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1. Atoms

Atoms are the smallest electrically neutral units of chemical elements. They consist of
a positively charged massive nucleus, surrounded by a cloud of light negatively charged
electrons.

Fig. 1: Classical image of an atom (not to scale)

A simple estimate of the physical size and mass of atoms is based on Avogadro’s number,
the number of molecules in one mole of a pure chemical substance:

NA = 6.022× 1023. (1)

At normal temperature and pressure: T = 273 K and p = 1 atm, the volume of one mole
of pure gas is 22.41 liter. By weighing a known volume of gas one can then determine the
mass of a single molecule. For inert gases such as helium (He) or neon (Ne), which do not
form compound molecules, the molecular mass equals the atomic mass. For simple gases
like hydrogen (H2), nitrogen (N2) and oxygen (O2), the atomic mass is half the molecular
mass. The smallest and lightest atom is that of ordinary hydrogen. Its mass is

mH = 1.674× 10−27 kg, (2)

and the diameter of its electron cloud is about 1 Å (0.1 nm). The charge of the hydrogen
nucleus, the proton is

e = 1.602× 10−19 C. (3)

The neutral hydrogen atom contains a single electron, with a charge opposite in sign and
precisely equal in magnitude to that of the proton. The electron is very light:

me = 0.911× 10−30 kg. (4)

This follows from a measurement of the charge-to-mass ratio e/me, as obtained for example
by observing the trajectory of an electron in a known magnetic field. Specifically, a non-
relativistic electron with velocity v in a constant magnetic field B moves in a circle of
radius

R =
mev

eB
⇔ e

me

=
v

BR
. (5)

1



The velocity is related to the period by v = 2πR/T = ωR, where ω is the angular velocity.
Hence

v

R
=

2π

T
= ω ⇒ e

me

=
ω

B
, (6)

and e/me can be determined by measuring ω as a function of B. The value of the electronic
charge e (3), which has to be measured separately, then provides the value of me as given
in eq. (4).

Comparing the masses of the proton and electron, one finds that more than 99.9% of
the atomic mass of hydrogen resides in the proton, with

mp = 1836me. (7)

The atoms of heavier elements are distinguished by nuclear charges which are integer
multiples of the proton charge, balanced by an equal number of negative electronic charges.
This suggests that an atomic nucleus contains a characteristic number of protons, and
is surrounded by an equal number of electrons. However, the atomic masses of elements
heavier than hydrogen are substantially larger than accounted for by the number of protons
required to explain the nuclear charge. The extra mass is due to the presence of neutrons,
electrically neutral particles in the nucleus with almost the same mass as the proton:

mn = 1.675× 10−27 kg = 1839me. (8)

It is customary to refer to the particles making up the atomic nucleus as nucleons; in this
terminology the proton is the positively charged nucleon, and the neutron is the neutral
nucleon. A general nucleus is therefore identified by two numbers: the number of protons
Z, which determines the nuclear charge; and the total number of nucleons A, which is a
measure for the nuclear mass. The number of neutrons then equals A− Z.

The chemical properties of atoms are determined predominantly by the electron cloud.
Therefore the chemical properties are practically the same for atoms with the same nuclear
charge Z, even if the number of neutrons is different. Such variations in A for atoms with
the same Z do indeed occur in nature; in that case we speak of isotopes of the same chemical
element. Even for hydrogen isotopes are known. The most abundant form of hydrogen
1H has A = Z = 1; however, there is a stable isotope 2H with A = 2 and Z = 1. This
isotope is called deuterium and its nucleus contains one proton and one neutron. There is
even a third isotope 3H, tritium, with A = 3, but it is unstable: it decays slowly, with a
half-life of 12.3 years, into the lightest helium isotope 3He. In the process a neutron in the
hydrogen nucleus is transformed into a proton to produce helium. The mechanism behind
this transformation will be described in detail later on.

The size of the nucleus is very small compared to that of the atom as a whole, as
determined by the radius of the electron cloud; typically they differ by a factor of 105.
This implies, that most of the volume of the atom is occupied by the cloud of very light
and very tiny electrons. In fact as the number of electrons is limited, and as they are
almost point-like, we infer that atoms consist mostly of empty space.
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Exercise 1.1
A particle with charge q in a magnetic field B is subject to a Lorentz force

F = qv ×B.

a. If the magnetic field is constant: B = (0, 0, B), and if vz = 0, prove that the particle
moves in a circle in the x-y-plane, perpendicular to the magnetic field, with radius

R =
mv

qB
,

where m is the particle mass, and v is the tangential velocity.
b. Show that the angular velocity is given by

ω =
2π

T
=
qB

m
,

independent of the velocity. Compute ω for an electron in a magnetic field of B =1 T.
c. What happens if the initial velocity component vz 6= 0?

Units

In particle physics energies are traditionally expressed in electronvolts (eV), or decimal
multiples like keV, MeV of GeV. By definition 1 eV is the energy gained by a particle with
unit elementary charge when it is accelerated through a voltage difference of 1 V. In terms
of SI units this is

1 eV = 1.602× 10−19 J. (9)

The use of these units helps to avoid very small numbers; at the present stage of devel-
opment, particle energies in accelerator laboratories (Tevatron, LHC) actually reach the
TeV scale (1 TeV = 1012 eV). In cosmic ray physics the largest energies measured are in
the range of 1020 eV, which brings us back to the scale of joules. On the other hand, the
lightest particles we know (neutrinos) seem to have masses in the range of meV’s. Thus
particle physics spans an energy range of at least 23 orders of magnitude in energy.

Because of the relativistic relation between mass and energy, it is also customary to
express masses in energy units. This works as follows: a particle of mass m has a rest energy
mc2; this rest energy can be expressed in units of eV. Often the mass is then quoted in
units of eV/c2, or one of its equivalents. For example, in these units the electron has a
mass

me = 0.5110 MeV/c2, (10)

whilst the proton and neutron have masses

mp = 0.9383 GeV/c2, mn = 0.9396 GeV/c2. (11)

Especially in theoretical derivations it is often useful to chose natural units in which the
velocity of light and Planck’s reduced constant take unit values:

c = ~ = 1. (12)
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With these conventions mass and energy are expressed in the same units (eV), whilst time
and length have the inverse dimension, and are expressed in eV−1; for example, the typical
nuclear length scale is 1 GeV−1, converted to conventional units as

~c
1 GeV

= 0.1973 fm. (13)

It was first observed by Planck, that one can actually construct a fully natural system of
units by also assigning a unit value to Newton’s constant: G = 1. The natural unit of
mass then is the Planck mass

MP =

√
~c
G

= 1.221 × 1028 eV/c2 = 2.176× 10−8 kg. (14)

which is also the unit of energy, whilst time and length are expressed in inverse Planck
masses. For example, as ~ = c = 1, the Planck unit of length is

lP =
1

MP

=
~

MP c
=

√
~G
c3

= 1.616× 10−35 m, (15)

in conventional SI units.

Exercise 1.2
a. Compute the time in seconds corresponding to 1 GeV−1 in natural units.
b. Derive the conventional expressions for the Planck time and the Planck energy, and
compute their values in SI units.
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2. Subatomic forces

Within an atom various forces are at work. The main force which binds the electrons to the
nucleus are the electric Coulomb forces, which are attractive between charges of opposite
sign. For hydrogen, the magnitude of the force is

F =
1

4πε0

e2

a2
' 10−7 N, (16)

where the radius a of the electron cloud is taken to be 0.5 Å.
The forces which keep the protons and neutrons bound in the nucleus are very different

from and much stronger than the Coulomb forces acting between electric charges. Indeed,
neutrons have no charge, and therefore no Coulomb field. Nevertheless, a single proton and
neutron can form a stable bound state, the deuterium nucleus, sometimes refered to as the
deuteron (D). Furthermore, as the distance between nucleons in the nucleus is about 10−5

times the distance between the electrons and the nucleus, the repulsive Coulomb forces
between protons are about 1010 times stronger than the attractive Coulomb forces (16)
acting on the electrons. If only electric forces were at work in the nucleus, the nucleons
would immediately fly apart and no stable nuclei other than simple hydrogen could exist.

Thus nuclear forces are a separate kind of fundamental interaction, distinguished from
and much stronger than the electromagnetic and gravitational forces we are familiar with
in the macroscopic world. The range of the nuclear forces must be very small, as we do not
see any evidence of them in phenomena on scales exceeding that of the atomic nucleus. In
contrast, electric and magnetic fields can exist over large macroscopic distances, as testified
by the discharges of lightning in the atmosphere, or the magnetic fields surrounding many
astrophysical bodies, like planets and stars.

The transformations between different type of particles, such as that of a neutron into
a proton in the decay of tritium, indicate that there is yet another type of interaction at
work between subatomic particles. As these transformation processes are generally very
slow compared to the characteristic time scale of the nuclear forces, they are called the weak
interactions. Weak interactions do not give rise to the binding of particles of any type, but
they are connected with –though different from– the electromagnetic interactions in a very
subtle way. We return to this interconnection in a later chapter. Weak interactions play a
role in nuclear fusion, e.g. in the interior of stars; as such they are of great importance for
the evolution of matter and life in the universe.

Exercise 2.1
From the Coulomb force (16) and the mass of the electron (4), compute the velocity of an
electron in a circular orbit of radius a = 0.5 Å. Express this in terms of the velocity of
light: c = 3× 108 m/s.
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Binding energies
An alternative, and sometimes preferable, way to characterize the strenght of interactions
is in terms of energies rather than forces. An example is provided by the binding energy
of bound states, the difference between the rest energy of the composite particle and the
total rest energy of its constituents in a state as free particles, far apart.

In the case of the hydrogen atom, the binding energy of the electron and proton is the
minimal energy required to ionize the hydrogen atom: ∆E = 13.6 eV. This is a typical
atomic energy scale. However, similar interaction energies characterize the bound state of
an electron with other positively charged particles we will meet later, such as the positron
or the anti-muon, even though these particles are much lighter than the proton. The point
is, that the binding energy is provided by the Coulomb interaction, which is determined
by the charges, not the masses of the particles involved. When the charges are similar, the
binding energies are similar.

In contrast, the minimal energy necessary to split a deuteron into a free proton and
separate free neutron, is ∆E = 2.4 MeV. This energy scale is typical for atomic nuclei, and
about 105 times larger than electron binding energies. In the case of α-particles –He-nuclei
consisting of two protons and two neutrons– the energy required to remove any one of the
nucleons is about 7 MeV, and it does not make much of a difference whether this concerns
a proton or a neutron. This shows again that the main interactions between nucleons are
not of Coulomb type, and are determined by something else than electric charges.

According to the theory of special relativity, the rest energy of a particle is related to
its mass by the well-known relation E = mc2. Hence binding energies are in principle
measurable by determining the difference between the mass M of the bound state, and the
sum of the masses mi of its free constituents:

∆E =
N∑
i=1

mic
2 −Mc2. (17)

The strength of an interaction can then be characterized by taking the ratio of the binding
energy and the mass of the bound state. For hydrogen this is

∆E

Mc2

∣∣∣∣
ep

=
13.6

0.938
× 10−6 = 1.45× 10−8; (18)

whilst for the deuteron one finds

∆E

Mc2

∣∣∣∣
pn

=
2.4

1876
= 1.28× 10−3. (19)

Exercise 2.2
Compute the gravitational binding energy of Jupiter and the sun, and determine the ratio
∆E/Mc2 of this system. Rem: assume that the orbit of Jupiter is circular.
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3. Scattering cross sections

When discussing the size of atomic and subatomic particles, it is necessary to give some
operational meaning to this notion. Especially in quantum mechanics, where according to
circumstances objects behave either as a particle or as a wave, it is not directly clear how
to determine their dimensions in a meaningful way. In fact, it can be asked more generally
how the properties of subatomic particles are established, including their mass, charge,
spin, or their possible substructure.

An important tool for answering such questions is provided by scattering experiments.
In essence this a sophisticated form of the way we collect information about the moon: the
sun emits light, the moon is in the path of a fraction of the light rays and reflects some of
this light in the direction of the earth. By observing the scattered light here on earth, and
knowing the distance to the moon, we can reconstruct its size and surface properties.

Now the sun does not only emit light, but also the weakly interacting particles known
as neutrinos. In principle we could also study the moon by collecting the neutrinos scat-
tered by the moon towards the earth. Unfortunately, the moon is almost transparent to
neutrinos: most of them just continue straight through the moon and only very few are
deflected by a collision with one of the nuclei in the moon’s material. Hence even if we
could observe the neutrinos in an efficient way, it would take a very long time before we
had collected enough of them to determine the moon’s size and composition. On the other
hand, precisely because neutrinos propagate easily through the moon’s entire volume, and
most neutrinos would be scattered by some collision in its interior, we would observe not
only the moon’s surface properties, but also obtain information about its internal structure.

From this example we can draw several important lessons:

• scattering particles from an object provides information about its size and structure;

• scattering different kinds of particles from the target can provide different kinds of
information;

• the efficiency of the scattering of a particular type of particles from the target deter-
mines the amount of information that can be collected within a reasonable time.

In a similar way we can study the properties of atomic and subatomic particles by bom-
barding them with other particles, and study how these are scattered in various directions.
The information we are after is encoded in a quantity known as the scattering cross section.
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Fig. 3.1: Geometry of scattering of test particles by a target

Suppose we have a homogeneous beam of test particles moving in the z-direction towards
a target or scattering center; by homogeneous we mean, that the number of particles per
unit of area and per unit of time passing through any part of the transverse x-y-plane is
constant. We denote this flux of incoming particles by Iin:

Iin = # particles passing per unit of time and area in the x-y-plane. (20)

We assume that the test particles scatter elastically, i.e., any incoming particle becomes
an outgoing particle, no particles are absorbed or transformed by the target, and energy is
conserved. Some particles will pass the target undeflected, but some will be scattered into
other directions, characterized by the angle θ with the z-axis, and the angle ϕ with the
x-axis in the transverse plane; see fig. 3.1. The particles scattered in directions between
(θ, θ+dθ) and (ϕ, ϕ+dϕ) define a cone; at distance R from the scattering center this cone
has a opening area

dA = R2 sin θ dθdϕ ≡ R2dΩ. (21)

Here the spherical angle dΩ = sin θ dθdϕ is the opening area of the same cone measured on
the unit sphere (R = 1). Denote the flux of outgoing particles at distance R in this cone
by Iout:

Iout(R, θ, ϕ) = # particles passing per unit of time and spherical area at distance R.
(22)

The total number of particles scattered per unit of time in all directions inside the cone is

dNout(θ, ϕ) = Iout(R, θ, ϕ) dA = Iout(R, θ, ϕ)R2dΩ. (23)

In the absence of external fields or other interactions the outgoing particles at sufficient
distance from the scattering center are free particles, moving in straight lines; the number
of outward-bound particles inside the cone is then the same at any distance R; in other
words: dNout is a function of the angles (θ, ϕ) only, and Iout is proportional to 1/R2.
Now the fraction of particles scattered inside the cone is of course proportional to the flux
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of incoming particles: twice as many incoming particles per unit of time implies twice as
many particles scattered in any direction (provided the beam of incoming particles remains
homogeneous):

dNout(θ, ϕ) = dσ(θ, ϕ)Iin. (24)

The proportionality factor dσ(θ, ϕ) is in general a function of the angles (θ, ϕ), as the
fraction of particles scattered in different directions may be different. By definition it has
the dimensions of an area. The differential scattering cross section for elastic scattering is
defined as the ratio1

dσ

dΩ
(θ, ϕ) =

1

Iin

dNout

dΩ
(θ, ϕ). (25)

The relation (24) can be interpreted to mean, that dσ(θ, ϕ) is the effective area of the
target responsible for scattering test particles into the cone with spherical opening angle
dΩ in the direction (θ, ϕ).

By integration over the full solid angle 4π we get the total cross section for elastic
scattering:

σ =

∫
dΩ

dσ

dΩ
=

∫ 2π

0

dϕ

∫ π

0

dθ sin θ
dσ

dΩ
. (26)

It is the effective area of the target for scattering test particles in any direction. Observe
the importance of the the qualification effective in this statement. Indeed, the efficiency
with which the target scatters different kind of test particles may be very different, as
the example of light versus neutrinos scattered by the moon illustrates. Therefore the
differential and total cross sections of the target depend on the kind of test particles used,
and are not a purely intrinsic property of the target.

Besides elastic scattering, there also exist inelastic scattering processes, where the en-
ergy of the scattered particles, and/or their number and/or particle type are not conserved.
An example is the collision of an electron with an atom, knocking out another electron
from the atom and leaving it behind in an ionized state. One can then generalize the
notion of a cross section by defining an inelastic differential scattering cross section for this
process, as being the fraction of incident electrons per unit area knocking out an electron
of specific energy in a specific direction.

1More precisely: its limit when the cone becomes very narrow.
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4. Elastic scattering of classical particles

If the interaction of the test particles with the target is known, it is possible to derive more
detailed expressions for the scattering cross section for specific processes. In this section
we illustrate this for elastic scattering by particles obeying classical mechanics. Later we
perform a similar calculation in quantum mechanics.

Fig. 4.1: Impact parameter and scattering area

Fig. 4.1 provides a view of the scattering geometry in the direction of the beam of test
particles (taken to be the z-direction). The incident particles at a distance from the
central axis through the scattering center in the range (b, b + db) form a ring of width db;
the distance b is refered to as the impact parameter. Let the target be simple enough2 that
the section of the ring within the wedge with angular range (ϕ, ϕ+dϕ) represents the area
element dσ(θ, ϕ) accounting for all particles scattered into the cone with opening angle dΩ
in the direction (θ, ϕ), and not contributing to scattering in any other direction. Then by
definition

dσ(θ, ϕ) = |b db dϕ| =
∣∣∣∣ b

sin θ

db

dθ

∣∣∣∣ sin θ dθ dϕ, (27)

which implies
dσ

dΩ
=

∣∣∣∣ b

sin θ

db

dθ

∣∣∣∣ . (28)

To evaluate this quantity for a specific model, one only needs to specify the relation between
impact parameter and scattering angles b(θ, ϕ). We will do this for the scattering of point
particles by a solid sphere, and for the scattering of point charges by a Coulomb potential,
i.e. another point charge acting as scattering center.

2If not, we may have to sum over various domains of the impact parameter b and angle ϕ.
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Fig. 4.2: Scattering of point particles by a solid sphere.

a. Elastic scattering by a solid sphere

As an example of this description of scattering, we consider elastic scattering of point
masses by a solid sphere of radius a, as sketched in fig. 4.2. In this case, as in many others,
the scattering kinematics is the same for all azimuth angles ϕ, so b(θ) is a function of θ
only. We calculate this quantity as follows. Let α be the angle between the direction of
motion of the incident particle and the normal to the sphere at the point of impact; as we
consider elastic scattering, the angles of impact and reflection w.r.t. the normal are equal,
and therefore the scattering angle θ = π − 2α. As shown in fig. 4.2 the impact parameter
then is

b = a sinα = a sin

(
π − θ

2

)
= a cos

θ

2
. (29)

As a result
db

dθ
= −a

2
sin

θ

2
, (30)

and by substitution into eq. (28) we obtain for the differential and total cross section the
expressions

dσ

dΩ
=
a2

4
, σ = πa2. (31)

Thus, for elastic scattering of point particles by a solid sphere the differential cross section is
constant (independent of the angles), and the total cross section equals the geometric cross
section. Note, that this computation would also apply to the scattering of sun light (pho-
tons) by the moon, if the moon were a perfectly smooth sphere and a perfect light reflector!

Exercise 4.1
a. Show that the integrated cross section for angles θ ≥ δ:

σ(θ ≥ δ) =

∫ 2π

0

dϕ

∫ π

δ

dθ sin θ
dσ

dΩ
=
πa2

2
(1 + cos δ) .

b. Compute the ratio of integrated cross sections

σ(θ ≥ 45◦) : σ(θ ≥ 90◦) : σ(θ ≥ 135◦)
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b. Coulomb scattering

An important application of classical scattering theory is the scattering of two point charges
interacting via the Coulomb force. This calculation was performed by Rutherford in 1909,
and was instrumental in the discovery of the atomic nucleus. Therefore the differential
cross section for Coulomb scattering is also refered to as the Rutherford cross section.

The starting point is the Coulomb interaction of two particles with masses (m1,m2) and
charges (q1, q2); using Newtons third law of motion, the force acting on the particles is

F = −m1r̈1 = m2r̈2 =
κ

r2
r̂, κ =

q1q2

4πε0
, (32)

where
r = r2 − r1, (33)

and r̂ is the unit vector in the direction of r. As the force depends only on the relative
position of the particles, it is useful to work in the CM frame defined as follows. The center
of mass (CM) is located at the position R given by

MR = m1r1 +m2r2, M = m1 +m2. (34)

Eq. (32) implies, that the center of mass moves uniformly:

R̈ = 0 ⇒ Ṙ = constant. (35)

Then one can choose a special frame in which the center of mass is at rest: R = 0; this is
the CM frame.

From eq. (32) and the definition of r (33) it also follows, that the relative acceleration of
the particles is equal to that of a single particle of reduced mass µ:

µr̈ =
κ

r2
r̂, µ =

m1m2

M
. (36)

The solution of this equation is a standard problem of classical mechanics. We use the
conservation laws for energy and angular momentum in terms of the polar co-ordinates in
the CM frame:

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ. (37)

The energy in the center of mass system is

ε =
µ

2
ṙ2 +

κ

r
=
µ

2

(
ṙ2 + r2θ̇2 + r2 sin2 θ ϕ̇2

)
+
κ

r
, (38)

whilst the angular momentum is
l = µr× ṙ. (39)
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Conservation of angular momentum implies that both the size and direction of l are con-
stant. Therefore the motion takes place in the plane perpendicular to l; we choose our
co-ordinates such that this plane is the x-y-plane. Then

θ =
π

2
, θ̇ = 0. (40)

In that frame the angular momentum is

l = (0, 0, l), l = µ(xẏ − yẋ) = µr2ϕ̇, (41)

and the energy is

ε =
µ

2
ṙ2 +

l2

2µr2
+
κ

r
. (42)

Rearranging the terms we get an expression for the radial velocity:

ṙ2 =
2ε

µ
− 2κ

µr
− l2

µ2r2
. (43)

Combining equations (41) and (43) a relation for the shape of the orbit r(ϕ) can be derived:(
dr

dϕ

)2

=

(
ṙ

ϕ̇

)2

=
2µε

l2
r4 − 2µκ

l2
r3 − r2. (44)

Now it is convenient to switch to a new variable

s =
1

r
+
µκ

l2
. (45)

Then eq. (44) reduces to(
ds

dϕ

)2

= λ2 − s2, λ2 =
µ2κ2

l4

(
1 +

2εl2

µκ2

)
. (46)

It follows, that
s = λ cos(ϕ− ϕ0), (47)

where we take the positive root for λ, and ϕ0 is an arbitrary constant of integration. When
κ > 0 (charges of equal sign), the solution for r(ϕ) then is

r(ϕ) =
l2/µκ

e cos(ϕ− ϕ0)− 1
, e =

√
1 +

2εl2

µκ2
≥ 1. (48)

This is the equation for a hyperbola with one focal point in r = 0. For all values of ϕ0

the shape is the same, but the hyperbola is rotated clockwise over an angle ϕ0 w.r.t. the
x-axis; in the following we take ϕ0 = 0.
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Fig. 4.3: Hyperbolic orbit, with midpoint at x0 = κ/2eε.

The impact parameter in this case is the perpendicular distance from the asymptote to the
parallel line passing through the center of the Coulomb force; as in our case the Coulomb
force is repulsive, the scattering center r = 0 is the far (external) focal point; see fig. 4.3.
The angular momentum evaluated at the start of the scattering process: t→ −∞, r →∞,
is

l = µbv∞, v∞ = lim
r→∞

√
ṙ2 =

√
2ε

µ
. (49)

It follows, that

b =
l√
2µε

. (50)

Now in both asymptotic regions of the orbit (initial and final), we have r → ∞, and
therefore at t→ ±∞:

cosϕ∞ = cosϕ−∞ =
1

e
, (51)

as the x-axis has been chosen as the symmetry axis of the hyperbola by setting ϕ0 = 0. It
follows, that

π − θCM = ϕ∞ − ϕ−∞ = 2ϕ∞, (52)

and

cotan
θCM

2
= tan

(
π

2
− θCM

2

)
= tan ϕ∞

=
√
e2 − 1 =

2bε

κ
.

