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Introduction

The modern theory of light scattering from a nonpolar fluid was 

initiated by Smoluchowski and Einstein in the beginning of this 

century. In their theories the scattering of light by a fluid is explained 

in terms of fluctuations of the dielectric constant around its value at 

the average density. Using the density dependence of the dielectric 

constant one may then express the scattering intensity in lowest order in 

terms of the density-fluctuation correlation function. It is precisely this 

relation (and generalizations thereof) which has made light-scattering 

experiments such a useful tool to investigate the properties of a wide 

class of systems. From the frequency-integrated scattering intensity one 

can deduce equilibrium properties such as the compressibility and from the 

frequency-dependent scattering intensity one can deduce nonequilibrium 

properties, such as the viscosity and the thermal conductivity. In 

particular near the critical point where many of these quantities diverge, 

light-scattering experiments have played' a crucial role in the investigation 

and therefore in the understanding of the various singularities.

3)In 1937 Yvon developed a molecular theory for light scattering from 

a fluid consisting of classical point-dipoles. The incident field, which 

obeys Maxwell's equations in vacuum, induces dipole-moments in the 

molecules; these dipole-moments emit secondary fields, which induce other 

dipole moments, etc.. In this way the singly and multiply scattered fields 

are generated. The resulting formula for the single-scattering intensity 

is different from the result of Einstein's phenomenological theory in that 

it does not contain the so-called "local-field correction factor". For 

many years this discrepancy was rather controversial until it was finally 

resolved by Fixman ^ in 1955, who showed that the molecular theory leads 

to the same expression as the Einstein-Smoluchowski theory, if higher-order
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contributions are also taken into account in the molecular theory.

There are several reasons to be interested in multiple scattering.

In the first place the multiple-scattering intensities contain information 

about higher-order correlation functions. In the second place multiple

scattering contributions to the total scattering intensity complicate the 

interpretation of the data especially in experiments where the scattering 

intensity is large, for example close to the critical point.

A theory of multiple scattering may in principle be either 

phenomenological or molecular. In the phenomenological theory the multiply 

scattered fields are the result of repeated scattering from fluctuations 

in the dielectric constant and therefore the density. The resulting 

formulae contain the notorious local-field correction factors, but they 

have the unpleasant feature that they diverge. This divergence has to be 

eliminated by the introduction of an ad hoc cut-off of the electro

magnetic propagator for wavevectors larger than a typical inverse molecular 

diameter. In the molecular theory the multiply scattered fields are the 

result of repeated scattering by the molecules. In that case local-field 

correction factors may only be obtained by extensive resummations; 

divergences do not occur. Both theories, however, contain secular (or 

shadow) terms. These terms do not really correspond to scattering, but 

they represent the change in the transmitted beam and the scattered fields 

due to intensity losses by scattering.

It is the aim of this thesis to develop a molecular theory in which the 

scattering intensity is expanded in correlation functions of fluctuations 

of the density rather than in correlation functions of the full 

density as in the conventional molecular theories. In this way one has 

on the one hand the advantage that, due to its molecular nature, the theory 

contains no divergences while on the other hand the theory is closely
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analogous to the phenomenological theory so that e.g. the local-field 

correction factors are obtained without resummation. That such a 

development is possible was suggested by the work of Bedeaux and Mazur ^ 

who studied the dielectric constant for the same system along similar 

lines. A further refinement is introduced by expanding the fluctuating 

dielectric constant around its macroscopic value and not around its value 

at the average density. As will be shown this leads to the elimination of 

the secular terms while it introduces attenuation effects in the beam and 

in the fields between and after scattering events.

In chapter I a simple model of a one-component isotropic nonpolar fluid 

is considered. The fluid is assumed to consist of point-dipoles with 

constant polarizability, which is only correct if the electric field varies 

slowly over distances of the order of the molecular diameter. This model is 

called the classical point-dipole model and was used by both Yvon and 

Fixman in their discussion of light scattering. It was also used by 

Bedeaux and Mazur. Applying their techniques one can derive an explicit 

form for the fluctuating dielectric constant in terras of the molecular 

polarizability and the fluctuating molecular density. Furthermore formal 

expressions are found for the scattered field and the scattering intensity, 

which contain multiple-scattering effects to all orders. By purely 

algebraic transformations the scattered field is first expressed in terms 

of fluctuations of the dielectric constant around its macroscopic value and 

subsequently in terms of fluctuations of the density around its average 

value. Finally the scattered field and as a consequence the scattering 

intensity are expanded in these fluctuations. The term in this expansion 

which is proportional to the n^ power of the density fluctuations is then 

defined as the n times scattered field. It should be stressed that the 

precise meaning of "the n times scattered field" depends on the expansion
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used and is therefore different in the various theories. This completes 

the general part of this chapter. The explicit evaluation of the multiple

scattering intensities would imply integrations over higher-order 

correlation functions, which are not very well known. In view of the 

application to critical scattering formulae are given for the case that 

the Gaussian approximation may be used for the higher-order correlation 

functions. For this case a diagrammatic representation is shortly discussed.

In chapter II the theory is applied to multiple scattering near the 

gas-liquid critical point. In this chapter the Gaussian approximation is 

used throughout. Deviations from the Gaussian approximation which may 

become important very close to the critical point may in principle lead 

to contributions which are not considered. Using essentially the stationary- 

phase approximation the scattering formulae are further simplified. It is 

found, that, due to the long-range nature of the density-fluctuation 

correlations near the critical point, the most important contributions 

arise from situations where the successive scattering points are far apart 

in comparison to the wavelength of the light. As a consequence the 

multiple-scattering intensity in each order is simply a contraction of 

consecutive uncorrelated single-scattering events. That this is the case 

was also conjectured recently by Reith and Swinney ^ on the basis of the 

work of Oxtoby and Gelbart ^ who also considered multiple scattering near 

the critical point .BHBipisaC ✓

In section (II.5) this result is used to calculate the depolarization

8)factor for an experiment by Trappeniers, Michels and Huijser , who 

measured this factor near the critical point for CC^* The depolarization 

factor is in this case in lowest order equal to the ratio of the intensities 

of depolarized doubly scattered light and polarized singly scattered light.
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The theoretical prediction can be calculated analytically and agrees very

well with the experimental result. An important consequence of this

agreement is the fact that it confirms the conclusion that close to,the

critical point multiple-scattering is simply a contraction of consecutive

uncorrelated single-scattering events.

In section (II.6) we calculate double-scattering corrections to the

"Ornstein-Zernike plot", which is the inverse of the scattering intensity 

2as a function of sin £0 with 0 the scattering angle. This plot would be 

a straight line if only single scattering were present. From the 

extrapolated value for zero scattering-angle one calculates the 

compressibility, which diverges if the critical point is approached. In 

this way the critical exponent y is derived from light-scattering data. 

Before extrapolating, however, one should subtract the multiple-scattering 

intensity from the total scattering intensity in order to recover the line 

that is predicted by the single-scattering theory. It is shown that the 

multiple-scattering corrections relative to the single-scattering intensity 

tend to zero for forward and backward scattering. The double scattering

intensity is evaluated explicitly for a sample of CC>2 and the scattering

9)geometry used m the experiment by White and Maccabee. It turns out that 

double scattering becomes important if the temperature distance to the 

critical point is smaller than 0.01°C (at the critical density). Since many 

experiments are performed near the critical point of binary mixtures, it is 

interesting to develop a similar theory of multiple scattering from critical 

binary mixtures. This is done in chapter III along the lines of the 

extension by Kim and Mazur of the theory of Bedeaux and Mazur. It is 

found again that critical multiple scattering is a contraction of successive 

uncorrelated single-scattering events.
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I. GENERAL THEORY

Synopsis
A systematic theory of multiple scattering is given for a nonpolar fluid of point dipoles. Local- 

field correction factors are consistently accounted for to all orders. To first order (single scat
tering) Einstein’s result is obtained; the theory yields, however, automatically to this order 
the attenuation of the incoming beam before and of the scattered light after scattering. In the 
usual theories these effects are hidden in secular (shadow) contributions to multiple scattering. 
The single-triple and double-scattering intensities are briefly discussed.

1. Introduction. The theory of light scattering in its present form goes back to 
the work of Einstein1), in which the scattering intensity is related to the fluctua
tions of the local dielectric constant. Molecular theories of light scattering have 
subsequently been given by Yvon2) and Zimm3) and also by Fixman4,5), who 
was able to justify Einstein’s result*. Einstein neglects the fluctuations in the 
polarizing field, his result for this reason contains only single scattering from 
fluctuations around the average dielectric constant. In the above-mentioned mole
cular theories on the other hand, multiple-scattering contributions appear in the 
customary expansions. Single and multiple scattering refer, however, in these 
theories in general to scattering from particles in vacuo. Single scattering from 
fluctuations, as considered in the phenomenological theory, is in fact a sum over 
the single- and certain multiple-scattering contributions in the molecular theory.

With the development of laser light sources and better detectors it has in recent 
years become possible to measure double-scattered light in depolarization experi
ments. A number of papers deal from a molecular point of view with the theo
retical aspects of multiple scattering6,7). For an extensive list of references we 
refer to the review paper on depolarized light scattering by Gelbart8). We also

* In the phenomenological theory an additional factor [(e0 + 2)/3]2 appeared compared to 
the earlier molecular theories. The controversy over this factor was finally resolved by Fixman 
and wc refer to his paper for a discussion of this point.
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refer to his paper for a discussion of the relation between multiple scattering and 
certain “collision induced” phenomena.

