
4a -ea

2 2 2
r  n

2
c c. c c, Ba^ ju av j v ' p r

<v ea)(ej ea>
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The coefficient of c in this formula assures the normalization of the spin
density. As has been remarked by Bolton, Carrington and McLachlan [30] ,
the remaining terms can also be obtained from the formula for an inductive
effect by substitution of

2

6 E
r

■‘ a ) e 0

In the hyperconjugation model

e2
p, -r

R i

where (-r) represents the antibonding a-orbital which corresponds to the bonding
orbital $^ . As has been remarked by de Waard [28] this means that in the
hyperconjugation model the influence of the substituent on the spin density dis
tribution in the Ti-electron system is negligibly small.

If we assume, as before, that j p ^  > |p^ _r  |, then the mixing via the
antibonding orbitals can be neglected. For methyl substituents the mixing via
the three bonding orbitals can be replaced by the mixing via one linear combi
nation of TT-symmetry. So, the influence of the substituent on the rr-electron
spin density distribution can be calculated in the pseudo-hetero-atom approx
imation. From equation 4.20 it is obvious that in this approximation the
energy of the a-orbital is o / q  + 2p_. If we assume = 1.2, then it follows
from 4.20 that p will be 0. 6 to 0. 65pQ. On substitution of these values it
appears that for naphtalene anions these parameters correspond to an inductive
effect of -0.15 to -0 .20p_. For the ring proton splittings of dimethyl substituted
naphtalene anions a good agreement is obtained with an inductive effect of
-0. 3Pq [27,28,29] , so to the pseudo-hetero-atom parameters an inductive
effect of -0.10 to -0 .15PQ must be added. For naphtalene cations this combination
of parameters corresponds to an inductive effect of -0.4P». For calculations
of spin density distributions the difference between the pseudo-hetero-atom
approximation and an inductive-effect-calculation will therefore be small.
In our calculations in section C. 2 we have used an inductive effect only because
in this case a smaller number of parameters is needed.
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D. p-PROTONS OF ALKYL SUBSTITUENTS

For a-bonds ha.ving a weak interaction with the tt -electron system the
coupling via other a-bonds might also be of importance. Therefore the spin
density in these bonds can not be calculated from equation 2. 32 but a more
general formula is needed which also contains the interaction via other a-bonds.
In equation 2. 36 we have included the interaction via one a-bond A. The
derivation of a more general formula is practically impossible therefore we
assume that 2. 36 may be generalized by summing over all possible a-bonds A.
Even in this case a reasonable calculation of the spin density is very difficult
because, as can easily be shown, the different terms in 2. 36 may give both
positive and negative contributions in the final spin density on the proton. More
over, the averaging of the spin density over all possible orientations of the
C-H bond is much more complicated than for a-alkyl protons. These problems
are clearly demonstrated by the measurements of de Boer and Mac Lean [40]
and of Hausser, Brunner and Jochims [44] (table 4. 5), which show that the
splitting constants of p -alkyl protons may have positive and negative values with
out a difference in the sign of the tt -electron spin density on the carbon atom to
which the substituent is banded.

Splitting constant (milligauss) of protons
in position

a P y 6

naphtalene anions [40]
1-CH3 + 3860

1-C2H5 + 3280 -  74

1-C3H7 + 2670 - 212 + 64

1-°4H9 + 2800 - 155 + 45 + 35
2-CH3 + 1810

2-C2H5 + 1130 + 32

2-°3H7 + 1080 < 2  +27

2"C4H9 + 1050   — + 20
di-t-butylnitroxide [44] - 107
2,4, 6-tri-t. butylphenoxyl [44] + 72
(protons of 2- and 6-substituents)

Table 4.5. Splitting constants of alkyl protons
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Fig. 4 .1 . Numbering of a-bonds in alkyl substituents

Due to this difference in sign it is rather dangerous to neglect one of the
terms in 2. 36. In a first approximation, however, it seems reasonable to
neglect all terms depending on (I^-E^) or (Ig-E^). Equation 2. 36 then reduces
to the terms K(l,2) and N(l,2).

In the evaluation of K(l,2), which may be called the spin polarization
contribution, we assume that all terms except the spin polarization due to the
spin density in the neighbouring C-C bond a (see üg. 4.1) can be neglected.
Consequently

K(1,2)
pgT(l,2)dTidT2

TAEd
PgXa,2)

From the orthogonality of the hybrid orbitals on one atom and the sign of the
spin density in bond a it follows that the spin density on the proton due to K(l, 2)
is negative for a positive value of the tt -electron spin density on the carbon
atom to which the substituent is bonded. Because the spin density in a varies as

2 2cos 6 , K(l, 2) will also be proportional to cos 6.
In N(l,2) we neglect the rr-*a charge transfer wave functions as before. The

T T -»d  terms, however, are not negligible because it might easily be possible
that for some orientations of the C-H bond |p >|f3 J .  Consequently N(l,2)
can be calculated by replacing tt. and tt. in equation 2. 32 by

Hi
- )

and
- < S j  l.H|̂ g>

TT, +  E  ------- ----------- - ---------
~ J A=a,b,c (I -E +AE, +C' A n  j Af

respectively. An actual calculation, however, is very difficult. The direct
interaction of bond d with the n-electron system is not negligible. When we
consider this term only, then for many orientations of the C-H bond the same
difficulties are encountered as in the calculation of the spin density in the
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carbon orbital of a-CH bonds because now • Moreover, in the calcu
lation of the interaction with the TT-electron system a restriction to the 2p^-
orbital of the carbon atom, to which the substituent is bonded, is highly ques
tionable. Finally it must be noted that for a conformation, in which bond a is in
the nodal plane of the n-electron system, the direct interaction and the coupling
via bond b and bond c do not vanish so, even for freely rotating substituents,

2
the contribution of N(l,2) is not proportional to cos 6.

If we assume that the contribution from N(l, 2) is positive and has a smaller
variation with 0 than K(1,2), then we should conclude that the contribution of the
negative terms becomes more important when bond a is lifted out of the nodal
plane of the rr-electrons. It is easy to show that a smaller probability of a con
formation where bond a is in the nodal plane leads to a smaller averaged split
ting of the a-alkyl protons. Therefore we should expect that a smaller value
of the a-alkyl proton splitting is coupled with a more negative value of the
0-alkyl proton splitting. This is in agreement with the observed variations of
the splitting constants of 1-alkyl substituents in naphtalene anions (see table 4. 5).
In the same way the difference in sign between the 0-proton splittings of 1- and
2-alkyl substituents can be attributed to the steric interference of a 1-alkyl
substituent with the proton at Cg which makes one of the two conformations,
where bond a is in the nodal plane, very unlikely. On the other hand, from this
interpretation we should expect a relatively larger splitting of the a-protons of
the 2-alkyl substituents which is not in agreement with the experimental values.

From these considerations it will be clear that a reliable calculation of
0 -proton splittings is at present practically impossible. It might be, however,
that a reasonable approximation becomes possible when more experimental
values of 0-alkyl proton splittings are known. Especially a knowledge of the
sign of these splittings will be of importance.
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C H A P T E R  V

E L E CT RO N SPIN RESONANCE OF T R I P H ENY LMETH YL
AND RE L AT E D COMPOUNDS

A. INTRODUCTION

Triphenylmethyl, the first known free radical [1], was one of the first
radicals being studied by electron spin resonance [2]. The most important
result from these early investigations was the serious discrepancy between the
observed hyperfine structure and spin densities obtained from the simple
molecular orbital theory. This problem could be solved by a valence bond
approximation [3,4] and by molecular orbital calculations including configuration
interaction [5,6] from which a negative spin density in the 2pz -orbital of the
meta carbon atoms was obtained.

A further study of triphenylmethyl radicals is interesting for several reasons:
1. As has been discussed in chapter IV, the splitting constants of positive

and negative ions of alternant hydrocarbons are different. These differences
are usually ascribed to effects which are opposite for positive and negative
ions and vanish in neutral alternant radicals. From these theories one should
therefore expect that McConnell's formula 4.11 is accurately valid for neutral
alternant radicals. This has never been proved to be correct.

2. As will be shown later, the influence of substituents on the spin density
distribution in the u-electron system of neutral alternant radicals is small.
These radicals are therefore very well suited for a study of the propagation of
spin density into the substituent. A second advantage of neutral alternant radicals
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in these investigations is the occurrence of negative spin densities in the tt-

electron system; the propagation of a negative spin density can not be calculated
with simple molecular orbital theory.

