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STELLINGEN

1* De resultaten van Karra e.a. voor de polarisatie— en relaxatie­
tijden van de protonspins in verdunde kopertuttonzouten zijn
niet in overeenstemming met de metingen van Wenckebach e.a.;
tegen hun konklusies over de elektronspin-roosterrelaxatietijd
zijn ernstige bedenkingen in te brengen.

J.S.Karra, R.Clarkson en T.Sato, Phys.Rev.175(1968)479:
W.Th.Wenckebach, T.J.B.Swanenburg, H.Hoogstraate en
N.J.Poulis, Phys.Letters 26(1968)203.

2. In de uitdrukking voor de voortplantingssnelheid van het zgn.
second sound in helium II:

Un = s/pJ T SV c’
is de benadering van de soortelijke warmte C door die bij
konstante druk, C , beter dan door die bij konstant volume, C .P v

3* Een indeling van faseovergangen anders dan de oorspronkelijke van
Ehrenfest, heeft slechts zin wanneer de verschillende soorten van
di skontinuïtei ten nader worden onderscheiden.

M.E.Fisher, Reports on Progress in Physics, ed.A.C.Stickland
(The Institute of Physics and The Physical Society, London
1967) Vol.XXX,Part II,p.617.

4. De resultaten van de expansiemetingen aan vloeibaar helium onder
druk van Mills en Sydoriak zijn dermate onbevredigend, dat ze niet
meer toelaten dan een schatting van de entropie van kompressie.

R.L.Mills en S.G.Sydoriak, Ann.Phys.(NY)34(1965)276.

5. De verschillen tussen effektieve rotonparameters, die met behulp
van de benadering volgens Landau uit verschillende thermodynamische
grootheden van helium zijn afgeleid, worden voornamelijk veroor­
zaakt doordat de excitatiekromme symmetrische afwijkingen van een
parabolisch verloop vertoont.



6. Na het beschikbaar komen van de gegevens over de excitatiekrommen
uit de experimenten aan inelastische verstrooiing van neutronen,
is het niet langer zinvol om de thermodynamische grootheden van
helium II met behulp van de parabolische benadering voor rotonen
volgens Landau te analyseren.

R.L.Mills, Ann.Phys. (NY)35.(1965)410;
dit proefschrift.

7. Het is gewenst dat er eisen worden geformuleerd, waaraan studenten
na het volbrengen van een practicum natuurkunde behoren te kunnen
voldoen.

8. Het is voor het opdoen van elementair experimenteel inzicht niet
gewenst, dat de studenten op het practicum natuurkunde uitsluitend
met moderne geautomatiseerde apparatuur in aanraking komen.

9. Onder de wet op het voortgezet onderwijs (de mammoetwet) zijn in
de voorbereiding tot het wetenschappelijke onderwijs in de fysika
verbeteringen mogelijk; hierbij dient aan het meer bevorderen van
een experimentele instelling bij de leerlingen een belangrijke
plaats te worden ingeruimd.

10. Tegen de proeven waarmee tot 1964 bij TNO vochtdoorlating van
bouwmaterialen is bepaald, zijn bezwaren in te brengen.

11. De verklaring van de werking van een roterende tuinsproeier
(reaktierad van Segner) kan direkter worden gegeven via de impuls
van de uittredende vloeistof dan via de drukkrachten op de wand;
een kwadratisch verband tussen het stuwende koppel en de
uittreesnelheid is eenvoudig experimenteel te demonstreren.

J.Wiebes, Faraday 36(1966)49,106»

12. Het is niet vanzelfsprekend dat in de nabije toekomst die
maatregelen zullen kunnen worden genomen, die nodig zijn om
katastrofale veranderingen in de biosfeer te voorkomen.

Stellingen behorende bij het proefschrift van J.Wiebes.
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LIST OF SYMBOLS

Quantities

a = coefficient of thermal expansion
c = specific heat
e = energy of elementary excitation
A = operator denoting increase during a

measurement; minimum roton energy
F = free energy
h * 2n h m Planck's constant
k = Boltzmann's constant
x = compressibility
1 = specific latent heat
M ■ mutual inductance
m = mass; mass of ^He atom

Subscripts

c : calorimeter

f : final value at a measuring point

g s gas

i : initial value at a measuring point

1 : liquid

p : along the melting curve

p : at constant pressure (isobaric)

ph: phonon

r : roton

p : at constant density (isopycnal)

s : solid

a : along the vapour pressure curve

T : at constant temperature (isothermal)

t : total

v : at constant voliane (isochoric)

0 : at zero (or low) temperature

1

2

[L = roton parameter
N a number of excitations
p = pressure; momentum of excitation
Q a amount of heat
p * density
S a entropy
s a s/m a specific entropy
T * temperature
u a velocity of first sound
V a volume
v a i/p a v/m a specific volume
V a m c * heat capacity

Examples

Sc* Wc

Mf* mtf’ Scf’ sl£’ Tf’ vlf

cpg’ " V  V  V  vg
Mi’ “ti* Sci’ ssi* Ti’ vsi

apl» V »  cpl' Ccl' Cvl* *1' pl* V  V  S1

V V' Pn' (d/dT)^

V cp. ( ^ T)p. tpl- ^lo^p

Cvph• eph* Fph* "ph* ^nph’ ph

Cvr’ Cr’ V Nr-1 ^nr1► Sr
[p - V>p

Cps’ "s' ps* ss'- Vs- Vg

co, , (d/dT)c
N.
mt' St* Vt* Wt
C

po’ plo
: at the lowest bath temperature (1.1 K) T-|i Mi

: just after total melting m12, ms2, Tg, v12, vg2
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CHAPTER I

GENERAL INTRODUCTION

1-1. Introduction
Although, next to water, liquid helium-four is perhaps the

most investigated of all liquids, our knowledge about it, up to
1963, consisted mainly of the properties along its vapour pressure
curve. Of course, the liquid had been studied also under higher
pressures but those measurements were performed at temperatures
above 1 K. One of the few exceptions to this is the measurement by

1 1Mayper and Herlin ’ ) (1953) of the velocity of second sound at
several pressures down to 0.2 K. As for the equation of state and
the thermodynamic properties, the area in the phase diagram extend­
ing below a temperature of 1 K was "terra incognita"(see fig. 1,1).
One reason for this is that equipment for measurements under
pressure is more complicated than equipment for experiments at
saturated vapour pressure. Perhaps another reason is that many of
the interesting features of helium II can be displayed and studied

jj. solid

X-line

He I

O T 1 5 °K 6

Fig* 1t1* Phase diagram of He; vapour pressure curve with critical point (CP)f
normal boiling point (NBP) and lower lambda point (LLP); X-line;
melting curve with upper lambda point (ULP) and shallow minimum in the
melting pressure (MMP); locus of zero coefficient of thermal expansion a •
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without the necessity for going to pressures higher than that of
the saturated vapour.

However, reasonable estimates for the thermodynamic quantities
could be made from extrapolations of results obtained at tempera­
tures above 1 K. First, the density as a function of the pressure

1 2has been known since the work of Keesom and Miss Keesom ’ ) (1933)
on the isopycnals above 1.15 K. Secondly, the velocity of ordinary
o r  first soundf which could have been calculated quite well from

1 3those data, was measured by Atkins and Stasior ’ ) (1953) above
1.2 K as a function of the pressure. From higher temperatures
towards 1 K, it clearly becomes almost independent of temperature.
Now at. temperatures below about 0.5 K, the thermodynamic properties
are almost exclusively due to thermal excitations called phonons
1»4\ since the phonons are essentially sound waves described by
the velocity of first sound, the thermodynamic quantities at low
temperatures could be calculated.

At increasing temperatures above roughly 0.5 K, the contri­
butions of another kind of excitations called rotons1’4) ’ ) become
rapidly important. In contrast to phonons giving contributions that
vary as the third or the fourth power of temperature, the c°ntri-
butions of the rotons vary essentially as the exponential e •
Here A is the minimum energy required to excite a roton. Ignoring
some early and limited data by Keesom and Miss Keesom ’ ), it was
not before Lounasmaa's extensive study of the lambda line ) ’ )
(1959) that data became available for the specific heat as a
function of the density at temperatures down to 1.5 K. However, a
calculation of the values of A could only be performed after
measurements had been made by van den Meijdenberg et al.1»9) (1961)
of the entropy down to 1.15 K as a function of the pressure (from
the fountain effect). Based on these values the roton contributions
at temperatures below 1.1 K may be estimated but, due to the steep
exponential function, the accuracy obtained is considerably less

than that for the phonons.
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In the mean time, the understanding of the nature of the ele-
"1 *| 0-13»mentary excitations ’ ) had been greatly improved by direct

determinations of the excitation spectra from experiments on
1 14-18inelastic neutron scattering ’ ~ ). From these the thermodynamic

1 1Q 1 OQ
quantities may be computed directly * ) ’ ). Apart from data at
saturated vapour pressure, unfortunately, only one spectrum, at the
melting pressure, has been reported.

In more recent years (since 1963) much work has been reported
on helium under pressures higher than that of the saturated vapour3
and at temperatures below 1 K. By the use of He cryostats a
temperature of 0.4 K can be reached easily. In addition to the
equation of state and the thermodynamic quantities of the liquid
1 21-26\ 1 27-29
' ) and the solid phase ’ ), special attention has been

given to the melting curve since the theoretical ' ) and the
1 29\1 34^39experimental discovery 9 ) 9 ) of a shallow minimum in the

melting pressure at a temperature of 0.77 K.
The present measurements were undertaken to extend the data on

the specific heat of the liquid under pressure to temperatures as
low as 0.3 K. The results enable one to calculate, by means of
extrapolations into the pure phonon region, the thermodynamic
quantities from the absolute zero of temperature. As an interesting
by-product, results on the melting curve could be obtained. It must
be borne in mind, however, that the calorimeter has been designed
primarily for the determination of heat capacities of the liquid at
constant pressure. The extension of its use to measurements in
which the pressure is not a constant may be accompanied by diffi­
culties with respect to thermometer calibration. In the next
section the possible measurements with the calorimeter will be
reviewed. In contrast to all other recent experiments (in which JHe
cryostats are used) the method of cooling by adiabatic demagneti­
zation was employed.



1-2. Measurements with an open calorimeter
A calorimeter is generally used for the determination of heat

capacities under specified conditions* A known amount of heat AQ is
added and the resulting increase AT of the temperature T is
measured. However, if the calorimeter is not closed there is the
possibility of changing its content by a known amount Amt, or its
pressure by Ap, through adiabatic compression or expansion, i.e.
without the addition of heat. By means of the heat capacity the
resulting change of temperature AT can be translated into an amount
of heat. The thermodynamic quantity to be calculated from this
depends on the composition of the contents.

The calorimeter used in the present experiments is connected
to the pressurizing apparatus by a filling capillary. The amount of
helium can therefore be changed. In table 1,1 the present experi­
ments have been compiled. Small effects, e.g. those originating
from thermal expansion, have been omitted here but will be taken
fully into account in the actual evaluations (see chapter III). The
various experiments will now be reviewed in succession.
Experiment A. Since all results have to be corrected for the heat

capacity Wc of the calorimeter, the latter must be determined
separately. This is done with a small amount m1 of helium in
the calorimeter in order to enhance internal equilibrium of
temperature. Consequently, the calorimeter contains both
liquid and vapour. The contributions of these can be calcu­
lated if the specific heat c 1 of the liquid along the vapour
pressure curve and the saturated vapour pressure p^ are known
as functions of temperature.

Experiment B. When the calorimeter of volume Vt is filled with the
liquid under the pressure p, the specific heat cpl of the
liquid at constant pressure can be found if the density p1 is

known.
Experiment C. From the change of temperature resulting from an

adiabatic change of pressure, the coefficient of isobaric
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Table 1,1. Experiments with a calorimeter of heat capacity W ,
filled with helium of total volume of 15-8 cm^.

exp. phases process accepted
quantities

measured
quantities

calculated quantities

A
vapour
and
liquid

closed
Am = 0

col
pc

T
AQ , AT

"l
V Zt  - mlcor  Wvap(pCT)

B liquid closed
Am * 0

pl
Wc (from A)

P . T
AQ , AT cpi“ ( i - wc ) / V i

C liquid adiabatic
AO * 0

pi
Wc (from A)
c ^(from B)

P . T
Ap , AT

Vc+ VtplCpl AT
“Pl“ Vt T *

D
solid
and

liquid

closed
An^x 0

pl • ps
Vc (from A)

c(a ( from B)

P . TP
AQ , AT

"melt

V  mmeltPs / (p*- pl>

V  vtpl“ mmeltpl / (ps- pl>

Cps" (Zt - Wc - V p l ) /  ms

E
solid
and

liquid

adiabatic
AQ = 0

pl • ps
Wc (from A)
c(1l(from B)
c s(from D)

T
Amt f AT

mmelt

V  rameltps / (ps- pl)

V  Vtpl- mmeltpl / (ps" Pl5

dPM P1 AT
a t ■ (V micpi+ mscus) r 2s ;

thermal expansion a ^ may be calculated if the total heat
capacity W + V n,c . is known,c trl pi

Experiment D. When the calorimeter contains both the solid and the
liquid phase, the total heat capacity is composed of contri­
butions from both phases. The amounts of the solid and the
liquid phases, mg and m^, are determined separately from the
amount m ,. that has to be released in order to melt themelt
solid. The specific heat c ^ of the liquid along the melting
curve can be extrapolated from experiment B if the melting
pressure p^ is known. The specific heat c s of the solid along
the melting curve may now be calculated from the heat capacity
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remaining after subtraction of the contributions of the liquid
and the calorimeter.

Experiment E. When a small amount Amt is released from a two-phase
system of solid and liquid, some of the solid will melt. The
heat needed for this process causes a change of temperature.
Consequently, the heat of melting 1 (or the slope dp /dT of(X r
the melting curve related to 1 by Clapeyron’s equation) can
be determined.

The results from experiments B and C, as well as those from
experiments D and E, are connected by simple thermodynamic
relations. This is shown in table 1,11 where the manner of evalu­
ation has been indicated. The measurements of the heat capacities
as performed in the experiments B and D yield provisional values
c and c for the specific heats of the liquid and the
lprov sprov r .
solid. Corrections calculated by means of these provisional results
have to be applied in order to find the desired specific heats cpl
and c s« By simple integration, the specific entropies ŝ  ̂and sg
can be found from the specific heats. The entropies can now be
related to the results of the expansion experiments C and E by
application of the second law of thermodynamics.

For the pure liquid phase the Maxwell relation:

3 s, dv
( -i ) = - ( -- )v dp 'T v é>T 'p

0 ,1)

is used connecting the dependence of the entropy on the pressure
with the dependence of the specific volume v.̂  on the temperature.
Consequently, the coefficient of thermal expansion opl can be com­
puted from the entropy as found in experiment B, and compared with
the results of experiment C.

For the two—phase system of solid and liquid Clapeyron's

equation applies:
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Table 1,11. Scheme of calculations.

exp. phases process calculated from measurements used for

B liquid closed
Amt «  0 clprov----*  Jpl(p'T) -“ - CV1<>1’’>

sl(p.T) - ƒ  dT -£^*-s1(p1,T) theoryI , v
?pl^P,T  ̂“ “ P1  ̂8p"

comparison
with exp. C

CPl" P l o V  - plo J^apldT corrections

D
solid
and
liquid

closed
Am^ * 0 csprov * theory

^  V  *3
dT ” v^- v
1 rT dp
y T )  - P(j(0) - J0 dT1 dT

comparison
with exp. E

pi V T)

*i(V T)
c,a<T>

dp/ dT = (si “ ss) /  (V! - vs) = /  T (vx - vs) (1 ,2)

relating the entropy difference between the liquid and the solid to
the slope of the melting curve. The results as calculated from
experiment D may be compared with the more direct determination
from experiment E.

In the case of the liquid, the results of the entropy as a
function of the density may be compared with theory. For the solid
the specific heat may be used to compute the corresponding
effective Debije temperatures.

1-3. Survey
In chapter II the experimental arrangement will be given. The

measuring apparatus will be described and the cooling and measuring
procedures discussed.
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In chapter III the appropriate thermodynamic formulae will be
derived. Data to be taken from other experiments will be discussed
and the various corrections will be indicated. Since the main
scheme of calculations has been outlined above, sections 3-2 and
3-4 of this chapter serve only as a more detailed derivation of the
formulae and the corrections.

In chapter IV the contribution of the empty calorimeter will
be calculated and discussed (experiment A), and the experiments B
and C on the liquid will be evaluated. The results will be com­
pared with existing data.

In chapter V the experiments D and E on the two-phase system
of solid and liquid will be presented. The results on the melting
curve will be discussed#

In chapter VI the entropy of the liquid will be analysed in
terms of constants relating to the excitation curves. The results
will be compared with the existing data.
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Fig. 2,1. Apparatus; a. first cooling arrangement;
b. second cooling arrangement; c. calorimeter.
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CHAPTER II

EXPERIMENTAL ARRANGEMENT

2-1. Introduction
In this chapter the experimental arrangement will be presented.

In sec. 2-2 the measuring equipment will be described; special
attention will be given to the mutual-inductance compensator and to
the magnetic thermometer. The cooling and measuring procedures will
be treated in secs. 2-3 and 2-4 respectively.

2—2. Apparatus
a. C o o l i n g  a r r a n g e m e n t s .  Caloric measure-

4ments on He under pressure and at temperatures below 1.6 K, are
performed in a calorimeter which can be filled by means of a cap­
illary connected to a helium storage cylinder. The calorimeter is
enclosed in a vacuum vessel (see fig. 2,1a). When this vessel has
been evacuated, the calorimeter is thermally insulated from its
surroundings except for unavoidable heat leaks. The vessel is

4immersed in a He bath that can be pumped down to a pressure of
about 0.3 mm of mercury; the corresponding temperature is approxi­
mately 1.1 K. The part of the capillary immediately outside the
vacuum vessel is kept in good thermal contact with the bath; in
this way the heat leaking in from parts of the apparatus at room
temperature is absorbed by the bath and does not reach the calo­
rimeter.

Cooling to temperatures below 1.1 K is accomplished by adia­
batic demagnetization of a sample of a paramagnetic salt that is
contained in a separate vessel (see fig. 2,1a). In order to facili­
tate heat flow from the calorimeter during this cooling procedure,
a lead thermal switch is placed between the calorimeter and the
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cooling vessel; the switch is operated by the field that also
magnetizes the cooling salt (see sec. 2-3).

When the helium within the calorimeter is at temperatures
below 1.7 K and at pressures between that of the bath and the
melting pressure, the part of the capillary below the bath level
contains liquid helium II. The well-known ability of this liquid to
provide for good heat transport, renders the thermal insulation of
the calorimeter rather poor. Consequently, for the maintenance of
calorimeter temperatures different from that of the bath for some
reasonable length of time, a thermal buffer has to be located some­
where on the capillary within the vacuum vessel. In addition to its
original function, the cooling vessel serves as this buffer. For
that reason it has to be furnished with a substantial heat capacity
at all temperatures within the measuring range. Moreover, a suf­
ficient heat contact within this vessel must be ensured in order
that its cooling capacity is fully utilized. These requirements
have been fulfilled in two different designs for the cooling
vessel, used in succession.

In the first design the stainless steel capillary with a 200 p.
ID within the vacuum vessel was simply cut into a lower part of
30 cm and an upper part of 100 cm in length; the cooling vessel
was connected in between (fig. 2,1a). Approximately 18 cm of
liquid helium, under the same pressure as that in the calorimeter,
is present in the cooling vessel; it fulfils both requirements at
temperatures above 0.6 K. Below that temperature a sufficient heat
capacity is provided for by the electrical and magnetical
interactions between the magnetic spins of the cooling salt itself.
This arrangement was used in the measurements of the heat capacity
when the calorimeter was completely filled with the liquid.

This construction of the cooling vessel could not be used for
measurements if two different phases of helium were contained in
the calorimeter. The large dead volume within the cooling vessel,
in addition to the volume of the calorimeter, prevents the
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determination of the amounts of the two phases that are contained
in the calorimeter itself; only the amounts in the combined volumes
of calorimeter and cooling vessel can be found. For that reason,
the dead helium volume at low temperatures must be kept as small
as possible in those measurements.

Therefore, in the second version of the apparatus the filling
capillary was made out of one piece connected to the calorimeter
only. The cooling vessel was filled with a mixture of a paramag­
netic salt as a cooling agent, a salt with a ferromagnetic
transition point at 0«7 K as a thermal buffer, and stopcock grease
as a heat conducting agent (see fig. 2,1b). In order to enhance
internal heat contact, copper rods have been soldered to the cover.
Part of the capillary has been wound around the cooling vessel and
soldered into a 95 cm long groove. In this way direct heat flow
from the bath to the calorimeter is prevented. The cooling
efficiency appeared to be somewhat less than that of the former
arrangement (see sec. 2-3).

b. T h e  c a l o r i m e t e r .  The calorimeter is a thick-
walled copper vessel (see fig. 2,1c). The temperature is determined
from the mutual inductance between two sets of coils that contain
a sample of a paramagnetic salt as a core. In order to ensure the
best possible heat contact, the entire salt and coil system of the
magnetic thermometer has been built within the calorimeter.