(53)

By substitution into eq. (28) it is now straightforward to evaluate the differential cross
section:

dσ

dΩ

∣∣∣∣
CM

=
( κ

4ε

)2 1

sin4 θCM/2
. (54)
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With κ given by eq. (32) this is the Rutherford differential cross section for Coulomb scat-
tering. Observe, that in contrast to the case of scattering by solid spheres, the Rutherford
cross section is not constant as a function of θCM , but decreases rapidly towards the value
(κ/4ε)2 for θCM → π, whilst it diverges for small angles in the forward direction. Integrat-
ing the differential cross section over all angles θCM larger than a given angle δ: δ ≤ θ ≤ π,
and over all values of ϕ, we get

σCM(θ ≥ δ) =

∫ 2π

0

dϕ

∫ π

δ

dθ sin θ
dσ

dΩ
=
πκ2

4ε2

1 + cos δ

1− cos δ
. (55)

From this formula it is clear, that the number of particles scattered from a beam per unit of
time is finite if we require the scattering angle to be larger than some δ > 0. However, if we
count particles scattered over arbitrarily small angles, then even particles with a very large
(infinite) impact parameter are scattered; in other words, if the beam has infinite width,
an infinite number of particles up to arbitrarily large impact parameters is scattered by
the Coulomb potential. For this reason the Coulomb potential is said to have an infinite
range.

Fig. 4.4: Sketch of Rutherford and Geiger’s experiment.

In 1909 Rutherford and Geiger (assisted by a physics student, Marsden) investigated the
structure of atoms by scattering 5 MeV α-particles (4He nuclei) on a target consisting of
gold atoms; see fig. 4.4. In this experiment a source of α particles R is placed in a vacuum
chamber with a target consisting of a gold foil F . The scattered α particles are observed
by their impact on a ZnS scintillation screen S in front of the microscope M .

During the experiment they counted the numbers of α-particles scattered into different
directions, and compared the results with the prediction (54) for scattering of point charges
by a Coulomb interaction. From this analysis Rutherford concluded that the gold atoms
contain a small massive nucleus behaving as a point charge up to distances 10,000 times
smaller than the atom itself.
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Fig. 4.5: Momentum transfer in Coulomb scattering.

Momentum transfer
In Coulomb scattering the particles in their initial and final state are free particles:

r →∞ ⇒ V (r) =
κ

r
→ 0. (56)

Therefore the energy of the incoming and outgoing particles is purely kinetic. Now as
shown in exc. 3.2, in the CM frame the momentum is

p ≡ µṙ = p2 = −p1. (57)

Energy conservation in the CM frame then implies, that the magnitudes of the initial and
final momentum p are equal:

2µε = p2
in = p2

out. (58)

It follows that the Coulomb interaction can only change the direction of the momentum,
as shown in fig. 4.5. Denoting the change in momentum by q, it follows that

pout = pin + q ⇒ q2 = (pout − pin)2 = p2
in + p2

out − 2pin · pout (59)

Combining these results we then find

q2 = 2 p2
in (1− cos θCM) = 8µε sin2 θCM

2
. (60)

Therefore the Rutherford cross section can be rewritten as

dσ

dΩ

∣∣∣∣
CM

=
4κ2µ2

|q|4
. (61)

In this form the explicit dependence on the energy ε has disappeared. Observe, that the
differential cross section decreases with increasing momentum transfer, as this corresponds
to increasing scattering angle. For scattering of nuclei with charge number Z1,2, the explicit
expression becomes

dσ

dΩ

∣∣∣∣
CM

= 4Z2
1Z

2
2α

2 (µ~c)2

|q|4
. (62)
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Exercise 4.2
a. Show that the lab and CM co-ordinates are related by

r1 = R− m2

M
r, r2 = R +

m1

M
r.

b. From this result, derive eq. (36).
c. Prove that in the CM frame R = 0 the total momentum vanishes:

P = p1 + p2 = 0,

and that as a result
p2 = −p1 = µṙ.

d. Using the definition of momentum transfer (59), show that

p1 out = p1 in − q, p2 out = p2 in + q.

Exercise 4.3
a. Prove that the energy ε, eq. (38), and angular momentum l, eq. (39), are constants of
motion:

dε

dt
= 0,

dl

dt
= 0.

b. Derive the expressions for ε and l in polar co-ordinates.

Exercise 4.4
a. Derive eq. (44) for the shape of the orbit r(ϕ).
b. Perform the variable substitution (45), and prove eq. (46).
c. Check the solution (48) for κ > 0 (charges of equal sign); what happens for charges of
opposite sign?

Exercise 4.5
a. From eqs. (50) and (51) and the definition of e, derive the result (53).
b. Substitute the result for b into eq. (28) to prove the result (54) for the Rutherford cross
section.
c. By performing the angular integrals, derive eq. (55).
d. Compute the ratio of the cross sections

σCM(θ ≥ 45◦) : σCM(θ ≥ 90◦) : σCM(θ ≥ 135◦)

and compare this with the result of exerc. 3.1 for the scattering by a solid sphere.
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c. Thomson scattering

In the previous sections we have discussed the scattering of charged particles by Coulomb
forces. However, charged particles can also scatter radiation. The principle is simple: when
an electro-magnetic wave impinges on a charged particle, the particle vibrates in response
to the electric component of the wave. However, an oscillating charge emits radiation, hence
the energy it has absorbed out of the electro-magnetic wave is re-emitted as radiation in
other directions. If we denote the intensity (= energy flux) of the incident and scattered
radiation by Φin and Φout, the fraction of radiation scattered through a spherical surface
element dA = R2dΩ in the direction (θ, ϕ) defines the differential scattering cross section:

dσ

dA
(θ, ϕ) =

1

R2

dσ

dΩ
(θ, ϕ) =

Φout(θ, ϕ)

Φin

. (63)

J.J. Thomson was the first to calculate this cross section for scattering of an unpolarized
plane wave by a free non-relativistic point charge q with mass m according to classical
electrodynamics. The derivation is reproduced in appendix C. The result is

dσ

dΩ
=
ρ2

2

(
1 + cos2 θ

)
, (64)

where ρ is the electro-magnetic radius of the particle, defined as

ρ =
q2

4πε0mc2
. (65)

Note that the electro-magnetic radius is inversely proportional to the mass. The total cross
section becomes

σT =

∫
dΩ

dσ

dΩ
=

8π

3
ρ2. (66)

This result implies, that although their charges have the same value, free protons scatter
radiation less efficiently than free electrons, by a factor

σp
σe

=
m2
e

m2
p

= 0.3× 10−6. (67)

For an electron the electro-magnetic radius has the value

re =
e2

4πε0mec2
= 2.817× 10−15 m. (68)

It is also known as the classical electron radius. The corresponding total cross section is

σe = 0.665× 10−28 m2. (69)

One can think of these numbers as the size of an electron as seen by electro-magnetic
radiation. As the electron cross section sets the scale for the electro-magnetic cross section
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of other charged particles, a corresponding unit of area the barn, has been introduced in
particle physics:

1 barn = 10−28 m2. (70)

Exercise 4.6
Consider a gas with a density of N molecules per unit of volume; let n be the number of
electrons per molecule. Run a light beam of intensity Φ through the gas, of sufficiently
short wavelength that the electrons respond to the beam as if they were free particles.
Show that due to scattering by the electrons the intensity of the light beam decreases as a
function of distance x traveled through the gas according to the formula

dΦ

dx
= −nNσeΦ.

Solve this equation, and show that Φ decays exponentially over a typical path length

l =
1

nNσe
.

Evaluate this length for hydrogen (H2) at standard temperature and pressure (T = 273 K
and p = 1 atm).
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5. Quantum theory

So far we have discussed atoms and subatomic particles like electrons and nucleons, in
classical language. However, the proper formalism for treating the properties and interac-
tions of these particles is quantum theory. There are different levels of quantum theory,
appropriate for different ranges of phenomena. The structure and interactions of systems
consisting of a finite number of non-relativistic particles are generally well described by the
Schrödinger equation with a suitably chosen potential, which may depend on the position
and spin of the particles involved. The wave function Ψ(t; r1, ..., rn; s1, ..., sn) represents
the probability amplitude for the particles to be in a specific configuration, characterized
by their positions ri and spins si at time t. For example, an electron in a hydrogen atom
moves in the Coulomb potential of the nucleus, and its wave function is a solution of the
equation

i~
∂Ψ

∂t
=

(
− ~2

2me

∆ + V (r)

)
Ψ, V (r) = − 1

4πε0

e2

r
. (71)

The stationary states of the system are specified by wave functions of the factorized form

Ψ(t, r) = e−iEt/~ ψE(r), (72)

with ψE(r) a normalizable solution of the time-independent Schrödinger equation(
− ~2

2me

∆ + V (r)

)
ψE = EψE. (73)

The eigenvalue E represents the energy of the electron in the stationary state ψE. In general
it can not take arbitrary values. For the bound states of the electron in the hydrogen atom
the allowed values are

En = − α2

2n2
mec

2, n = 1, 2, 3, ... (74)

Here α is a dimensionless number known as the fine-structure constant:

α ≡ e2

4πε0~c
= 0.007297 ≈ 1

137
, (75)

and mec
2 is the rest energy of the electron. These energy levels were explained long before

the development of quantum mechanics in a semi-empirical model by Niels Bohr. His
derivation, based on the old quantum theory of Planck and Einstein, is reproduced in
appendix B.

In the regime of relativistic particles, quantum mechanics formulated in terms of a
Schrödinger equation for a finite number of particles is no longer applicable, and one has
to take recourse to relativistic quantum field theory (QFT), of which ordinary quantum
mechanics represents the non-relativistic limit. An important difference between relativis-
tic quantum field theory and non-relativistic quantum mechanics is, that in quantum field
theory the number of particles is generally not conserved: particles can be created and
annihilated in various ways; only the total energy and momentum are conserved. Indeed,
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in the relativistic context mass represents a specific form of energy; therefore the particle
number can be changed by converting some mass into other forms of energy, for example
into kinetic energy for other particles present in the interaction process, or into newly
created particles with different masses. In a later section we provide a more complete
description of the essentials of quantum field theory.

Exercise 5.1
Check that the fine-structure constant α is a dimensionless number.

Potential scattering

In addition to the bound states of negative energy, charged particles can also be in scatter-
ing states of positive energy. In such a state the initial and final particles are free particles
of well-defined energy, but in between there is an interaction process in which momentum
can be transfered, as we have seen in classical Coulomb scattering in par. 3.b. In this
section we show how to compute this kind of elastic scattering process in non-relativistic
quantum mechanics. Specifically we show, that to first approximation such a computation
reproduces the Rutherford scattering cross section for charged particles.

Fig. 5.1: quantum scattering

The set-up of the analysis is very close to the classical one. We start with a beam of
mono-energetic particles coming in along the z-axis; the particles enter a region in which
there is a non-vanishing potential V (r), associated with a scattering center in the origin.
Finally, there may be a part of the beam which continues without scattering, and a part
which is deflected in all directions. The quantum character of the process is reflected in
all three stages. First, the incoming beam is described by a plane wave

ψin = Ak e
ik·r, (76)

with the wave vector related to the momentum by p = ~k = ~(0, 0, k), and the amplitude
|Ak|2 is determined by the particle density in the incoming beam (the number of particles
per unit of volumein the beam). Next, the free particles in the deflected wave, at sufficient
distance from the scattering center, are described by a spherical wave

ψout = Bk(θ, ϕ)
eikr

r
. (77)
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The scattering cross section is determined by the probability for a particle in the initial
plane wave to end up as a spherical wave in the direction (θ, ϕ). By the elementary rules of
quantum mechanics, this probability measured at a distance R from the scattering center
is given by

dσ

dA
=

1

R2

dσ

dΩ
=

1

R2

∣∣∣∣Bk(θ, ϕ)

Ak

∣∣∣∣2 , (78)

or
dσ

dΩ
= |fk(θ, ϕ)|2 , fk(θ, ϕ) =

Bk(θ, ϕ)

Ak
. (79)

The quantity fk(θ, ϕ) is called the scattering amplitude. In the remainder of this section
we show how to compute this amplitude for scattering from a general potential.

The starting point for the derivation is the time-independent Schrödinger equation for
a particle of mass m in the potential V (r):(

∆ + k2
)
ψE =

2m

~2
V ψE, (80)

where k2 is related to the energy of the free incoming particles by

E =
~2k2

2m
. (81)

The wave functions ψE are positive-energy eigenfunctions of the full Schrödinger equation
with the energy eigenvalue equal to the energy of the free incoming particles, described by
the incoming plane wave. By energy conservation this must equal the energy eigenvalue
of the outgoing spherical waves at distances where V (r) → 0, such that the right-hand
side of eq. (80) vanishes; for details, see exercises (4.2) and (4.3). We compute the wave
function ψE by a method of successive approximations, known as the Born series. These
approximations are based on the solution of the inhomogeneous linear partial differential
equation

−
(
∆ + k2

)
φ = ρ, (82)

where ρ(r) is some prescribed function acting as a source for the field φ(r). The solution
can be constructed using the Green’s function Gk(r, r

′), which is a solution of the special
inhomogeneous equation for a δ-function source:

−
(
∆ + k2

)
Gk(r, r

′) = δ3(r− r′). (83)

Once we have the Green’s function, a particular solution of (82) is obtained by taking

φ
(0)
k (r) =

∫
dr′Gk(r, r

′) ρ(r′). (84)

The general solution differs from this special solution at most by a solution of the homo-
geneous (free) equation, i.e. a plane wave. In appendix D it is shown, that the Green’s
function is given by

Gk(r, r
′) =

1

4π

eik|r
′−r|

|r′ − r|
. (85)
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The results (84) and (85) allow us to transform the differential equation (80) into an integral
equation

ψE = Ceik·r − 2m

~2

∫
dr′Gk(r, r

′)V (r′)ψE(r′). (86)

The Born series is obtained by reinserting the equation into itself:

ψE = Ceik·r − 2Cm

~2

∫
dr′Gk(r, r

′)V (r′)eik·r
′

+
4Cm2

~4

∫
dr′Gk(r, r

′)V (r′)

∫
dr′′Gk(r

′, r′′)V (r′′)eik·r
′′

+ ...

(87)

The series can be given a physical interpretation as follows: the first term is the unscattered
plane wave; the second term represents the wave after a single scattering from the potential;
the next term repesents double scattering, etc. The first-order Born approximation is
obtained by terminating the series after the term for single scattering. Explicitly:

ψE ≈ C

(
eik·r − m

2π~2

∫
dr′

eik|r
′−r|

|r′ − r|
V (r′) eik·r

′
)
. (88)

It remains to evaluate the integral in (88). In fact, we are predomininantly interested in
the asymptotic form, i.e. terms that do not vanish faster than 1/r. We can find these for
a quite general potential V (r) by making the expansion

|r′ − r| =
√

(r′ − r)2 = r − r̂ · r′ +O[1/r], (89)

where r̂ is the unit vector in the radial direction:

r̂ =
r

r
= (sin θ cosϕ, sin θ sinϕ, cos θ) . (90)

Inserting this expansion both in the denominator and in the exponential, we get

ψE(r) = C

(
eik·r − m

2π~2

eikr

r

∫
d3r′ ei(k−kr̂)·r′ V (r′) +O[1/r2]

)
. (91)

Asymptotically this is of the desired form

ψE = C

(
eik·r + fk(θ, ϕ)

eikr

r

)
, (92)

with the scattering amplitude given in terms of the Fourier transform of the potential by

fk(θ, ϕ) = − m

2π~2

∫
d3r′ ei(k−kr̂)·r′ V (r′). (93)

It should be noted, that the whole procedure is well-defined only if the potential is math-
ematically well-behaved; in particular for large r it should vanish sufficiently fast. Details
can be found in handbooks of quantum mechanics.
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Exercise 5.2
Show that for r > 0 the spherical wave

ψE = B
eikr

r
,

is a solution of the free time-independent Schrödinger equation

− ~2

2m
∆ψE = EψE,

with energy eigenvalue E = ~2k2/2m.

Exercise 5.3
The wave function ψE(r) of the form (92) represents a solution of the time-independent
Schrödinger equation with a potential V (r). It is turned into a solution of the full time-
dependent Schrödinger equation by multiplication with the time-dependent phase factor

Ψ(t, r) = e−iEt/~ ψE(r) = C

(
ei(k·r−ωt) + fk(θ, ϕ)

ei(kr−ωt)

r

)
,

where E = ~ω. Taking k = (0, 0, k) with k > 0, show that the first term on the right-
hand side represents a wave propagating in the positive z-direction, whilst the second term
represents a spherical wave propagating in the outward (positive r) direction.
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6. Yukawa-Coulomb scattering

The general formalism developed above wil now be used to compute the scattering ampli-
tude for a potential of the form

V (r) =
κe−λr

r
, (94)

where κ and λ are constants. At large distances λr � 1 this potential decreases faster
than exponentially, whilst at small distances λr � 1 it behaves as a Coulomb potential.
In fact, in the limit λ → 0 it reduces to the Coulomb potential. The general form (94)
including the exponential is known as the Yukawa potential.

Inserting this potential into eq. (93) gives the scattering amplitude

fk(θ, ϕ) = − mκ

2π~2

∫
d3r′

1

r′
ei(k−kr̂)·r′−λr′ .

= −mκ
~2

∫ +1

−1

d cos θ

∫ ∞
0

dr′ r′e(i|k−kr̂| cos θ−λ)r′

=
imκ

~2|k− kr̂|

∫ ∞
0

dr′
(
e−(λ−i|k−kr̂|)r′ − e−(λ+i|k−kr̂|)r′

)
= −2mκ

~2

1

(k− kr̂)2 + λ2
.

(95)

Now the momentum of the outgoing particles in the radial direction is pout = ~k r̂. The
momentum transfer in the scattering process then is

q = pin − pout = ~ (k− kr̂) . (96)

As a result the scattering cross section takes the simple form

dσ

dΩ
= |fk(θ, ϕ)|2 =

4m2κ2

(q2 + ~2λ2)2 . (97)

In the Coulomb limit λ → 0, with m replaced by the reduced mass µ, this reproduces
exactly the Rutherford cross section (61). Therefore the classical Rutherford expression
equals the quantum mechanical result for large distances in the limit of single scattering
(first-order Born approximation).

Exercise 6.1
Perform explicitly the steps in the derivation (95).
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7. Form factors

The Rutherford formula and its Yukawa generalization (97) describe scattering by the
potential of a single point charge. We now generalize this result to the case of an extended
charge distribution. Consider a total charge Z, distributed over a finite volume, described
by a density function Zρ(r), where ρ is normalized to unity:∫

d3r ρ(r) = 1. (98)

The potential at point r due to the charge element Zρ(r′)d3r′ at the point r′ is then given
by the superposition

V (r) = Zκ

∫
d3r′ ρ(r′)

e−λ|r−r′|

|r− r′|
. (99)

By substitution into the Born formula (93) we can again compute the scattering amplitude

fk(θ, ϕ) = −mZκ
2π~2

∫
d3r′ eiq·r

′/~
∫
d3r′′ ρ(r′′)

e−λ|r
′−r′′|

|r′ − r′′|
, (100)

where as before we use the momentum transfer q = ~(k− kr̂). By interchanging the order
of integration this becomes

fk(θ, ϕ) = −mZκ
2π~2

∫
d3r′′ ρ(r′′)

∫
d3r′ eiq·r

′/~ e
−λ|r′−r′′|

|r′ − r′′|

= −mZκ
2π~2

∫
d3r′′ ρ(r′′)eiq·r

′′/~
∫
d3r′ eiq·(r

′−r′′)/~ e
−λ|r′−r′′|

|r′ − r′′|
.

(101)

Now we can shift the argument of the last integral by defining R = r′ − r′′; clearly, the
result no longer depends on r′′. Therefore the expression factorizes into two independent
integrals. If we decompose R into spherical co-ordinates:

fk(θ, ϕ) = −mZκ
~2

∫
d3r′′ ρ(r′′)eiq·r

′′/~
∫ +1

−1

d cos θ

∫ ∞
0

dRR eiqR cos θ−λR

= − 2mZκ

q2 + ~2λ2
F (q),

(102)

where the form factor F (q) is the Fourier transform of the charge distribution:

F (q) =

∫
d3r ρ(r) eiq·r/~. (103)

For the scattering cross section this result implies

dσ

dΩ
=

dσ

dΩ

∣∣∣∣
point

|F (q)|2, (104)
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where the label point refers to the scattering cross section for a point-like charge of strength
Z, e.g. the Rutherford cross section for Coulomb scattering. It follows, that experimentally
one can determine the charge distribution by measuring the differential cross section and
comparing it with the point-like cross section:

|F (q)|2 =
(dσ/dΩ)exp
(dσ/dΩ)point

. (105)

The expression for F (q) simplifies further in the case of a spherically symmetric charge
distribution. Defining the wave number ξ by ~ξ = |q|, and expanding in polar co-ordinates
eq. (103) becomes

F (q = ~ξ) = 2π

∫ +1

−1

d cos θ

∫ ∞
0

dr r2ρ(r) eiξr cos θ

= 4π

∫ ∞
0

dr r2ρ(r)
sin ξr

ξr
.

(106)

By expanding the sine function, this can be rewritten as

F = 4π

∫ ∞
0

dr r2 ρ(r)

(
1− 1

3!
(ξr)2 + ...

)
= 1− 1

6
ξ2 r2 + ..., (107)

where r2 is the expectation value of the radius squared of the charge distribution:

r2 =

∫
d3r r2 ρ(r). (108)

Therefore this quantity can be extracted directly from the measured cross section by de-
termining the slope of F at zero momentum transfer:

r2 = − 6
dF

dξ2

∣∣∣∣
ξ2=0

. (109)

As an example, consider the exponential charge distribution

ρ =
1

8πa3
e−r/a. (110)

For the form factor the first line of eq. (106) gives

F =
1

4a3

∫ +1

−1

d cos θ

∫ ∞
0

dr r2eiξr cos θ−r/a. (111)

This integral is very similar to the one in (102), and so is the result:

F =
1

(1 + a2ξ2)2
= 1− 2a2ξ2 + 3a4ξ4 + ... (112)
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By differentiation w.r.t. ξ2 and applying eq. (109) it follows, that the mean squared radius
is

r2 = 12a2. (113)

Exercise 7.1
Prove eq. (107) by showing that

r2 =

∫
d3r r2ρ(r) = 4π

∫ ∞
0

dr r4ρ(r).

Exercise 7.2
Compute the integrals in (111) to prove the result (112).

Exercise 7.3
a. Compute F (q) for a homogeneously charged sphere of radius a:

ρ =


3

4πa3
, r < a;

0, r > a.

b. From the result, derive that

r2 =
3

5
a2.
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8. Nuclei

Atomic nuclei are bound states of protons and neutrons. The number of protons Z de-
termines the chemical identity of the element, whilst the total number of nucleons A
determines which isotope of the element the nucleus represents. The general notation for
an isotope of element X with A nucleons and charge number Z is A

ZX; for example, the
element helium has two naturally occurring isotopes, 4

2He and 3
2He. The first and most

abundant of these nuclei, with two protons and two neutrons, is also known for historic
reasons as the α-particle.

As the mass of the proton and neutron are nearly equal, nuclei with the same number
of nucleons have nearly equal masses. However, the actual masses are not only determined
by the values of A and Z, but also by the nuclear binding energy; the mass M(A,Z) of
the nucleus A

ZX is therefore made up of three contributions:

M(A,Z)c2 = Zmpc
2 + (A− Z)mnc

2 − Aε(A,Z), (114)

where ε(A,Z) is the average binding energy per nucleon of the element: ε(A,Z) = ∆E/A.
This average binding energy is to first approximation independent of Z, hence the same
for protons and for neutrons.

Fig. 8.1: Energy levels of nuclei with A = 12.

Actually, a more precise statement is that in nuclei of the same A and other quantum
numbers, such as angular momentum, the binding energy of nucleons is to good approx-
imation independent of Z. This is illustrated in fig. 8.1, which shows the lowest energy
levels of three nuclei with A = 12. Clearly, the ground state of 12

6 C represents the absolute
minimum of energy. However, the carbon nucleus has an excited state which is nearly
degenerate in energy with the ground states of 12

5 B and 12
7 N. This excited state of 12

6 C
differs from the ground state in its angular momentum, but the angular momentum of the
excited state is the same as that of 12

5 B and 12
7 N in their ground states. Furthermore, the

actual energies of the three nearly degenerate states have to be corrected for the repulsive
Coulomb interactions of the protons, which tend to lower the binding energy for increasing
Z for the same A. Therefore these observations support the conclusion, that up to small
corrections the binding energies of nucleons in isotopes with equal A and the same angular
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momentum are equal. This is further evidence that the interactions responsible for nuclear
binding are charge independent, and hence not of electro-magnetic origin.

