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1. Quantum Theory. General Principles

1.1. Introduction

Let me begin with a quote by Galileo Galilei who in 1623 expressed
his idea about the role of mathematics in physics clearly and con-
vincingly in his book “Il Saggiatore (The Assayer)”:

La filosofia è scritta in questo grandissimo libro che continuamente
ci sta aperto innanzi a gli occhi (io dico l’universo), ma non si può
intendere se prima non s’impara a intender la lingua, e conoscer i
caratteri, ne’ quali scritto. Egli è scritto in lingua matematica, e
i caratteri son triangoli, cerchi, ed altre figure geometriche, senza
i quali mezi è impossibile a intenderne umanamente parola; senza
questi è un aggirarsi vanamente per un oscuro laberinto.

In English translation :

Philosophy is written in this vast book, which continuously lies open
before our eyes (I mean the universe). But it cannot be understood
unless you have first learned to understand the language and recog-
nise the characters in which it is written. It is written in the lan-
guage of mathematics, and the characters are triangles, circles, and
other geometrical figures. Without such means, it is impossible for
us humans to understand a word of it, and to be without them is to
wander around in vain through a dark labyrinth.

This was true in the time of Galileo, when mathematics indeed
meant just circles and triangles, now basic secondary school ma-
terial. It is even more true at present when the mathematical basis
of physics uses much more advanced mathematics: Hilbert spaces,
Lie groups, manifolds. (Note that by “philosophy” Galileo means
“natural philosophy”, i.e. physics and astronomy.)

Here is a more recent quote by Dirac:

“During a seminar in Moscow University in 1955, when Dirac was
asked to summarize his philosophy of physics, he wrote at the black-
board in capital letters : “Physical laws should have mathematical
beauty”. This piece of blackboard is still on display.”

Mathematics and physics used to be in an obvious way a single in-
tegrated subject. Think of Archimedes, Newton, Lagrange, Gauss,
more recently Riemann, Cartan, Poincaré, Hilbert, von Neumann,
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Weyl, van der Waerden, Birkhoff, and many others. Lorentz, the
great Dutch physicist, was offered a chair in mathematics, simul-
taneosly with a chair in physics at an other Dutch university. He
chose the latter and became in 1878 the first professor of theoretical
physics in Europe.

All this is a thing of the past. For most present day mathemati-
cians, especially for the younger generation, physics has become a
terra incognita. This happened gradually in the fifties. It is not com-
pletely clear why. The Bourbaki program has had certainly great
merits for the development of mathematics. It revolutionized its
language, which, however, strongly contributed to this separation
from physics. Note that most of the great stars of Bourbaki, Weil,
Dieudonné, Cartan (Henri, not Elie), Grothendieck, had no interest
in physics at all. The growing publication pressure in academia lead-
ing to much ultra-specialization and short-term work is maybe an-
other reason. Among the older generation of mathematicians there
are still a few mathematicians for who physics is an essential part
of their scientific interest, think of Atiyah, Manin, Connes. My lec-
tures here will try to give a local, modest, very modest, microscopic
push in the other direction.

What topics will be discussed in these lectures? The general subject
is quantum theory, as a physical theory, but with an emphasis on
its mathematical structure. The mathematics for this is functional
analysis, Hilbert space theory, and more particular the theory of
linear operators. I explain what is needed for this briefly in these
notes. Quantum theory is in a very deep and essential manner a
probabilistic theory. For this we need some fairly elementary prob-
ability theory. Again, I shall explain some of this in these lectures.

Classical and quantum physics are very different, certainly at first
sight. Nevertheless, they can be shown to have very similar math-
ematical structures, when formulated as what I shall call algebraic
dynamical systems. This leads to the subject of quantization, pro-
cedures to construct quantum theories from given classical theories,
Weyl quantization, strict and formal deformation quantization.

We shall restrict ourself mainly to nonrelativistic physics, but dis-
cuss in the last lecture the merging of quantum theory and the
special theory of relativity, raising problems that remain partly un-
solved.
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1.2. Mathematics and physics. General remarks

It is worth pausing for a moment to look at the differences between
physics and mathematics.

• Rigour : The basis of mathematical thinking is logic. A mathemat-
ical theory has to precisely defined, with rigorously proven theorems.
This is an absolute requirement, the only one. Heuristics, intuition,
elegance are important, but in the end not decisive. A physical the-
ory has to meet two requirements. One is that the soundness of the
mathematics in which it is formulated. The second is that is has to
agree with experiments. If it cannot be checked experimentally, than
it is not a physical theory; it is science fiction (e.g. string theory). If
it can be checked but does not agree with experiments, then it is a
false theory. The condition of mathematical rigour have sometimes
(temporarily) to be relaxed. In particle physics, quantum field the-
ory, for instance, quantum electrodynamics predicts experimental
results with an unbelievable precision, but generations of physicists
and mathematicians have over the last seventy years tried in vain
to provide it with a proper mathematical basis, but nobody doubts
that it is a good physical theory.

Mathematics is disciplined human imagination; physics is investiga-
tion of the real world.

• Domain of validity : A physical theory has a domain of applicabil-
ity. Classical mechanics, for instance, is valid for situations in which
there are no very high velocities involved – near the velocity of light.
After that the theory of relativity takes over. It is also only valid
for macroscopic phenomena; in the microworld quantum theory is
needed. Etc..

• Approximation : Very few calculations, theoretical procedures, so-
lutions of problems are exact. The famous 2-dimensional Ising model
is a rare exception.

The general situation in physics is approximation. Results are often
calculated by means of expansion in power series in orders of param-
eters which describe the strength of the interaction, as a deviation
from a simple known situation. One usually does not bother too
much about the convergence of such a series. Or by an ever finer
discretization of a continuum model. Or by computer simulation.
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• Dimensions : Mathematicians do not always realize that quantities
in a formula in physics are in general not pure numbers, but have a
dimension and therefore take different numerical values for different
systems of units. One has basic units of length [L], mass [M], time
[T], etc.. Other quantities have derived dimensions, like velocity
with the dimension [LT−1], linear momentum with [MLT−1], energy
with [ML2T−2]. Sometimes other basic units are added, for instance
for electric charge or temperature.

By fixing the numerical values of certain fundamental physical con-
stants one may reduce the number of basic units. For example, in
particle physics one usually takes the velocity of light c = 1 and
Planck’s constant h̄ = 1, with the result that in this field energy can
be taken as the sole basic unit: all quantities have the dimension of
a positive of negative power of the energy.

Dimensions have something to do with scaling. A physicist will
immediately see that certain formulas are incorrect, for instant for-
mulas in which the argument of an exponential or logarithm is a
physical quantity which is not dimensionless.

• Heuristics : This plays a certain role in mathematics. Think of
Edward Witten who got a Fields medal in 1990 for a number of
brilliant heuristic conjectures and arguments that lead to new areas
of mathematics. This is however an exception. The role of heuristic
methods is much more important in physics. Large parts of physics
books and papers are written in heuristic language, familiar to physi-
cists, but making them harder for readers from mathematics. Two
examples. The Dirac δ-function and its derivatives, later made by
Laurent Schwartz into a rigorous part of functional analysis, the
theory of distributions. The so called ‘anticommuting c-numbers’.

The use of heuristic language is a convenient tool in physics, but
it is also dangerous, as it may hide real problems, as it does, for
example, in quantum field theory.

Two ways of teaching a physics. In the first one follows its his-
toric development, in the second one formulates a theory in terms
of one or more mathematical postulates, ‘axioms’, from which the
full theory can be derived. There is something to be said for both
methods. Most physics text books follow – more or less – the histor-
ical approach, usually neglecting the mathematical background; the
axiomatic method has advantages for mathematics students. I shall
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at various places illustrate this by discussing quantum phenomena
in both ways. In any case, a certain knowledge of the history of
physics should be part of a scientific education.

1.3. Historical remarks

Physics as we know it, a successful combination of mathematical
and experimental science , began in sixteenth and seventeenth cen-
tury Europe, even though ancient and medieval civilizations, those
of China, India, Greece and the Arab world for instance, were al-
ready in the possession of a considerable body of scientific knowl-
edge: insights in certain areas of astronomy and of pure and applied
mathematics on the one hand and empirical knowledge of physical
phenomena on the other hand. Here, in the midst of North Africa,
the contribution of Arabs scientists, such as al-Tusi, al-Kwarizmi,
al-Haytham, and many others, deserves to be mentioned. They not
only preserved classical knowledge but also greatly extended it, lay-
ing in this manner the basis for the subsequent scientific revolution
that led to modern mathematics and physics. See Ref.[12].

The nucleus of the new physical science was mechanics, describing
the action of forces, in particular forces on moving bodies. It was
built on the principles laid down first by Galileo and then more
systematically by Newton, and was developed further into a beau-
tiful mathematical theory by – among others – Lagrange, Laplace,
Hamilton and finally Poincaré. Electricity and magnetism, studied
experimentally from the fifteenth century onward, and later more
theoretically, as separate phenomena, were brought together into a
single theoretical framework in the second half of the nineteenth
century by Maxwell. The basic notions in his general theory of
electromagnetism were electric and magnetic fields , propagating in
space as radiation, with light waves as a special case. In addition
to this there was thermodynamics and statistical mechanics, the
first a phenomenological framework for describing experimentally
observed properties of heat, temperature and energy, the second a
way of explaining these ‘macroscopic’ phenomena by statistical ar-
guments from the ‘microscopic’ picture of atoms and molecules that
gradually became generally accepted.

At the end of the nineteenth century, the result of all this was classi-
cal physics , a description of the physical world, believed by many to
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be essentially complete. It consisted of two main components, New-
ton’s classical mechanics, for the description of matter , Maxwell’s
theory of electromagnetism, for fields and radiation , together with
laws governing the interaction between matter and radiaton.

1.4. Problems of classical physics

At the beginning of the twentieth century a few small but persistent
problems remained, cracks in the walls of the imposing building
of classical physics. One of these was the problem posed by the
frequency spectra of light emitted by atoms and molecules, measured
systematically and with great precision during the last half of the
nineteenth century. These spectra were discrete ; their frequencies
followed simple empirical rules, for which no theoretical explanation
could be given. There was no way in which the classical picture
of atoms and radiation could account for this. A second problem
was the aether , a special medium that was assumed to fill empty
space. The existence of this aether was thought to be necessary
for the propagation of light waves through vacuum, but was forced
to have very contradictory properties. These problems could not
be solved within classical physics; fundamentally new physical ideas
were needed, which were found in two new theories which emerged
in the first half of the twentieth century.

1.5. Two revolutions

The two new theories that solved the problems of classical physics
and broke resolutely with classical notions were the special theory
of relativity and quantum mechanics . They led eventually to a
thorough revision of the foundations of physics, with new ideas, in
relativity on space and time, and in quantum mechanics on causality
and determinism. In this process classical mechanics and classical
electromagnetism were relegated to the role of practically useful ap-
proximations to an underlying more general picture.

The aether problem was solved by theory of relativity, created in
1905 by Albert Einstein. Space and time were no longer sepa-
rate entities; the became intimately related, forming together a 4-
dimensional affine space, in which the distinction between space
and time was indeed relative and depended on the motion of the
observer. The aether was abolished. Einstein later developed the
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general theory of relativity with gravity the basic force, acting in a
curved 4-dimensional space-time pseudo-Riemannian manifold.

Quantum theory solved the problem of atomic spectra. Its his-
tory started in 1913 with Bohr’s ad-hoc theoretical model of the
hydrogen atom. Scattering experiments by Rutherford had shown
that such an atom was a system consisting of a positively charged
heavy nucleus in the centre, encircled by a light electron with a
negative charge. This very small planetary system emitted electro-
magnetic radiation, in certain discrete frequencies which could not
be explained by classical physics. Bohr postulated in 1912 a model
in which the electron could only move in a certain system of discrete
orbits, jumping once in a while from one orbit to the next, radiating
energy in this process.

Bohr’s model had an immediate success. It had no theoretical justi-
fication at all, but it predicted not only the fact of the discreteness
of the hydrogen spectral lines but also their frequencies in a fairly
precise manner. This was the beginning of quantum theory.

1.6. Quantum mechanics

Quantum theory as we know it now was born in a period of a few
years, roughly between 1924 and 1927, invented by Werner Heisen-
berg and Erwin Schrödinger, with important contributions by Max
Born, Wolgang Pauli, Paul Dirac and many others. Immediately
after this the mathematical foundations were laid by John von Neu-
mann and group theory was introduced in quantum theory by Her-
mann Weyl.

Initially it looked as if there were two different and competing kinds
of quantum theory: Heisenberg’s matrix mechanics and, somewhat
later, Schrödinger’s wave mechanics. It soon turned out that they
were just different faces of the same underlying mathematical model,
a model that we shall describe in an explicit manner further on.

It is useful to distinguish between quantum theory and quantum me-
chanics. With quantum theory I mean the general theory. The spe-
cial case of quantum mechanics describes mechanical systems with a
finite number of degrees of freedom, i.e. a system of N (in general)
interacting particles. Such a system has 6N degrees of freedom, 3N
positions and 3N momenta. In most of my lectures, and certainly in
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this lecture I shall restrict myself to nonrelativistic point particles,
and at places even to a system of a single particle. Systems that
do not belong to quantum mechanics proper are, for examples, spin
systems, very important models for the description of solid matter in
solid state physics, and systems with an infinite number of degrees
of freedom such as quantum field theories in elementary particle
physics. This will be discussed in my last lecture.

1.7. Axioms for quantum theory. The simplest situation

The basic properties of quantum theory can be expressed by a set
of mathematical statements, ‘axioms’, together with their conse-
quences. This system is essentially due to John von Neumann. The
mathematics he used for it, most of it invented by him for this pur-
pose, is functional analysis, in particular the theory of operators in
Hilbert space. Here is the simplest version, to be called ‘Version 1’.

Axiom I. The state of a physical system is described by a
unit vector ψ in a Hilbert space H.
Remark : Multiplication of a unit vector by a phase factor gives
the same state. It means that, strictly speaking, the state space is
not the Hilbert space H but the associated projective Hilbert space
P (H). We shall not bother about this.

Remark : A Hilbert space is a complex inner product space; the
infinite dimensional version that quantum theory requires has addi-
tional topological properties necessary for discussing limits, in par-
ticular for taking the sum of infinite series. A vector ψ in H has a

norm defined as ||ψ|| =
√

(ψ, ψ). Convergence of a sequence of vec-

tors {ψn}n∈N to a limit ψ means limn→∞ ||ψ − ψn|| = 0. A Hilbert
space is complete, i.e. every Cauchy sequence is convergent.

Axiom II. Observables are represented by selfadjoint op-
erators A in H.

Remark : A selfadjoint operator in a Hilbert space is the infinite
dimensional generalization of a hermitian operator or matrix in or-
dinary linear algebra. However, due to the infinite dimension, oper-
ators in Hilbert space have much more subtle properties. They are
often not defined on all of H, but only on a dense linear subspace of
H, their domain. Such operators are called unbounded, for a reason
that will be explained further on. A simple algebraic manipulation
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as multiplication of two unbounded operators A and B is a non-
trivial procedure, because the domains of A and B have to match.
Unfortunately, many or most of the operators in quantum theory
are of this type.

An operator A in H is called hermitian, or symmetric, if

(ψ1, Aψ2) = (Aψ1, ψ2), ∀ψ1, ψ2,

the standard definition from linear algebra, which for unbounded
operators has to be supplemented by the condition “for all ψ1 and
ψ2 in the domain of definition of A”. Hermiticity of operators is not
good enough for the case of the unbounded operators in quantum
theory; we need the property of selfadjointness, which is stronger.
Its definition is rather technical. We refrain from giving it here.

1.8. An explicit example

Before going on to the next axioms it is good to understand these
two first by looking at a simple explicit example. The obvious one,
both from a historical as well from a pedagogical point of view, is
the Schrödinger theory for the description of a single point particle
in a given external potential, such as the Coulomb potential in the
model of the hydrogen atom.

Ad Axiom I : The Hilbert space of state vectors H is the space of
complex-valued square integrable functions L2(R3, d~x) with d~x =
dx1dx2dx3. The elements of this space are the wave functions ψ(~x),
with ~x = (x1, x2, x3). The inner product of two wave functions ψ1

and ψ2 is ∫ +∞

−∞
ψ1(~x)ψ2(~x) d~x.

Note that this is the physics convention: the inner product is con-
jugate linear in the first variable.

Note that the wave function for the description of a state of N
particles is a function of 3N variables, e.g. for a two particle system
one has ψ(~x(1), ~x(2)).

Ad Axiom II : The basic observables in the classical description a
single point particle are the variables for position x1, x2, x3 and mo-
mentum p1, p2, p3, and from these all others are constructed, in par-
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ticular the most important one, the total energy

H =
p2

2m
+ V (x1, x2, x3),

with p =
∑3

j=1 p2
j and m the mass of the particle. In quantum

mechanics the corresponding operators are those for position, mul-
tiplication operators Qj, acting as

(Qjψ)x1, x2, x3) = xjψ(x1, x2, x3),

for j = 1, 2, 3, and for momentum differentiation operators Pj, de-
fined as

(Pjψ)(x1, x2, x3) =
h̄

i

∂

∂xj
ψ(x1, x2, x3),

for j = 1, 2, 3. Note the appearance of h̄ in this formula. This is
Planck’s constant, a constant of nature, typical for quantum theory,
and appearing in all quantum theoretical formulas. The energy as
an observable is represented, not surprisingly, by the operator

H =
P2

2m
+ V,

with V the multiplication operator

(V ψ)(x1, x2, x3) = V (x1, x2, x3)ψ(x1, x2, x3).

It is not hard to verify that all these operators are unbounded. For
ψ a square integrable function Qjψ need not to be square integrable;
this requirement determines the domain of definition of Qj. Sim-
ilarly, the operator Pj is defined only on differentiable functions;
moreover the resulting functionPjψ should be square integrable. It
is also not difficult to check that the Qj and Pj are hermitic. That
they are also selfadjoint is a nontrivial property that we shall not
prove here.

Note that this simple prescription of obtaining a function of certain
operators by following the classical expression does not work in gen-
eral. It is alright with the operator H but problematic already with
a simple expression like PjQj. This is because we have for the clas-
sical variables pjqj = qjpj; for the quantum variables PjQj 6= QjPj,
as will be clear from what follows.
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The operators Pj and Qj, the ‘canonical operators’ as they are
called, have interesting relations, not difficult to derive, the canoni-
cal commutation relations,

[Pj, Pk] = [Qj, Qk] = 0, [Pj, Qk] =
h̄

i
δjk, j, k = 1, 2, 3.

These formulas are emblematic for quantum mechanics. There is an
important uniqueness theorem, the Stone - von Neumann theorem,
which, among other things, states that for a given n all irreducible
systems of such operators {Pj}j=1,...,n and {Qk}k=1,...,n are unitarily
equivalent. (A system of operators {Aρ}ρ in a Hilbert space H is
called irreducible if and only if an operator that commutes with all
the members of this system is necessarily a scalar multiple of the
unit operator. Two systems {Aρ1}ρ1 and {Aρ2}ρ2 in H1 and H2 are
called unitarily equivalent if and only if there exist a unitary map
U : H1 → H2 such that Aρ2 = UAρ1U

−1, for all ρ.)

1.9. Axioms for quantum theory. Continued

The third axiom, part A, describes the physical interpretation of the
combination of axioms I and II, for the case of a single observable.

Axiom III0 . The probability of measuring the value α for
the observable A in a state ψ is given by a distribution
function F (α) = (ψ,Eαψ), with Eα a spectral projection of
the operator A.

Remark : This axiom is the central statement of the quantum theo-
retical formalism. For this we use what is the main theorem in the
mathematical formulation of quantum theory, the spectral theorem
for selfadjoint operators in Hilbert space. It is a non-trivial gener-
alization of the well-known fact from elementary finite dimensional
linear algebra that a hermitian matrix has an orthonormal basis of
eigenvectors, for real eigenvalues.

Here is a reminder of this finite dimensional case. Let {Ajk}jk be
a n × n hermitian matrix, or equivalently, a hermitian operator in
a complex n-dimensional inner product space. It is an elementary
theorem in linear algebra that A has an orthogonal basis of eigen-
vectors φj with real eigenvalues αl, i.e. with Aφj = αjφj, which
allows us to write A as

A =
n∑
j=1

αjEj,
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in which the Ej are the orthogonal projections on {φj}j. We may
call the numbers {αj}j the spectrum of A, and the projections {Ej}j
spectral projections. This is the spectral theorem for a hermitian
matrix or operator in an n-dimensional complex inner product space.

If the Hilbert space is infinite dimensional – I shall reserve the name
Hilbert space for this situation, even though this is not quite the
standard usage – the situation becomes more complicated. In the
first place we have to replace the notion of hermitian operator by
that of selfadjoint. There is still the possibility that a selfadjoint
operator has only a discrete spectrum, i.e. eigenvalues in proper
sense – we shall meet an example further on. In that case we still
have the above sum formula, now with the summation running from
1 to∞. In the general case there will be either discrete or continuous
spectrum, or a combination of both.

To understand this we go back to our explicit example. But first a
few remarks on probability theory.

Probability theory : Probabilistic ideas are essential in quantum the-
ory. Most of what we need in this respect is fairly elementary. Here
is a reminder of some basic facts:

1. Discrete probabilities: there is a discrete set of possibilities, finite
or countably infinite, the sample space. Probabilities on this means
a sequence (ρ1, ρ2, . . .) of nonnegative numbers, with

∑
j ρj = 1.

Such a number ρj is the probability of finding the system in the
jth possibility. The average value (mean value) of what is called
a discrete stochastic variable, a sequence (g1, g2, . . .), is < g >=∑
j gjρj. Its nth moment is < gn >=

∑
j g

n
j ρj.

2. Continuous probabilities: The sample space is a nondiscrete set,
for instance an interval [a, b], the full real line R1, or a suitable part
of Rn, etc.. Probability on such a space is a probability density, a
nonnegative function ρ(x) with

∫
ρ(x)dx = 1. The probability of

finding the system in the interval [x1, x2] is
∫ x2
x1
ρ(x)dx. The average

value (mean value) of a stochastic variable g is < g >=
∫
g(x)ρ(x)dx;

its nth moment is < gn >=
∫
g(x)nρ(x)dx.

Strictly speaking, there are three kinds of probabilities: discrete,
then continuous, with a probability density, which is called abso-
lutely continuous, and finally a third possibility, called singular con-
tinuous. We shall not bother about this last possibility.
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There is a convenient way of formulating the two (in fact three)
sorts of probabilities in sequence sample spaces and subsets of R1 in
a single manner, by means of the notion of a distribution function.
For the discrete case we define

F (x) =
j≤x∑
j=1

ρj,

and for the continuous case

F (x) =
∫ x

−∞
ρ(x)dx.

In both cases F is a monotone nondecreasing function, continuous
from the left, with

lim
x→−∞

F (x) = 0, lim
x→+∞

F (x) = 1.

For the discrete case F is a step function. Averages are calculated
with a Lebesgue-Stieltjes integral; for a stochastic variable g – in the
discrete case written as a step function – this means

< g >=
∫ +∞

−∞
g(x) dF (x),

with the nth moments

< gn >=
∫ +∞

−∞
g(x)n dF (x).