•a lt filling primaries secondaries

2|2« Construction of magnetic thermometer*
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The mutual-inductance coils have been wound on two D—shaped quartz
formers both half filled with cerium magnesium nitrate (see fig.
2,2); both formers carry one primary of three layers of 50 p Nb
wire, and two equal secondaries of five layers of 50 p Cu wire
wound in mutually opposite senses. The primary fields in the two
formers have opposite directions minimizing the resulting flux
through a cross-section of the calorimeter, and thereby the influ­
ence of eddy currents. The electrical wiring enters through
Amphenol seals and consists of 50 p Nb wire within the vacuum
vessel. Perspex supports reduce the remaining helium volume which

3was determined to be (15*8 +_ 0.1 )cm .
c. T h e  m u t u a l - i n d u c t a n c e  c o m p e n ­

s a t o r .  The mutual inductance of the coils is measured by
means of an ac mutual-inductance compensator with a variable prima­
ry current 2,1) (see fig. 2,3a). This compensator was developed
especially for the measurement of rather impure mutual inductances,
such as may occur if eddy currents in metallic parts of the appa­
ratus cause large losses. Like the Hartshorn bridge ’ ) (fig- 2,3b)
which is of common use in low-temperature physics, it balances in
principle the voltage across the secondary coils of the cryostat
CR by the voltage across the secondary of its own standard mutual
inductance ST. In contrast to Hartshorn's method, however, the
compensating voltage is varied not by switching secondary turns
changing the standard's mutual inductance JvC, but by variation of
the primary current i in a standard of constant mutual inductance

M .
For this purpose, by means of a precision potentiometer of

total resistance D, a calibrated part ip of the current i in the
cryostat primary is led through the standard primary. The currents
i and i can be kept in phase if, at the angular frequency «, a
series capacitor C is suitably chosen; then the remaining impedance
is the effective resistance Rp of the primary of the standard. At
a fraction p, read on the potentiometer, one now has:
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gen

Fig* 2,3* Simplified diagrams of mutual—induetance compensator (a) and
Hartshorn bridge (b); for explanation of the symbols see text*

p i /  (1 + Rp /  D) (2.1)

which is strictly linear in p; the denominator can be chosen close
to 1 for the values that may occur in practice (see table 2,l). At
low frequencies, the phase shift between the two currents caused
by the self-inductance of the primary of the standard is negligi­
bly small so that the capacitor C may be omitted.

At a zero value of the secondary current, the voltage across
the cryostat secondary will be -jwMi in which the-effective mutu­
al inductance M is in general complex, containing a real part M'
and an imaginary (resistive) part that will be written as jR/w .
The inductive part only can be compensated by the voltage -jcoMQi
across the standard secondary; the small imaginary part of Mq
originating from parasitic impurities may be neglected for the pre­
sent purpose. The losses in the cryostat are compensated by means
of a resistive coupling between the primary and the secondary
circuits through a resistance Rq and a potentiometer with
resistance S. When a fraction v is read on this potentiometer, the
current i,, in the loss resistor R amounts to v i /  (1 + R / S).R o ' ' o ' '
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Hence the condition for a zero value of the resulting secondary
voltage reads:

- j ( o M i  = - j o ) M  i + R i_J o p  o R

yielding for the components of M with the use of eq. (2,1) and the
value for i mentioned above:R

M' = p Mq /  (1 + Rp /  D) and R = v Rq /  (1 + Rq /  S). (2. 2)

It follows that the mutual inductance measured is simply pro­
portional to the reading of the potentiometer D.

The compensator has two advantages over the Hartshorn bridge.
First, the frequency range permitted is of the order of tens of
kHz owing to the use of resistive circuit elements and a constant
standard that can be constructed in an optimal way with respect to
purity. In the usual variable standards the parasitary capacitances
and coil resistances reduce the operating frequencies to 500 Hz at
most; variable standards with better frequency specifications can

2be built ’ ), but only at the expense of elaborate initial
adjustment and calibration. Secondly, the compensator can easily
be assembled from commercially available precision potentiometers
and standards of mutual inductance.

Since the use of the current dividing device involves large
variations of the total primary impedance, a current source with a
high internal resistance is required for a reasonable constancy of
the primary current. In their design Pillinger, Jastram, and
Daunt2’4) have achieved this by employing an electronic "artificial
primary circuit" for the standard mutual inductance. An obvious
disadvantage of their method is the use of a vacuum tube, which
puts a limit to linearity and stability, necessitating frequent
calibration.

The compensator is operated at a frequency of 175 Hz and a
primary current of 0.6 mA. The sensitivity of voltage detection in_0
the secondary circuit amounts to 10 V so that mutual inductances
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Table 2,1. Some network elements.

C capacitor, 19 jiF
D ESI DP-311 decade potentiometer, 10
Mq mutual inductance of standard, 1*041 mH
Rq loss resistor, 1*00 0
R resistance of standard primary, 21*5 0
RS reversing switch
S Spectrol precision potentiometer model 860, 25 0

_5can be measured with an accuracy of 10 mH.
d. T h e  m a g n e t i c  t h e r m o m e t e r .  In view of

the unconventional design of the thermometer, an estimate of the
principal calibration constant will be given in this section.

The magnetic susceptibility of cerium magnesium nitrate is
used as a thermometric parameter. Except for a diamagnetic part
that is independent of the temperature, it obeys Curie's law very
accurately down to the millidegree region of temperatures. The
crystal is known to exhibit strongly anisotropic values of the

2 5\splitting factor ' ), to be distinguished in gi (= 1.84) and
2 6g // (= 0.024 * )) for directions with respect to the trigonal

crystal axis. A powdered sample was used with a filling factor of
72 %; by the averaging over all directions due to the powdering,
another factor of 67 % is contributed to the paramagnetic part.
From this, the paramagnetic part x of the effective (volume) sus-

—5 —1ceptibility is calculated to be 40 x 10 T K; the diamagnetic
—6part equals - 47 x 10 .

A measure of the susceptibility is found from the mutual
inductance M between the two sets of coils that are partly filled
with the salt (see fig. 2,2). From the dimensions of the coils it
follows that:

M = 420 mH f x T /  (T + 0), (2.3)

in which f and 9 are constants. A factor f has been introduced to
account for the inhomogeneity of the magnetic field, the
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demagnetization effects, and the effects of eddy currents in
metallic parts of the calorimeter. From measurements of the field
in an enlarged model to scale, it is expected to be of the order
of 0.6. The constant 0 equals NxT , where N (< 4n) is an
effective coefficient of demagnetization. This coefficient is esti-

”3 -trmated to be of the order of 2 so that 0 is of the order of 10 K.
Since all temperatures were higher than 0.28 K, this very small
correction has been neglected.

With increasing temperatures, the mutual inductance approaches
a constant value M,,,. A temperature independent contribution origi­
nates in principle from diamagnetism which contributes 0.020 f mH
in the present case. In practice, however, it arises mainly from
an unbalance of the mutual inductances of the various coils within
the calorimeter. Consequently the expected dependence of the mutual
inductance on the temperature is:

„ „ ««-I (2.4)M = M_ + C T , ' '

where C equals 0.17 f mH.
The thermometer is calibrated in the usual manner against the

saturated vapour pressure of the helium bath at temperatures of
about 1.1, 1.4, 1.8, and 2.4 K (T~1 equal to approximately 0.9,
0.7, 0.55, and 0.4 K-1) according to the 1958 scale ,7). The
mutual inductance M was found to vary linearly with T 1 within the
experimental error. In a graph of M versus T 1, the straight line
is drawn through the lowest calibration point with a mutual
inductance and a temperature ^  (approximately 1.1 *)• Its
slope equal to C amounts to about 0.070 mH K and can be determined
with an accuracy of 0.3 %• Consequently, the factor f in eq. (2.3)
is approximately 0.4 which is an acceptable value. The constant Mw

is found from:

M - C / T, • (2.5)

It amounts to 1.5 mH approximately; the greater part of this
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constant is balanced by a constant mutual inductance of 1.4 mH
outside the cryostat.

e. O t h e r  e q u i p m e n t .  An auxiliary carbon resistor
is mounted on the side of the cooling vessel from which the calo­
rimeter is suspended. Its resistance is measured in a Wheatstone
bridge.

Heating in the calorimeter is done by feeding a dc current
through a 167 Q Constantan heater during 10.00 s; the current and
the voltage across the heater are measured. The energies supplied
range from 0.006 to 600 mJ and are known accurately to 0.3 %.

The pressure is measured with a calibrated Bourdon gauge
indicating from 0 to 100 atm with an accuracy of 0.05 atm, or with
a mercury column for pressures up to 5 atm. The helium is expanded
through a throttle valve which leads to a calibrated collecting
volume. The pressure of the latter is determined by means of a
mercury manometer.

2—3* Cooling procedure
Owing to the various heat links that may occur, the cooling

procedure requires special precautions and will be considered in
some detail here.

For obtaining temperatures below 1.1 K, cooling is effected
by demagnetization of the sooling salt after the evacuation of the
vacuum vessel. Since the heat contact between the salt and the
other parts of the cooling vessel is good, the temperature of this
vessel itself is lowered almost immediately. Under the resulting
temperature difference, heat is transported from the calorimeter
to the cooling vessel via the lead switch and the lower part of the
filling capillary. As a consequence the temperature of the calo­
rimeter decreases and that of the cooling vessel increases demon­
strating the rather irreversible way of cooling.

An isentropic way of cooling is approximated by lowering the
magnetic field in six steps and allowing for the re—establishment
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of temperature equilibrium during five minutes after each step. In
that case the temperature of the cooling vessel shows only small
rises between the periods in which the field is lowered. In all
steps except the last one, the field is strong enough to keep the
switch in the normal state where the heat conduction is appreci­
able. Immediately after total demagnetization, the temperature of
the calorimeter has become about 0.65 K» Further cooling is
effected by conduction of heat via the capillary during the next
sixty minutes. The temperature finally obtained was about 0.25 K
when the first cooling vessel was used and about 0.35 K for the
one employed in the melting experiments. With a calorimeter filled
only partly with the liquid, temperatures down to about 0.28 K were
obtained with the latter cooling vessel.

For the cooling to be at all successful, it is necessary to
reduce the heat leakage along the upper part of the filling cap­
illary. The helium II in this part of the capillary would present
a prohibitive heat contact with the helium bath. Consequently this
reduction is achieved, previously to demagnetization, by solidi­
fication of the helium contained in the capillary. This is done in
two different ways depending on the type of measurements to be

made.
At the start the liquid in the calorimeter is brought to a

pressure of about 24 atm at the lowest bath temperature of about
1.1 k . In the preparation for the melting experiments, helium was
added very carefully at an overpressure of 0.5 atm at most, in
order to obtain a strainfree solid. After some time the pressure
indicated on the manometer rose, showing that the capillary was
blocked. In this way calorimeter fillings with a fraction of solid
up to 80 % could be obtained.

In the preparation for the measurements of the heat capacity
of the liquid, however, the fractions of solid in the calorimeter
and the cooling vessel (first arrangement) must be kept small.
Otherwise, owing to the larger specific entropy of the solid at
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pressure

c , is

O time 2 0  min 25

Fig* 2V4* Final part of cooling procedure;
ct cooling; m: melting; a: adjustment of pressure; h: heating.

2 8temperatures below 0.76 K ' ) the necessary melting at low temper-
atures will be accompanied by a large rise of temperature. For
that reason the helium is compressed quickly and the external
pressure allowed to rise up to about 28 atm, thus blocking the
capillary. After evacuation of the vacuum vessel, demagnetization,
and cooling to nearly the lowest temperature, the pressure is
adjusted to the desired value. The behaviour of the apparatus
during this adjustment is shown in fig. 2,4. At the end of the
first cooling period (c), helium is released through the throttle
valve in order to melt the solid present (period m) and to adjust
the pressure (period a). During the release, the pressure decreases
to its value at melting of 25.0 atm and remains a constant for some
time. The temperature of the calorimeter still decreases for a
while. Consequently, at first melting occurs in the cooling vessel
only. Later on, the temperature of the calorimeter starts to rise
indicating melting there. When the melting is completed, the
pressure decreases again, and the steep rise of the temperature
comes abruptly to a stop. A slower increase, or even a decrease of
temperature is observed if the rate of blowing off is small enough.
At the desired pressure the valve is closed. A further cooling
takes place during about ten minutes (second cooling period c).
Apparently, after the melting the cooling vessel is left colder
than the calorimeter owing to the larger heat capacity of the
former at these temperatures. The measurements can usually be
started at a temperature of about 0.33 K (period h).
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2-4- Measuring procedure
During the measurements of the heat capacity of the liquid,

part of the filling capillary is filled with liquid helium II. It
forms a direct heat link between the bath and the cooling vessel.
The large heat leakage along this part of the capillary determines
mainly the course of the temperature of the cooling vessel in
time. This temperature rises from 0.3 to 1.0 K within about twenty
minutes. In the measurements of the heat capacity of the calo­
rimeter itself and of that of the solid, the upper part of the
capillary contained gas or solid instead of liquid. As a conse­
quence, in those cases the heat leakages are appreciably smaller,
causing the warming-up times to be longer by at least a factor of

two.
Also, the heat leak between the cooling vessel and the calo­

rimeter is brought about mainly by the helium within the connecting
capillary. It can be kept small if the calorimeter temperature is
made to follow the temperature of the cooling vessel as closely
as possible. It is found empirically that the heat leakages remain
within reasonable bounds if heating is done at a special rate. It
amounts to one heating period every minute; the supplied energy
must be increased by a factor of two every second or third period.
Then it is observed that the heat leakage is negative in the lower
temperature region and above 0.9 K, and zero or positive at temper­
atures between roughly 0.6 and 0.9 K.

Temperature measurements are made at a rate of one every three
to five seconds, tape-recorded, and read back afterwards. In one
run usually thirty to fourty heating periods, with steps of about
20 mK at 0.3 K increasing to about 50 mK at 1.6 K, are measured
within thirty to fourty minutes. The pressure remains a constant
up to a temperature of 1.3 K and decreases by about 1 % between
1.3 and 1.6 K, the temperature of the cooling vessel becoming
around 1.4 K. In the case that the calorimeter is filled partly
with the liquid under its saturated vapour pressure, the same
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number of heating periods can be measured between 0.3 and 0.7 K. In
the measurements on the heat capacity of the solid, this number of
periods is measured between 0.4 and 1.1 K.

The magnetic thermometer is calibrated afterwards against the
pressure of the helium bath. Four calibration points are taken,
each point requiring about twenty minutes in order to obtain
thermal equilibrium.

In two cases the helium is collected. First it is necessary
to determine the amount of helium when the calorimeter is filled
only partly. No better accuracy than 0.01 g of helium is required
in this case. Secondly, since the temperature effects in the
melting experiments are proportional to the amounts of helium that
are blown off, those amounts are determined accurately to 0.5 mg.
The helium is released through the throttle valve at rates ranging
from 0.5i to 5 mg/s. The amounts vary from 1 5 to 50 mg and are
collected within 10 to 60 seconds.
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CHAPTER III

FORMULAE AND CORRECTIONS

3-1. Introduction
In this chapter it will be shown how the results are obtained

from the measurements. The measurements are carried out in two
ways. First, heat capacities are measured in a nearly closed calo­
rimeter. Secondly, expansion experiments are performed under
nearly adiabatic conditions. From a more general point of view
both experiments may be considered as combinations of the two
processes of heating and expanding; each experiment consists of
one of these processes disturbed by the other. The appropriate
thermodynamic formulae will be derived in sec. 3-2. A survey of
data from other experiments to be used in the calculation of the
results will be given in sec. 3-3» In sec. 3-4 the evaluation of
temperatures and the parts of the calculation in the nature of
corrections will be considered#

3_2. Derivation of thermodynamic formulae
Some of the thermodynamics of a helium one component system,

contained in a calorimeter, will be considered here. Formulae for
a one-phase as well as for a two-phase system will be derived. The
calorimeter itself is not in general closed; during the measurements
of the heat capacity it may be considered as nearly closed but in
the expansion experiments it is essentially open. Hence an open
process3»1) is considered with a variable total helium mass a
fixed total helium volume V^, and an added quantity of heat dQ.
Helium mass, helium volume, entropy, and heat capacity are repre­
sented by m, V, S, and V; v, s, and cp represent specific volume,
specific entropy, and specific heat at constant pressure
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respectively. Subscripts a and p refer to the vapour pressure curve
and the melting curve; c, 1, g, s, and t refer to calorimeter,
liquid, gas, solid, and total quantities respectively.

a. L i q u i d .  The one-phase system to be considered here is
the liquid under various pressures. The total entropy consists of
the contributions of the liquid and the calorimeter:

St = mtSl + Sc * (3.1)
It is changed by the reversible addition of an infinitesimal
quantity of heat dQ and of mass dm^ at the temperature T as
follows:

1
dS^ =? -  dQ + s^dm^ , giving dQ = mtT dŝ  ̂+ T dS . (3.2)

A change dT of the temperature and a change dp of the pressure
will result. The following abbreviations are introduced: W forc
the heat capacity of the calorimeter TdS /dT which does notcr
depend on the pressure; c ^ for the specific heat of the liquid

a , for the coefficientPiat constant pressure T( 3 s^/3T) ; and
_

of isobaric thermal expansion v ( B v ^ / d T ) which is equal to
- v^ (3s-/dp)_ by one of Maxwell's relations. Equation (3.2)
then yields:

§  -  "c ■ "t T -df- —  c - V a T ̂ 2.vn pi t pi dT (3.3)

Here m̂ _ equals V^/v^ , where v is the specific volume of the
liquid at the actual values of the temperature and the pressure.

Relation (3.3) can be used to calculate c , from the measure-
Pl

ment of the effective heat capacity dQ/dT under nearly isobaric
conditions:

'Pi

v
( £Q

V  ̂dT *c > * -pi T S (3.4)

The small variation of the pressure is caused by the dependence of
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v on temperature; £or a further evaluation o£ this correction see

sec. 3-4,d.
One may also use eq. (3-3) to calculate a from dT/dp as

measured in a nearly adiabatic expansion experiment, if the heat
leak can be eliminated (dQ = 0):

dT . .a = — ----. (3-5)pi V T dp

The total heat capacity m^c .+ Wc has been abbreviated by
here.

b. L i q u i d  a n d  s o l i d .  Let a two-phase system
consist of the liquid and the solid in equilibrium along the
melting curve. A formula is needed relating the amount of heat
that is added and the amount of liquid that escapes to the
resulting change of temperature. A somewhat formal derivation will
be given based on the change of the entropy for the process
mentioned3’2), when it is performed in a reversible way.

The following relations apply to the total helium mass, the
total helium volume, and the total entropy:

mt = ml+ ms ’ vt = mlVl+ msVs ’ st = ml V  ms V  SC •
The open process is now performed along the melting curve. The

changes are:

dm = dir̂  + dms , dVt = 0 , dSt = ̂  dQ + ŝ dir̂  , (3-7)

yielding after elimination of dVt , dSt , dn^ , and dms by means
of eqs. (3.6):

dQ + T vldmt LmiT( dT ̂
ds dSc

+ n>,T(-^r) + T

s_- s1 s

s
dv.

dT "'ll

K < w V " .< i# V 1<,T- <3-8)

To elucidate the meaning of these terms, the specific heat of
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melting 1^ and the specific heats along the melting curve c  ̂and
c are introduced:|iS l„ ■ T<v ss> • _v - T<dV dT>ll - c„» - T<ds,/dT>ll • <3-9>
If the second term of eq. (3*8) is brought to the right hand side
and dm^ is replaced by dm.+ dm , equation (3*8) yields:

dQ/dT = m1ĉ xl + msc^s + Wc - l^dm/dT . (3.10)

The effective heat capacity is simply the sum of the heat capaci­
ties along the melting curve and a term originating from the heat
of melting of a certain amount of solid dm . This amount consistss
of a contribution from the liquid within the calorimeter caused by
the thermal expansion of the solid and the liquid, and of a
contribution dm̂ _ from the escaping liquid. These contributions
have been separated in eq. (3.8) because the amount of liquid that
escapes is measured independently.