The binding energy per nucleon does depend on the total number of nucleons A. This
is illustrated in the chart in fig. 8.2, which shows the binding energy per nucleon as a
function of A. Observe, that for most light elements the binding energy per nucleon tends
to increase with increasing A, the most important exception being 4

2He (α-particle), which
is an exceptionally stable light nucleus. For nuclei with A > 62 the binding energy per
nucleon decreases again. This observation implies that light nuclei, such as H or Li, can
release energy by fusion, which increases the A of the product nuclei, whereas heavy nuclei
like U or Ra can release energy by fission, reducing A compared to the parent nuclei.

Fig. 8.2: Chart of nuclear binding energies

Nuclei of 56
26Fe and the rare 62

28Ni isotope have the largest binding energy per nucleon:

εX = 8.8 MeV, X = (Fe, Ni).

Therefore these elements are the most stable in nature. In particular iron (56
26Fe) forms the

natural end point of fusion in the interior of massive stars. If the core of a star in the
course of its life builds up a sufficient amount of iron through fusion of lighter elements, it
can no longer resist the pressure of its own weight by releasing energy through fusion into
heavier nuclei. Such a star can then implode in a spectacularly energetic event, known as
a supernova. The result is usually a very compact massive star consisting almost entirely
of neutrons: a bound state of about 1057 nucleons in a spherical volume with a radius of
10-15 km. Its binding energy is not only provided by nuclear forces but also by gravity,
with the effect that the binding energy per nucleon is higher than in iron.
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9. Nuclear form factors

The existence of atomic nuclei was established by Geiger and Rutherford in scattering ex-
periments with α-particles, discussed in sect. 4.b. Modern experiments scattering electrons
off nuclei give more detailed information, in particular about the charge distribution.

Fig. 9.1: Nuclear form factor of Ca isotopes.

Fig. 9.1 shows the differential cross section for elastic scattering of two calcium isotopes.
Eq. (104) states that this cross section is a product of the Rutherford cross section and the
absolute square of the form factor:

dσ

dΩ
=

dσ

dΩ

∣∣∣∣
point

|F (q)|2.

The Rutherford cross section for the scattering of point-like charges decreases smoothly
as a function of scattering angle or momentum transfer. The equal total charges of the
two calcium isotopes lead to different absolute cross sections, because the charge is more
diluted in the case of 48

20Ca than in the case of 40
20Ca, which contains fewer neutrons.

Furthermore, the nuclear cross sections in fig. 9.1 show on top of the Rutherford-
like decrease an oscillating behaviour. Such oscillating behaviour is typical for a charge
distribution which is constant up to some radius a, after which it drops steeply to zero,
as in exercise 7.3. This behaviour is confirmed by measured nuclear mass distributions, as
shown in fig. 9.2. The resulting picture of the atomic nucleus is that of a kind of droplet
of nuclear matter with a rather sharply defined surface. The typical radius of the nucleus
in this droplet model is in the range 3-7 fm.
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Fig. 9.2: Nuclear density profiles.

10. Radioactivity

In nature only a limited number of isotopes are found to exist, in which the number of
protons and neutrons is more or less balanced: A = 2Z in the light elements deuterium
and helium, whilst there is a moderate excess of neutrons in heavy nuclei: A ≈ 2.5Z
in uranium and other elements near the end of the periodic table. Moreover, elements
found in our natural environment all have Z ≤ 92. Very heavy elements or elements with
unfavorable ratios Z : A are unstable, and spontaneously transform into more stable nuclei
by various processes. These transformations are accompanied by the emission of different
kinds of particles; collectively these processes are refered to as radioactivity.

Spontaneous fission
Fig. 8.2 shows that elements with more than about a hundred nucleons can free internal
energy by fission into lighter elements: the average binding energy per nucleon of the
lighter nuclei is larger than in the original parent nucleus. However, in most cases this
fission process goes extremely slow, as there is an energy barrier between the initial and
final state and spontaneous fission can proceed only through quantum tunneling. The
spontaneous decay of gold or mercury takes longer than the life-time of the universe, and
therefore these elements can still be found with some abundance in rocks and minerals.

However, in some cases a massive nucleus has a larger probability to spontaneously
emit a proton or a neutron, or even a more complicated light nucleus such as an α-particle.
Indeed, α-particles are the most stable of the light nuclei, making spontaneous fission by
emission of α-particles energetically favorable. An example is the fission of a uranium
nucleus into a thorium nucleus and an α-particle:

238
92U → 234

90Th + 4
2He. (115)

Among the strongest emitters of α-particles in nature are radium (Ra) and polonium (Po),
first isolated by Marie Curie in her famous experiments in 1898. The emissions in this type
of radioactive process were originally known as α-rays, from which the α-particles derive
their name.
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Most of the naturally found helium on earth is produced by α-decay of radioactive elements.
In fact, α-particles were first identified as helium by Rutherford and Royds in 1909 by
collecting the α-particles produced by a radioactive substance in the top section of an
inverted glass tube sealed off below by mercury, and studying their spectral lines.

β-radioactivity
A completely different kind of nuclear transformation process is the transformation of a
neutron into a proton or vice versa, as in the transformation of tritium into helium discussed
in sect. 1:

3
1H → 3

2He.

In this process Z changes, whilst A remains the same. Such processes can happen sponta-
neously if the neutron in the final state has a sufficiently lower energy than the proton in
the initial state, e.g. because of lower electrostatic Coulomb energy, as is the case here.

However, by itself these transformation processes would seem impossible, as they violate
the conservation of electric charge. Indeed, the transformation is necessarily accompanied
by the emission of charged particles: ordinary electrons in the case of neutrons changing
into protons, and positively charged electrons, or positrons, when protons change into
neutrons. In early studies of radioactivity these emissions were called β-rays, and therefore
the electron and positron are also called β-particles. They were first recognized as electrons
because their charge-to-mass ratio e/m is identical to that of the electron.

The simplest β-decay process is that of the neutron: a single neutron is unstable and
decays after almost 15 minutes into a proton, an electron and a third, almost massless and
electrically neutral particle, the anti-neutrino:

n → p+ + e− + ν̄. (116)

For this reason no free neutrons are found in nature. All neutrons in the universe reside in
stable nuclei like deuterium or α-particles, where the process (116) is forbidden by energy
conservation. However, in many nuclei the β-decay of a neutron is energetically allowed,
making them unstable. An example is the process

12
5B → 12

6C + e− + ν̄, (117)

illustrated in fig. 8.1. As the diagram shows, the groundstate energy of 12C is considerably
lower than that of 12B.

Exercise 10.1
a. Show that the energy released in the β-decay process

A
ZX → A

Z+1X′ + e− + ν̄,

is positive if

ε(A,Z + 1) ≥ ε(A,Z) +
1

A
(mp +me +mν −mn) c2.
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b. Estimate the binding energies of nucleons in 3
1H and 3

2He and calculate an upper limit
for the mass of the neutrino.
Hint: use the following masses
particle mass (MeV/c2)
e 0.511
p 938.272
n 939.556
3H 2808.920
3He 2808.391

11. Exponential decay and Poisson statistics

By experimenting with different uranium salts, Marie Curie discovered that the intensity
of α-emission in the decay of uranium was proportional to the number of uranium atoms
in a substance, and independent of its chemical composition. Apparently the rate at
which radioactive nuclei decay is an intrinsic nuclear property, a characteristic number
for each isotope of each element. This can be interpreted statistically to imply, that the
probability for a specific nucleus to decay depends only on the type of nucleus, not on
any environmental factor. In fact, such a statistical interpretation is imposed by quantum
mechanics, which allows us only to calculate the probability amplitude for a certain process
from first principles.

Suppose a substance A is converted at a constant rate into a substance B, with the
total number of particles of type A and type B constant: each particle of A gives rise
to one and only one particle of type B. Then the fraction of particles A converted in a
short time interval ∆t is proportional to the time interval, and the proportionality factor
is independent of environmental factors or the number of particles present:

∆NA

NA

= −λ∆t, (118)

with λ a constant, characteristic of substance A. It follows that the number of particles A
decreases exponentially:

NA(t) = NA(0) e−λt, (119)

where NA(0) is the number of particles of A present at time t = 0. Of course, the number
of particles B increases at the same rate:

NB(t) = NB(0) +NA(0)
(
1− e−λt

)
. (120)

Now this process has to be interpreted statistically: it holds for large numbers of particles,
but at the level of an individual particle we can only state the probability that this particle
will survive for a certain time. To reproduce the above decay law, the probability for a
particle of type A to survive after a time t is

PA(t) =
NA(t)

NA(0)
= e−λt. (121)
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This implies, that the number of particles decaying in a specific period of time is governed
by Poisson statistics. The Poisson distribution gives the probability to observe n events
in a time t for statistically independent events, when the probability to observe a single
event in a short time ∆ is proportional to ∆, whilst the probability to observe more than
one event is of order ∆2. With these assumptions, the probability to observe no events in
a finite time t is given by an exponential distribution

L0(t) = e−λt, (122)

whilst the probability Ln(t) to observe n ≥ 1 events in a time t is the n-th moment of this
distribution:

Ln(t) =
(λt)n

n!
e−λt. (123)

It is straightforward to check that these probabilities are properly normalized:

∞∑
n=0

Ln(t) = 1. (124)

The proof of these results is sketched in exercise 11.2.
A related probability density, which can be derived from PA(t), is the probability

WA(t)dt for a particle to decay in the time interval between t and t + dt; it is given
by

WA(t)dt = PA(t)− PA(t+ dt) = λe−λtdt = −dL0(t). (125)

Again the density WA(t) is properly normalized:∫ ∞
0

WA(t)dt = −
∫ ∞

0

dL0(t) = 1. (126)

The average life-time of a particle A then is computed by weighing the time it lives with
this probability:

〈t〉 =

∫ ∞
0

tWA(t)dt = λ

∫ ∞
0

te−λtdt =
1

λ
≡ τ. (127)

This average τ = 1/λ is the time after which the number of particles of type A has decreased
by 1/e; it is called the life-time of the particles. It differs from the quantity sometimes
quoted as the half-life t1/2: the time after which 50 % of the original particles has decayed:

t1/2 = τ ln 2. (128)

The life-time τ is an average; in an actual experiment the measured values will scatter
around this average; this scatter is expressed by the root-mean square deviation:√

〈(t− τ)2〉 =
1

λ
. (129)

An important property of the exponential decay law (121) is, that it holds independent of
the choice of initial time. Thus it does not matter how many particles have already decayed:
once you know the number of particles A present initially, the number will always decrease
in time in the same way. In this sense radioactive decay has no memory.
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Exercise 11.1
A radioactive element A decays into element B with a probability per atom per unit of time
λA. The element B is also radioactive and decays to a stable element C with a probability
λB per atom and per unit of time.
a. Explain that the change in time of the average number of atoms of kind A and B is
given by

dNA(t) = −λANA(t)dt,

dNB(t) = −λBNB(t)dt+ λANA(t)dt.

b. Derive an expression for the change dNC(t) of the average number of atoms C in a time
interval dt.
c. At time t = 0 we start out with a pure sample of N0 atoms of type A; calculate the
number of atoms of each kind (A,B,C) as a function of time, for the two cases λB 6= λA
and λB = λA.
d. Sketch the solutions NA(t), NB(t) and NC(t).

Exercise 11.2
Radioactive decay processes are statistically independent events: the probability of a single
atom decaying in a time interval dt is proportional to the length of the interval, independent
of its history and independent of the concentration of atoms. Show:
For a sufficiently large number N of a radioactive atoms the probability Ln(t) of a number
of n particles decaying in a time t depends only on the decay probability λ of a single atom,
and on the length of the time interval t:

Ln(t) =
(λt)n

n!
e−λt.

Hints:
(i) The statistical independence of the decay processes implies that the probability for n1

decays3 in a time interval ∆1 and n2 decays in a non-overlapping time interval ∆2 is

L(n1,∆1;n2,∆2) = Ln1(∆1)Ln2(∆2).

(ii) The probability for a single decay in a short time interval ∆ is

L1(∆) = λ∆ +O(∆2).

(iii) The probability for two or more decays in a short time interval ∆ vanishes in the limit
∆→ 0:

Ln(∆) = O(∆2), n ≥ 2.

a. From these properties, show that

L0(t+ ∆) = L0(t)L0(∆) = L0(t)
(
1− λ∆ +O(∆2)

)
,

3Properly normalized, such that the sum of all probabilities in any time-interval equals unity.
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and prove that in the limit ∆→ 0

dL0(t)

dt
= −λL0(t).

b. Next consider the probability for one or more decays to take place in an interval t+ ∆;
show that

Ln(t+ ∆) =
n∑
k=0

Lk(t)Ln−k(∆) = Ln(t) (1− λ∆) + Ln−1(t)λ∆ +O(∆2),

and by taking the limit ∆→ 0, derive

dLn(t)

dt
= −λLn(t) + λLn−1(t), n ≥ 1.

c. With the boundary conditions L0(0) = 1, Ln(0) = 0 for n ≥ 1, solve the differential
equations for Ln(t) to derive the results (122), (123):

L0(t) = e−λt, Ln(t) =
(λt)n

n!
e−λt, (n ≥ 1).

d. Check the normalization of these probabilities:

∞∑
n=0

Ln(t) = 1.

Exercise 11.3
Prove the result (129) for the root-mean square deviation of the decay times for an expo-
nential decay law.
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12. Neutrinos

The β-decay of the neutron is accompanied not only by the emission of an electron, but also
a very light neutral particle, the anti-neutrino. The existence of neutrinos was predicted by
Pauli in 1930 on the basis of energy conservation in β-decay. In view of later developments
the particle accompanying the electron is now refered to as the anti-neutrino. The name
neutrino is given to the particle emitted in β-decay process in which a positron is produced:

A
ZX→ A

Z−1X′ + e+ + ν. (130)

In these processes a proton is converted into a neutron, as in the decay

12
7N → 12

6C + e+ + ν,

illusttrated in fig. 8.1. This can only happen in unstable nuclei, as the free proton itself is
stable. Neutrinos and anti-neutrinos are very difficult to observe, and it took until 1956
before they were first detected experimentally by Reines and Cowan, using anti-neutrinos
from a nuclear reactor at Savannah River.

Pauli’s argument was based on the observation that the electrons produced in the decay
of the neutron have a continuous energy spectrum. Now if a neutron at rest would decay
into two particles, a proton and an electron, the electron would have a fixed energy; indeed
energy and momentum conservation imply

Ep + Ee = mnc
2, pp + pe = 0. (131)

Using the relativistic energy-momentum relation (355) the electron energy is solved from

Ee = mnc
2 −

√
p2
pc

2 +m2
pc

4 = mnc
2 −

√
p2
ec

2 +m2
pc

4

= mnc
2 −

√
E2
e −m2

ec
4 +m2

pc
4.

Solving for Ee:

Ee =
(m2

n −m2
p +m2

e)c
2

2mn

= 1.3 MeV. (132)

This is in contradiction with the observations, which show a continuous range of energies
mec

2 ≤ Ee ≤ 1.3 MeV for the electrons produced, as sketched in fig. 12.1.
When there are three particles in the decay, the continuous spectrum is easily explained.

In that case the energy and momentum conservation laws in the neutron rest frame become

Ep + Ee + Eν = mnc
2, pp + pe + pν = 0. (133)

Together with the 4 energy-momentum relations (355) for the individual particles, there
are 7 equations for 12 variables, which leaves sufficient room for a large range of momenta
pe and pν in the final state of the electron and the neutrino, and a corresponding range of
energies.
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Fig. 12.1: Energy spectrum of electrons from neutron decay.

Another argument for the existence of the neutrino, which was not yet available when
Pauli first made his proposal, is that the neutron, the proton and the electron are all
fermions (particles obeying Fermi-Dirac statistics), with spin 1/2 in units ~. As orbital
angular momenta are always quantized in integer number of this fundamental unit, the
conservation of angular momentum would be violated if β-decay of the neutron would not
involve a third spin-1/2 particle. This immediately implies that the neutrino must be a
fermion as well.

The mass of the neutrino is not known, but upper limits have been set by various
experiments. A firm upper limit is mν < 1 eV/c2, but it is likely that the actual mass is
still 10-100 times smaller. This indicates that neutrinos are several million times lighter
than electrons. Such small masses are not directly measurable. Moreover, as neutrinos have
no electric charge their presence can not be established by any electromagnetic interactions.
This makes neutrinos extremely difficult to detect.

The first detection of anti-neutrinos was actually made by running the β-decay in a
kind of reverse mode, by scattering anti-neutrinos with nuclei and looking for the reaction

ν̄ + p+ → e+ + n. (134)

The probability of this process, as expressed by the scattering cross section, is extremely
small, but non-zero. Therefore if one has a very intense neutrino source, such reactions can
actually be observed in small numbers. Reines and Cowan used the anti-neutrinos from
the nuclear reactor in the Savannah River power plant to bombard a tank with cadmium
chloride Cd Cl2. Whenever a positron was produced, it would immediately annihilate
an electron in the fluid and produce characteristic γ-rays. To make sure the positron
was produced in the reaction (134), they also looked for the signal of the neutron being
absorbed by a cadmium nucleus under emission of another γ-ray:

108Cd + n → 109Cd + γ. (135)

By observing such events at the rate anticipated in view of the number of anti-neutrinos
expected to arrive from the nuclear reactor, they established the presence of these anti-
neutrinos. An important observation was subsequently made by Davis and Harmer, who
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established that the reaction
ν̄ + n → e− + p+, (136)

does not occur, whilst the similar reaction using neutrinos instead of anti-neutrinos is actu-
ally observed. This proves that neutrinos and anti-neutrinos are indeed different particles.
This difference can be expressed by assigning to electrons and neutrinos a new conserved
quantum number, called lepton number:

Le− = Lν = +1, (137)

and to positrons and anti-neutrinos the opposite lepton number:

Le+ = Lν̄ = −1. (138)

Nucleons are assigned a vanishing lepton number:

Lp = Ln = 0.

The absence of the reaction (136) can now be explained as it violates the conservation of
lepton number, whereas the reaction (134) and

ν + n → e− + p+, (139)

do respect the conservation of lepton number, and therefore actually occur.
In some sense the conservation of lepton number is like the conservation of electric

charge. However, there is an important difference: the conservation of electric charge is
closely linked to the properties of the electro-magnetic field and is required by Maxwell’s
equations. In classical terms, electric field lines can not vanish or end in empty space. No
such explanation can be given for the conservation of lepton number, as there is no field
connected to it. Nevertheless, although theoretically it might be possible that there are
processes in nature which violate lepton number, no such violation has ever been observed
in any experiment.

Exercise 12.1
On the basis of conservation laws such as charge, lepton number and baryon number
indicate which of the following reactions are possible or impossible, and why:

a. p+ + e− → n+ ν
b. p+ + e− → n+ ν̄
c. n+ e− → p+ + ν
d. n+ e+ → p+ + ν̄
e. p+ + ν̄ → n+ e+

f. p+ + ν → n+ e+

40



13. Anti-matter

Cosmic rays
In the early part of the 20th century it was discovered there is a background of ionizing
radiation in our natural environment. Theodor Wulf and Victor Hess established, that this
radiation had no terrestrial origin, such as radioactive minerals. In 1912 Hess made a num-
ber of rather courageous balloon flights to atmospheric altitudes above 5 km, carrying on
board a very sensitive electrometer of a type developed by Wulf. He definitely established
the increase of the intensity of this radiation with altitude, and thereby its extraterrestrial
origin. Thus cosmic rays were discovered.

In the course of time it became clear, that cosmic rays consist of very energetic particles
bombarding the earth. Most of these particles are protons or heavier nuclei, which upon
entering the atmosphere collide with a nitrogen or oxygen nucleus. Such collisions then
create a shower of secondary particles. This is the origin of the extended air showers,
correlated bursts of energetic particles raining down on earth over large areas, as discovered
by Pierre Auger in the 1930’s. For a long period of time, until the advent of modern high-
energy accelerators in the 1950’s, cosmic rays were the only source of very high-energy
particles available to experimentalists. As such they were the source for a number of
important discoveries,

Anti-particles
In 1932 Carl Anderson established the existence of positively charged electrons, or positrons
in cosmic rays.

Fig. 13.1: First evidence of the existence of the positron

Anderson studied the tracks of charged cosmic particles in a cloud chamber, placed in a
magnetic field. In the magnetic field the tracks of charged particles are curved, the radius
of curvature depending on the charge-to-mass ratio q/m and the energy of the particle.
Positively and negatively charged particles curve in opposite directions, but to establish
this direction one must know on what side the particle entered the cloud chamber. This
Anderson determined by placing a slab of lead in the middle of the cloud chamber. During
passage throught this slab the particle lost energy, and its radius of curvature decreased. In
Fig. 13.1 the track of a positron is seen, entering from below and curving to the left, in the
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anti-clockwise direction. The charge-to-mass ratio of the particle was equal in magnitude
to e/me of the electron, but opposite in sign.

Two years earlier Paul Dirac had actually predicted the existence of positrons on the
basis of his relativistic electron theory. The positron and electron have opposite charge
and can annihilate each other, by simultaneous creation of two gamma rays:

e+ + e− → γ + γ. (140)

The total energy and momentum of the gamma rays equal those of the original charged
particles; this energy is at least equal to the combined rest mass of the electron and
positron: twice 0.511 MeV. Thus energy and momentum are conserved, as is the total
electric charge, but neither the individual charges nor the individual masses of the original
particles are preserved.

Later, other particles such as protons, neutrons and neutrinos turned out to have cor-
responding anti-particles as well; conventionally anti-particles are denoted by an overbar,
e.g. p̄ and n̄ for the anti-proton and anti-neutron, respectively4. In all cases particles and
anti-particles have the same mass, but opposite charge and other quantum numbers, such
as lepton number. We already briefly touched upon this in our discussion of neutrinos,
sect. 12. In fact, the existence of anti-nucleons makes it possible to associate a conserved
quantum number with nucleons, the baryon number, in the same way as the lepton num-
ber is associated with electrons and neutrinos. By convention, the baryon number takes a
positive value for the proton and neutron:

Bp = Bn = +1, (141)

and the opposite negative value for the anti-proton and anti-neutron:

Bp̄ = Bn̄ = −1. (142)

The leptons have vanishing baryon number:

Be = Bν = 0. (143)

It turns out, that in all reactions observed to date the total baryon number is conserved.
Like the conservation of lepton number, this is a phenomenological conservation law, not
associated with the existence of a Maxwell-type field.

The assignments of baryon and lepton numbers indicates the existence of two sepa-
rate classes of particles, baryons and leptons, each characterized by their own conserved
quantum number.

The existence of anti-particles is a general consequence of relativistic quantum theory.
Nowadays positrons and anti-protons can be made in such abundance that they can be

4Sometimes it is more convenient to identify particles or anti-particles by their charge, e.g. e− and e+

for electrons and positrons, or p+ and p− for protons and anti-protons; of course, this does not work for
neutral particles.
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used in high-energy accelerators to collide with electrons or protons, thereby creating ex-
treme energy densities used to search for other new forms of matter.

Exercise 13.1
Check which of the following processes are allowed or forbidden by the conservation laws
of charge, lepton number or baryon number.

a. p+ n→ ē+ ν
b. p+ n̄→ e+ ν̄
c. n̄+ ē→ p+ ν̄
d. ν + p̄→ e+ n̄
e. p̄+ n→ e+ ν̄
f. ē+ ν → p̄+ n
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14. The photon

The photon was among the first elementary particles known in physics, but its recognition
as a particle took quite a long time. It started in 1900 with Planck’s discovery of the law
of black body radiation and his derivation of this law, based on discretizing the energy of
monochromatic radiation emitted by a perfect black body at temperature T in quanta

E = hν, (144)

where ν is the frequency. The next step was taken by Einstein in 1905. He argued
that quanta represent the actual state of free radiation, and that this could explain the
photoelectric effect: if light falls on a conducting surface, electrons are set free with an
energy which depends only on the frequency of the light, not its intensity:

Ee = hν − P, (145)

where P is the fixed energy the electron needs to escape form the surface of the conductor.
In contrast, the number of electrons emitted does depend on the intensity. This effect
could be explained simply if each electron absorbs a single photon, such that it gains a
fixed energy hν; moreover, the number of electrons emitted is then proportional to the
number of incident photons per unit of area.

