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A short introduction to
noncommutative geometry

This talk gives an elementary introduction to the basic ideas of non-
commutative geometry as a mathematical theory, with some remarks
on possible physical applications. Concepts will be emphasized and
technical details avoided
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1. ‘Noncommutative manifolds’

Mathematicians define an n-dimensional manifold (or differentiable manifold)
in an intrinsic way; here it is enough to think of something described in a
‘smooth’ way by systems of local coordinates x1, . . . , xn. Obvious examples are
the 2-dimensional surface of a sphere, or of 4-dimensional space-time in general
relativity.

There are various objects living on a manifold. The first and simplest of these
are the infinitely differentiable functions. If M is a manifold, then the system
of all such functions is called C∞(M). Functions can be added and multiplied
pointwise: (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x). This means that
C∞(M) is an algebra, in fact a commutative algebra. (For remarks on the use
of the word ‘algebra’ in mathematics and physics, see the Notes).

There are other useful geometrical objects on M, and it is interesting and of
great importance for what follows that these objects can all be defined in terms
of the algebra C∞(M).

The first such geometrical notion that comes to mind is that of a vector field.
For us a vector field (a contravariant vector fields, as physicists say) is a system
of functions Xk(x), for k = 1, . . . , n, and x = x1, . . . , xn, which under change of
local coordinates transform in a certain way. A vector field gives a differential
operator acting on functions:

X1 ∂

∂xk
+ · · ·+Xn ∂

∂xn
.

This is a linear operator from C∞(M) into itself – let me also call it X. It
satifies, as an additional property, the Leibniz relation

X(fg) = X(f) g + f X(g),

for every pair f and g of functions.

Theorem: The vector fields, or rather the corresponding differential operators,
are precisely the derivations of C∞(M).

The situation is the same for other geometric objects on M, such as differential
forms, general tensor fields, etc.. They can all be defined purely algebraically
from C∞(M), first the vector fields, as indicated, then from these and C∞(M)
the general tensor fields. The additional structures that one may wish to put on
the manifold, like for instance a Riemannian (metric) tensor with its curvature
tensor, connections and covariant derivatives, as in general relativity and Yang-
Mills field theory, can also be defined and studied in this algebraic context,
without ever mentioning the manifold M itself or its points. Vector bundles, an
important geometrical notion that I do not explain here, similarly have a purely
algebraic definition.

That the algebra C∞(M) indeed characterizes the manifold M completely, is
shown by the following theorem:
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Theorem: Two manifolds M and N are diffeomorphic (= the same as mani-
folds) if and only if the algebras of functions C∞(M) and C∞(N ) are isomorphic
(= the same as algebras).

Conclusion: All the differential geometric properties of a manifold M are
encoded in the algebra C∞(M), the commutative algebra of the infinitely differ-
entiable functions on M. As soon a one has the algebra C∞(M), the manifold
M itself becomes superfluous. This is illustrated by the following diagram:

manifold M

↓

algebra of functions C∞(M)

↓

all geometric objects:
vector fields

differential forms
general tensor fields

various vector bundles
also:

Riemannian metric
connection, covariant derivative

curvature tensor

The diagram expresses the fact that differential geometry of a manifold M can
be based on a commutative algebra, the algebra C∞(M) of its infinitely dif-
ferentiable functions. Let me therefore introduce here the terms ‘commutative
differential geometry’ and ‘commutative manifold’. This leads to a suggestion
for a natural generalization to ‘noncommutative differential geometry’ and ‘non-
commutative manifold’:
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Consider, instead of the commutative algebra A = C∞(M), an algebra Â,
noncommutative, but in some way or another similar A, for instance obtained
from C∞(M) by some deformation procedure. Use it to draw the following
extended diagram, which illustrates the basic idea of noncommutative geometry:

manifold M ‘a noncommutative manifold’ ?