3. Finally it may be hoped that the e. s. r .  spectra of substituted triphenyl-
methyl radicals give important information about the influence of substituents
on the sterical structure.

Despite the large number of investigations on triphenylmethyl itself,
relatively little is known about the e .s .r .  spectra of substituted triphenylmethyl
radicals. In our laboratory Lupinski [7] has measured the e .s .r .  spectra of
some of these compounds but at that time the technique of obtaining highly
resolved spectra was insufficiently developed to obtain reliable sets of splitting
constants. In later papers some spectra have been published (see table 5.1) but
only Sinclair [8 ] has discussed the e .s .r .  spectra of a larger series of (halogen-)
substituted radicals.

In section B of this chapter we shall discuss the measurement and inter
pretation of the e. s. r . spectra of a number of phenyl-, alkyl-, chlorine- and
methoxyl-substituted radicals. A theoretical discussion of the resulting splitting
constants is presented in section C. In section D the e .s . r .  spectra of 'biradicals'
related to triphenylmethyl will be considered.

B. MEASUREMENT AND INTERPRETATION OF THE E.S.R. SPECTRA

1. P r e p a r a t i o n  of t he  r a d i c a l s

The triarylmethyl radicals were prepared from the corresponding triaryl-
methanols according to

CH COC1 Ag
ArgC-OH » ArgC-Cl ------» Ar3C* ^  <Ar3c >2

Tri-p-biphenylylmethanol, tris(p-tert. butylphenyl)methanol, tris(p-ethylphenyl)-
methanol and 9-mesitylfluorenol were obtained from the department of physical
chemistry to which they were given by Prof. Theilacker. The other triaryl-
methanols were available at the laboratory or were prepared from substituted
benzophenones or benzoic acids by Grignard methods [13].

In the preparation of the chloromethanes the alcohols were boiled with
acetylchloride for one hour. In many cases the chloromethane was not isolated
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but a solution in acetylchloride was prepared from a few milligrams of the
alcohol, transferred to apparatus B (see below) and converted into the radical.

-5The radicals were prepared in vacuum (10 torr) in toluene solution.

vacuum line

constriction

glass
filter

e. s . r .  tube

Fig. 5.1. Apparatus for the preparation of radical solutions

Toluene (Merck, p. a . ) was dried on molecular seeves, refluxed on sodium for
one hour and transferred to the storage vessel A (fig. 5.1). After dissolving
some triphenylchloromethane, nitrogen was passed through and some silver
(B. D.H. silver precipitated) was added. The storage vessel was connected to
the vacuum line and the toluene was thoroughly degassed by freezing and melting.
The dissolved radical removes the last traces of impurities. The solvent can
be used as long as the colour of the radical is visible.
The radicals were prepared in apparatus B (fig. 5.1). After introduction of
2 mg of the chloromethane and 100 mg of silver B was connected to the vacuum
line. In order to remove traces of acetylchloride and water as much as possible,
B was evacuated for several hours. By cooling B with liquid nitrogen a few ml
of the solvent were distilled from A after which B was sealed off at the con
striction. The radicals were prepared by shaking for 10 to 15 minutes.

2. The m e a s u r e m e n t  of t he  e . s . r .  s p e c t r a

The e . s . r .  spectra -\yere taken on a super-heterodyne spectrometer
equipped with a Varian 12-inch magnet. The principles of this apparatus have
been described by Lupinski [7] but later on important improvements were
introduced by Horsman [14] . At the time of most of our measurements no
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reliable method for the measurement of differences in magnetic field was
present in the laboratory. Therefore the spectra were calibrated by comparison
with the spectrum of triphenylmethyl for which the splitting constants were
taken from the literature [ 15,16] . In order to obtain a correct calibration,
the central parts of the spectrum of triphenylmethyl and of. the spectrum which
has to be calibrated were measured several times in exactly the same way
(including the past history of the magnet). From later measurements of the
magnetic field we obtained splitting constants for triphenylmethyl which are
slightly different from the values reported in the literature. All spectra were
recalibrated with these new values except the spectra for tris(p-chlorophenyl)-
methyl and diphenyl(p-chlorophenyl)methyl which were calibrated directly from
measurements of the magnetic field.

The e. s . r .  spectra were measured on solutions in the e. s . r .  tube of
apparatus B (fig. 5.1). In order to obtain highly resolved spectra of sufficient
intensity, the concentration of the solutions was varied by distillation of solvent
from the side tube of B. The final concentrations are not known but are probably
of the order of 10 ® to 10 ^ Mol/1.

In several papers [15,16,17] it is assumed that highly’resolved spectra
of triarylmethyl radicals can only be obtained at temperatures of -20 to -50°C.
The observed effect of temperature on the line width is caused by the fact that
in these investigations the radical concentration at room temperature was too
large to obtain a high resolution. At lower temperatures the concentration will
be less because of the smaller dissociation of the dimer (for a recent discussion
of the structure of the dimer of triphenylmethyl see reference 18). We have
observed that by dilution the line width in the spectrum of triphenylmethyl can
be reduced to about 25 milligauss. This value remains unaltered on cooling
to about -25 C which is in agreement with the observed temperature-indepen
dence of the line width in the spectrum of tris(p-nitrophenyl)methyl [9] . The
spectra discussed in this chapter are measured at room temperature.

3. The e . s . r .  s p e c t r a  and t h e i r  i n t e r p r e t a t i o n

For most of the radicals, we have studied, highly resolved e . s . r .  spectra
could be obtained. As usual we have tried to analyse these spectra by trial and
error. From the observed spectrum and other data, e. g. the splitting constants
of similar radicals, a set of splitting constants was assumed and the corre
sponding derivative spectrum was calculated with a computer program. When
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the agreement with the observed spectrum was considered to be insufficient,
then the calculation was repeated with a new set of splitting constants. For
radicals having a sm all number of different splitting constants the computed
spectrum is almost identical to the observed one. An example has been given
in fig. 5.18. For radicals with a large number of splitting constants each line
in the observed spectrum is a superposition of a large number of lines. There
fore the form of the spectrum and the intensity of the individual lines can only

1.14 2.50 - |

C

r 3

1.13 2.70

C

3

2.76 - |

1. 09 2. 64

2.64

F
L 1.56

2.61 1.151.15 2.61

2. 6 1.11.14 2.55 2.55 1.14 1.1 2. 6

0.14
OCH,

3.17 0.89

Table 5.1. Literature values [8,9,10,11,12] of the splitting constants of some substituted
112 triphenylmethyl radicals



be reproduced exactly with very accurate values of the splitting constants. In
practice this means that an exact reproduction is unfeasible. An example of a
computed spectrum, which we assumed to be in agreement with the observed
one, is given in fig. 5.4. In this case the final interpretation of the spectrum
is based both on the computed spectrum and on the splitting constants of similar
radicals so, in our opinion, the final set of splitting constants is correct. In
a more general case, however, it is not certain that other sets of splitting
constants can be excluded. For phenyl(p-methoxyphenyl)-p-biphenylylmethyl
we could obtain two different sets of splitting constants for which the computed
spectrum shows a clear resemblance with the observed one (fig. 5.19). One of
the two possibilities seems to be in slightly better agreement with the observed
spectrum but the differences are too small to allow of a definite conclusion.

The possible error in the final splitting constants is estimated to be 1% for
values larger than 2 gauss whereas smaller splittings will be somewhat less
accurate. In table 5.1 we have collected some literature values for other
triphenylmethyl radicals.

In the following the interpretation of the e. s. r .  spectra will be discussed
in more detail.

Triphenylmethyl

A completely resolved spectrum for triphenylmethyl (fig. 5.2) has first
been obtained by Chesnut and Sloan [15] . According to these authors the split
ting constants are 2. 77, 2. 53 and 1.11 gauss for para, ortho and meta protons
respectively. From ENDOR measurements Hyde [19] obtained values which
are 3 to 4% larger. Our values:

C

3

are between these two results. The usual assignment of the splitting constants
for ortho and meta protons is based on theoretical arguments. A clear exper
imental proof is obtained by comparison with the splitting constants of ortho-
and meta-substituted radicals.
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2. 57 gauss

Fig. 5.2. E.s. r. spectrum of triphenylmethyl (high-field half)

Tri-p-biphenylylmethyl and diphenyl-p-biphenylylmethyl

The splitting constants of tri-p-biphenylylmethyl:

0.18 0.42 1.13 2.49

- 1 3

2.49 gauss

Fig. 5.3. E. s. r. spectrum of tri-p-biphenylylmethyl (high-field half)
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are easily found from the observed spectrum (fig. 5.3). The assignment of
the splitting constants has been made from the assumption that the spin density
distribution in the different rings of this radical is analogous to the distribution
in the rings of triphenylmethyl.