It should be noted that probability theory, certainly as far as its
basic mathematical concepts are concerned, is a part of the theory
of measure and integration. A probability space is, in technical
terms, nothing but a measurable space with a measure of total mass
equal to 1; with stochastic variables measurable functions on this
space.

With these probabilistic ideas we can develop further the meaning
of Axiom III0., in particular the meaning of the general spectral
theorem, in the case where we no longer have proper eigenvalues and
eigenvectors.The general spectral theorem for a selfadjoint operator
A in an infinite dimensional Hilbert space is

A =
∫ +∞

−∞
α dEα ,
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a vector-valued Stieltjes integral, which we may see, if we wish, as
the representation of a collection of numerical Stieltjes integrals

(ψ,Aψ) =
∫ +∞

−∞
α d(ψ,Eαψ),

for all unit vectors ψ in the domain of definition of the operator A.

1.10. Back to our simple model

To understand how the probabilistic ideas just presented are helpful
to understand the eigenfunction / eigenvector problem of general
selfadjoint operators, we return to our simple explicit example. We
make it even simpler, just for the case of notation, and restrict it
to a particle in a potential in 1-dimensional space. This means that
the Hilbert spaceH is L2(R1, dx), with wave functions ψ(x), a single
position operator Q and a single momentum operator P , with the
canonical commutation relation [P,Q] = −i1H. The eigenvalue /
eigenfunction equation for the operator P is

(Pψ)(x) = λψ(x)

For every real value p of λ, it has as solution the function

ϕp(x) = C e
i
h̄
px,

with C an arbitrary nonzero constant. However, these functions are
not square integrable, they are not vectors in H. (They represent
plane waves with wave lenght 2πh̄/p. As such they are often used
heuristically in physics text books, even they though they are inad-
missible as quantum state vectors). In the strict sense P has neither
eigenvalues nor eigenfunctions. Nevertheless, one says that P has a
continuous spectrum, the full real line. There are no eigenvectors,
so no projection operators to use in a formulation of the spectral
theorem, as we did for the finite dimensional case. For this there
exists a more subtle sort of what are called spectral projections. The
simplest way to introduce these is by looking at the operator Q. Its
eigenvalue / eigenfunction problem is

(Qϕ)(x) = λϕ(x).

Suppose there is a solution φ(x) for the eigenvalue λ = λ0. This
means (x− λ0)φ(x) = 0, implying ϕ(x) = 0, for all x 6= 0. In an L2
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sense it is identicaly zero, so again not a proper quantum mechan-
ical wave function. However, also in this case the operator has as
continuous spectrum the full real line. There are again spectral pro-
jections, taking the place of the projections on the eigenvectors in
the discrete case. For the operator Q they are easy to demonstrate.
First however a note on projection operators.

A reminder on projection operators : Projection operators in Hilbert
space can be defined in two equivalent ways :

1. Algebraic : A linear operator E in a Hilbert space H is a projec-
tion (short for projection operator) if and only if

E2 = E, E∗ = E,

i.e. if it is idempotent and selfadjoint.

2 Geometric : A projection operator E in H maps all vectors or-
thogonally on a (closed) linear subspace M of H.

Properties :
1. A projection operator is a bounded operator.
2. Two projections E1 and E2 have the relation E1E2 = E2E1 = E1,
if and only if one has for the corresponding subspaces M1 ⊂ M2.
This implies that there is a partial order ≺ in the set E(H) of all
projections in H.
3. A projection E has a complement, denoted as E⊥ and defined as
E⊥ = 1−E. If E projects onM, then E⊥ projects on its orthogonal
complement M⊥.
4. One has as trivial projection the operators 0 and 1.

Back to our 1-dimensional quantum mechanical model. Define for
every real number x0 the operator Ex0 in H = L2(R1, dx), according
to

(Ex0ψ)(x) = ψ(x), forx ≤ x0, and = 0, for x > x0

This is a projection on the subspace of H consisting of all functions
that vanish for x > x0.

The system {Ex}x∈R1 has the following important and characteristic
properties, not difficult to verify,

1. Ex1Ex2 = Ex2Ex1 , ∀x1, x2 ∈ R1 (commutativity),

2. x1 ≤ x2 → Ex1 ≺ Ex2 (monotone nondecreasing),

3. limx↑x0 Ex = Ex0 (continuity from the left),
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4. limx→−∞Ex = 0, limx→+∞Ex = 1.

The system {Ex}x∈R1 is by definition the spectral resolution of the
operator Q.

Note that limits in point 3 are limits for operator-valued functions.
There are various notions of such limits. We shall say something
about this later on. In any case this set of operator properties
gives rise to an equivalent system of complex number-valued set of
properties:

Let ψ be an arbitrary unit vector inH. Then the expression (ψ,Exψ)
has the following properties, implied immediately by the properties
1,2 and 3 of the system {Ex}x∈R1 ,

1. x1 ≤ x2 → (ψ,Ex1ψ) ≤ (ψ,Ex2ψ).

2. limx→−∞(ψ,Exψ) = 0, limx→−+∞(ψ,Exψ) = 1, for all unit vec-
tors in H.

If we denote Fψ(x) = (ψ,Exψ), then the properties 1 and 2 show
that Fψ(x) is a distribution function in the sense of probability the-
ory, a notion that we discussed earlier. Distribution functions are
the vehicles to express the physical meaning of the spectral theorem
for selfadjoint operators. For the position operator Q this theorem
is indeed

Q =
∫ +∞

−∞
x dEx,

as an operator-valued Stieltjes integral, or as∫ +∞

−∞
x d(ψ,Exψ) =

∫ +∞

−∞
x dFψ(x),

for all unit vectors ψ in H, as an equivalent system of numerical
Stieltjes integrals. It is clear that all the distribution functions Fψ(x)
are not only real monotone nondecreasing functions, but also con-
tinuous. This signifies the fact that the spectrum of the operator Q
is continuous and consists of all real numbers.

Exhibiting the spectral resolutions and the spectral theorem for the
momentum operator P is a bit more involved. For this we need the
Fourier transforms of the wave functions,

(Fψ)(p) : = ψ̂(p) =
1

(2πh̄)1/2

∫ +∞

−∞
ψ(x)e−

i
h̄
px dx,

23



with its inverse

(F (−1)ψ̂)(x) : = ψ(x) =
1

(2πh̄)1/2

∫ +∞

−∞
ψ̂(p)e+ i

h̄
px dp,

The Fourier transformation is a operator which maps the function
space H = L2(R1, dx) onto the function space Ĥ = L2(R1, dp). The
Plancherel theorem, connected with this,∫ +∞

−∞
|ψ(x)|2 dx =

∫ +∞

−∞
|ψ̂(p)|2 dp

states that ||Fψ||2 = ||ψ||2, which expresses the unitarity of the
transformation F . In this, what is called momentum representation,
P acts also as a multiplication operator

(Pψ̂)(p) = pψ̂)(p).

The further development is very similar to what is done in the case
of the position operator Q, i.e. definition of a system of projection
operators {Ep}p in the Hilbert space of functions Ĥ, definition of the

distribution functions F
ψ̂
, for every ψ̂ in Ĥ, and finally the statement

of the spectral theorem as

P =
∫ +∞

−∞
p dEp.

Also in this case the spectrum consists of all real numbers.

The operator Q in H is a multiplication operator, in analogy with
finite dimensional linear algebra it may be said to be represented
‘diagonally’. This is not so for the operator P in H, but P is made
‘diagonal’ by the unitary transformation F from H onto Ĥ. In finite
dimensional linear algebra bringing a hermitian matrix in diagonal
form by a unitary transformation is the essence of solving the eigen-
value / eigenvector problem. What we have done here is the infinite
dimensional generalization of this.

Knowing the mathematics, the eigenvalue / eigenvector problem for
Q and P – or rather the problem of finding the appropriate spectral
resolutions – is easy, as we have seen. For the Hamiltonian operator,
the energy operator, although a simple expression in position and
momentum, this is a separate problem, much more difficult, except
in the case where the particle is free, i.e. when the potential V is
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identically zero, not an exciting case, of course, when the Hamilto-
nian is just a function of the momentum alone, n.l. H0 = ~p2/2m.
Depending on the potential V the spectrum may be completely dis-
crete (the harmonic oscillator), completely continuous (the free par-
ticle) or mixed (the hydrogen atom). This is due to the fact that
this expression contains noncommuting operators, the occurrence of
which is a central feature of quantum theory. Solving the eigenvalue
/ eigenvector problem for the energy is the most important physical
problem in almost all concrete quantum mechanical models. Ex-
act solutions are rare exceptions; laborious approximate solutions
in terms of power series expansions are the rule.

1.11. The general Axiom III

Axiom III0 described the interpretation of Axioms I and II for a
single observable. We now state Axiom III for the general case of a
system of what we call ‘commensurable’ observables, i.e. a system
of observables represented by commuting selfadjoint operators. This
adjective is crucial in what follows. Note that for two unbounded
selfadjoint operators A and B, a common situation in quantum the-
ory, their domains of definition may not match, so the products AB
and BA may not be defined properly. To avoid this problem selfad-
joint operators are said to commute if and only if all their spectral
projection operators – which are bounded – commute.

Axiom III (general): A unit vector ψ, representing a state
of a quantum system, together with n commuting selfad-
joint operators A1, . . . , An, representing observable quanti-
ties a1, . . . , an, determines a system of stochastic variables.
The simultaneous distribution function for these variables
is given by

Fψ(α1, . . . , αn) = (ψ,Eα1...αnψ),

with the projection operators Eα1...αn forming the n-parameter
spectral resolution associated with the system A1, . . . , An.

This axiom completes the physical interpretation of Axiom I and
Axiom II.

Ad Axiom III : For this axiom we need a further remark on proba-
bility theory.
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In standard probability any set of stochastic variables (g1, . . . , gn)
has a joint (sometimes called simultaneous or cumulative) distribu-
tion function F (x1, . . . , xn), defined similarly to the case of a single
variable that we discussed earlier, both for the discrete as well as
the continuous case. For a pair of variables one has a correlation
function, and conditional probabilities, expressing the probability
for a certain outcome for a2, given the result for a1. By integrat-
ing out n − 1 variables in an n-dimensional distribution function,
one obtains a 1-dimensional distribution function in the remaining
variable. All this is of no great interest in the present context.

The spectral theorem for a set of commuting selfadjoint operators
(A1, . . . , An) states that there exists a joint spectral family, a system
of projection operators Eα1,...,αn such that every Aj can be written
as

Aj =
∫ +∞

−∞
. . .
∫ +∞

−∞
αj dEα1,...,αn .

The set of projections has the properties

1. Eα1,...,αnEα′
1,...,α

′
n

= Eα′
1,...,α

′
n
Eα1,...,αn ,

for all α1, . . . , αn and α′1, . . . , α
′
n, (commutatitivity),

2. αj ≤ α′j, αk = α′k, k 6= j → Eα1,...,αj ...,αn ≺ Eα1,...,α′
j ,...,αn

,

(monotone nondecreasing,

3. limαj→−∞Eα1,...,αj ...,αn = 0, limαj→+∞Eα1,...,αj ...,αn = 1
for j = 1, . . . , n.

These projections give simultaneous distribution functions, for each
ψ in H,

Fψ(α1, . . . , αn) = (ψ,Eα1,...,αnψ).

For the three position operators Q1, Q2 and Q3 in our simple 3-
dimensional model this implies that the probability of finding the
particle in a cube with sides [xa1, x

b
1], [xa2, x

b
2]and [xa3, x

b
3] is given by∫ xb1

xa1

∫ xb2

xa2

∫ xb3

xa3

dFψ(x1, x2, x3) =

=
∫ xb1

xa1

∫ xb2

xa2

∫ xb3

xa3

||ψ(x1, x2, x3)||2 dx1dx2dx3,
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because the operators Qj have continuous spectrum and the proba-
bility can therefore be given by the probability density

ρ(x1, x2, x3) = ||ψ(x1, x2, x3)||2.
Note that this means that we can determine the position of a particle
with arbitrary precision, by taking the sides of the cube arbitrary
small. But these sides cannot be zero; there is no state for a particle
at an exact position (x0

1, x
0
2, x

0
3), even though improper state vectors,

pretending to describe such a situation, are widely used in a heuristic
manner in physics books. Examples are ‘states’ described by Dirac
δ-functions for positions, and plane wave functions for momentum,
mentioned already. But in a mathematically rigorous formulations
these improper states have no place.

1.12. Noncommensurable observables

For the interpretation of Axioms I and II, for explaining what it
means to measure an observable or a set of of observables, we needed
only classical probability theory. This is because we only admitted
systems of commensurable observables, observables represented by
commuting selfadjoint operators. As long as one considers these, one
may say quantum mechanics is a part of standard classical proba-
bility theory.

This changes drastically if one takes into account systems of in-
commensurable observables. This leads to the heart of what makes
quantum theory nonclassical.

Important pairs of incommensurable observables are the components
of position and momentum in the same direction, as is clear from
the canonical commutation rules for the operators Pj, Qk that we
discussed. Also important is the triple of components of angular
momentum. The classical angular momentum of a particle with re-

spect to the origin is, in vector notation, ~l = ~x×~p, or in components

lx1 = x2p3 − x3p2,

lx2 = x3p1 − x1p3,

lx3 = x1p2 − x2p1,

The associated selfadjoint operators ~L = ~Q × ~P , in components
(L1, L2, L3), have the commutation relations

[L1, L2] = ih̄L3,
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[L2, L3] = ih̄L1,

[L3, L1] = ih̄L2,

which means that in quantum mechanics the observables of angular
momentum in different directions are incommensurable. Note that
one can consider the operator

L2 = (L1)2 + (L2)2 + (L3)2,

which commutes with all three components Lj, as one checks eas-
ily, so it is convenient to use a pair (L2, Lj), usually (L2, L3) as of
commensurable variables, for which one can solve the simultaneous
eigenvalue / eigenvector problem.

The main quantum principle is that there is no simultaneous prob-
ability distribution for a pair of incommensurable observables.

Each observable can be measured separately, with a probability dis-
tribution of its own. For a given state they are not independent;
instead of a joint distribution there are restrictions on the results
of the separate measurements. We shall derive a general inequality
which gives such a restriction and after that apply the result two
incommensurable quantities in our simple explicit example.

Suppose we have a quantum theory with as state space a Hilbert
space H. Let A and B be two noncommuting selfadjoint operators
in H, corresponding with observables a and b. Choosing a vector ψ
inH determines according to Axiom III0, two stochastic variables aψ
and bψ, in fact both classical variables, with distribution functions
Faψ(α) and Fbψ(β), and with expected values < aψ > and < bψ >,
defined separately by the spectral theorem for A and B. They also
have standard deviations, a notion defined earlier,

∆aψ =
√
<(aψ− <aψ>)2>, ∆bψ =

√
<(bψ− <bψ>)2>.

In classical probability theory a pair of stochastic variables a and b
have not only separate distribution functions F1(α) and F2(β) but
also a joint distribution function F12(α, β), from which one can in
fact derive F1 and F2 by integrating over β and α. The two variables
can be measured simultaneously, and with arbitrary precision. This
was still the case for a pair of commensurable quantum observables,
as we have seen.
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For incommensurable quantum variables, i.e. represented by non-
commuting operators A and B, this is no longer true. Both observ-
ables can still be measured separately for a given state, each on its
own with arbitrary precision, but it is not possible to do this simul-
taneously. In fact there is a restriction depending on the ‘amount
of noncommutativity’ of A and B.

There is a very useful tool in Hilbert space theory: the Schwarz
inequality.

|(ψ1, ψ2)| ≤ ||ψ1||||ψ2||.
for all vectors ψ1 and ψ2 inH, with the addition that there is equality
if and only if ψ1 is a scalar multiple of ψ2. The proof of this is a
good, not too difficult exercise in Hilbert space theory. However,
we refrain from giving it here. The Schwarz inequality is sometimes
called the Cauchy-Schwarz inequality .

Using the Schwarz inequality one can prove the basic ‘quantum in-
equality’

∆aψ ∆bψ ≥
1

2
(ψ, [A,B]ψ).

In this formula we have the standard deviations ∆, or spreads,

∆aψ =
√
<(aψ− < aψ >)2>,

∆bψ =
√
<(bψ− < bψ >)2>.

This inequality is the general uncertainty relation for the standard
deviations of two observables a and b in the state ψ. It is a restriction
on the possible outcomes of a simultaneous measurement of a and
b. For commensurable a and b, i.e. for commuting A and B, there
is, evidently, no restriction.

We apply this to the 1-dimensional quantum mechanical model,
where we have a pair of incommensurable observables, position and
momentum. The corresponding operators have the commutation
relation

[P,Q] = −ih̄1H,

with as a consequence the Heisenberg uncertainty relation for posi-
tion and momentum

∆p∆x ≥ h̄

2
.
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Note that we write here ∆x and ∆p instead of ∆xψ and ∆pψ be-
cause the right-hand side no longer depends on the state vector ψ,
as one sees immediately. The Heisenberg uncertainty relation is an
iconic formula, probably the best known of all formulas of quantum
mechanics, one of the centre pieces of elementary quantum mechan-
ics, illustrating the fundamental incommensurability of position and
momentum. For the 3-dimensional case one has

∆pj ∆xj ≥
h̄

2
j = 1, 2, 3.

1.13. Time evolution

After the first three axioms the next two are less surprising, because
the natural automorphisms of a Hilbert space, as a mathematical
structure, are unitary operators

A mathematical reminder : A unitary operator in a Hilbert space H
is an invertible map from H onto itself with the property

U∗U = UU∗,

implying U∗ = U−1. An equivalent definition is

(Uψ1, Uψ2) = (ψ1, ψ2), ∀ψ1, ψ2 ∈ H,

or
||Uψ|| = ||ψ||, ∀ψ ∈ H.

A 1-parameter group of unitary operators is a system {U(t)}t∈R1

with the properties

1. U(0) = 1,

2. U(t1)U(t2) = U(t1 + t2), ∀t1, t2 ∈ R1,

implying U(−t) = U(t)−1.

Limits for operators : Vectors ψ have a norm ||ψ|| = (ψ, ψ)1/2.
Bounded operators also have a norm

||A|| =: sup
||ψ||=1

||Aψ||.

A sequence of bounded operators {An}n=1,2... converges in norm to
an operator A if and only if limn→+∞ ||A− An|| = 0. The topology
associated with this convergence is too strong for most applications.
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There is a weaker topology, strangely enough called the strong op-
erator topology. A sequence of bounded operators {An}n=1,2... con-
verges in strongly if and only if limn→+∞ ||Aψ − Anψ|| = 0, for all
ψ in H. There a many other topologies / notions of convergence in
Hilbert space theory. Fortunately, we do not need them.

Axiom IV : Time evolution in quantum theory is described
by a strongly continuous 1-parameter group of unitary op-
erators {U(t)}t∈R1, acting in the Hilbert space of states H.

The mathematical basis for this axiom, Stone’s theorem, is the sec-
ond most important theorem for quantum theory. It states that a
strongly continuous 1-parameter group {U(t)}t∈R1 can be written
as an exponential U(t) = eiAt, with the generator A a selfadjoint
operator.

For the time evolution in quantum theory this generator is the
Hamiltonian operator H, in most cases also the energy as an observ-
able. So we have U(t) = e

i
h̄
tH , with h̄, Planck’s constant included.

An observable is a constant of the motion or conserved quantity if
and only if the corresponding selfadjoint operator commutes with
H, or equivalently, with the U(t), for all times t. A state ψ is
called a stationary state if the probabilities of measurements of all
observables are constant in time.

With this the time evolution for a state vector ψ is written as

ψ(t) = e−
i
h̄
tHψ(0).

The ψ)t) satisfy a vector-valued ordinary first order differential equa-
tion, the ‘abstract’ Schrödinger equation

d

dt
ψ(t) = − i

h̄
Hψ(t).

In our concrete model of a particle in 3-dimensional space we ob-
tain the ‘standard’ Schrödinger equation, as a partial differential
equation of mixed order, appearing in all text books on quantum
mechanics,

∂

∂t
ψ(~x, t) = − i

h̄

[
− h̄2

2m
∆ψ(~x, t) + V (~x)ψ(~x, t)

]
.
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It sometimes more convenient to describe time evolution not in what
is called the Schrödinger picture, but in the Heisenberg picture. This
means that one keeps the state vectors constant in time, and puts
the time dependence in the operators for the observables:

Ah(t) =: e
i
h̄
tHAse

− i
h̄
tH .

As all numerical results are calculated by using the inner product,
this has no effect on the physical content.

1.14. Symmetry

Symmetry is a very important notion in physics. It simplifies the
solution of concrete problems and is often a guide in finding new
models for physical phenomena.

The symmetries of a mathematical object are its automorphisms ,
i.e. the invertible maps from the object onto itself, which leave its
characteristic structure invariant. For a Hilbert space these are the
unitary operators. A quantum theory, as a mathematical object a
pair (H, {U(t)}t∈R), consisting of a Hilbert space of states H and
a 1-parameter group {U(t)}t∈R of unitary time-evolution operators,
has as its symmetry automorphisms the unitary operators in H that
commute with all the unitary operators U(t) of the time-evolution
group, or equivalently with the selfadjoint generator H of this group.
We state therefore as basic principle:

Axiom V : Symmetries in quantum theory are described by
unitary operators which commute with the 1-parameter
group of time involution, or equivalently, with its gener-
ator, the Hamiltonian.

Examples of elementary symmetries in quantum mechanics are space
reflection, for example when the particle is moving in a potential V
with V (~x) = V (−~x) or V (|~x|), space translation for a system of two
particles with V (~x1, ~x2) = V (~x1 − ~x2), and rotation in space for a
3-dimensional particle moving in a rotation invariant potential.

Of particular importance are groups of symmetries.

Reminder : A group is a non-empty set G with the following prop-
erties:

1. There is a multiplication, i.e. a map G × G → G, (g1, g2) 7→ g1g2,
which is associative, which means that (g1g2)g3 = g1(g2g3), for all
g1, g2 and g3 in G.
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2. G has a unit element e with ge = eg = g, for all g in G.

3. Each g in G has an inverse, denoted as g−1, which has the property
gg−1 = g−1g = e, for all g in G.

A group may have the structure of a manifold; under certain addi-
tional conditions it is a Lie group. All infinite groups in physics are
Lie groups, in particular the translation groups, the rotation group,
the Galileo group and the Lorentz and Poincaré groups, both to be
discussed in the last lecture.

A (linear) representation of a group G in a vector space V is a
homomorphism π : G → L(V), g 7→ π(g), where L(V) is the algebra
of linear operators in V , with the properties π(g1g2) = π(g1)π(g2)
and π(e) = 1. If V is a Hilbert space and the π(g) unitary, we call
π a unitary representation.

Reminder : Lie algebras :

An ‘Abstract’ Lie algebra is a vector space L, with a bilinear map

L× L→ L, (a, b) 7→ [a, b],

with
1. [a, b] = −[b, a] (anticommutativity)
2. [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 (Jacobi identity)

for all a,b and c in V .

A Lie group G has a Lie algebra L(G). It is the tangent space of G
as a manifold at the point e. Elements of L(G) can be obtained –
roughly – by differentiating 1-parameter groups in G at the identity
element. A representation π of G gives a (linear) representation π̂
of L(G). If G is simply connected then π can – in principle – be
recovered from π̂ by exponentiation

π(e−iτh) = e−τπ̂(h),

for all h in L(G) and all real τ . If G, together with the represen-
tation π, is a symmetry, all operators π̂(h) will commute with time
evolution.