During the measurements of the heat capacity with solid helium
in the calorimeter, the filling capillary is blocked by the solid.
Consequently the process is a closed one and dm^ equals zero. The
specific heat of the solid along the melting curve can now be
calculated from the effective heat capacity dQ/dT when the amounts
of liquid and solid are known:

c = — [ - m e - W - W 1 . (3.11)|is m L dT 1 pi c meltJ v '

Here W g denotes the correction due to the melting within the
calorimeter:

melt^'
dm s - s dv dv
"dT* = " T v - v *-ml^"dT"V + m s("dT")|î  ’ (3*12)

Its calculation requires a knowledge of the specific entropy of the
solid Sg which may be found from provisional results of the present
measurements. The specific heat c ^ of the liquid along the melting
curve can be found from the specific heat at constant pressure c ^ by:
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C|il ~ Cpl + T v - v s  ̂3p \
s - s ös1 S /___1 (3.13)

Clapeyron's equation has been used to eliminate the slope of the

melting curve here:

These corrections will be evaluated in sec. 3-4,e.
In the expansion experiments the heat leak can be eliminated

so that dQ equals zero. Then the temperature change dT is such as
would occur in an adiabatic expansion when an amount of liquid dm^
is released. Writing W for the total heat capacity
m e  + m c  + W at the actual masses of solid and liquid, one
1 pi s ps c

may calculate the slope of the melting curve from:

As an alternative to the measurement of this differential
effect upon the release of small amounts of helium, it is also
possible to measure the integral temperature effect by the melting
of the total amount of solid. Let the calorimeter be filled
entirely with the solid at the melting pressure and subsequently
adiabatically expanded until it is left just filled with the
liquid. The entropy of the solid may then be calculated from the
known entropies of the liquid and of the calorimeter. Writing
indices i and f for the initial and final values of the quantities
involved and integrating the third of eqs. (3-7) one gets (dQ = 0)

(dp/dT)^ = {s1 (3.14)

(^r)„ 1sv dT 'p1' dT V1 dT
(3.15)

s, dm (3.16)

m ti
From eqs. (3*6) it follows that:

m ti = v t /  vsi I m tf " V t /  V lf ’
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S .  = S . + V s  ,/v . , S „ = S „  + V s ,  „ /v ,t i  c i  t  s i '  s i  * t f  c f  t  Ir 1

y ie ld in g  upon s u b s t i t u t i o n  in to  eq . (3 .1 6 ) :

T„v . S -  S .SI c f  Cl
s i  = v 1£ Sl f  + V ^ “

Vs i  r*J S1 dT

(3 .1 7 )

(3 .1 8 )

The c o n tr ib u t io n  o f  th e  i n t e g r a l  o r ig in a t in g  from th e  l iq u id  t h a t

has escaped  i s  sm a ll.  I t  i s  de term ined  by th e  c o u rse  o f  th e  tem per­

a tu r e  d u rin g  th e  p ro c e s s  which m ust th e r e fo r e  be m easured. An
appro x im atin g  e v a lu a t io n  w i l l  be g iven  in  sec . 3 -4 ,f .

c .  L i q u i d  a n d  g a s .  The h e a t  c a p a c i ty  o f  th e  c a lo ­
r im e te r  i s  de term ined  from  m easurem ents o f  th e  e f f e c t iv e  h e a t

c a p a c i ty  w ith  a sm all amount o f  l iq u id .  C onsequen tly , th e  la r g e r

p a r t  o f  th e  c a lo r im e te r  volume i s  o ccup ied  by th e  gas phase  under
th e  s a tu r a te d  vapour p re s s u re  a t  th e  a c tu a l  tem p e ra tu re . In  t h i s

c a se  some o f  th e  gas may escape from th e  c a lo r im e te r  system . An

e q u a tio n  e n t i r e l y  ana logous to  eq. (3 .8 )  w i l l  h o ld :

s  -  s
dQ + T —*------- v  dm.v -  v . g t

d s ds

["v t(-kV bi w -c
s -  s_g dv dv.
vgr ^  t \ (-d # )0 +mi ( « F )ff } ] d T - (3 .1 9 )

S im ila r ly  th e  s p e c i f ic  h e a t a lo n g  th e  vapour p re s s u re  cu rv e  w i l l
be in tro d u c e d :

~<jl T (dSj/cLT) (3 .2 0 )

b u t C la p e y ro n 's  e q u a tio n  w i l l  be used h e re  to  e l im in a te  th e

s p e c i f ic  en tro p y  o f  th e  vapour by means o f  th e  s lo p e  o f  th e  vapour
p re s s u re  cu rv e :

(dp /dT )^  = (s  -  s 1) / ( v v l )  •g 1 "  g

The h e a t c a p a c i ty  o f  th e  c a lo r im e te r  may now be c a lc u la te d  from

(3 .2 1 )
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dp dv
w _£2._m [ c _ t (— ) (-rè) ] - w - V  , (3.22)wc “ dT 1 L al 'dT'a v d T ;a J vap vap

where W and W ' are abbreviations for the vapour contributions:vap vap

W = mvap g

vap

ds dp dv
r t (— S') _ t (— ) (— 2) "1 , and
L 1  ̂dT 'o MT'cj v dT *

dp dm
T ^dT^a vg *dT* *

(3.23)

(3*24)

The former. W , includes both the heat capacity of the vapourT vap
along the vapour pressure curve and a contribution due to the
vaporization required for maintaining the pressure at its satu­
ration value. The latter, V , originates from the heat ofVdp
vaporization of the amount of helium dmt that escapes from the
calorimeter. Writing out the derivatives:

<d^o = (̂ }P + »
and using one of Maxwell's relations, one obtains for Wvap:

(3*25)

“vap ' "g U P3 - 2 T ' « ’o (̂ P  ' T (̂ )t ’ ' <3'26)

A further calculation of these corrections will be given in sec.

3-4,g.

3_3. Data from other experiments
Use is made of existing data on (a) the vapour pressure curve,

(b) the equation of state of 4He, and (c) the specific heat of the
liquid along the vapour pressure curve.

a. T h e  v a p o u r  p r e s s u r e  c u r v e .  The 1958
scale of temperatures3»3), based on the vapour pressure curve of
4He, is used for the calibrations of the thermometer. It is
employed also to compute the contribution of the vapour in the
measurements on the heat capacity of the almost empty calorimeter.
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b. T h e  d e n s i t y  n e a r  a b s o l u t e  z e r o .
The density of the liquid at 0 K as a function of the pressure was

O  /
obtained from the data of Keesom and Miss Keesom’ ) on the
isopycnals at temperatures above 1.1 K. However, as the values of
these authors for the densities are 0.3 to 0.7 % lower than other

3 5-12\comparable data ’ ), a positive correction of 0.6 % has been
q in

applied to all of their densities (see also LounasmaaJ* ) on this
subject). At temperatures of 1.00, 1.25, 1.50, 1.75 and 2.00 K,
corrected for the difference between the 1932 and 1958 scales, the
pressures were read from the isopycnals and plotted as a function
of the corrected densities. The values for the densities along the

O
isotherm at 1.75 K thus found agree within 0.0001 g/cm with those
obtained by Lounasmaa at that temperature. From this diagram the
values of the density at 0 K can be found by extrapolation within

O
an accuracy of 0.0001 g/cm , except near the end points at
pressures of 0 and 25 atm. The values of 0.1451 and 0.1733 g/crrr
found at these points, respectively, are less certain. Moreover,

q
diverging values are found by various authors, e.g. 0.1452 g/cm
3 5\ 3 3 7* ) and 0.1455 g/cm ’ ) at saturated vapour pressure, and
0.1722 g/cm^ 0.1730 g/cm^ 3,14) a .̂ meiting
curve. Consequently, no improvement for the densities at evapo­
ration or at solidification can be obtained from those data.

The reliability of the values for the density p may be
improved, however, by the use of data on the velocity of sound u:

u = ( 3 p / 3 p ) |  . (3.27)
1

In particular, the slope of the isotherm at 0 K is found simply as
follows:

lim u2= lim (3p/dp ) = lim (d p /d p ) = [dp/dp ] .(3.28)
T-*0 T— 0 1 S1 T-*-0 1 T

3 15\For this purpose, the data of Atkins and Stasior ' ) on the
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velocity of sound were extrapolated to absolute zero. It appeared
that the square root of the velocities obtained in this way could
be represented very well by a linear function of the density.
Hence the velocity of sound u, the density plt and the pressure p
at the absolute zero of temperature depend on each other according
to the empirical relations:

1
u* = a (p^ - p) = [ 5 a (p + f) ]  ̂ • (3*29)

The constants a, p, and P are found to be:
5

a = 135.4 (m/s)5 /  (g/cm3) = 13720 (m/s)2 /  atm ,

p = 0.0312 g/cm3 , and P = 12.90 atm .

Table 3,1. The absolute zero isotherm of liquid He.

pressure

P

atm

density

"l
3g/cm

velocity of
first sound

u - (dp/dp1)*

m/s

compressibility

ht  = dpj/dp

10~3/atm

0.0 0.1455 239 12.2

2.5 0.1496 257 10.3

5-0 0.1532 273 8.9
10.0 0.1594 301 7.0

15.0 0.1645 326 5.8

20.0 0.1690 348 5.0

25.0 0.1729 368 4.3

error + 0.0002 ♦ 2 + 0.1

With these relations the values of p, px, and u as given in
table 3,1 have been computed. The densities obtained in this way
are believed to be correct within 0.0002 g/cm3 and the velocities
within 2 m/s. The compressibility kt, equal to pĵ  dp^/dp , is
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also given in the table» It differs less than 4 % from the values
of the isothermal compressibility x at a temperature of 1.6 K as

o i/r -I
measured by Grilly ’ ).

The density pg of the solid at the melting curve at absolute
zero was derived from that of the liquid with the use of Swenson’s
value for the difference of the molar volumes at melting. According

3 1 3\to the measurements of Swenson ' ), the extrapolated melting
pressure at a temperature of 0 K is 25.00 atm; according to table
3,1 the corresponding density of the liquid is 0.1729 g/cm3
(V! = 5.783 cm /g). The difference between the molar volumes
amounts to 2.07 cm /mole (v..- vg = 0.517 cm3/g), yielding 0.1899
g/cm3 for the density of the solid (v = 5.266 cm3/g). These values
for the densities are employed in the present investigation; both
are 0.4 X larger than the ones used by Swenson.

Table 3,11. The relative change of the specific volune
4

of liquid He along the melting curve.

t  ( r ) 0 .9  1 .0  1.1 1 .2  1 .3  1 ,4

1 n > H 1 t_
J

1=

o
( u> 0.1 0 .3  0 .8  1 .6  3.1 6

c. T h e r m a l  e x p a n s i o n  a l o n g  t h e
m e l t i n g  c u r v e .  According to Swenson's measurements

o 10
along the melting curve ’ ), the difference between the molar
volumes of the liquid and the solid is a constant at temperatures
up to 1.3 K. Hence, within the required accuracy the temperature
derivatives (dv /dT) and (dv1/dT) may be set equal in the ranges ^ -i i-i
of temperatures considered. The relative difference of the
specific volume of the liquid with its value v at low tempera­
tures, calculated from Swenson's data, is given in table 3,11.
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d. T h e  s p e c i f i c  h e a t  o f  t h e  l i q u i d
a t  s a t u r a t e d  v a p o u r  p r e s s u r e »  This
specific heat was used to correct for the contribution of the
liquid to the heat capacity when the calorimeter was only
partially filled. The values are composed from the data on the
specific heat by Kramers, Wasscher, and Gorter3’17) (at temper­
atures between 0.2 and 1.8 K) and those of Wiebes, Niels-
Hakkenberg, and Kramers3’1®) (between 0.2 and 0.7 *)• At temper­
atures below 0.6 K, the former measurements yield a phonon
specific heat which is approximately 15 % larger than the value of
2q.5 t3 mj/g K4 , as calculated from the extrapolated velocity of
sound of 239 m/s3’1^) (see chapter VI). This is due to a systematic
error introduced by the manner in which the heat capacity of the
salt has been eliminated, i.e. by extrapolation of its values at—2 / , 3,20-, , 3»21 \\
low temperatures according to a T law (see also ) and ))•

In order to remove this discrepancy the latter experiments were
performed. By variation of the amount of helium they allowed for
a direct determination of the heat capacities involved. The calcu­
lated value was established within 2 %; consequently, it is taken
as the contribution of the phonons to the specific heat.

If the phonon contribution is subtracted, the remaining
specific heat can be represented at temperatures up to about 1.3 K

[a constant] . [1 . <*T/A) . f (W/A)2] T"3/2 , (3.30)

where A is an effective value for the minimum energy of the rotons
(see chapter VI). This formula has been employed to connect the
specific heat of Kramers et al. at temperatures above 0.8 K to the
phonon specific heat below 0.5 K (below 0.5 K the roton contri­
bution constitutes less than 1 % of the total specific heat).

From the values of the specific heat c ^  thus found, the
specific entropy sx of the liquid at saturated vapour pressure has
been calculated. Both cgl and ^  are given in table 3,111-
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Table 3,III* Specific heat and entropy of liquid ^He under its
saturated vapour pressure at temperatures below 1 £.

T
C

cc l
mj/g t

*1
mj/g K

T
r

ca l
m j/g I

S1
m j/g I

0 .0$ 0.00256 0.000853 0.55 3.54 1.145
0.10 0.0205 0.00683 0.60 4.89 1.507
0.15 0.0692 0.0231 0 .6 5 6.91 1.972
0*20 0.1640 0.0547 0.70 10.09 2.59
0.23 0.320 0.1068 0.75 15*12 3.45

0.30 0.554 0.1845 0.80 22.9 4.66
0.35 0.879 0.293 0.85 34.5 6.37
0.40 1.313 0.437 0.90 51.2 8.79
0.45 1.873 0.623 0.95 74.1 12.14
0.50 2.59 0.856 1.00 104.3 16.67

3-4» Method of calculation and correction
The way in which the results are obtained from the directly

measured quantities, will be presented in this section. This is
done by distinguishing two main parts in the evaluation, one con­
cerning the calculations of the temperature T, the total amount
of helium m^, and their changes AT and Am (secs. 3-4,a and b), and
one concerning the various corrections (secs. 3-4,c,d,e,f and g).
The heat capacity of the calorimeter will not be considered as a
mere correction to the measurements. It plays an important role in
the results at low temperatures and hence will be treated as a
separate measurement in sec. 4— 2 of chapter IV.

a. C a l c u l a t i o n  o f  t e m p e r a t u r e s .  For
all measuring points the temperature T and its change AT have to be
determined. For that purpose the mutual—inductance compensator is
read as a function of time. This is done both before and after the
period of actual heating or blowing-off. The time t^ at the
beginning of this period and its duration At are also determined.
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In fig. 3,1 the evaluation of the temperature is schematically
shown. The case presented is ideal in the sense that the fore- and
afterdrifts can be regarded as linear. This is found in the vast
majority of the measuring points. Equilibrium of temperature
within the calorimeter was attained well within the time needed
for the measurement of temperature {of the order of 1 s).

2 I 2

time t

Fig. 3,1. Determination of temperature from mutual inductances T * C /  (M - * 0  ;
—  . H measured as a function of time;

. _ . ; construction yielding M and AM.

A correction has to be applied for the amount of heat that
leaks into the calorimeter during the period of heating or blowing-
off. It can be determined from the fore- and afterdrifts of the
temperature and is eliminated in the usual manner as follows. The
drifts in the fore- and afterperiods are extrapolated to the centre
of the measuring period, yielding values of H ± and Mf for the
mutual inductance respectively. Thejemperature T of the measuring
point is defined by the mean value M of Mi and Mf (see eq. (2.4)):

T = C /  (M - M m  ) . (3*31)

Its accuracy is estimated to be 0.2 % over the whole range of

temperatures.
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An approxim ate v a lu e  AT f o r  th e  f i n i t e  change o f  tem p era tu re
i s  c a lc u la te d  from  th e  d i f f e r e n c e  AM o f  M. and M :

l  f
AT = -  C AM /  (M -  Mw ) 2 . ( 3 . 32)

I t s  accu racy  i s  de term ined  m ain ly  by th e  accu racy  w ith  which AM

can be found from th e  e x t r a p o la t io n s .  In  a l l  m easurem ents th e  e r r o r
i s  o f  th e  o rd e r  o f  2 %.

In  th o se  c a se s  where th e  c a l i b r a t io n  t (m) depends on th e
p re s s u re ,  th e  v a lu e s  o f  M and AM must be chosen  a s :

M ■» i  [  Mf  -  Mfl0(pf ) + Mi  -  Mw(P i ) ] , and
(3# 33)

AM = Mf  -  M jp f ) -  M. + M ^ p .)  .

Here M00(p i ) and M^p^,) a re  th e  v a lu e s  o f  th e  c a l i b r a t i o n  c o n s ta n t

Mco a t  th e  i n i t i a l  and f i n a l  p r e s s u r e s ,  r e s p e c t iv e ly  p^ and p^.

T h is  was th e  ca se  w ith  th e  ex p e rim en ts  on th e  a d ia b a t ic  expansion

o f  th e  l iq u id .  The C u rie  c o n s ta n t  was found to  be in d ep en d en t o f
th e  p re s s u re  (se e  a ls o  c h a p te r  IV ).

b. D e t e r m i n a t i o n  o f  t h e  a m o u n t s  o f
h e l i u m .  In  a l l  tw o-phase ex p e rim en ts  an a d d i t io n a l  d e te rm i­

n a t io n  o f  th e  t o t a l  amount o f  helium  i s  re q u ir e d .  In  th e  l i q u id -

vapour system  t h i s  i s  done by sim ply  c o l l e c t i n g  th e  helium  and

m easuring  i t s  p re s s u re  in  a known volume a t  room te m p e ra tu re , th e

amount b e in g  o f  th e  o rd e r  o f  0 .6  g. At te m p e ra tu re s  up to  1.1 K

th e  rem ain ing  gas volume w ith in  th e  c a lo r im e te r  (o f  th e  o rd e r  o f
3

12 cm ) c o n ta in s  no more th an  0 .0002 g o f  vapour. At th e s e  low

vapour d e n s i t i e s  th e  mass o f  th e  l iq u id  need n o t be c o r re c te d  fo r
th e  amount o f  e v a p o ra tin g  l iq u id .

In  th e  l i q u id - s o l i d  system , however, th e  d e n s i t i e s  d i f f e r  by

abou t 10 % o n ly . The m asses o f  th e  l i q u id  and th e  s o l id  must now be

deduced from th e  amount o f  helium  m _ th a t  has to  be re le a s e d  inm elt
o rd e r  to  m e lt a l l  o f  th e  s o l id  p r e s e n t ,  whereupon th e  c a lo r im e te r

i s  l e f t  co m p le te ly  f i l l e d  w ith  th e  l i q u id  under i t s  m e ltin g
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pressure; the actual temperature will be called Then the total
mass of helium was equal to:

melt 12 (3.34)

the subscript 2 refers to quantities under the melting pressure at
the temperature The corresponding amounts of liquid and solid
at the temperature T , according to eqs. (3.6), would have been:

Vt " Vs2m t V v _m , .t s2 melt
“l2 - vx - vs V V  — V12 1 s

(3-35)

V12mt " Vt v12mmelt
ms2 - vs V.. - V1 s

Use is made of Swenson's data 3’13) giving a constant value for
v _ v at temperatures below 1•3 K. Due to the thermal expansion
the actual amounts at a temperature T different from T^ are
slightly different from m..,, and m^:

m, - — m12 cor m „ + ms2 cor cor vn- v1 s
m^ • (3*36)

Here v is the specific volume of the liquid at the temperature T.
The correction mcQ is of the order of 0.01 g in the range of
temperatures considered, with mt varying between 2.7 and 3.0 g.

c. C o r r e c t i o n  f o r  f i n i t e  s t e p s .  In a
measurement of heat capacity a finite amount of heat Q is added.
From the finite change of temperature AT according to eq. (3.32),
a provisional value is calculated for the heat capacity:

W = Q /  AT . (3.37)prov

It differs from the effective heat capacity W at the temperature T.
The appropriate correction depends on the behaviour of W as a
function of T according to:
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W = Wprov " 24 (n + 2^ n + 3) (AT /  T)2 + • (3.38)

Here n, being equal to d(logW)/d(logT) , is found as the slope
of the double-logarithmic plot of W as a function of T. This
negative correction (which does not surpass 1 % in most cases) has
been applied to all measurements of the heat capacity.

d. C o r r e c t i o n s  f o r  t h e  t h e r m a l
e x p a n s i o n  o f  t h e  l i q u i d .  Before the actual
measurements of the heat capacity of the liquid (first cooling
vessel), the pressure is adjusted to the desired value p at theo
lowest temperature Tq of about 0.3 K. During the measurements up
to 1.1 K, this value does not change within the measuring accuracy
of 0.05 atm. Towards higher temperatures, however, the pressure
shows a gradual decrease causing at 1.5 K a reduction of about
1.5 % of the original value.

This effect is due to the increase of the density of the
liquid from 1.15 K up to the lambda point3’4). It is found to be
smaller than the drop of pressure [p - p ] along the isopycnal
of the original density p^Q« This can be° Pn explained by the
presence of a buffering volume of about 18 cm .in the vessel
containing the cooling salt; the temperature of this vessel being
approximately 0.3 K lower than that of the calorimeter in the
higher temperature region. Introducing a factor f < 1 , one may
express the actual changes of the density and the pressure:

Pi " plo = 0 - *) Cpi " PloL  ando

p - P0 = £ [p - Pq 10 (3.39)Hlo
in the changes of the density along the isobar and of the pressure
along the isopycnal:

T

Cpl - Plolp = - plo J apl dT 311,1
° To
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[P - P 0 1
1

ploHT tPl plo^p *
O

(3.40)

The factor f is calculated to be 0.6 which is in agreement with the
values observed.

The correction connected with the thermal expansion is
evaluated in the following manner. If the effective heat capacity
W and the density p (p,T) are introduced, eq. (3.4) can be
written in the form:

W - Wc T apl dp
Cpl(P,T) = PX(P.T) Vt + PlP dT

(3.41)

A provisional value of the specific heat of the liquid is calcu-
lated according to:

prov (V - Vc) /  ploVt ’
(3*42)

where plQ is written instead of pj{po»T0)'« The desired value
c (o .T) at the constant pressure p . With the use of eq. (3-39)
pl'-'o’ ' 0
c may now be found from:Pi

Cpl(po’T) " Cprov” cprov^1 “ ^plQ 1^P0 +

+ f — 42[r-1]p2 *P1ohT dT 2 plo Po
(3.43)

The correction is calculated from provisional results for the
coefficient of thermal expansion. It is positive, approximately
proportional to the pressure, and ranges up to 3 % at a tempera­

ture of 1.6 K (see fig. 3,2a).
The specific heat at constant volume cv 1(p1o»t) •as a

function of the density is also needed. It is found from:

cvl<plo’T) Cpl(V T) -
T d2 1  |- P1

p1oHT dT2 2 Plo
(3.44)
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The similar transformation of the entropy, from a function of the
pressure into a function of the density, reads:

Sl(Plo’T) = sl(po ’T) 1 llril. n2
PloKT d T 2  Plo V

(3.45)

For the present purpose the value of the compressibility h _ may be
3 16\ ^considered as independent of the temperature ’ ).