In the spectrum of diphenyl-p-biphenylylmethyl (fig. 5.4) a large number
of lines with a relatively small difference in intensity is observed. In general
it is very difficult to analyse this type of spectrum without a further knowledge
of the spin density distribution. In this case, however, we may assume that the

2.45 gauss

Fig. 5.4. Experimental and calculated e.s.r. spectra of diphenyl-p-biphenylylmethyl
(high-field half)
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splitting constants will not differ very much from those in triphenylmethyl and
tri-p-biphenylylmethyl. After several less successful estimations a good agree
ment between calculated and observed spectrum was obtained with a set of
splitting constants which can be interpreted in two different ways:

1.08 2.45 2.65 1.22 0.48 0.20

- ‘ 2

1.08 2.45 2.73 1.22 0.48 0.20

These two interpretations differ in the assignment of the splitting constants 2. 65
and 2. 73 gauss. A choice between the two possibilities is impossible because
the difference is too small.

Para-methyl substituted radicals

The splitting constants of tri-p-tolylmethyl and diphenyl-p-tolylmethyl:
1.13 2.57 2.57 1.131.12 2.56

2.972.93

can easily be found from the observed spectra (figs. 5. 5 and 5. 6). Our values
for diphenyl-p-tolylmethyl are about 2% smaller than the values given by
Sinclair [8 ].

In order to compare the splitting constants of the methyl protons we have
also measured the e .s . r .  spectrum of tri-p-tolylaminium ion (fig. 5. 7). In
this spectrum the line width is not a constant. The calculation of the spectrum
from assumed splitting constants has therefore been carried out with a variant
of the usual program. In this calculation we assumed that the line width
depends on the magnetic quantum number of the nitrogen nucleus. Van Willigen
[20] has observed the same asymmetry in the spectrum of the triphenylaminium
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2.56 gauss

Fig. 5 .5 . E .s.r. spectrum of tri-p-tolylmethyl (high-field half)

|  2. 57 gauss

Fig. 5 .6 . E .s.r. spectrum of diphenyl-p-tolylmethyl (high-field half)

3. 89 gauss

Fig. 5 .7. E .s.r. spectrum of tri-p-tolylaminium ion
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ion from which he concluded that the spin density on the nitrogen nucleus is
positive. Our values for the splitting constants:

©N
9.39

3

agree with recently published values [21,22].

Diphenyl-m-tolylmethyl

In the e. s. r . spectrum of diphenyl-m-tolylmethyl (fig. 5. 8) 80 to 90 lines
are observed each consisting of a number of closely spaced lines. A calculation
has been done in which the splitting constant of the methyl protons was taken
to be 0. 84 gauss whereas for the ring protons the values for triphenylmethyl

1.03 2.06

2 gauss

Fig. 5.8. E.s.t. spectrum of diphenyl-m-tolylmethyl (low-field half)

were used. In the computed spectrum the splitting in 80 to 90 lines was observed
but the further splitting of these lines was less satisfactory. We have assumed
therefore that for some of the protons of the m-tolyl system the splitting constant
is slightly different from the value for the unsubstituted rings. In a first series
of calculations part of the ortho and para protons of the substituted ring were
given somewhat smaller splitting constants than in the unsubstituted rings. In
these calculations the best agreement with the observed spectrum was obtained
with the set of splitting constants:
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2.57 1.13

CH3
0.84

in which it is assumed that the methyl group causes the splitting due to the
neighbouring protons to be somewhat smaller. In view of the results obtained
for the mono-m-chlorine substituted radical we have also calculated a spectrum
in which the splitting constants of the ortho and para protons of the substituted
ring were given slightly larger values than in the unsubstituted rings:

1.13 2.57 2.61 1.13

2.84

The agreement of this spectrum with the observed one seemed to be somewhat
less than in the former case. It must be noted, however, that small variations
in the values of the splitting constants give rise to relatively large variations
in the computed spectrum. Therefore we are not sure which set of splitting
constants must be regarded as the correct one. It might even be possible that
other combinations also give a reasonable agreement with the experimental
spectrum.

Diphenyl-o-tolylmethyl and diphenyKo-chlorophenylJmethyl

A complete analysis of the e. s. r. spectra of diphenyl-o-tolylmethyl
(fig. 5. 9) anddiphenyl(o-chlorophenyl)methyl (fig. 5.10) should give important
information about the influence of ortho substituents on the sterical configuration.
On the other hand, the analysis is very difficult because the configuration is
unknown. In our calculations of spectra from assumed sets of splitting constants
some resemblance with the observed spectra was obtained but the differences
were too large for a correct analysis (Sinclair's attempts [8] to analyse the
spectrum of diphenyl(o-fluorophenyl)methyl were also not successful). Because
many distances between intense lines in both spectra are nearly equal, it seems
to be probable that the splitting constants have about the same value which
means that the radicals have about the same structure but further conclusions
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2 gauss

Fig. 5 .9 . E .s.r. spectrum of diphenyl-o-tolylmethyl (low-field half)

Fig. 5.10. E .s.r. spectrum of diphenyl(o-chlorophenyl)methyl (low-field half)

are premature.
According to dudeikis and Kivelson [17] the experimental spectrum of

diphenyl-o-tolylmethyl can be approximated with a spectrum calculated from z
combination of the,splitting constants of triphenylmethyl with a methyl proton
splitting of 2.2 gauss. In view of our spectrum, which is much better resolved,
this interpretation seems to be unlikely. Sinclair [8] has shown that the spectrum
of diphenyl-o-tolylmethyl is temperature-dependent. This may be ascribed to a
hindered rotation of the methyl group or to a mixture of two radicals having a
different structure.
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9-mesitylfluorenyl

The e. s . r .  spectrum of 9-mesitylfluorenyl (fig. 5.11) consists of five
groups of lines with a spacing of about 3.5 gauss. The outer groups have about
the same structure as the central group whereas the second and fourth groups

2 gauss

Fig. 5.11. E. s. r. spectrum of 9-mesitylfluorenyl (high-field half)

may be regarded as a superposition of two groups having the same structure
as the central and outer groups. This means that there are two different
splitting constants of about 3.5 gauss caused by two sets of two protons. The
remaining five splitting constants determine the structure of the groups. From
the structure of the groups we should conclude that most of these five splitting
constants are simple multiples of a common value but the fact that even the
two larger splitting constants could not be determined with certainty hampered
a further analysis of the spectrum.

Trisfo-ethylphenylknethyl

In the measurement of the spectrum of tris(o-ethylphenyl)methyl no
further resolution could be obtained than a splitting in 15 to 17 broad lines
(fig. 5.12). The total width of the spectrum is of the order of 20 to 25 gauss
which is smaller than the total width for triphenylmethyl. This is in agreement
with the expected larger rotation of the rings out of the plane of the three central
bonds.
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11

6 gauss
- i j

Fig. 5.12. E. s.r. spectrum of tris(o-ethylphenyl)methyl

Tris(p-tert. butylphenylknethyl

In the e .s . r .  spectrum of tris(p-tert.butylphenyl)methyl we expect a
splitting in 49 lines by the ortho and meta protons and a further splitting of
each of these lines in 28 lines by the tert. butyl protons. This pattern is clearly
visible in the observed spectrum (fig. 5.13). The interpretation of this spectrum
is somewhat hampered by the strong overlapping of the groups of lines. It is

2. 57 gauss

Fig. 5.13. E.s.r. spectrum of tris(p-tert.butyiphenyl)methyl (high-field half)

therefore not easy to determine the splitting constants of the ortho and meta
protons within one tert. butyl proton splitting (see also tris(p-methoxyphenyl)-
methyl). From the position of the groups of lines in the wings of the spectrum
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it appeared that the set of splitting constants:

0.09

« w
1.13 2.57

is the most probable one. This has been confirmed by calculation of spectra
for different sets of splitting constants.