In 1917 Einstein took the next step, assigning to photons a momentum of size q = h/λ
in the direction of motion:

q =
hk

2π
≡ ~k, (146)

with k the wave vector, of magnitude

|k| = ω

c
=

2πν

c
=

2π

λ
. (147)

This implies that the photon is a particle with vanishing rest mass, always moving at the
speed of light:

E2 = h2ν2 = ~2k2c2 = q2c2. (148)

This is to be compared with the energy-momentum relation for a massive particle with
momentum p, like the electron:

E2 = m2c4 + p2c2. (149)

These energy-momentum relations become the same upon taking m = 0.
The final step in the story of the photon was taken by Arthur Compton, and inde-

pendently by Peter Debije, who analyzed elastic scattering of a photon with an electron
in purely kinematical terms, using energy and momentum conservation. If the electron is
originally at rest, and we denote the momenta and energies after scattering by a prime, we
find

q = q′ + p′, Eγ +mec
2 = E ′γ +

√
m2
ec

4 + p′ 2c2. (150)
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If θ denotes the scattering angle of the photon:

q · q′ = |q||q′| cos θ, (151)

then we find from eqs. (146) - (151) that in vacuum

λ′ − λ =
c

ν ′
− c

ν
=

h

mec
(1− cos θ) . (152)

This relation was verified by Compton in an experiment; the quantity

λe =
h

mec
≈ 2.426× 10−12 m, (153)

is called the Compton wave length of the electron. The Compton experiment definitely
etablished the status of the photon as a particle. By conservation of angular momentum
in atomic transitions, where photons are emitted or absorbed, it is established that the
photon has spin s = 1.

Exercise 14.1
Eq. (152) states how the wave length (or energy) of a photon is changed when it scatters
off an electron at rest through an angle θ; it does not predict the angle or the wave-length
shift. The angular dependence depends on further parameters, e.g. the impact parameter.
This information is encoded in the differential scattering cross section, in this case the
Thomson cross section. The differential cross section therefore contains more information
than the scattering kinematics.

a. Consider the photon-electron system in the CM frame, in which the total momentum
vanishes. By analyzing the energy-momentum conservation conditions, show that the
energies of the photon and electron can not change in the collision, and that only the
direction of the momenta before and after the collision can (and generally will) be different.
b. Explain why the energy of the electron and photon can change in the lab frame, in which
the electron is originally at rest. Consider in particular the case θ = 180◦.
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Fig. 15.1: X-ray and electron diffraction patterns from scattering by aluminum

15. Matter waves

The quantum theory of light assigns particle properties (energy and momentum) to light
waves. In 1923 Louis De Broglie proposed that matter possesses wave properties. The
correspondence is basically the same as for the photon:

E = ~ω, p = ~k, (154)

with

ω = 2πν, |k| = ω

c
=

2π

λ
. (155)

Here λ is the wave length in empty space. The relativistic energy momentum relation
between particles then takes the form

E2 = m2c4 + p2c2 ⇔ ω2 =
4π2c2

λ2
c

+ k2c2, (156)

with

λc =
2π~
mc

. (157)

This characteristic wave length is known as the Compton wave length.
De Broglies proposal was confirmed in 1927 by the experiments of Davisson and Germer,

who scattered electrons from a crystal lattice and found a diffraction pattern as expected
for waves; fig. 15.1 shows a comparison of x-ray and electron diffraction patterns. The
wave-particle duality is at the heart of quantum mechanics, as discussed in sect. 5. It plays
a major role in particle physics; indeed, according to quantum field theory all particles
can be interpreted as quanta associated with some type of wave field. To a large extend
particles can therefore be distinguished by the kind of wave equation their corresponding
fields satisfy.
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16. Nucleon structure

Fig. 16.1: Proton form factor from ep-scattering

In 1960 Robert Hofstadter studied the scattering of electrons, with energies in the range
200-550 MeV, on stationary protons in a hydrogen-rich target. His measurements indicated
that protons are not point-like: the differential cross section approximately matches a finite
charge distribution described by a form factor of the type (112):

F (q) =
1

(1 + a2q2/~2)2
.

This form factor corresponds to an exponential charge distribution (110) of characteristic
size a, which in the case of the proton has the value

a = 0.24 fm ⇔ ~2

a2
= 0.71 GeV2/c2. (158)

Some ten years later Friedmann, Kendall and Taylor carried out a similar experiment
with electron energies of about 5 GeV, to study the inelastic scattering of electrons and
protons. In inelastic processes some of the energy of the electron is not used to transfer
kinetic energy to the proton, but to excite internal degrees of freedom of the proton. This
becomes evident in the final state of the process, as the proton must emit one or more
new particles to get rid of the additional internal energy and return to the ground state.
In principle the new particle can be a photon, but more often it is a strongly interacting
particle like a pion, which we will encounter shortly.

Fig. 16.2 shows the cross section for electron-proton scattering, at an incident electron
energy of 4.88 GeV, as a function of the scattered electron energy at a fixed scattering
angle of 10◦. The electrons scattering elastically from a proton at rest have a fixed energy
after scattering close to 4.5 GeV. These elastically scattered electrons therefore form a very
narrow peak, shown in reduced size at the far right end of the spectrum.
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Fig. 16.2: Inelastic electron-proton scattering

If the scattered electron comes out of the collision with a lower energy, some energy has
been transfered to excite internal degrees of freedom of the proton. As the figure shows, this
happens preferentially at certain energies characterized by the peaks in the distribution.
This is a strong indication for internal structure of the proton. In fact, Friedmann et al.
also observed some rare scattering over very large angles, just like in Rutherford scattering.
This hints at the existence of small point-like objects inside the proton. These objects were
refered to by the neutral name of partons. Nowadays, we identify them with point-like
elementary particles known as quarks.

Similar results were found for the neutron, which possesses a finite charge distribution
and inelastic scattering peaks as well. The mere fact that electrons interact with the
neutron already shows, that the neutron must contain internal charges, as the electron is
insensitive to the strong interactions. Of course, the total charge of the neutron vanishes,
therefore it must contain equal amounts of positive and negative charge. Nevertheless both
the proton and neutron both have a non-zero magnetic moment:

µp = 2.79µN , µn = −1.91µN , (159)

where µN is the nuclear magneton, defined as

µN =
e~

2mp

= 3.152× 10−14 MeV/T. (160)

The proton and neutron magnetic moments (159) result from the spins and angular mo-
mentum of their charged constituents, although they are difficult to calculate theoretically
from first principles.

Exercise 16.1
An electron with an energy of 4.9 GeV scatters elastically with a proton at rest. Calculate
the electron energy if it scatters over an angle θ = 10◦, and over angles θ = 20◦ and 45◦ as
well.
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17. Hadrons

In sect. 9 we established, that the typical size of a nucleus is ∼ 5 fm. This gives a rough
estimate for the range of the strong interactions between nucleons. If these interactions are
mediated by some kind of particle, associated with a nuclear field, this particle must have
a Compton wave length comparable to the range of the interactions; this implies that its
mass is of the order of 100 MeV/c2. The existence of such a particle associated with the
strong nuclear interactions was proposed by Hideki Yukawa in 1935. By 1947 a number
of particles with masses in this range were identified in cosmic rays by Powell, Occhialini
and co-workers. Three of them eventually turned out to be strongly interacting particles
of the kind Yukawa envisioned. These particles were called pions, and have the following
properties

particle charge (e) mass (MeV/c2)
π+ +1 139.6
π0 0 135.0
π− −1 139.6

In addition, the pions are spinless: s = 0, hence they are bosons. As can be guessed from
this table, the charged pions π+ and π− are each other’s anti-particle, with exactly equal
masses but opposite electric charges. In contrast, the neutral π0 has no anti-particle, or
rather: it is its own anti-particle, and it is somewhat lighter. This situation is similar to
that of the nucleons, which also have different charges, but almost equal masses.

Fig. 17.1: Partial hadron spectrum

After the discovery of the pions, many more strongly interacting particles with considerably
larger masses were identified in cosmic ray studies. The advent of modern high-energy
accelerators greatly extended the range of masses in which the particle spectrum could be
explored and by now hundreds of strongly interacting particles are known5. These strongly

5For a detailed overview, see: C. Amsler et al., Review of Particle Physics, Phys. Lett. B667 (2008);
all data are also available in digital format at: http://pdg.lbl.gov/
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interacting particles are collectively called hadrons. Fig. 17.1 shows the spectrum of some
of the lighter hadrons.

Hadrons fall naturally into two classes: the boson class of particles with integer spin
s = 0, 1, 2, ..., which are called mesons; and the fermion class of particles with odd half-
integer spin s = 1/2, 3/2, ..., known as baryons. Obviously, the pions (π) fall into the first
class, whilst the nucleons (N) fall into the second class.

The pions are the lightest of all hadrons; the next lightest ones are the neutral η-meson,
also with s = 0 and mass mη = 547.5 MeV/c2; and the triplet of ρ-mesons with electric
charges like the pions, but spin s = 1 and an average mass of about 769 MeV/c2.

The nucleons are the lightest baryons. Next in mass is the quadruplet of ∆-baryons,
with charges (+2,+1, 0,−1) and spin s = 3/2; the average mass is around 1232 MeV/c2.
Their also exist excited states of the nucleons, the N∗ doublet, with the same quantum
numbers as proton and neutron, but a considerably larger mass of 1440 MeV/c2. All these
baryons have their distinct anti-particles, the anti-baryons N̄ , ∆̄ and N̄∗, with opposite
electric charges.

An important difference between mesons and baryons is, that mesons carry no baryon
number, whereas baryons do:

Bπ = Bη = Bρ = 0,

BN = B∆ = BN∗ = +1,

BN̄ = B∆̄ = BN̄∗ = −1.

(161)

Experimentally, in all interactions of these particles the total baryon number is conserved.
This has important consequences related to the stability of these particles. For example,
the ∆- and N∗-baryons can decay to ordinary nucleons by emission of pions:

(∆, N∗)→ N + π. (162)

This includes e.g. the specific cases:

∆++ → p+ + π+, N∗ 0 → n+ π0 or N∗ 0 → p+ + π−. (163)

Because these interactions are strong, they happen very fast; indeed, the life-times of the
(∆, N∗)-baryons are of the order of a few times 10−24 sec. It is not difficult to see, that
these decays obey the conservation of baryon number. However, the ordinary nucleons
(p+, n) are the lightest baryons, hence there are no lighter ones for them to decay into.
Therefore, to the extent that the conservation of baryon number is an absolute and exact
conservation law, the nucleons must be stable. Experiments looking for proton decay have
established, that the proton life time is at least about 1030 years, or 1020 times the life-time
of the visible universe.

For mesons the situation is slightly different. As the π0, η and ρ0 are their own antiparticle,
they must have B = 0. Now the charged mesons have the same baryon number as their
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neutral counterparts: B = 0. Therefore the conservation of baryon number never forbids
their decay into other particles. Even so, there are different modes of decay which come
into play. Indeed, as the strong interactions are by nature fast, the dominant decay mode
of heavier mesons is usually through pion emission; for example, the ρ-mesons decay almost
exclusively into pions in about 4× 10−24 sec:

ρ± → π± + π0, ρ0 → π+ + π− or ρ0 → π0 + π0. (164)

But the pions themselves, being the lightest of all hadrons, can not decay by strong inter-
actions into lighter hadrons. Therefore they decay by electromagnetic or weak interactions.
Indeed, the neutral π0 decays predominantly into a pair of photons after about 10−16 sec,
whilst the charged pions decay by a form of β-decay into a lepton/anti-lepton pair, which
takes 2.6 × 10−8 sec. These times scales, although very short, are many orders of magni-
tude longer than those of the strong (hadronic) decays of the heavier mesons and baryons.
Thus, although pions are not protected by baryon number conservation and they are not
absolutely stable, they are much more stable than other mesons, with life times 108 or 1016

times longer than typical in hadronic interactions.

Exercise 17.1
a. Consider the decay N∗ → N + π; the decay time is ∆t = 2 × 10−24 sec. Compute the
difference in rest energy ∆E of the N∗- and N -baryons, and show numerically that

∆E∆t ≈ ~.

b. Write down all the possible ways the (N∗+, N∗ 0)-baryons can decay into a ∆-baryon
and a pion.
c. Argue on the basis of Heisenberg’s time-energy uncertainty relation whether the decay
of N∗ into ∆ will be faster or slower than the decay into N .

Exercise 17.2
a. In a nuclear interaction a charged pion is produced with an energy of 3 GeV. Its life
time in the rest frame is 2.6× 108 sec. How far will it travel on average before it decays?
b. And what is the expected distance covered by a ρ-meson of 30 GeV?
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18. Quarks

The large number of hadrons known, combined with the observed substructure of the
nucleons, indicates that hadrons are not simple elementary particles, but are actually
bound states of point-like constituents: quarks, and/or their anti-particles. Quarks were
introduced in the 1960’s to explain the known facts about the hadron spectrum by Gell-
Mann and Ne’eman. There must be at least two kinds of them, u and d, together with the
anti-quarks ū and d̄, distinguished by their fractional electric charges:

charge in units e quark type
2/3 u

- 1/3 d
- 2/3 ū

1/3 d̄

With these charge assignments a proton is made of three quarks of type (uud), whereas
a neutron contains three quarks of type (udd). Moreover, if quarks have spin s = 1/2 in
units ~, it it is clear that the nucleons, the lowest-energy states made of three quarks, have
spin 1/2 as well. Indeed, two u- or d-type quarks with opposite spin quantum numbers can
be put in the same lowest-energy state, an S-state of angular momentum, together with
a quark of different type, so as to have total spin angular momentum s = 1/2, without
violating the Pauli principle.

In contrast to baryons, mesons are bound states of quarks and anti-quarks: qq̄. For
example, the charged pions have quark content

π+ = (ud̄), π− = (dū), (165)

showing that indeed they are mutual anti-particles, whilst the neutral pion is a bound state
of same-type quark/anti-quark pairs. It turns out that the wave function is constructed
from an anti-symmetric combination:

π0 =
1√
2

(
uū− dd̄

)
, (166)

whereas the neutral η-meson represents the symmetric combination:

η =
1√
2

(
uū+ dd̄

)
. (167)

The baryon number of hadrons can now be reproduced by simply assigning a conserved
fractional baryon number to quarks and anti-quarks:

Bq =
1

3
, Bq̄ = −1

3
. (168)

This automatically explains why mesons have no baryon number.
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If quarks with fractional electric charges exist, it is natural to ask why particles with
fractional charges have never been observed in experiments. The explanation of the absence
of free particles with fractional charge must be found in the theory of quark interactions.
Indeed pions, being bound states of quarks and anti-quarks, can not be themselves the
quanta of a fundamental field of force; at best they can represent the effective mediators
of interactions between hadrons, which must have a deeper origin in strong interactions
between quarks.

The nature of fundamental quark interactions has been elucidated to a large extent in
the past 35 years. The theoretical description of these interactions has considerable simi-
larities with quantum electrodynamics (QED), the quantum version of Maxwell’s theory.
The theory of quark interactions is known as quantum chromodynamics (QCD), because
it assigns to any quark a new kind of charge; this charge exists in three types, coded by
colors usually chosen as red, green and blue (r, g, b). Thus every type of quark (like u or d)
actually exists in three different varieties: with an r-, g- or b-charge. The anti-quarks then
carry an anti-color charge (r̄, ḡ, b̄). There is a field of force acting on these color charges,
simply known as the color field, just like the electromagnetic field acts between electric
charges. The quanta of the color field are known as gluons, which play a similar role in
QCD as photons in QED. QCD will be discussed in more detail later on. One aspect to be
mentioned here is that in contrast to QED, in QCD the strength of the color interactions
increases with distance: interquark forces behave at larger distances like a classical spring.
This makes it difficult to separate color charges by large distances, and gives rise to the
phenomenon of color confinement, the observation that no free particles with bare color
charges exist, and therefore also no free particles with fractional electric charges.

The existence of color charges solves another riddle in the quark theory of hadrons,
which we have not yet touched upon. This riddle is posed by the existence of certain
baryon states like the ∆, which seem to defy the Pauli principle. Indeed, the ∆-baryons
are the lowest-mass particles with spin 3/2, which one would normally associate with three
quarks in an S-state of orbital angular momentum, with all spins are polarized in the same
sense. Now the quark content of these particles is

∆ = (∆++,∆+,∆0,∆−) = (uuu, uud, udd, ddd), (169)

as is easy to verify from their electric charges. It would thus seem that there exist bound
states of three u- or three d-quarks, all with the same spin and charge, in an S-state of
angular momentum. As quarks are fermions, this contradicts the Pauli principle. However,
the existence of color charges solves the riddle, by assigning to the three quarks all different
color charges. Thus the detailed quark content of the ∆++ would be

∆++ = (urugub), (170)

and therefore the three fermions are not in identical states. Although this may not seem
obvious, such a state of three color charges actually corresponds to a colorless (a ’white’)
hadron, and is not in conflict with the principle of color confinement mentioned earlier.
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Exercise 18.1
Explain why the asymmetric electric charges of the baryons, such as

N = (n0, p+), ∆ = (∆−,∆0,∆+,∆++),

together with their fermionic nature (s = 1/2), support the assignment of different frac-
tional charges (2/3, -1/3) to the u- and d-quarks.

Summary
Tabel 18.1 below summarizes the properties of quarks, leptons and their antiparticles we
have discussed so far.

particle spin electric color baryon lepton
charge multiplicity number number

u 1/2 2/3 3 1/3 0
d 1/2 -1/3 3 1/3 0
ν 1/2 0 1 0 1
e 1/2 -1 1 0 1
ū 1/2 -2/3 3̄ -1/3 0
d̄ 1/2 1/3 3̄ -1/3 0
ν̄ 1/2 0 1 0 -1
ē 1/2 1 1 0 -1

Table 18.1: Quantum numbers of stable quarks and leptons
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19. The muon

In the study of cosmics rays which produced the first evidence for the existence of strongly
interacting pions, Powell ad his colleagues also found evidence for a weakly interacting
charged particle with a mass slightly lower than the pion mass, which is since known as
the muon; see fig. 19.1. The muon turned out to be a spin-1/2 charged lepton, just like
the electron, but with a much larger mass;

mµ = 105.6 MeV/c2. (171)

Like the electron, the muon with negative charge is accompanied by an anti-particle of the
same mass and positive charge.

The muons in cosmic ray air showers are produced predominantly by the decay of
charged pions. In par. 17 we mentioned that charged pions decay into lepton/anti-lepton
pairs; in almost all cases (99.99%) this is a muon and a neutrino:

π+ → µ+ + νµ, π− → µ− + ν̄µ, (172)

The label µ has been attached to the symbol for the neutrino and anti-neutrino, because
this neutrino turns out to be different from the neutrino produced in ordinary β-decay. For
the same reason the neutrino produced in nuclear β-decay, accompanied by a positron, is
usually labeled νe, whilst the anti-neutrino accompanied by an electron is labeled ν̄e. For
example, the β-decay process of the free neutron is more precisely

n → p+ + e− + ν̄e. (173)

In very rare cases (about 1:104) charged pions can decay similarly by ordinary β-decay into
electrons or positrons:

π+ → e+ + νe, π− → e− + ν̄e. (174)

The experimental evidence for the difference between the two kinds of neutrinos comes
from studying the inverse reactions

νe + n → e− + p+, ν̄e + p+ → e+ + n, (175)

which were used by Reines and Cowan to establish the existence of the neutrino. The same
reactions using muon-neutrinos (νµ, ν̄µ) instead of electron neutrinos (νe, ν̄e) –for example
muon-neutrinos from pion-decay– have never been observed. Therefore muon-neutrinos
must be different from electron-neutrinos. On the other hand, the reactions

νµ + n → µ− + p+, ν̄µ + p+ → µ+ + n, (176)

have been observed, and are used in modern large-scale underground experiments to detect
high-energy muon-neutrinos of astrophysical or cosmic origin.

All reactions discussed above are in agreement with interpreting the muon and muon-
neutrino as a new pair of leptons, very similar to the electron and electron-neutrino; in
particular we can assign the same lepton numbers to these particles:

Lµ = Lνµ = +1, Lµ̄ = Lν̄µ = −1. (177)
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Fig. 19.1: Discovery of the pion and its muonic decay by Powell (1947)

Although the muon is considerably more stable than the pion, it decays after an average
life-time of 2.2× 10−6 seconds into an electron, a neutrino and an anti-neutrino:

µ− → e− + ν̄e + νµ, µ+ → e+ + νe + ν̄µ. (178)

Fig. 19.1 shows direct evidence of both pion and muon decay; in a photographic emulsion
a pion from a cosmic-ray air shower is seen to enter on the lower left, decaying into a muon
(moving to the right) and an unrecorded neutrino; the muon then decays into an electron
(right upper track) and an unseen neutrino/anti-neutrino pair.

Observe that the decay process (178) is actually a form of β decay, like the neutron
decay (173) and the rare pion decays (174), and thus a weak interaction process. That is
why the muon life-time is orders of magnitude longer than the average hadronic life-time
of the ρ or ∆, for example. Taking into account the assignments (177) the muon-decay
process is consistent with the laws of conservation of charge, of angular momentum (spin)
and of lepton number.

Finally, as the charged pions are actually bound states of a quark and anti-quark, we
can interpret the pion-decay (172) at a more fundamental level as a quark-annihilation
process:

u+ d̄ → µ+ + νµ, d+ ū → µ− + ν̄µ. (179)

Again, it is easy to verify that charge, baryon and lepton number are all conserved in these
transformation processes.

Exercise 19.1
a. A hydrogen-like atom can be made as a bound state of an electron e− and an anti-muon
µ+. What are the binding energy and the Bohr radius in the ground state?
b. Explain why this atom is not absolutely stable, and by what kind of process it decays.
c. Argue that the anti-atom made of e+ and µ− has the same energy levels. How can one
distinguish the atom and anti-atom from their decay products?
d. Another exotic type of atom is made as a bound state of a proton p+ and a muon µ−.
What are the ground-state binding energy and Bohr radius of this atom?
e. Why is this atom ustable and how does it decay?
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20. More quark and lepton families

After the muon was discovered, also new hadronic particles were identified in cosmic rays.
Among these there was a particularly strange spin-0 meson doublet of particles now known
as kaons: (K0, K+) and their anti-particles (K̄0, K̄−). The masses of these particles are

mK+ = 493.7 MeV/c2, mK0 = 497.7 MeV/c2. (180)

These mesons differ from the pions not only by their considerably larger mass, but also by
the fact that the K0 meson and the K̄0 anti-meson are different, whereas the π0 is its own
anti-particle. However, in some other respects the kaons actually resemble the pions; for
example, the dominant decay mode (64%) of the charged kaons is

K+ → µ+ + νµ K− → µ− + ν̄µ, (181)

which is a weak decay process, and the associated average life-time is also comparable to
that of the charged pions:

τK+ = 1.2× 10−8 s. (182)

Moreover, although the decay of charged kaons into pions: K+ → π+ +π0, is also possible,
it takes about the same time as the weak decay (181), which is very unusual for a seemingly
hadronic process. The decay of the neutral kaons is also rather unusual: sometimes a K0

decays relatively fast (in 0.9 × 10−10 seconds) into two pions, and sometimes it decays
more slowly (in about 5 × 10−8 seconds) into either three pions, or into a pion and a
lepton/anti-lepton pair, e.g.:

K0 → π− + e+ + νe, K0 → π− + µ+ + νµ. (183)

These processes involving a pion and a lepton/anti-lepton pair are called semi-leptonic
decay modes of the neutral kaons.

In fact, all these decay processes are actually weak decays, with corresponding long life-
times. This suggests that, like the pions, the kaons are stable under strong interactions.
Such stability is natural if kaons possess a new quantum number which is conserved under
strong interactions, but not under weak interactions. For obvious reasons this quantum
number is called strangeness S, and the assignments are:

SK0 = SK+ = +1, SK̄0 = SK̄− = −1, (184)

whilst the hadrons we have encountered before, like pions and nucleons, all have strangeness
S = 0. The only explanation for such a new quantum number is the existence of a new type
of quark, appropriately called the strange quark s, with charge −1/3 and baryon number
+1/3, such that the kaons are bound states

K+ = (us̄), K0 = (ds̄), K̄0 = (d̄s), K̄− = (ūs). (185)
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Observe, that the definitions (184) then result in assigning negative strangeness to the
s-quark:

Ss = −1, Ss̄ = +1, (186)

which is a historical accident, much like the assignement of negative electric charge −e to
the electron.