In this paper we shall develop a systematic molecular theory of multiple scat
tering in which multiple scattering is defined, in agreement with the definition of 
single scattering in the phenomenological theory given by Einstein, consistently 
as scattering from fluctuations around the macroscopic dielectric tensor. The 
propagation of the electromagnetic wave before, after and between different scat
tering events is therefore through the medium described by the full macroscopic 
dielectric tensor rather than through vacuum.

We consider a nonpolar dielectric consisting of point dipoles with a constant 
scalar polarizability oc0. We therefore exclude effects due to resonant scattering 
at molecular frequencies; and furthermore effects related to pair polarizabilities9) 
and certain other collision-induced phenomena10,11). In ref. 12 we considered the 
same system and discussed the behaviour of the dielectric tensor in the critical 
region.

In section 2 we develop the Maxwell theory in a fluctuating dielectric. An exact 
expression is given for the scattered field in terms of the fluctuating dielectric 
tensor, the macroscopic dielectric tensor, the propagator of the electromagnetic 
field in the medium and the macroscopic field. This expression contains the single- 
and multiple-scattered fields to all orders.

In section 3 we use the fact that the distance between the observer and the 
sample is large compared to the diameter of the sample in order to express the 
total scattered intensity as a function of the frequency in terms of the autocor
relation function of a fluctuating polarization density. The attenuation of the 
scattered light in the sample is explicit in this formula.

In section 4 we apply the formal theory of the two previous sections to our 
model. To this end we use a relation between the fluctuating dielectric tensor and 
the molecular density, which we derived in ref. 12, and which is equivalent to 
Clausius-Mossotti on the fluctuation level. We use this formula to define a fluc
tuating and a macroscopic “Clausius-Mossotti” function. The fluctuating polari
zation density, which is the source of the scattered field, is subsequently expressed 
in fluctuations of this Clausius-Mossotti function. This automatically introduces 
local-field correction factors and at the same time modifies the propagator in the 
medium between scattering events so as to exclude self-polarization effects. The 
resulting expression for the autocorrelation function of the fluctuating polariza
tion density may then be expanded in powers of the fluctuations in the density. 
The various terms in this expansion are then defined as the single-, double- etc. 
scattering intensities. In section 5 this expansion is carried out to fourth order. 
The various terms correspond to the intensities of single- and double-scattered 
light and to the interference terms between the single- and double- and between 
the single- and triple-scattered fields. They are expressed in 2-, 3- and 4-point 
density-fluctuation correlation functions. In the low-density limit our expressions
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reduce essentially to the corresponding expressions found by previous authors, 
cf, ref. 8. In view of a future application to critical scattering8,13,14) we use the 
gaussian approximation in the discussion of the multiple-scattering intensities. 
A diagrammatic representation of the expansion is introduced and briefly dis
cussed.

In sections 6, 7 and 8 we consider in some detail respectively the single-, single- 
triple- and double-scattering intensities. The single scattering is found to be the 
same as the result found by Einstein1) with a minor correction related to the 
attenuation in the sample before and after scattering. This last effect, however, 
may usually be neglected except very close to the critical point15). The single- 
triple scattering, like the single scattering, is found to contribute only to the 
polarized-scattering intensity. This contribution is usually not considered6-8) 
although it is in principle of the same order as the double-scattering intensity. 
This is correct in the study of the depolarized intensity but not for the polarized 
intensity7,14). In both the expressions for the single-triple- and the double-scat
tering intensities we find the appropriate local-field correction factors similar to 
those occurring in Einstein’s expression for single scattering.

2. Maxwell theory in a fluctuating dielectric. The Maxwell equations in a fluc
tuating dielectric are

curl e (r, t) =---- — b (r, /), div d(#*, t) = 0,
dt

(2.1)

dt

where e (>*, t) and b (r, t) are respectively the fluctuating electric and magnetic 
fields, and d(r,t) and h(r,t) the fluctuating inductions; units are chosen such 
that the velocity of light in vacuum is unity. Neglecting the magnetic properties 
we have

h = b, d = e + p, (2.2)

with p the fluctuating polarization density.
From eqs. (2.1) and (2.2) we obtain the wave equation governing the electric

field

curl curl e H-------e =--------- p
dt2 dt2
d2 d2

(2.3)

Defining Fourier transforms with respect to r and t of a field /by

/(*,«) = J dr dt -\{k-r-Oit) (2.4)
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eq. (2.3) becomes in wavevector-frequency representation

(kk — k2 + co2) • e (k, w) = — co2p (k, co). (2.5)

The general retarded solution of this equation is

e (k, co) = £v (k, co) - F (k, co) • p (k, co), (2.6)

where Ew is a solution of the homogeneous equation and is therefore the incident 
field in vacuum. We note that in the presence of externally controlled sources the 
vacuum field due to these sources is also contained in £v. The retarded propagator 
of the electromagnetic field in vacuum F is given by

F (At, co) = [kk — k2 + (co + iO)2]-1 co2 = [k2 — (co + iO)2]-1 (kk — or),
(2.7)

where iO is an infinitesimally small positive imaginary number.
Now in order to come to a closed description the polarization is expressed, 

restricting ourselves to linear optics, in the electric field by a constitutive relation

P = («b - !)•<? = Xb* e, (2.8)

where £b and Xb are the fluctuating (bare) dielectric tensor and susceptibility. 
These fluctuations are, e.g., caused by the fluctuations in the density. In its most 
general form £b (and Xb) is a linear operator, this will become apparent when we 
give an explicit expression for eb.

The macroscopic electric field is the average of the fluctuating field

£=<», (2.9)

where the brackets <•••) indicate the average over the fluctuations. Similarly the 
macroscopic polarization field is given by

P = <P> = <Xb • «> = X • E = (s - 1) • E. (2.10)

Eq. (2.10) together with eq. (2.9) also defines the macroscopic dielectric tensor £ 
and susceptibility x* In ref. 12 we have used this fact in order to derive explicit 
expressions for the dielectric tensor close to the critical point (see also the end of 
section 4).

Adding co2x • e to eq. (2.5) and using eq. (2.8) one obtains the wave equation 
in the dielectric

(kk — k2 + co2s) • e — — co2 (zb — z) • e = — co2 Acb • e = —co2 Ap. (2.11)
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The right-hand side of this equation is the fluctuating source term and has average 
zero, <A/>> = 0; we note, however, that <cb> # £. Eq. (2.11) may formally be 
solved by

e = E — F£ • A/? = E — Fc • Acb • e, (2.12)

where Fc is the retarded wave propagator in the medium. Furthermore E is the 
macroscopic field defined in eq. (2.9) and is therefore the incident field in the 
medium, which is related to the incident field in vacuum using eq. (2.6) for the 
averages. Using stationarity and translational invariance, cf. ref. 12, one may 
show that e is diagonal in (A:, co) representation; in that case Fc is also diagonal 
in this representation and the diagonal elements are given by

F£ (k, co) = [kk — k2 + (co -I- i0)2 £ (k, co)]-1 co2. (2.13)

We find, using eq. (2.12), for the fluctuating field e in terms of the macroscopic 
field

e « (1 + F£ • A£b)-1 • E. (2.14)

This gives for the fluctuating polarization field A/7, which is the source of the 
scattered field,

A/? = A£b • e = A£b • (1 + F£ • A£b) 1 • E.

Using the fact that <A/7> = 0 one finds the following identity

(2.15)

<A£b - (1 + Fc • A£b)-1> =0, (2.16)

which we will use to derive an expression for the macroscopic dielectric tensor £. 
The scattered field is given by, cf. also eq. (2.12),

esc = e - E = - Fc • A/?. (2.17)

This equation together with eq. (2.15) will be the starting point of our further 
discussion. Finally we note that in isotropic systems, to which we will limit our
selves,

£ (A, co) = eT (k, co) (1 — kkjk2) + eL (k, co) kk I k2, (2.18)

where eT and eL are the so-called transverse and longitudinal dielectric constants.
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3. Scattering theory. In this section we derive an expression for the intensity of 
the scattered light which contains the contributions due to the single- and multiple- 
scattered light up to all orders. We consider the following, somewhat idealized, 
scattering experiment. The sample is thought to be embedded in a nonfluctuating 
medium with a constant dielectric tensor equal to the macroscopic dielectric ten
sor £ of the sample. This implies that the average field E passes through the sample 
without refraction at the surface. Though in practice this setup is never realized 
this is easily corrected for. The scattered field is given by eq. (2.17) which is in 
(r, co) representation

<?sc (r, co) = -J Fc (r - r', co) • Ap (r', co) dr', (3.1)
v%

where we have used the fact that the fluctuating polarization Ap is zero outside 
the volume of the sample Vs*. We now use the fact that the distance of the ob
server to the sample, min |r — r'|, is much larger than the wavelength, 2tz/co. In 
that case the asymptotic behaviour of Fc may be used in eq. (3.1) and one obtains, 
using also isotropy, see appendix A,

esc (r, co) = — or 
4-

(r - r') (r - r') 
|r - r'|2

x |r — r'|-1 exp [icon (co) |r — r'|] • Ap (r', co), (3.2)

where the refractive index is related to the transverse dielectric constant by

n2(co) = £x (con (co), co). (3.3)

The intensity of the scattered light with polarization u at point r and with fre
quency co is now given by

/„ (r, co) 2tz6 (co - co') = u- (eiC (r, co) e*c (r, co')} • u 

= (4tz)~2 co*u dr' dr" [

L |r - |2 J

<AP (r*. co) Ap* (r", co')) • T1 - (r 0 ('
L \r-r\2 J

u\r-r'\-'\r-r"\-1

x exp {ico [w(co) |r - r'| - n*(co) \r - r"|]}. (3.4)

* In case that only a part of the sample is observed Vs should be replaced by the observed 
volume.