2.5 at

1 .2  °K0.6 T

Pig» 3,2. Corrections for thermal expansion;
a* of the liquid; b. along the melting curve*

e. C o r r e c t i o n s  a l o n g  t h e  m e l t i n g
c u r v e  . From the measurements on the liquid—solid system, the
quantities for the solid are calculated from those of the liquid
along the melting curve. The latter are found from the quantities
of the liquid at the constant pressure p equal to 25.0 atm, which
coincides with the melting pressure at absolute zero. The appropri­
ate corrections may be computed from provisional results of the
present measurements, in particular from the difference p (t ) - P q i
where p (t ) is the melting pressure and p has been written

r O
instead of p^(0 K). Writing for the density of the liquid at
low temperatures, one has the following relations for the liquid
along the melting curve:



50

' - 1 = ‘ J “pl dT + (PH “ Po^ kT ’

S1(PH’T) = Sl(po’T) " (pp ‘ Po> “pl /  pl ’ 3110

V (T) = cpi(po*T) - T é  (pp - *o> aPi / pi * (3,46)

Up to a temperature of 1.3 K the corrections in c are smaller
than 2 % (see fig. 3,2b).

In the formulae for the liquid-solid system, corrections
originate from the thermal expansion of the two phases. According
to Swenson's data3’13) the difference v - vg between the specific
volumes at melting has a constant value op to a temperature of
1.3 K. Within required accuracy of the present experiments, the
coefficients of thermal expansion along the melting curve of the
two phases may therefore be set approximately equal and, above a
temperature of 0.7 K, both be taken negative. Since the liquid has
the larger specific volume, melting occurs in a closed system that
is being warmed up above 0.7 K; the value of mcor e<l* (3*36) is
positive for temperatures below as defined in sec. 3-4,b.

In the measurements of the heat capacity, a correction due to
this effect is easily found. A provisional value cprQv for the
specific heat of the solid is calculated from the effective heat
capacity W according to:

prov ^  [W - ml2Cpl “ Wc] ’

The masses have only approximate values as given in eqs. (3*35)
and, as compared with eq. (3*11), the term has been omitt
The correction can be expressed in the following form:

(3*47)

c|IS cprov
(3.48)

This equation simply demonstrates the heat effect of the change of
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entropy at melting due to the thermal expansion. By eq. (3*35) it
is transformed into:

c = c +ps prov
m t

"melt
(3.49)

The correction has been evaluated with provisional values for the
entropy of the solid taken from this experiment. At the usual
filling (three quarters of the volume occupied by the solid) it is
of the order of 1 % at temperatures below 1.0 K, rapidly becoming
large negative at higher temperatures (see fig. 3,2b).

The results obtained for the specific heat c of the solidUS
are rather sensitive to the value used for the difference v,- v1 s
between the specific volumes of the liquid and the solid. This is
caused by the fact that, in the measurements on the solid, roughly
25 % of the calorimeter volume is occupied by the liquid contri­
buting a heat capacity that increases steeply as a function of
temperature. A systematic error, produced by a value for v^- v
which is too low by 1 %, can be estimated from the following
expression:

cprov ill
V v s

V12mmelt
(W - Wx c m . c n )t pi' (3.50)

c «prov
heat of the solid would also be too low by the order of 1 %. At
roughly 0.6 K where the two specific heats are equal c g would
not be affected. In the higher region of temperatures where c ^
dominates c , a value for c would result that is too high byps ’ ps 3
e. g. 2 % at 0.8 K and by 4 % at 1.0 K. However, from an
erroneous value for v^- v g , no systematic error would result in
the melting pressures as calculated from the specific heats. This
can be seen from the following expression in which eq. (3*50) is
used to eliminate the specific heat of the solid:

At low temperatures where ( >  c111 the specific
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dp
_ _ ü
dT

s,- s1 s
V - V1 s

c c111 |1S
V — V J1 s 0

W - W - nrc ,______C t |ll
V12mmelt J0

dT . (3.51)

In this final result the difference v^- has dropped out.
In the melting experiments, according to eq. (3.15), the

following correction for the thermal expansion is applied to the
measured quantity dm^/dT :

m̂l^dT )|i + ms^dT ^  * v'1 ^dT V * (3-52)

It is negative with a steeply increasing magnitude for increasing
temperatures, but its value is only - 0.02 g/K at a temperature

3of 1.1 K. It must be compared with the amounts of 1 to 3 cm of
solid that are usually melted in a measuring point, yielding an
escaped amount Am of 0.02 to 0.05 g. As the temperature
effects AT are smaller than 0.05 K, the values of Am^/AT always
exceed 0.4 g/K showing that the correction is of the order of a
few percent at a temperature of 1.1 K. Writing the corrected value
as:

Am Am m dv
<AF>cor * A T  - ^  <SF>il • <3'53)

one obtains from eq. (3.15) for the difference of the entropies:

sl“ ss = (ps- pl^ wt /  ps T ( V ^ c o r  * (3*54)
No corrections have been introduced for the finiteness of the

temperature steps AT in this case or for the thermal expansion in
the calculation of the total heat capacity W . The latter has been
determined from the average amounts of liquid and solid, and the
specific heats at the average temperature during the actual process
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of melting. From an erroneous value used for the difference o - Drs rl
between the densities of the solid and the liquid, the same error
would result in the difference between the entropies. Again, no
systematic error would result in the calculated melting pressures.

f. T e m p e r a t u r e  e f f e c t  o f  i n t e g r a l
m e l t i n g .  In eq. (3*18) for the entropy of the solid at the
initial temperature of melting, an integral occurs. Its value
depends on the way in which the temperature changes as a function
of the amount of escaping liquid. As a first approximation, T
varies linearly with this amount yielding for the integral
abbreviated by I:

i 1 dT I 1 T - TT. f il
(3-55)

i.e. the entropy of the liquid averaged over the temperature
interval. If the densities are introduced into eq. (3.18) and the
thermal expansion is neglected, the expression for the initial
entropy of the solid becomes:

ssi (3.56)

The last term, originating from the escaped liquid, forms a posi­
tive correction of the order of 10 % of the initial entropy of the
solid. Hence the approximation is justified.

g. C o r r e c t i o n  f o r  t h e  v a p o u r .  In the
determination of the heat capacity of the calorimeter (second
cooling arrangement), the calorimeter is only partly filled with
the liquid. The remaining volume is occupied by the vapour under
its saturation pressure. During the measurements, the temperature
rises and some of the gas may escape from the calorimeter. To
maintain the pressure at its saturation value, some of the liquid
evaporates contributing its heat of vaporization to the effective
heat capacity W.
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The correction W for the contribution of the vapour withinvap
the calorimeter volume is given by eq. (3«26). If the vapour is
considered as an ideal gas, the expression becomes:

Wvap
E [I _
T l2 2 {1 fÉR(HE) }M T V tT ,d£'(HE) }mtV (3.57)

It can be evaluated directly from the data on the vapour pressure
curve. In fig. 3,3 an effective vapour density Pe££ is shown as a
function of temperature. It is defined by /V ! here meq is
the mass of liquid that would contribute the same amount to the
effective heat capacity as does the saturated vapour within a
volume V . In this respect the amount of liquid is the equivalent
of the amount of vapour. It is calculated by dividing by both
V and c , and is of the order of 0.01 g of equivalent liquid per
9o tf1

crn of saturated vapour at temperatures between 0.8 and 2.0 K. As
3V is approximately 10 cm , it follows that m is of the order of

0.1 g and that the correction is of the order of 20 % of the total
heat capacity. It must be mentioned that the actual amount of
liquid is not noticeably affected by the varying amount of vapour.
At temperatures up to 1.1 K, the latter never exceeds 0.0002 g.

mg e q . liq
cm 3 sat.vap.

°K 2.0O T

Fig. 3,3* Ratio p of volume of saturated vapour and equivalent mass of liquid,
giving the same effective contribution to the heat capacity, as a
function of temperature.
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The other correction, W^a , is due to the gas that escapes
from the calorimeter into a volume V'. This volume is formed byg
the part of the filling capillary that is immersed in the bath; it3
is approximately 0.7 cm and remains tinder a variable pressure p'
at the lowest bath temperature T of about 1.1 K. The remaining
part of the filling capillary is at room temperature so that its
effective volume may be neglected by virtue of the low density of
its helium content. If ideal-gas conditions are inserted, eq.
(3.24) reads:

W'vap
r! (dps ,2 dpj_
lP M T V  dp ' (3-58)

Instead of the amount of gas escaped from the calorimeter, the
change of pressure dp' in the volume V' has been introduced here.g

This contribution can be estimated by comparison with the
last and dominating term of eq. (3*56). The first important
difference is the volume V' which is about 15 times smaller thang
V • Secondly, a factor dp'/dp has been added which represents the
rise dp' during the actual heating, divided by the instantaneous
rise dp of the pressure within the calorimeter. A long and gradual
rise of the pressure p' contributes only to the effective heat
leak" which can be eliminated as shown in sec. 3-4,a. A more rapid
change of p' could be expected during heating periods only. How­
ever, the pressure in the capillary is determined mainly by the
saturation value at the temperature of the cooling vessel (second
arrangement) which forms the coldest place in the apparatus. It is
situated between the calorimeter and almost all of the volume V'.g
Owing to its large heat capacity, its temperature will change only
slightly when the calorimeter is heated. Hence dp'/dp will be much
smaller than 1, perhaps of the order of 0.1. Therefore, the
correction V  will be of the order of 1 % of ¥ and conse—vap vap
quently has been omitted.
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CHAPTER IV

THE LIQUID

4— 1. Introduction
The separate determination of the heat capacity of the calo­

rimeter, being of great importance to all of the results in the
temperature region below 0.5 K, is treated in sec. 4-2. The
remainder of this chapter is devoted to the experiments on the
liquid. They consist of the measurements of the heat capacity
under various pressures and of the expansion experiments. These
are treated in secs. 4-3 and 4-4 respectively.

4-2. The heat capacity of the calorimeter
a. E x p e r i m e n t a l .  The heat capacity of the calo­

rimeter has been measured at temperatures between 0.28 and
1.1 K. The closed cooling vessel with the filling capillary wound
around it (second cooling arrangement) was used in order to reduce
the dead volume outside the calorimeter. Three runs, with differ­
ent amounts of helium, have been performed.

Table 4,1* Helium contents in the partly filled calorimeter.

g
V1

cm3

V
9

cm3
" W 0,7

g

0.39 2.7 13.1 0 .08
0.66 4 .5 11.3 0.07
0.85 5.8 10.0 0.06

b. R e s u l t s .  In table 4,1 the three different amounts
of helium m^, the volumes of the liquid and V of the vapour,
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and the mass m of liquid equivalent to the amount of vapour ateq
0.7 K (see sec. 3-4,g) are given. Figure 4,1 shows the effective
heat capacity W measured as a function of temperature in the three
cases. For the lowest content the contributions for the liquid
W . and the vapour W (see secs. 3-2,c and 3-4,g), the totalliq vap
helium contribution WTT , and the heat capacity of the calorimeterrie
W are shown. Part of this run is tabulated in table 4,11 alsoc
giving the values of W^/T.

0.7 0.8 °K 1.00.3 T

Pig. 4,1. Heat capacities as functions of temperature;
O  (J c  : calorimeter containing 0.39, 0.66, and 0.85 g of helium;
□  : empty calorimeter, Wc, as calculated from the first by subtracting

the contribution »He of 0.39 g of helium equal to VU q  + Wvap.

The results are analysed under the assumption that a cubic
lattice term a T^, a linear electronic term b T from the metals,
and an inverse square term c T 2 due to a Schottky type anomaly
contribute to the heat capacity. For this purpose Wc, divided by T,
is plotted as a function of T2 (see fig. 4,2). In the higher region
of temperatures the part a T + b dominates; towards lower
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Table 4,11. Calculation of the heat capacity of the calorimeter.

part of run with 0*39 g of helium both liquid and vapour smoothed values

T tfHe wc w / r T VHe wc v / r T V V*I mj/r mj/r mj/ra r mj/K mJ/fc mj/r r m j / t mj/K*

299 0.21 0.80 2.68 445 0.71 1.12 2.52 0.30 0.85 2.83
311 0.24 0.84 2.70 457 0.77 1.16 2.54 0.35 0.93 2.64
316 0.25 0.89 2.82 468 0.83 1.13 2.42 0.40 1.01 2.53
321 0.26 0.88 2.74 477 0.87 1.17 2.45 0.45 1.13 2.52
326 0.28 0.86 2.64 485 0.92 1.16 2.39 0.30 1.29 2.58
333 0.30 0.89 2.67 489 0.94 1.27 2.60 0.55 1.49 2.71
339 0.31 0.91 2.69 491 0.96 1.30 2.65 0.60 1.72 2.86
344 0.33 0.95 2.76 503 1.03 1.29 2.57 0.65 1.99 3.06
349 0.34 0.93 2.67 514 1.11 1.31 2.55 0.70 2.29 3.27
354 0.36 0.94 2.66 519 1.15 1.33 2.56 0.80 3.0 3.8
362 0.38 0.94 2.60 534 1.26 1.40 2.62 0.90 3.9 4.3
371 0.41 0.98 2.64 535 1.27 1.32 2.47 1.00 5*0 5.0
379 0.44 0.97 2.56 551 1.41 1.43 2.60 1.10 6.4 5.8
394 0.49 1.01 2.56 577 1.68 1.62 2.81 1.20 7.9 6.6
403 0. 52 1.03 2.56 587 1.81 1.65 2.81 1.30 10 7.5
418 0.58 1.03 2.46 610 2.15 1.74 2.86 1.40 12 8.5
419 0.59 1.05 2.51 616 2. 25 1.72 2.80 1.50 14 9.5
430 0.64 1.08 2.51 644 2.85 1.87 2.90 1.60 17 10.6

temperatures the lattice term becomes small and the magnitude is
_o pgoverned by the terms b + c T . A  minimum value of. 2.51 mj/K is

found for W /T at a temperature of 0.43 K. In the temperature
• —3region below 0.35 K, the term c T yields a steeper curve than

the measurements would indicate. Consequently no analytic form is
tried there. Thus in the measuring range, as shown in fig. 4,1,
the heat capacity of the calorimeter is an increasing function of
the temperature. At temperatures above 0.35 K it is represented

3 -2well by the expression a T + b T + c T  . I n  table 4,111 the
values found for the constants a, b, and c are collected. Also the
known contributions of the copper, the niobium, the quartz, and
the salt are given. Approximately 30 % of the heat capacity of the
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Table 4,111. Composition of the heat capacity of the calorimeter.

V = a T3 + b T + c T~2c a
-4mJ r

b
T *r“ 2mJ K

c
mJ I

measured 3.60 1.40 0.035
4 1 \154 g copper ) 0.116 1.68

3.3 g niobium 0.003
18.5 g quartz ) 0.017
0.016 mole CeMg nitrate ) 0.030 0.001

calorimeter is not accounted for by the sum of the contributions
specified (see fig. 4,2).. From the contributions of 20.8 g of
Perspex and the Amphenol seals, not taken into account, the latter
may be responsible for the discrepancy since they are found to be
ferro-magnetic.

c. C o n c l u s i o n s .  The determination of the heat
capacity of the calorimeter forms an essential part in the measure­
ment of the heat capacity of the liquid at low temperatures. Below
a temperature of 0.5 K it is of the order of the estimated heat
capacities of the liquid to be measured; it is determined with an
error of 2 % in this temperature region. Above a temperature of
0.6 K its significance for the determination of the heat capacities
diminishes rapidly with increasing temperatures.

The presence of an unknown part in the heat capacity of the
calorimeter, though suspected since earlier measurements^’ ) * ),
was not directly measured before January 1966. It affects the
preliminary results as presented during the meeting of the Ninth
Conference on Low Temperature Physics held in Columbus, Ohio in
September 1964. Data were shown obtained with the calorimeter when
it was filled with liquid or solid helium, which at sufficiently
low temperatures contributes only a phonon cubic term in the
temperature to the heat capacity. It was assumed that the heat
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O  T

known contributions

0.5 °K2O  T

Fig. 4,2. Heat capacities divided by T, as functions of T ;
0 ® C  : empty calorimeter, W_/T, as calculated from three measuring runs;
--------- : (1 .4  + 3 .6  T2)  m j/K 2 ; : ( 1 .4  + 3 .6  T2 + 0 .0 3 5  T- 3 ) m j/K 2 ;

-----  : sum of known contributions of component parts*

capacity of the calorimeter consisted only of a linear and a cubic
term in the temperature. Consequently the constants were calculated
from a straight line as found in a diagram of the total heat

2capacity, divided by T, versus T . Clearly systematic errors are
introduced by this method if terms other than those mentioned
dominate the course of W as a function of temperature.

4-3. The heat capacity of the liquid
a. E x p e r i m e n t a l  . Measurements of the heat capacity

have been made when the calorimeter contained liquid helium under
various pressures between the saturated vapour pressure and the
melting pressure. The cooling vessel, containing the cooling salt

3and 18 cm of liquid helium under the same pressure as the helium
in the calorimeter (first arrangement), was also used as a thermal
buffer. At each of the approximate pressures of 0.1, 2.5, 5» 10,
15, 20, and 25 atm, four runs were performed.
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Table 4 , IV. Measurements o f  th e  h e a t c a p a c ity  o f  l iq u id  helium ;
one o u t o f  fo u r  ru n s fo r  each p re s su re .

T V w “ WC T

mK m j/r mj/K mK

*o = 0*07 atm 499
529

341 2.76 1.84 563
348 2.90 1.97 602
359 3.13 2.19 648
373 3.38 2.41 686
395 3.82 2.82 722
418 4.49 3.44 756
448 5*22 4.10 791
481 6 .40 5.18 829
526 8.22 6.83 901
568 10.60 9.03  1 929
594 12.60 10.91 959
617 14.15 12.34 991
638 16.23 14.31 1033
665 19.89 17.82 1072
697 25.2 22.9 1114
730 32.7 30.2 1159
762 42.6 39.9 1212
793 53.7 50.7 1255
825 68 .4 65 .2 1293
850 82 .5 79.1 1332
896 121.3 117.5 1371
924 147-0 142.8 1405
945 171.1 166.7 1444
962 199.2 194.6 1493
982 229 224 1558

1003 258 253 1622
1019 275 270
1041 332 326
1071 399 393
1097 467 461

1126 549 542 347
3^31160 659 652

1201 790 782
1247 971 962 39?1289 1188 1178

1333 1364 1354 416
441

1377 1667 1656 474
1425 2007 1995 ?111480 2469 2455 549
1543 2964 2949

1595 3513 3496 588
630
673
715= 5 ,0  atm 762

375 2.48 1.51 812
384 2.71 1.73 859
412 3.20 2.17 898
438 3.72 2.62 933
473 4.46 3*24 972

V
mj/r

V -  v
mj/K

213
260
344
436
553
714
928

1140
1387
1596
1863
2127
2386
2927
3530
4460

208
255
339
430
546
707
920

1130

1377
1586
1852
2115
2373
2913
3514
4442

10.1 atm

1.86 0.93
1.91 0.97
2.05 1.10
2.11 1.14
2.40 1.40
2.76 1.72
3.23 2.13
3.91 2.71
4.78 3.45
6.78 5.30
9.09 7.42

13.03 11.15
22 .2
31.9
48.9
82.1

125.0
162.3
225
296

20.1
29.5
46.2
79.0

121.5
158.4
221
291

5.20 3.92 1009 367 362
6.09 4.69 1051 473 467
7.67 6 .12 1091 603 597

10.43 8.70 1136 779 772
14.83 12.85 1186 988 980

20.7 18.5 1232 1245 1236
28.2 25*8 1288 1562 1552
39.3 36.6 1342 1974 1963
55.7 52.8 1404 2475 2463
76 .3 73 .0 1471 3105 3091

141*1 137.2 1534 3765 3750
169.3 165-1 1590 4535 4518

T
mK mj/r

V -  V
mj/r

1655 5470 5451

Po

351
358
366
379
396
411
430
452
470
495
526
559
595
637
733
784
820
859
894
926
965

1022
1038
1075
1117
1162
1204
1245
1286
1332
1380
1437
1493
1551

= 15 .1 5  atm

1.74
1.80
1.92
2.00
2.19
2.39
2.67
2.99
3.30
4.08
5.29
7.09

10.27
15.76
44.6

0 .81
0.86
0.97
1 .0 2
1.19
1.36
1.59
1.86
2.11
2.81
3.90
5.56
8.57

13.85
42.1

73.0
105.9
157.6
205
250

337
431
542
653
834

1077
1254
1508
1746
2017
2475
3095
3782
4572

70.1
102.7
154.1
201
245
332
426
536
647
827

1070
1246
1499
1736
2007
2464
3082
3768
4556
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Table 4 , IV (co n tin u ed ).