Para- and meta-chlorine substituted radicals *)

According to Lupinski [7] the e .s .r .  spectrum of tris(p-chlorophenyl)-
methyl in benzene solution consists of about 13 broad lines. In later measure
ments in toluene solution Judeikis and Kivelson [17] could not obtain a further
splitting despite the fact that the other radicals they have studied show a much
better resolution. This was ascribed to unresolved hyperfine splittings and
quadrupole moment effects arising from the two chlorine isotopes.

In our measurements in toluene solution the same results were obtained
after short reaction times. A prolonged reaction with silver leads to a gradual
change in the spectrum. Finally a sharp spectrum (fig. 5.14) is obtained having
a hyperfine structure which is easily interpreted as being caused by two sets

2.54 gauss

Fig. 5.14. E.s.r. spectrum of the reaction product of tris(p-chlorophenyl)chloroniethane with
silver after long reaction tiroes

*) The e.s.r. spectra of the chlorine substituted radicals have been published in reference 23.
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of six equivalent protons with splitting constants of 2. 54 and 1.14 gauss. It is
well known that the prolonged reaction with silver leads to a removal of the
chlorine atoms in the rings [24,25] . The sharp spectrum must therefore be
attributed to a radical in which the chlorine atoms are replaced by (substituted)
triphenylmethyl groups.

In acetone solution a further resolution of the broad spectrum could be
obtained after short reaction times (fig. 5.15), probably because of the lower
viscosity of the solvent. This spectrum clearly shows a splitting due to the

2 gauss

— (--------|r - +

Fig. S.1S. E.s.r. spectrum of tris(p-chlorophenyl)methyl in acetone (high-field half)

chlorine atoms. The splitting constants are:

1.19 2.60

In the computed spectrum the influence of both chlorine isotopes has been in
cluded. The line width was estimated to be 150 milligauss.

The spectra obtained for diphenyl(p-chlorophenyl)methyl (fig. 5.16) and
diphenyl(m-chlorophenyl)methyl (fig. 5.17) could easily be interpreted. The
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2 gauss
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Fig. 5.16. E .s.r. spectrum of diphenyl(p-chlorophenyl)methyl (high-field half)

Fig. 5.17. E .s.r. spectrum of dlphenyl(m-chlorophenyl)methyl (high-field half)

splitting constants are:

1.16 2.55 2.55 1.16 1.13 2.53 2.66 1.13

2 2 .66

The line width in these spectra are 120 and 60 milligauss respectively. The
smaller line width for the meta substituted radical may be caused by the much
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smaller spin density on the chlorine nucleus.
The splitting constants for the para substituted radicals are in good agreement
with values given by Sinclair [8] though he did not obtain a further resolution
for the tri-para substituted radical.

Tris(p-methoxyphenyl)methyl

The e. s. r . spectrum of tris(p-methoxyphenyl)methyl has been measured
before by Judeikis and Kivelson [17]. According to these authors the splitting
constants are 2. 89, 0. 71 or 1.02 and 0. 34 gauss for ortho, meta and methoxyl
protons respectively. From our spectrum (fig. 5.18), which is much better

55 gauss

Fig. 5.18. Experimental and calculated e. s. r. spectra of tris(p-methoxyphenyl)methyl.
(high-field half)
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resolved than the spectrum given by Judeikis and Kivelson, we obtained a dif
ferent set of splitting constants:

0.30
H3CO

1.03 2.55

This difference is caused by the low resolution In Judeikis and Kivelson's spec
trum which leads to an uncertainty in the ortho and meta proton splitting of one
methoxyl proton splitting (see also tris(p-tert.butylphenyl)methyl). This uncer
tainty does not occur in our spectrum.

Phenyl(p-methoxyphenyl)-p-biphenylylmethyl

All triarylmethyl radicals discussed before have at least two identical
arylgroups. In phenyl(p-methoxyphenyl)-p-biphenylylmethyl, however, all
three groups are different. In the observed spectrum (fig. 5-19) groups of
sharp lines occur which are separated by a number of broader lines. When we
assume that the splitting constants do not differ very much from those in
diphenyl-p-biphenylylmethyl, then it appears that the sharp lines are mainly
caused by the splitting from the ortho and para protons whereas the further
splitting by the meta protons leads to the broader lines.
The splitting constants of all three arylgroups may be different but in this case
we should expect an even more complicated spectrum. Therefore we have
performed a calculation in which the splitting constants of the ortho and meta
protons of the phenyl and p-methoxyphenyl groups were set equal:

2.62

0.20 0.50 1.18 2.71

2.42
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2 gauss

Fig. 5.19. Experimental and calculated e. s.r. spectra of phenyl(p-methoxyphenyl)-p-biphenyl-
ylmethyl (high-field half)
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(fig. ,5.19a) and one in which the ortho and meta protons of the p-methoxyphenyl
and p-biphenylyl groups were given the same splitting constant:

0.20 0.50 1.18 2.71
2.42

OCH

(fig. 5 .19b). Both spectra show a clear resemblance with the experimental one.
A definite choice is therefore impossible although fig. 5 .19b seems to be in
slightly better agreement with the observed spectrum.

C. THEORETICAL DISCUSSION

1. U n s u b s t i t u t e d  r a d i c a l s

In chapter III it has been shown that spin densities calculated from Hiickel
molecular orbitals according to McLachlan's formula 3.14 are a good approxi
mation of spin densities obtained from more accurate configuration ihteraction
methods. Because more complete calculations for large radicals are practically
impossible, we have used McLachlan's formula in all calculations of spin den
sities discussed in this chapter. The constant X. has been given the value 1.2.

In the calculation for triphenylmethyl the phenyl rings were assumed to
be 30 rotated out of the plane of the three central bonds which corresponds to
a 8-value of 0. 8668q. Comparable experimental values for the angle of twist
are 31 in solid triphenylmethylperchlorate [26,27] , about 30° in solid tris -
(p-nitrophenyl)methyl [28] and 40-45° in triphenylmethyl in the gas phase [29] .
For the angle of twist of the phenyl rings in diphenyl-p-biphenylylmethyl the
same value was adopted whereas the 8-values for the bond between the central
carbon atom and the p-biphenylyl system and for the central bond of the p-bi
phenylyl system were estimated from the experimental splittings to be 0. 928q

and 0. 828q respectively. These values have also been used for tri-p-biphenylyl-
methyl. 8 -values of 0. 928q and 0. 828„ correspond to angles of twist of 23° and
35° respectively but, of course, differences in 8-values may also be caused by
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differences in bond lengths.
The resulting spin densities are collected in tables 5.2, 5. 3 and 5.4. The

splitting constants were calculated by multiplication of the spin densities by
-31.2 gauss which is the Q-value proposed by Colpa and Bolton [30] . Colpa
and Bolton have deduced this value from a comparison of the splitting constants
of ions of alternant hydrocarbons with Hiickel spin densities. A calculation of
the spin density distribution in these ions according to 3.14 leads to a smaller
Q-value (see chapter III). On the other hand, Hiickel spin densities show in
several cases a better agreement with the observed splittings of ions of alter
nant hydrocarbons so our Q-value seems to be not very unreasonable. Moreover,
according to Andersen [29] the C-H bond length in triphenylmethyl is 1.11 a .

From this rather large value we should also expect a somewhat larger Q-value
than for normal C-H bonds.

In order to compare the calculated splitting constants with those obtained
for a radical having a more rigid structure, we have also calculated the splitting
constants of phenalenyl (table 5. 5). The signs of the splitting constants in this
radical are known from measurements in a liquid crystal [31,32] .

atom ^calc
H

acalc
1 H IaJ exp|

0 0.5210 — , —
1 -0.0494 — —
2 0. 0963 -3. 00 2. 57
3 -0. 0359 1.12 1.13
4 0.0881 -2. 75 2. 80

Table 5.2. Calculated and experimental splitting constants in triphenylmethyl
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. f ~ \ l „ 0  7 / \io /

c
2

H ! H I atom
H H 1

atom pca lc aca lc
a1 expl Pca lc a ca lc aexpl

0 0. 4954 — — 9 -0 .0386 1 .21 1 .22

1 -0 . 0449 — — 10 0.0887 — —

2 0. 0931 -2 .9 1 2 .45 13 -0 .0105 — - -

3 -0 . 0335 1 .0 4 1 .08 14 0.0143 -0 .4 5 0 .48

r2. 73 15 -0 . 0066 0 .21 0 .20
4 0. 0864 -2 .6 9 Z .  DO 16 0.0123 -0 . 38 0 .48
7 -0 . 0524 — —