↓ ‘↓ ’ ?

algebra A = C∞(M) −→ a noncommutative algebra Â

↓ ↓

all geometric objects,
objects on M, −→ in a similar way
obtained algebraically obtained algebraically
from A = C∞(M) from the algebra Â

In the right-hand column one mimicks the various definitions, based on A =
C∞(M) in the left-hand side. This turns out be a fruitful idea; many of the
ordinary geometric definitions still make sense in this noncommutative algebraic
context. The definition of vector field as derivations of Â works quite well, as
do the definitions of differential forms with an exterior derivative, with most of
the usual properties. The same is true for general tensor fields. Vector bundles
and covariant derivatives appear in this approach in a particularly transparent
form. Etc., etc..

One gets in this manner ‘noncommutative vector fields, differential forms, ten-
sorfields, vector bundles. An obvious question is: “vector fields, etc., but on
what space?” It would be nice if one could answer: “on a noncommutative man-
ifold”. However, such a space does not exist. There is no underlying manifold;
strictly speaking, the vector fields, etc., only make sense in a purely algebraical
world.

Conclusion: Strictly speaking, ‘noncommutative manifolds’ do not exist; it is
an imaginary but nevertheless very fruitful notion which gives intuitive guidance
for interesting work on certain algebra structures which geralizes those from
ordinary differential geometry.
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2. A fundamental theorem

This section will discuss a classical theorem in functional analysis (= ‘infinite
dimensional linear algebra’), which provides us in a rigorous way with what is
the basic pedagogical example of a ‘noncommutative space’. It was proved by
Gelfand and Naimark, two Russian mathematicians, in the late 1940s, when
‘noncommutative geometry’ as such did not yet exist – the term was introduced
much later by the French mathematician Alain Connes (more about him later
on). It appears in each introductory exposition of noncommutative geometry;
this talk will be no exception.

In order to state the theorem, I need two concepts:

1. Topological space: There is a precise mathematical definition as a set in
which a system of subsets is specified which are by definition ‘open’, but here it
is enough to think of a space for which the notions of convergence, limits and
continuity are meaningful. A topological space may be deformed, stretched,
but not torn. The surface of a sphere and that of a cube in three-dimensional
space are the same as topological space. The obvious general example for our
purpose is n-dimensional Euclidean space, or some part of if, with angles and
distances irrelevant. Topological spaces may be compact, a property which al-
ways simplifies matters. I dont give the general definition; it is enough to know
that in n-dimensional Eucliden space compact means closed (= containing all
its limit points) and bounded. The continuous complex-valued functions on a
topological space X form a commutative algebra, which I denote as C(X).

2. C∗-algebra:

An (associative) algebra is a vector space in which there is in addition an associa-
tive multiplication between elements, with has some obvious properties. (Note
that when physicists speak of an ‘algebra’ they usually mean a Lie-algebra,
which is a different sort of object). I call an algbra ‘abstract’, when it consists
of elements which are not specified further. Examples of ‘concrete’ algebras:
the (commutative) algebra of functions, i.e. C∞(M) or C(X), and the (non-
commutative) algebra of all n by n matrices. In a normed algebra elements
a have a ‘lenght’, or norm, denoted as ||a||, which has properties such as the
triangle inequality. A norm defines a notion of convergence of sequence of ele-
ments; a normed algebra is called complete when all Cauchy sequences converge.
A complete normed algebra is called a Banach algebra. In an involutive or ∗-
algebra each elements a has a ‘hermitian adjoint’ a∗, with obvious properties
as (a∗)∗ = a and (ab)∗ = b∗a∗. Finally, an involutive Banach algebra with
||a∗a|| = ||a||2, for each element a, is called a C∗-algebra.

All this enables me to state the theorem:

Theorem (Gelfand-Naimark):
1. The algebra of continuous functions C(X) of a compact topological space X
is a commutative C∗-algebra, in which the maximum of a function f is its norm
||f ||, and the complex conjugate f̄ is its hermitian adjoint f∗.
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2. Given a complex commutative C∗-algebra A, one can construct a unique
compact topological space X, such that A can be identified with the function
algebra C(X).