T V V -  w T V V -  Vc T V V -  V
mK m j/r m j / t mK mj/K m j/r mK mj/K mj/K

932 322 318 526 5.80 4.41
967 412 407 575 10.60 9.00

P a  20.25 1004 511 506 600 14.20 12.48
1041 619 613 628 21.0 19.14
1084 791 785 657 30 .2 28.2

370 1.75 0.79 1132 1021 1014 691 45.1 42 .9
378 1.89 0.92 1177 1267 1259 717 60 .7 58.3
387 1.96 0.97 1220 1543 1535 747 83.3 80.7400 2.10 1.09 1266 1862 1853 775 110.0 107.2
417 2.37 1.33 1313 2317 2307 803 138. Ó 135.0
433 2.53 1.45 1367 2790 2779 832 180.5 177.2
446 2.76 1.64 1425 3411 3399 862 222 218
459 2.97 1.82 1473 3919 3905 889 264 260
472 3.13 1.94 1514 4611 4596 920 350 346
506 4.45 3.14 1565 5510 5496 955 448 443
524 5-39 4.01 1605 6710 6693 990 558 553
546 6.83 5.36 1029 698 693
572 9.16 7.57 1070 868 862
601 12.87 11.14 1117 1108 1101
628 17-82 15.96 P0 -  24.9 1160 1366 1360
658 25.1 23.1 334 1.41 0.51 1203 1670 1662
689 36.2 34.0 335 1.45 0.55 1248 1990 1981
717 49 .4 47.0 340 1.44 0.53 1293 2380 2370
742 63.8 61 .2 349 1.55 0.62 1344 2920 2909
766 79.1 76.3 368 1.63 0.67 1400 3630 3618
791 103.9 100.9 398 1.97 0.96 1445 4390 4377
817 129.7 126.6 426 2.38 1.31 1484 5060 5046
845 162.4 159.0 449 2.73 1.60 1516 5420 5405873 203 199 473 3.34 2.14 1574 6480 6464
901 250 246 505 4.59 2.29

b.  M e a s u r e m e n t s .  For each p ressu re one measuring
run i s  g iven  in  ta b le  4 , IV. I t  shows the e f f e c t iv e  heat ca p a c ity  W
and the heat ca p a c ity  W -  Wc o f  the l iq u id .  The s c a t te r  in  the
e f f e c t iv e  heat ca p a c ity  i s  o f  the order o f  4 % producing an e s t i ­
mated error in  i t s  mean value o f  1 to  2 %• The error in  the
r e s u lt in g  heat ca p a c ity  o f  the liq u id  may now be s p e c if ie d  as 2 to
5 % fo r  tem peratures below roughly 0 .5  I  where the ca lo r im eter  and
the l iq u id  have heat c a p a c it ie s  o f  comparable orders o f  magnitude.
Above th a t temperature the co r rec tio n  fo r  the ca lo r im eter  i s
r e la t iv e ly  sm all so th a t the error amounts to  2 %. A ll  v a lu es
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Pig- 4*3* Heat capacities of 15*8 cm^ of liquid helium at temperatures between
0.3 and 0.6 K; heat capacity Vc of the empty calorimeter;
A  : 0.1 atm; O s 5.0 atm; ■  ! 10.1 atm;
A  : 15-2 atm; •  ; 20.35 atm; □  : 24*9 atm.

obtained for the heat capacity of the liquid below 0.6 K are given
in fig. 4,3. Also the contribution Wc of the calorimeter and the
estimated error for several values of W - Wc in that temperature
region have been indicated. The pressures indicated are the
averages of the adjusted values pQ at the lowest temperatures,
differing by less than 0.1 atm from the values in the actual runs.
No systematic deviations have been found between different runs at
the same pressure. In fig. 4,4 one run between temperatures of 0.4
and 1.6 K is given for each pressure.

c. D i s c u s s i o n . A  direct conclusion from the measure­
ments is the establishment of a phonon type of heat capacity in the
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I I ' I I

24.9 atm

0 .0 7

0.07.

i i i i
1.4 °K

3Pig* 4»4* Heat capacities of 15*8 cm of liquid helium at temperatures between
0*4 and 1.6 I; heat capacity Vc of the empty calorimeter;
A  : 0*07 atm; O  : 5*0 atm; ■  : 10*1 atm;
A : 15*15 atm; #  : 20*25 atm; D : 24*9 atm*

region of low temperatures. This has been indicated by the extended
straight lines in the double-logarithmic graph of fig. 4,3, drawn
with a slope of 3 through the points at low temperatures. In table
4,V the approximate temperatures T ^ are given up to which the
phonon formula mentioned in table 6,1 of sec. 6-2 is found to be
valid. The roton contribution to the specific heat which is domi­
nant at higher temperatures falls off rapidly towards low tempera­
tures. At the temperature T ^ it has become of the order of the
experimental error. Consequently, at temperatures lower than T ^
the specific heat varies as the third power of the temperature.
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Table 4»V. Phonon data.Ifrom heat capacities from absolute zero isotherm

V - W -3
po T V,ph T3 C

u u u plo "t

atm X raj/r4 m/s m / s (fay's)"3 g/cm3 g

0.1 0.53 46.5 240(1) 240 72.4 0.1455 2.30

2.5 0.49 37.5 258(1) 257 59.0 0.1496 2.36

5.0 0.46 30.5 276(2) 273 49.1 0.1332 2.42

10.1 0.41 23.0 304(2) 301 36.7 0.1595 2.52

15.2 0.38 18.5 327(3) 327 28.6 0.1647 2.60

20.35 0.36 15.5 346(4) 349 23.6 0.1692 2.67

24.9 0.35 13.5 363(5) 368 20.2 0.1729 2.73

error + 0.5 ±  2 + 0.01

This is shown clearly for pressures up to 15 atm; for the higher
pressures the measurements presumably just extend to the pure

O
phonon region. The coefficients (W - V  ) / T  and the calculated
velocities of sound are also given in the table and are compared
with the values deduced from the isotherm at absolute zero (mainly
Atkins and Stasior^*^), see sec. 3~3b). The agreement is within

500 400 300 250 m/s

Fig. 4,5. Coefficients of T3 from phonon heat capacities, as a function
of the inverse cube of the velocity of sound.
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=pl<P,T).

the estimated errors. In fig. 4»5 the coefficients have been
plotted as a function of the inverse cube of the velocity of sound

O
u. From the slope of the graph a volume of (15* 8 +_ 0.1)cm is
calculated which is in agreement with its direct determination. A
detailed evaluation of the roton parameters will be given in
chapter VI.

Comparison with other measurements requires calculation of
the specific heats at constant pressure c ^ and at constant volume
c , the specific entropy s^, and the coefficient of isobaric
thermal expansion a These will be given in the following
paragraphs.

d. T h e  i s o b a r i c  s p e c i f i c  h e a t
As the measurements have been performed neither at constant volume
nor at constant pressure, corrections are due to the deviations
from these conditions originating'from the thermal expansion of
the liquid. From the diagram of the heat capacity of the liquid,
W - W , smoothed values were taken at temperature intervals of
0.05 K. From these the specific heat at constant pressure c ^(p,T)
has been calculated as a function of pressure and temperature
according to the formulae (3*42) and (3*43). A small correction
has been made for the deviations of p from smooth values of the*o
pressure. The specific heat data are shown in fig. 4,6 as a
function of temperature and as a function of the pressure and are
compiled in table 4,VI. The estimated error is 2 %, below 0.5 I
towards lower temperatures increasing to 5 %•

The extrapolated value c ^(0 atm,T) at zero pressure is dis­
tinguishable neither from the value c ^ ,T) at the saturated
vapour pressure p nor from the specific heat c (t ) along the

o crl
vapour pressure curve, the differences being smaller than 0.03 %
in the range of temperatures considered. Therefore, it may be com-

4 8\pared directly with the values of Kramers, Wasscher, and Gorter ’ )
4«9\and with those of Wiebes, Nie1s-Hakkenberg, and Kramers ) in the

as presented in sec. 3-3,c. In fig. 4,7 thecombined form cal,comb



Table 4 ,VI. S p ec ific  h ea ts  o f  l iq u id  4He in  m j/g K; a t  co n stan t p re s su re , cp l (P0 *T)> a s  a  fu n c tio n  o f  th e  p re ssu re  po ; a t  co n stan t
volume, cv1( p1o»t )» a s  a  fu n c tio n  o f  th e  d e n s ity  pln  corresponding  to  th e  p re ssu re  pQ a t  low tem pera tu res .

T

I

cp l  cv l
0 .0 1) 0.14552)

t® q/oft

cp l  cv l

2 .5  0.1496
atm g/cm

S i
5.0
atm

cv l
0.1532

g /c m 3

Cp l
10.0

atm

cv l

0.1594
g/cm3

CP1
15.0

atm

cv l

0.1645
3g/cm

CP1
20.0

atm

cv l
0.1690

g/cm3

CP1
25.0

atm

cv l
0.1729

g/cm3

0.30 0.55 0.43 0.34 0.25 0.19 0.16 0.13
0.35 0.87 0.68 0 .54 0.39 0.31 0.25 0.22
0.40 1.31 1.02 0.81 0.59 0.47 0.39 0.35
0.45 1.86 1.45 1.16 0.86 0.70 0.62 0.59
0*30 2.57 2.01 1.64 1.27 1.10 1.05 1.08

0.55 3.51 2.79 2.36 1.98 1.86 1.95 2*19
0*60 4.87 4.00 3.55 3.24 3-36 3.82 4.56
0.S5 6.97 6.00 5.59 5.54 6.22 7.43 9.08
0.70 10.29 9.34 9.09 9.66 11.28 13.82 16.84
0.75 15.45 14.75 14.86 16.62 19.66 24.2 29*1
0.80 23*2 23.1 23.8 27.5 32.6 39.8 47-3
0.85 34.7 35.5 37.0 43 .4 51.4 62 .0 73.10.90 51.4 53.2 55.9 65.6 65.7 77-5 77 .4 92. 5 92 .4 108. 3 108.2
0.95 74.6 77.7 82.2 95-5 95.6 112.9 112.7 132. 9 132.6 154. 5 154.21.00 105.7 110.6 117.4 134.6 134.5 158.4 158.1 184. 5 184*0 213 212
1.03 145.8 153.1 62 .4 184.4 184.1 215 214 249 248 285 2841.10 195.9 206 218 246 246 284 283 326 324 372 370
1.15 257 270 285 321 320 366 364 419 416 476 4731.20 330 346 365 410 408 464 461 528 524 599 594
1.25 416 435 459 458 514 511 579 574 657 650 743 735
1.30 517 540 539 569 568 634 630 712 705 806 795 911 897
1.35 635 663 662 697 695 775 769 868 857 978 961 1107 10851.40 772 771 806 804 846 842 939 930 1047 1030 1176 1150 1336 1302
1.45 931 930 972 969 1019 1013 1129 1117 1253 1229 1403 1365 1603 15501*50 1115 1113 1165 1160 1220 1212 1350 1331 1490 1455 1665 1609 1915 1833
1.55 1330 1326 1389 1382 1453 1441 1604 1577 1763 1714 1968 1887 2280 21531.60 1578 1572 1648 1637 1722 1705 1893 1856 207 5 2006 2317 2198 2708 2511

1 \ 2 \) ) see text*
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1 .6 °K

_  O'

T__0.5 1.6 O

Fig. 4,6. Specific heat at constant pressure c ^ of liquid He at temperatures

below 1.6 K;

a. as a function of temperature; b. as a  function of the pressure.

relative deviations plotted as a function of temperature are seen
to be of the order of 2 %t i.e. within the limits of the accuracy
claimed.

e. T h e  i s o c h o r i c  s p e c i f i c  h e a t
c ^(p ,T). At the densities corresponding to the smooth pressure
values at low temperatures, the specific heat at constant volume

CpI (Oatm)

Pig. 4,7. Comparison of the present results for c ^ (0 atm) with the combined values

cffl cQmb of Kramers et al. (1952) and of Viebes et al. (1957).
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c (o . T) has been computed from the values of c . by means ofvl'Kl ' pl
formula (3.44). It has been tabulated in table 4,VI also- Along

3the isopycnal at a density of 0.1455 g/cm , the value of c . has
of course been extrapolated; within 0.1 % it is equal to the value
at the density along the vapour pressure curve.

— o —  ~~

— o--- present measurements

O  —

Lounasmaa and
Kojo (i960

a 0.1715 g/cm3
b 0.1675
c 0 .1 6 3 0
d 0.14651 .1 °K

0.15 p

a b

Fig. 4f8. Specific heat at constant volume c - of liquid ^He;
a. as a function of the density; b. as a function of temperature;
i ■ i—  • present results; — — — * Lounasmaa and Kojo (1959);
O  s Hercus and Wilks (1954) (values decreased by 7 %)•

The results may be compared with the earlier measurements of
Lounasmaa and Kojo4 ’10) and with those of Hercus and Wilks ’ ).
This is shown in fig. 4»8. The values of Lounasmaa and Kojo extend
down to 1.5 K. They are seen to join smoothly within 2 % with the
present results at temperatures of 1 •5 and 1*6 K except at the
lowest densities where their values are about 4 % higher. This dis­
crepancy is within the experimental errors of both experiments,
particularly at the extremities of the measured ranges of temper­
ature. The measurements of Hercus and Wilks are known to yield
values for the specific heat at saturated vapour pressure that are
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about 10 % higher than most other results. Lowered by 7 %t these
values could be fitted reasonably well to Lounasmaa's data and

4 12 • .were actually used by Lounasmaa f ) to extrapolate his specific
heat data down to a temperature of 1*2 K. According to the present
measurements, the so corrected values of Hercus and Wilks are up
to 12 % too low at their measured densities of 0.1630 and 0.1675
g/cm , and fairly correct at a density of 0.1715 g/cm (see fig.
4,8). Consequently, the extrapolations made by Lounasmaa at densi-

O
ties of 0.160 and 0.165 g/cm below a temperature of 1.5 K are
not very satisfactory.

'_________—

O P  s 10 15 20 25 atm

Fig. 4,9. Specific entropy s.. of liquid 4He as a function of the pressure;
loci of zero a . and (da^/dT^;

■ . present results; — — — ; Lounasmaa and Kojo (1959);
O  : van den Meijdenberg et al. (1961) (fountain effect).



Table 4 ,V II. S p ec ific  entropy o f l iq u id  4He in  m j/g K; s 1(p<j,T ) , as a fu n c tio n  o f  the  p re ssu re  P(); Sj/ P j^ .T )
d e n s ity  corresponding to  th e  p re ssu re  pQ a t  low tem pera tu res .

a s  a  fu n c tio n  o f  the

T 0 .0 1) 0 .1 4552) 2 .5  0.1496 5 .0  0.1532 10.0 0.1594 15.0 0.1645 20.0 0.1690 25.0 0.1729

K atm g/cm atm g/cm atm g/cm atm g/cm^ atm g/cm atm g/cm atm g/cm

0.30 0.183 0.143 0.114 0.082 0.064 0.053 0.044
0.35 0.291 0.227 0.180 0.131 0.103 0.083 0.071
0.40 0.434 0.339 0.267 0.195 0.154 0.127 0.107
0.45 0.619 0.483 0.383 0.279 0.221 0.185 0.160
0.50 0.849 0.664 0.528 0* 390 0.313 0.270 0.244

0.55 1.135 0.892 0.716 0.541 0.449 0.407 0.392
0.60 1.494 1.186 0.968 0.761 0.668 0.648 0.672
0.65 1.960 1.581 1.326 1.101 1.039 1.082 1.198
0.70 2.60 2.14 1.857 1.648 1.670 1.846 2.13
0.75 3.47 2.95 2.67 2.54 2*71 3.13 3.68
0.80 4.70 4.15 3.89 3.93 4.37 5.15 6.10
0.85 6.42 5.90 5.70 6.04 6.88 8.19 9.70
0.90 8.85 8.40 8.32 9.12 10.54 12.55 14.83
0.95 12.21 11.90 12.01 13.43 15.66 18.58 21.9
1.00 16.81 16.69 17.08 19.29 22.6 26.6 31*2
1.05 22.9 23.1 23-9 27-0 31.6 37 .2  37.1 43.3 43.2
1.10 30.9 31.4 32.6 37.0 43 .2  43.1 50.5 50.4 58.5 58.4
1.15 41.0 41.9 43.8 49-5 49.4 57-6 57.5 6 7 .0  66.8 77.3 77.11.20 53.4 55-0 57.5 65.1 65.0 75.2 75.0 87.1 86.8 100.1 99*7
1.25 68.6 70.8 74.3 74.2 83.8 83.6 96 .4  96.1 111.2 110.6 127.4 126.8
1.30 86.9 89.9 94.4 94.3 106.3 106.0 121.6 121.1 139.7 138.8 159.7 158.6
1.35 108.5 112*5 112.4 118.2 118.0 132.8 132.3 151.3 150.4 173.3 171.9 197.6 195.91.40 134.0 139*1 139.0 146.2 1 45.9164.0 163.2 186.0 1 84.5 213 211 242 239
1.45 | 163.7 163.6 170.2 170.0 178.9 178.5 200 199*0 226 224 258 255 293 2891.50 198.2 198.1 206 206 217 216 242 240 273 270 309 304 352 345
1.55 | 239 239 248 247 261 260 290 287 326 321 370 363 421 4111.60 285 285 296 295 311 310 346 342 387 381 438 428 500 485

) The ex trap o la ted  value s_(0 atm,T) a t  zero  p re ssu re  equals the  value s^(p^gT) a t  s a tu ra te d  vapour p re ssu re  w ith in  0 .2  %•

The ex trap o la ted  value s^(0.1455 g/cm^fT) equals the  value  *^(p. #T) a t  th e  d e n s ity  along th e  vapour p re ssu re  curve w ith in  0.1 %•
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f. T h e  s p e c i f i c  e n t r o p y  s^. If a T
dependence is adopted at temperatures below those of the range
measured, the specific entropy s..(p,T) can be found as a function
of temperature and pressure from a simple integration of
c 1(p,T)/T. The resulting specific entropy is given in table 4»VII
and is plotted as a function of the pressure in fig. 4,9. The
estimated error is of the order of 2 % or 0.005 mj/g K whichever
is greater.

-t - 2 - 3  -4 - 3 - 2 - 1  O %

-3 -2

2 0 atm

Fig. 4,10. Relative difference (sf /a^) - 1 between entropies of liquid helium,
as found from the fountain effect, s„ , and from the present specific
heat, s^, as a function of temperature and pressure.

The entropies of van den Meijdenberg, Taconis, and de Bruyn
O^boter4 ’13), as found from the fountain effect, are also plotted
in fig. 4,9 and sire compared with the present results in fig. 4,10.
The agreement is roughly within 2 % at pressures of 0 and 25 atm;
at the intermediate pressures the entropies from the fountain
effect are 2 to 4 % lower than those obtained from the present
measurements, with the exception of their lowest temperature of
1.15 K where the agreement is again within 2 %• The differences in
the regions of intermediate pressures and higher temperatures are
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not significantly larger than the claimed errors would allow. They
do have a bearing, however, on the calculated value of the coef­
ficient of isobaric thermal expansion (see the next paragraph).

Another set of comparable entropy data originates from
Lounasmaa and Kojo's measurements of the specific heat4’ ), com-

4 12\bined with Lounasmaa's compression data ’ ) along the isotherm at
1.75 K. From the entropy at saturated vapour pressure according to

A O
Kramers et al. ’ ), and from the entropy of compression, Lounasmaa
calculated the entropy along the isotherm at 1.75 K. He used the
result as the constant of integration in the calculation of the
entropy by means of his data on the specific heat. Within the
accuracies claimed, his results, shown also in fig. 4,9, are
slightly lower them those obtained from the present measurements.

For purposes of theoretical calculations (see chapter Vi),

i i i

I I I I I 111 llllll

I I I I

Fig. 4,11. Coefficient of isobaric thermal expansion a .(p,T) of liquid 4He;
a. as a function of the pressure; b. as a function of temperature;
___ . present results; O  ! Mills and Sydoriak (1965), at 3, 6, 12 and 24 atm
- - - : Boghosian and Meyer (1966), at 0, 5 and 25 atm;
4. : Atkins and Edwards (1955), at SVP; X  : Kerr and Taylor (1964), at SVP.
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the entropy S1(p-L*T) has been tabulated also as a function of
density and temperature (table 4,VIl). Again the densities corre­
sponding to the smooth values of the pressure at low temperatures
have been chosen.

g. T h e  c o e f f i c i e n t  o f  i s o b a r i c
t h e r m a l  e x p a n s i o n  a,. From the entropy as aPi
function of the pressure, the coefficient of isobaric thermal
expansion a ^PfT) equal to - p^ds^/dp)^,, can be found by simple
differentiation. To this end the entropy has been approximated by
a polynomial of the third degree in p for temperatures above 0.9 K,
and by a polynomial of the fourth degree below that temperature
using the values atO, 5, 10, 15, 20, and 25 atm. The calculated
values are compiled in table 4,VIII and plotted as functions of the
pressure and the temperature in fig. 4*11. In fig. 4,9 the loci of

Table 4,VIII. Coefficient of isobaric thermal expansion a .(p,T) of liquid 4He in 10 /l.

0.029
0.069
0.132

0.326
0.396
0.385

* 0.255

- 0.052

pressure p in atmospheres
10.0 15.0

0.014
0.033
0.063

0.102
0.126

♦ 0.089
- 0.060
- 0.38

- 0.94
- 1.79
-  3*00
- 4.60
- 6.61

- 9.05

0.007
0.016
0.028

0.038
+ 0.016
-  0.10

- 0.37
- 0.87

- 1.67
- 2.83
- 4.42
- 6.49
- 9.08

-  12.2

0.005
0.010

0.016

0.013
0.039
0.22
0.60
1.25

2.25
3-66
5.57
8.08
11.3

15.3

20.0 25-0

0.004 0.002
0.009 0.004
0.014 4- 0.003

♦ 0.003 - 0.015
- 0.070 - 0.120
- 0.28 - 0.37
- 0.72 - 0.83
- 1.45 - 1.59

- 2.56 - 2.77
- 4.16 - 4.52
- 6.38 - 7.07
- 9.38 - 10.7
- 13-4 - 15.8

- 18.7 - 22.8

the value aP i (pa,T) at

saturated vapour pressure p^ within 0.1 X*



76

the minimum values of s1 as a function of the pressure, i.e. a .
equal to zero, and the loci of the maximum value of a . as a
function of temperature, have been indicated. In fig. 4,12 the
loci mentioned are shown in the diagram of state. It is clear that
no great precision can be claimed for the present values of a^.
In fact, a 2 % error in the entropy will certainly allow for no
better accuracy than 10 % in a 1 and still larger errors are
possible in the values at 0 and 25 atm at the ends of the range of
pressure measured.

dpi = 0

Fig. 4,12. Diagram of state of He;
—■— : locus of zero a .; —A— : locus of zero (dapl/9T)p;
____ : Boghosian and Meyer (1966); O : Mills and Sydoriak (1965).