The effect due to correlations in the fluid sample and the nature of the incident 
beam are still hidden in the correlation function

M (r, co | r\ co') = (Ap (r, co) A/7* (r\ co')}. (3.5)

Due to stationarity M contains a delta function d (co — co') as was in fact already 
anticipated in writing eq. (3.4) both on the left-hand side and on the right-hand 
side. In order to simplify eq. (3.4) still further we now use the fact that the distance 
of the observer to the sample is sufficiently large compared to the diameter of the 
sample. Choosing furthermore the origin of the coordinate system in Vs we may 
then take the polarization u orthogonal to r. One then obtains

4 (r, co) 2-6 (co - co’)

= (4-r)~2 co4 J dr' 6r"u • M (r\ co | r", co') • u ei*'-(r'"r'), (3.6)
vs

where a is the extinction coefficient

a(co) = 2co Im n(co), (3.7)

r/s = i (|r - r'| + |r - r"\) (3.8)

and

Ars = co Re ?i(co) rjr. (3.9)

In practice the extinction coefficient is usually very small inside the sample and 
zero outside the sample in which case the corresponding exponential damping 
factor may be replaced by unity. Very close to the critical point, however, one 
may not neglects inside the sample and one should replace ds by the average of 
the distances from r' and r" to the surface of the sample in the direction of the 
observer, <x still being zero outside the sample. We will come back to this in the 
discussion of single- and multiple-scattering in sections 6 and 7.

4. The scattering intensity in terms of density-fluctuation correlation functions. 
In this section we will relate the scattering intensity to fluctuations in the density. 
In ref. 12 we have derived on a molecular basis for a fluid consisting of polarizable 
point dipoles with polarizability <x0 a relation for the fluctuating dielectric tensor 
Eb in terms of the molecular density

9 (r, I) = £ <5 (r-r,(0), (4.1)
/

where rt(t) is the position of particle z at time t. This relation is the following

£b = 1 + <*00 0 ~ Gaoe)"1, (4.2)
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where G is an operator which is defined in appendix B {cf. also ref. 12). For den
sity fields g (r, /) which vary slowly in space and time compared to the molecular 
diameter, i.e. for the long-wavelength small-frequency components of the mole
cular density, eq. (4.2) reduces to, cf. appendix B.

eb (r, /) = 1+ a0o (r, /) [1 — i<x0o (r, /)]"1, (4.3)

which is the relation of Clausius-Mossotti on the fluctuation level.
For many considerations it is sufficient to use the simpler eq. (4.3) rather than 

the exact relation eq. (4.2). We will therefore base our further developments in 
the body of the paper on eq. (4.3) and discuss the modifications arising from the 
use of eq. (4.2) in appendix B. Whereas Eb as given in eq. (4.2) is an operator 
which is neither diagonal in (r, /) nor in (k, co) representation, £b as given in 
eq. (4.3) is diagonal in (r, /) representation and a scalar.

We now introduce the so-called Clausius-Mossotti tensor y by

e = 1 + y.(l - Jy)“», y = 3 (e — 1) • (e + 2)"1. (4.4)

Similarly eq. (4.3) defines a fluctuating Clausius-Mossotti function as

7t> — = 3 (£t> ^ 1) (£b + 2)“1. (4.5)

We shall also use

Ayb = yb - y = a0o - y, (4-6)

AEb = sb — £. (4-7)

With some straightforward algebra, see appendix B, one finds the following 
identity

Ae„ • (1 + Fc • AEb)~‘ = i(E + 2).A7b.(l + K-AYb)-' • (e + 2), (4.8)

where K is defined by

K = | (e + 2) • [Fe — (e + 2) — 1 ] • (e + 2). (4-9)

We note that in the limit of low densities, when e reduces to unity, K reduces to 
T = F — i which is the familiar propagator used in low-density scattering theory 
and which excludes self-polarization effects.

The correlation function M appearing in the scattering intensity, eq. (3.6), may 
now be written in terms of the fluctuations of the Clausius-Mossotti tensor Ayb
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using eqs. (2.15), (3.5) and (4.8),

M (r, co | r', co')

= 3-4 <[(£ + 2) • Ayb • (1 + K • Ayb)_1 • (e + 2) • E) (r, co)

x [(£ + 2).Ayb.(l + K-Ayb)-M£ +2). *>')>• (4.10)

In order to eliminate Ayb in this formula in terms of the density and correlation 
functions of the density we need an expression for y in terms of these correlation 
functions. Such an expression is obtained by substitution of eq. (4.8) into eq. (2.16) 
which gives

<Ayb • (1 + K • Ayb)-1> =0. (4.11)

Using also eq. (4.6) one then obtains for y

y = <«cg(l + K • Ayb)_1> • <(1 + K • Ayb)-,>-1 

= «o?o + <«oA?(l + K • Ayb)-1> • <(1 + K-Ay,)"1)"1, (4.12)

where

A{? = (? — <p> = Q — Qo- (4.13)

In ref. 12 we found an expression for y equivalent to eq. (4.12) which was used 
to calculate £ up to second order in Ao.

The fluctuation in the Clausius-Mossotti tensor is now given by

Ayb =*0Ao - <a0 A? (1 + K • Ayb)_1> • <(1 + K • Ayb)-1>-1. (4.14)

Solving this equation by iteration one obtains an expression for Ayb in terms of Ao 
and density-fluctuation correlation functions. This then leads, upon substitution 
in M as given in eq. (4.10), to an expansion of the scattering intensity in terms of 
density-fluctuation correlation functions. In the next section we will perform this 
program to fourth order in the density fluctuations, <x0 Ao.

5. Expansion of the scattering intensity to fourth order in the density fluctuations. 
In order to obtain an expansion to fourth order in the density fluctuations Ag it 
is sufficient to evaluate Ayb up to third order. Eq. (4.14) yields to this order

Ayb = <x0Ao + <*o <AoK Ao> - «30 <ApK • AoK Ap>. (5.1)

The corresponding result for y is

y = c<0g0 - oc20 <AoK Ao> + «l <ApK • AoK Ao>. (5.2)
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This yields for e using eq. (4.4) up to the same order

£ = £0 - i«o («o + 2)2 <AoK A^> + J (c0 + 2)2 <AoK • AoK Ao>, (5.3)

where

e0 = \ + (XqQq (1 - iao^o)"1- <5-4)

In fact the third-order term in Ayb in eq. (5.1) does not contribute to M up to 
fourth order.

Expanding eq. (4.10) for M up to the fourth power in Ayb 

M (r, co | r\ co')

= 3-4 {<[(£ + 2) • (Ayb - Ayb • K • Ayb + Ayb • K • Ayb • K • Ayb)

• (e + 2) • E] (r, a)

x [(e + 2) • (Ayb - Ayb • K • Ayb + Ayb • K • Ayb • K • Ayb)

.(£ + 2)-£]*(r'f «')>}. (5.5)

An expansion in<x0 A^ is now obtained upon substitution of eq. (5.1) for Ayb. Up 
to fourth order M may then be written as

M = M,, + M12 + M21 + M13 + M31 4* M22> (5.6)

where Mu contains all contributions with an /th power of Ao in the first square 
bracket and ay'th power in the second. M/j is therefore of (/' + y)th power in Ao. 
The intensity corresponding to M/7 will be interpreted as due to the interference 
between the /'th-order and theyth-order scattered fields. One thus finds:

single-single (single scattering)

M, 1 = 3_4«o <[(e + 2) • Ao (e + 2) • E] [(e + 2)-Ao(e + 2 )•£]*>, (5.7)

single-double

M12 = -2-**l(e0 + 2)4 <(A^£) (A^K • Ao£)*>. (5.8)

In this term £ has been replaced by the constant e0, the difference being of second 
order in«0 Ag, cf. eq. (5.3). This would give rise to a fifth-order term ina0 Ao in 
the scattering intensity and may therefore be neglected. The same approximation 
may be used in the other higher-order terms. We have also omitted a term which 
involves the average of Ag and is therefore zero. Note that additional local-field 
corrections are contained in the propagator K, cf. eq. (4.9).
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(5.9)

Double-Single

M2i = -3-4^(e0 + 2)4<(AgK-Ag£)(Ag£)*> = M{2. 

The dagger indicates the hermitian conjugate.

Single-Triple

M, 3 = 3 + 2)4

x <(AoE) [(AoK • AoK • Ao — AoK • <AoK • Ao)

- <AoK • Ao> K • Ao) £■]*>, (5.10)

where again a term proportional to <Ao> = 0 does not contribute. 