This means that there is a one-to-one correspondence between compact topo-
logical spaces and complex commutative C∗-algebras. Part 1 is obvious; it is
part 2 that is nontrivial. The theorem implies that all the information about
a compact topological space is encoded in its algebra of functions. The space
itself can be recovered in a certain way from the algebra. Note that this result
is stronger than that for manifolds: there one does not yet know precisely what
kind of ‘abstract’ algebra gives a manifold.

Conclusion: Studying commutative C∗algebras amounts to studying compact
topological spaces, and vice versa.

From the general point of view of noncommutative geometry, explained in the
preceding section, it is natural to suggest:
Studying noncommutative C∗-algebras amounts to studying ‘noncommutative
compact topological spaces’.

One can illustrate this by drawing a scheme similar to the second diaram in the
preceding section:

a compact ‘a noncommutative
topological space X topological space’ ?

↓ ↑ (GN-theorem) ‘↓’ ?

a commutative → a noncommutative
C∗-algebra A = C(X) C∗-algebra Â

↓ ↓
various topological objects,
objects on X, → in a similar way
obtained algebraically obtained algebraically
from A = C(X) from the algebra Â
(e. g. K-theory) (e. g. K-theory)

Again, stricly speaking, like in the case of manifolds, ‘noncommutative topologi-
cal spaces do not exist, but the idea is they nevertheless a useful intuitive guide in
the study of general noncommutative C∗-algebras. This happens, for instance,
in parts of algebraic topology where one has something called ‘K-theory’, which
becomes nicer when considered in a general noncommutative context. (See the
section Notes for a general remark on the use of the term ‘topology’)
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3. Various approaches

The term ‘noncommutative geometry’ is now generally associated with the work
of Alain Connes, and rightly so. However, before discussing this, I want to look
briefly at other approaches, or realizations of the same basic idea.

We all are familiar with an important physical theory that has been with us for
a long time, and which is a perfect example of noncommutative geometry in the
sense explained in the previous sections, namely quantum mechanics.

Classical mechanics has a phase space. For a system of N nonrelativistic par-
ticles this is just 6N -dimensional Euclidean space, but for other situations, for
example, particles moving on a surface, or under certain constraints, it can be a
nontrivial differential manifold. This is a special type of manifold, it is symplec-
tic, a notion that I do no explain here, but which leads to special coordinates,
the canonical positions and momenta qj and pj . The physical observables, en-
ergy, angular momentum, etc., are functions of these coordinates. So we have a
manifold M, the phase space, and an algebra A = C∞(M), the observables.

The corresponding quantum theory is obtained by defining operators in a Hilbert
space H, first operators Q̂j , P̂j , satisfying Heisenberg’s commutation relations,
then the other observables, as operator expressions in these basic observables by
the prescription f(p, q) → f̂(q̂, p̂) – as much as this is possible. This means that
we have instead of the commutative algebra of classical observables A = C∞(M)
a noncommutative algebra of quantum observables Â, consisting of operators in
H. With these data the same type of diagram as before can be drawn:

phase space ‘noncommutative phase space ?
(a symplectic manifold M

with
canonical coordinates pj , q

j)

↓ ‘↓ ’ ?

physical observables physical observables
(the algebra A = C∞(M) → (the algebra Â
of functions f(p, q) on M) of operators in a Hilbert space H)

↓ ↓
classical mechanics quantum mechanics
(with time evolution → (with time evolution

and symmetries) and symmetries)
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Note that the physical observables in quantum mechanics are represented by
hermitian operators – selfadjoint is the more precise mathematical term. These
do not form an algebra; the product of two hermitian operators is not hermitian,
unless they commute. The algebra Â in the right-hand column of the diagram is
therefore the complex algebra of all operators, in which the hermitian operators
are embedded. For the consistency of the diagram there also has to be a complex
algebra in the left-hand column; the algebra A = C∞(M) consists in this scheme
of all infinitely differentiable complex-valued functions on M, with the real-
valued functions as the subalgebra of physical observables. Note also that I
glossed over the distinction between bounded and unbouded operators.