Back to physics : The group G is a symmetry group of a quantum
system if there is a unitary representation π of G in H with the
property that, for all g in G, the operators π(g) commute with the
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time evolution operators U(t), for all t in R, or equivalently, with
the Hamiltonian H.

A Lie algebra L(G) is an infinitesimal symmetry of a quantum sys-
tem if there is a representation π̂ of L(G) in H, such that, for all h
in L(G), the operators π̂(h) commute with the time evolution op-
erators U(t), for all t in R, or equivalently, with the Hamiltonian
operator H.

The great advantage of Lie algebras over Lie groups is that Lie
algebras are linear spaces . An n-dimensional Lie group G has an
n-dimensional Lie algebra L(G), in which a basis can be chosen, say
e1, . . . en. This simplifies the condition for infinitesimal symmetry
to a finite set of linear relations, namely,

[π̂(ej), H] = 0,

for j = 1, . . . , n. The π̂(ej) are usually called the generators of
the symmetry. Working with Lie algebra generators instead of with
the full group is very popular in concrete physical applications of
symmetry in quantum theory. Note that the generators are usually
unbounded operators, and that therefore some of the above state-
ments should be made more precise by taking into account domain
questions. We will not worry about this, as it does not do much
harm in practice, at least not in elementary quantum mechanics.

It should finally be remarked that symmetry generators, as ob-
servables, are constants of the motion . The infinitesimal genera-
tors of spatial rotations in a rotation invariant system, for instance
with a potential V (|~x|), are the components of angular momen-
tum, the infinitesimal generators of translation, in a translation
invariant system, for instance a 2-particle system with potential
V (~x1, ~x2) = V (~x1 − ~x2), are the components of linear momentum.
This is another reason why symmetries are important. Some of the
best-known constants of motion are connected with symmetry in
this way: conservation of linear momentum and angular momentum
is a consequence of symmetry under spatial translations and spatial
rotations, respectively.

1.15. Concluding remarks

After all this, looking back on our presentation of quantum theory,
it seems a good idea to look at the differences between quantum
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physics as it emerged in the nineteen twenties and has developed
since then, and classical physics, dominant before this period, and
still widely used in many applications, where the refinements of
quantum theory are irrelevant.

The differences are so deep that one should be surprised that people
were able to discover quantum theory.

Let me draw up a list of the most striking differences :

The notion of state of a physical system.

Classical physics : A system of N particles in classical mechanics
has R6N as phase space, the space of position and momenta. A
state of such a system is just a point in this phase space, a 6N -tuple
(~p1, . . . , ~pN , ~x1, . . . , ~xN).

Quantum physics : A system of N particles in quantum mechanics
is described by an infinite dimensional Hilbert space, the function
space L2(R6N , d~x1, . . . , d~xN). States are complex-valued functions
from this Hilbert space, wave functions ψ(~x1, . . . , ~xN)

The notion of observables of a physical system.

Classical physics : The observables of an N -particle system are the
smooth real functions on the phase space. They can simultaneously
be measured and the results predicted with arbitrary precision. A
harmonic oscillator, for instance, a particle with mass m moving in
1-dimensional space under the influence of a force pulling it back
to the point x = 0 with a force proportional to the distance to the
origin can have arbitrary positive values for its energy.

Quantum physics : The observables for anN -particle system are self-
adjoint operators in the Hilbert space of wave functions. For com-
mensurable observables, with commuting operators, arbitrarily pre-
cise simultaneous measurements and predictions are possible. This
is not the case for incommensurable observables, with noncommut-
ing operators, on the contrary, there are various restrictions, such as
the Heisenberg uncertainty relation for the measurement of position
and momentum. The energy of the quantum harmonic oscillator
has only discrete energies, namely,

εn =
(
n+

1

2

)
h̄ω, n = 0, 1, 2, . . . ,
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with ω the frequency of the oscillator. Note that the lowest energy
is positive; the quantum oscillator has a ground state with a zero
point energy ε0 = 1

2
h̄ω. The hydrogen atom, an electron moving in

the attractive Coulomb potential of the nucleus, a system for which
no satisfactory classical description could be given, has in its quan-
tum description also a discrete spectrum, corresponding with bound
states starting with a ground state, together with a continuous spec-
trum describing the situation when the electron is no longer bound
by the nucleus, but still moves under its influence. Due to external
forces, the electron once in a while jumps from one bound state to
another, with lower energy. The difference in energy is then emitted
as radiation; the possible frequencies precisely the ones predicted by
Bohr in 1913.

The notion of time evolution of a physical system.

Classical physics : The states, i.e. points in the phase space R6N

move in a flow determined by Newton’s equations, brought in Hamil-
tonian form, as a system of 6N first order ordinary differential equa-
tions, with now the positions and momenta not in vector notation,
but written as (p1, . . . , p3N , x1, . . . , x3N),

dpj
dt

= −∂H
∂xj

,
dxj

dt
=
∂H

∂pj
, j = 1, . . . , 3N.

This system is completely deterministic ; if the positions and mo-
menta at an initial time are given, they are, in principle, determined
with arbitrary precision at any later time.

Quantum physics : The states in the quantum mechanics for a single
particle evolve in time according to the Schrödinger equation

∂

∂t
ψ(~x, t) = − h̄2

2m
∆ψ(~x, t) + V (~x)ψ(~x, t).

This equation in it self is deterministic; if the wave function is given
at an initial time, it can be determined with arbitrary precision for
a later time. However, the physics it describes is nondeterministic,
because knowing the wave function at this later time still leaves us
with only a probability for the position of the particle,
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1.16. Appendix. More on operators in Hilbert space

1.16.1. Introduction

In this note ‘operator’ will mean ‘linear operator’.
An operator A in a Hilbert space H is given by two data:

1. its domain of definition D(A),

2. its action Aψ, for every ψ in D(A).

For two operators A and B the identity A = B means:

1. D(A) = D(B),

2. Aψ = Bψ for all ψ in D(A) = D(B).

For two operators A and B the relation A ⊂ B means:

1. D(A) ⊂ D(B),

2. Aψ = Bψ for all ψ in D(A).

One calls B an extension of A.

From now on we assume a domain of an operator to be a dense
linear subspace of H.

1.16.2. Bounded operators

An operator A is called bounded iff

sup
ψ∈D(A), ||ψ||=1

||Aψ|| <∞.

This finite supremum is denoted as ||A|| and called the norm of A.
A bounded operator has a unique extension to a bounded operator
defined on all of H. This extended operator is a continuous linear
map from H into itself. From now on if we meet a bounded operator
we always shall assume that it is extended to all ofH. Because of this
the notions ‘bounded operator’, ‘continuous operator’ and ‘operator
defined in all of H’ will be synonyms.

From the next section onwards our operators will be unbounded.

1.16.3. Closed operators

Let A be an operator with domain D(A). The graph of A is defined
as the collections of couples (Aψ,ψ), for all ψ in D(A). This collec-
tion is a subset of the Cartesian product H × H. If it is a closed
subset, in the product topology of H ×H, the A is called a closed
operator.
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If the graph of A is not closed me may close it by adding limit points
in the usual way. Two things may happen:

1. The closure of the graph of A is not the graph of an operator. We
say that A is not closable. In this case A is useless for our purpose.

2. The closure of the graph of A is again the graph of an operator,
the closure A. We say that A is a closable operator; with A the
unique closed extension of A. Whenever we meet a closable operator
we take its closure, so we may restrict the further discussion to closed
operators.

1.16.4. The adjoint of an operator

A bounded operator A has a (bounded) adjoint A∗. To see this
we use the well-known theorem that a continuous linear functional
F (ψ) on H can be written as F (ψ) = (ψ0, ψ), for a unique vector
ψ0. The expression (ψ1, Aψ2) is, for a fixed ψ1 a continuous linear
functional Fψ1(ψ2). So it can be written as Fψ1(ψ2) = (ψ′1, ψ2). The
assignment ψ1 7→ ψ′1 is linear, and defines an operator ψ′1 = A∗ψ1,
which is the definition of the adjoint A∗ of A. One easily verifies
the properties (A∗)∗ = A, (AB)∗ = B∗A∗ and (λA)∗ = λA∗. One
has of course the relation

(ψ1, Aψ2) = (A∗ψ1, ψ2), ∀ψ1, ψ2 ∈ H.

For an operator A which is only closable one has a more subtle
version of the same argument.

Let A be a closed operator with domain D(A). One tries to find,
for a given vector ψ1 in D(A), a vector ψ′1, such that

(ψ′1, ψ2) = (ψ1, Aψ2). ∀ψ2inD(A).

It is proved in the book mentioned in the reference, on page 252,
that there exists a dense linear subspace of H of such vectors ψ1.
This defines a linear operator that we denotes as A∗, according to
ψ′1 = A∗ψ1 and with the domain of vectors ψ1 just defined. This
operator A∗ is in fact closed.

Properties: (A∗)∗ = A, (λA)∗ = λA∗. We cannot say anything
about (AB)∗ because the product AB may not be defined properly.

Remark : A selfadjoint operator satisfies the relation

(Aψ1, ψ2) = (ψ1, Aψ2), ∀ψ1, ψ2 ∈ D(A).
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However, this relation does not define selfadjointness. It only states
that A is hermitian (= symmetric), which can be expressed as

A ⊂ A∗.

For bounded operators selfadjoint = hermitian.
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North-Holland, 1967. Reissued as a paperback by Dover, 1968.
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[8]. John von Neumann:
Mathematical Foundations of Quantum Mechanics
Princeton University Press 1996.
(Translated from the original 1932 German Springer edition)
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of quantum mechanics. The part on the theory of measurement may
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[10]. Eduard Prugovecki:
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Dover Publications 1981
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[11]. Gilbert Helmberg:
Introduction to Spectral Theory in Hilbert Space
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A leisurely and clear introduction.

• Internet

- See for a comprehensive list of books on all aspects of quantum
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2. Quantum Theory - Many Particle Systems

2.1 Introduction

So far we have discussed single particle systems in quantum me-
chanics. This lecture will be devoted to general n-particle systems.
The mathematical background for this is the theory of n-fold tensor
products of Hilbert spaces. This together with its physical mean-
ing will be discussed in the next section. After this, in Section
2.3, attention is focused on the important special case of identical
particles. Mathematically this means symmetric and antisymmetric
tensor products. A new important quantum phenomenon appears :
the existence of bosonic and fermionic particles. The mathematical
and physical aspects of this are treated in Section 2.3. The devel-
opment of the understanding of the physics of identical particles is
one of the great stories in the history of quantum mechanics. It is
briefly reviewed in Section 2.4.

2.2. Combining quantum systems

New Hilbert spaces can be constructed from given ones. In quantum
theory two such constructions play a role, direct sums and tensor
products. These two correspond to two different ways of looking at
composite quantum systems.

1. Let H1 and H2 be the Hilbert state spaces of two quantum sys-
tems, for instance of two different particles. The system in which
both particles do not appear simultaneously, but successively or al-
ternatively, is described by the direct sum H = H1 ⊕ H2. This
procedure can be generalized to an arbitrary finite or countably in-
finite number of Hilbert spaces Hj.

For the Hamitonian operators H1 and H2 of the two systems, the
Hamiltonian for the composite system is the sum operator

H = H1 ⊕H2,

the action of which can be written in terms of column vectors, with
elements from H1 and H2 as entries, as

H

(
ψ1

ψ2

)
=

(
H1ψ1

H2ψ2

)
.
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The total Hamiltonian H is then a 2 × 2 matrix with operators as
matrix elements:

H =

(
H1 0
0 H2

)
.

General operators in this direct sum have the form

A =

(
A11 A12

A21 A22

)
,

with Ajk a linear map from Hk into Hj. If the Hamiltonian H has
the above ‘diagonal’ form there is no dynamic interaction between
the two subsystems; there are no transitions in time. In this case one
says that the system has a selection rule. Often this is only a first
approximation; ‘off-diagonal’ terms of higher order in an appropriate
parameter in the total Hamiltonian will break the selection rule.

It may happen that not only the Hamiltonian but all operators that
have a physical meaning inH1⊕H2 have ‘diagonal’ form. This would
mean, not only that there is no dynamical interaction, but that there
is no other meaningful physical relation between the two systems.
In general a linear combination of two state vectors represents, after
normalization, again a physical state. In this particular case the di-
rect sum Hilbert spaceH1⊕H2 is a mathematical concept only, with
no physical meaning, i.e. linear combinations λ1ψ1 +λ2ψ2, ψ1 ∈ H1,
ψ2 ∈ H2, are not physical states. We say that there is a superselec-
tion rule in H, with the subspaces H1 and H2 called superselection
subsectors or coherent subspaces of the system. In the next section
we shall meet an example of this. The notion of superselection rule
was introduced in a paper by Wick and Wightman (Ref.[1]). For a
more recent exposition, which takes into account modern develop-
ments, see the lecture notes of Fredenhagen, see Ref.[2].

Note that all this goes through for an n-tuple of Hilbert spaces
(H1, . . . ,Hn), and, with a few obvious mathematical refinements,
for an infinite sequence (H1,H2, . . .).

(2.2,a) Example : The nucleus of an atom consists of protons and
neutrons. These particles have very similar properties, so in nuclear
physics one sometimes describes them, in first approximation, as two
different states of a single particle, the nucleon. The Hilbert space of
the nucleon is the direct sum of the Hilbert space of the proton and
the Hilbert space of the neutron. In this direct sum Hilbert space
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the neutron and the proton are distinguished by ‘isobaric spin’, a
quantum number important in elementary particle physics, in which
the word ‘spin’ has nothing to do with rotations in space like in the
case of the spin of an electron.

2. Tensor products. Let H1 and H2 be the Hilbert spaces of two
quantum systems, for instance of two particles that are assumed to be
different. The Hilbert space of the system in which the particles ap-
pear simultaneously is the tensor product space H1⊗H2. For quan-
tum system described by an n-tuple of Hilbert spaces (H1, . . . ,Hn)
one constructs the tensor product H1 ⊗ . . .⊗Hn.

If system 1 has a time evolution operator U1(t) = e−
i
h̄
tH1 with Hamil-

tonian operator H1, and system 2 has U2(t) = e−
i
h̄
tH2 with H2, and

if there is no interaction between the two systems, then the time evo-
lution of the total system is described by the operator U(t) = e−

i
h̄
tH ,

with U(t) the tensor product operator U1(t)⊗U2(t) and total Hamil-
tonian H = H1⊗1H2 +1H1⊗H2. More interesting is the situation in
which the two systems interact. In that case an interaction Hamil-
tonian H12 is added to H = H1 + H2 and the resulting evolution
operator has no longer the form of a ‘pure tensor’ operator.

(2.2,b) Example : The simplest model for the hydrogen atom is that
of a particle, an electron, moving in a fixed central potential V (|r|).
The Hilbert space for this system is H = L2(R3, dr). In a slightly
more realistic description the hydrogen atom is a two-particle sys-
tem consisting of the nucleus, a proton with a large mass M and an
electron with a small mass m, interacting with each other through
the potential V (|r1 − r2|). The Hilbert space of this 2-particle sys-
tem is the (completed) tensor product H1 ⊗ H2 = L2(R6, dr1dr2).
Without the interaction the Hamiltonian of this composite system
would be the sum of the terms H1 ⊗ 12 and 12 ⊗H2, written as H1

and H2, with

H1 = − h̄2

2m
∆1 , H2 = − h̄2

2M
∆2,

in which ∆j is the Laplace operator in the variable rj, for j = 1, 2.
The interaction gives an additional term H12 which multiplies the
two-particle wave function ψ(r1, r2) with V (|r1− r2|) and which, as
operator, no longer has the form of a pure tensor. Of course, in this
particular example the translation invariance of the potential makes
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it possible to reduce this picture to a one-particle description, for a
single particle with mass M = mM

m+M
. This description is called the

center of mass picture.

(2.2,c) Example : The Pauli spin model of the hydrogen atom. The
state space is the tensor product L2(R3, dr)⊗ C2.

Direct sums of Hilbert spaces were used in this section and the next
one for the the notion of ‘superselection rule’; tensor products are
important in all the sections that follow.

This will be enough on the description of arbitrary systems of two
and in general n particles. The remainder of this chapter will be
devoted to the important special case of identical particles.

2.3. Systems of identical particles

So far all this is not very surprising given the general principles
of quantum theory as they have been presented in the preceding
lecture. A new and interesting phenomenon occurs for of systems
consisting of identical particles.

We have argued in lecture 1 that particles in quantum mechanics
do not have orbits because their position and momentum cannot be
measured simultaneously with arbitrary precision. Of course, the
probabilities for finding the particles can be concentrated in small
disjunct areas of space; however, sooner or later these areas will
overlap. All this means that in a system of n identical particles the
individual particles cannot be identified. The fact that we cannot
observe the difference between the state consisting of a particle (1)
concentrated near a point r1 and a particle (2) near r2, and a state
with particle (1) near r2 and (2) near r1, does, strictly speaking,
not imply that these two states are the same. However, we take
as a fundamental assumption that they are indeed the same. This
means, in general, that identical particles in a many-particle system
have no ‘identity’. A system of n electrons is just that; speaking
of a system consisting of electron 1, electron 2, and so on, would
not make sense. We add therefore a sixth general axiom to the five
formulated in the preceding lecture:

Axiom VI : In a system of n identical particles, the sep-
arate particles have no ‘identity’.

46



This axiom has important physical consequences, which are typical
for quantum theory. All have been verified experimentally. Some
will be discussed later. It has also consequences for the mathemati-
cal description of quantum systems. To these we turn now.

Start, for the description of a system of n identical particles, each
on its own in a 1-particle Hilbert space H(1), with the n-fold ten-
sor product space ⊗nH(1). According to Axiom VI the unit vector
ψ1 ⊗ . . .⊗ ψn in ⊗nj=1H(1) represents the same physical state as the
permuted vector ψσ(1)⊗. . .⊗ψσ(n), for a permutation σ of the indices
1, 2, . . . , n. The map ψ1 ⊗ . . . ⊗ ψn 7→ ψσ(1) ⊗ . . . ⊗ ψσ(n) defines in

⊗nj=1H(1) by linear extension a representation {P (σ)}σ of the sym-
metric group Sn, the group of permutations of n objects. This is
a finite group; as such its irreducible representations are finite di-
mensional, and are – or are equivalent to – unitary representations.
The number of its inequivalent irreducible representations is finite.
Its representations are completely reducible, which means that a
general representation can be written as a direct sum of irreducible
ones. The properties of Sn and its representations are discussed in
the book by Sagan (Ref.[3]).

The Hilbert space ⊗nH(1) can, as a consequence of these properties,
be written as a finite direct sum of Hilbert subspaces

⊗nH(1) = Hj1 ⊕ . . .⊕Hjp .

Each of the spaces Hjk carries an in general infinite direct sum of
(finite dimensional) unitary irreducible representations of the per-
mutation group Sn, with the representations in different Hjk mu-
tually inequivalent. The representing operators U(σ) have, in the
above direct sum realization of ⊗nH(1), the form

U(σ) =


Uj1(σ) 0 · ·

0 Uj2(σ) · ·
· · · ·
· · · Ujp(σ)

 .
Two vectors φ1 and φ2 in⊗nH(1) with φ2 = U(σ)φ1, for some σ ∈ Sn,
are equivalent as physical states. An operator A in ⊗nH(1) is ad-
missable as a physical operator only if the images Aφ1 and Aφ2 are
also equivalent. This leads to the general requirement that admiss-
able operators have to commute with all U(σ). This means that,
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following an appropriate version of Schur’s lemma, that physical
operators also have the diagonal form

A =


Aj1 0 · ·
0 Aj2 · ·
· · · ·
· · · Ajp

 .
This is the situation we discussed in the preceding section: a super-
selection rule, with in the Hilbert space ⊗nH(1) the subspaces Hjk

as the superselection subsectors. There is no interaction between
the Hjk . The space ⊗nH(1) is a purely mathematical construction
and has in itself no physical meaning. The subspaces Hjk represent
physical systems, each describing an n-particles system consisting
of different kind of particles.

Consider first the simplest nontrivial example: that of a 2-particle
system. The group S2 has two inequivalent irreducible representa-
tions. See for this Ref.[3]. The space ⊗2H(1) is a direct sumHs⊕Ha,
of the subspaces determined by the projection operators defined by
linear extension of

Ps(ψ1 ⊗ ψ2) =
1

2
[(ψ1 ⊗ ψ2) + (ψ2 ⊗ ψ1)]

and

Pa(ψ1 ⊗ φ2) =
1

2
[(ψ1 ⊗ ψ2)− (ψ2 ⊗ ψ1)].

This means that we have two pairs of particles of an intrinsically
different type. The first are called bosonic particles, or bosons for
short, the second fermionic particles or fermions.

The image spaces of the projection operators Ps and Pa are natu-
rally isomorphic to the symmetric and antisymmetric tensor product
spaces H(1) ⊗sH(1) and H(1) ⊗aH(1).

Consider next a system of three or more identical particles. The
permutation group Sn has for every n > 2 as irreducible representa-
tions in the first place again those in the symmetric and completely
antisymmetric tensor product spaces ⊗nsH(1) and ⊗naH(1), but new
representations of mixed symmetry type appear. Do these addi-
tional representations correspond to additional types of particles?

Bosons and fermions can be easily distinguished experimentally by
their physical properties which follow from the theory as discussed
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here. It is mainly a matter of a different counting of states. These
properties are intrinsic properties of the particles, which do not de-
pend on whether they belong to a two-particle system or a to a
system of more than two particles. From this we may infer that the
mixed symmetry representations of Sn have no physical meaning in
the context of the theory of indentical particles. So we assume that
there exists only bosons and fermions, as is confirmed by the fact
that no other types of particles have ever been observed.

There is another important physical difference between bosons and
fermions, based on a simple but deep connection with spin:

It is an experimentally observed general fact that all particles with in-
teger spin are bosons; all particles with half integer spin are fermions.

So far there is in (non-relativistic) quantum theory no proof for the
the connection between spin and statistics, even though the exper-
imental status is completely unambiguous. In the wider context of
relativistic quantum theory, in particular relativistic quantum field
theory, a topic that will briefly touched upon in 14, it is possible to
prove a general spin-statistics theorem. See for instance the book of
Streater and Wightman (Ref.[4]).

Note that in all this one may read ‘states’ for ‘particles’. An electron
has spin 1/2 and is therefore a fermion. According to the rules for
composing spins, the state space of a system of two electrons is the
direct sum of a spin 0 and a spin 1 space, so this system is a boson
state.

All this enables us to formulate as a general principle, as a con-
sequence of Axiom VI – maybe with the additional assumption
of the connection between spin and statistics for elementary non-
relativistic quantum mechanics :

In quantum theory a composite system made up from n identical sys-
tems with each the same Hilbert space H has as state space either
the symmetric tensor product ⊗nsH (a bosonic system) or the an-
tisymmetric tensor product ⊗naH (a fermionic system). Moreover,
boson states have integer and fermion states half-integer spin.