Triple-Single

(5.11)

Double-Double (double scattering)

M22 = 3"44(e0 + 2)4

x <[(AoK • Ao - <AoK • Ao» E] [(AoK • Ao-<AoK • Ap» £]*>. (5.12)

The use of the concepts single and double scattering is often confusing. In fact 
the meaning of these concepts is not the same if one expands in o rather than in 
Ao as is done here. In the conventional theories of multiple scattering terms cor
responding to those containing averages between parentheses, in eqs. (5.10) and 
(5.12), do not occur. These terms originate in the fact that we expanded eb in Ao 
around £ rather than around e0, the fluctuating dielectric constant at the average 
density. As a consequence, the so-called shadow or secular contributions*, which 
represent the renormalization of the dielectric tensor z and the propagator K in 
the lower-order intensities, are subtracted from the higher-order intensities right 
from the start. We will come back to this point at the end of this section. Note 
furthermore that the contributions corresponding to M13 and M31 to the inten
sity, which correspond to the interference between the single- and triple-scattered 
fields, are in principle of the same order as the double-scattering contribution. It 
is therefore in principle not correct to neglect these contributions when discussing 
double scattering. As we will show, they do not contribute, however, to the de
polarized scattered intensity.

+ The name shadow contribution was suggested to us by professor R. Glauber. These contri
butions are connected with the attenuation of electromagnetic fields before, between and after 
scattering events.
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In order to evaluate the single-scattering intensity one needs the two-point 
density-fluctuation correlation function

<Ap (kr, coi) Ao (A2, co2)> = (2-)4 q20S (A,, a>,) d (Ax + k2) <5 (Wl + co2). (5.13)

For the higher-order terms one needs the three- and four-point correlation func
tions. In the gaussian approximation

<Ap(A1} w,)Ap(A2, w2)Ap(A3,co3)> = 0, (514)

<Ao (fc,, co,) Ao (A2, w2) Ao (A3, cu3) Ao (A4, co4)>

= <&Q (*i, w,) Ap (A2, co2)> <Ap (A3, co3) Ap (A4, w4)>

+ <Ao(A,, coj)Ap(A3, co3)) <Ao(A2, w2)Ao(A4, co4)>

+ <Ao(A,, Wj) Ao (A4, w4)> <Ao (A2, w2) Ao (A3, a)3)>,

= (2tw)8 gt [S (A,, co,) 5 (A3, co3) 6 (A, + A2) (5 (A3 + A4) 6 (c», + co2)

x 6 (ct>3 + co4) + 5 (Aj, w,) 5 (A2, co2) 6 (Ai + A3) <5 (A2 + A4)

x 6 (&>! + cu3) 6 (ft>2 + w4) + S (Aj, to,) 5(A,, co2)'<5 (Aj + A4) <5 (A2 + A3)

x 6 (cox + w4) 6 (co2 + co3)]. (5.15)

This approximation is in general only correct for small, hydrodynamic wave- 
vectors and frequencies. For larger wavevectors and frequencies it is not strictly 
valid and one should in principle substitute the full three- and four-point correla
tion functions into eqs. (5.8)-(5.12). For the study of critical scattering, however, 
the gaussian approximation will turn out to be well suited. In our further discus
sion we shall restrict ourselves to this approximation. Upon substitution of 
eqs. (5.14) and (5.15) into eqs. (5.8)-(5.12) one obtains

M12 = M21 = 0, (5.16)
I --------.

M,3 = M31 = 3"4«S (e0 + 2)“ <[Ag£] [AeK ■ AgK ■ Ao£]*>, (5.17)

M,2 = 3~*«i(e0 + 2)4

r--------f=7-------1 I 7=; i
x «[AoK • Ao£] [AoK • Ao£]*> + <[A?K • Ao£] [AoK • Ao£]*»,

(5.18)

where the notation implies that only Ap’s connected by lines are correlated with 
each other. In the following sections we will study the intensities corresponding 
to Mn, M13, M31 and M22 in more detail.
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Finally we will shortly discuss a diagrammatic representation of the various* 
contributions to the multiple-scattering intensities. In the diagrams the terms be
tween the square brackets are represented by two straight lines, the Ao's by points 
on these two lines and the propagators K by the line segments connecting these 
points: the Ao’s which are correlated are connected by wiggly lines. In terms of 
diagrams eqs. (5.7), (5.17) and (5.18) become

M,! =

M 22 =

Using the diagrammatic representation it is in fact possible to write MtJ down to 
any order. One may furthermore develop some kind of “Feynman rules” by 
assigning wavevectors and frequencies to the lines, etc.

The shadow or secular contributions, see the discussion after eq. (5.12), may 
also be represented by diagrams. One may then verify that the following diagrams

have been absorbed in the beam (zeroth-order scattering), whereas the contribu
tions

have been absorbed into the single-scattering intensity.

6. Single scattering. If one would replace £ by e0 in the single-scattering inten
sity one would obtain the usual result, which is correct up to the second order in 
the density fluctuations, and which was first derived by Einstein1). In this section 
we will investigate how these results are affected if one does not replace £ by e0. 
The physical interpretation of the difference is simply that the light passes through 
the fluctuating medium rather than through the medium at the average density 
before and after being scattered. We will consider the case that the beam is a 
plane wave which is given by

E (r, to) = E0 elk°'r 2-<5 (to — co0)

with k0 = n((o0) to0 and Eo»ko=0. (6.1)
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The single-scattering intensity is then obtained by substitution of eq. (6.1) and 
(5.7) into eq. (3.6) which yields

Ju 1 (r, w) 2-d (o) — co')

= (4-r)~2 co43"4a2 J dr' dr" e~*(a,)<,‘ 
yn

x J dr? dr? dr? dr? <[w e_,*'r • (e + 2) (r' - r\, co) Ao (r?, co — co0)
v%

.(£ + 2)(r; — r'2, co0) • E0 e'*°’r2 ]

x [w c~lk, r • (e + 2) (r" — r?, co') Ao (r?, co' — co0)

• (£ + 2) (/; - r?, w0) • £0 ei/ro*r2 ]*>. (6-2)

In writing this equation we have used the fact that Ao is diagonal in r and a con
volution operator in co whereas e is a convolution operator in r and diagonal in co. 
Furthermore we performed two integrations over frequencies using the 5 func
tions in the fields, eq. (6.1). We shall now also use the fact that

£ (r, co) = £0<5 (r) - (e0 + 2)2 S(r) K (r, co)P^

will go to zero if r is of the order of the typical fluid correlation length (see also 
ref. 12 where we calculate £ to the second order in the density fluctuations), which 
is much smaller than the diameter of the system. Neglecting surface effects one 
may therefore extend integrations over r', r", r? and r? to infinity in which case 
they simply give the Fourier transforms of the local-field factors. Furthermore 
one may replace £ by its transverse part because ue~'ks'r and E0 e'*°'r represent 
transverse fields. The intensity then becomes

/“ (r, co) 2tu<5 (co - co')

= (4-r)"2 co43-4«o |[«2(co) + 2] [«2(co0) + 2] (£0 * «)l2

x J dr' dr" exp { — [cx(co) ds + «(co0) d0] — i {ks — k'0) • (r' - r")}

x <Ao (r', co — co0) Ao* (r", co' — co0)>. (6-3)

In writing ;z2(co) instead of etr [Re ;?(co) co, co] we have used the fact that the result
ing difference in the factor |/z2(co) + 2|2 is of the fourth order in Ag. The length d0 
and the wavevector k'0 are defined by

d0 = $ko X • (r' + r") and k'0 = Re k0. (6.4)
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In the experimental situation there is usually no attenuation outside the sample. 
In that case it is most convenient to use for E0 the amplitude of the beam just 
after entering the sample so that Eq is the intensity of the incident beam; d0 is 
in that case the average distance from r' and r" to the surface pointing backward 
along the direction of the beam. The factor exp [— a(co0) clQ\ accounts for the 
decrease in the intensity of the incident light between the point where it enters the 
sample and the point where the scattering takes place. Similarly the factor 
exp [— a(o>) r/s] accounts for the decrease in the intensity of the scattered light be
tween the point where the scattering takes place and the point where the scattered 
light leaves the sample. The density-density fluctuation correlation function is 
function of r' — r" alone. Its Fourier transform is given in eq. (5.13). For |r' — r"| 
larger than the typical fluid correlation length the correlation function goes to 
zero. One may therefore again in eq. (6.3) extend the integration over #■' to infinity. 
Furthermore one may replace r' by r" in the definition of ds and d0 because the 
attenuation over a typical correlation length is very small, cf. ref. 12.

The integrations may then be performed and yield
/

A/1 (**, w) = (4-r)~2 a>43-4«o£o |[^2(w) + 2] [n2(w0) + 2]|2

x I0 cos2 0V*S (ks - k0, co - co0), (6.5)

in which /0 is the intensity of the incident light, 6 the angle between E0 and u and 
where

K - J dr exp [-a(co) ds - <x(co0) d0), (6.6)
»'s

where ds is the distance from r to the surface in the direction of the observer and 
where d0 is the distance from r to the surface in the direction of the light source. 
If only a part of the sample is illuminated and observed one should replace Vs in 
eq. (6.6) by the cross section of the illuminated and the observed volume of the 
sample; this should of course not be done in the definition of ds and d0. If the 
attenuation is sufficiently small, i.e. not to close to the critical point, Ksa reduces 
simply to Vs. The difference between Ksa and Vs becomes important, however, 
and will introduce further angular dependences depending on the geometry of the 
sample, if one is quite close to the critical point15). In practice one may always 
replace ck{oj) by <x(w0) in eq. (6.6) and n(oj) by n(co0) in eq. (6.5) using the fact 
that 5 in eq. (6.5) is very sharply peaked around co = co0.