The naive idea of ‘quantization’, the construction of a quantum mechanical
theory from a given classical theory, is simple: classical expressions f(pj , q

j) lead
in quantum mechanics to analogous operator expressions f̂(P̂j , Q̂

j). Moreover,
Poisson brackets {f, g} become commutators −ih̄ [f̂ , ĝ]. However this simple
prescription is ambiguous. The operators P̂j and Q̂k do not all commute, so the
prescription which assigns an operator expression to a function of the pj , q

k, say
a polynomial, is not well-defined. Various choices are possible, which lead to
different quantizations of a given classical theory. Note that the relation between
the classical Poisson bracket and the quantum commutator is more complicated
than the naive one-to-one relation mentioned above, which is only the lowest
order term in a power series in h̄. e.g. by symmetrization (Weyl quantization), or
Moyal quantization, a notion that I do not explain here. These two quantizations
make sense only for simple linear phase spaces. Since the beginning of quantum
theory people have looked for a unambigous quantization procedure, and for a
classification of these different procedures.

From the 1970s onwards, the ‘Dijon school’ of Flato, Sternheimer, and others,
together with the mathematician Lichnerowicz (Paris) developed an approach
to this problem, called deformation quantization. They start from a phase
space, a general symplectic (or Poisson) manifold, together with the commu-
tative algebra of classical observables C∞(M) and try to construct a noncom-
mutative algebra of quantum observables, by defining in C∞(M) as a vector
space a new noncommutative product, a so-called star-product, not surprisingly
denoted as ∗. This construction uses power series in h̄. The ∗ is defined as a
power series, with the zeroth order term the ‘classical’ commutative product and
the first order term containing the classical Poisson bracket. Flato and many
others have worked on this; have shown that star products exists in various
cases and have given explicit constructions and also classifications in term of
cohomology theory. (See a brief explanation of the notion of cohomology in the
Section Notes). The result is an algebra Â which is the same as A = C∞(M) as
a vector space, but different as an algebra. The quantum algebra Â still has to
be represented as an algebra of operators in some Hilbert space H. This aspect
has sofar has not been discussed in a fully satisfactory manner.

In the last few years have seen a broad development of deformation quantiza-
tion as a purely mathematical theory, separated however completely from the
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questions originally posed by physics.

There have been approaches to noncommutative geometry by John Madore
and Giovanni Landi, who both have written books on noncommutative ge-
ometry in general and their own work more in particular. (See the Section
References for this). Julius Wess, one of the inventors of supersymmetry and
supergravity, has developed an approach in which the coordinates xµ of space-
time are deformed, with [xµ, xν ] = 0 being transformed in [x̂µ, x̂ν ] = iθµν .

Finally a well-known early realization of the idea of noncommutative geometry,
which is noncommutative in a very minimal sense, should be mentioned: super-
manifolds, in supersymmetry and supergravity. The algebra Â of ‘functions’ on
a supermanifold is a so-called supercommutative algebra or superalgebra, which
differs from a commutative algebra only by the appearance of minus signs.
Whether in this case the underlying supermanifold exists as a set of points, like
in commutative geometry, is a matter of discussion.

4. Connes’ version of noncommutative geometry

Alain Connes (1947):

• Professor at the Collège de France, Paris
• Permanent staff member of the IHES

(Institut des Hautes Études Scientifiques, Bûres-sur-Yvette, near Paris)
• Fields Medal in 1982, for his work on the theory of operator algebras

Alain Connes is an outstanding, extremely productive mathematician, with a
deep interest and a considerable knowledge of modern physics. He is also an
enthousiastic and stimulating lecturer.

The theory of operators in Hilbert space was developed in the late 1920s and
early 1930s by John von Neumann, in order to understand the mathematical
basis of quantum mechanics. It has since then grown into an ever expanding
and lively field of mathematics, which has far outgrown its physical origin.