2.4. Historical remarks

The historical development of the complex of scientific notions dis-
cussed in the preceding sections is that of a piecemeal and frag-
mentary discovery of at first unrelated facts and ideas, not unlike
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the earlier the development of quantum mechanics itself. One is re-
minded of an archeological excavation, in which one first discovers
fragments of brickwork, than realizes that these are pieces of com-
plete walls. In the end, if one is lucky, one may obtain one single
picture of a complete city.

Looking backwards it is easy, with the knowledge and understand-
ing that we have now, to describe the development in the opposite
direction, starting with the fundamental fact that quantum parti-
cles do not have an identity, suggested by Heisenberg’s uncertainty
relations, and formulated as Axiom VI, and then derive from this
the full theory, possibly with assuming in addition the spin-statitics
relation for elementary quantum mechanics. The picture thus ob-
tained is in the end conceptually more satisfying than the sequence
of historical events, interesting as they are in themselves. A few
words about this history will make this clear.

The context of quantum mechanics in the period, say, from 1925 till
1929, when the elements of the description of systems of identical
particles were formulated, was the physics of atoms. In this the
picture was that of an atom consisting of a central nucleus with
its surrounding electrons, together with the manner in which atoms
interact to form molecules. What was experimentally observed were
atomic and molecular spectra.

The story starts with Pauli’s discovery that looking at atomic spec-
tra, in particular those of the helium atom, one finds that certain
specific energy levels are missing, in a very systematic way. This led
him in 1925 to the formulation of his exclusion principle – for which
he later, in 1945, received the Nobel prize – stating, roughly, that
two electrons cannot occupy the same state. It was immediately
clear that this had important consequences; without it the periodic
systems of elements would look very different. Pauli also noted that
the electron seemed to have an additional quantum number but he
left it at that. The Dutch physicists Goudsmit and Uhlenbeck iden-
tified this shortly afterwards as an intrinsic angular momentum; the
spin of the electron.

Up to this point the only elementary particles known were electrons.
In nuclear physics as it emerged somewhat later new particles were
found which did not satisfy the exclusion principle, for instance,
π-mesons, unstable spin 0 particles found in cosmic radiation and
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later produced in particle accelerators. From this it became clear
that there exist in nature two distinct types of particles, those with
integer spin, bosons, and those with half-integer spin, fermions, with
important consequences, in particular for quantum statistical me-
chanics, where Fermi-Dirac statistics takes the place of the statistics
of Maxwell-Boltzmann in classical statistical mechanics.

So historically speaking, Pauli’s exclusion principle is the basic fact
in the description of systems of identical particles from which ev-
erything else later followed. But looking backwards it is clear that
the theoretical starting point in this is the principle that particles
in quantum theory have no ‘identity’ (Axiom VI). The exclusion
principle is a simple consequence of this.
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3. Quantum Theory -

Quantum Statistical Mechanics

3.1. The classical case

In the preceding lecture we discussed the quantum mechanics of
systems of n particles, a description in which we still looked at the
properties of the separate particles. For very large systems systems
the description of the individual particles no longer makes sense.
Think of a gas in a container. For such a system, with something
like 1025 particles in a cubic centimeter, it is in principle possible to
study the behaviour of the individual particles, but only very much
in principle, because it would be extremely difficult and complicated.
But above all, it would be totally uninteresting. What is of interest
for such systems are overall properties, pressure, temperature, in
general what one calls ‘thermodynamic” properties.

Let us start with a few historical remarks. First thermodynam-
ics. Thermodynamics, as a theoretical science describing the macro-
scopic properties of matter, gases, liquids and solids, as an engineer-
ing science for the understanding of the working of steam engines,
with as principal notions temperature, pressure and work, was in-
vented in the eighteenth century (Carnot), further developed (Clau-
sius) and given its final form, which is still with us (Planck) in the
nineteenth century.

All this without having in mind an underlying microscopic picture
of matter, as most physicists and philosophers at that time did not
believe in the reality of atoms. During the second half of the nine-
teenth century this changed; more and more physicists began to
take serious an underlying picture of moving and interacting atoms.
The great challenge then became to derive the macroscopic laws
of thermodynamics from the microscopic laws which according to
Newton’s classical mechanics were assumed to govern the motions
of these atoms. One realized that this derivation of macroscopic
properties from microscopic ones would involve statistical methods
to calculate the macroscopic properties as mean values.

Beginning in the second half of the nineteenth century a statisti-
cal description of this type was developed. Pioneers were James
Clark Maxwell, Josiah Willard Gibbs, the first American theoreti-
cal physicist to become known in the rest of the world, and Ludwig
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Boltzmann. They created what is now known as classical statistical
mechanics, the theory of the collective behaviour of large assemblies
of small subsystems, based on probabilistic arguments.

The basic concept of classical statistical mechanics is that of a prob-
ability distribution on phase space, a so-called ensemble, which is
used to calculate mean values of the system as a whole, such as
mean energy and pressure. Note that the term ‘ensemble’ was
coined by Gibbs, this before probability theory was given its mod-
ern mathematical formulation by Kolmogorov in nineteen twenties.
The word ‘ensemble’ has survived this more modern formulation as
an anachronism in physics textbooks, where one finds talk of “a
cloud of identical systems moving through phase space”, a rather
primitive way of expressing the main notion of probability theory,
which I believe has confused generations of students. See for critical
remarks on this Ref.[6].

It took some time to find out which ensembles should be used. Er-
godic theory, the study of the behavior of dynamical systems for
long times, was developed for this. Important theorems in it were
proved by von Neumann and Birkhoff. By the way, ergodic the-
ory is another example of a mathematical theory which started as
a part of physics and later developed into an independent part of
pure mathematics, becoming the general theory of the asymptotic
behavior of 1-parameter groups of measure preserving transforma-
tions. An interesting field of mathematics, but no longer relevant to
physics.

All this led to the various ensembles that are now used in statis-
tical mechanics, depending on the situation in which a system is
observed. All of these are stationary ensembles for systems in equi-
librium. Note that in an equilibrium situation the points of phase
space that represent the various possible states of the system move
through phase space, but that the ensemble, the probability distri-
butions remains the same. Helpful in this was Liouville’s theorem
stating that the basic 6N -form of the phase space as a symplectic
manifold is invariant under time evolution. The motion of the parti-
cles is represented by a flow, the flow determined by the Hamiltonian
vector field, given by the Hamilitonian function of the system. “The
phase liquid is incompressible under the motion in time.”

53



The first and in a certain way basic ensemble was the micro canon-
ical ensemble, for an isolated system, for which the total energy is
constant. One restricts the phase space, usually denoted as Γ, to
the submanifold of dimension 3N − 1, given by H(p,q) = E0, for
a given value E0 of the total energy, or to a very thin ‘energy shell’
around this value. One then uses Liouville’s theorem together with
the assumption that the so-called ergodic theorem is valid, meaning
that “phase averages are equal to time averages”, to conclude that
equal parts of the energy surface (or equal volumes in the energy
shell) should be given equal a priori probabilities.

The next ensemble, more or less derived from the micro canonical
ensemble, is the canonical ensemble or Gibbs ensemble. It describes
a system in a ‘heat bath’, i.e. the system is enclosed in a very large
box with a fixed temperature T , in such way that no particles can
enter or leave the system, while still energy with this surrounding
‘heat bath’ can be exchanged. It is the most important and most
widely used ensemble. Note in passing that the original goal of de-
riving the thermodynamics from the microscopic picture of matter,
i.e. deriving the ensembles of statistical mechanics from the classical
mechanics of the atoms, has only very partially been reached. Many
of the derivations are nonrigorous or incomplete. The ergodic theo-
rem, for instance, has only been proven for a very restricted class of
mechanical systems. (System of billiard balls, Sinai). Nevertheless,
statistical mechanics whether rigorously derived from first principles
or not, is a very successful physical theory and has become generally
accepted.

The canonical ensemble has a probability density

ρβ(p,q) =
1

Z(β, V,N)
e−βH(p,q),

with p = (~p1, . . . , ~pN) and q = (~q1, . . . , ~qN), the momentum and
position variables in the classical phase space Γ. N is the (ex-
tremely large) number of particles of the system, V its volume and
β = 1/kBT , with kB the constant of Boltzmann, a constant of na-
ture, and T the (absolute) temperature. Because ρ is a probability
density, integrating it over the phase space Γ should give unity. For
this we have as normalization factor the expression in the numera-

54



tor, the so-called canonical partition function

Z(β, V,N) =
∫

Γ
e−βH(p,q)dp dq.

Averages of a physical observable, for instance the energy H, is then
given by the integral

< H >ρβ =
∫

Γ
H(p,q) ρβ(p,q) dp dq.

From Z the macroscopic and thermodynamical properties of the sys-
tem can be derived. For a system of free particles it is not hard to
calculate Z. The difficult problem in classical statistical mechanics
in general is to do this for a Hamiltonian function H of a system
of interacting particles. There are other ensembles, for example the
microcanonical ensemble for a totally isolated system, with no in-
teraction whatsoever with the outside world and the grandcanonical
ensemble for systems that both energy and matter exchange with
a larger outside system. This is enough about classical statistical
mechanics for our purpose, so on to quantum statistical physics.

3.2. The quantum case

What we know about the fundamentals of gases – kinetic theory, the
relations between pressure and temperature, van der Waals’ theory
of molecular interactions, is based on classical statistical mechanics.
For more general, and in particular more recent subjects we need a
quantum version of statistical mechanics. Note that Planck’s calcu-
lation of the energy spectrum of black-body radiation, which stood
right at the beginning of quantum theory, can – with hindsight –
be seen as an application of quantum statistical mechanics ‘avant la
lettre’.

More modern developments in phyiscs such as solid-state and con-
densed matter physics, the theory of metals, semiconductors, phase
transitions, and, for instance, a large part of molecular physics and
astrophysics, can only be understood properly by quantum statis-
tical physics. This is in particular true for such a recent topics as
superfluidity, and superconductivity, all purely quantum phenom-
ena.

As we have seen, quantum theory, quantum mechanics, is in its
essence a probabilistic theory. Quantum statistical mechanics adds
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an additional layer of probability ideas to this. The first question
to be asked is: “What is a quantum ensemble?” The answer is :

An ensemble in quantum statistical physics is a density operator,
i.e. a positive selfadjoint trace class operator ρ̂ in the Hilbert space
H of the quantum system, with trace equal to one.

Reminder : A bounded operator A in a Hilbert space H is called a
trace class operator iff for an orthonormal basis {ϕn}n∑

n

|(ϕn, Aϕn)| < ∞.

If this holds for one orthonormal basis, it will hold for all others.
One then defines

Tr (A) =
∑
n

(ϕn, Aϕn),

as the trace of A. This number is independent of the choice of basis.
The product of two trace class operators is trace class. For two such
operators A and B one has

Tr (AB) = Tr (BA),

as in finite dimensional linear algebra. A trace class operator has a
purely discrete spectrum. Note that every linear operator in a finite
dimensional vector space has a trace; but in an infinite dimensional
Hilbert space not even all bounded operators are trace class.

The next question is: “How does one calculate averages with such
a quantum ensemble?” The answer is:

The average of an observable represented by a selfadjoint operator
A with respect to a quantum ensemble, represented by a density op-
erator ρ̂ is equal to

< A >ρ̂ = Tr (ρ̂A).

For this prescription to make sense the product ρ̂A has to be a trace
class operator. The observable A cannot be an arbitrary bounded
operator, but has to satisfy a restriction. It does not need to be
trace class; it is should be completely continuous, a weaker property
than trace class. For the sake of completeness, here is the definition:
An operator is called completely continuous or compact iff the image
of every bounded set has compact closure. We shall not need this
definition here.
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At this point one might ask how one ever got the idea of represent-
ing a state in quantum statistical mechanics by a density operator.
We asked the same question for representing a state in quantum
mechanics by a vector in a Hilbert space. There the answer was
historic, a matter of a gradual development of ideas which finally
resulted in the idea of using Hilbert space notions. Here the answer
is simpler. A state should assign in a linear way numbers (mean
values) to all operators, i.e. it should be a linear functional on the
linear space of the operators in the Hilbert space H. For a finite
dimensional Hilbert space one easily derives that a linear functional
F (A) on the (finite dimensional) linear space of operators can be
written as F (A) = Tr(ρ̂A), for a unique operator ρ̂. A state should
be real, i.e. give real numbers for selfadjoint operators, positive,
i.e. give positive numbers on positive operators, and normalized,
i.e. should give 1 on the unit operator. The consequence of these
additional requirements is that ρ̂ must be positive, selfadjoint and
have trace equal to 1. Every operator in a finite dimensional space
is of course trace class. In the case of an infinite dimensional Hilbert
space not all operators are trace class, not even the bounded oper-
ators, so there we have to add the property of ρ̂ being trace class.
This general argument, leading to the definition of what a state is
in quantum statistical mechanics was already given in 1930 by von
Neumann in his book on the foundations of quantum theory.

Finally: “What density operator ρ̂ corresponds with the canonical
ensemble ρβ?” The answer is

ρ̂β =
1

Zqu(β, V,N)
e−βĤ ,

with for the normalization the quantum partition function Zqu(β, V,N)
with

Zqu(β, V,N) = Tr (eβĤ).

The quantum partition function is again the quantity from which
the macroscopic and thermodynamic properties are derived. Note in
passing that integration in the classical case has become the taking
of a trace in an analogous way. This is typical; taking a trace may
quite generally be seen as ‘noncommutative integration’.

What happened with the notion of state vector, so crucial in our
axiom system for quantum theory that we explained in the first
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part of this lecture? It seems to have disappeared altogether. What
happened is that we have generalized the notion of state, in fact
generalized our system of axioms, without saying so explicitly. We
turn now to an explicit formulation of a second version of our system
of axioms for quantum theory.

3.3. A second axiom system for quantum theory

In our first lecture we gave the simplest version of an axiom sys-
tem for quantum theory; we called it ‘Version 1’. We now present
‘Version 2’.

The main concepts in ‘Version 1’ were

state,

observable,

rule for physical interpretation which connects these two,

dynamics,

symmetries.

All this returns in the new system, with however a new or generalized
notion of state.

We start with a Hilbert space H. It is still there, but no longer as
the space of state vectors, but as a background object. We then
state five axioms, generalizing the five axioms of “Version 1”.

• States

Axiom I′ : A state of a quantum system is represented by a selfad-
joint positive trace class operator with trace 1.

The space of states will be denoted S. It is a selfadjoint subset of
B(H), the complex linear space of all bounded operators in B(H).

Let ρ̂1 and ρ̂2 be two different elements of S, and let λ be a real
number with 0 < λ < 1. It is not hard to show that the sum
λρ̂1 + (1− λ)ρ̂2 is again an element of S. This result means that S
is a convex set.

Reminder : A convex set is a subset C of a vector space V with the
property

a1, a2 ∈ C → a = λa1 + (1− λ)a2 ∈ C, 0 ≤ λ ≤ 1
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The element a is called a convex linear combination of a1 and a2.
It is a trivial combination for λ = 0, for λ = 1, or for a1 = a2. If
a cannot be written as a nontrivial convex combination it is called
an extremal point, otherwise a nonextremal point. This is because
any two elements a1 and a2, with a1 6= a2, give a line segment in
C consisting of the elements a = λa1 + (1 − λ)a2, for all 0 ≤ λ ≤
1. The set C is clearly a disjunct union of a ‘boundary’ and an
‘interior’. These notions of ‘interior’ and ‘boundary’ have not the
usual topological meaning, as a convex set does not necessarily have
a topology.

In quantum theory the convex set S of states, the extremal or
‘boundary’ elements are called pure states, the nonextreme or ‘in-
terior elements’ are called mixed states. The reason for this will
become clear further in this lecture.

Important theorem : A density operator ρ̂ is a pure state if and
only if ρ̂ is a one-dimensional projection operator.

The proof of this theorem follows from the following argument:

A density operator has as a trace class operator a purely discrete
spectrum. The spectral theorem has therefore the simple ‘finite
dimensional’ form

ρ̂ =
∑
j

λjEj,

with positive eigenvalues λj, all with finite multiplicity, and with∑
j

λj = 1,

and with each Ej a 1-dimensional projection operator. Suppose the
set of eigenvalues is larger than one. Let us divide the set of eigen-
values into two nonempty disjoint sets, {µs}s and {νt}t, possible
because there are at least two eigenvalues λj. Call

∑
s µs = µ and∑

t νt = ν. Both are positive number; we have µ+ ν = 1. Define

ρ̂1 =
1

µ

∑
s

µsEs, ρ̂2 =
1

ν

∑
t

νtEt.

Both expressions define states. It is clear that µρ̂1 +νρ̂2 = ρ̂, and as
a nontrivial convex linear combination of the two states ρ̂1 and ρ̂2, it
is a mixed state. If there is only one eigenvalue, say λ1, which must
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necessarily be equal to 1, the spectral theorem reduces to ρ̂ = E1,
i.e. ρ̂ is a pure state. This proves the theorem.

• Observables

Axiom II′ : The observables of a quantum system are represented
by the selfadjoint operators in H.

This is the same as in ‘Version 1’. No further comments are required.

• The relation between I′ and II′. Physical interpretation

Axiom III′ : If the system is in a state represented by a density
operator ρ̂, then the probability distribution function for the outcome
of the measurement of an observable A is

Fρ̂(α) = Tr (ρ̂Eα),

with the Eα the spectral projections of A. For n commensurable
observables A1, . . . , An the joint distribution function is

Fρ̂(α1, . . . , αn) = Tr (ρ̂Eα1,...,αn),

with Eα1,...,αn the projections from the n-parameter spectral resolu-
tion of the sequence of commuting selfadjoint operators {Aj}j.
The result, a distribution function, in one variable for a single ob-
servable, and in n variable for a system of n commensurable ones, is
very much the same as in ‘Version 1’. To see the difference, and the
relation with Axiom III from ‘Version 1’ we use the theorem about
pure and mixed states. The average or expectation value for the
measurement of an observable represented by a selfadjoint operator
A in a state ρ̂ is, as was already discussed, < A >ρ̂ = Tr (ρ̂A).

Let ρ̂ be a pure state, then according to the theorem it can be written
as ρ̂ = Eψ, with Eψ the projection on the unit vector ψ. Choose an
orthonormal basis, with ψ as the first vector, i.e. an orthonormal
sequence (ψ, ψ2, ψ3, . . .). Using the idempotency property E2

ψ = Eψ
and the trace formula Tr (AB) = Tr (BA), the average of A in ρ̂
becomes

< A >ρ̂ = Tr (ρ̂A) = Tr (EψA) =

= Tr (E2
ψA) = Tr (EψAEψ) =

∑
j

(ψj, EψAEψψj) =

=
∑
j

(Eψψj, AEψψj) = (Eψψ,AEψψ) = (ψ,Aψ),
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which is exactly the formula for the average in a state vector ψ, as
it followed from Axiom III.

For a pure state the full Axiom III′ reduces in a similar way to the
full Axiom III from ‘Version1’.

• Time evolution

Axiom IV′ : The time evolution of a quantum system is described
by a strongly continuous 1-parameter group of unitary operators
{U(t)}t which acts on the density operator ρ̂ as

ρ̂ → U(t)ρ̂ U(t)−1 = e
i
h̄
tĤ ρ̂ e−

i
h̄
tĤ .

• Symmetries

Axiom V′ : A symmetry of the system, given by a unitary oper-
ator U , or by a group of unitary operators representing a group G
{U(g)}g∈G is described by an action on the state ρ̂ as

ρ̂ → Uρ̂U−1, ρ̂ → U(g)ρ̂ U(g)−1.

These two axioms reduce to Axiom IV and V for the case of a pure
state ρ̂ = Eψ, as can be derived easily.

Final remark : The two axiom systems ‘Version 1’ and ‘Version 2’
are both standard tools in physics. They cover almost everything
that one needs in quantum theory. There are however situations for
which this not – or not quite – the case:

Phase transitions : For a system of gas, liquid and solid matter there
are, when external parameters are changed, discontinuous changes
in the value of macroscopic quantities, phase transitions. Statisti-
cal mechanics, both classical and quantum, which describe systems
consisting of a finite number of particles, in other word with a finite
number of degrees of freedom, very large but still finite, lead to ana-
lytic expressions, smooth functions, without the discontinuities that
are typical of phase transitions. There are two ways to get these
discontinuities.

The first is to take the limit for the number of particles going to
infinity, in the numerical results of the finite theory, because the
limit of a sequence of smooth functions may have discontinuities.
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The second is to create a theory of classical and quantum statisti-
cal mechanics directly for infinite systems. This will involve a new
version of our axioms.

Quantum field theory : Quantum fields are systems with an infinite
number of degrees of freedom. In a very simple way they can be
seen as infinite collections of harmonic oscillators. We shall provide
a short introduction to quantum field theory in our last lecture.
To set up a mathematically rigorous framework for quantum field
theory a description as an infinite system is unavoidable.

Conclusion : A third version of an axiom system for quantum theory
is useful for the description of phase transitions; it is necessary for a
rigorous discussion of quantum field theory. So in the next lecture
we shall sketch an axiom system ‘Version 3’.
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4. Physical Theories as Algebraic Systems

4.1. Introduction

This lecture is somewhat different from the others. It is more math-
ematical. It also contains less standard material, but discusses ideas
that have been floating around in the literature for some time and
which I have assembled into a single framework. Many details are
still missing. In any case the general picture that I shall put forward
in this lecture is more important than those details.

The content of this lecture is, apart from generalities, independent
from the rest of the lectures. A bit more mathematical knowledge
is needed, the outlines of which I shall try to supply.

It is in principle possible to describe both quantum and classical
physics within a single algebraic framework. In such a formulation
physical systems appear as ‘algebraic dynamical systems’.

Let me immediately start with giving a provisional and, admittedly,
rather rough definition:

An algebraic dynamical system will be a couple

(A, {φ(t)}t∈R1)

in which A is an associative complex ∗-algebra with unit element,
and {φ(t)}t∈R1 a 1-parameter group of ∗-automorphisms of A.

The states of such a system are elements of the collections of positive
normalized linear functionals on A. Symmetries are represented by
∗-automorphisms, or groups of such automorphisms that commute
with the φt. The elements of A are the observables, the automor-
phisms φt describe the time evolution, the expression ω(A) for a
linear functional ω and an observable A give the average value of
the observable A in a state ω. Physicists call this the ‘expectation
value’; probabilists call it ‘expected value’. Higher moments are
given by ω(A2), ω(A3), etc..

Remark : The above definition applies to nonrelativistic physics, to
which most of these lectures are devoted. In nonrelativistic physics
time is an external parameter. This is not the case in relativity the-
ory. There time has no separate meaning; it is part of 4-dimensional
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spacetime. Instead of algebraic dynamical system we have there al-
gebraic covariance systems, couples

(A, φ(Λ, a)(Λ,a)∈P)

with the φ(Λ, a)(Λ,a) ∗-automorphisms of A, which represent the
Poincaré group P , the inhomogeneous Lorentz group. In this situa-
tion the notions of time evolution and symmetery, at least spacetime
symmetry, coincide. All this will be explained in the last lecture.

We distinguish two cases:

1. The algebra A is commutative : classical physics.

2. The algebra A is noncommutative : quantum physics.

This distinction is the most important point of this lecture, as will
become clear.