8 0.1034 -3 .2 3 (2. 65
*•2. 73

Table 5.3. Calculated and experimental splitting constants in diphenyl-p-biphenylylmethyl

10 C 0

3

atom pm lc
H

a calc
1 H 1a1 exp 1 atom pca lc

H
aca lc

1 H Ila1 expl

0 0.4103 — — 7 -0 .0 0 8 4 — —

1 -0 . 0438 — — 8 0.0148 -0 .4 6 0 .42

2 0.0985 -3 .0 7 2 .49 9 -0 .0058 0 .18 0 .18

3 -0 .0337 1 .0 5 1 .1 3 10 0.0135 -0 .4 2 0 .42

4 0.0876 — —

Table 5.4. Calculated and experimental splitting constants in tri-p-biphenylylmethyl

Table 5.5.

atom p ca lc
H

aca lc
Ha exp

re f .  31,32,33

0 0.0059 — —

1 -0 . 0534 — —

2 0.2282 -7 .1 2 -6 .2 9

3 -0 . 0715 2 .2 3 1 .81

Calculated and experimental splitting constants in phenalenyl
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From the figures given in table 5.2, 5. 3 and 5.4 it appears that most of
the calculated splitting constants are in very good agreement with the experi
mental ones. There is one important exception, however. All calculated ortho
proton splittings are about 20% too large. A deviation of the ortho protons is not
unexpected because the interaction with the neighbouring ring might be of im
portance whereas the spin density on the proton due to the interaction with the
central carbon atom (directly and via the a-bonds) is comparable to the spin
density on the 3-protons of alkyl substituents and may therefore have a non-
negligible value. On the other hand, the same deviation is observed in the
benzyl radical where these terms do not occur or are assumed to be much
smaller (see table 5.6).

atom

from table 3.2 column 4
H

pcalc acalc

from Baudet and Berthier [34]
H

pcalc acalc |aH I [35]1 expl J

1 -0.123 — -0.103 — —
2 0.164 - 5.12 0.200 - 6.24 5.14
3 -0.075 2.34 -0.089 2.78 1. 75
4 0.137 - 4.27 0.208 - 6.49 6.14
7 0.810 -25.27 0.673 -21.00 16. 35

Table si 6» Calculated and experimental splitting constants in benzyl

As far as we know, Baudet and Berthier's calculation of the benzyl radical
[34] is the only one which predicts the para proton splitting to be larger than
the ortho proton splitting but even in this case the calculated ratio p /pjj j j j3cix*ci ortno
1.04 is much smaller than the observed ratio apara/ a0rtj10- The agreement
between calculated and observed splittings for benzyl is less satisfactory than
for the triphenylmethyl radicals. This may be due to the smaller size of the
radical. If we assume that benzyl and triphenylmethyl show a comparable
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deviation in the ratio of the ortho and para proton splittings, then the only
reasonable explanation seems to be an inaccurate calculation of the spin density
for atoms in the neighbourhood of atoms having a very large spin density.

The calculated splitting constants for phenalenyl are about 15% too large
but the ratio of the calculated splittings agrees with the experimental one. It
is of course possible to obtain a better correspondence with the calculations
for triphenylmethyl derivatives by a variation of the angles of twist but then
an angle much smaller than 30° is needed which is very unlikely in view of the
experimental values. The errors in the ortho para ratio can also be ascribed
to incorrect calculations of the spin densities on the meta and para position
because the ortho proton splittings in the triarylmethyl radicals correspond to
the same Q-value as is obtained from the experimental splittings in phenalenyl.
In this case an explanation of the deviation of the meta and para proton splittings
becomes very difficult.

The conclusions from the results given in the tables can be summarized
by saying that for large radicals McConnell's formula is in good agreement
with the observed splittings. There are some unexplained deviations but these
are of a very systematic nature.

2. S u b s t i t u t e d  r a d i c a l s

From the splitting constants of the substituted triphenylmethyl radicals it
appears that for meta and para substituted radicals the influence of the sub
stituent on the splitting constants of the ring protons is small. From this it
may be concluded that the influence of the substituent on both the spin density
distribution in the n -electron system and the sterical structure of the radical

__  13is small. This small influence is also reflected by the known C splitting con
stants of the central carbon atom:

For the last compound the splitting constant is larger than in triphenylmethyl
(23. 0 according to the same author) because of the smaller interaction with the

triphenylmethyl 26 gauss [4,16]

tris (p-f luor opheny 1) methyl
tris (p-methoxyphenyl)methyl
tris(o, o'-dimethoxyphenyl)methyl

23. 0 gauss [11]
24. 5 gauss [8]
22.9 gauss [8]
26.2 gauss [11]
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rings caused by the larger angle of twist.
The small influence of the substituent on the spin density distribution is

easily understood. As has been shown in section C. 4 of chapter IV, the squares
of the coefficients of the atomic orbital in the singly occupied molecular orbitals
become on introduction of a substituent having an inductive effect 6p, u

(c' )a v 2 £
c c. c c. 6ap, 3M- av jv M. 0

(Vea)
whereas a conjugative effect leads to

/  r  T(e -e )ct a
+  2 £ £

r

c c. c c. Pap, jp, av jv p,r
(er  -e. )(e.-6 )a a j a

It can easily be shown from the pairing principle that in both formulas the
correction terms (except the renormalization correction in the latter formula)
vanish for neutral alternant radicals. In McLachlan's formula 3.14 the influence
of configuration interaction is calculated via the atom-atom polarizabilities.
These quantities are known to predict substituent effects in a rather accurate
way. Therefore we may assume that they are relatively independent on small
changes in the tt -electron system. Then the spin density distribution in neutral
alternant radicals is unchanged in first order (for an inductive effect this can
be shown to be exactly correct).

From this it follows that substituents will only change the spin density
distribution when they cause a change in the sterical configuration. Meta and
para substituents do not increase the steric interaction between the aryl systems
so in this case we expect that differences between substituted and unsubstituted
rings depend on differences in the bond orders for the central C-C bonds. These
differences will be larger for para than for meta substituents. It is highly
remarkable, therefore, that we have only observed a difference between sub
stituted and unsubstituted rings in the mono-meta-chlorine substituted radical
(and possibly in the mono-meta-methyl substituted one). In the mono-para-
chlorine substituted radical no effect is observed but this may be due to the
large line width whereas the small chlorine splitting might also obscure small
differences between splitting constants. However, the fact that no differences
are observed in the mono-para-methyl and -fluorine substituted radicals seems
to exclude an explanation via the bond orders.

The only reasonable explanation then seems to be a difference in the
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averaged angle of twist due to the difference in the moments of inertia of sub
stituted and unsubstituted rings. For a symmetric potential well the averaged
angle of twist is independent of the moment of inertia but for an asymmetric
potential well there may be an observable effect when the difference in the
zero-point vibrational energies is sufficiently large. We have made a very
crude estimation of this effect by assuming that for angles of twist larger
than tt/ 6  radians the potential energy is

V(9) = VQ sin2 |(9  - tt/ 6 )

whereas V = <*> for 6  < tt/ 6 .  For small positive values of (6  - tt/ 6 ) ,  V(e) can be
approximated as the potential energy of an harmonic oscillator. Then, for these
values of 6 the (unnormalized) wave functions are equal to the antisymmetric
wave functions for the harmonic oscillator whereas the wave functions vanish
for 9 < tt/ 6 .  It is easy to show that the averaged value of (9 -n/6) for the zero-
point vibration becomes

where I is the moment of inertia of the aryl system. Assuming to be
10 kcal/Mol we obtain about half the observed difference in the splitting con
stants of the unsubstituted and mono-m-chlorine substituted rings. After in
clusion of the thermal mixing of the excited vibrational levels the calculated
value reduces to about one quarter of the observed one. Though this result
is rather small when compared with the experiments, our calculation certainly
shows that the influence of differences in the moments of inertia may be of
importance but more experimental values of splitting constants of meta sub
stituted radicals are required for a final conclusion about the interpretation
of the observed differences.