Connes’ involvement in Hilbert space operator theory, together with a long-
standing interest in quantum mechanics, has led him, over a period of more
than twenty years, to develop a formulation of differential geometry in terms of
commutative algebras, which lends itself to a noncommutative generalization.
There have been earlier versions of the general idea of noncommutative geome-
try, as I indicated in the preceding section, but Connes coined the term and gave
a version which by now dominates all others by its originality and mathematical
richness.

Two introductory remarks:

1. Geometry is for Connes ‘metric geometry’, i.e. the study of manifolds with
a Riemannian structure given by a metric tensor gµν . (Think of space-time in
general relativity).
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2. The probabilist and mathematical physicist Mark Kac, Lorentz-professor
at this Institute in 1963, used to give a talk called: “Can one hear the shape
of a drum?”. In this he explained that important properties of the shape of
a bounded two-dimensional surface could be derived from the assymptotic be-
haviour of the discrete eigenvalues of the Laplace operator, assuming certain
boundary conditions.

In a certain way Connes has adopted this idea, found an interesting analogue
and carried it further. He considers manifolds of arbitrary dimension, with a
Riemannian structure, which give rise to a first order differential operator, the
Dirac oprator. He shows that the manifold, including the metric tensor, can be
completely reconstructed from the discrete eigenvalues of this operator. Note
that the manifold has to be compact, a serious restriction to which I shall return
later. He encodes the properties of the spectrum in a mathematical object, called
by him a spectral triple, which contains a number of algebraic data, and which
completely describes the Riemannian manifold. This means a formulation of
ordinary Riemannian geometry as a ‘commutative Riemannian geometry’.

Commutative spectral triples

Consider an n-dimensional compact manifold M with Riemannian metric, given
by a metric tensor g, or gµν in local coordinates. Under very weak additional
condition there is a so-called spin structure. This means that there is a space
of ‘spinor fields’ ψ(x) on M (mathematicians would say ‘sections of a spinor
bundle’), on which the Dirac operator acts, in local coordinates the differential
operator D = iγµ∂x

µ, with the γµ the Dirac γ-matrices, which satisfy the well-
known condition γµγν + γνγµ = 2gµν . Note that in the general case both the
gµν and the γµ are x-dependent. There is a natural inner product for spinor
fields, which makes the space of this fields into a Hilbert space H, in which D
is a selfadjoint (= ‘hermitian’) operator. Spinor fields in H can be muliplied by
functions on M. In this manner C∞(M) is represented by, or can be seen as
an algebra A of operators in H.

Connes calls the system consisting of H, the algebra A = C∞(M) and the
Dirac operator D the spectral triple (H, A,D) associated with the Riemannian
manifold (M, g). He exhibits a number of algebraic properties of this system,
characterizing the various characteristics of the manifold and the metric and
puts them in a list of seven properties. He then proves a theorem, that might
be called the ‘Gelfand-Naimark theorem for compact Riemannian manifolds and
spectral triples’:

Theorem:

1. For every compact Riemannian manifold (M, g) there is an associated spec-
tral triple (H, A,D) as defined above.
2. For every spectral triple (H, A,D), with H a Hilbert space, A a commutative
algebra of operators in H, and D a linear operator in H, satisfying the seven
properties, there exist a unique compact manifold (M, g), such that (H, A,D)
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is the spectral triple associated with (M, g). Moreover both the manifold M
and the metric tensor can be constructed in an explicit way from (H, A,D).

It will be clear that 2 is the nontrivial part of the theorem. I shall not say
anything on the proof of this, except that it is hard and very complicated.

The notion of spectral triple, as an ‘abstract’ algebraic notion, can be generalized
to a version in which one has a noncommutative algebra Â.

Noncommutative spectral triples

Definition: A ‘noncommutative’ spectral triple is a system (H, Â,D) consisting
of the following objects:
• a Hilbert space H,
• a noncommutative algebra Â of operators in H,
• a selfadjoint operator D in H,
satisfying a list of seven axioms, the properties mentioned earlier.

Such a system, according to Connes, is a ‘noncommutative’ geometry. The
intuitive idea behind this point of view can be illustrated by a diagram of the
type that I have drawn before:

Riemannian manifold (M, g) ‘noncommutative
Riemannian manifold’ ?