Historical remark : It was in quantum theory that an algebraic point
of view of the sort that we have in mind first appeared. The math-
ematical basis of quantum theory is the use of operators in Hilbert
space, as we have already explained in detail in Lecture 1; from
studying such operators it is only one step to the study of algebras
of operators.

Quantum theory is assumed to be valid for all physical phenomena
– at least as long as new experimental evidence will not teach us
otherwise – but classical theories provide good approximations in
many situations. Therefore it makes sense to try to develop an
algebraic framework also for classical physics – not obvious as this
may look at first sight. One of the advantages of such a general
formulation is that it would narrow the conceptual gap between
classical and quantum physics. In any case, a desire for unification
has always been a guiding thought in theoretical physics.

Before I discuss in more detail my algebraic scheme for both classical
and quantum physics, I shall remind you of some basic mathematical
properties of algebras.

4.2. Reminder : Algebras

1. Algebras : An algebra A is a vector space with an additional
multiplication

(a, b) 7→ ab,
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which is associative and distributive with respect to the vector space
addition.

Note : A vector space can be real or complex, for us usually complex.

We shall make a general distinction between ‘abstract’ algebras,
just ‘abstract’ vector spaces with an additional multiplication sat-
isfying the above requirements, and ‘concrete’ algebras, algebras of
functions (commutative) and algebras of matrices or linear transfor-
mations (in general noncommutative).

In these lectures we assume that associative algebras – so not Lie
algebras – have a unit element.

2. ∗-Algebras : A is a ∗-algebra iff there is a conjugate linear map

a 7→ a∗,

with the properties

(a∗)∗ = a, (ab)∗ = b∗a∗, (λa)∗ = λa∗, ∀a, b ∈ A, λ ∈ C1.

A ∗-algebra is often called an involutive algebra, with the ∗-operation
an involution. Anyway, do not confuse this notion with the star
product of formal deformation quantization!

3. Banach ∗-algebras : A normed algebra has as a vector space norm,
i.e. an assignment

a 7→ ||a||,
with

||a|| ≥ 0, ||a|| = 0 ⇔ a = 0, ||λa|| = |λ|||a||, ∀a ∈ A, λ ∈ C1,

and

||a+ b|| ≤ ||a||+ ||b||, ∀a, b ∈ A. (triangle inequality)

As an algebra norm it has the additional property

||ab|| ≤ ||a|| ||b||, ∀a, b ∈ A (submultiplicativity).

For a ∗-algebra one has moreover

||a∗|| = ||a||, ∀a, b ∈ A.

A Banach ∗-algebra is a normed ∗-algebra which is complete in its
norm (Cauchy sequences are convergent). Finally :
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4. A C∗-algebra is a Banach ∗-algebra A with a norm which satisfies

||a∗a|| = ||a||2, ∀a ∈ A.

This innocent looking additional requirement has important conse-
quences; it makes A into a C∗-algebra, one of the most important,
interesting, and most studied objects in functional analysis.

So far we have looked at algebras, in particular C∗-algebras, as ‘ab-
stract’ objects. We next discuss two important representation the-
orems, both due to I.M. Gelfand and M. Naimark.

- a. For commutative C∗-algebras : An ‘abstract’ commutative C∗-
algebra is isomorphic to the algebra C(X) of all continuous functions
on some compact topological space X. The norm of a function
in C(X) is its supremum; the ∗-operation (involution) is complex
conjugation. This makes it into a C∗-algebra. The correspondence
of ‘abstract’ commutative C∗-algebras with algebras C(X) is one-
to-one, up to isomorphisms.

- b. For noncommutative C∗-algebras : A noncommutative C∗-
algebra is isomorphic to a subalgebra of B(H), the algebra of all
bounded operators in a Hilbert space H. So there is a one-to-one
correspondence between ‘abstract’ noncommutative C∗-algebras and
C∗-algebras of Hilbert space operators, again up to isomorphisms.

5. von Neumann algebras :

Von Neumann algebras are not ‘abstract’ algebras, but algebras of
bounded operators in a Hilbert space.

Two equivalent definitions :

A topological definition : A von Neumann algebra is a strongly
closed ∗-subalgebra of the algebra of all bounded operators in a
Hilbert space.

Any ∗-algebra B of operators in H can be closed in this strong
operator theory. This closure will be a von Neumann algebra, the
smallest von Neumann algebra containing B, or the von Neumann
algebra generated by B. We shall see an important example of
further on.
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Intermezzo : Convergence in operator algebras

Bounded operators have a norm || · ||

||A|| = sup
||ψ||=1

||Aψ||.

A sequence of operators {An}n converges in norm to an operator A
iff

lim
n←∞

||A− An|| = 0.

It converges em strongly iff

lim
n←∞

||(A− An)ψ|| = 0, ∀ψ ∈ A.

Strong convergence is, surprisingly, weaker than norm convergence.
In operator algebra theory many other topologies, implying other
types of convergence are used. We do not need them here.

An algebraic definition of von Neumann algebras : The commutant
of a ∗-subalgebra A of B(H), the algebra of all bounded operators
in a Hilbert space H, is the collection of all bounded operators com-
muting with all operators in A. This set, denoted as A′, is again a
∗-subalgebra of B(H). The algebra A is a von Neumann algebra iff
A = (A′)′, i.e. iff it is its own double commutant.

C∗-algebras versus von Neumann algebras

Von Neumann algebras contain all the projection operators of their
selfadjoint elements (Important for quantum theory). C∗-algebras
do not.

Example : The algebra of all continuous functions on [0, 1] is a com-
mutative C∗-algebra; it contains no projections at all; the larger
algebra of all bounded measurable functions on [0, 1] has many pro-
jections.

Note that B(H) is both a C∗-algebra and a von Neumann algebra.

This should be sufficient for our purpose about the general properties
of various types of algebras. For more details, see (“Algebras, States
and Representations”. See also Refs [1]-[11] for much more details.

4.3. A general algebraic framework

After this preliminary mathematical material we return to the dis-
cussion of what is the main subject of this lecture, an algebraic
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framework, in which classical physics is obtained as a special case
by requiring the relevant algebras to be commutative, and in turn
quantum physics appears as a generalization – or perhaps a defor-
mation – of classical physics.

It is true that this does not add much, concretely and explicitly,
to known theories, except in the case of systems with an infinite
number of degrees of freedom, thermodynamic limit for classical
and quantum statistical mechanics and relativistic quantum field
theory. It is not helpful in performing calculations. It also has loose
ends. Considerable white areas remain; many details have not been
worked out, but all this does not diminish its conceptual attraction.

The general idea of this approach may be illustrated by a recent
mathematical development that connects algebra and geometry in
a new way, a development which may be seen as a background for
our general scheme.

It is called “noncommutative geometry”, has as its origin the work
of Gelfand and Naimark on the one-to-one correspondence between
compact topological spaces and commutative C∗-algebras and has
been developed into a broad mathematical discipline by the French
mathematician Alain Connes. See for this his book (Ref.[12]) and
also the book of Gracia-Bondia et al (Ref.[13]). The general idea
of this is – very naively formulated, first the observation that many
mathematical theories start from a ‘space’, i.e. a point set with ad-
ditional structure, for instance a measure space, a topological space
or a differentiable manifold, and secondly that such a ‘space’ can be
characterized by a commutative algebra, namely the algebra of the
appropriate functions on the underlying set, measurable, continuous
and smooth functions.

The next step, the truly interesting one, is then that by looking
at similar noncommuting algebras new mathematical theories are
obtained based on ‘virtual spaces’, which have no meaning as point
sets, but are intuitive ideas that suggest interesting generalizations
of properties of the commutative case.

In this spirit the general theme of this lecture will be:

Classical physics ←→ Commutative algebras

Quantum physics ←→ Noncommutative algebras
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In this scheme the algebras are of the same type, e.g. commuta-
tive and noncommutative C∗-algebras, or commutative and non-
commutative von Neumann algebras, etc., notions that we have just
briefly described.

As I stated at the beginning of this lecture, ideas of this type have
been around already for some time and are discussed at various
places in the literature; see for instance the recen books by Faddeev
and Yakubovskǐi, an excellent short introduction, however with not
much details (Ref.[14]). There is also the book of Strocchi (Ref.[15],
p.10-23). The approach in this book is however mathematically too
narrow. The purpose of this lecture to develope this ideas in a more
systematic way.

A proposal of formulating quantum physics in terms of abstract alge-
bras of observables with averages given by positive linear functionals
on these algebras was first put forward in 1947 by I. E. Segal in a
classic paper (Ref.[16]) and applied later by others to specific top-
ics in quantum physics, in particular to attempts to give a rigorous
mathematical basis to quantum systems with an infinite number of
degrees of freedom such as quantum field theory and quantum statis-
tical mechanics in the thermodynamic limit. See the seminal paper
by Haag and Kastler (Ref.[17]). However, the mathematical basis
was laid earlier by the work of Gelfand and Naimark, with as cen-
tral point their representation theorem for commuting C∗-algebras
(Ref.[18]).

4.4. Spaces / ‘Spaces’. Commutative / Noncommutative

4.4.1. Introduction

The central idea of this lecture is that of ‘space’. First as a precise
notion: a point set X, carrying an additional structure characterized
by the commutative algebra C(X) of appropriate functions on X,
which characterizes this structure. Then, in a more suggestive and
heuristic way, in the quantum situation, there is no longer a point
set X, but there is the noncommutative version of the algebra C(X)
from the classical case, no longer an algebra of functions but still
suggesting in a heuristic way an underlying ‘space’.
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4.4.2. A list of spaces and their associated ‘spaces’

In this subsection we present an annotated list of ‘spaces’ and their
virtual noncommutative analogues. For more mathematical details
see the supplementary text “Algebras, states and representations”.

(1) Topological spaces.

The history of the subject begins with the theorem of Gelfand and
Naimark, which states that there is a one-to-one correspondence
between commutative C∗-algebras and compact topological spaces.
See “Algebras, states and representations, Section 4”.

This leads to a suggestion for noncommutative C∗-algebras :

‘compact quantum topological space’ means “noncommutative C∗-
algebra”.

(2) Measure spaces or probability spaces.

(Measure spaces /probability spaces) There is a similar relation be-
tween commutative von Neumann algebras and algebras of measur-
able functions on measure spaces or, more in particular, a probabilty
space, which is a bit more complicated because it is a correspondence
between equivalence classes. More details in (“Algebras, states and
representations. Section 5”).

This leads to a suggestion for noncommutative von Neumann alge-
bras :

‘quantum measure’ or ‘probability space’ means “noncommutative
von Neumann algebra”.

(3) Smooth manifolds

Smooth, or differentiable, manifolds are topological manifolds with a
differentiable structure (See “Manifolds”). The associated algebra of
smooth functions C∞(M) has for a compact manifoldM a Fréchet
spac as its underlying vector space, and for a noncompact M a LF
space, i.e. a direct limit of a sequence of Fréchet spaces.

Reminder : Fréchet spaces and algebras . A locally convex space is
a topological vector space with a topology determined by a single
norm || · ||, but by a system {|| · ||α}α∈I . of seminorms. A norm has
the same properties as a norm except that ||a||α = 0 does not imply
a = 0. A Fréchet space is a complete locally convex space, with a
topology determined by a countable set of semi norms and that is
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moreover metrizable. For a Fréchet algebra A the seminorms have
to satisfy the submultiplicativity property

||ab||α ≤ ||a||α ||b||α, ∀α ∈ I, a, b ∈ A.

No full analogue of the Gelfand-Naimark theorem for commutative
C∗-algebras is known for the algebras of smooth functions on mani-
folds. There is however the following remarkable theorem (Thomas.
Ref.[19]):

Let M1 and M2 be two manifolds, with their algebras of smooth
functions C∞(M1) and C∞(M2). Suppose that the function alge-
bras C∞(M1) and C∞(M2) are isomorphic. ThenM1 andM2 are
diffeomorphic.

This leads to an admittedly rather vague suggestion for noncommu-
tative smooth ∗-algebras :

‘quantum manifold’ means “noncommutative smooth ∗-algebra”.

Note that if we restrict to bounded smooth functions, the corre-
sponding noncommutative smooth ∗-algebra will be a subalgebra of
a C∗-algebra.

(4) Symplectic manifolds

A symplectic manifold is a smooth manifold provided with a sym-
plectic form, i.e. a closed nondegenerate 2-form ω, which defines a
Poisson bracket {·, ·} on the algebra of smooth functions C∞(M)
according to {·, ·} on C∞(M) :

{f, g} = ω(Xf , Xg), ∀f, g ∈ C∞(M).

and with Xf , Xg the Hamiltonian vector fields associated with f , g.

Remember that a vector field Xh is called Hamiltonian, associated
with the function h, iff

dh(Y ) = ω(Xh, Y ), for all vector fields Y.

The Poisson bracket makes C∞(M) into a Poisson algebra.

A manifold with a Poisson bracket is called a Poisson manifold,
and is slightly more general than a symplectic manifold. Poisson
geometry, as a special topic in differential geometry, has been thor-
oughly investigated. Less attention has been paid to the functional
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analytic properties of C∞(M), as a special case of a locally convex
topological algebra.

This nevertheless leads to a suggestion for noncommutative Poisson
∗-algebras:

‘Quantum Poisson manifold’ means “noncommutative smooth Pois-
son ∗-algebra”.

There is a one-to-one correspondence between the algebras of contin-
uous functions on compact topological spaces and commutative C∗-
algebras, so an arbitrary noncommutaive C∗-algebra can be thought
of as representing a ‘noncommutative compact topological space’.
There is also a one-to-one correspondence between the algebras of
(essentially) bounded measurable functions on measure spaces and
commutative von Neumann algebras, so a noncommutative von Neu-
mann algebra can be thought of as representing a ‘noncommutative
measure space’. Unfortunately, for the cases of smooth quantum
manifolds and even more for quantum Poisson manifolds, one has
only suggestions. The smooth functions on manifolds are Fréchet or
LF algebras, characterizing the manifolds, as the theorem of Thomas
tells us, but we do not know what particular type of these algebras
describe in this manner smooth manifolds. For Poisson manifolds
we know even less.

Two rather different areas of mathematics, using different concepts,
are relevant for quantum theory:

1. Functional analysis : Provides the language for quantum theory
as mathematically formulated by von Neumann. This is expressed
in the axiom systems ‘Version 1’ and ‘Version 2’, discussed in the
preceding lectures. For all practical physical purposes this approach
is satisfactory; it provides everything one needs.

2. Symplectic differential geometry or a bit more general Poisson
geometry : One important aspect of both classical and quantum
mechanics is missing from von Neumann’s axiom system, its Hamil-
tonian structure. This is basic and clearly present in classical me-
chanics, with a general phase space in a natural manner a symplectic
manifold and time evolution and all symmetries canonical transfor-
mations leaving this structure invariant. It is of importance when
studying quantum mechanics as deformation of classical mechanics,
with Planck’s constant h̄ as a the deformation parameter. This will

73



be taken up in the next lecture. Here, in the context of setting up
our ‘Version 3’ of an axiom system for quantum theory, we shall
only discuss a function analytic approach. The main topic of this
school is Poisson geometry, so you will hear more about symplectic
aspects in some of the other lectures.

4.5. The third version of our axiom system

4.5.1. Introduction

In our first lecture we formulated ‘Version 1’ of our system of axioms
for quantum theory, with as basic notions unit vectors in a Hilbert
space as states and selfadjoint operators in that space as observables.
A second level of axiomatics, ‘Version 2’, was introduced in the
third lecture, still with a Hilbert space, but this no longer as the
space of states, but as an ambient background space, and now the
states being described by density operators. This generalization was
necessary for the description of quantum statistical physics. The use
of these two levels is standard in mainstream quantum physics.

In this section we are going to introduce ‘Version 3’. It is an axiom
system, in which one starts from an abstract algebra, much in the
spirit of Refs.[16],[17],[20],[21],[22]. This third formalism is not – or,
maybe, not yet – part of the standard curriculum of physics. It is
of great conceptual interest as a general theoretical framework, but
has in a practical sense not much to offer in ordinary classical and
quantum mechanics. It does however play an important role in the
description of systems with an infinite number of degrees of freedom,
the thermodynamic limit in statistical physics, both classical and
quantum, and relativistic quantum field theory.

4.5.2. A sketch of ‘Version 3’

We first give a rough version of the third axiom system, and after
that a more precise and detailed one for two specific situations.

Observables

- Axiom I′′ : Observables : a complex ∗-algebra A.

States

- Axiom II′′ : States : positive normalized linear functionals ω on
A.
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A state on a ∗-algebra A is a positive normalized linear functional
on A. This definition comes from physics but is now generally used
by mathematicians.

Physical interpretation :

- Axiom III′′ : Axiom I′′ and Axiom II′′ are combined to give proba-
bilistic predictions for measurements, along the same lines as earlier
in ‘Version 1’ and ‘Version 2’.

Time evolution / Symmetries

In some situations either time evolution does not play a role (statis-
tical mechanics, or is absorbed in symmetry. This will be explained
when discussing the more detailed version of this axiom system.

- Axiom IV′′ : Time evolution : a 1-parameter group {φ(t)}t∈R1,
of ∗-automorphisms of A.

- Axiom V′′ : Symmetries : various ∗-automorphisms and groups
of ∗-automorphisms of A, commuting with the time evolution auto-
morphisms.

4.5.3. Axiom system ‘Version 3’ for two specific situations

Although on this third level the starting point is not a Hilbert space,
but the algebra of observables, a state dependent Hilbert space will
nevertheless automatically emerge from the data specified according
to the first two axioms. This will be explained further on. Here
follows the list of axioms again, now in more detail and for specific
situations.

4.5.4. Observables

- Axiom I′′ : There is an abstract C∗-algebra A of what I call pre-
observables, the ‘skeleton’ of a von Neumann operator algebra of
physical observables,

This von Neumann algebra will emerge naturally in the setting up
of a system in Version 3.

Note : When a C∗-algebra A is represented as an operator algebra
in a Hilbert space by a representation π, the projections of its self-
adjoint elements do not necessarily belong to the algebra, nor to its
image π(A). They do however belong to the closure of π(A) in the
strong operator topology. This closure is a von Neumann algebra,
the von Neumann algebra generated by A, which I shall denote as
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Â. It is the physically relevant object. It is important to realize
that this a representation dependent object. I could have denoted
it as Âπ.

A physical system is characterized by its algebra of observables. For
‘Version 3’ of the axiom system for quantum theory, as we present
it here, is meant for two types of systems, both with an infinite
number of degrees of freedom.

1. Statistical mechanics in the thermodynamic limit, i.e. in the limit
where the number of finite subsystems goes to infinity. One consid-
ers a partially ordered system of finite subsystems of increasing size,
e.g. a system of d-dimensional spatial lattices {Λα}α∈I , with el-
ementary magnets at each sites, interacting with each other. The
variables of each subsystem form a finite dimensional C∗-algebra Aα
– every finite dimensional ∗-algebra is of course a C∗-algebra. These
algebras form an inductive system. This means, without giving a
precise definition, that an algebra of a smaller subsystem can be
injected in a natural manner into the algebras of a larger system,
leading to a single all-encompassing C∗-algebra of ‘quasilocal’ ob-
servables which is the algebra A of Axiom I′′. By considering states
on this algebra – see Axiom III′′, one hopes to be able to describe
aspects of the coexistence of more than one phase, separated by a
phase transition. In both classical and quantum statistical mechan-
ics one is mainly interested in equilibrium states, which means that
there is no time evolution, so in this case there is no need for Ax-
iom VI′′. Symmetries, Axiom V′′, in particlar spatial rotations and
translations, remain important. See for the subject of the rigorous
mathematical treatment of the thermodynamic limit in statistical
mechanics Refs.[20], [21].

2. Relativistic quantum field theory. This topic will be discussed
in Lecture 6. However, it is useful to discuss in the context of
this lecture the characterization of its algebra of observables, in the
algebraic approach of Araki, Haag and Kastler. See Ref.[17].

In this approach there are no field operators, but local C∗-algebras
attached to open sets of spacetime, a 4-dimensional affine space, the
theatre of the special theory of relativity. All this will be discussed in
more detail in Lecture 6. This means that there is a inductive system
{AO}O⊂R4 of local C∗-algebras, which give one all-encompassing C∗-
algebra of quasi-local observables A. There is no notion of a separate
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time evolution, which means that Axiom VI′′ (time evolution) is
absorbed by Axiom V′′ (symmetry)

4.5.5. States

- Axiom II′′ : There is a convex set of states, the collection S of
positive normalized linear functionals on A.

The name ‘state’ for such a functional comes from physics; it is
now in general use by mathematicians, in particular mathematicians
working in operator algebras. A state ω determines a representation
πω of A in a Hilbert space Hω, the so-called GNS-representation.
The strong closure of πω of A, the operator algebra Âω, is the repre-
sentation dependent von Neumann algebra of physical observables.

The GNS–representation – GNS = Gelfand-Segal Naimark, is the
central mathematical object of this system of axioms. I shall sketch
its construction. It is one of these typical constructions that math-
ematicians love; one starts with a mathematical object, a group, an
algebra, then by letting it act on it self one gets interesting results.

4.5.6. An intermezzo: The GNS construction

Let A be a given C∗-algebra, and ω a given state. To obtain our
representation we let A act on it self. One has to realize that in
this procedure A plays two roles, as the algebra that is represented
and as the representation space. We define the first stage of the
representation as

π0(a)b = ab, ∀a, b ∈ A.
One verifies easily that this defines a representation of A into linear
operators in A itself. The state ω defines a sesquilinear form on A
according to

(a, b)0 = ω(a∗, b), ∀a, b ∈ A.
This form is degenerate, it is almost an inner product, positive but
with null-vectors. These can be removed by going to a quotient
space. Define I in A as

I = : {a ∈ A | (a, a)0 = ω(a∗a)} = 0.

This is a left ideal in the algebra A, i.e. a linear subspace I with
the property

a ∈ I ⇐⇒ ab ∈ I, ∀b ∈ A.
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Although (·, ·)0 is not strictly positive definite, the Schwarz inequal-
ity holds.

Problem : Use this to prove that I is indeed a left ideal.

Answer : Let a be in I and b in A.

(ba, ba)0 = ω((ba)∗ba) = ω(a∗b∗ba) = (a, b∗ba)0,

so

|(ba, ba)0| = |(a, b∗ba)0| ≤ |(a, a)0|1/2|(b∗ba, b∗ba)0|1/2 = 0,

which proves that ba an element of I is, for all a in A, i.e. I is a
left ideal in I.

With this ideal we define an equivalent relation in A by

a ∼ b ⇐⇒ a− b ∈ I.

This equivalence relation gives a quotient space (Hω)0 = A/ ∼, a
pre-Hilbert space that can be completed in the usual manner to a
Hilbert spaceHω. Due to the fact that I is a left ideal, the operators
π(a) descend to operators πω(a) on (Hω)0 and can then be extended
to bounded operators in Hω. This is the GNS-representations, as-
sociated with the state ω. So we have a Hilbertspace Hω, with the
GNS representation πω of the algebra A of pre-observables. The
representing algebra πω(A) generates a von Neumann algebra by
taking the strong closure of πω(A). This closure is the representa-
tion dependent algebra of observables.