The e. s . r .  spectra of ortho substituted triphenylmethyl radicals could
not be analysed so conclusions about the structure of these radicals are im
possible. For 9-mesitylfluorenyl, however, some conclusions are possible.
From the e .s . r .  spectrum of this radical it appeared that there are two large
splitting constants of about 3.5 gauss caused by two sets of two equivalent protons.
All other protons occurring an even number of times have much smaller
splitting constants. A comparison with calculated spin densities in the phenyl-
fluorenyl radical (table 5. 7) shows that this distribution of splitting constants is
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only possible for large angles of twist of the mesityl system. This agrees with
the expected structure of 9-mesitylfluorenyl.

atom
calculated spin densities for an angle of twist

0° 60°

0 0. 3916 0.4869
1 -0. 0325 -0. 0452
2 0.0995 0.1166
3 -0. 0164 -0. 0220
4 0. 0882 0.1014
5 -0.0053 -0. 0072
6 0.0806 0. 0947

13 -0. 0436 -0.0199
14 0.1013 0. 0276
15 -0. 0373 -0.0120
16 0. 0953 0. 0242

14 15

18 17

Table 5 .7 . Calculated spin densities in 9-phenylfluorenyl

Besides the splittings of the ring protons we have also observed splittings
due to substituent groups.
The splitting constants of protons of alkyl substituents have been discussed in
detail in chapter IV. Much less is known about the splitting constants of chlorine
and methoxyl substituents. It is only a few years ago that chlorine splittings
have been observed for the first time. For fluorine splittings it has been sug
gested that they depend on both the spin density on the neighbouring carbon
atom and the spin density in the 2pz -orbital of the fluorine atom and probably
also on the overlap n-electron spin density in the C-F bond (see e.g. reference 36).
From the correspondence between fluorine and chlorine splittings in substituted
triphenylmethyl radicals it seems reasonable to suppose that the same holds for
chlorine splittings. The splitting constants of the methoxyl protons in tris(p-
methoxyphenyl)methyl have been discussed by Rabold and coworkers [37] .

D. CHICHIBABIN'S BIRADICAL

Shortly after the discovery of triphenylmethyl attempts have been made to
obtain biradicals by linking two triphenylmethyl radicals together. A typical
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example of a biradical is

OHO

For this compound (Schlenk's biradical [38]), which strongly resembles tri-
phenylmethyl, no normal structures can be written with all electrons paired.
In the molecular orbital theory the biradical character is caused by the occur
rence of two non-bonding orbitals, each containing one electron.
A much more difficult problem is offered by Chichibabin's biradical [39]:

This compound has an intense violet colour and is highly reactive e. g. with
respect to oxygen. Because of the high reactivity it has first been considered
as a biradical. On the other hand it is also possible to write a quinoid structure

with all electrons paired from which we should conclude that the ground state
is a singlet. This problem has in principle been solved by measurements of the
magnetic susceptibility from which it appeared that Chichibabin's biradical
is diamagnetic [40,41,42] . A different result was obtained from ortho-para-
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hydrogen conversion measurements [43] but in a more recent paper [44] it
has been shown that the apparent paramagnetism obtained from these measure
ments can be caused by a low-energy triplet state of the molecule.

In 1952 Hutchison and coworkers [45] , with electron spin resonance,
showed that about 4% of the molecules are paramagnetic. This paramagnetism
was ascribed to a thermally excited triplet state. Jarrett, Sloan and Vaughan
[46] have extended these measurements and obtained e .s .r .  spectra showing
hyperfine structure. This indicates that the interaction between the two unpaired
electrons is small. Further evidence for this small interaction was obtained by
Reitz and Weissman [47] from measurements of biradicals where the two

13central carbon atoms of the triphenylmethyl halves were replaced by C. On
the other hand, the small fraction of paramagnetic molecules corresponds to
a triplet excitation energy of about 2. 5 kcal/Mol which indicates a much larger
interaction between the unpaired electrons. Several attempts [48,49,50] have
been made to explain this 'biradical paradox' but none of these seems to be
conclusive.

From a further series of experiments on Chichibabin's biradical and
related compounds Waring and Sloan [51] concluded that the paramagnetic
molecules are not obtained from an excitation to a triplet state but from a
chemical reaction. Their experiments can be summarized as follows:

1. Cooling of solutions from different temperatures to -100°C leads to
different intensities of the e .s .r .  signal.

2. The intensity of the e .s . r .  signal of solutions in CS^ for samples of
constant volume varies linearly with concentration.

3. Irradiation at low temperatures (-90°C) with light of 420 mp, wave
length leads to an enhancement of the e. s . r .  signal intensity. Upon warming to
room temperature the intensity diminishes again. Depending on the biradicalar
compound, the solvent and the conditions of irradiation the e .s .r .  signal inten
sity may or may not return to its original value and the decay may be immediate
or it may be slow and take several hours. No effect is observed upon irradiation
at the main absorption band at 580 mp. The hyperfine structure before and after
irradiation was identical.

4. After heating of solutions in toluene or CS  ̂and cooling to room tem
perature the intensity of the e .s .r .  signal is enhanced. This intensity diminishes
slowly with characteristic times of many hours to a value somewhat less than the
original intensity at room temperature. These non-equilibrium effects were not
observed in benzene solutions.
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From these experiments it was concluded that an equilibrium between open and
closed dimers or higher polymers is observed. The linear dependence of signal
intensity on concentration indicates that observable and non-observable species
have the same molecular weight. The different equilibration times were inter
preted as being caused by observable species existing in different forms where
as also disproportionation reactions may be of importance.

However, Waring and Sloan's conclusions are not in agreement with the
recent measurement of the molecular weight of Chichibabin's biradical from
which it appeared that most of the molecules are monomeric [52] .

We have studied the 'biradical problem' by a calculation of the absorption
maximum of Chichibabin's biradical in the visible region and by an attempt to
analyse the e. s. r. spectra of Chichibabin's biradical and of the dimethoxy
substituted derivative:

H.CO

1. The a b s o r p t i o n  s p e c t r u m  in t he  v i s i b l e  r e g i o n

The conclusion that most of the molecules are monomeric can also be
obtained from the absorption spectrum of Chichibabin's biradical. When the
system is an equilibrium mixture of open and closed polymers, then the
absorption spectrum would be a superposition of the spectra of benzene,
biphenyl and diphenyl-p-biphenylylmethyl. In view of the small amount of
paramagnetic molecules, the spectrum in the visible region would then consist
of a weak broad band. In fact a very strong band is observed (X = 574 m p;
log e = 4.92 [53]). In viewof the spectra of similar compounds such as di-
phenoquinone, it seems most reasonable to ascribe this band to the monomer
molecule. We have calculated the first absorption band for the planar molecule
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in a Pariser-Parr type approximation [ 54, 55] from Hiickel molecular orbitals.
In the Hückel approximation there is a singly excited state at -0.14720  ̂and a
doubly excited state at -0.29440^. After inclusion of the interaction between the
electrons the excitation energies become

singly excited singlet 1.97 eV oscillator strength 7.4
singly excited triplet -0. 84 eV
doubly excited singlet 1.13 eV

Because of the low excitation energy of the doubly excited state, there is a
strong mixing of this state with the ground state. After inclusion of this mixing
we obtain for the singly excited singlet and triplet states

singly excited singlet 2.91 eV oscillator strength 0. 8
singly excited triplet 0.10 eV

The parameters used in this calculation are chosen from calculations
where only singly excited states are considered, so we can not expect that this
calculation accurately predicts the position of the absorption band. Moreover,
the real molecule is not planar which may also cause errors in the calculated
absorption maximum. Therefore we consider the results of our calculation to
be in good agreement with the observed maximum of 2.17 eV.

2. T he e . s . r .  s p e c t r a

The e .s . r .  spectrum of Chichibabin's biradical is given in figure 5.20.
When the paramagnetic molecules are open polymers having a structure such
as
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then we should expect that the splitting constants are nearly equal to the ones
obtained for diphenyl-p-biphenylylmethyl. This assumption is indeed in agreement
with the observed spectrum which could be reproduced with a set of splitting
constants which can be interpreted in two different ways:

2 .7 6  1 .09  2 .6 3  1.09

2 .442 .44
2 .63  1.22  0 . 5 1 0 .1 8 2 .7 6  1 .22  0.51  0.18

2 .44 gauss

Fig. 5.20. E.s.r. spectrum of Chichibabin's biradical (high-field half)

2 gauss

Fig. 5.21. E.s.r. spectrum of dimethoxy-substituted Chichibabin's biradical (low-field half)
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In the e .s . r .  spectrum (fig. 5.21) of the dimethoxy substituted derivative the
small splittings obtained for phenyl(p-methoxyphenyl)-p-biphenylylmethyl could
also be observed. Our attempts to obtain a complete analysis of this spectrum
were not successful, however.