Compared with the measurements of Atkins and Edwards ’ ) and
with those of Kerr and Taylor4'15) at saturated vapour pressure, as
shown in fig. 4,11b* the present results are systematically higher
by roughly 20 % for temperatures above 0.8 K. A comparison over the
whole range of pressures is possible with the measurements of
Boghosian and Meyer4'16) (see also fig. 4,11b). At zero pressure
deviations similar to the ones mentioned are found. At the maximum
of a (0 atm), however, all measurements diverge by 10 to 20 %. The
present results at 25 atm, on the other hand, are about 20 % lower
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th an  th o se  o f  Boghosian and Meyer a t  t h a t  p r e s s u r e ,  and n e a r ly

c o in c id e  w ith  t h e i r  v a lu e s  a t  20 atm . At th e  in te rm e d ia te  p re s s u re s

th e  d e v ia t io n s  a re  o f  th e  o rd e r  o f  10 % which i s  w i th in  th e  e s t i ­
m ated e r r o r s .  I t  may be concluded  th a t  th e  p r e s e n t  r e s u l t s  a t  0

and 25 atm d e v ia te  in  such a  manner a s  i f  th e  p re s e n t  v a lu e s  f o r

th e  en tro p y  a t  th e s e  p re s s u re s  were 1 to  2 % too  low. T h is  i s  th e

same tre n d  a s  was found i n  th e  d is c u s s io n  o f  th e  p re c e e d in g  p a ra ­

graph  where th e  p re s e n t  e n t ro p ie s  appeared  to  be somewhat h ig h e r

th an  o th e r  v a lu e s  a t  th e  in te rm e d ia te  p r e s s u r e s .

D ire c t  r e s u l t s  on a  have been o b ta in e d  by M ills  and S ydoriak
A 1 7 \’ ) from  ex p erim en ts  on a d ia b a t ic  ex p an sio n  (se e  f i g .  4 ,1 1 a ) .

They f in d  a  d i s tu r b in g  s c a t t e r  in  a s  a fu n c tio n  o f  th e  p re s s u re

so th a t  th ey  had to  u se  an u n s a t i s f a c to r y  p ro ced u re  o f  sm oothing

acco rd in g  to  t h e i r  e q u a tio n  7* Compared w ith  th e  p r e s e n t  r e s t i l t s ,

t h e i r  v a lu e s  a t  a  p re s s u re  o f  3 atm would be to o  h ig h  a s  w e ll a s

t h e i r  v a lu e s  a t  12 atm in  th e  re g io n  o f  h ig h e r  te m p e ra tu re s . Con­

c lu s io n s  w i l l  be postponed  to  th e  n e x t s e c t io n  where th e  p re s e n t

ex pansion  ex p e rim en ts  w i l l  be d is c u s s e d .

For p u rp o se s  o f  c o r r e c t io n s  due to  th e  th e rm a l ex p a n s io n , th e

v a lu e s  a lo n g  th e  is o b a r s  and th e  is o p y c n a ls  o f :

P j /P tT )

Pi (p .o ) -  1 -  [ a . dT , and
Jn  P1

(4 .1 )

p ( p r T)  ̂ 1 pT

p Cpj^.o ) ”  1 "  p ( px . o) ht J q “p i
(4 ,2 )

a re  shown in  f i g .  4 ,1 3 . The change o f  th e  c o m p re s s ib i l i ty :

9 P ,(P ,T )
hT(t ) ” ht(°> = dp Pi (p ,o) (4 ,3 )

—3 —1i s  seen  to  be sm a lle r  th an  0 .2  10 atm j u s t i f y in g  i t s  n e g le c t io n

in  se c . 3 -4 ,d (compare a ls o  se c . 3 - 3 ,b ) .
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i/cm*
,1729

/ '--0.1594
...0.1532

1.5 *K

Fig. 4,13. Thermal expansion of liquid 4He; a. relative changes of the density
along isobars; b. relative changes of the pressure p along isopycnals.

4-4. The adiabatic expansion of the liquid
a. E x p e r i m e n t a l .  Expansion experiments have been

made with the calorimeter containing liquid helium. Amounts of
helium were blown off at several rates, lowering the pressure by
steps Ap of about 5 atm at average pressures of approximately 22.5,
17.5, 12.5, 7.5, and 3.0 atm. At several average temperatures
between 0.6 and 1.4 K, the related increase AT of the temperature
has been measured.

The calibration of the magnetic thermometer appeared to
depend on the pressure within the calorimeter. At a temperature of
1.0 K and a difference of 5 atm in the pressure, the temperature
difference corresponding to the related change in the calibration
amounted up to 8 mK on different measuring days. As only the
mutual-inductance constant was found to be affected by the
pressure, an additional calibration as a function of the pressure
could be performed at the lowest obtainable bath temperature
yielding (see sec. 2-2,d):

T = C /  [ M - (p) ] . (4>4)

In one of the measuring runs this was done at the pressures between
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all subsequent expansions (called: intermediate calibration), and
in others after the expansions (called: terminal calibration). The
additional calibration data could also be obtained from measure­
ments of the heat capacity between the expansions (called: cali­
bration heat capacity). For this purpose the heat capacities as
calculated with a provisional calibration were compared with the
known values at the provisional temperatures. The necessary change
SMqq in the calibration constant was then calculated from the
relative deviation 6W/W in the heat capacity equal to

Table 4» IX. Measurements of adiabatic expansion of liquid helium.

run calibration P

atm

- Ap

atm

T

mK

AT

mK
Wt
mj/r

■ v
io"3/r

rate

mm?/s

I intermediate 22.3 5.1 1126 27.8 1090 3.30 3
17.3 4.9 1122 27.7 910 2.86 9
12.5 4.6 1118 23.6 760 2.18 16
7*6 5.3 1115 15.9 630 1.06 9
2.8 4.3 1107 8.0 510 0.54 19

II terminal 22.2 3.65 1105 17.8 970 2.68 17
17.7 5.35 1129 25.6 940 2.49 19
12.6 4.8 1155 20.6 910 2.12 30
7.6 5.2 1178 21.7 870 1.92 22
2.9 4.15 1199 10.3 830 1.08 19

III terminal 22.2 4.9 1037 23.5 670 1.94 16
17.4 4.7 1069 23.0 685 1.96 13
12.5 5.0 1097 20.3 670 1.55 19
7.5 5.0 1124 13.3 665 0.98 17
2.9 4.2 1143 5.5 625 0.45 28

IV terminal 22.2 4.6 868 19.0 214 0.64 10
17.4 4.8 894 20.3 221 0.65 9
12.5 5.0 927 17-4 230 0.54 12
7.6 4.8 979 8.0 276 0.29 15
3.1 4.3 1022 2.6 310 0.11 14

V terminal 22.3 5.1 679 24.0 33.9 0.147 14
17.4 4.65 711 17.5 39.9 0.132 15
12.5 5.05 754 11.0 51.2 0.093 19

VI terminal 22.2 4.5 638 21.9 20*7 0.098 14
17.5 4.9 671 20.7 25.5 0.100 15
12.6 4.8 703 8.0 30.0 0.044 19

VII terminal 22.5 4.85 596 30.9 12.3 0.082 16
17.6 5.1 636 24.0 17.2 0.079 12
12.5 4.95 666 9.3 20.1 0.035 15

VIII heat capacity 22.1 4.2 1184 29.0 1410 5.14 7
17.6 4.8 1239 34.1 1550 5.56 13
12.7 5.0 1275 34.1 1550 5.18 17
7.6 5.2 1340 29.9 1740 4.67 15
3.0 4.1 1389 21.7 1850 4.40 6
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- (n + 2) T 6MTO/  C , where n equals d(logW)/d(logT). The constant
M B (p) was found to vary almost linearly with the pressure and was
reproducable in different runs on the same measuring day.

22.5 atmm o 17.5 ,
1 2.5
7.5 ,
3.0 ,

-0.3
°K 1.5

Fig. 4,14. Coefficient of isobaric thermal expansion I . of liquid He;
O  : 22.5 atm; •  : 17.5 atm; A  : 12-5 atm; +  : 7-5 atm; O  : 3.0 atm,
from expansion experiments; ----  s as calculated from the entropies.

b. M e a s u r e m e n t s .  The results calculated according
to eq. (3.5) are given in table 4,IX and are plotted in fig. 4,14
as a function of temperature. The runs numbered V, VI, and VII had
to be interrupted owing to the large heat leak at a pressure of
about 10 atm and a temperature of approximately 0.7 K. This could
perhaps have been overcome by heating the calorimeter to a temper­
ature higher than that of the cooling salt vessel. Since this was
not done, no measuring points are available in the region of low
pressure and low temperature where the coefficient of thermal
expansion is positive. Moreover, no compressions have been per­
formed as the temperature of the entering liquid would have been
uncertain. Systematic errors due to irreversibilities are there­
fore difficult to estimate. Consideration has been given to the
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rate of blowing-off expressed in escaping volume of liquid per
time. No systematic effect on the temperature increase could be
detected. The estimated error amounts to 5 % in the region of
higher temperature and pressure; in some of the other points the
error has been indicated.

c. d  i s c u s s i o n .  The calculated values as found in
the preceeding section are also shown in fig. 4,14 as fully-drawn
lines. The expansion measurements yield values of a ^  that agree
with the values as computed from the specific entropy within the
rather large errors. They seem to agree somewhat better though

A *J C.
with the results of Boghosian and Meyer ' )• The latter tend to
higher high-pressure and to lower low-pressure values than the
present computed values would indicate. This tendency is also
found in the present expansion experiments.

A  1 *7 .
The results of Mills and Sydoriak ’ ) at pressures of 3, 6,

12, and 24 atm have been given in fig. 4,11a« These have been
obtained in a similar way as the present results. Although both
expansions and compressions have been performed and the results
averaged, their measurements show an unsatisfactory dependence on
the pressure that is not confirmed by the present determination of

' a . •pi
It may be concluded that the present expansion experiments do

not significantly deviate from other results. They do not con­
tribute to a better determination of the coefficient of thermal
expansion. Indeed, this was not to be expected with the present
apparatus which was not at all designed for such measurements.
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CHAPTER V

THE MELTING CURVE

5-1. Introduction
This chapter deals with the experiments on the liquid-solid

system. Section 5-2 is devoted to the measurements of the heat
capacity from which the entropy of the solid and the melting
pressure are calculated. In sec. 5-3 the expansion experiments are
presented yielding the temperature derivative of the melting
pressure. Both experiments indicate the existence of a shallow
minimum in the melting pressure at a temperature of 0.76 K. From
the two experiments, respectively, its depth is found to be
(0.0073 + 0.0003) and (0.0085 + 0.0005) atm below the melting
pressure at the absolute zero of temperature. The conclusions are
given in sec. 5-4. It is argued that the depth of 0.0073 atm
resulting from the heat capacity measurements is probably too low
by 10 %.

5-2. The heat capacities at melting
a. E x p e r i m e n t a l .  Measurements of the heat capacity

Y 3
have been made when the calorimeter contained about 12 cm of solid
and 4 cm3 of liquid helium. In order to reduce the dead volume

Table 3,1. Amounts of solid and liquid helium at 1.1 K.

mmelt mt ms2 *12 V,2 V12
3 3

9 9 9 9 cm cm

0.191 2.923 2.136 0.789 11.23 4.55
0.203 2.939 2.292 0.647 12.03 3.75
0.198 2.932 2.213 0.719 11.65 4.15
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Table 59II*  M easuring ru n  on th e  h e a t c a p a c ity  o f  th e  s o l id .

T

mK

* 
$

¥c

mj/r
m12c til

mj/r

cprov
mj/g I

T

mC

¥

mj/r

¥c

mj/r
m12c(il

m j / l

c prov

m j/g  K

374 4.17 0.97 0.21 1.40 569 14.95 1.58 2.29 5.19
381 4.37 0 .98 0 .23 1.48 592 17.55 1.68 3* 21 5.93
389 4.66 0.99 0 .25 1.60 621 21.45 1.83 4.81 6 .94
397 4.77 1.01 0.27 1.63 644 25 .4 1.95 6.61 7.89
407 5.16 1.03 0.29 1.80 664 29 .9 2.06 8.52 9.03
420 5.61 1.05 0 .3 4 1.98 681 32.6 2 .2 10.5 9.32
428 5-96 1.07 0.36 2.12 700 37-3 2 .3 13.3 10 .2

430 6.11 1.08 0.37 2.18 728 44.6 2 .5 18.2 11 .2

440 6 .45 1.10 0.41 2.31 757 57.5 2.7 24.6 14.1
448 6.85 1.12 0 .45 2.47 780 66 .9 2 .9 31*0 15 .5
460 7.38 1.16 0 .52 2.67 811 84.1 3.1 41 .3 18.6

461 7-43 1.16 0.53 2.69 847 106.6 3 .4 56.3 22.0

478 8.15 1.21 0 .65 2.94 884 138.2 3 .8 75.7 27-5

493 9 .14 1.26 0 .78 3.33 921 173.9 4.1 99.8 32 .8

506 9.82 1.31 0.93 3.55 966 225 5 136 39.4

522 11.13 1.37 1.16 4.03 1018 299 5 187 50.1

535 12.10 1.43 1.39 4.34 1059 331 6 237 4 1 .2

543 12.53 1.46 1.56 4.45 1102 452 6 298 69

552 13.51 1 .5 0 1.78 4.79 1148 547 7 375 77

outside the calorimeter the second cooling arrangement was used.
The amounts of solid were calculated from the amounts of helium,
m . that had to be released in order to melt the solid, andmelt’
from the known densities. For this purpose the solid was melted at
the lowest calibration point at a temperature of about 1.1 K. In
table 5,1 the amounts are given. Three measuring runs have been
performed at temperatures between 0.3 and 1.2 t.

In the low-temperature parts of the runs and also during the
final melting, one or two small irregular jumps were encountered
in the readings of the temperature. They correspond to a few milli-
degrees at most. It is difficult to observe the jumps while actual
heating takes place but they can be expected to occur particularly
in the higher region of temperatures where, due to the thermal
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lO O O

/  °  /' n

56.4  T

0 .8  0 .9  1.0 1.1 °K0 .3  T

Fig. 5.1• Heat capacities of helium along the melting curve;
3O  ! total heat capacity; •  : provisional contribution of 11.25 cm of solid;

3_ ___ • calorimeter contribution; ----- : contribution of 4-55 cm of liquid;
----  : T* dependence; .... : total heat capacity vith liquid under 24.9 atm.

expansion, small amounts are melted. The effects were found to be
smaller if better equilibrium conditions had been maintained during
the initial solidification. For this reason the liquid under a
pressure of 25 atm was partly solidified by careful compression at
the lowest bath temperature under an over-pressure of 0.5 atm at
most. The jumps are ascribed to strains in the solid which upon
release give rise to small displacements in the thermometer system.
As in the case of the pressure dependent calibration (see sec.
4-4,a), only the additional mutual-inductance constant M*, is
affected. Likewise, the lowest calibration point is measured both
before and after the melting. The temperature difference corre­
sponding to the difference found in amounts to 1 to 5 mK at
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0.3 T . 0.4 0.5 0.6 0.7 0.8 0.9 1.0 °K 1.2

Fig. 5,2. Specific heats c^g and c ^  of solid and liquid 4He along the melting curve;
O AD : provisional values from different runs;-----: average of cprov-
---- • corrected specific heat c of the solid; : T dependence;r US
X  : specific heat of the solid at constant volume, Edvards and Pandorf (1965)
.... : specific heat c 1 of the liquid.

this temperature of about 1.1 K. From the expansion of the solid
upon the release of strains, a thermal effect of the order of only
- 1 mK may result at this temperature.

b. M e a s u r e m e n t s .  One of the three runs has been
tabulated in table 5,11 and plotted in fig. 5,1» The contributions
of the calorimeter and the liquid are given. Also, the heat
capacity of the calorimeter when filled with the liquid under a
pressure of 24.9 atm has been indicated for comparison (dotted
line); the volume heat capacities of the solid and the liquid are
apparently equal at a temperature of approximately 0.65 K.

From the present measurements, a provisional melting curve
was derived and used in the corrections for the quantities of the
liquid at melting (see eqs. (3*46)). In fig. 5,2 the provisional
values c for the specific heat of the solid as calculatedprov
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Table 5 III. Data on the melting curve of 4He from measurements of the heat capacities.

T °Ul
c US S1(V s s (V V  s s 1

I*
dp /dTr *r V  P°

I m j/g  I m j/g  I m j/g  K m j/g  K m j/g  K m j/g m atm /l matm

0.30 0.13 0.71 0.044 0.237 -  0 .19 -  0.058 -  3 .7 -  0 .28

0.35 0.22 1.13 0.071 0.377 -  0.31 -  0.107 -  5 .9 -  0.51

0.40 0.35 1.69 0.107 0.564 -  0.46 -  0.183 -  8 .7 -  0 .88

0.45 0.59 2.43 0.160 0.81 -  0 .65 -  0 .290 -  12.3 -  1.40

0.50 1.08 3.37 0 .24 1.11 -  0 .86 -  0 .432 -  16 .5 -  2 .12

0.55 2,19 4.54 0.39 1.48 -  1.09 -  0 .60 -  20.8 -  3-1

0.60 4.56 6 .0 0.67 1.94 -  1.27 -  0 .76 -  24.2 -  4 .2

0 .65 9.1

00r*** 1 .20 2.49 -  1 .29 -  0 .84 -  24.6 -  5 .4

0 .70 16.8 10.2 2.13 3.15 -  1 .02 -  0.71 -  19 .5 - 6.6

0.75 29.1 13.1 3.68 3-95 -  0 .27 -  0 .20 -  5 .2 -  7-3

0.762 4.16 4.16 0.00 0.00 0.0 - 7.3

0.80 47.3 16.8 6.1 4 .9 + 1 .2 + 1 .0 + 23 -  6 .9

0 .85 73 21.4 9 .7 6.1 3 .6 3.1 69 -  4 .7

0.90 109 27.1 14.8 7-4 7.4 6.6 141 + 0 .5

0 .95 155 34 21.9 9.1 12.8 12 .2 244 10

1.00 213 43 31*2 11.1 20.1 20.1 386 26

1.05 285 53 43.3 13.4 30 31 573 49

1.10 373 65 58.6 16.1 43 47 812 84

1.15 479 80 77-6 19.3 58 67 1111 132

1.20 606 98 100.6 23*1 78 93 1480 196

according to eq. (3-47) are shown for the three runs. There appears
to be a systematic difference of up to 10 % between different runs
particularly in the temperature region from 0.5 to 0.9. K. This can
be explained in part by changes in the constant of the ther­
mometer calibration during the measurements at temperatures above
0.9 K. Accordingly, the large spreading in the points above 0.9 K
is ascribed to the jumps in the calibration constant originating
from the appreciable effect of the thermal expansion on strains in
the solid. Corrections for this effect are difficult to estimate
and have not been applied. Care was taken not to heat the calo­
rimeter to a higher temperature than that of the lowest calibration
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1.2 °K0.4 T

1
atm

0.5

0.2

0.1

0.05

0.02
0.01

O

- 0.01

P
- 0.02

Fig. 5f3. Specific entropies of liquid (s^) and solid (sg) ^He at meltingy
entropy difference (s,— ss), and difference between melting pressure
and its value at absolute zero (p — po);
—  ■ - : calculated from measurements of the heat capacities;
■  : specific entropy of solid from integral expansion experiments;
•  O  : entropy differences from integral and differential expansion
experiments respectively; - - - : average values from expansion experiments;
.... ; extrapolated difference of melting pressures, Swenson (1950);
----- : entropy difference, Sydoriak and Hills (1965);
X  ï specific entropy of solid at melting, Edwards and Pandorf (1965);

: difference of melting pressures, Straty and Adams (1966)■

point. Systematic errors may arise also from the manner in which
the amounts of solid have been determined (see sec. 3-4,b). The
collected amounts m , should originate only from melting withinmelt
the calorimeter. However, it is not possible to exclude entirely
contributions from melting in parts of the capillary outside the
vacuum vessel. Consequently, mme^t may be a few percents too high.

In the region of higher temperatures a correction due to the
thermal expansion is applied yielding c . Up to 0.5 Ï the specificlis
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heat shows a third power in the temperature with a coefficient of
(26*4 ±  0.8) mj/g K^. At higher temperatures it shows a steeper
rise. Between 0.5 and 0.9 K the error is estimated to 6 %
increasing to 10 % above a temperature of 0.9 K. Also c ^ is shown
in fig. 5»2; it is equal to c ^ at a temperature of 0.63 K. Both
specific heats have been tabulated in table 5»III*

From the present results of the specific heats the specific
entropies, the entropy difference, the specific heat of melting,
the temperature derivative of the melting pressure, and the differ­
ence of the melting pressure p with its value pQ at the absolute
zero of temperature have all been calculated. They are also given
in the table and some are shown in fig. 5,3 as fully-drawn curves.
At temperatures below 1.0 K, the entropy of the solid is probably
accurate to 4 %• The specific entropies are equal at a temperature
of (0.76 i  0.01) K which therefore is the temperature of the
minimum in the melting pressure. The difference of the specific
entropies has an error of 4 % or, in the vicinity of the minimum,
of about 0.2 mj/g K. The error in the difference between the
melting pressure and its value at absolute zero is estimated to
4 % or, near a temperature of (0.90 ^0.01) K where this difference
is zero, of the order of 0.0003 atm. The depth of the minimum
amounts to (0.0073 + 0.0003) atm.

c. D i s c u s s i o n .  In the region of low temperatures no
direct measurements of the specific heat of the solid along the
melting curve exist for comparison. However, the specific heats at
constant volume c at several densities of the solid have been

5 1 —3 vmeasured lately ’ ).
5 2\Those of Edwards and Pandorr ’ ) extend to both low-temper­

ature and low-density regions. They give c and s^ as functions
of t/0 where the effective Debije temperature 0 is given as a
function of the density. Their values of cvs have been plotted in
fig. 5,2 showing agreement with the present results within 5 % at
temperatures below 0.7 K. At higher temperatures their values sire
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systematically lower than the present measurements would indicate.
Part of this discrepancy could be accounted for by a systematic
error in the determination of the amounts of solid mentioned

C
before. From their data combined with the compressibility'*5’4) it
follows that c should be less than 1 % higher than c in thatvs Hs
region. In fig. 5,3 their entropies are compared with the present
results showing the same deviations as do the specific heats. )

5 6\Direct measurements of the melting pressure by Swenson ’ )
and le Pair et al.^’̂ ) are in agreement with the present results
within their estimated errors which are appreciably larger than
those of the present determination. Swenson's extrapolated value

8 _8of p - p equal to 0.053 T atm K- , is shown in fig. 5,3 as ar|l o
dotted curve. The measurements of le Pair indicate the presence
of a minimum between 0.6 and 0.9 K. Accurate measurements of the

5 8melting pressure by Straty and Adams * ) using a capacitive method
show reasonable agreement with the present results. They find a
minimum melting pressure at a temperature of 0.775 K differing by
0.0075 atm from the melting pressure at 0.35 K; the present experi­
ment would give 0.0068 atm for that difference. The difference of
10 % cannot arise from errors in the value used for the difference
p - (see sec. 3-4,e). It could result partly from values for
m . used in the determination of the amounts of solid, that are
melt’
too high.