There is a special vector in Hω, n.l. ψ0 = [1], the equivalence class
containing the unit element of A. Every vector ψ in (Hω)0 is an
equivalence class [a]∼ for some a in A. This means that every ψ
can be written as ψ = πω(a)ψ0, for some a in A. These vectors are
dense in Hω because, by definition, (Hω)0 is dense in (Hω), One says
that ψ0 is a cyclic vector for the representation πω. An important
theorem that I shall not prove states that πω is irreducible if and
only if ω is pure.

4.5.7. Physical interpretation

Axiom III′′ : The physical interpretation in terms of the results of
the measurement of an observable A in a state ω combines Axioms
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I′′ and II′′ and follows the same line as in the two earlier versions
of the axiom system .

We have again a Hilbert space, the GNS-representation space Hω.
In general this is not the Hilbert space of states from ‘Version 1’,
nor the background Hilbert space from ‘Version 2’. The algebra A
is represented by a C∗-algebra of bounded operators πω(A). The
algebra of bounded physical observables is the closure in the strong
topology of this, the von Neumann algebra [πω(A)]′′. It contains
all the projection operators belonging to the selfadjoint operators in
πω(A).

For ω pure the representation πω is irreducible. Schur’s lemma tells
us that this implies that the commutant of πω(A) consist of only
the multiples of the unit operator, and that therefore its double
commutant is the algebra B(A) of all bounded operators in Hω.
So the von Neumann algebra of physical operators is B(A). This
implies that in this case we are back in the situation of ‘Version 1’:
Hω is the Hilbert space of state vectors; de state ω is represented
by the state vector ψ0.

A mixed state ω may be representable by a density matrix, with Hω

as background Hilbert space. In that case we are back in ‘Version
2’. For a system with an infinite number of degrees of freedom this
will not happen; ‘Version 3’ is than an essential generalization.

4.5.8. Time evolution / Symmetries

Axiom IV′′ : The time evolution of a system is described by a 1-
parameter groups of ∗-automorphisms {φt}t∈R1 of A acting on the
state ω as

ωφt(A) = ω(φ−t(A)) , ∀A ∈ A .
Time evolution automorphisms should be unitarily implementable in
Hω, i.e. there should exist 1-parameter groups of unitary operators
Uφt acting in the GNS-representation Hilbert space Hω, such that

πω(φt(A)) = U−1
t πω(A)Ut, ∀t ∈ R1, A ∈ A.

A state ω on A is called invariant with respect to the time evolution
automorphisms iff

ω0(A) = ω0(φ−t(A)) , ∀A ∈ A , ∀t ∈ R1 .
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Invariance of ω implies unitary implementability. It is convenient
to requires continuity for the 1-parameter group {φt}t∈R1 , such that
there is strong continuity for the group {Ut}t∈R1 .

Axiom V′′ : Symmetries, (groups of symmetries) of physical sys-
tems are described by ∗-automorphisms (groups of ∗-automorphisms)
of A, that commute with the time evolution automorphisms.

Symmetry automorphisms are always required to leave the state ω
invariant, are therefore unitarily implemented by a unitary operators
in the GNS-representation space Hω, and consequently leaves the
state vector ψ0 invariant.

For the sake of generality I have given here both axioms Axiom IV′′

and V′′, even though we have no time evolution in equilibrium states
in statistical mechanics, and even though time evolution is absorbed
in the notion of symmetry in relativistic quantum field theory.

Note that the statistical mechanical models in this situation may
be classical or quantum; for the field theory only the quantum case
makes in this context sense.

This completes our description ‘Version 3’ of our axiom system,
applied to two situations, the thermodynamic limit in statistical
mechanics and relativistic quantum field theory in the algebraic ap-
proach.

4.6. Appendix. An algebraic form of differential geometry

4.6.1. Introduction

In this appendix I shall discuss an algebraic approach to differential
geometry in which one derives all properties of and structures on a
manifoldM from the derivations of the algebra C∞(M) of smooth
functions, in such a way that the points of the manifold play no role.
This approach is due to J.L. Koszul (Ref.[23]).

4.6.2. A-linear algebra

Let A be a commutative real algebra, associative and with unit
element. At the end of this note I shall take for A the algebra
C∞(M) of smooth functions on a manifold M.

Definition : An A-module is a real vector space V which has in addi-
tion to multiplication by real numbers a multiplication by elements
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from A
(a, x) 7→ ax, ∀a ∈ A, x ∈ V.

This multiplication satisfies the usual properties of associativity, and
distributivity with the addition.

The properties of a module over a commutative algebra are very
much the same as those of a vector space. One can perform all the
usual operations of ordinary linear algebra.

Let V1 and V2 be two A-modules. A map T : V1 → V2 is called
A-linear if it is linear over de real numbers and if one has moreover

T (ax) = aT (x), ∀a ∈ A, x ∈ V1.

An A-module V has a dual V ∗, the A-module of all A-linear maps
F : V → A. The definition of a A-tensor product of A-modules
(V1, V2, . . . , VN),

V1 ⊗A V2 ⊗A . . . ⊗A Vn
is analogous to the definition for vector spaces, as is the definition
of symmetric and antisymmetric A-tensor products.

4.6.3. Derivations

Let A be as before. A derivation of A is a linear map D : A → A,
with the Leibniz property

D(ab) = D(a)b+ aD(b), ∀a, b ∈ A.

The derivations form an A-module. They form moreover a Lie alge-
bra. Both properties can be checked easily. We denote theA-module
of derivations as V1(A).

4.6.4. Differential geometry

Consider finally a manifold M, with A = C∞(M) the (commuta-
tive, associative) algebra of its smooth functions.

Theorem : A (smooth) vector field on M is a derivation of C∞(M)
and each derivation of C∞(M) is a (smooth) vector field on M.

The first part of the theorem is fairly obvious; the proof of second
part is nontrivial. It can be found in any good textbook on differen-
tial geometry. This part of the theorem is central for our approach
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to differential geometry. Note that it means that one does not need
any assumption about continuity or smoothness, in what ever sense.
One obtains smooth vector fields in a purely algebraic manner.

We have an ‘almost’ Gelfand-Naimark theorem for manifolds. A
theorem by Thomas states that two manifolds that have isomorphic
algebras of smooth functions are diffeomorphic.

It means that a manifold M is completely determined by its com-
mutative algebra A = C∞(M). In fact the manifold can be recon-
structed from C∞(M) as an ‘abstract’ algebra. From this algebra
we obtain the module of its derivations and then use linear algebra
in the sense of C∞(M)-modules to derive from this module all ob-
jects and structures on M without ever looking at M or its points
again.

We have in the first place the vector fields on M as the C∞(M)-
module V1(C∞(M)). From this we obtain the module of 1-forms as
its dual, and by taking antisymmetric tensor products of this the
modules of general p forms Ωp(C

∞(M)). The exterior derivative d,
which, as one find in books, has a completely algebraic definition in
term of the basic module of vector fields, is therefore defined here
in a similar way by explicit use of C∞(M)-module linear algebra.

By taking all possible tensor products from the C∞(M)-module of
derivations of C∞(M) and its C∞(M)-dual one obtains all possible
contravariant, covariant and mixed tensor fields on M.

All this is linear algebra in the sense of C∞(M)-module, beginning
with the derivations of the algebra C∞(M).

Poisson brackets, Riemannian metrics, connections, vector bundles
with their sections, all arise in a purely algebraic way from the
algebra C∞(M) as an ‘abstract’ algebra and subsequently the from
the ‘abstract’ C∞(M)-module of derivations of this algebra by linear
algebra in the sense of C∞(M)-modules.

4.7. References

• References on algebras, in partcular C∗-algebras, von Neumann
algebras, operator algebras

[1]. J. Dixmier
C*-algebras
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5. Quantization

5.1. Introduction

In this lecture I shall discuss ‘quantization’, a word with various
slightly different meanings. The first meaning is historic. The
founders of quamtum mechanics struggled with serious fundamental
problem in physics – classical physics, we would say now. Heisenberg
discovered that by employing noncommuting canonical variables he
could correctly calculate the energy levels of the hydrogen atom.
Schrödinger, inspired by the ideas of de Broglie about waves that
accompany each particle, invented his wave equation.

This procedure of constructing quantum theories from known clas-
sical theories by ‘quantizing’ them, went on for several years. For
example, Maxwell’s theory was and is still a very good classical the-
ory. A quantized version was constructed, at an early stage by Dirac,
with important improvements later by Feynman and others in the
nineteen forties. Then, with the discovery of new elementary par-
ticles, new quantum theories were formulated, for which there was
no classical example. The π0-meson was such a particle. It could be
described by the Klein-Gordon quantum field, a system of so-called
field operators satisfying a partial differential equation. There exist
a numerical ‘classical’ Klein-Gordon equation, without any physical
physical meaning. The same for the Dirac quantum field describing
electrons and positrons. (We shall give an introduction to quantum
field theory in the last lecture).

This last method has become standard: inventing a ‘classical’ equa-
tion, and then using this to find a physically meaningful quanti-
zation of this auxiliary non-physical theory. For boson systems the
underlying classical or pseudo-classical has a Hamiltonian structure,
involving a symplectic manifold, infinite dimensional in the case of
fields. For fermion systems one needs an interesting generalization
of symplectic geometry, supersymplectic geometry based on the no-
tion of supermanifold. There will be no opportunity to discuss this
in these lectures.

There is one quantization method in which a classical model is essen-
tial: Feynman’s path integral quantization. It is a intuitive very at-
tractive but heuristic procedure which leads from a classical model,
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again possible fictitious, to quantum theoretical results such as tran-
sition amplitudes, without ever mentioning a Hilbert space of states.
It uses measures and integrals over spaces of classical ‘histories’,
which up till now have not been given a rigorous mathemathical
meaning. This quantization method is very popular among elemen-
tary particle physicists, for generating diagrammatic terms in the
perturbation series (Feynman diagrams), that they use to calculate
the outcome of scattering experiments at very high energies. Again,
there is no room to discuss this in these lectures.

In the end one should realize that quantum theory is the basic gen-
eral theory describing all of the physical world – at least so we be-
lieve, as long as we are not contradicted by new experiments. It has
to be used for submicroscopic phenomena, at the level of atoms and
molecules, For most macroscopic situations, where we use units in
which Planck’s constant h̄ is small, we may derive classical physics
as a useful and precise approximation.

5.2. What is quantization?

Quantization, whatever its merits as a fundamental physical notion,
is a procedure in which one assigns in a systematic way to a given
classical physical system a quantum system, whether or not this
a ‘real‘ physical system or an auxiliary fictitious system. Let us
start with a classical mechanical system with as phase space the
symplectic manifoldM, here just R2n with the standard symplectic
form

ω =
n∑
j=1

dpj ∧ dqj.

with its algebra C∞(R2n) of smooth functions, which we complexify
to a complex ∗-algebra C∞C (R2n) with f 7→ f as the ∗-operator. We
have the Poisson bracket between two functions from C∞(R2n) as

{f, g} =
n∑
j=1

(
∂f

∂pj

∂g

∂qj
− ∂f

∂qj

∂g

∂pj

)
,

which makes C∞(R2n) into a ∗-Poisson algebra. Note that the Pois-
son bracket is real, i.e. {f, g} = {f, g}.
Definition : A quantization a classical system is a linear map Q
from the functions f in C∞C (R2n) into operators Q(f) in H, with
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the property (1)
Q(1) = 1H,

and the reality condition (2)

Q( f ) = Q(f))∗.

There is a suggestive relation between the Poisson bracket for clas-
sical variables f and g and the commutator for the corresponding
operators F and G, first noticed by Dirac in one of his brilliant
insights (See Ref.[1]), namely

{f, g}classical −→ ih̄[F,G].

One has, in this manner, for instance, for the canonical variables pj
and qk the Poisson bracket

{pj, qk} = δjk

and for the canonical operators Pj and Qk the commutator

[Pj, Qk] = −ih̄δjk,

Because of this it is tempting to add a third property to the defini-
tion of the quantization map (3)

[Q(f),Q(g)] = −ih̄Q({f, g}), ∀f, g ∈ C∞C (R2n).

However, this assumption is too naive; the Groenewold-van Hove
theorem states that even for the simple case of M = R2n a quan-
tization map Q with these three properties for all variables f and
q does not exist (Refs.[2], [3]). What can be expected instead is a
relation (3′) of the form

{Q(f),Q(g)}qu = h̄Q({f, g}cl) + . . . . . . ,

with higher order terms in h̄ of the form

h̄nMn(f, g) , n = 1, 2, . . . , M1(f, g) = Q({f, g}cl),

in which the Mn are bilinear maps

Mn : C∞C (R2n)× C∞C (R2n) → B(H),

in fact bidifferential operators on R2n, like the Poisson bracket.
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The definition of quantization just given is general and makes sense
for any classical mechanic system with as phase space a symplectic
manifold (M, ω).

ForM = R2n we have the irreducible system of canonical operators
Pj and Qk as differential en multiplication operators in the usual
Schrödinger representation. According to the theorem of Stone and
von Neumann this system is unique, up to unitary equivalence. Let
us, for the sake of simplicity of notation, take n = 1. Quantiza-
tion then means a rule for assigning an operator to each classical
monomial pmqn. This is sufficient; the quantization of more general
functions can be found by taking appropriate limits of polynomials
in p and q. It is immediately clear there are more than one way to
do this. Classically pq = qp, but in quantum theory PQ 6= QP , so
in quantum theory this may give

Q1(pq) =
1

2
(PQ+QP ),

or

Q2(pq) =
i

2
(PQ−QP ).

There is a priori no reason to prefer the one above the other. Quan-
tization of a given classical system involves a choice; it is not unique.
Note that

Q1(pq)−Q2(pq) = QP +
1

2
(1 + i)1H +

1

2
(1− i)h̄ 1H,

which shows that the appearance in the formula for quantization of
terms of higher order in h̄ is quite natural. Here is another example:
one has pq4p = q2p2q2 but PQ4P 6= Q2P 2Q2 with a difference

PQ4P −Q2P 2Q2 = 2h̄2Q2.

Note that in all the operators P and Q are unbounded, defined on
dense linear subspaces of H. This means that some care is needed in
algebraic manipulation of these operators. This can be taken care
of by defining some common dense domain on which these manipu-
lations are permissible. We shall not worry about this. In the next
sections we shall discuss two examples of quantization prescriptions.
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5.3. Born-Jordan quantization

Max Born and Pascual Jordan published in 1925 an article (Ref.[4])
in which they extensively commented on a paper on quantum me-
chanics, just published at that time by Heisenberg (Ref.[5]), in fact
one of the founding papers of the subject. They observed in partic-
ular that Heisenberg’s algebraic noncommuting variables pj and qk
were in fact infinite matrices. From then onwards Heisenberg’s for-
mulation of quantum mechanics became known as matrix mechan-
ics. What interests us here is that they put forward a quantization
prescription for arbitrary monomials qmpn

qmpn → 1

n+ 1

n∑
k=0

P n−kQmP k.

Their argument for this is part of long discussion and reformulation
of Heisenberg’s results and is therefore not easy to summarize.

5.4. Weyl quantization 1

Another prescription which eventually surpassed that of Born and
Jordan in popularity was put forward in 1927 by Hermann Weyl
(Ref.[6]). Weyl gave a general Fourier integral formula, to be dis-
cussed in the next section, from which a prescription for polynomials
can be derived. This integral formula emerged later in mathematics
as a particular way of defining pseudodifferential operators, a topic
of great interest, although it has not much to do with quantum
theory or quantization. Weyl’s prescription for the quantization of
arbitrary monomials, a result of his integral formula, reads

qmpn → 1

2n

n∑
k=0

n!

(n− k!)k!
P n−kQmP k.

The Born-Jordan and the Weyl quantizations are different, but only
for m > 1, n > 1. One verifies easily

qp → 1

2
(PQ+QP ),

for both Born-Jordan and Weyl. One has however, for Born-Jordan

q2p2 → 1

3
(P 2Q2 + PQ2P +Q2P 2),
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and for Weyl

q2p2 → 1

4
(P 2Q2 + PQ2P +Q2P 2).

The only physically realistic case in which products of position and
moment variables occur is that of a particle with electric charge e
moving in a given magnetic potential ~A(~x), in which the Hamilto-
nian is

H =
1

2me

(
~p+

e

c
~A
)
·
(
~p+

e

c
~A
)
,

with the vector potential ~A, connected to the magnetic field strength
B through

~B = ~∇× ~A,

or written explicitly in components

B1(~x) =
∂

∂x2

A3(~x)− ∂

∂x3

A2(~x),

B2(~x) =
∂

∂x3

A1(~x)− ∂

∂x1

A3(~x),

B3(~x) =
∂

∂x1

A2(~x)− ∂

∂x2

A1(~x).

This means that for all practical purposes both quantizations can
considered to be physically equivalent. In any case, when there
are different quantizations for some classical expression, physical
experiments should decide which one is the correct one.

5.5. Weyl quantization 2. An integral formula

Weyl’s quantization formula, a particular kind of integral formula,
first presented both in a paper (Ref.[6]) and in his famous book
(Ref.[7]), was clearly suggested by his interest in applying group
theory to quantum physics, a subject that he pioneered. See for
his active interest in the new quantum mechanics Ref.[8]. (Note in
passing that he also wrote one of the first books on general relativity
(Ref.[9]), so here we have again a mathematician with great interest
in and knowledge of physics).

His arguments for choosing his quantization formula are not easy
to follow, but the resulting formula’s are elegant and clear. One
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of the things that bothered him was the sloppy way his physics
colleagues treated the canonical operators Pj and Qk, unbounded
operators which cannot simply be added and multiplied with each
other because of domain problems. For this reason he proposed to
use instead the exponentiated forms, the 1-parameter unitary groups
U(α) = e

i
h̄
αP and V (β) = eiβQ. They satisfy the commutation

relation
U(α)V (β) = eiαβV (β)U(α) .

or
e
i
h̄
αP eiβQ = eiαβeiβQe

i
h̄
αP .

which is the rigorous form of the usual commutation relation

[P,Q] = −ih̄1H.

The operators U(α) = e
i
h̄
αP and V (β) = eiβQ can be combined to

form what is nowadays called the Weyl operator

Wh̄(α, β) = e−
1
2
αβe

i
h̄
αP eiβQ,

which can also be written as

Wh̄(α, β) = e
i
h̄

(αP+βQ),

which is in fact a definition of the right hand side, because a linear
combination αP+βQ of the two noncommuting selfadjoint operators
P and Q is a priori not well defined.

The notion of Weyl operator and in particular ‘Weyl system’ has
been championed by Irving Segal who used it as basis for his work on
the mathematical foundations of quantum field theory. See Ref.[10].
It is for the canonical operators formulated in this exponential Weyl
form that the Stone-von Neumann uniqueness theorem holds.

Note that I include in all formulas Planck’s constant. The mathe-
matical literature usually does not do this. The point of view here
is that quantum mechanics is a deformation of classical mechanics,
with h̄ as deformation parameter. So h̄ should be visible.

The argument from Weyl’s 1927 paper on quantum theory (Ref.[5])
and also from his book (Ref.[6]), leading to his formula for (rela-
tively) arbitrary functions of the operators P and Q, can be sum-
marized as follows, again for the 1-dimensional case, to keep the
noation simple :
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Let f(p, q) be a classical function on the (2-dimensional) phase space
R2. The aim of Weyl’s procedure is to assign to this an operator
function f(P,Q) in the Hilbert space L2(R1, dx). The usual Fourier
transformation in quantum mechanics connects the ‘position repre-
sentation’ with the ‘momentum’ representation, i.e. H = L2(R1, dx)

with Ĥ = L2(R1, dp), according to the formulas

ψ̂(p) =
1

(2πh̄)1/2

∫ +∞

−∞
ψ(x)e−

i
h̄
px dx,

and its inverse

ψ(x) =
1

(2πh̄)1/2

∫ +∞

−∞
ψ̂(p)e+ i

h̄
px dp.

Here we do something different. We start with square integrable
functions f(p, q) on the phase space and transform these to a space
H′ = L2(R2, du dv) according to

f̂(u, v) =
1

2πh̄

∫ ∫
f(p, q)e−

i
h̄

(up+vq)dp dq,

with inverse

f(p, q) =
1

2πh̄

∫ ∫
f̂(u, v)e

i
h̄

(up+vq)du dv.

Weyl’s definition of the operator f(P,Q) simply employs the last
formula, rewrites it as an operator formula, uses the second form of
the formula for Wh̄(·, ·), which gives

f(P,Q) =
1

2πh̄

∫ ∫
f̂(u, v)e

i
h̄

(uP+vQ)du dv =

=
1

2πh̄

∫ ∫
f̂(u, v) e−

i
2
αβe

i
h̄
αP eiβQdu dv.

Of, course whether this operator f(P,Q) is well-defined depends on
the properties of the numerical function f(p, q). A nontrivial matter
which has to be investigated carefully. Weyl’s integral formula de-
fines what is now called a pseudodifferential operator in L2(R1, dx).

By choosing f(p, q) = pmqn one finds Weyl’s prescription for the
quantization of monomials.

A question that remains is whether Weyl’s quantization idea can be
applied to a classical system for which the phase space is not R2n
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but an arbitrary symplectic manifoldM. No answers are known to
me. Covering M by local Darboux coordinate systems?

5.6. Strict deformation quantization

Planck’s constant h̄ appeared in all the quantum formulas in the
preceding discussions. This was to emphasize the idea that quan-
tum theories are em deformations of classical theories, with h̄ as
deformation parameter. Note that h̄ is a constant of nature. Choos-
ing units for physical variables will change the numerical value of
h̄. If we use the kilometer as unit of length this numerical value be-
comes vanishing small; we are approaching the classical limit of the
quantum system. In this and the next section we shall discuss ex-
plicit ways in which this idea of deformation quantization has been
expressed.

In the first place there is strict deformation quantization, an attempt
to construct for a given symplectic manifold a quantized system,
analytically dependent on h̄. This has been undertaken by Marc
Rieffel (Refs.[11], [12]). He starts from a commutative C∗-algebra
A of continuous functions on a given symplectic manifold M. In
A he define a deformation, depending on h̄, of the given algebra
multiplication, together with a deformation both of the norm and
of the ∗-operation on A. In this manner he obtains a field of non-
commutative C∗-algebras {Ah̄}h̄∈R1 . He has obtained interesting
rigorous results for several manifolds M, none of which is however
of particular physical interest.

5.7. Formal deformation quantization

5.7.1. Introduction

The difficulties of obtaining rigorous results, as is obvious from the
work of Rieffel, has led to work on ‘approximate deformation’ quan-
tization in which one looks at deformation quantization in term of
a power series in h̄, not necessarily convergent. If one goes only up
to first order this is called first order or infinitesimal deformation
quantization. The case of infinite power series, to be discussed in
this section, is called formal deformation quantization.

Formal deformation quantization as a subject was initiated in 1977
in a letter and in 1978 in two long and fairly complicated papers by
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what might be called the ‘Dijon School’, BBFLS in alphabetic or-
der, the physicists Moshé Flato(†1998) – its de facto leader, François
Bayen, Christian Fronsdal, Daniel Sternheimer from Dijon, together
with the differential geometer André Lichnerowicz(†1998) from the
Collège de France in Paris. Refs.[13],[14]. This work went unno-
ticed for several years, but then started to draw attention; more
and more papers were written developing the ideas of what then
indeed became to be known as ‘formal deformation quantization’,
a true avalanche, culminating in the work of Fedosov and finally
Kontsevich with his formality theorem, for which he, among other
things, was awarded a Fields Medal in 1998.