The semi-leptonic decay modes of the neutral kaons can now be understood, at least
at a qualitative level, if the s-quark is stable under strong interactions (acting on its color
charge only), but is transformed by weak interactions into a u-quark:

s → u+ e− + ν̄e or s → u+ µ− + ν̄µ. (187)

The first decay mode is actually the direct equivalent of the transformation of the d-
quark into a u-quark responsible for the β-decay of the neutron, whilst the second, more
common decay mode is its muonic counterpart. These weak decay processes obviously
do not conserve the total strangeness quantum number S, hence there is no absolute
conservation law for this quantity. The leptonic decay of the charged kaons is similarly the
result of a quark annihilation process like (179):

u+ s̄ → µ+ + νµ, ū+ s → µ− + ν̄µ. (188)

Now what about the decay of the charged kaons into pions? These decay modes look
similar to the decay of the ρ-mesons, but they are really very different. In ρ-decay a pion is
created by strong interactions, at a characteristic time-scale of 10−24 seconds. In K-decay
a pion is created by transforming a strange quark into an up-quark:

s → u+ ū+ d, s̄ → ū+ u+ d̄, (189)

which is a weak interaction process like (187), in which the lepton/anti-lepton pair has
been replaced by a quark/anti-quark pair. This allows reactions like

(us̄) → (uū) + (ud̄) or K+ → π0 + π+. (190)

As a result the decay of charged kaons into two pions is really a weak decay process, rather
than a strong interaction process. This explains why the decay time of kaons into pions
is similar to the decay time of kaons into leptons. It also reveals that there is a kind of
hidden quark-lepton universality in weak interactions.

Exercise 20.1
Check that the decay modes (187) and (189), and the annihilation modes (188) of the
strange quark all conserve charge, baryon number and lepton number and are consistent
with the conservation of color charge and angular momentum.
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The relation between the s- and the d-quark is seen to be very similar to the relation
between the electron and the muon: one is just a more massive copy of the other, with the
same charge, spin, baryon and lepton number number. Now the muon was accompanied by
its own uncharged partner, the muon neutrino. To complete the parallel between quarks
and leptons that is shown in table 18.1 there should also exist a heavy partner of the
u-quark with charge +2/3; this quark has been given the name charmed quark c. Such a
new quark was independently discovered in 1974 by Richter in Stanford, using collisions
of electrons and positrons, and Ting in Brookhaven using high-energy protons colliding
with nucleons in a beryllium target. Both experiments observed the existence of neutral
cc̄ bound state called the J/Ψ-meson6. This meson has a mass of

mJ/Ψ = 3.097 GeV/c2, (191)

implying that the mass of a single c-quark is considerably larger than a proton.
With the discovery of the c-quark the table of quarks and leptons had regained its

balance; for every quark and lepton in table 18.1: (u, d, νe, e), there is a heavier counter
part (c, s, νµ, µ) with exactly the same charges/quantum numbers. In the last quarter of
the 20th century a complete third family of quarks and leptons has been found, called top-
and bottom quark, tau-neutrino and tau-lepton, denoted by (t, b, ντ , τ). Again, they are
equal in all respects to their first- and second-family cousins, except for their masses which
are still an order of magnitude larger:

mt = 172 GeV/c2, mb = 4.2 GeV/c2, mτ = 1.78 GeV/c2. (192)

None of the neutrino masses are presently known, but there are measurements establishing
their mass differences. Together with the bounds on the electron-neutrino mass, these
indicate that neutrinos must be extremely light compared to all other particles including
the electron, of the order of 1 eV/c2 or below. Table 20.1 summarizes some properties of
the three families of quarks and leptons.

electric color baryon lepton fam. I fam. II fam. III
charge Q multiplicity number B number L

2/3 3 1/3 0 u c t
−1/3 3 1/3 0 d s b

0 1 0 1 νe νµ ντ
−1 1 0 1 e µ τ
−2/3 3 −1/3 0 ū c̄ t̄

1/3 3 −1/3 0 d̄ s̄ b̄
0 1 0 −1 ν̄e ν̄µ ν̄τ
1 1 0 −1 ē µ̄ τ̄

Table 20.1: Properties of known quarks and leptons.

6Its double name comes from the names it was given by its two discoverers, J by Ting and Ψ by Richter.
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21. Weak interactions

Quarks carry a color charge, and interact through the exchange of gluons. Quarks and
charged leptons also carry an electric charge, and they interact with each other by the
exchange of photons. Neutrinos carry neither color charges nor electric charge, but are still
known to interact with both leptons and quarks. These interactions are weak, in the sense
that the probability for a neutrino to scatter with other particles, though non-vanishing, is
very small. On the other hand, of the subatomic interactions the weak interactions are the
most universal, as all quarks and leptons participate in weak interactions. For example,
all β-decay type processes are mediated by the weak interactions.

Obviously, weak interactions do not act through electric or color charges, as neutrinos
have neither. In fact, there is no kind of strictly conserved charge associated with weak
interactions. However, there are quantum numbers one can associate with the weak inter-
actions of particles which are approximately conserved and very useful in understanding
the nature of the weak interactions. These quantum numbers characterizing the weak in-
teractions of particles are called isospin and hypercharge. As we will see below, they would
be well-defined and strictly conserved quantities in a world with only massless particles.
It is only because weakly interacting particles have masses that the assignment of these
quantum numbers is problematic, and their conservation in interactions, like scattering or
decay, is not exact.

To gain an understanding of weak interactions, we consider a famous experiment by
Chien-Shiung Wu (1957). She measured the spin of electrons emitted by a radioactive
cobalt source polarized at low temperature in a magnetic field; see fig. 21.1.

Fig. 21.1: Schematic set-up of the parity violation experiment of C.S. Wu.

In the experiment, 60Co nuclei are aligned in a magnetic field. These nuclei are unstable
and decay by β-decay into a stable 60Ni nucleus, an electron and an anti-neutrino:

60
27Co → 60

28Ni + e+ ν̄. (193)

The conservation of angular momentum requires, that in this process the electron and the
anti-neutrino together carry way one unit of spin7. The remarkable result of the experiment

7The β-decay of 60Co is actually followed by the emission of high-energy γ-rays; as this complication is
not relevant to the rest of our argument, we do not account for the complete angular-momentum balance
here.
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was, that the electrons were preferentially emitted in a direction opposite to the magnetic
field, with their spin parallel to the magnetic field. This implied, that the anti-neutrinos
were emitted in the other hemisphere, in the direction of the magnetic field, with their spin
also parallel to the direction of the magnetic field, i.e. parallel to the direction of motion.

The projection of a particle’s spin on the direction of its momentum is called the helicity.
For an electron it can be ±1/2 (in units ~), but this is an observer-dependent quantity.
Indeed, if the electron moves with velocity v in the direction of its spin, then its helicity is
+1/2. However, w.r.t. another observer moving with velocity u > v in the same direction,
the electron seems to move in the opposite direction, although the direction of its spin is
not changed. Therefore in the frame of the second observer the helicity is −1/2.

The above argument becomes invalid for massless particles. As they move at the
speed of light, there exist no inertial frames moving faster, with respect to which the
velocity reverses sign. Hence for relativistic particles helicity is a well-defined and observer-
independent concept. The invariant quantity characterizing the spin of a massless particle
in its direction of motion is also called its handedness or chirality: a massless particle is
called right-handed if its spin points in the same direction as its momentum, and left-
handed if its spin is anti-parallel to its momentum. It is an invariant quantity in the sense
that all inertial observers will always agree on the chirality of a massless particle.

Now neutrinos are so light, that even if their energy is very small they practically move
at the velocity of light. This is certainly true for neutrinos emitted by 60Co nuclei. At
the time C.S. Wu performed her experiment it was in fact widely assumed that neutrinos
were strictly massless. Therefore the handedness of the anti-neutrinos was considered a
fundamental property of the neutrinos produced in β-decay. In contrast, the electron
polarization (their apparent handedness in the rest frame of the decaying Co-nucleus) is
not an intrinsic property, but dictated in this experiment by the conservation of angular
momentum.

As a (massless) right-handed anti-neutrino is the anti-particle of a (massless) left-
handed neutrino, the rule infered from this and later experiments was: neutrinos produced
in weak decay processes (β-decay) are always left-handed, anti-neutrinos are right-handed.
This rule says nothing about the existence of right-handed neutrinos or left-handed anti-
neutrinos; it just says that if they exist, they are not produced in weak interactions. And
since they also don’t have electromagnetic or color interactions, if they exist they are for all
practical purposes non-interacting and non-observable (barring any gravitational effects).

The fact that the interactions for left- and right-handed neutrinos are different (if the
latter exist at all), implies that nature is not invariant under mirror symmetry, or parity
transformations. Consider fig. 21.2; it shows a mirror in the x-y-plane, and a vector (which
can be associated with linear motion) pointing along the z-axis. Of course, in the mirror the
vector will point in the opposite direction. In contrast, a vector parallel to the plane of the
mirror (in the x- or y-direction) will have the same direction in the mirror. Mathematically
the mirror performs the operation z → −z.
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Fig. 21.2: Mirror reflection of linear and rotational motion.

Fig. 21.2 also shows a rotational motion around the z-axis, which we associate with an axial
vector (or pseudo-vector) in the z-direction. Now in the mirror the rotational motion, being
confined to the x-y-plane, looks exactly the same, no reversal of the direction of rotation
takes place, and we would associate the same axial vector with the rotation on both sides
of the mirror. Hence axial vectors in the z-direction do not change sign under reflection
in the x-y-plane. In contrast, rotations in the x-z- or y-z-plane are reversed in the mirror,
and axial vectors in the x-y-plane do change their orientation in the mirror. In all cases
we therefore find: under reflections real vectors (as associated with linear motion) and
axial vectors (as associated with rotational motion) behave under reflections in opposite
ways. In particular after reflection a left-handed neutrino becomes a right-handed neutrino.
But a left-handed neutrino has weak interactions, whilst a right-handed one does not; in
particular, the mirror process of β-decay (in which a right-handed neutrino or a left-handed
anti-neutrino is produced) does not occur in nature. Therefore the laws of nature are not
invariant under reflection: parity (invariance under a mirror transformation like z → −z)
is violated.

Electro-weak unification
On the basis of this and other experiments, the theory of weak interactions is based on the
assumption that in a world with massless quarks and leptons the interactions of left- and
right-handed matter particles are different. In such a world there are actually two kinds
of interactions, each associated with a conserved charge called isospin and hypercharge,
respectively. More precisely, isospin and hypercharge are associated with fields that act on
these charges, and that are created by these charges and their currents. Thus the weak
charges are in the same class as electric charges and color charges, which couple a particle to
the electromagnetic and color fields, respectively. However, the weak charges are assigned
in such a way that only left-handed quarks and leptons carry an isospin charge, whilst
left- and right-handed particles both carry hypercharge, but in different amounts. In this
scheme parity is doubly violated: both by the isospin interactions and by the hypercharge
interactions.
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The hypercharge is rather simple to understand; it is a number y assigned to any particle
to characterize how strongly it couples to the hypercharge field, just like the electric charge
indicates the strength of the coupling of a particle to the electromagnetic field. The main
difference is, that hypercharge is different for particles with different chirality, which is not
the case for electric charge.

In contrast, isospin is a multi-valued charge, similar to color charge. Thus, a quark or
lepton can appear in two different isospin states; indeed, this is precisely why there are two
different left-handed quarks and leptons in each particle family. More generally, one can
think of isospin as a vector in some abstract space (a subspace of the quantum-mechanical
Hilbert space), which behaves like ordinary spin: particles can appear in singlets, doublets,
triplets, etc., characterized by an isospin quantum number τ , with the particles in the same
multiplet distinguished by the component in a fixed direction, usually called τ3. This third
isospin component can take (2τ + 1) values8:

τ3 = τ, τ − 1, ...,−τ. (194)

For a singlet, there is only one state: τ = τ3 = 0; for a doublet the states are τ = 1/2,
τ3 = (+1/2,−1/2); for a triplet: τ = 1, τ3 = (+1, 0,−1); etc. In this language, right-
handed quarks and leptons are iso-singlets, whilst left-handed quarks and leptons form
iso-doublets. In table 21.1 we present the detailed assignment of isospin and hypercharge
to quarks and leptons.

particle τ τ3 y q
uL 1/2 +1/2 1/6 2/3
dL 1/2 −1/2 1/6 −1/3
uR 0 0 2/3 2/3
dR 0 0 −1/3 −1/3
νeL 1/2 +1/2 −1/2 0
eL 1/2 −1/2 −1/2 −1
νeR 0 0 0 0
eR 0 0 −1 −1

Table 21.1: Isospin and hypercharge assignments in a quark-lepton family.

Here the subscript (L,R) denotes the chirality of the particle. We have included the
hypothetical right-handed neutrino, although it does not have any weak or other observable
charges. The same isospin and hypercharge are assigned to the quarks and leptons in the
other families: s-quarks and b-quarks the same as d-quarks, muons and tau-leptons the
same as electrons, etc. We emphasize that the isospin and hypercharge assignments are
strictly valid only in a world of massless particles, which have well-defined chirality.

In the real world we observe, quarks and leptons are not massless, and the helicity of a
particle becomes observer-dependent. That implies that also the isospin and hypercharge
become observer-dependent: a particle which changes its state of motion can also change

8A more detailed discussion of isospin is to be found in appendix E.
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its weak charges. In this world these charges are therefore not conserved. However, there
is one exception. The combination y + τ3 is the same for left- and right-handed particles;
in fact this combination can be seen to equal the electric charge:

q = y + τ3. (195)

Therefore this charge is conserved also in the real world for massive particles: the electric
charge, being the same for both helicity states of the particle, does not depend on the
state of motion of the particle. It turns out that not only the electric charge equals
the combination of hypercharge and third isospin component, in a literal sense it is the
electric charge: the electromagnetic field is effectively a combination of the hypercharge
field and the third component of the isospin field. What we call the weak interactions
are the remaining interactions which couple to non-conserved components of isospin and
hypercharge. This can work in practice only, if these weak isospin and hypercharge field
components do not have a long range like the electromagnetic field, but fall of exponentially
fast over a finite distance away from the charges. In quantum language this implies, that
the field quanta of the weak interactions are massive spin-1 particles; they are called
intermediate vector bosons, of which there are three: (W+,W−, Z0). The charged W±-
bosons are each others anti-particle and associated with isospin; therefore they only couple
to left-handed quarks and leptons. The Z0 is like a massive photon, associated with a
mixture of isospin and hypercharge fields, but one which still couples differently to left-
and right-handed particles. The photon itself is also a mixture of isospin and hypercharge
states, but one that couples excusively to the electric charge, which is the same for left-
and right-handed particles. As electric charge is strictly conserved, the photon can remain
a massless particle in the real world of massive quarks and leptons.

The upshot of this discussion is, that there is a close connection between weak and
electromagnetic interactions: they have a common origin in the combined isospin and hy-
percharge fields and charges. This common origin is hidden by the fact that quarks and
leptons have a non-zero mass, but in an environment where all these particles are relativis-
tic and effectively behave as massless particles, the isospin and hypercharge framework
provides a better and more accurate description of the physics. Such an environment was
presumably provided in the early universe, when temperatures far exceeded the rest-energy
of intermediate vector bosons, quarks and leptons. Later in these lectures we return to the
weak interactions to make these arguments more quantative.
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22. Quantum field theory

We have become acquainted with two forms of matter: quarks and leptons, which together
provide the ultimate building blocks for atoms. What breathes life into matter, and makes
matter dynamical, are the various interactions between the building blocks. We have al-
ready encountered three kinds of fundamental interactions between quarks and leptons:
- colordynamics, acting on particles carrying color charges;
- electrodynamics, acting on particles carrying electric charge;
- weak interactions, acting on all quarks and leptons via isospin and hypercharge.
In principle we should also add gravity to this trio, as gravitational forces are not reducible
to any of the three interactions above. However, gravity is so much weaker on the scale of
quarks and leptons, that it is completely irrelevant for understanding their observed dy-
namics. Only on cosmological scales and in extreme astrophysical environments is gravity
expected to play a role, in particular in explaining the evolution of matter in the early
universe and the formation of nuclei in the interior of stars. In the following we will re-
strict ourselves to the interactions of quarks and leptons in Minkowski space-time, where
non-trivial gravitational effects are absent.

The general framework at our disposal for the description of matter and its interactions
is relativistic Quantum Field Theory (QFT). Relativistic QFT extends the matter-wave
duality to the level where all particles are considered to be quanta of a corresponding field,
similar to the way that photons are the quanta of the electromagnetic field. We briefly
discussed this in sect. 15, based on the Planck-Einstein-De Broglie particle-wave duality
relations

E = ~ω, p = ~k, (196)

where ω and k are the angular frequency and wave vector of a monochromatic plane wave
associated with the particle. The relativistic energy-momentum relation then translates
into a dispersion relation for the frequency and wave vector of the plane waves:

E2 = m2c4 + p2c2 ⇔ ω2 =
4π2c2

λ2
c

+ k2c2, (197)

with λc the Compton wave length of the particle. The particular plane wave is of the form9

Ψ = Aei(k·r−ωt), (198)

and satisfies the wave equation10

(
−~2 � +m2c2

)
Ψ ≡

(
~2

c2

∂2

∂t2
− ~2∇2 +m2c2

)
Ψ = 0. (199)

Via the plane-wave solutions (198), this relativistic wave equation is equivalent to the
dispersion relation (197). Eq. (199) is generally known as the Klein-Gordon equation. It

9Here and in the following sections we will treat the fields as complex; for real fields in expressions like
(198) one is supposed to take the real part.

10The box operator � was introduced in appendix F, eq. (198).
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follows, that any field describing free particles with an energy-momentum relation (197)
must satisfy the Klein-Gordon equation, irrespective of what other equations are imposed
on it.
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23. Dirac fields

Free particles without spin are completely characterized by their mass, which fixes their
energy-momentum relation (197). Since no other kinematical information is necessary
to describe their motion in Minkoswki space-time, the Klein-Gordon equation provides a
complete starting point for the quantum theory of spin-0 particles.

This is not true for particle with spin, including all quarks and leptons. Their wave
functions, and the fields from which they are constructed, must have several components
describing states of different polarization. The relativistic equation for spin-1/2 particles
was developed by Dirac. The starting point for its derivation is the fact that spin-1/2
particles have two polarization states with spin eigenvalues ±~/2. The spin operators for
such particles can be represented by the 2 × 2 Pauli matrices; in this representation the
spin operators Σ are defined by

Σ =
~
2

σ, ⇒ [Σi,Σj] = i~ εijk Σk. (200)

Therefore we incorporate spin in the field-description of fermions by introducing a 2-
component field

ψ =

[
ψ1

ψ2

]
, (201)

of which the components represent the polarization states. Now the Pauli-matrices satisfy
the anti-commutation relations

σiσj + σjσi = 2 δij 1, (202)

where 1 is the 2×2 unit matrix. This allows us to construct a square root of the d’Alembert
operator, which is the main idea behind the Dirac construction. First note, that the
operator σ · p satisfies the identity

(σ · p)2 =
1

2

∑
i,j

(σiσj + σjσi) pipj = p2 1. (203)

Now consider a massless fermion. For such a particle the relativistic energy-momentum
relation can be written as

p2 = p2
0 =

E2

c2
. (204)

Then the 2-component representation of the fermion field (201) can be taken to satisfy the
wave equation

−i~ σ ·∇ψ = ±i~ ∂0ψ. (205)

Indeed, if the two components are of the plane-wave form (198):

ψ(r, t) = ei(k·r−ωt)
[
A1

A2

]
, (206)
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then the wave equation (205) is equivalent to the eigenvalue equation

cp · σ ψ = ±E ψ. (207)

Re-applying the same operator on the left-hand side this gives

c2(p · σ)2ψ = ±cE σ · pψ = E2ψ. (208)

Using eq. (203) this is seen to reduce to the equation(
p2c2 − E2

)
ψ = 0 ⇔ −~2�ψ = 0. (209)

This can be established directly by squaring the differential operators on the left- and
right-hand side of eq. (205); first,

(−i~σ ·∇)2 ψ = (±i~ ∂0)2 ψ = −~2

c2

∂2ψ

∂t2
. (210)

But also, by the anti-commutation property of the Pauli matrices:

(−i~σ ·∇)2 ψ = −~2∇2ψ. (211)

Combining these results reproduces eq. (209). Thus eq. (205) is seen to imply the massless
Klein-Gordon equation, and therefore is acceptable as a relativistic wave equation for
massless spin-1/2 fermions. After its discoverer, it is called the massless Dirac equation.

In addition to implying the correct energy-momentum relation for free massless parti-
cles, the massless Dirac equation also contains information about the spin-polarization of
the particle. This information is encoded in the helicity operator

p ·Σ
~|p|

=
cp · σ

2E
, (212)

with the eigenvalues ±1/2, as follows from eq. (207):

cp · σ
2E

ψ = ± 1

2
ψ. (213)

The dimensionless helicity eigenvalues are just the eigenvalues of the spin component in
the direction of motion, in units of ~. In general, the eigenstates of the helicity operator are
said to describe right-handed fermions if the eigenvalue is positive, and left-handed fermions
if the eigenvalue is negative. As discussed before in sect. 21, the handedness or chirality of
a particle with spin is well-defined and observer-independent only for massless particles;
indeed, a massive particle can always be described in its rest frame, in which there is no
direction of motion. The sign choice in eq. (213) is determined by the sign choice in the
massless Dirac equation (205), hence positive and negative helicity particles are described
by two different Dirac equations. This confirms that for massless particles the helicity
eigenstates are independent and chirality is a Lorentz-invariant quantity.
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Next we extend the construction to massive spin-1/2 fermions. From eq. (203) it follows
that for massive particles

(σ · p)2 =
(
p2

0 −m2c2
)
⇔ (p0 − p · σ) (p0 + p · σ) = m2c2 6= 0, (214)

where in line with general custom we have suppressed the explicit writing of unit matrices;
we will follow that custom from now on. Eq. (214) implies that for m 6= 0 the 2-component
field ψ can not satisfy the massless Dirac equation, and we must introduce two 2-component
fields (ψ, χ) related by

mcχ ≡ i~ (∂0 + σ ·∇)ψ ⇒ mc2 χ = (E − cp · σ)ψ, (215)

where in the second equation we have substituted a plane wave solution (206); and by an
argument similar to that presented in eq. (210), (211), there also must be a second relation

mcψ = i~ (∂0 − σ ·∇)χ ⇒ (E + cp · σ)χ = mc2ψ. (216)

Together these relations imply the Klein-Gordon equation with non-zero mass:(
−~2� +m2c2

)
ψ =

(
−~2� +m2c2

)
χ = 0. (217)

The important point is, that to describe a massive fermion we need four field components
(ψ, χ), rather than two, as in the massless case. This is because both sign-choices for the
helicity components are present in the massive Dirac equation. Indeed, from eqs. (215)
and (216) it follows that in the limit mc→ 0,

cp · σ
2E

ψ =
1

2
ψ,

cp · σ
2E

χ = −1

2
χ. (218)

In other words, in the relativistic high-momentum limit ψ describes the positive-helicity
components, and χ the negative-helicity components. The occurrence and mixing of both
helicity spinor fields (ψ, χ) in eqs. (215) and (216) for massive particles was then to be
expected, as for massive particles helicity is an observer-dependent quantity.

Exercise 23.1
The Pauli matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

a. Show that they satisfy the commutation relations

[σi, σj] = σiσj − σjσ3 = 2i εijkσk,

with εijk the completely anti-symmetric symbol

εijk =


+1, (ijk) = even permutation of(123);
−1, (ijk) = odd permutation of(123);

0, all other cases.
.
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b. Establish the anti-commutation relations

σiσj + σjσi = 2δij 1,

and from this derive that

Σ2 = Σ2
1 + Σ2

2 + Σ2
3 = s(s+ 1)~2 1, with s =

1

2
.

c. Prove that if (a,b) are two vectors, then

(a · σ)(b · σ) = (a · b)1 + i(a× b) · σ.