↓ ↑ (‘GN-theorem’) ‘↓ ’ ?

spectral triple (H, A,D) → spectral triple (H, Â,D)
(commutative algebra A) (noncommutative algebra Â)

Connes, in joint work with Giovanni Landi, Michel Dubois-Violette and others,
has constructed several examples of noncommutative geometries in this sense,
for instance so-called spherical manifolds, noncommutative deformations of S3

and S4, the spheres in 3- and 4-dimensional space.

5. Physical applications. Further outlook

The main attempts at physical application of noncommutative geometry, by
Connes and others, have been in relativistic quantum theory and particle
physics. The idea behind this is that noncommutative geometry might give a
better understanding of space-time at the micro-scale.

The most serious problem of quantum field theory, singular behaviour and di-
vergencies, manifests itself at very short distances. This suggests that there is
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something basically wrong with our picture of space-time, as a 4-dimensional
Riemannian manifold. Intuitively clear as this is, it could nevertheless be wrong

Noncommutative geometry, in the version of Connes, but also in those of Madore,
Landi, Wess and others, has tried to give a more adequate description. However,
it has not been easy to turn this natural and appealing idea into concrete and
realistic theoretical proposals.

Together with John Lott, Connes has developed an ingenious formulation of the
Standard Model of elementary particle physics in the framework of noncom-
mutative geometry, later developed further by the ‘Marseille school’, Thomas
Schücker, Daniel Kastler and others.

All this is interesting, but one has to admit that up till now it has not given
enough new insights to make a real impact. The same is true for the general
algebraic formalism for perturbative quantum field theory developed by Connes
together with Dirk Kreimer.

In 1997 Connes wrote, together with the mathematician Albert Schwarz and
the string theorist Micheal Douglas, a paper on the relation between noncom-
mutative geometry and M theory, a branch of string theory (Alain Connes,
Michael R. Douglas and Albert Schwarz: Noncommutative Geometry and Ma-
trix Theory: Compactification on Tori, hep-th/9711162). This introduced non-
commutative geometry into the string world and stimulated quite a few papers
there. Connes himself did not follow this up; probably because he has no great
interest in string theory.

Connes’ version of noncommutative geometry has also been applied on a very
different subject, the quantum Hall effect, independently by Jürg Fröhlich
and Jean Bellissard. More recently, Leonard Susskind has also applied non-
commutative geometry, in a somewhat different spririt, to the quantum Hall
effect.

Further outlook

Noncommutative geometry, based on Connes’ ideas, is a very lively mathemat-
ical field of interest, with many connections to other parts of mathematics. In
its implications for physics it remains a tantalizing idea, which definitely will
not go away.

6. What I am trying to do myself

What I am trying to do in noncommutative geometry is mathematical work that
is motivated by physics.

For applications in relativistic field theory and elementary particle physics,
Connes’ noncommutative geometry has at this moment two serious drawbacks:
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1. It only makes sense for compact spaces.
2. Connes only considers Euclidean Riemannian differential geometry, i.e. with
a positive-definite metric tensor. This reflects the interests of mathematicians in
general. In most mathematics books there is very little on what is often called
pseudo-Riemannian manifolds. Of course, compact is always easier than non-
compact, and Riemannian easier than pseudo-Riemannian. However physics,
in particular relativity, requires noncompact manifolds with an indefinite met-
ric tensor. (There are compact manifolds with an indefinite metric. The 2-
dimensional torus, which is of course compact, can easily be provided with a
Minkowskian metric. However there would not be acceptable notion of causal-
ity; time would go in circles. This happens for all compact pseudo-Riemannian
manifolds).

In the beginning Connes considered this a technical problem that eventually
would solve itself; by now it is generally seen as a serious question. Almost
nothing has been done on it.

My aim is tackle this problem. I hope to make a few very small steps in the
direction of a solution.