The original intention of BBFLS was to find a description of quan-
tum mechanics which was to be an alternative to the standard
Hilbert space formalism, incorporating Dirac’s idea of the connec-
tion between the classical Poisson bracket and the quantum com-
mutator, dependent on Planck’s constant h̄ as a deformation pa-
rameter. However this approach developed gradually into an inde-
pendent mathematical field, of great interest, but with less and less
relevance to physics, something that may remind us of what hap-
pened to ergodic theory, started as an attempt to lay a basis for
classical statistical mechanics, later independently developed into a
general theory of the asymptotic behaviour of groups of measure
preserving transformations.

The main idea of this approach is to avoid difficult problems of func-
tional analysis by working with formal power series, leaving aside
the questions of their convergence. A certain justification for this
can be found in the fact that it is not unusual in physics to work
with asymptotic series. In any case, this makes it mathematically
into a problem of algebra.

So instead of trying to find a strict deformation of the algebra of
classical observables, one constructs a larger auxiliary algebra of
formal power series in the deformation parameter h̄, with coefficients
in the classical algebra, on which a deformed (noncommutative)
product, a so-called star product is defined.

This idea of formal deformation quantization is based on the work
of Gerstenhaber on the formal deformation of associative algebras
(Ref.[13]).
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5.7.2. The Gerstenhaber deformation formalism

Let A be a given associative algebra, over κ = R,C, with unit
element. A formal deformation of A is given by an infinite series of
bilinear maps

φn : A×A −→ A, (a, b) 7→ φn(a, b), ∀a, b ∈ A.

These maps are supposed to define a deformation •λ of the multipli-
cation (a, b) 7→ ab in the algebra A, according to the infinite power
series

a •λ b = ab+ tφ1(a, b) + t2φ2(a, b) + . . . .

This series is formal; whether it converges or not for certain values
of the parameter λ is irrelevant in this context. Such questions may
be asked in the search for strict deformations. It involves functional
analysis, as in the work of Rieffel. Here we are concerned with purely
algebraic methods.

One may nevertheless ask what the precise mathematical meaning
of such a formal power series is. There is an elementary answer. A
formal series can be seen as an infinite sequence of elements of A

â = (a0, a1, a2, . . .),

These sequences form a linear space, and in fact an associative al-
gebra with respect to the multiplication

âb̂ = (a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, . . .),

or
(âb)0 = a0b0, (âb)1 = a0b1 + a1b0, . . . ,

a multiplication which is in fact an extension of the given multipli-
cation on A. This idea can be given a slightly more sophisticated
form by calling this extended algebra the algebra of formal power
series in the indeterminate λ, with coefficients in A. As such it is
usually denoted as A[[λ]]. We shall not worry about this and use
the power series, looking at the λ, in this context just a bookkeeping
device.

The deformed product need to be associative, which means

(a •λ b) •λ c = a •λ (b •λ c), ∀a, b, c ∈ A.
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Writing this out as power series and comparing terms of the same
order gives a series of conditions. In first order one finds

aφ1(b, c)− φ1(ab, c) + φ1(a, bc)− φ1(a, b)c = 0, ∀a, b, c ∈ A.

For general order n one gets, by an elementary but long calculation

a •t φn(b, c)− φn(a •t b, c) + φn(a, b •t c)− φn(a, b) •t c =

=
n−1∑
i=1

{−φn−i(a, φi(b, c)) + φn−i(φi(a, b), c)}.

This is at it stands a rather messy set of conditions. It can be
brought in a mathematically elegant form by invoking cohomology
theory, a broad set of mathematical ideas, which are, however, out-
side the scope of these lectures.

There is an equivalence relation between deformations. It is based
on the following general idea. Suppose that we have a vector space
V which is an associative algebra A1 with multipication •1, and
suppose that we have an invertible linear map from V onto itself.
We then can use T to define a new multiplication •2 on V by

a •2 b = T−1(T (a) •1 T (b)).

This makes V into an associative algebra A2. The map T is an
algebra isomorphism from A1 onto A2. If two formal deformations
of A, {φ(1)

n }n=1,2,... and {φ(2)
n }n=1,2,..., are connected by a sequence of

linear maps {Tn}n=1,2... such that

Tn(φ(2)
n (a, b)) = φ(2)

n (Tn(a), Tn(b)), ∀a, b ∈ A,

then the deformations are equivalent. The sequence {Tn}n=1,2... is
a formal linear map A −→ A. A deformation which is equivalent
to the identity deformation is called trivial. Also this has an ele-
gant cohomological formulation, which we cannot discuss in these
lectures.

Application of the Gerstenhaber deformation formalism op formal
deformation quantization is simple.

The algebra A becomes C∞(M), for a given symplectic manifold
M, the phase space of a classical mechanical system. A formal
deformation is given by a sequence of bilinear maps

A×A −→ A,
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which we may denote as Mn(·, ·). For n = 1 we have

M1(f, g) = i{f, g},

with the Poisson bracket {f, g} on C∞(M). In words : a defor-
mation quantization ‘in the direction of the Poisson bracket’. A
sequence {Mn}n=1,2... indeed determines in principle a formal defor-
mation quantization. Two deformation quantizations may be equiv-
alent. A deformation equivalent to the unit deformation is called
trivial.

The deformation parameter λ becomes Planck’s constant h̄. The
deformed product – the famous ‘star product’ of the Dijon School –
is denoted as ∗h̄.
There is one additional condition, namely that all the bilinear maps
Mn are bidifferential operators on C∞(M), just as the Poisson
bracket.

One more point has to be taken care of. Our commutative classical
algebra is the algebra A = C∞C (M) of complex-valued smooth func-
tions onM; the deformed quantum algebra Ah̄ a complex ∗-algebra
(or algebra with involution). Because of this a few additions have
to be made to the formalism. This is left to the reader.

All this together in principle settles the questions of the criteria for
existence and equivalence of formal deformation quantizations. To
actually construct such quantizations is quite another matter. Much
of the abundant literature on formal deformation quantization is in
various ways devoted to this.

The initial aim of the founders of the ‘Dijon School’ was to develop
an alternative approach to quantum theory, without Hilbert space
and operators, as they explicitly write in the introduction of their
first paper (Ref.[13]). However, the subject became more and more
pure mathematics, with such high points as the work of Fedosov
(Ref.[14]) and Kontsevich (Ref.[15]), as such of great interest, but
with less and less relevance to physics. It should be noted however
that the proof of the ‘formality theorem’ of Kontsevich has as an
important input the method of Feynman diagrams from quantum
field theory.

99



5.8. Concluding remarks

Neither strict deformation quantization (Rieffel) nor formal defor-
mation quantization (Dijon school) are quantizations in the precise
sense of the definition we gave in Section 5.2. In both cases there
is a symplectic manifold as classical phase space, algebras of func-
tions on this manifold, representing the classical observables, but no
quantum Hilbert space with selfadjoint operators, so no assignment
of such operators to classical variables.

There is in both approaches a problem of identification of the quan-
tum observables. There is only one space, the commutative algebra
of classical observables. It is clear which elements represent the clas-
sical pj, qk and the quantum Pj, Qk. But what about pjqk = qkpj,
PjQk and QkPj? All three are different; the two quantum variables
depend moreover on h̄. This question does not seem to have been
discussed.
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Über die quantentheoretische Umdeutung kinematischer und mech-
anischer Beziehungen
Zeitschrift für Physik 33, 879-893 (1925)

English translation in
Sources of Quantum Mechanics

100



B.L. van der Waerden, editor
Dover 1968

[6]. H. Weyl
Quantenmechanik und Gruppentheorie
Zeitschrift für Physik 46, 1-46 (1927)

[7]. Hermann Weyl
The Theory of Groups and Quantum Mechanics
(Translated from the 2d revised German edition 1931
Gruppentheorie und Quantenmechanik)
Dover 2003

[8]. Erhard Scholz
Weyl entering the ‘new’ quantum mechanics discourse
Contribution to the Conference
“History of Quantum Physics”, Berlin, July 2-6, 2007. Accessible
at:
http://www2.math.uni-wuppertal.de/

~scholz/preprints/HQ_1_ES.pdf

Weyl’s collected works were published in 1968 by Springer, trans-
lated into French in 1980, also publshed by Springer.

[9]. Hermann Weyl
Raum, Zeit, Materie
Springer, various editions
Translated from various editions as
Space, Time, Matter
Dover 1952

[10]. I.E. Segal
Representations of the canonical commutation relations
Lectures given at the 1965 Cargèse Summer School
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6. Quantum Theory and Relativity

6.1. Introduction

Two new physical theories changed twentieth century physics in a
dramatic way: quantum theory and the theory of relativity. The
relation between the two is still far from clear; in their present form
they are in a fundamental way incompatible with each other. In fact,
to understand this is one of the main challenges for fundamental
physics today.

So far in these lectures I have explained the basics of nonrelativistic
quantum mechanics. In this lecture the road will be sketched to
a relativistic version of the theory and the beginning of what is at
this time the preliminary endpoint of this road, relativistic quantum
field theory, a theory full of imperfections, even serious problems, in
particular in its mathematical structure, but nevertheless very suc-
cessful as a physical theory because it is able to predict experimental
results with great accuracy.

In the twenties, when quantum mechanics in the form we know it
now emerged over a short period of a few years, Einstein’s theory
of relativity, in particular his theory of special relativity, was al-
ready generally accepted as a universal theoretical framework for the
physical world, even though it was realized that its consequences in
terrestrial physics could only be expected to show up in situations
in which very high velocities, approximately the velocity of light,
would be involved, velocities that could at that time not be realized
in experiments. The theoretical need for a relativistic version of
quantum theory was nevertheless almost immediately felt and work
started on it.

6.2. Einstein’s special theory of relativity

Einstein wrote the fundamental paper in which he introduced his
theory of relativity in 1905 (Ref.[1]), his ‘Annus Mirabilis’, the year
in which he published five groundbreaking papers. His aim was to
solve a problem related to motion and Maxwell’s theory of electro-
magnetism, as is clear from the title of the paper (in English) :
“On the Electrodynamics of Moving Bodies”. This was connected
with the problem of the aether, a substance which was supposed
to fill the cosmos, serving as the carrier of electromagnetic waves,

104



and having very contradictory properties. The problems connected
with this had already been under discussion by various nineteenth
century physicists and mathematicians, such as Lorentz, FitzGerald
and Poincaré.

One of these problems was the propagation of light as an electro-
magnetic wave. One would expect that its speed would depend on
the motion of the earth through the aether. In 1889 Michelson and
Morley showed by a very ingenious and precise interferometer ex-
periment that there was no such dependence. The speed of light
was always the same. Special relativity, in fact, solved this prob-
lem by simply abolishing the concept of aether altogether. Einstein
later developed his general theory of relativity, a new description of
gravitation.

The basic notion of classical Newtonian mechanics is that of an
inertial system, a system of Euclidean coordinates in which a body
not subjected to forces of any kind is either in rest or in rectilinear
motion with constant velocity. This is connected with the following
important principle assumed to be generally valid:

All inertial systems are physically completely equivalent; there is no
preferred inertial system.

Acccording to Einstein the principle of inertia still holds, but it has
to be interpreted in a new way. In the classical picture space is a 3-
dimensional Euclidean vector space. Strictly speaking, it is an affine
space, roughly a vector space in which the origin is irrelevant and can
be chosen at will, a fine point that we shall not worry about. Time
is an external parameter which describes the motion of a system in
this space. In relativity theory time is not an separate variable; it
is part of spacetime, a 4-dimensional affine space. What in this is
time and what is space depends on the position of the observer.

This can be illustrated by looking at coordinate transformations.
Let L be a given inertial system with spatial coordinates x, y, z.
Consider a second inertial system L′ with coordinates x′, y′, z′, mov-
ing with respect to L with constant velocity v in the positive x-
direction. In the nonrelativistic point of view this means that there
is a coordinate transformation

x′ = x− vt, y′ = y, z′ = z, (t′ = t).
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This is called a Galileo transformation. All such transformations for
all possible velocities and in all possible directions, together with all
rotations in space, form a group, the inhomogeneous Galileo group.
If we also allow shifts of the origin of both position coordinates and
time, it becomes the inhomogeneous Galileo group, the symmetry
group of classical mechanics. We say that classical nonrelativistic
mechanics is Galileo covariant and that its equations are Galileo
invariant.

Einstein’s great new idea was that one should not use Galileo trans-
formations for going from one inertial system to another, but instead
so-called Lorentz transformations. For the same case as above they
are

x′ = γ(x− vt), y′ = y, z′ = z, t′ = γ(t− vx/c2),

with γ = (1− v2/c2)−1/2 and c the velocity of light.

Two things should be noted in these formulas.

(1) This is not a 3-dimensional transformation, with t as an external
parameter, but a truly 4-dimensional one. It indicates that we live
in a 4-dimensional spacetime, with no absolute separation between
space and time. What is space and what is time depends on the ob-
server, a point that can be nicely illustrated by a 2-dimensional di-
agram, as we shall show further on. Mathematically a sequence of 4
numbers can always be regarded as coordinates for an 4-dimensional
space, but in physics more is required, for instance, that objects in
this ‘space’ can be rotated in a meaningful way. This is the case in
3 dimensions for Galilean space, but not in 4. Motion in the Ein-
steinian case in 4 dimensions makes physically sense, as the diagrams
in the appendix following this lecture will show.

Strangely enough the idea of a 4-dimensional spacetime is not due to
Einstein but to the mathematician Hermann Minkowski, a number
theorist, who gave a talk on this in 1908 and subsequently published
it in a paper in 1909 in which the above 2-dimensional picture first
appeared. Here is a quote from this :

“The views of space and time which I wish to lay before you have
sprung from the soil of experimental physics, and therein lies their
strength. They are radical. Henceforth space by itself, and time by
itself, are doomed to fade away into mere shadows, and only a kind
of union of the two will preserve an independent reality”.
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Minkowski was another of these early 20th mathematicians who had
a deep interest in contemporaneous physics and morover made im-
portant contributions to it.

See Ref.[2], and also for an interesting paper on the mathematical
and physical context of Minkowski’s work Ref.[3].

It took some time before Einstein saw the merit of this point of
view and in of what is now known as the Minkowski diagram – see
below – and is universally used in undergraduate teaching of special
relativity.

Note that the in the limit of c→∞ Lorentz transformations become
Galileo transformations: Newtonian mechanics is the limit for c →
∞ of relativistic mechanics, which remains valid for small values of
c, i.e. small in the sense of what we have on earth, under normal
circumstances.

6.3. Minkowski diagrams

Before we go further in this we shall call in the help of a tool of great
pedagogical value, the Minkowski diagram. This is a 2-dimensional
picture of spacetime. The problems that we are discussing have to
do with the relation between space and time. Therefore a picture
with the x and t coordinates is sufficient.

Minkowski published this picture in 1909, three years after Einstein’s
first paper on relativity theory. It remains curious that Einstein
him self did not think much of it; he preferred to express the ideas
of relativity algebraically, in formulas. Much later he changed his
opinion in this. By now the Minkowski diagram has become the
standard tool in teaching special relativity to students, in their first
year and later.

Look first at picture 1 in the appendix following this lecture. It
shows empty spacetime, with the x-axis and the t-axis. In picture 2
we see dots A and B. These represent events; a person of particle at
spacetime points (x1, t1) or (x2, t2). There are lines (1), (2 and (3),
world lines, representing histories of persons or particles. Line (1)
describes a particle in rest at a certain position in space, letting the
time go by. Line (2) is a particle that moves with constant speed.
Line (3 describes a particle that is at rest until a certain moment,
and then starts moving in an accelerated motion.
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The next pictures, 3 and 4, show the change in spacetime coordinate
systems, for Galileo transformation and for Lorentz transformations.
In the first picture the time axis does not change, in the second
picture both coordinate axes have moved. This indicates that in
this last case there is a true motion in spacetime as a whole, a kind
of ‘hyperbolic’ rotation,

Let us now forget about Galileo transformations and Newtonian
mechanics and concentrate on relativity theory. Look for this at
picture 5. It shows the light cone, in this 2-dimensional picture
given by the equation

c2t2 − x2 = 0.

The collection of spacetime points with c2t2−x2 ≥ 0, t ≤ 0 is called
the backward or past light cone, with c2t2 − x2 ≥ 0 and t ≥ 0 we
speak of the forward or future light cone. Note that the our pictures
show the light cone based at the origin. We can imagine a light cone
at every point of spacetime. The light cone has much to to with the
notion of causality in spacetime.

In picture 6 we see again three world lines, (1), (2) and (3), all three
rectilinear motions with constant velocity and all three passing to
the space point x = 0 at time t = 0. Line (1) is the sort of motion
that any of us could have; a motion with a velocity smaller than that
of light. Line (2) represents a motion along the light cone, it could
be a neutrino, a particle that is (still) supposed to travel with the
velocity of light. Finally, line (3) is a tachion, a particle that moves
faster than light. This would create difficult conceptual problems
with causality, mixing past and present, so one generally believes
that tachions do not exist. A recent neutrino experiment at CERN
which claimed that neutrinos can move faster than light has finally
been discredited.

Note that this picture, as we have drawn it, supposes that we use
units for time and length such that c is close to 1, otherwise the
light cone would be extremely flat. This can be remedied by using
x0 = ct as fourth coordinate, as is usual in many discussions of
special relativity and in all discussions of the general theory.

Problem : Write down the general Galileo transformation from a
given system L to a the system L′ moving with a velocity v =
vx, vy, vz with respect to the system L.
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The velocity of light c is roughly equal to 300, 000 km/sec. Almost
no moving terrestrial objects, with the exception of electrons in an
atom or subatomic particles in accelerators, have a speed that comes
near to this. The quotient v/c is very small and the factor γ is to a
high precision equal to 1, which means that it is difficult to detect
the difference between classical and relativistic mechanics.

Let us perform two successive Galileo transformations in the x-
direction, with the velocity v1 going from L to L′ and v2 from L′

to L′′, the resulting velocity v from L to L′′ will be v = v1 + v2.
This is different in Einstein’s theory; one can calculate v there to be
v = (1 + (v1v2)/c2)−1/2(v1 + v2).

Note that that for velocities much smaller than that of light also
this formula is very close to the pre-Einstein formula.

Suppose that an object moves with a velocity u in the x direction
of the inertial system L. Its velocity u′ in L′ is

u′ =
u− v

1− uv/c2
.

By substituting u = c one gets u′ = c, i.e. the velocity of light is the
same in different inertial systems, a fundamental feature of special
relativity, in agreement with the results of the Michelson and Morley
experiment.

One can show that the bilinear form

< (x, y, z, t), (x′, y′, z′) >= c2tt′ − (xx′ + yy′ + zz′)

is invariant under Lorentz transformations. In fact Lorentz transfor-
mations can be defined as the linear transformations that leave this
form invariant. They form a group sometimes denoted as SO(1, 3)
(pseudo-orthogonal group in 4 dimensions). For t = t′ it restricts
to the standard positive definite Euclidean inner product of space
– apart from an overall minus sign, but on spacetime as a whole
it is indefinite; the corresponding 4-dimensional spacetime ‘length’
(ct)2 − (x2 + y2 + z2) can be positive, negative or zero. Spacetime
as a 4-dimensional vector space provided with this inner product is
called Minkowski space.

Recommended reading for all this is a collection of the basic pa-
pers on relativity theory by, among others, Einstein, Minkowski and
Lorentz, in English translation (Ref.[4]).
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6.4. The Klein-Gordon equation

One of the basic features of special relativity is that space and time
have to be treated on the same footing. The Schrödinger equation
is clearly not relativistic; as a differential equation it is of first order
in time and of second order in the space variables. Immediately
after the appearance of the first papers on quantum mechanics a
search for a relativistic analogue started. Schrödinger himself found
such an equation but did not publish it because he was aware of
its problematic aspects. Several others found the same equation
and did publish it, among them Oskar Klein and Walter Gordon,
after whom the equation was eventually named. It is not hard to
prove that there exists no Lorentz invariant first order differential
equation. The Klein-Gordon equation is a second order equation.
For the description of a single free particle of mass m it reads(

1

c2

∂2

∂t2
−∆ +

m2c2

h̄2

)
φ = 0.

Before studying this equation further we introduce notation which
is convenient for all discussions in relativity, among other things be-
cause it brings out the 4-dimensional spacetime character of the the-
ory, and is therefore used in most books on relativity and especially
in books on relativistic quantum field theory. It is also important
and even indispensable in general relativity, which involves differen-
tial geometry on manifolds, but this does not concern us here. We
shall use the following conventions :

(1) We shall have spacetime coordinates {xµ}µ, with x1 =x, x2 =y,
x3 = z and x0 = ct. The symbol x will from now on mean the
quadruple (x0, x1, x2, x3). Latin indices j, k, etc. are used for the
spatial coordinates with r = (x1, x2, x3).

(2) We use lower (covariant) indices and upper (contravariant) in-
dices, as is usual in differential geometry.

(3) We employ the Einstein convention : summation signs are omit-
ted when summing over the same index, one covariant, the other
contravariant. Example : xµyµ for

∑
µ x

µyµ.

(4) A Lorentz transformation Λ acts on the spacetime coordinates
as a 4× 4 matrix : (xµ)′ = Λµ

νx
ν .
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(5) The Minkowski inner product is written with the help of a co-
variant ‘metric 2-tensor’ g, with elements g00 = 1, gjk = −δjk, and
with the other gµν being 0. So < x, y >= gµνx

µxν . Sometimes
the converse (contravariant) ‘metric 2-tensor‘ is used with the same
elements gµν = gµν . This seems a bit trivial, but it facilitates the
simple writing of various formulas. It also reflects the fact that
special relativity can be seen as a locally linearized form of general
relativity, a point which we shall not discuss here.

Problem : Show that these two tensors are each others inverses, by
calculating gµρgρν .

(6) The partial derivative ∂
∂xµ

is written as ∂µ, with also ∂µ = gµν∂ν .

t Using these conventions the Klein-Gordon equation can simply be
written as

(∂µ∂µ +m2c2/h̄2)φ(x) = 0.

Note that in elementary particle theory one generally uses units such
that c = 1 and h̄ = 1. In that context the equation becomes just

(∂µ∂µ +m2)φ(x) = 0.

Problem : Show that the Klein-Gordon equation is indeed Lorentz
invariant, i.e. that if the function φ(x) is a solution than also the
Lorentz transformed function φ′(x) = φ(Λ−1x).

The Klein-Gordon equation is a relativistic equation. However, can
we use it as a quantum mechanical wave equation? It has two serious
problems, probably the reason why Schrödinger did not publish it.

(1) The Schrödinger equation has a positive definite inner product.
For a unit vector ψ one has (ψ, ψ) =

∫+∞
−∞ρ(r) dr = 1 with ρ(r) =

|ψ(r)|2 the positive normalized probability density for finding the
particle at position r, one of the basic facts of quantum mechanics.
The normalization of the probability density is conserved in time.
A similar expression (φ, φ) =

∫+∞
−∞ φ(r)∗φ(r) dr for solutions for the

Klein-Gordon equation is useless in this respect. The equation is
second order in time, so for a solution one has to give as Cauchy
data both φ and its time derivative φ̇. There is in this case only one
mathematically reasonable sesquilinear expression, namely

({φ1, φ̇1}, {φ2, φ̇2}) = i
∫ +∞

−∞
(φ1φ̇2 − φ̇1φ2) dr.
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This is however indefinite; the expression ({φ, φ̇}, {φ, φ̇}) can be
negative, as can be checked easily, and this excludes a probabilistic
interpretation.