From the e .s .r .  measurements we may conclude that the paramagnetism
of Chichibabin's biradical is caused by diphenyl-p-biphenylylmethyl radicalar
groups substituted in the para position of the outer ring. A conclusion about
the nature of the substituent is impossible, however. Instead of structure (a)
for possible polymers one might also propose a structure

which is analogous to the structure for the dimers of di- and triphenylmethyl
radicals proposed by Lankamp, Nauta and Mac Lean [18]. Besides, we can not
exclude the possible occurrence of radicals obtained from an incomplete removal
of chlorine from the dichloride or from a disproportionation of one half of the
molecule.

An explanation of the paramagnetism of Chichibabin's biradical with an
impurity is unlikely in view of the influence of temperature on the e. s. r.
signal intensity. On the other hand the conclusion that the paramagnetism is
caused by polymer molecules is not in agreement with the concentration depen-

142



dence of the e . s . r .  signal.
In view of the long equilibration times mentioned by Waring and Sloan, it seems
to be necessary to investigate the equilibration time after a change of concen
tration. Because this problem has not been discussed by these authors it is not
quite clear whether the reported linear variation of the e. s . r .  signal intensity
with concentration is very reliable. This is especially important because of the
fact that we should expect from Lankamp, Nauta and Mac Lean's investigations
[18] that polymers having structure (a) dissociate only with difficulty into
monomers.
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S U M M A R Y

The hyperfine structure in the e. s . r .  spectra of organic radicals in
solution yields valuable information about the electron distribution in these
molecules. For most radicals, which have been studied up to now, the hyper
fine structure is due to hydrogen or nitrogen nuclei. Besides, splittings have

13been observed due to C, F, Cl, etc. In this thesis an extension of the theory
of proton splittings in the e. s. r. spectra of n-electron radicals is presented.
It has especially been developed to obtain a better insight in the mechanisms
causing spin density in alkyl substituents. It is followed by a discussion of the
often very intricate e. s . r .  spectra of triphenylmethyl radicals.

The theoretical part of our investigations is described in chapters II, III
and IV.
In chapter II formulas are derived, first for the spin density in ct-bonds for
which the most important contribution is obtained from the direct interaction
with the TT-electron system, e.g. the C-H bonds of unsubstituted aromatic
radicals and of methyl substituents, and thereafter for ct-bonds for which the
coupling via other a-bonds must also be considered, e.g. the C-H bonds of
tert.butyl substituents. In the derivation of the formulas the zeroth order wave
function for the ground state is chosen to be a combination of the best possible
wave functions for the separated tt-  and ct-electron systems. This wave func
tion is mixed with wave functions in which the o-bond is excited to a triplet
state and with wave functions in which an electron is transferred from the
n-electron system to the o-bond or vice versa. For ct-bonds for which the
interaction with the n-electron system is weak, we have also considered wave
functions in which an electron is transferred between two o-bonds.
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The calculation of the spin density distribution in the n-electron system is dis
cussed in chapter HI. The reliability of several possible approximation methods
has been investigated by a comparison of calculated spin densities for the negative
ion of naphtalene and for the benzyl radical with values obtained with more
accurate methods. From this it appeared that spin densities calculated according
to Me Lachlan's formula from Hiickel molecular orbitals are a good approximation
of spin densities obtained from a configuration interaction calculation with in
clusion of all singly excited states. The substitution of self consistent field
orbitals, calculated according to Roothaan's open-shell method, however,
leads to rather erroneous spin densities.
The application of the formulas derived in chapter II in the calculation of proton
splittings is discussed in chapter IV. This discussion is combined with a
critical survey of the existing literature on the theory of the splitting constants
of protons in n-electron radicals. A simplified formula for the splitting constants
of methyl protons is proposed which is in good agreement with experimental
splitting constants. The experimental values of splitting constants of 8-alkyl
protons appeared to be insufficient to allow of a simplified formula.

The e .s . r .  spectra of triphenylmethyl radicals are discussed in chapter V.
The most important conclusions from this part of our investigations are:
1. The ratio of the spin densities on the meta- and para-carbon atoms, calculated
according to McLachlan's formula, is in very good agreement with the ratio of
the experimental splitting constants. The calculated spin densities for the
ortho-position, however, show a systematic deviation. A clear explanation of
this discrepancy, which probably also occurs in the case of the benzyl radical,
could not be obtained.
2. The influence of substituents on the spin density distribution in the n-electron
system is very small unless the substituent causes a change in the sterical con
figuration of the radical. This could be explained from the alternant character
of the unsubstituted radical.
3. Para-substituents do not alter the sterical configuration of the radical. In
the case of the mono-meta-chlorine substituted radical, however, it appeared
that the angle of twist out of the plane of the three central bonds is slightly
smaller for the substituted ring than for the unsubstituted rings. According to
a crude calculation this may be caused by the influence of the moment of
inertia of the rings on the zero-point vibrations, but the agreement between
this calculation and the experimental splitting constants was too unsatisfactory
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to allow of a definite conclusion.
4. The e. s. r . spectra of ortho-substituted radicals could not be interpreted.
In the case of 9-mesitylfluorenyl, however, the information obtained from the
spectrum was sufficient to conclude that the angle of twist of the mesityl-
group is very large.
5. The theory described in chapter IV is in agreement with the experimental
splitting constants for the protons of para- and meta-methyl substituents.

In the last part of chapter V we have discussed the e. s . r .  spectrum of
Chichibabin's 'biradical'. The experimental splitting constants are in agreement
with Waring and Sloan's suggestion that the paramagnetism is caused by poly
meric molecules. From the absorption spectrum in the visible region and
from the molecular weight, which has been measured by Hartmann and cowor
kers, it appears that most of the molecules in a solution of Chichibabin's
biradical are monomeric. These data are not in agreement with the concentration-
dependence of the e. s .r .  signal intensity reported by Waring and Sloan. In view
of the recent discussion by Lankamp, Nauta and Mac Lean of the structure of
the dimer of triphenylmethyl, it seems to be necessary to repeat Waring and
Sloan's measurements in order to obtain more accurate results.
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S A M E N V A T T I N G

De hyperfijn structuur in de e. s. r . spectra van organische radicalen in
oplossing levert belangrijke gegevens over de electronenverdeling in deze
moleculen. Bij de meeste van de tot nu toe gemeten radicalen wordt de hyper
fijn structuur veroorzaakt door waterstof- of stikstofkernen. Hiernaast zijn

13splitsingen waargenomen tengevolge van C, F, Cl enz. In dit proefschrift
wordt een uitbreiding gegeven van de theorie van de splitsingsconstanten van
protonen in tt -electron radicalen waarbij vooral getracht wordt een beter in
zicht te krijgen in de wijze waarop de spindichtheid in alkyl substituenten ver
oorzaakt wordt. Dit wordt gevolgd door een bespreking van de dikwijls zeer
ingewikkelde e .s .r .  spectra van triphenylmethyl radicalen.

Het theoretisch gedeelte van het onderzoek is beschreven in de hoofdstuk
ken H, Hl en IV.
In hoofdstuk H worden formules afgeleid voor de spindichtheid in a-banden
waarvoor de directe interactie met het rr-electronensysteem de belangrijkste
bijdrage levert, b, v. de C-H banden van ongesubstitueerde aromatische radi
calen en van methyl substituenten, en voor a-banden waarvoor ook rekening ge
houden moet worden met de koppeling via andere a-banden, b. v. de C-H banden
van een tert. butyl substituent. In de afleiding van de formules wordt uitgegaan
van een nulde orde golffunctie voor de grondtoestand die een combinatie is van
de best mogelijke golffuncties voor de gescheiden tt-  en a-systemen. Deze
golffunctie wordt gemengd met golffuncties waarin de a-band is aangeslagen
naar een triplettoestand en met golffuncties waarin een electron is overgedragen
van het n-electronensysteem naar de a-band of omgekeerd. Voor a-banden waar
voor de directe interactie met het n-electr onensysteem zwak is , wordt ook rekening
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gehouden met golffuncties waarin een electron is overgedragen tussen twee
a-banden.
De berekening van de spindichtheid in het tt -electronensysteem wordt besproken
in hoofdstuk m . De betrouwbaarheid van verschillende mogelijke benaderings
methoden wordt nagegaan door een vergelijking van berekende spindichtheden
voor het negatief ion van naftaleen en voor het benzyl radicaal met de resultaten
van nauwkeuriger methoden. Hierbij bleek dat spindichtheden berekend volgens
de formule van McLachlan uit Hückel 'molecular orbitals' in goede over
eenstemming zijn met spindichtheden verkregen door configuratie interactie
met alle enkel aangeslagen toestanden. Substitutie van 'molecular orbitals',
berekend volgens de 'open-shell' methode van Roothaan, in de formule van
McLachlan levert echter een minder juiste spindichtheidsverdeling.
In hoofdstuk IV worden de in hoofdstuk II afgeleide formules toegepast voor de
berekening van de splitsingsconstanten van protonen. Dit wordt gecombineerd
met een critisch overzicht van de bestaande literatuur. Een vereenvoudigde
formule voor de splitsingsconstanten van methyl protonen wordt voorgesteld
die in goede overeenstemming met experimentele splitsingsconstanten blijkt
te zijn. De experimentele gegevens voor de g-protonen van alkyl substituenten
blijken nog onvoldoende om een vereenvoudigde formule mogelijk te maken.