7. The intensity due to the interference between the single- and triple-scattered 
light. The intensity resulting from the interference between the single- and triple- 
scattered light is also of fourth order in Ao and should in principle therefore be 
calculated along with the double-scattering intensity. Substitution of M31 and E,
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as given in eqs. (5.17) and (6.1), into eq. (3.6) yields 

/u31 (r, co) 2-6 (o) - co')

= (4-r)-2 co+3~**i (e0 + 2)4 J dr' dr" dr', dr'2
V

x j dco, dco2 (2-)~2 exp [ —iA:s • (r' - r") + iA0 • (r2 - r")]

i----------------- --------------------------------------------------------- ----------- 1
x <[wAg (r', co — w,) • K (r' — ri, w,) Ao(r',, co, — co2) • K (ri — r2, co2) Ao (r2.

1 1
[« Ao (r", e/ - o0) • E0]*},

- (->o) * Eo

(7.1)

where we have used the fact that the attenuations is of second order in Ao and 
may therefore be neglected*. Similarly one may use e0 rather than £ in As, k0 
and K. Futhermore 7„13 is simply given by the complex conjugate

413 (<■,«) = t/„31 (>■,«)]». (7-2)

Substitution of the density-fluctuation correlation functions gives

/31 (r, 0)) = (4~r)“2 w43-4 (s0?o)4 (£o + 2)4 cos 0/o j dr' dr" dr', dr'2

x j do>, (2-)_1 exp [ — iAs • (r' - r") + iA0 • (r2 - r")]

x [w • K (r' - ri, w,) • K (r, - r2, w, + o)0 - co) • «0]

x S (r; — r2, co — co,) S (ri — r", co — co0), (7.3)

where 0 is again the angle between u and E0 and where u0 is a unit vector in the 
direction of E0. Using furthermore that the correlation functions go to zero if 
the separation is large compared to the correlation length and the fact that this 
correlation length is in general much smaller than the diameter of the sample one 
may extend the integrations over r' and r" to infinity. One then finds

/H31 (r, co) = (4-r)“2 co4 (e0 - l)4 cos QI0S (ks - k0, co - co0) Ks31, (7.4)

where K31 is a factor with the dimension of a volume which is given by

K31 = (2-)-4Jd*dco,i/. K (A, co,) S(As - A, co - co,)

x j dr, dr2 exp [i (A0 + A - As) • (r2 - r,)] 
v%

• K (r, - r2, co, + co0 - co) • u0 (7.5)

* This approximation is not always justified as we shall discuss in our second paper.
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and contains through K, cf eq. (4.9), local-field correction factors. In this factor 
one may use the static approximation for S in the integration

S(k, co) = S(k) 2-<5(co) (7.6)

because the typical fluid velocities are small compared to the velocity of light. 
This gives

Vs31 = (2-)~3 f dk u • K (k, co) S (ks - k)

• J dr, dr2 exp [i (k0 + k - ks) • (r2 - r,)] K (r, - r2, co0) • u0. (7.7)

In a future paper we shall evaluate this contribution to the intensity in detail. We 
shall now therefore limit ourselves to a few general remarks. In the first place, as 
a consequence of the cos 0, I31 (and /M13) will not contribute to depolarized scat
tering. Because of this fact it will in general not be possible to separate these small 
contributions from the single-scattering intensity. These contributions are there
fore not very important, except possibly in the critical region. If only a part of 
the sample is illuminated and observed Vs in eq. (7.7) should be replaced by the 
cross section of the illuminated and observed volume of the sample.

8. Double scattering. The double-scattering intensity contains two contribu
tions. Substituting eqs. (5.13) and (5.18) and (6.1) into eq. (3.6) one obtains 
similarly to the discussion in section 7

/“ (**, oj) = A) (4”/*)“2 co* (e0 — l)4

x J dr' dr" dr', dr',' j dcoy (2~) 1

x exp [ — i&s • (r' - r") + ik0 • (r\ - r',')] 

x [if • K (r' - r\, oj,) • i/0] [u • K (r" - r',', w,) • m0]* 

x S (r; - r", co - w,) 5 (ri - r'[, w, - ft)0) (8.1)

and

I2u,\(rto>) = = I0(4T>r)~2 co* (e0 - l)4
A___

x J dr' dr" dr', dri' J dcux (2tt) 1

x exp [ —i/rs • (r' - r") + ik0 • (ri - rj)] [w • K (r' - r\, w,) • u0

x [u • K (r" — r"lyco - (Oi + co0) • m0]* 

x S(r' - r", co - w,) S (ri - r", w, - w0)- (8.2)
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Using again the fact that the correlation length is small compared to the diameter 
of the system two of the integrations over the volume may be extended to infinity 
so that one obtains

(r, co) = I0 (4rr)-2 co* (e0 - 1)* (2s)'*

x JdAda), [u • K(fc, «,) • u0] S(ks—k,co—co,)S(k—k0, co, — co0) 

x f dr' dr" exp [i* • (r' - r")] [a • K (r' - r", co,) ■ «i0]* (8.3)

and

(r> <o) = Io (4-r)~2 co4 (e0 - l)4 (2tw)-4

x J dA'dojj [« • K(A, co,) • u0] S(ks—k, co —co,) S(k—A0, co, —co0) 

x J dr' dr" exp [i (As + A0 - A) • (r' — r")]

x [u • K (r'«- r", co + co0 - co,) • w0]* • (8-4)

In a future paper we shall evaluate these contributions in detail. If only a part of 
the sample is illuminated or observed one should limit the r' integration in eq.(8.3) 
to the observed part of the sample and the r" integration to the illuminated part 
of the sample. In eq. (8.4), however, both integrations should be over the cross 
section of the illuminated and the observed part of the sample. Using the fact 
that S is sharply peaked in frequency compared to the propagators K one may 
replace the frequency arguments of K in eqs. (8.3) and (8.4) by co0. We further
more recall that K contains local-field corrections, cf eq. (4.9).

APPENDIX A

In this appendix we will derive the asymptotic, long-distance, behaviour of the 
dipole propagator Fc in the medium. Substituting eq. (2.18) for an isotropic system 
into eq. (2.13) one has

(*, co) = £(cy2£T — k2) ^1 - -I- co2£L -^j CO4

= co2 (oj2€t — k2)' 1 if reL (A.l)

I
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where oj is supposed to have an infinitesimally small positive imaginary part if eT 

is real. In (i\ co) representation this propagator becomes

(r, to) = (2-)“3

= (2-)“3J dA:/c

dA CO2 (oj2£t - A2)-1 ( 1 - + eL 1-^-

(o2 (co2et — A2) 1 ( A2 H————

exp(iA • /•)

dr dr

-1
- £l

d
dr

exp (iA • r)

= (4—2i)' dAA ■[OJ2 (co2et A2)"1 d_ _d\
dr drJ

~ cl ‘ ~—“1 r~‘ exp (iter). (A.2)
dr dr J

The integration over A may now be performed by closing the contour in the upper 
half plane. The possible singularities are given by the following.
i) A = 0: this is only an apparent singularity, because of the fact that eL — eT 
= 0(k2), cf. refs. 12 and 16, which makes the term between the square brackets 
proportional to A2.
ii) A2 — &)2£t (A, co) = 0: the solutions of this equation correspond to the trans
verse excitations of the medium.
iii) eL(k,co) = 0: the solutions of this equation correspond to the longitudinal 
excitations. We will restrict ourselves to frequencies for which this equation has 
no solution, i.e. no propagating longitudinal modes are excited in the scattering 
experiment.

The integration then yields

Fc (i*, co) = —co2f 1 + [A(co)]~2 ———^ (47c/-)_1 exp [iA (oj) r], (A.3)
\ dr dr J

where k(co) is defined by

k(oj) = co [eT (k(co), co)]* = con (oj) . (A.4)

For long distances, rk (co) > 1, only terms in Fc proportional to 1 jr survive, so 
that the propagator reduces to

Fc (r, co) = —co2 (1 — rr/r2) (4-r)-1 exp [ico/i (co) #■]. (A.5)

Substitution of this equation into eq. (3.1) yields the desired eq. (3.2) for the 
scattered field.
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APPENDIX B

In this appendix we will indicate explicitly, how the various results are affected 
if one uses Clausius-Mossotti on the molecular level as given in eq. (4.2) instead 
of the simpler long-wavelength small-frequency form given by eq. (4.3). The 

operator G in eq. (4.2) is given by, cf. ref. 12,

G (rt | r't') — G (r — r',t — /')

0 if |r — r'| > a, 
i(F+ P)(r-r',t-t') if |r - i*'| < a,

(B.l)

where a is the molecular diameter. This operator is diagonal in (k, w) representa
tion. The diagonal elements have been calculated in ref. 12 and are given by

G (k, w) = J + [f(ak, aco) — -J] (1 — 3kk/k2)

+ w2 (k2 - ft)2)"1 [g (ak, aco) - 1 ] (1 - kk/k2), <B-2)
where

f(x, j>) = (cos y + y sin j>) (x~3 sin x — x~ 2 cos x),

g (.x, y) — cos x cos y + (y/x) sin x sin y.