Covariant Dirac equation
The Dirac theory of a free massive spin-1/2 particle is defined by equations (215), (216):

i~ (∂0 + σ · ∇)ψ(x) = mcχ(x), i~ (∂0 − σ · ∇)χ(x) = mcψ(x). (219)

In the massless case, these equations decouple and one can use either one of them, de-
pending on the handedness (chirality) of the particle. By construction, the solutions of the
Dirac equations describe relativistic particles.

It is often convenient to rewrite the two equations (219) for two 2-component spinors
as a single equation for a 4-component spinor, as follows. Define a 4-component spinor by
a direct sum of the left- and right-handed ones

Ψ =

[
ψ
χ

]
=


(
ψ1

ψ2

)
−−−(
χ1

χ2

)
 . (220)

Furthermore, introduce a set of 4× 4 Dirac matrices

γµ =
(
γ0,γ

)
; γ0 =

(
0 12

12 0

)
, γ =

(
0 −σ
σ 0

)
, (221)

where 1d stands for the d-dimensional unit matrix11. Then the pair of Dirac equations
(219) can be written as a single equation

(−i~γµ∂µ +mc) Ψ = 0 ⇔
(

mc −i~(∂0 − σ · ∇)
−i~(∂0 + σ · ∇) mc

)[
ψ
χ

]
= 0. (222)

Now the Dirac matrices γµ satisfy the anti-commutation relation

{γµ, γν} = γµγν + γνγµ = −2 ηµν 1. (223)

11As remarked before, often the unit matrices are not written explicitly.
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It is then easy to establish, that the Dirac equation implies the Klein-Gordon equation:(
−� + µ2

)
Ψ = (iγ · ∂ + µ) (−iγ · ∂ + µ) Ψ = 0, (224)

where

µ =
mc

~
=

2π

λc
(225)

is the Compton wave number.

Exercise 23.2
a. The (4× 4) Dirac matrices are defined in eq. (221):

γµ =
(
γ0,γ

)
; γ0 =

(
0 12

12 0

)
, γ =

(
0 −σ
σ 0

)
.

Prove that these matrices satisfy the relations (223)

γµγν + γνγµ = −2ηµν 14,

where the Minkowski metric has the standard components diag(−1,+1,+1,+1).
b. Show that for a plane wave solution

Ψ = Aeikµx
µ

, with kµ =
(ω
c
,k
)
,

the covariant Dirac equation takes the form

(γµkµ + µ)A = 0.

c. Use this result to derive eq. (197) for plane waves

(γµkµ − µ) (γνkν + µ)A =

(
ω2

c2
− k2 − µ2

)
A = 0.

d. Define

Σi ≡
i~
4

∑
j,k

εijk γjγk.

Prove that

Σi =
~
2

(
σi 0
0 σi

)
,

and that the operators Σi also satisfy the angular momentum commutation relations:

[Σi,Σj] = i~ εijk Σk.
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24. Vector fields

Massive spin-1 particles have three polarization states, characterized by by the value of
the spin in a fixed direction, e.g. the z-direction: sz = (+~, 0,−~). The spin-operators for
such particles are described by (3 × 3)-matrices satisfying the commutations relations of
angular momentum, like the Pauli matrices for spin-1/2 particles. In a convenient basis
these spin-operators read

Σ1 =
~√
2

 0 1 0
1 0 i
0 −i 0

 , Σ2 =
~√
2

 0 −i 0
i 0 1
0 1 0

 , Σ3 = ~

 1 0 0
0 0 0
0 0 −1

 , (226)

with the property
[Σi,Σj] = i~ εijk Σk. (227)

These matrices act in a three-dimensional space, therefore we expect that spin-1 particles
are described by a field A with three components. However, in a relativistic framework
there are no three-component objects transforming in a simple (linear) way under Lorentz
transformations. To guarantee that the field equations take the same form in all inertial
frames, the best we can do is embed a three-component vector in a Minkowski four-vector
with one time- and three space-components: Aµ = (A0,A). We can then eliminate the
time-component as an independent degree of freedom by imposing an additional constraint
on the four-vector. Of course, for the description to be valid in all inertial frames, this
relation between the components of Aµ should itself be Lorentz invariant. The required
constraint is

∂µAµ = 0 ⇔ ∂0A0 = ∇ ·A. (228)

Clearly the time-component A0 can be expressed in terms of the three space-components
A, and the four-vector Aµ really depends on only three independent degrees of freedom.

Now we look for a field equation for Aµ which implies both the constraint (228) and
the Klein-Gordon equation (199). To achieve our aim, we first define an anti-symmetric
four-tensor

Fµν = −Fνµ = ∂µAν − ∂νAµ. (229)

Mathematically, the components of Fµν represent a four-dimensional generalization of the
components of the curl of a vector. In three dimensions the curl of vector has three
components:

∇×A = (∇2A3 −∇3A2,∇3A1 −∇1A3,∇1A2 −∇2A1), (230)

whereas in four dimension the generalized curl has six components: three which involve
mixed time and space components:

F0j = ∂0Aj −∇jA0, j = (1, 2, 3); (231)

and three which only involve space components as in (230):

Fij = ∇iAj −∇jAi, i, j = (1, 2, 3). (232)

72



In terms of Fµν the field equation we need is

∂µFµν =
m2c2

~2
Aν . (233)

This equation is known as the Proca equation; it describes fields of which the quanta are
massive spin-1 particles. To show this, we first note that

∂µ∂νFµν = 0. (234)

The reason is, that partial derivatives commute: ∂µ∂ν = ∂ν∂µ, hence the product of der-
vatives is symmetric under interchange of µ and ν; however, Fµν = −Fνµ is antisymmetric
under this interchange, and therefore the contracted form (234) must vanish. Now taking
the four-dimensional divergence of the left- and right-hand side of eq. (233), and using the
result (234), it follows that

m2c2

~2
∂µAµ = 0. (235)

Hence for massive spin-1 particles (m 6= 0), we indeed reobtain the constraint (228). Next,
write out eq. (233), and bring all terms to the same side, to get

−�Aν + ∂ν ∂
µAµ +

m2c2

~2
Aν = 0. (236)

Using the constraint (228) to eliminate the middle term, we then finally get the Klein-
Gordon equation (

−~2 � +m2c2
)
Aν = 0. (237)

For plane-wave fields
Aν(t, r) = aν e

i(k·r−ωt), (238)

we then again find the correct energy-momentum relation

E2 = p2c2 +m2c4,

and in addition a constraint on the amplitude

ω

c
a0 + k · a = 0 ⇒ a0 = −cp · a

E
. (239)

This shows explicitly how the time component of the amplitude is expressed in terms of
the space components. Clearly for a massive spin-1 particle at rest: p = 0, E = mc2,
the time component of the amplitude vanishes: a0 = 0. It follows that the plane-wave
representation of a particle at rest reduces to a vector with only three components:

Aµ = (0,A), A = a e−imc
2t/~. (240)

In this frame the spin-operators Σ defined in eq. (226) determine the polarization states
of the field: the vector amplitude a can be an eigenvector of Σ3 corresponding to any of
the eigenvalues (+1, 0,−1) (in units ~), or any linear combination thereof.
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Exercise 24.1
a. Show that the spin operators (226) satisfy the commutation relations (227).
b. Prove that spin operators satisfy the relation

Σ2 = Σ2
1 + Σ2

2 + Σ2
3 = s(s+ 1)~2 1, with s = 1.

c. An equivalent representation of the spin operators is

Σ′1 = i~

 0 0 0
0 0 −1
0 1 0

 , Σ′2 = i~

 0 0 1
0 0 0
−1 0 0

 , Σ′3 = i~

 0 −1 0
1 0 0
0 0 0

 .

Prove that these matrices obey the same commutation relations (227), and find the unitary
transformation U relating the two sets of spin operators:

Σ′i = UΣiU
†.

Exercise 24.2
Prove the identity (234) by writing out the implicit summation over the indices (µ, ν).

For massless spin-1 particles, like photons and gluons, this analysis has to be modified.
Taking m = 0 in eq. (233), the equation simplifies to

∂µFµν = 0. (241)

In the absence of the mass term on the right-hand side, we can no longer derive the
constraint (228). However, this is compensated by the appearance of a new property of the
field equation: gauge invariance. Gauge invariance is a direct consequence of the fact that
Fµν is a four-dimensional curl12: the components of Fµν are invariant under transformations

Aµ → A′µ = Aµ + ∂µΛ, (242)

where Λ is an arbitrary scalar function. These transformations are refered to as local gauge
transformations. The gauge invariance is easy to verify:

∂µ∂νΛ− ∂ν∂µΛ = 0 ⇒ F ′µν = ∂µA
′
ν − ∂νA′µ = Fµν . (243)

The arbitrariness in the vector field Aµ can be used to impose an additional constraint on
Aµ, which can be chosen to be the Lorentz invariant condition (228):

∂µAµ = 0. (244)

Then we are back in the previous situation, with the field equation (241) and the above
gauge condition (244) together implying the massless Klein-Gordon equation:

−�Aν = 0. (245)

12In mathematical terminology F is a two form: F = dA = dxµ ∧ dxν ∂µAν = 1
2 dx

µ ∧ dxν Fµν .
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Exercise 24.3
a. Check that for plane waves

Aµ = aµe
i(k·r−ωt),

the gauge condition (244) reduces to the constraint (239) on the amplitudes:

ω

c
a0 + k · a = 0.

b. Show that even after imposing the gauge condition (244) it is still possible to make
further gauge transformations (242) leaving Fµν invariant, provided Λ satisfies the equation

�Λ = 0,

with the solution
Λ = εei(k·r−ωt).

c. Such a special gauge transformation changes the amplitude by

a′µ = aµ + ikµε.

or in components:

a′0 = a0 −
iω

c
ε, a′ = a + ik ε.

Show, that ε can be chosen such that

a′0 = 0, k · a′ = 0,

and that for the full plane wave solution this is equivalent to

A′0 = 0, ∇ ·A′ = 0.

From this, conclude that the amplitude of the wave field Aµ is purely transverse and
possesses only two independent components.
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25. Quantum electrodynamics

The description of massless spin-1 particles can be applied directly to the quantum theory
of photons. This becomes obvious by noting that eq. (241) provides just the manifestly
relativistic form of the free Maxwell’s equations. To show this, identify the scalar and
vector potential of electrodynamics with the components of the vector field Aµ:

A0 =
φ

c
, ⇒ Aµ =

(
φ

c
,A

)
. (246)

Then the components of Fµν can be split in two sets: the electric components (231):

−cF0j = ∂jφ− ∂tAj ≡ Ej ⇔ E = ∇φ− ∂A

∂t
, (247)

and the magnetic components

Fij = ∂iAj − ∂jAi ≡ εijk Bk ⇔ B = ∇×A. (248)

In terms of these electric and magnetic field components, the field equations (241) become

∇ · E = 0, ∇×B− 1

c2

∂E

∂t
= 0, (249)

which are indeed Maxwell’s equations in empty space. Hence interpreted in the framework
of quantum theory, the plane-wave solutions of the free Maxwell equations represent mass-
less spin-1 particles of well-defined energy and momentum: photons.

Exercise 25.1
Prove that E and B also satisfy the homogeneous Maxwell equations

∇× E +
∂B

∂t
= 0, ∇ ·B = 0.

So far we have only discussed free electromagnetic fields. The interactions of photons with
charged particles is described by the inclusion of charges and currents in the theory. Let
ρ and j represent the charge and current density of charged particles; then the Maxwell
equations (249) are modified to read

∇ · E =
ρ

ε0
, ∇×B− 1

c2

∂E

∂t
=

1

ε0c2
j. (250)

These two equations are consistent only if the charge and current density satisfy the con-
tinuity equation

∂ρ

∂t
+ ∇ · j = 0. (251)
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This equation is the local version of the equation of charge conservation. To establish this,
compute the total charge in a fixed volume V :

Q =

∫
V

d3x ρ. (252)

By the equation of continuity and Gauss’ law, the change in the total charge is

dQ

dt
=

∫
V

d3x
∂ρ

∂t
= −

∫
V

d3x∇ · j = −
∮

Σ

d2σ jn, (253)

where Σ is the surface of the volume V , d2σ is a surface integration elements and jn is the
normal component of the current density across the surface. In words this equation states
that the only change in the charge in the volume V comes from currents flowing in or out
of the volume across the surface. In particular, if there are no currents across the surface
the total charge in V is constant.

The derivation of the equation of continuity is particularly simple in the relativistically
covariant notation. The derivation starts by defining the current four-vector

jµ = (j0, j) = (ρc, j). (254)

The inhomogeneous Maxwell equations (250) then take the covariant form

∂µFµν = − 1

ε0c2
jν . (255)

The identity (234) then implies

∂µjµ = −ε0c2 ∂µ∂νFµν = 0. (256)

Writing out this equation in components (254) gives back the equation of continuity in the
form (251).

At the microscopic level, charges and currents are composed of charged particles like
electrons, quarks, protons or heavier nuclei. These particles act as the source of photons.
Following Feynman, the interaction between photons and charged Dirac particles can be
represented graphically by a diagram of the type shown in fig. 25.1. In the diagram a
charged particle emits, absorbs or exchanges a single photon, depending on the direction
in which time runs in the figure. A more detailed discussion of Feynman diagrams is
presented in appendix F.

Fig. 25.1: Interaction of charged particle and photon.
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A field-theoretical description of the electromagnetic interactions of charged particles in-
volves, in addition to the Maxwell equations (255), an equation for the dynamics of the
charged particles and an expression for the components of the four-current on the r.h.s. of
the Maxwell equations. We now show how to do this for charged spin-0 particles.

The key to our construction is the concept of gauge invariance. Gauge invariance is
important to have a consistent theory of massless vector particles, like photons. Therefore
we wish to extend this invariance to the full theory of electro-magnetic fields interacting
with charged matter. Now any linear equation for a complex matter field Ψ, like the
Klein-Gordon or the Dirac equation, is invariant under phase transformations

Ψ → Ψ′ = eiαΨ, (257)

where α is a real constant. Consider the Klein-Gordon equation, and define µ = mc/~; if
α is a constant it then follows that(

−� + µ2
)

Ψ′ = eiα
(
−� + µ2

)
Ψ = 0. (258)

Hence if Ψ is a solution of the equation, then Ψ′ is a solution of the same equation. However,
if the phase transformation depends on the point in space-time, this is no longer true. The
reason is simple: the equation involves partial derivatives w.r.t. space-time and therefore

∂µΨ′ = eiα (∂µ + i∂µα) Ψ. (259)

The situation can be repared by replacing the partial derivative with a linear differential
operator that includes the vector field Aµ:

DµΨ ≡ (∂µ − ieAµ) Ψ. (260)

This object is known as the gauge-covariant derivative of the field Ψ. It has the property
that a local phase transformation of Ψ can be compensated by a gauge transformation of
Aµ with gauge parameter Λ = α/e:

A′µ = Aµ +
1

e
∂µα. (261)

Applying this transformation and the phase transformation (259) simultaneously, we get

(DµΨ)′ =
(
∂µ − ieA′µ

)
Ψ′ = eiα

(
∂µ + i∂µα− ie

(
Aµ +

1

e
∂µα

))
Ψ

= eiα (∂µ − ieAµ) Ψ = eiαDµΨ.

(262)

In the same way we deduce that

(DµDµΨ)′ = eiαDµDµΨ, (263)
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This suggests that we modify the free Klein-Gordon equation to include the vector field
Aµ through the gauge-covariant derivative so as to become(

−DµDµ + µ2
)

Ψ = 0. (264)

It follows, that [(
−DµDµ + µ2

)
Ψ
]′

= eiα
(
−DµDµ + µ2

)
Ψ = 0. (265)

Hence if Ψ is a solution of eq. (264) for given electromagnetic vector potential Aµ, then
Ψ′ is a solution for the gauge-transformed potential A′µ. Now if the charged particles are
described by the field Ψ, the four-current jµ must be constructed in terms of this field. As
a gauge-transformation of Aµ does not change the electromagnetic field strength tensor Fµν
in the Maxwell equations (255), we must require this four-current to be unchanged by the
combined phase and gauge transformations (259) and (261) as well. It should also satisfy
the continuity equation (256). To construct such a current, first note that the complex
conjugate field transforms with the opposite phase, and that

(DµΨ)∗ = (∂µ + ieAµ) Ψ∗. (266)

Indeed, it follows in a straightforward way that

Ψ∗ ′ = e−iαΨ∗, (DµΨ∗)′ = e−iαDµΨ∗. (267)

Then the following expression for the current fits all our requirements:

jµ = −ie (Ψ∗DµΨ−ΨDµΨ∗) . (268)

To prove this, use eqs. (262) and (267) to infer the invariance of the current:

j′µ = −ie (Ψ∗DµΨ−ΨDµΨ∗)′ = jµ. (269)

Next, the equation of continuity applies as well:

∂µjµ = −ie
(
Ψ∗D2Ψ−ΨD2Ψ∗

)
= 0, (270)

with D2 = DµDµ and
D2Ψ = µ2Ψ, D2Ψ∗ = µ2Ψ∗. (271)

Hence we have a complete theory of interacting charged scalar and electromagnetic fields,
defined by eqs. (255), (268) and (264), which are all invariant under the combined gauge
and phase transformations (257) and (261).

Exercise 25.2
a. Complete the steps in the proof of eq. (270).
b. Write out the expression for the gauge-covariant derivatives to prove that

jµ = −ie (Ψ∗∂µΨ−Ψ∂µΨ∗)− 2e2Ψ∗ΨAµ.
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26. Spontaneously broken gauge invariance and dynamical mass generation

The Maxwell equations provide an example of how to couple massless vector fields and
charged particle fields in a consistent way. The field equations for other vector fields, like
gluons and weak vector bosons, follow a similar pattern.

In this section we consider a general massless vector field Aµ coupled to a complex
scalar field Ψ, described by the equations

∂µFµν = −Jν , Jν = −ig (Ψ∗DµΨ−ΨDµΨ∗) . (272)

Here the electric charge e has been replaced by a general coupling constant g, which could
also represent for example a weak charge like isospin or hypercharge, and the field Aµ has
been rescaled to absorb factors like ε0c

2. In particular, the gauge-covariant derivatives take
the form

DµΨ = (∂µ − igAµ) Ψ, DµΨ∗ = (∂µ + igAµ) Ψ∗. (273)

As in exercise (25.2) the current Jµ and the field strength tensor Fµν are invariant under
combined gauge transformations

Ψ′ = eiαΨ, A′µ = Aµ +
1

g
∂µα. (274)

Moreover, the current is conserved:
∂µJµ = 0, (275)

provided Ψ satisfies a Klein-Gordon equation of the form

D2Ψ = M2Ψ. (276)

Here M2 is a real quantity, which we identified before as the reduced mass (i.e., the Comp-
ton wave number) µ2 = m2c2/~2; however, in general it doesn’t have to be a constant: it
can be some space-time dependent quantity M2(x), as long as it is real.

Exercise 26.1
Check that the equation of continuity

∂µJµ = 0

holds for general M2(x).

The explicit expression for the current Jµ takes the same form as in exercise (25.2):

Jµ = −ig (Ψ∗∂µΨ−Ψ∂µΨ∗)− 2g2|Ψ|2Aµ. (277)

This result has the very interesting consequence, that for a non-vanishing constant field
Ψ = v = constant the current takes the form

Jµ = −2g2|v|2Aµ, (278)
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and the field equation for the vector field becomes effectively

∂µFµν = κ2Aµ, κ2 = 2g2|v|2. (279)

Comparing with eq. (233) we observe, that Aµ now satisfies the Proca equation for a
massive vector field, with

m2 =
2g2~2|v|2

c2
. (280)

Thus the constant scalar field Ψ = v behaves as a medium in which massless vector particles
effectively become massive, and slow down to velocities less than that of light. At the same
time we observe, that in this situation the gauge invariance (274) has disappeared; this is
manifest as the solution for the scalar field changes under a gauge transformation:

Ψ = v → Ψ′ = eiαv, (281)

hence our solution picks out a particular value of Ψ which is not unique. Moreover, the
Proca equation (279) is itself not gauge invariant, because Aµ on the right-hand side
changes under a gauge transformation, whilst Fµν on the left-hand side does not. We
conlude that, even though our fundamental theory represented by eqs. (272) and (276) is
gauge invariant, the solutions of the equations are not necessarily gauge invariant. In this
situation one speaks of spontaneously broken gauge invariance, and we observe that it leads
to dynamical mass generation for the vector particles, an effect described for the first time
in a relativistic context by Robert Brout and François Englert.

It remains to discuss how a non-vanishing constant value of Ψ can be a solution of
the generalized Klein-Gordon equation (276). Now a constant value v 6= 0 has vanishing
gradients13: ∂µv = 0. Therefore, in the vacuum with Aµ = 0 the scalar equation effectively
becomes

M2
∣∣
Ψ=v

v = 0 ⇒ M2
∣∣
Ψ=v

= 0. (282)

The way to achieve this is to take M2 to be a polynomial in |Ψ|2 with a zero at |Ψ|2 = |v|2.
In the simplest case we can take

M2[Ψ] = λ
(
|Ψ|2 − |v|2

)
⇒ M2[v] = 0. (283)

With this choice, the modified Klein-Gordon equation becomes(
D2 + λ|v|2

)
Ψ = λ|Ψ|2Ψ. (284)

This is a non-linear extension of the scalar field equation, which implies that the scalar
field has self-interactions, represented by the cubic term on the right-hand side.

Finally, let us consider a slightly more general solution, in which Ψ has tiny ripples
around the constant value v:

Ψ = eiα(v + h(x)), Aµ =
1

g
∂µα, (285)

13More generally, for Ψ = eiαv and gAµ = ∂µα we have Dµv = 0.
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where the local phase α(x) is chosen such that h(x) is real everywhere. Then

DµΨ = eiα∂µh, (286)

and the scalar equation (283) becomes(
−� + µ2

)
h = O(h2), µ2 = 2λ|v|2. (287)

which in the limit |h| � |v| becomes the free Klein-Gordon equation for spin-0 particles
with mass

m2
h =

~2µ2

c2
=

2λ~2|v|2

c2
. (288)

Therefore, as first observed by Peter Higgs, vector particles which get their mass through
dynamical mass generation must be accompanied by a massive scalar particle: the Higgs
particle. The observation of such a Higgs particle signifies spontaneously broken gauge
invariance as the mechanism behind vector-particle masses.

27. Vector boson mixing

As we have seen in sect. 21, the weak interactions look much simpler in the limit in which
all particles can be considered massless. This was argued by noting that the weak charges
isospin and hypercharge, which depend on the particle chirality, are well-defined only in
this approximation. We also found in sect. 24 that there is a fundamental difference in the
description of massless and massive vector bosons: they differ in the number of polarization
states, which is 2 for massless vector particles and 3 for massive ones. In the mathematical
equations this becomes manifest, as the theory of massless vector fields (Maxwell-type) is
gauge invariant, whereas the theory of massive vector fields (Proca-type) is not.

In this section we show how spontaneously broken gauge invariance can explain the weak
interactions, and how electromagnetism emerges from this theory as the only remaining
long-range interaction at low energy. In order to simplify the discussion, we only consider
the vector bosons coupling to hypercharge and the third component of isospin. At the
end of the section we briefly indicate how things change when we take into account all
components of isospin.