+) Recently accurate measurements at temperatures down to 0.3 K on the molar volumes
and the heat capacities at constant volvmie of the solid, the liquid, and the two-
-phase system have been made by Hoffer5'5). Within the accuracy required here, the
densities of the solid and the liquid along the melting curve as found by Hoffer
are 0.1908 and 0.1731 g/cm3 respectively. The resulting difference of 0.0177 g/cm
is 4 %  larger than the difference used in the present calculations (taken from
Swenson, see sec. 3-3b). As discussed in sec. 3-4e, the effect of a systematic
error of this magnitude would amount to 16 * at 1.0 I, thus accounting for more
than half of the discrepancy between the present results and those of Edwards and
Pandorf (Hoffer-s results for the specific heat of the solid are consistent with

the latter). See also sec. 5-3*
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The experiments on the minimum in the melting pressure by
5 9\Sydoriak and Mills'^ ) were performed by using adiabatic expansion

methods as well as by making direct measurements of the pressure.
The discussion of their results will be deferred to the next
section where the present expansion experiments will be described.

5-3. The adiabatic expansion at melting.
a. E x p e r i m e n t a l .  In the integral expansion experi­

ments, helium was blown off at a constant rate until the pressure
had fallen to about 2 atm below the melting pressure. The first
cooling arrangement, with a large buffering volume of helium in
the cooling vessel, was used. The helium had been solidified under
an external pressure of about 28 atm while the stirrounding helium
bath was cooling down slowly to its lowest temperature. These
experiments, together with provisional data on the entropy of the
solid and the depth of the minimum in the melting pressure, have

5 10\been published earlier * ).
Additional measurements have been performed in which the

calorimeter contained varying amounts of liquid and solid helium
that were expanded differentially. The second cooling arrangement
was employed; the helium was solidified at a temperature of about
1.1 K under an over-pressure of no more than 0.5 atm in order to
avoid large strains in the solid. Amounts of the order of 30 mg of
helium were blown off and collected and the resulting change of
temperature was measured at several temperatures between 0.4 and
1 .2  K.

b. M e a s u r e m e n t s .  The course of the pressure and
the temperature in the five integral expansions are shown in fig.
5,4» When the pressure first reaches 25*0 atm melting occurs, but
it takes an appreciable time before the temperature within the
calorimeter starts to change. This delay is caused by the melting
of the solid within the vessel containing the cooling salt. Again,
small irregularities were encountered in the course of the



92

atm

12 mm

Fig* 5,4. Temperature (••••)
and pressure ( ■ ) within the
calorimeter as a function of
time during integral expansion
of solid helium;
a-d : period of bloving-off;
b - c : period at melting pressure*

temperature, ascribed to sudden changes in the calibration of the
thermometer resulting from the release of strains in the solid
upon melting (see also sec. 5-2,b). Perhaps a small thermal effect
from the expansion of the solid under stress is also included in
the temperature changes measured. The initial and final tempera­
tures were found in the usual way by elimination of the heat leak

Table 5,IV. Integral adiabatic expansion of solid helium.

Ti Tf
Pi
PS lf

Sc f  Sci
Ps Vt

Ps” Pi r
Ps ssi *li- *si

ml ml mj/g I mj/g I mj/g I mj/g I mj/g E

367 547 0.349 0.153 0.017 0.519 - 0.437
380 688 1*70 0.11 0.10 1.91 - 1.37
780 770 4*12 - 0.01 0.40 4.51 + 0.49
892 842 8.2 0.1 1.0 9.1 + 4.8
1068 912 14.9 - 0.3 2.7 17.3 + 31.2
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Fig. 5» 5» Change of temperature T^- T\ upon adiabatic melting of solid He9
as a function of the initial temperature T.;
----- : solid helium contained in the calorimeter;
— - - : contained in a calorimeter with negligible heat capacity*

(see sec. 3-4,a); the five resulting changes of temperature are
plotted in fig. 5,5 as a function of the initial temperatures. The
temperatures and the three component terms of the initial entropy
of the solid according to eq. (3*56) are given in table 5,IV. It is
assumed that at the beginning of the expansion the calorimeter was
entirely filled with the solid under its equilibrium pressure.
However, the calorimeter may have contained an amount of liquid of
the order of 10 % that could not be detected due to the presence
of solid helium in the cooling vessel. This would result in a
systematic error of the order of 10 % in the calculated initial
entropy of the solid, yielding values too high at temperatures
above that of the minimum in the melting curve and too low below
that temperature. Both the initial entropy of the solid and the
entropy difference have been plotted in fig. 5,3 as solid squares
and circles respectively.

For three runs of the differential expansion experiments the
temperature, its change AT, and the escaped amounts of helium Am̂ .
are given in table 5,V. The total heat capacity has been calcu­
lated from the average amounts of liquid and solid and from the
specific heats as found in the preceeding section. The entropy
difference was calculated according to eq. (3*52); the rate of
outflow of liquid is also indicated. The results of s, - s are1 s
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Table 5,V. Three runs on adiabatic expansion at melting.

T

mK

AT

mK

— Am

mg

Wt

m j/K

V  s s

m j/g  K

rate

mm^/s

450 1 4 .2 2 1 .5 7 *1 6 -  0 .9 4 1 0 .6
464 1 0 .9 2 1 .2 7 .3 5 -  0 .7 3 7 .4
480 1 6 .8 2 5 *2 7 .6 1 -  0 .9 5 6 .2
503 2 0 .6 1 9 .6 8 .2 5 -  1 .5 4 5 .8
529 2 5 .4 2 6 .4 9 .2 5 -  1 .51 4 .3
556 2 1 .3 2 4 .5 1 0 .8 -  1 .51 6 *0
581 2 3 .8 2 9 .6 1 2 .8 -  1 .5 8 9 .4
602 1 4 .5 2 4 .9 1 5 .5 -  1 .3 4 5 .4
618 1 3 *0 2 1 .9 1 8 .2 -  1 .5 7 4 .3

799 -  7 .2 5 2 .8 105 1 .6 0 1 2 .4
830 -  7 .5 37 .1 153 3 .3 3 2 7 .2
858 -  6 .9 2 7 .3 210 5 .5 5 8 .1

1022 -  1 2 .0 2 6 .8 624 25 8 .0
1033 -  2 3 -3 3 5 -4 620 36 3 .7
1048 -  2 1 .8 3 3 .2 597 34 4 .3
1062 -  1 9 .3 2 8 .2 567 33 7 .0
1075 -  1 7 . 8 3 3 .4 530 24 9 .0
1106 -  3 8 .6 2 3 .6 526 71 4 .5
1150 -  4 0 .8 2 6 .3 547 69 7 .1

shown in fig. 5,3 as open circles. The relative influence of a
variation of the calibration constant on the small changes of
temperature in the differential expansions is much larger than
that on the integral temperature effects. In particular the points
at high temperatures show an appreciable spreading. If the helium
was not solidified carefully under almost equilibrium conditions
the spreading was significantly larger. Those measuring points
have been omitted here but they were reported in an earlier

5 11communication ’ ) •
The smoothed differences of the entropies and of the melting

pressures as calculated from the expansion experiments are indi­
cated by intermittedly drawn curves in fig. 5,3 and tabulated in
table 5,VI for temperatures below 0.8 K. The minimum in the melting
pressure is found at a temperature of 0.76 K; its depth is
(0.0085 + 0.0005) atm.

c. D i s c u s s i o n .  The results of the integral expansion
experiments agree with the differential results within the rather
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Table 5,VI. Data on the melting curve of ^He from
expansion experiments.

T
mK

sl" ss
mj/g K

V  P °

matm

T
mK

V  ss
mj/g K

v  p °

matm

0.30 -  0 .2 -  0 .3 0.60 -  1.5 -  4 .9

0.35 -  0.3 -  0 .5 0.65 -  1.5 -  6 .2

0.40 -  0 .5 -  0 .9 0.70 -  1.2 -  7.6

0.45 -  0 .8 -  1.5 0.75 -  0 .4 -  8.4

0.50 -  1.1 -  2.4 0.76 0 .0 -  8.5

0.55 -  1.3 -  3.6 0.80 +  1.3 -  8.0

large experimental error. The two values at the higher temperatures
yield specific entropies of the solid that are too high. This can
be ascribed to the presence of liquid in the calorimeter as
mentioned before.

A survey of available data on the minimum in the melting
pressure is given in table 5,VII. As compared with the results
from the measurements of the specific heat the expansion experi­
ments yield systematically lower, i.e. larger nagative values for
the entropy difference s^- ss at temperatures below that of the
minimum of the melting curve. In the region of higher temperatures
the scatter is large; above 1.05 K the expansion results lie per­
haps somewhat higher than those derived from the heat capacities.
The scatter may be attributed largely to strains in the solid and
related changes of the thermometer calibration. The systematic
deviations are such as could have been caused by irreversibilities
producing entropy, thus resulting in final temperatures of the
measuring points that are too high. Then the rises of temperature
in the range of lower temperatures would be too large. Since the
calculated differences of the entropies are proportional to the
measured changes of temperature, this would explain the direction
of the deviations as found.They are not associated, however, with
the rate of liquid outflow within the present limits. At very much
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Table 5,VII. Data on the minimum in the melting pressure of ^He.

authors year. ref. method used Tmin p(0) " pmin
K matm

Goldstein 1962; 5,16) calculation ~  1.0 ~  52
van den Meijdenberg 1961; 5,17) estimate from entropy <  0.8 <  40
Viebes and Kramers 1963; 5,10) expansion experiments 0.76 8
le Pair et al. 1963; 5,7) direct measurements - 8 + 3
Sydoriak and Mills 1964; 5,9) expansion experiments 0.857 >  27

direct measurements - -
Zimmerman 1964; 5,13) expansion experiments > 0.63 large
le Pair et al. 1965; 5,18) direct measurements ~  0.75 8
Viebes and Kramers 1966; 5,11) specific heats 0.76 7

expansion experiments 0.76 9
Straty and Adams 1966; 5,8) direct measurements 0.775 8.0
Goldstein and Mills 1967; 5,19) calculations 0.76 - 0.77 8.0
Hoffer 1968; 5,5) specific heats 0.776 8.04
this work 1969 specific heats 0*76 + 0.01 7.3 + 0.3

expansion experiments 0.76 + 0.01 8.5 + 0.5

smaller rates the irreversibilities could possibly have been
suppressed.

A way of eliminating these effects would be to perform both
expansions and compressions and to average the results under the
assumption that the irreversible productions of entropy are equal
in both experiments. In the experiments on the liquid by Mills and
Sydoriak^’12) this was actually done; the two types of experiments
yield systematic differences of the order of 15 %• In their experi—

5 9 \ments on the minimum in the melting pressure ’ ), however, they
used only the expansion technique. The rate of liquid outflow was
q£ the some order o£ mcigiii'tude sis ■tlisit in the present measurements,
their measurements do not extend below the temperature o£ the
minimum in the entropy difference (about 0.6 K). Compared with the
present expansion results, their entropy difference is substantially
lower (larger negative) as shown in fig. 5,3. They find a zero
change of temperature upon expansion at 0.857 K which is nearly
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0.1 K higher than the present measurements indicate. However, the
average deviation of their entropy differences is reported to be
3 mj/g K which is about twice the depth of the minimum in the
entropy difference as found from the present measurements. It will
be clear that from these data no better accuracy than several
hundredths of a degree can be obtained for the temperature of the
zero point in the entropy difference. Also their estimate for the
depth of the minimum in the melting pressure, of several tenths of
an atmosphere, may be erroneous since their errors are likely to
be systematic. Moreover, in the plot of their direct measurements
of the melting pressure, a systematic difference occurs with the
pressure at temperatures between 0.9 and 1.1 K as calculated from
their values of s,- s ; the direct measurements would indeed indi-1 s
cate a lower value for the temperature of the minimum in the
melting curve. The computed depth of the minimum of their melting
pressure is an order of magnitude larger than the values of 0.0085
atm from the present expansion experiments, or 0.0073 atm as
calculated from the experiments on the heat capacities. Straty andC 0
Adams'^’ ) have accurately determined the melting curve (see fig.
5,3) using a capacitive method of measuring the pressure. They
find a pressure minimum at a temperature of 0.775 K, with an
increase in pressure of 0.0075 atm upon cooling to 0.35 K. Combined
with the present value of 0.0005 atm at the latter temperature,
the depth of their minimum amounts to 0.0080 atm which is in
agreement with the results from the present expansion experiments.
Between the two temperatures mentioned, however, their results are
probably slightly in error (by 0.001 atm at most) yielding a curva­
ture of the melting curve that is somewhat too large.+)

+) According to Hoffer's measurements^’^) mentioned in sec. 5—2, the minimus is located
at 0.776 1 and has a depth of 8.04 matm. Within the estimated error, the results
obtained from the present expansion experiments are consistent with Hoffer's
determination but those from the present heat capacities are not. As discussed in
sec. 3-4e, discrepancies cannot originate from the value for the difference ps~ p1
as used in the present calculations.
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Warming up during integral expansions has also been reported
5 13\by Zimmerman ’ ). His increase of temperature from 0.15 to 0.63 K

appears to be too large by a factor of four (compare fig. 5,5).
Possibly his rate of releasing the liquid has been too high causing
irreversible heating.

5-4. Conclusions
a. T h e  v e l o c i t i e s  o f  s o u n d  i n  t h e

s o l i d .  The results for the specific heat of the solid at
temperatures below 0.5 t may be analysed by means of the Debije
temperature 9q or, alternatively, by the velocities of longitudinal
sound u^ and transverse sound u^ according to:

12 7i4 k /_T\3
5 m '0Q'

2 4I n k_ /J_ _2\
15 J  p ' 3 + 3'■tl KS tL U

(5.1)

Here m is the mass of the fie atom. The resulting constants are
given in table 5,VIII. Use is made of the value of 478 m/s for the
velocity of longitudinal sound waves as measured by Vignos and
Fairbank^’1^). The result for u^ may be compared with those of
Lipschultz and Lee^’1*) who found velocities of 230 and 315 m/s
for shear waves, presumably depending on the angle between the
directions of propagation and of the crystal axis. Also the
corresponding value for the Poisson ratio ct has been given.

b. T h e  m i n i m u m  i n  t h e  m e l t i n g  c u r v e .4
The existence of a minimum in the melting pressure of He may be
considered as experimentally well verified by caloric measurements.

Table 5,VIII. Resulting data of solid 4He.

lim c A 3 e -3 -3v  + 2 v *L ut a
T-^0 Vy
mj/g K4 r (km/ 3)"3 m/s m/s

26.4 + 0.08 26.3 + 0.3 112 + 4 478 268 + 3 0.27 + 0.01
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thermal methods using adiabatic expansion, and direct measurements
of the pressure (see table 5,VIl). Discrepancies between different
expansion experiments may arise from irreversible heating but more
trivial sources of error cannot be excluded. The systematic differ­
ence between the results of the present expansion experiments and
those obtained from the present measurements of the heat capacity
may well result from systematic errors that are difficult to avoid
with the present apparatus. Compared with the direct measurements
by Straty and Adams and with the results from the caloric experi­
ments by Hoffer, the results derived from the present heat capaci­
ties are probably too low by 10 %. Apart from difficulties with
thermometer calibration, systematic errors may arise also from the
manner in which the amounts of solid helium have been determined^
i.e. from the amounts of helium to be released in order to melt
the solid. The most complete and reliable data on the minimum in
the melting pressure at present seem to be those obtained from
Hoffer's measurements of the molar volumes and the heat capacities.
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CHAPTER VI

THE DISPERSION CURVES

6-1• Introduction
In this chapter the results obtained for the entropy of the

liquid will be analysed in terms of constants relating to the
shapes of the dispersion curves for elementary excitations. At
temperatures below 1.6 K the original concepts of Landau need only
slight refining in order to account for the dependence of the
entropy on temperature. In sec. 6-2 the simplest parabolic approxi­
mation for rotons will be reviewed. The two refinements concern the
symmetric deviation from parabolic behaviour in the roton region
and a way to account for the interactions between the excitations.
The former, treated in sec. 6-3, has to be estimated from the
dispersion curves as obtained from experiments on inelastic neutron
scattering. These are available at saturated vapour pressure and at
25-3 atm only; however, a general correction function cp(T) can be
introduced that seems to be practically independent of pressure.
The latter, treated in sec. 6-4, will result in values for the
roton minimum energy A that depend on temperature. In sec. 6-5 the
final results for the roton parameters will be given and discussed.

6-2. The Landau spectrum
The concept of elementary excitations in liquid helium and the

relations between their energy e and momentum of magnitude p was
6 1proposed originally by Landau ' ). He distinguished between phonons

or long-wave excitations (denoted by ph) and rotons with wave­
lengths of the order of the distance between atoms (denoted by r).
The dispersion curves for pressures of 0 and 25*3 atm are shown in
fig. 6,1. The dispersion relation for the phonons is:
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Fig. 6,1. Dispersion curves of liquid helium at 1.1 K; energy e of elementary
excitations as a function of momentum p;
a. at saturated vapour pressure; b. at 25-3 atm;
O  □ :  results of Henshaw and Woods (1961), from neutron scattering;
----  : approximation of Landau (1941. 1947) y linear for phonons (e_jj) ^
parabolic for rotons (e^); ----- : asymmetric approximation for rotons (er).

in which u is the velocity of ordinary or first sound. For the
rotons a minimum is expected in the dispersion curve which there­
fore to a first approximation forms a parabola:

Ler
2

A + (p - PQ) /  2 p . (6.2)
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Table 6 ,1*  Thermodynamic quantities and phonon contributions.

q u a n t i ty fo rm u la ; n  = [ e x p ( ^ )  -  1] phonons, e ^  = u  p

V P .3 1 .2 0 2  /  k T \3
Np h "  2 V {u h >r n

number I . t  n d J p
h3 J

f r e e

en e rg y
F , - O Ï J l n ( l +n )  d3p _  n 2 „  .. ..  t kT n4

Fph  “  “  90 V h  u  h

e n tro p y s  = "Ht J  + d3p
c , 2 J ï! v  k  (JÉL)3
p h  45 V *  ' u  V

h e a t

c a p a c i ty
C « ,  -  J  n  (1+n) c d  p

v  hJ K r  J
C .  1JL. v  k  (J£L )3

vph 15 u  11'

norm al

d e n s i ty
p = \  f n  (1+n) P d  P
n  3 h3kT J

2 n2 h  / k T .4
^nph* 45 u  'u  1 r

= -0 .9 0 0  N . kTPh

0 .9 0 0  N . 4 kph

0 .9 0 0  N . 1 2  kph

N . 4  kT
0 .9 0 0  -E k  — s -

V u

Here A is the minimum energy required to excite a roton. The magni­
tude of the wave vector in the minimum, p^ti, is °? t'rie order of
2n times the inverse of the atomic distance. The parameter p. has
the dimension of a mass.

The behaviour of the liquid can be deduced from this model,
for the present purpose mainly the thermodynamical properties are
of interest. These cam be derived under the consideration that at
low enough temperatures the excitations behave like a Bose-Einstein
gas of weakly interacting particles the number of which, however,
is not preserved. Straightforward calculations with the appropriate
distribution function and differential in phase space:

n(e) = [exp(£-;) - 1]“1, V h“3d3p = (6n2)-1 V d(£)3 , (6.3)

yield the thermodynamic quantities. Some of these are shown in
table 6,1. Also the phonon contributions are given varying as
simple powers of the temperature. At sufficiently low temperatures
the thermodynamic quantities are almost exclusively due to the
contributions of the low-energetic phonons.



Table 6 f II* Roton c o n tr ib u tio n s  to  thermodynamic q u a n titie s*

q u a n tity Landau spectrum Asymmetric spectrum

number

f re e  energy

entropy

heat cap ac ity

normal d en sity
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At higher temperatures enough energy becomes available to
excite rotons. Their contribution to the thermodynamic quantities
have been compiled in the first column of table 6,II» They show a

-A/kTsteeply rising exponential factor e ' . As a result the contri­
butions of the rotons become dominant at temperatures above 1.0 K.
Owing to the various terms within the square brackets, the roton
contributions are not of a simple form. However, correction terms
containing exp(-A/kT), originating from the boson nature of the
excitations, and those containing 1/0, arising from the symmetry
of the approximation used for the excitation curve, do not exceed
1 % at temperatures below 1.6 K and will be omitted. The remaining
correction, containing terms in kT/A, is of the order of 10 % at
temperatures above 1.0 K.