Note, that G (k, co) is not singular at k2 = co2 because the poles in (k2 - or) 
are cancelled by zeros in [g (ak, ao) — 1] at ft) = ±k. For small values of k and co, 
G reduces to

G (k, co) = ^ for ak, aco 1. (B.5)

(B.3)

(B.4)

For the long-wavelength small-frequency components of the density one may 
therefore substitute i instead of G so that eq. (4.2) reduces to eq. (4.3), which is 

the equation used in the body of the paper.
If one uses the more general equation (4.2) one should define the macroscopic 

Clausius-Mossotti tensor by

£= i +Y.(1 - G-y)’1, Y = (c — 1) • [1 + G • (c — I)]"1, (B.6)

rather than by the expression given by eq. (4.4). Similarly eq. (4.5) for the fluc
tuating Clausius-Mossotti function should be replaced by

7b |= (8b - 1) * [1 + G • (eb - l)]"1. (B.7)

The identity given in eq. (4.8) is replaced by 

Aeb-(1 + Fe • Aeb)~1

= (1 - y.GJ-^AYb-U + KvAyd)"1 • (1 - G-y)'1, (B*8>
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where K is now defined by

K = (1 — G • y)-j • [Fe - G ■ (1 — y • G)] • (1 -y-G)-1. (B.9)

We will now proceed to prove this identity. From eqs. (B.6) and (B.7) follows

Acb = Eb - e = y„ (1 - Gj’„) 1 - (1 - y ■ G)-1 • y

= (1 - Y ' G)_1 ■ Ay„ ■ (1 - Gyb)-‘. (B.10)

One then has

Aeb.(l + Ft-A£b)-'

= (1 - y-G)-1 • AYb • (1 - Gys)-'

•[1 + F,-(l - Y-G)-1-AYb-(l - Gy.)-1]-1 

= d - Y- G)-> -AYb-[l - Gyb+ Ft • (1 - Y • G)_1 • Ay,,]-1 

= (1 - y • G)-1 - Ay,,

•{1 - G • y + [Fe- G • (1 - Y-G)]-(1-Y-G)"1 -Ay,}-1 

= 0 - Y-G)"1-AYb-{1 +(1 - G • y)-1 • [Ft - G • (1 - y-G)]

•(1 - y-G)-1 -AYb}-1- (1 - G-y)-1, (B.ll)

which proves eq. (B.8) together with eq. (B.9). The derivation of the simpler 
identity given in eq. (4.8) with eq. (4.9) follows if one replaces G in eqs. (B.8) to 
(B.ll) by*.

We will now show that the operator K is equal to

K = H • (1 + y- H)-1, (B. 12)

where

H=F-G. (B.13)

For this we need the following relation between the dipole propagator in the 
medium and in vacuum

F«- F-(l +X-F)-1. (B.14)
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V.

This relation follows immediately from eqs. (2.7) and (2.13). If one uses eqs. (B.6) 
and (B.14), eq. (B.9) for K becomes

K = (1 - +0 - 7 • G)-1 • y • F]"1

- G.(l - yG)}.(l - yG)'1

= (1 - G • y)-1 • [F • (1 + yH)-1 - G]

= (1 - G • y)-1 • [F - G • (1 + y * H)] • (1 + y * H)"1

so that eq. (B.12) follows. If one expands in fluctuations of the density it is in 
many applications sufficient to replace y in eq. (B.12) by<x02o- It is this form of 
the operator K which we used in ref. 12.

The correlation function appearing in the scattering intensity may now be 
written in terms of fluctuations of the Clausius-Mossotti tensor Ay, similar to 
eq. (4.10) as

M (r, co | r\ co')

= <[(1 + x • G) • AYb • (1 + K • Ay,)'1 • (1 + G • x) * E] (r, co)

x [(1 + x • G) • ATb • (1+ K • Ay,)"1 • (1 + G • x) • E]* (/*', co), (B.15)

where we have used the fact, that

(1 - Y* G)-1 = 1 + x-G and (1 - G • y)"1 = 1 + G • X- (B.16)

One may now in principle find the equations for single and multiple scattering 
equivalent to those used in sections 5-8 by the substitution of (1 + G • x) anc* 
(1 + X * G) instead of the local-field correction factors (e -1- 2)/3 used in the body 
of the paper. In practice, however, one may convince oneself that the factor 
(1 + G • x) is only needed at the wavevector and frequency of the incident field E 
and that the factor (1 + x • G) is only needed at the wavevector and frequency 
of the scattered field. See also the discussion of a similar point in section 6. As a 
consequence of this one finds that eq. (4.10) and all the subsequent equations for 
single and multiple scattering, which we derived in the body of the paper on the 
basis of the “phenomenological” Clausius-Mossotti relation, eq. (4.3), are also 
valid if one uses Clausius-Mossotti on the molecular level, eq. (4.2). The only 
difference is in fact that the operator K is modified in the molecular theory for 
molecular wavevectors and frequencies. Using eq. (B.5) it follows that for small 
values of k and co (ak, aa> <1 1) K as given by eq. (B.9) reduces to the simpler 
form given by eq. (4.9).
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If one expands the scattering intensity to fourth order in the density fluctuations 
one may replace y in eq. (B.12) for K byao0o- The resulting operator is then given 
by, cf ref. 12,

K(*,co) = — (3«oPq)_1 [6 (ak, aco) 6 (ak, aco) + 3 
0 (ak, aco) + 1

+ [Q (<ak, aco) — 1 ] [0 (ak, aco) + 3] 

x co2 [k2 — (co + iO)2 Q (ak, aco)]'1 >

where

(B.17)

d(x,y) = 3<x0o0f(x, y) [1 - oc0qQf(x, y)] 1, (B.18)

Q(x,y) - l = <x0Q0g (x, y) [1 - a0q0f(x, y)]~l. (B.19)

For small values of k and co (B.17) reduces to, cf ref. 12,

K (k, co) = J (e0 + 2)2 [Fco - (e0 + 2)"1] if ak, aco < 1, (B.20)

in agreement with eq. (4.9). For larger values of k and co the functions / and g 
will in general be important in order to ensure on the one hand the convergence 
of the various integrals occurring in the multiple-scattering intensities, and on the 
other hand to take the finite size of the particles properly into account.
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1. Introduction,

In a previous paper 1 ^, referred to as paper I, we ham developed 

a formalism tc deal with multiple scattering of light from a non

polar fluid. In this formalism single and multiple scattering refers 

to single and multiple scattering from fluctuations of the density 

around its average value. In this way the theory, though developed 

on a molecular basis, closely parallels the phenomenological theory of 

Einstein to which it leads in lowest order, i.e. for single 

scattering. The expansion in fluctuations of the density is obtained 

by expanding the fluctuating density-dependent dielectric constant 

around the macroseepic dielectric constant. Due to this procedure 

the signal propagates from fluctuation to fluctuation through a 

medium with the macroscopic index of refraction. Formal expressions 

for higher-order scattering contributions were given in paper I.

In this paper we shall analyze the multiple-scattering contributions

in more detail in particular for scattering near the gas-liquid critical

point of the fluid. The first satisfactory analysis of double scattering

3 4 5)near the critical point was given by Oxtoby and Gelbart * ‘ also 

within the framework of a molecular theory. Though their work predicted 

many of the qualitative features of critical double scattering they were 

not able to give an adequate quantitative description. This is due on the 

one hand to a less satisfactory expansion procedure in multiple- 

scattering contributions, leading e.g. to an incorrect local-field 

correction, and on the other hand to the necessity to use 

an unphysical sample geometry in the evaluation of their final expression.

We shall show that the expressions for multiple scattering obtained in 
paper I may be further simplified in the critical region due to the long- 
range nature of the density-fluctuation correlations. In this way 
one obtains more manageable expressions for the explicit evaluation 
of multiple-scattering contributions for an experimental scattering geometry. 
Our formulae show that in each order the multiple-scattering intensity
near the critical point ie in essence a contraction of consecutive 
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uncorrelated single-scattering Intensities. That this is the case was 

conjectured recently by Reith and Swinney on the basis of the 

results of Oxtoby and Gelbart.

In section 2 we give a survey of scattering formulae for single 

and multiple scattering near the critical point which are 

derived in sections 3 and 4.

In section 5 we apply the formula obtained for double scattering 

to the evaluation of the critical depolarization factor for CO^
8)

in an experiment performed by Trappeniers, Michels and Huijser.

The experimentally measured anomaly agrees within the experimental 

accuracy with the theoretical prediction. 91

Finally in section 6 we calculate double-scattering corrections to 

the Ornstein-ZemiKe plot. We find that double-scattering corrections 

are small if one is not too close to the critical point, T-Tc > 0.019C,

but Bhould be taken into account if one comes closer to the critical 

-4 0point. For T-T-c < 10 C triple and higher-order scattering should 

alBO be accounted for.
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2. Survey of scattering formulae for single and multiple scattering

near the critical point.

In this section we shall list the formulae for single and multiple 

scattering which we shall find on the basis of our molecular theory 

for critical scattering.

i) Singl8_s£at_t£rin£

In I we derived the following formula for the single-scattering 

intensity per unit of solid angle in the direction 

with polarization vector us and frequency us

IaCfi..u = I Rio /c)^a p I n^+2| ^/36Tr"l ^S(k -k ,u> -to ) (u *u
ssss OuO 00 J SOSO OS

where I , k , u and to are the intensity, wavevector (K = io Re n(io )/c,k = k ^ ) 
0000 00 o o o o

polarization vector and frequency of the indicent beam respectivelyj

kg ° (u)QRe n(too)/c)^s the wave-vector of the scattered lightj

c is the velocity of light in vacuum) aQ is the molecular polarizability,

PQ the average density and n the refractive index (at the frequency

WQ) of the medium) is the so-called scattering volume which is the

cross-section of the illuminated volume VL and the observed volume VQ;

a = 2w Im n(a> ) is the attenuation factor at the frequency u> , which o o o

accounts for energy losses due to scattering) dQ and dg are the distances 

from the point r, where the scattering takes place, to respectively the 

point where the incident beam enters the sample and the point where the 

scattered light leaves the sample in the direction of the observer.