We introduce massless vector fields Wµ and Bµ coupling to the weak charges τ3 and y.
Table 21.1 lists the values of hypercharge and isospin of quarks and leptons. If the unit of
isospin is denoted by g and that of hypercharge by g′, we can modify the Dirac equation
by replacing ordinary partial derivatives by gauge-covariant derivatives

∂µ → Dµ = ∂µ − iτ3gWµ − iyg′Bµ. (289)

For example, for a massless right-handed electron described by the field ψe, and a massless
left-handed electron represented by the field χe, the Dirac equation becomes

i~ (D0 + σ ·D)ψe = 0, i~ (D0 − σ ·D)χe = 0, (290)

where

Dµψe = (∂µ + ig′Bµ)ψe, Dµχe =

(
∂µ +

ig

2
Wµ +

ig′

2
Bµ

)
χe, (291)
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and for the neutrinos:

Dµψν = ∂µψν , Dµχν =

(
∂µ −

ig

2
Wµ +

ig′

2
Bµ

)
χν . (292)

These gauge-covariant derivatives render the massless Dirac equations (290) invariant under
two sets of gauge transformations: the isospin transformations

W ′
µ = Wµ +

1

g
∂µα, ψ′e = ψe, χ′e = e−iα/2χe; (293)

and the hypercharge transformations

B′µ = Bµ +
1

g′
∂µβ, ψ′e = e−iβψe, χ′e = e−iβ/2χe. (294)

Similarly, the Dirac equations for massless neutrinos are invariant if the neutrino fields
transform as

ψ′ν = ψν , χ′ν = ei(α−β)/2χν . (295)

Next suppose we have a complex scalar field ϕ with isospin τ3 = 1/2 and hypercharge
y = −1/2, similar to the left-handed neutrino field χν . Therefore this field transforms
under the gauge transformations (293) and (294) as

ϕ′ = ei(α−β)/2ϕ, ϕ∗ ′ = e−i(α−β)/2ϕ∗. (296)

Now the massless Dirac equations (290) can be extended in a gauge-invariant way to include
the weakly charged scalar field, as follows

i~ (D0 + σ ·D)ψe = feϕχe, i~ (D0 − σ ·D)χe = feϕ
∗ψe, (297)

where fe is a constant. It is now easy to check that both sides of the first equation are
multiplied by a factor e−iβ under the full set of gauge transformations, whilst both sides of
the second equation are multiplied by e−i(α+β)/2. This shows that these Dirac equations are
consistent with both isospin and hypercharge gauge transformations. It also shows that
if the scalar field ϕ takes a constant value v 6= 0, then the Dirac equations (297) become
those of a massive electron, with mass

mec = fev. (298)

This is yet another example of dynamical mass generation by spontaneously broken gauge
invariance. The same scalar field can also generate a mass for the neutrinos, if their Dirac
equation is similarly modified:

i~ (D0 + σ ·D)ψν = fνϕ
∗χν , i~ (D0 − σ ·D)χν = fνϕψν , (299)

such that mνc = fνv. The constants fe,ν are known as Yukawa coupling constants; their
role is to determine the relative size of particle masses.
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Now the scalar field ϕ itself then satisfies a Klein-Gordon equation of the type (276):(
−D2 +M2

)
ϕ = 0, (300)

with

Dµϕ =

(
∂µ −

ig

2
Wµ +

ig′

2
Bµ

)
ϕ. (301)

This suggests we define the following orthogonal combinations of vector fields:

Zµ =
1√

g2 + g′ 2
(gWµ − g′Bµ) , Aµ =

1√
g2 + g′ 2

(g′Wµ + gBµ) . (302)

It is convenient to parametrize this mixing of the vector fields by an angle θW defined by

cos θW =
g√

g2 + g′ 2
, sin θW =

g′√
g2 + g′ 2

, (303)

which is equivalent to

g = gW cos θW , g′ = gW sin θW , gW =
√
g2 + g′ 2. (304)

Then the covariant derivative of the scalar field becomes

Dµϕ =

(
∂µ −

igW
2

Zµ

)
ϕ. (305)

Furthermore, defining

e =
gg′√
g2 + g′ 2

= gW sin θW cos θW , (306)

the covariant derivatives of the electron and neutrino fields take the form

Dµψe =

(
∂µ + ieAµ −

igW
2

(1− cos 2θW )Zµ

)
ψe,

Dµχe =

(
∂µ + ieAµ +

igW
2

cos 2θWZµ

)
χe,

Dµψν = ∂νψν ,

Dµχν =

(
∂µ −

igW
2

Zµ

)
χν .

(307)

From the results (305) and (307) we can draw many interesting conclusions. First, the
scalar field couples only to Zµ, not to Aµ. Therefore, a constant value ϕ = v in the vacuum
leads to a mass for the vector field Zµ, but not for Aµ which remains massless. Second,
left- and right-handed electrons couple to the massless field Aµ with the same strength
−e, whilst neutrinos do not couple to Aµ at all. Therefore we can identify Aµ with the
Maxwell field, i.e. photons, whereas Zµ represents a massive vector boson acting differently
on left- and righthanded leptons as expected for weak intereactions. The electric charge
proportional to e then remains conserved, while the weak charge proportional to gW is not.
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Exercise 27.1
a. Using the isospin and hypercharge values listed in table 21.1, construct the gauge-
covariant derivatives

Dµ = ∂µ − igτ3Wµ − ig′yBµ,

for the left- and righthanded quarks (ψu, χu) and (ψd, χd).
b. Rewrite the general gauge-covariant derivative above in terms of the fields Aµ and Zµ
and prove that the coefficient of Aµ is given by the electric charge q = y + τ3 in units e.

28. Charged vector bosons

We have discussed in the previous section, how the photon and the Z-boson are represented
by fields acting on hypercharge and isospin eigenstates. In these interactions the electric
charge q = y + τ3 of particles is strictly conserved. This implies that the photon and Z-
boson are electrically neutral themselves: emission or absorption of a photon or Z-boson
can not change the electric charge of a quark or lepton.

Now in quantum theory the isospin charge τ3 is the eigenvalue of an isospin operator
T3, which is one of a triplet of isospin operators operators T = (T1, T2, T3). Acting on the
quark and lepton states in table 21.1, the isospin components T1,2 are not diagonal and
mix the eigenstates of T3. More conveniently, one can define conjugate linear combinations

T± =
1

2
(T1 ± iT2) , (308)

which change the isospin τ3 precisely by one unit while leaving the hypercharge the same,
as explained in appendix E. Therefore these operators also raise or lower the electric charge
by one unit.

In quantum field theory the two vector bosons associated with these non-diagonal
isospin operators are represented by fields W±. Interactions with these fields change the
isospin eigenvalue τ3 of particles, but not the hypercharge y. Therefore they change the
electric charge q by one unit as well. As the total electric charge is strictly conserved in all
interactions, this implies that the W±-bosons carry one unit of charge themselves. Thus
emission of a W±-boson changes a d-quark into a u-quark, and an electron into a neutrino,
or vice versa. Similarly, the decay of W -bosons into other particles must produce a net
charge of ±1 unit.

The existence of the charged W±-bosons explains β-decay processes and their relatives,
such as

µ− → νµ +W− → νµ + ν̄e + e−,

d → u+W− → u+ ν̄e + e−,

c → s+W+ → s+ d̄+ u.

(309)

Like the Z-boson, the W -bosons are massive due to spontaneously broken isospin gauge-
invariance. The masses of these particles are actually very large:

mW = 80.4 GeV/c2, mZ = 91.2 GeV/c2, (310)
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comparable to the mass of a heavy nucleus like rubidium. This implies that relatively light
particles like a muon or d-quark can never produce a real W -boson. The W -boson here
exists only as a virtual particle in an intermediate state, and splits immediately into lighter
fragments like (e, νe) or (u, d̄). That is why we included in eqs. (309) also the second stage
of the process. A graphical representation in terms of a Feynman diagram is shown in
appendix F, fig. f.9.

29. Neutrino oscillations

Let us now return to the Dirac equations (299) for neutrinos. As all neutrinos have the
same hypercharge and isospin, the most general gauge-invariant form of these equations
for three neutrino families νi, i = (e, µ, τ), reads

i~ (D0 + σ ·D)ψiν =
∑

j=e,µ,τ

f ijν ϕ
∗χjν , i~ (D0 − σ ·D)χiν =

∑
j=e,µ,τ

f ijν ϕψ
j
ν . (311)

Indeed, under local hypercharge and isospin transformations both sides of the first equation
are still invariant, whilst both sides of the second equation are multiplied by the same factor
ei(α−β)/2. The only thing we have done is to promote the constant fν for a single neutrino
to a matrix f ijν in the case of several neutrinos. This simple generalization can however
have dramatic consequences.

By definition, we can take the neutrinos labeled (νe, νµ, ντ ) to be those produced in
W+-decay in association with the anti-leptons (e+, µ+, τ+). For example, if in a β-decay
process we detect a positron, we know that the associated neutrino produced is νe. Now
if the matrix of Yukawa-couplings f ijν is not diagonal, then these neutrinos do not have a
well defined mass: the Higgs field ϕ couples the right-handed electron neutrino represented
by ψeν to a mixture of left-handed neutrinos (χeν , χ

µ
ν , χ

τ
ν), and a vacuum-expectation value

v = 〈ϕ〉 leads to a non-diagonal mass matrix

mij
ν c = f ijν v. (312)

We can of course diagonalize this mass matrix by some unitary transformation U :

UmU−1 =

 m1 0 0
0 m2 0
0 0 m3

 . (313)

The corresponding eigenstates (ψ̃ν , χ̃ν) = (Uψν , Uχν) then represent particles of well-
defined mass. However, now the coupling of these fields to the W -bosons are no longer
diagonal, implying that the particle produced in association with a positron is a superpo-
sition of neutrino mass-eigenstates, and similarly for the neutrinos produced in association
with the other charged anti-leptons.

In quantum-mechanical Hilbert-space language we represent the neutrino interaction
states by |νi〉, i = (e, µ, τ), and the mass eigenstates by |νa〉, a = (1, 2, 3). Now in the
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absence of external fields, the energy Ea of a neutrino mass eigenstate with momentum pa
is

Ea =
√
m2
ac

4 + p2
ac

2, (314)

and the free neutrino mass-eigenstate depends on space and time as a plane wave

|Ψa(t, r)〉 = ei(pa·r−Eat)/~|νa〉. (315)

Now a neutrino starting as a particular interaction eigenstate at the origin, is at time t = 0
given by the state

|Ψi(0)〉 = |νi〉 =
∑

a=1,2,3

Uia|νa〉. (316)

At time t this state takes the form

|Ψi(t, r)〉 =
∑

a=1,2,3

ei(pa·r−Eat)/~ Uia|νa〉. (317)

The probability amplitude that this state is observed as a neutrino interaction state |νj〉 is

〈νj|Ψi(t, r)〉 =
∑

a=1,2,3,

ei(pa·r−Eat)/~ Uia〈νj|νa〉 =
∑

a=1,2,3,

ei(pa·r−Eat)/~ UiaU
†
aj. (318)

Hence a neutrino starting at time t = 0 in the origin as a well-defined interaction state
|νi〉, can at a later time t at position r be observed as a neutrino interaction state |νj〉 with
probability

Pi→j(t, r) = |〈νj|Ψi(t, r)〉|2 =

∣∣∣∣∣∑
a

ei(pa·r−Eat)/~ UiaU
†
aj

∣∣∣∣∣
2

. (319)

This process of a space-time dependent probability for changing identity is refered to as
neutrino oscillations. Such oscillations have been observed in the neutrinos emitted by
the sun: solar neutrinos are produced in the sun by inverse β-decay: p + e → n + νe, but
neutrino experiments on earth detect equal numbers of νe, νµ and ντ .
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Exercise 29.1
Consider two kinds of neutrino with interaction eigenstates |νe,µ〉, and with mass eigenstates
|ν1,2〉, related by

|νi〉 =
∑
a

Uia|νa〉, U =

(
cos θ − sin θ
sin θ cos θ

)
.

The parameter θ is called the mixing angle.
a. Show that

Pνe→νµ(t, r) = 2 cos2 θ sin2 θ (1− cos (∆E t−∆p · r) /~) ,

with ∆E = E2 − E1, and ∆p = p2 − p1.
b. In the limit of relativistic neutrinos moving in a fixed direction over a distance L = ct

1

~
(∆E t−∆pL) =

L

~c
(∆E − c∆p) .

Show that with pi � mic one can to good approximation write

1

~
(∆E t−∆pL) =

L

2~

(
m2

2c
2

p2

− m2
1c

2

p1

)
≈ ∆m2 c3L

2~E
,

where E ≈ p1c ≈ p2c.
c. Show that the final transition probability is

Pνe→νµ(t, r) =
1

2
sin2 2θ sin2

(
∆m2 c3L

4~E

)
=

1

2
sin2 2θ sin2

(
1.27

∆m2 L

E

)
,

with the neutrino energy E expressed in GeV, the mass difference ∆m2 = m2
2−m2

1 expressed
in (eV/c2)2, and L expressed in km.
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Appendix

A. Special relativity

Special relativity is based on two important empirical observations:
1. the existence of a special class of co-ordinate systems, in which all free particles are in
rest or move uniformly in a straight line;
2. the universality and invariance of the speed of light, which is the same for observers in
all inertial systems.

Newton’s first law states, that free particles are at rest or move with constant velocity
on straight lines. This is only true for observers who are not accelerated by external forces
themselves. The co-ordinate systems associated with such obervers are called inertial
frames.

If a particle moves with constant velocity on a straight line in one such frame, it
will also move on a straight line in any shifted, rotated or moving frame, provided the
translation or change in orientation is constant, or the velocity of one system w.r.t. the
others is constant in a fixed direction. Therefore frames connected to an inertial frame by
a constant translation, constant rotation or constant linear motion are also inertial frames.
Examples:
a. translation:

x′ = x+ a, y′ = y, z′ = z; (320)

b. rotation:

x′ = x cosα− y sinα, y′ = x sinα + y cosα, z′ = z; (321)

c. linear motion:
x′ = γ(x− vt), y′ = y, z′ = z, (322)

with v the relative velocity and γ a proportionality constant to be determined.
According to the special theory of relativity Minkowski space-time intervals are the

same in all inertial frames:

dx′ 2 + dy′ 2 + dz′ 2 − c2dt′ 2 = dx2 + dy2 + dz2 − c2dt2, (323)

where the light velocity c has the same value on both sides. Indeed, for an observer in the
frame (x, y, z, t) a light ray moves with velocity v given by

dx2 + dy2 + dz2 − c2dt2 = 0 ⇒ v2 =

(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

= c2. (324)

By eq. (323) this is then also true in any other inertial frame:

dx′ 2 + dy′ 2 + dz′ 2 − c2dt′ 2 = 0 ⇒ v′ 2 = c2. (325)

Therefore the velocity of light is a universal constant, taking the same value in all inertial
frames.
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It is easy to see that the space-time interval (323) is invariant under the translations (320)

dx′ = d(x+ a) = dx, dy′ = dy, dz′ = dz, (326)

and under the rotations (321):

dx′ = dx cosα− dy sinα, dy′ = dx sinα + dy cosα, dz′ = dz. (327)

It is also invariant for frames connected by linear motion, provided the constant γ takes
the special value:

γ =
1√

1− v2/c2
, (328)

and the clock time is adjusted in a similar way:

x′ =
x− vt√
1− v2/c2

, ct′ =
ct− vx/c√
1− v2/c2

, (329)

with the result that

dx′ =
dx− vdt√
1− v2/c2

, cdt′ =
cdt− vdx/c√

1− v2/c2
. (330)

Indeed, it is straightforward to establish that

dx′ 2 − c2dt′ 2 = dx2 − c2dt2. (331)

The transformations (329) are called special Lorentz transformations.

The Minkoswki interval (323) can be obtained by combining the contravariant components
of the space-time interval

dxµ = (dx0, dx1, dx2, dx3) = (cdt, dx, dy, dz) (332)

with the covariant components of the space-time interval

dxµ = (dx0, dx1, dx2, dx3) = (−cdt, dx, dy, dz). (333)

Then
3∑

µ=0

dxµdxµ = −c2dt2 + dx2 + dy2 + dz2. (334)

We have seen above, that if xµ and x′µ are co-ordinates refering to two inertial frames,
related by any combinaton of translations, rotations or special Lorentz transformations,
they measure the same space-time intervals:

3∑
µ=0

dxµdxµ =
3∑

µ=0

dx′µdx′µ (335)
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Next we introduce the general concept of four-vectors, which are defined by their properties
under space-time transformations. Any set of quantities aµ = (a0, a) = (a0, a1, a2, a3), of
which the components in different inertial frames are related exactly as the contravariant
intervals dxµ, is called a contravariant four-vector. For example, for two frames moving
with relative velocity v in the x-direction the components of a′ must be related to those of
a by (330)

a′ 1 =
a1 − va0/c√

1− v2/c2
, a′ 0 =

a0 − va1/c√
1− v2/c2

. (336)

Similarly, a set of quantities aµ = (a0, a1, a2, a3) transforming between inertial frames as
the covariant intervals dxµ is called a covariant four-vector. They must be related to the
contravariant components like the covariant and contravariant differentials:

(a0, a1, a2, a3) = (−a0, a1, a2, a3). (337)

Therefore
3∑

µ=0

aµaµ = −(a0)2 + (a1)2 + (a2)2 + (a3)2. (338)

It is standard practice in such multipication of covariant and contravariant vectors to omit
the summation sign; this is known as the Einstein summation convention:

aµaµ ≡
3∑

µ=0

aµaµ. (339)

Because the transformation rules of aµ and aµ are the same as those of dxµ and dxµ, and
as these transformation rules guarantee that dxµdxµ is invariant (i.e., it has the same value
in any interial frame), it follows that the number aµaµ is an invariant as well. Hence if we
compute this number in any inertial frame it is guaranteed to have the same value in any
other inertial frame.

The switch from contravariant to covariant components is achieved by changing the sign
of the time component; formally this can be written as multiplication with the Minkowski
metric or its inverse:

ηµν = ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (340)

Indeed, it follow that

aµ =
3∑

ν=0

ηµνa
ν ≡ ηµνa

ν , aµ =
3∑

ν=0

ηµνaν ≡ ηµνaν , (341)

whilst similar matrix multiplication gives

ηµληλν = δµν . (342)
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In all these products we always sum over a common upper and lower index. We can also
use the Minkowski metric to define the Minkowski space-time interval

ηµν dx
µdxν = η00(dx0)2 + η11(dx1)2 + η22(dx2)2 + η33(dx3)2

= −c2dt2 + dx2 + dy2 + dz2.
(343)

One can distinguish three kinds of space-time intervals: space-like, light-like and time-like.
The distinction depends on the sign of the expression (343):

−c2dt2 + dx2 + dy2 + dz2 =


ds2 > 0 ⇒ space-like;

0 ⇒ light-like;
−c2dτ 2 < 0 ⇒ time-like.

(344)

Note that intervals between two points on the worldline of a single particle are time-like;
in particular

dτ = dt

√
1− 1

c2

(
dr

dt

)2

= dt

√
1− v2

c2
, (345)

where v is the velocity of the particle. Therefore dτ is the time interval measured on a
clock in the rest frame of the particle (in which v = 0); this is known as the proper time.

Similar to the Lorentz-invariant line element (343), we can define the Lorentz-invariant
Laplace operator, also called d’alembertian:

� = ηµν
∂2

∂xµ∂xν
= − 1

c2

∂2

∂t2
+

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (346)

It is customary to use the abbreviated notation

∂µ =
∂

∂xµ
, ∂µ = ηµν∂ν =

∂

∂xµ
, � = ∂µ∂µ. (347)

An example of another 4-vector is the 4-velocity of a particle, obtained as the derivative
of the space-time position w.r.t. proper time:

uµ =
dxµ

dτ
. (348)

Using relation (345) between proper time and observer time, it follows that

uµ = (γc, γv), v = (v1, v2, v3) = (vx, vy, vz). (349)

Here γ is the relativistic time-dilation factor, and v is the ordinary velocity in observer
co-ordinates:

γ =
1√

1− v2/c2
, v =

dx

dt
. (350)
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As proper time is observer-invariant, it is easy to check that uµ transforms under Lorents
transformations as the co-ordinate differentials themselves, cf. eq. (336). Also note, that
we can construct an invariant

uµuµ = −c2. (351)

Similarly we define the 4-momentum as the product of mass and 4-velocity:

pµ = muµ = (γmc, γmvx, γmvy, γmvz) , (352)

which is a 4-vector because uµ is, whilst m is invariant14. The 4-momentum satisfies

pµpµ = −m2c2. (353)

Explicitly, the space- and time-components read

p =
mv√

1− v2/c2
, p0 =

mc√
1− v2/c2

=
E

c
, (354)

whilst eq. (353) can be written in the more familiar form

E2 = p2c2 +m2c4. (355)

In the limit v2/c2 → 0 the space components p reduce to the standard newtonian momen-
tum vector mv. On the other hand, in this limit the time component is given by

E → mc2 +
1

2
mv2, (356)

which is the sum of the rest energy (a constant) and the newtonian kinetic energy. An
important property of the momentum 4-vector is, that all 4-momentum components are
conserved in elastic collisions:

P µ
f = P µ

i , P µ
i,f =

∑
pµi,f , (357)

where the labels (i, f) refer to the initial and final states of motion.

14In some texts this quantity is refered to as the rest mass. In our terminology the mass is simply a
number, the same for all observers, with the property that mc2 is the rest energy.
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Exercise A.1

An inertial system Σ′ moves w.r.t. an inertial system Σ with (constant) velocity v =
(v, 0, 0). The co-ordinates in Σ′ are related to those in Σ by the special Lorentz transfor-
mations (

ct′

x′

)
=

1√
1− v2/c2

(
1 −v/c
−v/c 1

)(
ct
x

)
.

a. Show that the Minkowski space-time interval is invariant under these transformations:

dx′ 2 − c2dt′ 2 = dx2 − c2dt2.

b. What is the inverse transformation for (ct, x) in terms of (ct′, x′)?
c. A light-ray moves in system Σ with velocity dx/dt = c. Show that in Σ′ its velocity
dx′/dt′ is the same.
d. Suppose that at t = 0 the origins of the systems (Σ,Σ′) coincide. Which point at
distance x from the origin in the system Σ coincides at t = 0 with a point at distance x′

from the origin in Σ′? How does one interpret this in terms of lengths measured in the two
systems?
e. O′ measures a time interval ∆t′ on a clock at rest in his system; show that in Σ the
corresponding interval is

∆t =
∆t′√

1− v2/c2
.

Exercise A.2

Show that a Lorentz transformation of the form (336) leaves the quadratic expression

aµaµ = −(a0)2 + (a1)2 + (a2)2 + (a3)2

invariant.

Exercise A.3

a. A muon is a particle with a mass mµ such that

mµc
2 = 105 MeV.

The muon is instable: in its restframe it decays on average after a time

τµ = 2.2 µs.

If the muon has a total energy E = 1 GeV, how far can it travel on average before it
decays?

Exercise A.4

We consider the collision of two (relativistic) particles with masses m1 and m2. In the lab-
frame particle 1 is at rest: p1 = 0, whilst particle 2 moves along the x-axis with momentum
p2 = (p, 0, 0).
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a. Give the expressions for the energies (E1, E2) of the particles.
b. Give the components of the momentum 4-vectors pµ1 and pµ2 .
c. The center of mass (CM) frame is the frame in which the total 3-momentum vanishes:

p′1 + p′2 = 0.

Construct the Lorentz transformation from the lab frame to the CM frame, by performing
the following steps:
(i) explain that the CM-frame moves with a velocity v = (v, 0, 0), where v is to be deter-
mined.
(ii) Using the Lorentz transformation of 4-vectors, show that the energy and momentum
for each particle in the CM-frame takes the form

E ′ =
E − vpx√
1− v2/c2

, p′x =
px − vE/c2√

1− v2/c2
.

(iii) Show that in the CM-frame the momenta are of the form

p′1 = (−p′, 0, 0), p′2 = (p′, 0, 0),

where

p′ =
m1v√

1− v2/c2
=

E1v/c
2√

1− v2/c2
,

and v is given by
v

c
=

pc

E1 + E2

.

(iv) From this derive the result

p′ =
pE1√

(E1 + E2)2 − p2c2
.

d. Define
s = − (p1 + p2)2 c2 ≡ − (pµ1 + pµ2) (p1µ + p2µ) c2.

(i) Explain why s has the same value in the lab frame and in the CM frame.
(ii) Show that

√
s represents the total energy in the CM frame.

(iii) Show that the equation for p′ can be written in the form

p′ =
m1c

2

√
s
p.
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B. The Bohr model

The first quantitative understanding of the energy levels of the hydrogen atom was provided
by Niels Bohr in 1911, many years before the Schrödinger equation was invented. In his
model of the hydrogen atom Bohr treated the dynamics of electrons in a classical way,
reserving the role of quantum theory to apply only to the emission and absorption of
electromagnetic radiation (light). The results are in full agreement with the observations
and confirmed by the modern treatment sketched above. It is of interest as an example of
how a correspondence principle can guide one’s way to understanding in a new domain of
physics where the mathematics is still to be developed, but some of the underlying physical
principles are already at hand. It also gives a feeling for the magnitude of quantities in
atomic physics, in particular the size of electron orbits and the spectrum of energy levels.