De e. s. r . spectra van triphenylmethyl radicalen worden besproken in
hoofdstuk V. De voornaamste conclusies uit dit gedeelte van het onderzoek zijn:
1. De verhouding van de spindichtheden op de meta- en para-koolstof atomen,
berekend volgens de formule van McLachlan, is in zeer goede overeenstemming
met de gemeten splitsingsconstanten. Bij alle gemeten radicalen werd echter
een systematische afwijking voor de ortho-protonen gevonden. Een duidelijke
verklaring voor deze afwijking, die waarschijnlijk ook optreedt bij het benzyl
radicaal, was nog niet mogelijk.
2. Substituenten hebben slechts een geringe invloed op de spindichtheidsverdeling
in het tt -electronensysteem, tenzij ze een verandering van de sterische confi
guratie van het radicaal veroorzaken. Dit kon verklaard worden uit het alter
nerende karakter van het ongesubstitueerde radicaal.
3. Para-substituenten hebben geen invloed op de sterische configuratie van het
radicaal. Bij het mono-meta-chloor gesubstitueerde radicaal bleek echter dat
de gesubstitueerde ring iets minder ver uit het vlak van de drie centrale C -C
banden gedraaid is dan de ongesubstitueerde ringen. Volgens een ruwe berekening
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kan dit veroorzaakt worden door de invloed van het traagheidsmoment van de
ringen op de nulpunts-vibraties maar de overeenstemming tussen de berekening
en de experimentele splitsingsconstanten was onvoldoende voor een definitieve
conclusie.
4. De e. s . r .  spectra van de ortho-gesubstitueerde radicalen konden niet geïn
terpreteerd worden. Uit het spectrum van 9-mesitylfluorenyl bleek echter wel
dat de mesityl-groep ver uit vlak van de centrale banden gedraaid is.
5. De in de hoofdstukken II en IV besproken theorie is in overeenstemming met
de gemeten splitsingsconstanten van de protonen van meta- en para-methyl
substituenten.

In het laatste gedeelte van hoofdstuk V wordt het e. s. r . spectrum van
Chichibabin's biradicaal besproken. De gevonden splitsingsconstanten zijn in
overeenstemming met Waring en Sloan's veronderstelling dat het paramagne-
tisme veroorzaakt wordt door polymeer-moleculen. Uit het absorptie-spectrum
in het zichtbare gebied en uit het door Hartmann en zijn medewerkers gemeten
molecuulgewicht blijkt dat de meeste moleculen in een oplossing van Chichibabin's
biradicaal monomeer zijn. Deze gegevens zijn niet in overeenstemming met de
door Waring en Sloan vermelde concentratie-afhankelijkheid van het paramag-
netisme. Vooral in verband met de recente onderzoekingen van Lankamp,
Nauta en Mac Lean naar de structuur van het dimeer van triphenylmethyl lijkt
een herhaling van Waring en Sloan's experimenten noodzakelijk teneinde nauw
keuriger gegevens te verkrijgen.
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I

De door Bailey en Golding gegeven discussie van de wijze waarop de spindicht-
heid in alkyl substituenten tot stand komt, is onvolledig en voor een gedeelte
onjuist.

J.P.M . Bailey en R.M. Golding, Mol. Phys. 12, 49(1967)
Dit proefschrift, hoofdstuk 2 en 4

II

De invloed van substituenten op het absorptiespectrum van het triphenylmethyl
kation in het zichtbare gebied kan met een eenvoudig 'molecular orbital' model
goed begrepen worden. Uit een dergelijke beschouwing blijkt onder andere dat,
in tegenstelling tot de opvatting van Dallinga, Mackor en Verrijn Stuart en van
Koutecky en Paldus, de invloed van de methyleengroep in de berekening van het
absorptiespectrum van het 9-anthracenium ion niet verwaarloosd kan worden.

A. A. Verrijn Stuart en E. L. Mackor, J. Chem. Phys. 27, 826(1957)
G. Dallinga, E.L. Mackor en A.A. Verrijn Stuart, Mol. Phys. L  123(1958)
J. Koutecky en J. Paldus, Coll. Czech. Chem. Comm. 2£, 1483 (1963)

m
Bij de keuze van parameters in 'valence bond' berekeningen met ionogene struc
turen wordt in het algemeen te weinig rekening gehouden met de aard van de
integralen die in deze benadering voorkomen.

D. P. Craig, Proc. Roy. Soc. (London) A200, 390 (1950)
M. Simonetta, J. Chim. Phys. 49, 68 (1952)
J.C . Schug, T. H. Brown en M. Karplus, J. Chem. Phys. 35, 1873(1961)
T. H. Browri en M. Karplus, J. Chem. Phys. 46, 870(1967)



IV

Het door G omberg en Cone gegeven mechanisme van de reactie van para-halo
geen gesubstitueerde triphenylmethyl radicalen met zilver verdient de voorkeur
boven het door Beynon en Bowden gegeven reactieverloop.

M. Gom berg en L. H. Cone, Ber. 39, 3274(1906)
K .I. Beynon en S.T . Bowden, J. Chem. Soc. 4257(1957)
H. Lankamp, W.Th. N au taenC . MacLean, Tetr. Letters 249 (1968)

V

Bij het toepassen van de regel van Woodward en Hoffmann voor sigmatrope
reacties dient men met de volgende punten rekening te houden:
1. Het is niet juist om, in navolging van Woodward en Hoffmann, de 'transition
state' opgebouwd te denken uit een tt -electronensysteem met een oneven aan
tal electronen en een waterstofatoom. Dit kan voor fotochemische reacties tot
onjuiste conclusies leiden.
2. Voor monocyclische verbindingen zoals cycloheptatrieen is een conclusie,
uitsluitend op grond van de symmetrie van de 'molecular orbitals', niet moge
lijk.

R. B. Woodward en R. Hoffmann, I. Am. Chem. Soc. 87, 2511 (1965)
L. B. Jones en V. K. Jones, J. Am. Chem. Soc. 89, 1880 (1967)
A. G. Anastassiou, Chem. Comm. 15(1968)

VI

De wijze waarop Pumendra Nath Sen en Sadhan Basu de werkzame doorsnede
voor excitatie van benzeen met electronen van 5 tot 50 eV berekenen, is aan
bedenkingen onderhevig.

PurnendraNathSen en Sadhan Basu, Internat. J. Quantum Chem. 1_, 591 (1967)

VH

Het voor de reactie van 1 ,1-diphenylaetheen met tetranitromethaan gepostu
leerde mechanisme is niet in overeenstemming met de tijdens de reactie ge
meten absorptiespectra.

S. Penczek, J. Jagur-Grodzinski en M. Szwarc, J. Am. Chem. Soc. 90, 2174(1968)



VIII

Voor een berekening van de energieverandering bij een draaiing van een van
de CHg -groepen van aetheen om de C-C band is een 'molecular orbital' methode
weinig geschikt.

IX

De voordelen die hoogvacuum kan bieden voor het uitsluiten van zuurstof tijdens
reacties in verdunde oplossingen, worden in de organische chemie nog te weinig
benut.

X

Het feit dat alkanen in sterk zure media reactiviteit vertonen, betekent niet dat
deze verbindingen geen paraffinen genoemd kunnen worden.

H. M. Buck, Chem. Weekblad 63, 392(1967)
G. A. O lahenR .H . Schlosberg, J. Am. Chem. Soc. 9£, 2726(1968)

W. J. van der Hart Leiden, 2 juU 1968.
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