A Riemannian (or pseudo-Riemannian) manifold (M, g) is a composite notion:
there is the underlying differentiable manifold M, and added to that one has
the Riemannian (or pseudo-Riemannian) structure given by a metric tensor g.

In order to understand noncompactness, in the first place a property of the
manifold, and the difference between Riemannian and pseudo-Riemannian, a
property of the metric structure superimposed on the manifold, one has to make
a distinction between manifold and metric properties. Connes’ description of
(M, g) is a ‘black box’, in which this distinction is very hard to make: it is
difficult to see which of the the seven properties have to do with the manifold
as such and which with the metric.

My program is therefore as follows:
• Break up Connes’ spectral triple.
• Study first topological and then differentiable manifolds; try, as a first step,
to prove a ‘Gelfand-Naimark theorem for (possibly noncompact) manifolds. To
my knowledge such a theorem does not exist, probably because people have not
tried very hard, so the use of the proper books and papers and above all some
low-brow but hard work in standard point set topology and functional analysis
might do the job.
• Try to find a substitute for the Dirac operator. This is the really difficult
part, for which new ideas are needed. Connes’ orginal, very intuitive idea was
that a noncommutative Riemannian manifold should have a ‘quantized’ length
element ds. From quantum mechanics he took the suggestion – in a way that I
do not understand – that this quantized distance should be the ‘inverse’ of the
Dirac operator, i.e. its propagator. On a pseudo-Riemannian manifold ds is not
a true distance. Something else should take its place. What this should be is
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unclear at this moment. So indeed, if I ever reach this point I shall need really
new ideas.

7. Notes

1. The use of the term ‘algebra’

In mathematics the term ‘algebra’ has two different meanings:
1. Algebra as a subject, like analysis, group theory, etc.
2. Algebra as a mathematical object. In this sense an algebra – the simplest
definition – is a vector space in which the the elements not only can be added
and multiplied by scalars, but can in addition be multiplied with each other.
When this multiplication is associative, i.e. (ab)c = a(bc), the algebra is called
associative. The algebras of (n × n) matrices and algebras of functions are
associative. The most important example of a nonassociative algebra is a Lie
algebra. In that case the product is written as a bracket of two elements.

In physics, especially in particle physics / quantum field theory, ‘algebra’ means
very often Lie algebra, or more particularly, a system of commutation relation
for a Lie algebra, with respect to a certain system of basis vectors. Note that
a statement like ‘Such and such field satisfies such and such algebra’ would be
incomprehensible to a mathematician.

2. The use of the term ‘topology’

In mathematics the term ‘topology, like ‘algebra’, has two meanings:
1. Topology as a subject. In this general topology or point set topology is
concerned with the basic notions of the subject: definition and general properties
of topological spaces, the notions of continuity, convergence, limits, etc.. In
Section 2 the word ‘topology’ is used in this sense. A special part of the subject
is algebraic topology, which discusses properties of spaces such as connectedness,
the number of holes and handles, etc.; differential topology investigates such
properties in differentiable manifolds.
2. Topological as a mathematical object: The system T of subsets of a given
set X, specification of which makes X into a topological space. The members
of T are by definition ‘open’.

In physics one uses the term almost always in statements like “the topology
of such and such space”, meaning the properties of that space according to
algebraic topology, i.e. holes, handles, etc.. Topological field theory is field
theory, in which one does not have, or does not use, a (Riemannian) metric on
the underlying manifold, only its differential topological properties.

3. Cohomology

When a speaker in a physics talk uses the term ‘cohomology’, there is, not
without reason, a suspicion that he is trying to impress his audience. To avoid
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this I give here a very short explanation of this important mathematical notion,
even though it is not needed in this talk.

The ‘Ur’ cohomology is the de Rham cohomology. Let M be an n-dimensional
manifold, with (local) coordinates x1, . . . , xn. On M there is a system of differ-
ential forms. A 0-form is just a function f(x), a 1-form is an expression of the
form

α1 =
n∑

j=1

Aj(x) dxj ,

a 2-form an expression

α2 =
1
2

n∑
j1=1,j2=1

Aj1j2(x) dx
j1∧ dxj2 ,

and generally a k-form

αk =
1
k!

n∑
j1=1,...,jk=1

Aj1,...,jk
(x) dxj1∧ . . . ∧ dxjk .