The empirical starting point for Bohr’s treatment of the hydrogen atom was its well-known
set of spectral lines. They form series, such as the Balmer series, the Paschen series, and
several others; it was found that the frequencies and wavelengths in vacuum of these series
satisfy the simple formula

νn =
c

λn
= cRH

(
1

n2
− 1

m2

)
, (358)

where (n,m) are integers: n = 1, 2, 3, ... and m = n + 1, n + 2, ...; RH is the Rydberg
constant:

RH = 1.097× 10−2 nm−1. (359)

Bohr constructed a relation between these frequencies and the energy absorbed or emitted
by an electron changing its orbit. In his model the electron energy in the n-th orbit is

En = −hcRH

n2
, n = 1, 2, ..., (360)

where the zero point of energy has been set to correspond to the ionization energy: E∞ = 0.
This rule was motivated by the quantum hypothesis of Planck and Einstein, which implies
that the frequency of a photon emitted during a transition between adjacent orbits is

hνn = ∆En = En+1 − En; (361)

with Bohr’s assumption (360) this equation returns the frequencies eq. (358) withm = n+1.

Now consider an electron in a Coulomb potential. Classically, the electron could be in any
Kepler-like orbit, but we consider only circular orbits here. The potential energy in such
an orbit is

Vn = − e2

4πε0rn
= −α~c

rn
. (362)

According to classical mechanics, the radial acceleration in this orbit is

mev
2
n

rn
=

e2

4πεor2
n

⇒ v2
n

c2
=

α~
mec

1

rn
. (363)
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It follows, that the classical kinetic energy is

Tn =
1

2
mev

2
n =

α~c
2rn

, (364)

and the total energy is given by

En = Tn + Vn = −α~c
2rn

. (365)

Again, the zero point of energy here is taken to correspond to the fully ionized state
rn =∞. By comparison with the expression (360) we then find for the radius rn

rn = a0 n
2, (366)

with a0 the Bohr radius:

a0 = r1 =
α

4πRH

≈ 0.053 nm. (367)

Of course, according to modern quantum mechanics one can not speak about the precise
position of the electron, and the above value of rn represents only a statistical average.
But the energy levels (360) are in agreement with the full quantum mechanical treatment;
moreover, in the limit of large n quantum mechanics should go over into classical mechanics.
As a result (367) is still a good estimate for the size of the hydrogen atom: its diameter is
about 0.1 nm.

One can even use the Bohr model to derive the value of the Rydberg constant. In the
classical limit n→∞ we can equate the spectral frequency νn:

νn =
∆En
h
≈ 2cRH

n3
, (368)

with the orbital frequency:

νn =
vn

2πrn
=

2c

αn3

√
2h

mec
R

3/2
H . (369)

It then follows that

RH =
α2mec

2h
≈ 1.097× 10−2 nm−1, (370)

in agreement with the experimental value (359).
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C. The Thomson cross section

In this appendix we derive the scattering of electromagnetic radiation —such as light— by
charged particles. This scattering process was first analysed in classical theory by Thomson
as discussed in par. 4.

In the classical context, the charges are treated as non-relativistic particles. Let ξ(t) be
the position of a point charge q at time t; the scalar and vector potential of the charge
moving at velocity v = dξ/dt are

φ(x, t) =
q

R− u ·R
, A(x, t) =

qu/c

R− u ·R
, (371)

where
q =

e

4πε0
, u =

v

c
, R = x− ξ(t′), R = |R| , (372)

with t′ the retarded time

t′ = t− R

c
. (373)

Observe that these expressions reduce to the Coulomb potential in the limit u → 0. The
electric and magnetic field strength at point x at time t are computed from

E = −∇φ− ∂A

∂t
, B = ∇×A, (374)

with the result

E =
q

(R− u ·R)3

[
(R−Ru)

(
1− u2

)
+ R× ((R−Ru)× u̇/c)

]
.

cB = R̂× E, R̂ = R/R.

(375)

Here u̇ = d 2ξ/dt ′ 2 is the retarded acceleration. Observe that

c2B2 = E2 =
1

2

(
E2 + c2B2

)
=
H
ε0
, (376)

with H the energy density in the field.
If we go to a very large distance from the point charge, the first term in the expression

for E becomes negligeable w.r.t. the second one, as it contains one less power of R. Then
if the velocity is small (u� 1) the expression simplifies to

E =
q

cR3
R× (R× u̇) , cB =

q

cR2
u̇×R. (377)

The Poynting vector N is given by

cN = ε0cE×B = −ε0 E×
(
E× R̂

)
= ε0E

2 R̂ = H R̂, (378)
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and represents the flux of field energy, directed perpendicular the electric and magnetic
field strength. To see this, recall that Maxwell’s equations in free space imply

H =
ε0
2

∫
d3x

(
E2 + c2B2

)
,

dH

dt
= −c

∫
d3x∇ ·N. (379)

This shows directly that N represents the momentum density in the field, i.e. the energy
flux across the surface bounding the volume of integration. For a large sphere centered at
distance R from the position of the point charge this becomes

Φ = − dH

dAdt
= c2 |N| = cH, (380)

where we have taken into account that the Poynting vector is directly centrally, i.e. outward
from and perpendicular to the spherical surface. To evaluate this flux it is now sufficient
to calculate the magnetic field B, eq. (377).

We now calculate B for motion of the charge under influence of a plane electromagnetic
wave incident along the z-axis. We consider a charge moving under the influence of an
electromagnetic wave moving in the z-direction:

Einc = E0 cos (ωt− kz) i, cBinc = k× E = E0 cos (ωt− kz) j. (381)

Then the Lorentz force on the point charge located at z = 0 is

F = e (Einc + v ×Binc) ≈ eE0 cosωt i. (382)

In the last expression we have neglected the magnetic force, which is smaller by a factor
u = v/c� 1. The magnetic field emitted by the oscillating point charge is given by (377):

cB =
q

c2R
v̇ × R̂ =

q

mc2R
F× R̂. (383)

Now F points in the x-direction, and∣∣∣i× R̂
∣∣∣ = sinψ, (384)

where ψ is the angle between the centrally directed vector R̂ and the direction of polar-
ization i of the electric field of the incident waves. Thus the outward energy flux induced
by this polarized radiation is

Φpol =
ε0q

2

m2c3R2
e2E2

0 cos2 ωt sin2 ψ. (385)

Taking the time average:

cos2 ωt =
1

2
, (386)
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the time averaged energy flux becomes

Φpol =
e4

4πε0

E2
0 sin2 ψ

8πm2c3R2
. (387)

Now the flux of incident radiation is

Φinc =
cε0
2

(
E2
inc + c2B2

inc

)
= c ε0E

2
0 cos2 ωt ⇒ Φinc =

cε0
2
E2

0 . (388)

The fraction of incident radiation scattered into the area element dA = R2 sin θdθdϕ then
is

d2σpol =
Φpol

Φinc

dA =

(
e2

4πε0mc2

)2

sin2 ψ dΩ. (389)

The classical radius of the electron is defined such that

e2

4πε0 re
= mc2 ⇔ re =

e2

4πε0mc2
; (390)

with this definition
d2σpol = r2

e sin2 ψ dΩ. (391)

The above computation holds for incident radiation with the electric field polarized along
the x-axis. To average over all directions of polarization in the x-y-plane, we must re-
express the angle ψ in terms of new polar angles θ and φ, defined by the direction of Einc

rather than that of the x-axis. This is done as follows; if n represents the unit vector in
the direction of the electric field Einc, then

sin2 ψ =
∣∣∣n× R̂

∣∣∣2 = n2R̂2 −
(
n · R̂

)2

= 1− sin2 θ cos2 φ, (392)

where θ still is the angle of outgoing radiation with the z-axis and can therefore be identified
with the earlier θ appearing in dΩ. Then the average over all polarizations of the electric
field strength in the x-y-plane is equivalent to an average over all directions φ (which in
general is not necessarily the same as the angle ϕ of the outgoing radiation w.r.t. the
x-axis):

1

2π

∫ 2π

0

dφ sin2 ψ =
1

2

(
1 + cos2 θ

)
. (393)

It follows that the fraction of incident flux of unpolarized radiation scattered into the
spherial angle dΩ is:

d2σ =
1

2π

∫ 2π

0

dφ d2σpol =
r2
e

2

(
1 + cos2 θ

)
dΩ. (394)

The quantity dσ/dΩ is the differential scattering cross section for scattering of electromag-
netic waves by a free electron in the non-relativistic limit (u = v/c� 1).

Finally, the total cross section for this process is obtained by integrating over all direc-
tions represented by dΩ, and is called the Thomson cross section:

σT =

∫
unit sphere

d2σ =
8π

3
r2
e . (395)
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D. The scattering Green’s function

In this appendix we prove: the Green’s function

Gk(r) =
1

4π

eikr

r
(396)

satisfies the inhomogeneous linear partial differential equation

−
(
∆ + k2

)
Gk(r) = δ3(r). (397)

First

∇ eikr

r
= (ikr − 1)

eikr

r2
r̂, (398)

where r̂ is the radial unit vector. Then, taking the divergence of this result, it immediately
follows that for r 6= 0 (

∆ + k2
)
Gk(r) = 0. (399)

Hence we concentrate on the region near the origin r = 0. We prove: for a spherical volume
VR with radius R

lim
R→0

∫
VR

(
∆ + k2

)
Gk(r) d3V = −1, (400)

showing that the integral remains finite even if the sphere is contracted to a point. First,
we prove that the second term does not contribute:∫

VR

eikr

r
d3V =

∫ 2π

0

dϕ

∫ +1

−1

d cos θ

∫ R

0

dr r2 e
ikr

r
=

4π

k2

(
eikR − 1

)
, (401)

and therefore

lim
R→0

k2

∫
VR

eikr

r
d3V = lim

R→0
4π
(
eikR − 1

)
= 0. (402)

Finally we consider the first term; we use Gauss’ theorem to get∫
VR

∆
eikr

r
d3V =

∫
VR

∇ ·
(

∇ eikr

r

)
d3V =

∫
ΣR

(
∇ eikr

r

)
n

d2Σ, (403)

where ΣR is the surface of the sphere VR, n denotes the normal (radial) component of the
gradient on the surface, and d2Σ is the two-dimensional integration element. Now using
the result (398) evaluated at r = R one finds(

∇ eikr

r

)
n

∣∣∣∣
r=R

= (ikR− 1)
eikR

R2
. (404)

The spherical surface element is

d2Σ = R2 sin θ dθdϕ. (405)
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Substitution in eq. (403) gives∫
VR

∆
eikr

r
d3V = 4π (ikR− 1) eikR. (406)

Combining the results (400), (402) and (406) we finally get

lim
R→0

∫
VR

(
∆ + k2

)
Gk(r) d3V = lim

R→0
(ikR− 1) eikR = −1. (407)

This proves the result (400).
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E. Isospin

Table 21.1 shows, that the left-handed u- and d-quarks belong to the same isospin doublet,
differing in the value of the third component τ3. Similarly, also the left-handed neutrino
and electron form an isospin doublet. In contrast, the right-handed quarks and leptons are
iso-singlets: they carry no isospin, only hypercharge.

In quantum mechanics hypercharge and isospin are represented by operators (Y,T),
such that the values y of the hypercharges and τ3 of isospin are eigenvalues of the oper-
ators (Y, T3). The quantum states representing massless quarks and leptons can then be
associated with vectors in Hilbert space which are classified by these eigenvalues:

Y |y, τ3〉 = y|y, τ3〉, T3|y, τ3〉 = τ3|y, τ3〉. (408)

For example, the left-handed u and d-quarks are represented by states

|1/6, 1/2〉 = |uL〉, |1/6,−1/2〉 = |dL〉, (409)

whilst the right-handed quarks are represented by states

|2/3, 0〉 = |uR〉, | − 1/3, 0〉 = |dR〉. (410)

Similarly, for the leptons

| − 1/2, 1/2〉 = |νL〉, | − 1/2,−1/2〉 = |eL〉,

|0, 0〉 = |νR〉, | − 1, 0〉 = |eR〉.
(411)

The various isospin multiplets can be characterized by the total isospin quantum number
τ with values τ = 0 for iso-singlets, τ = 1/2 for iso-doublets, τ = 1 for iso-triplets, etc.,
such that there are (2τ + 1) possible eigenvalues of τ3 within a given multiplet:

τ3 = τ, τ − 1, ...,−τ. (412)

Thus we should actually characterize the Hilbert-space vectors corresponding to the various
quarks and leptons by three numbers; |y; (τ, τ3)〉, with for example

|1/6; (1/2, 1/2)〉 = |uL〉, |1/6; (1/2,−1/2)〉 = |dL〉, etc. (413)

Whilst quarks and leptons are members of iso-singlets (τ = 0) or iso-doublets (τ = 1/2),
the vector bosons of the weak interactions (in the massless limit) form an iso-singlet Bµ

coupling to hypercharge, and an iso-triplet Wµ coupling to isospin.

The isospin operator T3 can now be complemented by conjugate operators T± = T †∓,
which change the isospin eigenvalue τ3 within the same isospin-multiplet: they can turn a
uL-quark into a dL-quark and vice-versa, and similarly a neutrino νL into a charged lepton
eL, without changing the value of the hypercharge or the total isospin:

T+|y, (τ, τ3)〉 = c+(τ, τ3)|y, (τ, τ3 + 1)〉, T−|y, (τ, τ3)〉 = c−(τ, τ3)|y, (τ, τ3 − 1)〉. (414)
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Here c±(τ, τ3) are co-efficients determined by the normalization of the state vectors:

c+(τ, τ3) =
1

2

√
(τ(τ + 1)− τ3(τ3 + 1), c−(τ, τ3) =

1

2

√
(τ(τ + 1)− τ3(τ3 − 1). (415)

We now explain these rules. First, because T3 is diagonal simultaneously with Y , these
operators commute:

[T3, Y ] = 0. (416)

Also, the raising and lowering operators T± do not change the hypercharge; in mathematical
language:

[T±, Y ] = 0. (417)

Thus we can consider a subspace of states with fixed eigenvalue y of the hypercharge, which
we will assume from now on. Next, T± raise or lower the eigenvalue τ3 of T3 by one unit,
which is equivalent to the commutation relations

[T3, T±] = ±T±. (418)

To see this, note that (ignoring the hypercharge)

T3 (T±|τ, τ3〉) = ([T3, T±] + T±T3) |τ, τ3〉

= T± (±1 + T3) |τ, τ3〉 = (τ3 ± 1) (T±|τ, τ3〉) .
(419)

Therefore the states T±|τ, τ3〉 are proportional to the eigenstates |τ, τ3 ± 1〉, as stated by
eqs. (414). The co-efficients (415) have been chosen such that the remaining commutation
relation reads

[T+, T−] =
1

2
T3, (420)

whilst the states |τ, τ3〉 are normalized:

〈τ, τ3|τ, τ3〉 = 1. (421)

First observe, that if we first raise and then lower the eigenvalue of T3 by one unit, or the
other way around, we get back the original eigenstate; therefore

(T+T− − T−T+) |τ, τ3〉 = (c−(τ, τ3)c+(τ, τ3 − 1)− c+(τ, τ3)c−(τ, τ3 + 1)) |τ, τ3〉

= 1
2
τ3|τ, τ3〉,

(422)

in agreement with (420). Finally

〈τ, τ3|T±T∓|τ, τ3〉 = c∓(τ, τ3)c±(τ, τ3 ∓ 1) 〈τ, τ3|τ, τ3〉 = |c∓(τ, τ3)|2, (423)

provided all states are normalized as in eq. (421).
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Exercise E.1
Define the operators

T1 = T+ + T−, T2 = −i (T+ − T−) .

a. Show that these operators are hermitean.
b. Prove they satisfy the commutation relations

[Ti, Tj] = iεijk Tk, i, j, k = (1, 2, 3).

Now consider a state with maximal τ3, i.e. a state |τ, τ〉; such a state is special as

c+(τ, τ) = 0 ⇒ T+|τ, τ〉 = 0. (424)

Therefore, as anticipated, we can not raise the value of τ3 above the value τ , and states
|τ, τ〉 are called highest weight states. If τ 6= 0, we can however lower the τ3-value of the
state by applying T− :

c−(τ, τ) =
1√
2
⇒ T−|τ, τ〉 =

1√
2
|τ, τ − 1〉. (425)

This procedure can be continued until τ3 = −τ ; then

c−(τ,−τ) = 0 ⇒ T−|τ,−τ〉 = 0. (426)

For any given (integer or half-integer) value τ we can thus construct precisely 2τ + 1 states
in which τ3 takes all values (τ, ...,−τ).

Exercise E.2
Define

T2 = T 2
1 + T 2

2 + T 2
3 = 2T+T− + 2T−T+ + T 2

3 .

a. Prove: [
T±,T

2
]

=
[
T3,T

2
]

= 0.

Conclude, that T2 and T3 can be diagonalized simultaneously.
b. Show that

T2|τ, τ3〉 = τ(τ + 1)|τ, τ3〉,

for any value of τ3; it follows that the eigenvalues of T2 are fully determined by the total
isospin τ .
c. From the result in (a), show that raising or lowering τ3 by application of T± does not
change the total isospin τ .
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A trivial example of multiplets of isospin states is the singlet |0, 0〉. As both coefficients
c±(0, 0) = 0, there are no other states in the multiplet. All right-handed quarks and leptons
are represented by singlet states.

The simplest non-trivial example is the isospin-doublet with τ = 1/2, consisting of the
states

|1/2, 1/2〉, |1/2,−1/2〉, (427)

examples of which are provided by the left-handed quarks and leptons. If the Dirac fields
of left-handed quarks are represented by a 2-component vector of quark-spinors:

Ψ(x) =

(
χu(x)
χd(x)

)
, (428)

then the isospin operators act on these components as

T+ =
1

2

(
0 1
0 0

)
, T− =

1

2

(
0 0
1 0

)
, T3 =

1

2

(
1 0
0 −1

)
. (429)

Finally, a triplet such as the W -bosons in the massless (non-broken) phase of the weak
isospin interactions form a three-dimensional isospin-vector

Wµ =

 W+
µ

W 0
µ

W−
µ

 , (430)

with the isospin operators represented in matrix notation by

T+ =
1√
2

 0 1 0
0 0 1
0 0 0

 , T− =
1√
2

 0 0 0
1 0 0
0 1 0

 , T3 =

 1 0 0
0 0 0
0 0 −1

 . (431)
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F. Feynman diagrams

Relativistic quantum field theory (QFT) describes both particles and their interactions, in
a single unified formalism. In QFT the particles of matter —such as electrons, quarks or
neutrinos— are quanta of Dirac fields, with specific energy and momentum proportional
to the frequency and wave-vector of the plane-wave solutions, as in exercise 22.2. The
interactions between these particles can be described by the exchange of bosons, such as
photons, gluons and massive weak vector bosons. In addition, bosons can also interact with
each other; for example, some weak vector bosons carry electric charge and interact with
photons, and gluons carry color charge and interact among themselves. In this formalism
the scattering of decay of particles can become quite complicated processes, involving the
exchange of many intermediate particles.

A major contribution to QFT was made by Richard Feynman. He considered the
probability amplitude for a system starting in a quantum state |i〉 to finish in a quantum
state |f〉, such that the associated transition probability is of the form

Pi→f = |〈f |S|i〉|2 . (432)

Feynman showed that the transition (or scattering) matrix element 〈f |S|i〉 can be com-
puted by adding the contribution of all possible ways that the process can take place; this
procedure is known as the sum over histories. A way to visualize the various contributions
to a certain process is to draw the various particle-exchange schemes that can lead from
the initial state to the final state.

To illustrate this idea, let us first consider the theory of quantum electrodynamics
(QED). The lightest and most common charged particles in nature are electrons and their
anti-particles, the positrons. The scattering of two electrons can be represented schemati-
cally by fig. f.1, where time runs from left to right.

Fig. f.1: Scattering of two electrons; time runs from left to right.

Charged particles like electrons or positrons are represented by solid lines carrying an arrow
which indicates the direction of flow of (negative) charge. Representing photons by wavy
lines, we can draw explicit contributions to the scattering process; the simplest ones are
shown in fig. f.2:
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Fig. f.2: Scattering of two electrons by virtual photon exchange.

A characteristic property of QED is, that charged particles can emit, absorb or exchange
only one photon at a time. Thus at any interaction point —or vertex— in the diagrams
one incoming charged particle, one outgoing charged particle and one photon meet. No
interaction points involving two or more photons are possible. This holds also for photons
by themselves: photons carry no electric charge, so they don’t couple directly to other
photons.

Each of the diagrams in fig. f.2 represents a specific mathematical expression describing
a contribution to the matrix element. Every vertex where a photon couples to a charged
particle contributes a corresponding factor of the electron charge e to the term; indeed in
the limit that the electric charge vanishes, there is no longer an interaction of the particle
with photons, and the expression corresponding to the diagram must vanish. By simple
book-keeping of these factors, we observe that the first diagram in fig. f.2 is proportional to
e2, whereas the second and third diagram are proportional to e4. There are also diagrams of
order e2n for any natural number n. Actually, the factors e2 are accompanied by sufficiently
many powers of c, ~, ..., etc, to turn the diagrams into an expansion in the dimensionless
parameter α, the fine-structure constant, with a numerical value close to 1/137. This
implies, that the successive terms in powers of α tend to become less and less significant.
In many cases it is sufficient to consider only the contribution of the simplest diagrams,
proportional to low powers of the fine-structure constant α.

The diagrams in fig. f.2 can also represent the scattering of other charged particles,
e.g. the scattering of an electron with a muon or a quark. Of course the corresponding
expressions in the matrix element will be changed, e.g. by replacing whenever appropriate
the mass of the electron by the mass of the muon, or the electron charge −e by the quark
charge 2e/3 or −e/3.

Fig. f.3: Scattering of an electron and a positron by virtual photon exchange.

A new effect arises in the scattering of an electron with a positron, illustrated in fig. f.3.
The positron is represented by a solid line with a reversed arrow, indicating that the charge
flows in the oposite direction compared to the electron. Only the contributions of order e2

are shown; these include one more diagram than in the case of electron-electron scattering.
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The reason is, that an electron and a positron can annihilate, creating an intermediate state
with one or more virtual photons, which then produce an electron-positron pair again in
the final state. Such an annihilation diagram is not possible in electron-electron scattering.

In some processes the first diagram f.3 can also represent the only contribution of order
e2. For example, an electron and a positron may annihilate, producing an intermediate
state with one or more photons, and then produce a µ+-µ−-pair. Fig. f.4 shows the e2- and
some of the e4-contributions.

Fig. f.4: Electron-positron annihilation creating a muon and an anti-muon.

Finally, an electron and a positron can also annihilate to create two or more photons; the
lowest-order contribution to photon pair-creation is shown in fig. f.5.

Fig. f.5: Electron-positron annihilation creating a photon pair.

The particles which appear in the intermediate state are not observed; they only exist as a
possible intermediate state in the sum over histories. But no history is the real history in
any classical sense: in the evolution of a quantum state all histories contribute. Therefore
the particles in the intermediate states are refered to as virtual particles.

In quantum chromodynamics (QCD) the rules are quite similar to those of QED, but with
an important difference: gluons carry a color and an anti-color charge, and therefore the
interaction of quarks with gluons changes the color charge of the quark.

Fig. f.6: Quark-gluon vertex.

Fig. f.6. shows the general quark-gluon vertex, and a specific instance where a red quark
interacts with a (red, anti-green)-gluon to become a green quark. The same vertex can
also represent other color-charge combinations. As they carry color and anti-color charges,
the gluons can also interact among themselves. In fact there are two different gluon-gluon
vertices, with three or four gluons interacting at a point, as illustrated in fig. f.7:
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Fig. f.7: Gluon-gluon vertices.

In each case we have drawn one particular combination of color charges flowing into or
out of the vertex, but this combination represents only one of several possible ones. As a
result of the gluon-gluon interactions, there are contributions to quark-quark scattering by
gluons which have no equivalent in the case of QED, such as the one drawn in fig. f.8:

Fig. f.8: Contribution to quark-quark scattering from QCD.

Similar effects exist in the theory of weak interactions, although in that case it is not
the color charge of the particles which changes, but the flavor, i.e. the particle type. For
example, a muon can change into a muon neutrino while emitting a charged W -boson; in
turn this boson can produce an electron and anti-neutrino, thus explaining β-decay. The
lowest-order contribution to this process is the one shown in fig. f.9.

Fig. f.9: β-decay of the muon.
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