With reasonable consistency the roton parameters may now be
calculated from several thermodynamic quantities. As a result of
the approximations made for the dispersion curve, effective values
are found depending somewhat on the particular thermodynamic
quantity and on the temperature interval used for the evaluation.
Differences between values computed from different quantities may
originate from the different weighting of the deviations from the
actual curve according to the formulae in the first column of
table 6,1. In the values obtained for A/k, which is of the order
of 8 K, these effects may amount to a few tenths of a degree.

Better consistency can be obtained if two kinds of corrections
are introduced to the Landau picture in its simplest form as
presented above. The first concerns a better approximation to the
actual shape of the dispersion curve, the second and more important
one originates from the dependence of the curve on temperature.
Both corrections have been made possible by a direct determination
of the dispersion curves based on the ideas of Cohen and Feynman
6 2’ ). This was done by experiments on inelastic neutron scattering
1 yielding the energy and its spread at limited values of the

momentum. The measuring points in fig. 6,1 are those of Henshaw
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6 8and Woods0 ’ ). It was found that at increasing temperatures above
1.0 K the dispersion curve is lowered; consequently, a lower value
for the minimum energy results. A further examination of this
effect will be given in sec. 6-4 where the appropriate correction
will be treated.

6-3. Corrections for the shape of the dispersion curve
The influence of a first correction depending on the actual

shape of the curve is more clearly seen in a plot of e/k as a
O

function of (p/h) than in fig. 6,1. This is because the differ-
o

ential in phase space essentially equals d(p/h) . Plotted in this
way, the measuring points from the neutron experiments yield
fairly symmetric curves (see fig. 6,2 for the two pressures
mentioned). Near the minimum it may be approximated by a parabola

in (pA ) 3:

= A + a [(pA ) 3 “ (PqA ) 3! • (6*4)

In fig 6,1 the corresponding curves have been plotted as dotted
lines. The curvature in the minimum of the new curves as a function

. Lof p A  should be the same as that in the simple Landau spectrum
To fulfil this condition the coefficient a must have the value
h^/l8(ip^. The new curves are clearly asymmetric in p A *  -f°r that
reason the energy has been labelled A.

The contributions may now be calculated that would follow
from these values eA . The only difference with the results obtained
from eL is the disappearance of all the correction terms containing
l/® except for the one concerning the normal density p . In the
latter the term +5T/0 becomes -T/®. Clearly the asymmetry is of
little importance to the thermodynamic quantities, giving effects
of only second order of magnitude.

A further approximation is shown in fig. 6,2. At some distance
from the minimum the curves can be well described by tangents to
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A-* aoP  20

Fig. 6,2. Energy e of elementary excitations in liquid helium at 1.1 I, as a function
3of the third power of momentum, p ;

a. at saturated vapour pressure; b. at 25.3 atm;
O  □  : results of Henshav and Woods (1961), from neutron scattering;
----  : asymmetric approximation for rotons composed of a parabola (er) and
its tangents (ej) in p ; — — — !phonon branch.

the parabola:

e* * ( A - b2/4 a ) + b |(p/h)3 - ( p ^ ) ^  (6.5)

for |(pA )3 “ (PoA)3|> b /  2 a .

Here b is the absolute value of the slope of the tangent,
T . . Q .de Vd(p/h) . Omitting asymmetries in the calculations, b is given

the same (averaged) value on both sides of the minimum. The
environment of the minimum itself, within the region where
|(p/h)3 - (p A ) 3| is smaller than b/2a, will still be described
by the parabola e •

The corrected thermodynamic quantities denoted by C, as
calculated with this approximation, are given in the second column
of table 6,11. A correction 9(0) applies to the number of rotons
and its derivative cp * occurs in the expressions for the entropy
and the specific heat. It depends on only one variable 0 equal to

p
4kTa/b and is equal to the integral:
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Fig. 6,3* Function <p , correcting the number Ny of rotons for symmetric deviations
from parabolic behaviour of as a function of teraperature.

«p
-e^/kT -e"/kT

[e - e ]d(p/h)
-eVkT

e d(p/ti)3

(p /h)3+ b/2a (6-6)

This can be shown to reduce to:
e

cp(©) = J n~^ J x-^ e~1^x dx . (6*7)
02

The constant b /4ak has been estimated from figs. 6,2a and b and
has the approximate value of 0.88 K, being almost independent of
the pressure. The correction is given in fig. 6,3 as a function of
temperature. The extra corrections to the thermodynamic quantities
due to cp are of the order of 10 % at temperatures above 1.0 K.

6-4. The temperature dependence of the dispersion curve
In the treatment given in the previous sections, no attention

was paid to the interactions between the excitations. The inter­
actions were supposed to be "weak" meaning that they establish
thermal equilibrium without contributing to the energy. However, it
must be expected that at temperatures above 1.0 K the boson gas can
no longer be regarded as a perfect gas. At increasing excitation
density the number of collisions will increase. The energy of the
excitations will be affected and their lifetimes decreased causing
a finite spread in their energies as a result of the uncertainty
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principle. When the spread is much smaller than the energy, the
excitation is still a well-defined entity. When the uncertainty in
the energy becomes of the order of the energy itself, the concept
of an elementary excitation breaks down. This is actually the case
when the lambda point is approached.

The features mentioned have been given a firm quantitative
basis by the results of the experiments on inelastic neutron
scattering. First, a substantial lowering of the excitation curve
is found at increasing temperatures. To a first approximation the
general form of the curve is conserved and only the value of the
parameter A is affected, becoming a function of the temperature

6 7 \(see fig. 6»6 for the results of Yarnell et al. ) and those of
6 9\Henshaw and Woods ’ )). The question may be raised whether the

lowering of the energies at increasing density is a consequence
of the boson nature of the excitations. Secondly, the line widths
of the scattered neutrons are found to increase at increasing
temperatures and to become of the order of the excitation energies
at the lambda point. Consequently, the excitations by no means
possess unique energies in that case. However, this effect has not
been taken into account in the calculations of the thermodynamic
quantities, which have been performed on the assumption of sharp
dispersion curves.

From dispersion curves at saturated vapour pressure as
6 7measured by Yarnell, Arnold, Bendt, and Kerr * ), the thermodynamic

6 10 \quantities have been computed by Bendt, Cowan, and Yarnell ’ ).
In the case of small interactions there seems to be agreement about
the statistical procedures by which the calculations must be

6 10 6 11performed if the excitation curve depends oh temperature0 ’ ) ’ ).
By a Simple argument it can be shown that the expression for the
entropy is the same as the one given in the first column of table
6,1; at each temperature the entropy may be computed from the
corresponding excitation curve e(T). Consequently, the other
quantities cannot be calculated according to the formulae mentioned.
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They must be computed directly from the entropy, either by differ­
entiation (C^) or by integration (f ).

The calculations of Bendt et al. have been made for several

temperatures of 1.1, 1.6, and 1.8 K. The lowering of the energies
may be taken proportional either to the number density or to the
normal density. Within the accuracy reached the difference between
the two is not significant. An agreement of the order of 2 % is
claimed between the calculated values and those measured for the
entropy, the specific heat, and the normal density at saturated
vapour pressure.

Reversing the procedure it must also be possible to calcu­
late the temperature dependent values of the roton minimum energy
A(T) from the entropies. This can be done only if the necessary
corrections for the shape of the excitation curve can be applied.
This analysis is given in the next section. It is based on the
form of SC from the second column of table 6,11 for the rotonr
entropy.

6-5. Analysis of the results for the entropy
As a first step in the analysis, the values at low tempera­

tures of the measured heat capacities of liquid helium have been
divided by T3 (see sec. 4-3,c, table 4,V, and figs. 4,3 and 4,5). Up
to temperatures indicated by T . there result constant values of

o Pn _3
(W - W )/t j that are proportional to the inverse cube u of the
velocity of first sound. Consequently at temperatures below Tph,
the heat capacity is due to phonon contributions only.

The second step is the analysing of the roton contributions.
This should be done from the specific entropies s1(p1,T) as has
been argued in the previous section. Thus, the phonon contributions

taken as the roton contributions s. . No corrections have been
applied for the dependence of the velocity of sound on the

ways of interpolating the values of e (t ) from those measured at

(equal to SDh/V Pl) have been subtracted; the remainders are
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0 .6  °K 0 .52 .0  1.5 1 .0 0 .8

Fig* 6,4* Calculation of roton parameters; modified entropies £ (see text) at several
densities, as functions of the inverse of temperature;
As 0.1455 g/cm3; O  : 0.1532 g/cm3; ■ :  0.1594 g/cm3;
A s  0.1645 g/cm3; •  s 0.1690 g/cm3; D  s 0.1729 g/cm3.

temperature since at temperatures above 1.0 K the phonon contri­
butions are small as compared to those of the rotons; hence the
corrections are negligible.

According to the second column of table 6,11, the specific
entropy due to the rotons has the following form:

sir(Pi.T) = AA T4 e-AAT (1 +
Pi

3 kTs2 T' +CP + fl co' kT/A)
1 + |  kT/A

(6.8)

The correction factors may be estimated within the required accu­
racy from preliminary values for the parameters. In order to avoid
steep functions, a large part of the exponential factor was elimi­
nated beforehand. This was done by dividing the entropy by
exp(-A /kT) where A is an approximate value for the roton minimum

Cl cl
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Table 6,III. Roton parameters as functions of the density and the temperature.

Pi 0.1455 0.1532 0.1594 0.1645 0.1690 0.1729 g/cm3

pressure at 0 K 0 5 10 15 20 25 atm

(P0A ) 2(u/m)^r 1.60 1.50 1.42 1.35 1.285 1.215 x-2
V*1) 1.91 1.955 1.99 2.02 2.045 2.065 x-1
p/m 0.192 0.154 0.128 0.110 0.095 0.082

A(T)/k
T * 0.6 r - - 7.91 7-59 7*28 7.00 K

0.7 8.68 8.27 7.91 7.59 7*28 7.00
0.8 8.68 8.27 7.91 7.59 7*28 7.00
0.9 8.68 8.27 7.91 7-59 7.28 6.99
1.0 8.68 8.27 7.91 7.57 7.26 6.96
1.1 8.65 8.26 7.88 7.55 7.24 6.93
1.2 8.63 8.23 7.86 7.52 7.21 6.89
1.3 8.62 8.21 7.84 7.50 7.16 6.82
1.4 8.61 8.18 7.81 7.46 7.09 6.74
1.5 8.58 8.14 7-74 7.35 7.03 6.64
1.6 8.52 8.07 7.66 7.29 6.93 6.52

**) Interpolated from neutron scattering experiments^9 )•

energy. The values of:
i

s, T2 exv — ------— ------------------L . 3 kT /3 „ , a T   ̂ '
1 + 2A“ + Cp + ('2cp + e 'p ^A-a a

—  1have been plotted logarithmically as a function of T (fig* 6,4).
It yields:

In E = In A A /  px + ( ^  - £  ) T 1 , (6.10)

which gives a straight line with a slope of (A - A)/k if A is a
cl

constant. The errors indicated are such as would arise from an
experimental error of 1 % in the total entropies s... They are only
appreciable at temperatures below 0.8 K.

pCA^T)
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0 .1 4  p . 0 .1 6  g /cm 0 .1 6  g /c m 3 0 .160 .1 4  p ,

0 .1 6  g /cm 0 .16

~ö  r

0 .1 6  g /c 0 .18

Fig. 6,5* Roton parameters as functions of the density;
•  ■  ! present results; X  : Henshaw and Woods (1961), from neutron scattering;
- - - : results from the present entropies, obtained with the Landau
approximation; O  □  : van den Meijdenberg et al.(1961), from the fountain
effect, obtained with the Landau approximation for the dispersion curve.

The parts at temperatures below 1.0 K can be extrapolated to
-1T equal to zero, giving the values of the constants A equal to:

A = 2 ^ n 5 m^ h 1 (p^h)2 (p/m)^ • (6. 11)
2 iThe combination of parameters (p^h) (p/m)* and the value A of

the minimum energy at temperatures below 1.0 K can be found
directly. They have been compiled in table 6,III. Values for p
interpolated from the data on neutron scattering at 0 and 25 atm
6 8’ ) (see fig. 6,5c) have been used to calculate p/m which is found
within an error of 10 %. The error in A is estimated to be 0.05 too
0.10 K. The results are shown in fig. 6,5.
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0 .1 4 5 5

0 .1 5 3 2

0 .1 5 9 4

0 .1 6 4 5

0 .1 6 9 0

O T  I °K  2

Pig. 6,6. Roton minimum energies A at several densities, as functions of temperature;
▲  ( ) ■ £ • □  : present results; V  : Kramers et al. (1952), at SVP;
+  S Yarnell et al.(1959), at SVP; ----- : used by Bendt et al.(1959);
X ! Henshav and Voojis (1961), at SVP.

Bv means of the values of A and A obtained at low tempera-
J o

tures, the temperature dependent values of A(t ) at temperatures
above 1.0 K can now be found. In this connection it is observed
that l n A A / p ^  is still nearly constant. Graphically, this means
that fixed points may be found near the intersections of the extra-
polated low-temperature parts with the axis at T equal to zero
(see fig. 6,4). Straight lines connecting these fixed points with
the plotted points have slopes equal to the required lowerings of
A/k. The results for A/k as functions of temperature have been
given in table 6,III and in fig. 6,6.
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6-6. Discussion and conclusion
The results obtained at low temperatures have been compared

with those of Henshaw and Woods^ ' )^'^) and with those of van den
6 12\Meijdenberg ’ ) as found from the fountain effect (fig. 6,5).

Results have also been indicated that were obtained according to
the simple Landau spectrum, i.e. without the introduction of a
correction for the actual shape of the dispersion curves (dotted
lines).

The agreement with the neutron experiments is within the
experimental error. The present results obtained with the Landau
spectrum agree with those from the fountain effect that have been
computed in the same manner. Since the latter have been calculated
from measurements at temperatures above 1.1 K, the effective values

2 ~of Aq and (p̂ y/h) (p/m)2 must be expected to be higher than the
actual ones. This can be seen from fig. 6,4; according to eq.
(6*10), extrapolation of data at temperatures higher than 1.0 K
yield lines with negative slopes equal to (A - A)/k. Consequently,a
the present results obtained with the application of a correction
for the shape of the dispersion curves lie systematically lower
than those of van den Meijdenberg except for values for A k  at
the highest pressures.

In fig. 6,6 the temperature dependent values of A(T)/k are
compared with those obtained from neutron scattering by Yarnell

6 7 \et al. ’') and by Henshaw and Woods. Also the values as used by
6 10Bendt et al. ’ ) in their calculation of thermodynamic quantities

have been indicated by a dashed line. Finally the results at satu-
6 13 \rated vapour pressure of Kramers et al. ’ ) have been analysed in

the same way as the present results. These points extend to 2.0 K
and are also shown in the figure. The results from the experiments
on neutron scattering seem to indicate a decrease of A towards
higher temperatures somewhat steeper than do the results obtained
from the measurements of the heat capacities. This is perhaps a
consequence of the spread of the roton energies. However, in view
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of the experimental errors in the latter determination, the differ­
ences are probably not significant.

It may be concluded that the thermodynamic properties of4liquid He under pressure at temperatures up to 1.0 K can be
described within an accuracy of 2 % by five parameters that are
functions of the density. The single parameter u, the velocity of
sound, describes the phonons. The other four all treat the rotons
and are the minimum energy A , the characteristic momentum p , the
effective mass p, and a parameter b correcting for the shape of the
dispersion curve. At temperatures above 1.0 K, the minimum energy
of the rotons can no longer be considered as a constant. By the
introduction of a temperature dependancy in the roton minimum
energy, the description given may be maintained up to temperatures
in the vicinity of the lambda line.
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SAMENVATTING

In dit proefschrift worden calorische metingen beschreven die
4

zijn verricht aan He in het temperatuurgebied van 0.3 tot 1.6 K,
onder drukken variërend van die van de verzadigde damp tot de
smeltdruk, i.e. van 0.0 tot 25*0 atm.

De experimenten zijn uitgevoerd in een "open" koperen kalori-
meter. De magnetische thermometer is, met spoelen en ceriummagne-
siumnitraat als meetzout, geheel in de kalorimeter ondergebracht
om goed warmtekontakt te verzekeren. De temperaturen zijn bepaald
met behulp van een nieuw ontwikkelde kompensator voor wederkerige
induktie, die een vaste standaard heeft met een varieerbare pri­
maire stroom. De druk in de kalorimeter wordt bepaald met een
manometer die op het vulkapillair is aangesloten. De kalorimeter
is omsloten door een vakuUmmantel die is geplaatst in een bad met
vloeibaar helium, dat door afpompen op een temperatuur van 1.1 K
wordt gehouden. Lagere temperaturen worden bereikt door demagneti-
satie van een koelzoutpil, die binnen de vakuUmmantel op het vul­
kapillair is geplaatst en via een supergeleidende warmteschakelaar
met de kalorimeter is verbonden. De koelzoutpil dient tevens als
buffer tegen warmtelekken.

Met deze opstelling zijn de warmtekapaciteiten gemeten van
vloeibaar helium onder verscheidene drukken, en die van twee-
-fasensystemen van vloeistof met gas of met vaste stof. Bovendien
is de mogelijkheid van adiabatische expansie, door het aflaten van
vloeistof zonder toevoer van warmte, benut om de uitzettings-
koëfficiënt van de vloeistof en de helling van de smeltlijn te
bepalen. Deze volgen uit de temperatuurverandering die gepaard gaat
met een drukverandering veroorzaakt door aflaten van vloeistof,
respektievelijk met het aflaten van een hoeveelheid helium waardoor
er vaste stof smelt. Een overzicht van deze metingen wordt in
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hoofdstuk I gegeven. Er moet wel op worden gewezen dat andere
metingen dan die aan de vloeistof onder praktisch konstante druk,
waarvoor de kalorimeter oorspronkelijk is ontworpen, te lijden
kunnen hebben van onzekerheden in de kalibratie van de magnetische
thermometer en andere moeilijk te vermijden systematische fouten.

In hoofdstuk II wordt de meetapparatuur beschreven. In hoofd­
stuk III wordt een gedetailleerde afleiding van de gebruikte
formules gegeven en worden de talrijke korrekties besproken. Verder
wordt een overzicht gegeven van de te gebruiken gegevens uit andere
bronnen, die in sommige gevallen nader zijn bewerkt, met name de
geëxtrapoleerde toestandsvergelijking bij het absolute nulpunt.

In hoofdstuk IV worden de metingen aan de vloeistof onder druk
nader uitgewerkt. Berekend zijn: de soortelijke warmte bij
konstante druk en die bij konstant volume; de soortelijke entropie
door integreren naar de temperatuur van het kotiënt van de soorte­
lijke warmte en de temperatuur; de uitzettingskoëfficiënt door
differentiëren van de soortelijke entropie naar de druk. De soorte­
lijke warmte sluit binnen de meetnauwkeurigheid aan bij de resul­
taten van Lounasmaa (1961), die in het temperatuurgebied van 1.5
tot 3.0 K heeft gemeten, en bij bestaande resultaten langs de
dampspanningslijn van Kramers et al.(l952) en Wiebes et al.(1957)*
De entropie sluit redelijk aan bij de resultaten van van den
Meijdenberg et al.(1961), verkregen uit het fonteineffekt. De
resultaten voor de uitzettingskoëfficiënt, die noch via de entropie
noch uit de expansiemetingen nauwkeurig kan worden bepaald, zijn
niet in tegenspraak met die van Boghosian en Meyer (1966), verkre­
gen uit metingen van de brekingsindex.

In hoofdstuk V zijn de metingen behandeld die zijn verricht
aan het systeem vloeistof-vaste stof. De uitkomsten voor de soorte­
lijke warmte van de vaste stof zijn niet bevredigend; ten gevolge
van onzekerheden in de aan Swenson (1950) ontleende waarde voor
het dichtheidsverschil van de vloeistof en de vaste stof, en moge­
lijke systematische fouten in de bepaling van de hoeveelheid vast
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helium is het resultaat waarschijnlijk bij temperaturen onder
ongeveer 0.7 K te laag en daarboven te hoog. De hieruit berekende
diepte van het minimum in de smeltdruk is waarschijnlijk 10 % te
klein. De uit de expansiemetingen gevonden waarde voor de diepte
van het minimum is in overeenstemming met de resultaten van Straty
en Adams (1966), verkregen uit direkte drukmeting, en die van Hoffer
(1968), verkregen uit nauwkeurige metingen van de soortelijke
warmte.

In hoofdstuk VI wordt de entropie van de vloeistof geanaly­
seerd volgens het model van de elementaire excitaties. Hiertoe
worden de konstanten bepaald die de vorm van de dispersiekrommen
voor de excitaties beheersen. Op de eenvoudigste parabolische
benadering van het rotongedeelte volgens Landau (1947) zijn twee
verfijningen aangebracht. De eerste betreft de symmetrische afwij­
kingen van een parabolisch verloop, die kunnen worden geschat aan
de hand van de vorm van de excitatiekrommen, zoals die uit experi­
menten aan inelastische verstrooing van neutronen worden gevonden.
De tweede behelst een meinier om de wisselwerking tussen de excita­
ties in rekening te brengen, en resulteert in een temperatuur­
afhankelijkheid van de minimale energie A die nodig is om een roton
aan te slaan. De uitkomsten sluiten goed aan bij de bestaande
resultaten verkregen uit de neutronenexperimenten.