S(k,u>) is the structure factor of the fluid, i.e. the Fourier transform 

of the autocorrelation function of the density fluctuations. In most cases

one may use in good approximation Clausius-Mossotti (or Lorentz-Lorenz)

2 2a p ■= 3(n -1)/(n +2) in order to relate a p with n. Deviations from oo o o

Clausius-Mossotti, even close to the critical point, are very small.
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In many cases it is sufficient to consider the integrated intensity

I.«W ' Iot‘“o/C)2Voln2*2|2/36,']2st'tS^0H':'5-%)2|eXPC'atdO*dS)>?

(2.2)

The structure factor S is given by

1'S(k) 5 S(k,t-0) - (2m) |dw S(k,w) « kgTicf(5k) (2.3)

where kg is Boltzmann's constant, T the temperature, k the isothermal 

compressibility, £ the critical correlation length, and f the 

appropriate scaling function. For small values of the argument one may 

use the Ornstein-Zemike form of the scaling function

f(x) - (1+x2)"1 (2.4)

In the explicit calculations in this paper we will restrict ourselves 

to this form of the scaling function, keeping in mind that deviations 

will occur if the correlation length becomes sufficiently large compared 

to the wave-length of the light.

ii) Dou_bl_e_S£at_te_ri_n^.

The double-scattering intensity is given by
f

VW " IoCtVc)2aopoin2>2|2/36,04} { dp1d21 exp[-c.Cdo*d21*ds)]

V0 VL

StV*21)S<*21 Ps' 11 -«21S21] • 2 12'51

where d21 = ft21 = Si ' Si 5 Cu0Re n/c)S21* is the

distance between r^ and the point where the incident light enters the 

sample and ds the distance between r*2 and the point where the scattered 

light leaves the sample. The prime in the integration over indicates 

that r^'s for which the line connecting and r2 is not completely 

Inside the sample are to be excluded from the integration.

The formula for the double-scattering intensity may be understood 

in the following way. Light enters the sample and is scattered twice 

(in r^ and r2) using the differential cross-section for single scattering.
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Factors are added to account for the attenuation and the distance between 
+ +
r^ and and the resulting expression is integrated over all possible 

scattering points and rtaking into account the intermediate 

polarization directions. A formula for the frequency (wg) dependent 

double-scattering intensity is given in section 3.

iii) Multipl_e_sca_tterin^.

t i thihe m order scattering intensity is given by
• If

Wv ■ l0tt“o/o)2Voin2*2^38^2m( d\ I dVi•■■jd\j d^i
V,

m-i -? nrL^i ‘W* exp("ad£*i.*)J[expf-a(d +d )"] 
o s J

[v<1 ' ......  ’ (1 “^21^211 ’ Uo]

m +

(2.6)

where d. . „ = |r -r I, = d~' (r -r ).£♦1,£ 1 £+1 £■' M£+1,£ £+1,£ £+1 £
K9+i o = (w Re n/c)a_ . „; k „ = t. and k„ = k j d is the distance

o £ + 1,£ m+1 ,m s 1,o o o

between r^ and the point where incident light enters the sample and dQ

the distance between r and the point where the scattered light leaves m

the samplej V is the volume of the sample. The primes in the integrations 

indicate that only those points should be integrated over for which all 

interconnecting lines are completely inside the sample.

The multiple-scattering intensity is again simply the result of m 

subsequent uncorrelated single-scattering events. The frequency (&>s) 

dependent multiple-scattering intensity may be given in the same way.

iv) S>C£t_te£in_g_^f£rTnul_a£ for in£omo£en_eous_ £y£tems

If one observes light very close to the critical point one must take 

into account that, owing to gravitational effects, the average density pQ 

is not constant throughout the system. In that case the scattering formulae 

have to be amended to take this effect into account. Using stationarity, 

the autocorrelation function of the density fluctuations may be written

in the form
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(2.7)<Ap(r1#t1)Ap(r;,,t2)> => p2(£)S(R,r,t)

where 1$ = Hr^+r^), r = ~v^ and t = t_.-t0. Furthermore pQ(l$)

is now the position-dependent average density.

We now define the structure factor for the inhomogeneous system by 

S(R,k) 2 dr e'lK*r S(R,r.t»0) (2.8)

Assuming that the inhomogeneity is small over distances of the order 

of the correlation length one may use for S(R,k) the form

(2.9)S($,£) » K_Tk (R)f (£(^)k.)
b

Extremely close to the critical point, however, this assumption and 

therefore eq. (2.9) are certainly not correct.

The formulae for single and double scattering 

may be written, using this inhomogeneous structure factor, as

I (ft ,u ) ° I Qu /c)2a /3Btt|2(u -u )21p2(r) I n2 (r)+21 4A (r) 
s s s au o o J s o Jo 1 1 s

V,

S(r,k -K ) dr s o (2.10)

■ IotC“o/c52ao/36n-|4 { d?2 { c,21c0(d1!p0[*2,ln2ld1)*2l 4

V V 0 L

ln (r2)+2 I Adtrl'r25Slr2'Ks"k215S(rl'k2l‘ko)LUs'Cl_n2i^215*Uo.l

(2.11)

A and A. contain the effects due to attenuation ,c H >

AS(D -
exp Q* | dr' a (r ’ f)

(2.12)

r (r)

where for single scattering the integral is along the optical path, 

rs(r),i.e. from the point where the incident light enters the sample 

to r and then on to the point where the scattered light leaves the sample. 

Similarly for double scattering

Ad^1'**2^ “ a*P[- | dr'o(r’f) (2.13)
rd^?2J

where r^Cr^^) i9 the optical path of the double-scattered light.
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The position dependence of the refractive index may be calculated in

good approximation using Clausius-flossotti. ^ We note that the

finite gradient of n(r) will lead to curvature of the optical path close 
81to the critical point. In a similar way one may also give expressions for 1^.

3. The double-scattoring intensity.

In order to calculate the n^h order scattering intensity one needs 

thenth order density autocorrelation function (cf. 1.5), which is 

defined in K,oj representation by

Sn^N ,U11 ’ * *1 kn'wn^ = <AP (^ .^ ) Ap (k^u^) • • • Ap (£n,u>n)> C3.1)

Close to the critical point the small wavevector and frequency behaviour

of these correlation functions becomes important. We shall therefore

write Sn as a sum of a '’hydrodynamic” (i.e. small wavevectors and

frequencies) part and a molecular partn n

S - SH ♦ SM (3.2)
n n n

We shall now assume that in each order the dominant critical contribution 

to the scattering intensity may be found using the hydrodynamic
U

part S alone, n
HFurthermore we shall make the usual assumption that Sn satisfies 

the Gaussian approximation (cf. eqs. (I. 5.14) and (I. 5.15)). In this 

approximation is expressed in the two-point correlation function:

S2^1" (2ir)4SH(£,| #«.j)6 (w1+u2) (3.3)

Hfor n is even and S is zero for n is odd. The index H will be n

dropped from now on.

In paper I we have shown, using the Gaussian approximation, that 

there are four contributions to the scattering intensity which 

are quadratic in the structure factor. The sum of these contributions 

will be called the double-scattering intensity.

d
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31 13Here I and I are due to the interference between the single and

the triple -scattered light and are given Ccf. eqs. (1.7.2), (1.7.4)

and Cl.7.5)), using as incident field a plane wave

£(r,w) - u I^2ir exp(ik •r-Jaft *r)6(w-u ), by 
o o o o o

- I iLo1Vp^|n2.2|2/36,]2s(t ) ) (u*u )(2tt)so OS 'Mdu) u • K.(k,w ) s °

S(Ks-K,u>s-w) j drj dr2 exp[i(t0*t-ts) • (r1-r2)-a(d^d*)] •lt(r2-r1,w0),u0

(3.5)

(3.6)

In these equations we have used the fact that S is sharply peaKed in

4 4the frequency so that the prefactor u)s may be replaced by wqi a similar

approximation has been made in the integrand. Furthermore we have not
-¥

replaced the dielectric tensor e by the Clausius-Mossotti value 
, 2

as we did in paper I, but by n (wQ). The motivation of this alternative 

and more exact replacement is completely analogous to the same 

replacement in the single-scattering intensity which was discussed 

in detail in section 6 of paper I. The factor exp Q-ald^+d^jJ occurs 

for the same reason. This factor was taken into account in paper I in the

discussion of single scattering whereas in the discussion of double 
2

scattering, where n («0) ** was used in paper I, it was suppressed.