(2) The Fourier transform of a solution of the Klein-Gordon equa-
tions contains both positive and negative frequencies. This means
that if we still want to use it as a quantum mechanical equation there
will be particles with energies going to −∞, which is unacceptable
physically.

For these two reasons the Klein-Gordon equation is physically un-
acceptable as a Schrödinger type wave equation and has as such to
be dismissed. As a mathematical equation it reappears in quantum
field theory, however with a very different mathematical meaning, as
a so-called field operator and associated with that, a very different
physical interpretation.

6.5. The Dirac equation

There are no Lorentz invariant first order differential equations, that
is to say not for scalar functions. It was Dirac’s idea to look for
first order equations for functions with more components. In 1928
(Ref.[8]) he proposed the following equation for a function

ψ : R4 → C4,

written in his notation as

ih̄
∂

∂t
ψ(r, t) =

 βmc2 + ih̄c
3∑
j=1

αj
∂

∂xj

 ψ(r, t).

In this ψ has 4 complex components; there are three 4× 4 matrices
αj and a single matrice β with the properties α2 = β2 = 1 and with
all pairs of different matrices anticommuting. The matrix indices
for the αj and for β are omitted.

For the modern formulation we use the conventions introduced in
the preceding section and moreover the so-called γ-matrices defined
as

γ0 = β, γk = βαk, k = 1, 2, 3.

These matrices satisfy the anticommutation relations

[γµ, γν ]+ = 2gµν .
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This leads to a compact and elegant form of the Dirac equation,
namely

(iγµ∂µ −mc/h̄)ψ(x) = 0.

For units with c = h̄ = 1 it becomes (iγµ∂µ −m)ψ(x) = 0.

This form of the equation exemplifies the visible beauty of the equa-
tions of modern physics, in particular those of relativity theory, spe-
cial and general. See Ref.[7].

The Dirac equation is a Lorentz invariant equation, which is a bit
more difficult to see than in the case of the Klein-Gordon equation.

Reminder : Scalar functions on spacetime transform under Lorentz
transformations as

φ′(x) = φ(Λ−1x),

with the shorthand notation Λx meaning (Λx)µ = Λµ
νx

ν . The
Lorentz invariance of the Klein-Gordon equation means that if φ(x)
is a solution then φ′(x) is also a solution. This is more complicated
for the case of the Dirac equation.

In the first place we need the group SL(2, C), the group of 2 × 2
complex matrices with determinant 1. It is the universal covering
group of the Lorentz group O(1, 3). Being the covering group of
O(1, 3) means that there is a two-to-one group homomorphism

g 7→ Λ(g)

from SL(2, C) onto O(1, 3). We use a 4 dimensional representation
of SL(2, C). Note that both SL(2, C) and O(1, 3) are noncompact,
which implies that all unitary representations of these groups are
infinite dimensional.

The group SL(2, C) acts on the 4-dimensional complex vector space
spanned by the four components of ψ as

g 7→ S(g),

a nonunitary matrix representation, while O(1, 3) itself acts on the
spacetime coordinates according to

(x′)µ = Λµ
νx

ν .

This together gives the Lorentz transformation – or rather SL(2, C)
transformation – of ψ as

ψ′(x) = S(g)ψ(Λ−1(g)x).
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Problem : Explain why one has to use Λ−1(g) instead of Λ(g) in this
transformation formula.

Problem : Show that the Dirac equation is indeed invariant under
these transformations, i.e. that solutions are transformed into solu-
tions.

As with the Klein-Gordon equation we have to ask whether the
Dirac equation is acceptable as a quantum mechanical mechanical
wave equation. We shall see that it is much better in this respect
but still not perfect.

(1) The Dirac equation does have a time-independent positive inner
product

(ψ, ϕ) =
∫ +∞

−∞

4∑
j=1

ψj(r)ϕj(r) dr.

By substituting in this expression a unit vector ψ = ϕ, one gets

ρ(r) =
∑
j

ϕj(r)ϕj(r),

which can be interpreted as a probability density for the position
r. There remain problems with the measurement of position for
relativistic particles. Solutions have been proposed, none of these
totally convincing.

(2) The Fourier transform of a solution contains positive and nega-
tive frequencies, just as for the Klein-Gordon equation, so we have
the same problem with un physical negative energies. In a 1930 pa-
per in which Dirac discussed this problem, he proposed an ingenious
and imaginative heuristic solution for this problem (See Ref.[9]). Ac-
cording to Dirac the vacuum is filled with infinitely many negative
negative energy particles. There may be a few ‘holes’ in this ‘sea’.
These should be regarded as positive energy particles, positively
charged.

At the time of writing only three elementary particles were known,
the electron, with negative electric charge, the proton, with positive
charge and the neutron, electrically neutral – as the name suggests.
Because of this Dirac believed that he had found an equation that
described electrons and protons. In 1932 a new positively charged
particle was discovered in cosmic radiation by Anderson. It had
the same mass as an electron and was called a positron. Dirac now
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realized that he had found an equation for the electron and the
positron as its antiparticle. For this he received the Nobel prize in
1933, sharing it with Schrödinger.

The Dirac equation has more strong points :

(1) For a particle in an electromagnetic field an interaction term is
added, which gives, again with c = h̄ = 1,

(iγµ(∂µ + ieAµ(x))−m)ψ(x) = 0

in which e is the electric charge and Aµ(x) the electromagnetic
4-potential, appearing in the relativistic formulation of Maxwell’s
theory of the electromagnetic field. For the electron in the sim-
plest model for the hydrogen atom, only A0(x) is nonzero; it is
the Coulomb potential e2/r. The other three components describe
a possible magnetic field. The eigenvalue - eigenfunction equation
for the hydrogen atom can be solved, just like in the case of the
Schrödinger equation. Forgetting the unphysical negative energy
eigenvalues one gets the hydrogen spectrum with relativistic correc-
tions. Lines are split; one obtains the so-called fine structure of the
spectrum, with values in good agreement with experiments. In this
way it is a definite improvement on the nonrelativistic Schrödinger
equation.

(2) The electron spin is automatically included in the Dirac equa-
tion; there is no need to add it ‘by hand’ to the wave equation as
is necessary with the nonrelativistic Pauli spin which is just added
‘externally’ in the Schrödinger theory.

However, notwithstanding these successes, the Dirac equation – and
notwithstanding Dirac’s ingenious ‘hole theory’ interpretation of it
– eludes all attempts to give it a consistent and clear mathematical
meaning as a single particle wave equation. In fact, Dirac’s interpre-
tation does hint at a many-particle situation. That is the direction
in which we have to go to give a mathematically and physically
satisfactory description of the behaviour of relativistic particles.

The Dirac equation, but also the Klein-Gordon equation and other
relativistic equations will acquire a new life as equations for field
operators, in the context of relativistic quantum field theory. This
will be discussed briefly in the next section.
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Note finally that a few physics textbooks contain useful reviews
of relativistic quantum mechanics, for instance the book by Albert
Messiah (Quantum Mechanics, volume 2, Chapter XX).

6.6. Relativistic quantum field theory

6.6.1. Introduction

In general fields are physical quantities with one or more compo-
nents, depending on space and time variables, with an evolution in
time prescribed by partial differential equations. We know many
such fields, the electromagnetic field, a combination of electric and
magnetic fields, evolving in time according to Maxwell’s equations,
Einstein’s gravitational field. Phenomena like hydrodynamics, aero-
dynamics, elasticity and many others are also described by fields.

Historical the main one for fundamental physics was the electromag-
netic field. It was understood that matter consisting of atoms and
molecules was kept together by electric and magnetic forces trans-
mitted by fields. It is therefore not surprising that the founders of
quantum theory tried to find a quantized version of this field. One
of the more fruitful ideas was to see an electromagnetic field as a
collection of infinite many harmonic oscillators of all possible fre-
quencies. As one knew how to quantize systems of oscillators this
made sense. For a free field, i.e. a field in vacuum, not interacting
with charges and current this was not hard to, even though this
meant dealing with systems with an infinite number of degrees of
freedom, a situation in which von Neumann’s uniqueness theorem
for the operators that satisfy the canonical commutator relations no
longer holds. Attempts at constructing a quantized version of in-
teracting systems started already in the late nineteen twenties with
work by Paul Dirac. Work in further developing this run into seri-
ous problems: persistent infinities at each level of proposed theories.
From a practical point of views these problems were overcome by a
procedure called renormalization, invented partly independently by
Feynman, Dyson, Schwinger and Tomonaga in the nineteen fifties.
Renormalization theory is a method, ad hoc but effective, in which
most infinities, divergent integrals in fact, can be made to cancel.
All this without real understanding why this is so. However, as a
way to test experimentally the predictions of quantum field theo-
ries it has turned out to be very successful. This is in particular
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true for quantum electrodynamics the theory that describes the elec-
tromagnetic interactions between particles, where certain quantities
can be calculated with a precision up to six or seven decimals. So
renormalization theory has become a standard tool for elementary
particle theory. Nevertheless, the true mathematical nature of the
theory remains mysterious. Fifty years of hard work by competent
mathematical physicists has not resulted in remedying this.

I shall not say much about the nature of this problem, neither shall
I discuss the history of the subject from its beginning in the fifties
up till now, except for a few remarks at the end. Instead I shall
give an introduction to the rigorous mathematical formalism for the
physically rather trivial situation of free fields, describing particles
which do not interact which each other, as a starting point for at-
tempts to include physically meaningful interactions, a subject that
lays outside these lectures.

6.6.2. Quantum field theory as a many particle theory

Because of the high velocities involved, elementary particle physics
is necessarily relativistic. The main reason that relativistic quan-
tum mechanical equations fail is that they describe single particles.
However, a characteristic aspect of elementary particle physics, or
as it is usually called, high energy physics, is that particles can be
created and annihilated.

Earlier in this lecture I discussed the Klein-Gordon equation as a
first candidate for a quantum mechanical relativistic wave equation.
As such it had to be abandoned. The second candidate, the Dirac
equation was better, but still not good enough. These and other
similar equations were use to describe single particles. It took some
time before this was properly understood and that it was realized
that the same equations could be used, with a completely differ-
ent mathematical meaning and different physical understanding, to
describe in a relativistic way, as quantum field equations, the many-
particle situations appearing in elementary particle physics.

In the second lecture we have discussed the discussion of many-
particle systems in quantum mechanics. The Hilbert spaces of sys-
tems of n nonidentical particles were described by n-fold tensor
products of the Hilbert spaces of the separate particles, symmet-
ric tensor products H(n)

s = ⊗nsH(1) for bosons, and antisymmetric
tensor products H(n)

a = ⊗naH(1) for fermions.
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Quantum field theory describes processes in which particles can be
annihilated or created. In high energy accelerators an electron and
its antiparticle, a positron can collide, be annihilated, while giving
rise to the creation of a photon, the particle that carries the quan-
tized version of electromagnetic radiation. This means that we need
a many-particle Hilbert space, the countably infinite direct sum of
all the tensor product spaces. Such a space is called a Fock space
after the Russian physicist V.A. Fock who in 1932 first introduced
it. We have

HFock
s = ⊕∞n=0(⊗nsH(1)),

for bosonic particles, and

HFock
a = ⊕∞n=0(⊗naH(1)),

for fermionic ones. A Fock space with its operators has an interesting
mathematical structure, which was later better understood by J.M.
Cook (ref.[11]).

6.6.3. Fock space and its operators

Fock spaces have a characteristic system of operators, annihila-
tion and creation operators, names that suggest the physical role
that they play, namely that of creating and annihilating particles,
the possibility of which is a typical feature of elementary particle
physics. Mathematically they are used to move up and down in
the many-particle Fock space. As I shall discuss as example a field
theory for bosonic particles only, I restrict myself to the bosonic
case.

Let H(1) be a given 1-particle Hilbert space, with elements f , g, etc..
We define creation operators, for every f in H(1), as operators

a∗(f) : H(n)
s → H(n+1)

s

by linear extension of

a∗(f)(f1 ⊗ . . .⊗ fn)s = (f ⊗ f1 ⊗ . . .⊗ fn)s,

and annihilation operators, for every g in H(1), as operators

a(g) : H(n)
s → H(n−1)

s

by linear extension of

a(g)(f1 ⊗ . . .⊗ fn)s =
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= [(g, f1)(f2 ⊗ . . .⊗ fn)s + . . .+ (g, fn)(f1 ⊗ . . .⊗ fn−1)s],

There is 1-dimensional 0-particle space H(0), with a preferred state
Ψ0, the ground state or vacuum state. Each annihilation operator
acts on Ψ0 as a(f)Ψ0 = 0. It is not hard to derive the following
commutation relations, for all f and g in H(1),

[a∗(f1), a∗(f2)] = [a(g1), a(g2)] = 0, [a(g), a∗(f)] = (g, f).

For the Fermion case one has similarly defined creation and anni-
hilation operators, with a few additional minus signs in the action
of the annihilation operators, and anticommutation instead of com-
mutation relations.

6.6.4. The scalar quantum field

The simplest quantum field is the real scalar field, in which the
Klein-Gordon equation acquires a second life. It describes a system
of spin zero particles, electrical neutral, for example π0-mesons, pro-
duced from other particles in accelerators, but also found in cosmic
radiation. The really interesting situation in physics is one in which
there are several different fields, describing different particles, inter-
acting with each other, e.g. electrons and positrons, protons and
neutrons. The free scalar field on its own is a pedagogical example.
Free means in this context that there are no attracting or repulsive
forces between the particles, and that they do not collide with each
other. Its great advantage is that it can be formulated with com-
plete mathematical rigour, unlike interacting quantum field theories
which all suffer from very serious mathematical mathematical prob-
lems, withstanding their great success as physical theories. As we
cannot enter into the subject of interacting quantum fields and their
difficulties in a serious manner, the scalar field is an excellent model
to understand at least the first steps in setting up quantum field
theory.

For this the 1-particle Hilbert space H(1) consists of functions f(p),
with the variable p = (p0, p1, p2, p3) a 4-vector in momentum space,
restricted to a mass shell, a hypersurface in this space defined by the

relation p0 =
√

((p1)2 + (p2)2 + (p3)2)1/2 +m2, which is invariant

under Lorentz transformations pµ = Λµ
νp

ν . In this p0 is the energy,
m the mass, sometimes called the restmass, and p = (p1, p2, p3) the
3-momentum. Note that we have chosen units such that c = h̄ = 1,
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as is usual in elementary particle physics. The operator a∗(f) creates
a particle with a momentum wave packet f(p). One would like to
create particles with a sharp momentum p with a creation operator
a∗(p). This is, strictly speaking, impossible, just as it is, again
strictly speaking, impossible to have particle with an exact position.
Nevertheless, we do this, for both cases, heuristically.

6.6.5. Intermezzo : the Dirac δ-function

The mathematical language of all the standard textbooks in quan-
tum field theory is heuristic. This makes for transparency and ele-
gance; the disadvantage is that real and serious mathematical prob-
lems become invisible. Because of this transparency we shall also
use this language, even though the free scalar quantum field can be
formulated in full mathematical rigour. The central notion of this
heuristic language is that of the Dirac δ-function and its derivatives.

In his famous textbook on quantum mechanics Dirac proposed a
function δ(x) with the following properties:

Let x0 be an arbitrary point on the real line. Then

δ(x) = +∞, δ(x) = 0, x 6= x0.

It can be integrated, for an arbitrary point x0 on the real line,∫ +∞

−∞
δ(x− x0)dx = 1.

Integration with an arbitrary function g gives∫ +∞

−∞
δ(x− x0)g(x)dx = g(x0).

The δ-function has also a derivative δ(1)(x), defined by the integra-
tion property ∫ +∞

−∞
δ(1)(x− x0)g(x)dx = g(1)(x0),

and so on for higher derivatives. Similarly in higher dimensions.

Of course, such a δ-function does not exist in rigorous analysis. A
proper mathematical realization of the idea of ‘generalized func-
tions’ of this sort has been given in terms of functional analysis
by Laurent Schwartz in his distribution theory. According to this
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the δ-function is a continuous linear functional δ(g) = g(0), on a
space of so-called test functions with the heuristic representation
δ(g) =

∫+∞
−∞ δ(x)g(x)dx = g(0).

6.6.6. The scalar quantum field. Continued

With these ideas in mind we write

a∗(f) =
∫ +∞

−∞
a∗(p)f(p)

dp

p0
,

and

a(g) =
∫ +∞

−∞
a(p) g(p)

dp

p0
,

with p = (p1, p2, p3), and with the commutation relations for the
heuristic operators a∗(p) and a(p) written as

[a∗(p), a∗(p′)] = [a(p), a(p′)] = 0, [a(p), a∗(p′)] = p0δ(p− p′).

Sets of heuristic formulas of this type, for all sorts of particles,
bosonic, fermionic, with different masses and spins, form the ba-
sis of all further developments of relativistic quantum field theory
that one can find in standard textbooks.

6.6.7. The scalar quantum field. The field operators

The scalar quantum field itself, a system of (heuristic) operators on

space time, {φ̂(x)}x∈R4 , is defined by performing a Fourier transfor-
mation on a combination of the (heuristic) annihilation operators
and (heuristic) creation operators

φ̂(x) =
1

(2(2π)3)1/2

∫ +∞

−∞

(
a(p) e−ipx + a∗(p) e+ipx

) dp
p0
.

with again p = (p1, p2, p3) and x = (x0 = t, x1, x2, x3) and the p0

in the numerator under the integral to make the formula manifestly
Lorentz invariant. From this one derives the field equations

(∂µ∂µ +m2)φ̂(x) = 0,

just the Klein-Gordon equation, but now as an operator equation
describing a many-particle system. There are canonical equal-time
commutation relations

[ φ̂(x1, t), φ̂((x2, t)] = [ π̂(x1, t), π̂((x2, t)] = 0,
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[ π̂(x1, t), φ̂(x2, t)] = −iδ(x1 − x2),

with xj = ((xj)
1, (xj)

2, (xj)
3), (xj)

0 = t and π̂((x, t) = ∂
∂t
π̂((x, t),

the ‘canonical momentum’ conjugate to φ̂(x, t). Note that we are
obviously in the Heisenberg picture, in which the observables de-
pend on time while the state vectors in HFock

s remain constant. The
Hamiltonian operator for this quantum system is

H0 =
∫ +∞

−∞

[
1

2
π̂2 +

1

2
(∇φ̂ · ∇φ̂+

m2

2
φ̂2

]
dx,

with

∇ =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
.

The operator H0 as the energy operator is a constant of the motion,
so it is time-independent, even in the Heisenberg picture.

This heuristic formulation can be made rigorous by starting from
creation and operators depending on square integrable functions on
momentum space, in the spirit of Section 6.6.3, then rewriting the
Fourier transformation and finally obtaining the field operator as
a functional φ̂(f) on a linear space of test functions f on space-
time. This means that the free scalar quantum field is a mathe-
matically well-defined model. However, by doing this the elegance
and transparency of the heuristic description is lost. We would
also no longer see the similarity and the differences between the
Klein-Gordon equation as a one-particle quantum mechanical wave
equation with numerical solutions, not very successful in this role,
and as a many-particle operator equation, completely acceptable in
a mathematical and physical sense. The free scalar quantum field
is, together with all other similarly constructed free quantum field
theories, the Dirac quantum field theory, quantum electrodynamics,
the point of departure for the general field theories for interacting
particles.

I should note here that the free Maxwell quantum field, i.e. the
electromagnetic quantum field, has peculiar features, which make
it more difficult – but not impossible – to formulate it rigorously.
This has to do with the fact that the proper description has to use
the electromagnetic 4-potential field Âµ(x). It turns out, however,
that it is impossible to combine manifest Lorentz invariance for the
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operators Âµ(x) with definite positivity of the inner product of the
space in which they operate, which means that this space HA is not
the true Hilbert space of the system. The potentials Âµ(x) are not
the physical operators, but instead of this one has the so-called field
tensor

F̂µν(x) = ∂µÂν(x)− ∂νÂµ(x)

which lives in the physical Hilbert space, a quotient space HF of
HA. See Ref.[17].

6.6.8. The scalar field with self interaction

The next step is a quantum field theory for scalar particles that
interact with each other. A possible sort of interaction is given by
the interaction Hamiltonian

HI =
1

4

∫ +∞

−∞
φ̂4dx.

Together with the Hamiltonian of the free theory this gives a total
Hamiltonian

H = H0 + λHI ,

with λ a so-called couplings constant. This leads to the nonlinear
field equation

(∂µ∂µ +m2)φ̂(x) + λ φ̂3(x) = 0

By using the Fourier formula for φ̂(x) one can write H0 as an expres-
sion in annihilation and creation operators in the Fock Hilbert space.
This leads to a well-defined selfadjoint operator. It is unbounded,
but has a perfectly acceptable dense domain of definition. This is
not the case for the interaction Hamiltonian HI . It can be also be
written as a creation and annihilator expression, but this expression
carries all the vectors of the Fock Hilbert space into ‘nonnormalized’
vectors, meaning that the domain of definition of this expression as
an operator only contains the zero vector.

Elementary particle physicists do not worry about the mathemati-
cal existence of this and other similar formal operator expressions.
They just use them as point of departure for perturbative calcula-
tions of processes between various particles. The terms of the re-
sulting power series expansions all lead to divergent integrals. These
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divergencies are removed by the systematic prescriptions of renor-
malization theory. The final results are finite and give excellent pre-
dictions for the outcomes of experiments. A rigourous mathematical
basis for this still does not exists.

6.6.9. Final remarks

Quantum field theory is a curious theory. Quantum field theory was
begun by Dirac in the nineteen twenties, run into the difficulties of
infinities, was in the nineteen fifties in a practical sense revived as
renormalized quantum electrodynamics through the work of Feyn-
man and others and reached in the nineteen sixties its greatest suc-
cess in the so-called gauge field theories, that provided the theoreti-
cal basis for the Standard Model of elementary particles (Weinberg,
Salam and Glashow, and Veltman and ’t Hooft), which encompasses
our present knowledge of the fundamental constituents of matter.
At the same time the mathematical basis of the theory is still not
understood. Various approaches have been tried for developing such
a basis. Axiomatic quantum field theory in the late nineteen fifties
(Wightman) has given a beautiful set of general axioms, with im-
portant theorems proved, but with only the free fields ax examples;
Constructive field theory (Glimm and Jaffe) have later worked on
nontrivial examples, with a certain success for a limited class of sim-
plified models. Algebraic quantum field theory, using C∗-algebras,
with Haag and Araki as pioneers, again has lead to interesting the-
orems, but very little on explicit nontrivial examples. Because of all
this the mathematical investigation of quantum field theory remains
completely open.
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Figure 1: Hermann Minkowski
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Figure 2: Empty spacetime
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Figure 3: Events and worldlines
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Figure 4: Galileo transformation
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Figure 5: Lorentz transformation
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Figure 6: Light cone
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Figure 7: Events, motion with various velocities
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