The component functions Aj1...jk
are antisymmetric in the indices j1 . . . jk; they

form what is called by physicists an antisymmetric covariant tensor field. For
k > n the k-forms are identically 0, because of this antisymmetry.

There is an exterior derivative d which maps k-forms into (k + 1)-forms. It is
nilpotent, i.e. d2 = 0. In terms of components this derivative acts on a 0-form as
a gradient, (df)j = ∂jf , on a 2-form as (dα1)j1j2 = ∂j1Aj2−∂j2Aj1 , etc.. (There
is an elegant formulation of Maxwell equations in terms of differential forms,
with the relativistic 4-potential Aj(x) a 1-form and the field tensor Fjk(x) a
2-form.)

A form α is called closed if dα = 0 and exact if there is a form β such that
α = dβ. Because of the nilpotency of d, an exact form is necessarily closed.
The converse is in general not true: a closed form need not to be exact. The
space of exact forms is a subspace of the space of closed forms. Whether it is
equal or stricly smaller, and ‘how much smaller’ depends on the properties of
the manifold, is in fact characteristic for those properties. The study of this is
the aim of cohomology theory, in this case de Rham cohomology theory.

From this example in differential geometry, the idea of cohomology theory, es-
sentially an algebraic notion, has been generalized to a wide range of other
mathematical situations and has become a central mathematical concept. The
idea of any cohomology theory is always the same: one has a space with a linear
operator d with d2 = 0 (nilpotency). The space of elements α with dα = 0 con-
tains the space of elements with α = dβ, for some β. Cohomology theory then
studies the relation between this spaces. The results usually give characteristics
of some other mathematical object. In this way one has for instance cohology of
Lie groups and Lie algebras. Cyclic cohomology, which characterizes properties
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of general (associative) algebras, was developed by Connes for noncommutative
geometry. It is one of the byproducts of noncommutative geometry that have
been widely used in other areas of mathematics.
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José M. Gracia-Bond́ıa, Joseph C. Várilly and Hector Figueroa
Elements of Noncommutative Geometry
Birkhauser 2001
ISBN 0-8176-4124-6, 685 pages.

A complete and rigorous textbook, in a certain way a companion volume to
Connes’ book. An excellent book, that is more recent, and that in addition
seems to have Connes’ official blessing. As a textbook it is precise and complete.
It also requires a good mathematical background.

Fortunately, there are two introductory books, by John Madore and by Giovanni
Landi. Both autors discuss noncommutative geometry in general, and more in
particular their own approach. They are readable for physicts familiar with
relativistic field theory and explain all the mathematics that they use:

John Madore
An Introduction to Noncommutative Differenial Geometry and its
Physical Applications. Second Edition
Cambridge University Press, Cambridge 1999
ISBN 0-521-65991-4 paperback. 321 pages.

16



Giovanni Landi
Noncommutative Spaces and their Geometry
Lecture Notes in physics
Springer 2002
ISBN 0940-7677.
(The complete book, or rather an earlier version, is available on the preprint
archive ‘arXiv’ as hep-th/9701078)

As far as I know there is no book on deformation quantization, at least not on
deformation quantization in the physical context that I discussed in Section 3.

ARTICLES, LECTURE NOTES, ETC.

Joseph C. Várilly: An Introduction to Noncommutative Geometry
gr-qc/9909059

John Madore: Noncommutative Geometry for Pedestrians
gr-qc/9906059

There are various review talks on deformation quantization. In the following
two typical examples one finds on the first 5-10 pages useful information on
physical and mathematical aspects, together with something on the historical
background, but after that they descend into rather inaccessible technicalities:

Daniel Sternheimer
Deformation Quantization: Twenty Years After
math/9809056

S. Gutt
Variations on Deformation Quantization
math/0003107

17