Here d* is half of the sum of the distances from r„ and r0 to the o 12

surface of the sample in the direction of the incident beam (the

direction)* similarly d^ is half the sum of the distance from r^ and r2

to the surface in the direction of the observer (the ft direction).
s

Units have been chosen such that thB velocity of light in vacuum ca1.
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Similarly I** and which are duo to the double-scattered field 

are given by (cf. eqs. (1.8.3) and (1.8.4))

° I fw2a2p2|n2+2|2/36Tr|2(2TT) ^(dkfdwlu *K(k,uj )*u |s(k _k,w -w) 
o ■- o o o1 1 -1 j j L s ooJ s s

S(k-ko,a)-u)o)| dr^| dr2 exp[ik- (r2'r^-atdQ*6si] [<V*(V^1,«Q)-uj

VL V0

Where dQ and dg have been defined in section 2.

(3.7)

liP(fl ,u ,u )
2 s s s

IoKa02P>2-|2/3B,|2C2,) 4|dk|daj[jjs*K(lt,wo) ,uo]s(ks-k<ug-u)) 

(k-kQ,w-a)o) j dr^| dr2 exp (jL (ks+kQ-k) * (r^-r^) -a (d^+d^fj

VS vs

(3.8)

The propagator K, which propagates light from one density fluctuation 

to another is diagonal in (k,u>) representation and its diagonal elements 

are, for k and w small compared to (2ir/a) where a is the molecular 

diameter, given by (cf. eqs. (1.4.9) and (I.A.1))

it(t,«) - •g-(c1.+2)2{a)2(k2-eT(w+io)2) +(Cj*2) Hi" '^+g€i_ ^e|_*2^k2

for k,u> « (2n/a)

k

(3.9)

where and are the transverse and the longitudinal parts of the

dielectric tensor i:(it,u)) respectively; io is an infinitesimally small

positive imaginary constant. The behaviour of K for k and w of the order of,

or larger than the inverse molecular diameter is discussed in ref. 10

(cf. also I). We shall not need the explicit large k and w behaviour

of it except for the fact that iuit.w) goes to zero for k> (2ir/a). For
-*•

r»a and w<<(2n/a) the propagator it(r,u) may be evaluated by Fourier 
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transformation of eq. C3.9). Th8 long distance, i.e. r » 2ir/w, 

result may be found analogous to the discussion in appendix A in paper I 

and is given by

K(r,w) • -^(n^(a>)*2)^u2(4irr) ^expUunlwJr) (1- -^j)

for r >> 2it/u >> a (3.10)

We shall first consider I22 which will be found to give the dominant

contribution in the neighbourhood of the cirtical point. In appendix A
«)

we show. Justifying essentially the method of stationary phase,

that in the critical region I22 becomes, except for negligible contributions,

equal to

I12t^s'V“s) ■ I0L“oaopo|n2*2|Z/36,,]Zt2''r3 Mdk
VL VlVlK

exp[ik|r2-r1|-o(do*d8)][ug*K(K^21,wo)-uo]s(Ks-K^21,ws-u))S(K^21-Ko,a>-a)o)

1
(3.13)

where tL. i (r-,-r„)/|r_-r« I and A - 2ir/k . For an order of magnitude 
21 2 1 1 2 11 o o

estimate of the correction terms we refer to appendix A.

13 31 22In appendix D we furthermore show that I , I and I2 are of the 

samB order of magnitude as the terms neglected in deriving eq. (3.13) 

from eq. (3.7).""^ In the critical region one therefore has for all 

practical purposes

«) In this method one approximates jdfi (kfte1^ £-12w
ikr

eikrf(k£)- eikrf(-k- 
r ?]

13 31In fact I and I both contain an additional term of exactly the 

same structure as the single-scattering intensity but roughly a factor 

10^ smaller. This term is therefore in practice- indistinguishable 

from the single scattering and may be interpreted as a vertex correction 

of IB» See appendix B for a further discussion of this contribution.
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(3. VO

except for small corrections.

For |r2~r1|»Xo eq. (3.10) may be used for in eq. (3.13).

The corresponding integrand is proportional to |r2-r^| For large

values of |r2-r^|. In view of this 1^ contains a term proportional to 

the fourth power of the typical diamotor £ of the sample. The use

of eq. (3.10) for all values of |r--r„|>X is correct up to correction1 2 11 o

terms of the order (Xo/£). Substituting eq. (3.10) into eq. (3.13), 

ar)d using also eq. (3.14), one obtains

(3.15)

The limitation of the integration |r2~r1|>Xo has been dropped in-

view of the fact that the difference contributes a term of relative

order (Xq/£) which may be neglected. We now close the integral

over k in the upper half plane. The poles of the integrand are due to

on the one hand the electromagnetic propagator K and on the other hand

the correlation functions S. The propagator K has a pole for

k e won(a)o)*io, cf. eq. (3.9). The residue due to this pole leads to

an integrand for the integration over o>,r^ and r2 in which the exponential

factor merely gives the attenuation of the signal between and r2»

This exponential factor is in general of order unity even over distances 

of the order £ and close to the critical point. The resulting integral 

over r^ and r2 then becomes of the order £4. In the contributions due 

to the residues of the correlation functions the exponential factor 

remains, so that the resulting integral becomes at most of the order 

and may therefore be neglected. Performing the integration over k 

in the above described manner one finally obtains
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Fig. 1 An example of a fourth-order (m=4) diagram with
three dots (j=3) on the lower solid line and five 
dots (2m-j=5) on the upper solid line.

1___ 1

Fig. 2 Examples of "unconnected" diagrams of class i, ii and iii 
respectively.



(3.16)

1dt*s'“s'“s) ° Iof“cVoln2*2^36’]4(2,° 1-KK

- VL V0

d21 axp[-old0*d21*ds)]s(K5-Kon21.Us-U)s(ko321-Ko,U-Uo)

[V'^lV-o]2

The prime in the integration over r^ restricts the integration to values

of r2 for which the line connecting r^ and r^ runs through the sample.

This restriction arises as a consequence of absorbing barriers in the
-+•

experimental geometry and is due to the fact that ,u)q) should

really be taken zero for such points in eq. (3.13).

Eq. (3.16) is the general formula for the double-scattering intensity 

which we set out to derive. Upon integration over u>s one obtains eq. (2.5).

4. The multiple-scattering intensity.

In this section we shall briefly discuss the derivation of 

eq. (2.6) for the multiple-scattering intensity. This will be done 

using the diagrammatic representation of the multiple-scattering 

intensities given in paper I. The mth order scattering intensity may 

be written as

I m
2m-1 Mm.j) 
l l 

j=1 £-1
_j,2m-j 
l

(4.1)

Here ^ is the contribution to the intensity from the 2.

diagram due to interference between the j and the (2m-j) times scattered

fields. The corresponding "connected" £(m,j) diagrams are constructed

in the following way. Draw two parallel solid lines, take j dots

on the lower line and (2m-J) dots on the upper line and finally connect

the dots two by two by curly lines. A typical example for JB3 and ma4 is
•*

drawn in fig. 1. The internal solid lines correspond to propagators K
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whereas the curly lines correspond to density autocorrelation functions S. 

Not all diagrams which may be constructed in this way are "connected”

and contribute to I . The following three classes of "unconnected"m

diagrams do not contribute to the scattering intensity

i) Diagrams with no curly lines connecting the lower and the upper solid 

lines. This class of (unconnected) diagrams has been taken into account 

by the renormalization of the vacuum field into the average field

in the medium.

ii) Diagrams which become unconnected by cutting one internal solid line. 

These diagrams correspond to the renormalization of the external

solid lines.

iii) Diagrams in which either one or the other solid line may be cut in two 

places such that the part of the diagram between the cuts is neither 

connected to the solid line which has been cut nor to the other. These 

diagrams correspond to the renormalization of the internal solid lines

Typical examples of these three classes are shown in fig. 2.

We shall now give the prescription, which follows from our general 

theory in paper I, of how to construct the explicit form of I^'2m ^ 

if the diagram is given. In the first place one ascribes positions
+ : -f ->■ ->r^,..., r2m to the vertex points starting with ^.....r, from left 

to right on the lower line and then r\ + 1,... ,r2fn from right to left 

on the upper line. Secondly one assigns frequencies 1^,1^,. .. ,uk,o>s 

from left to right to the solid line segments on the lower line, this 

including the external lines, and similarly one assigns frequencies

• ■ •. *w2m-1 ,a,o so*id segments on the upper line from

right to left. An example is given in fig. 1. One then has for the 

corresponding contribution to the intensity

X S £ ,U ) - s (4iO *V4I n2*2l f ,2m,-2m+1 
‘Vo1 du). ,du>2m-1

jd?1d?2»f'1VVlIdV • -dVldV2- • [v*‘VVl ’VlK • -“l’
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(4.2)i^'t?r?2ni,'aCVda,]tan*)[SCV?b'"3'“o-1)2*6 ‘V.-1'VVl1]

The product is over all pairs (a,b) connected by curly lines in the

diagram. Furthermore w2m3Wo an<^ a or b equals j one should

replace to. by to in the corresponding 6 function) that this is not J 3
necessary in the correlation function is due to the fact that, owing

to the 6 functions, tos=tOj. The distance dQ is equal to half the sum

of the distances from r„ and r_ to the surface of the sample in the

direction of the incident beam. Similarly dg is equal to half the sum

of the distances from r. and r._ ^ to the surface in the direction of the.

observer. Eq. (4.2) may be found upon substitution of the l diagram

contribution of M. _ , into eq. (I.3.6) using eq. (1.6.1) for thej,2m-j
incident field. The factor |n2(w )+2|4 comes from the four factors 
+ -*■ 0

(£♦2) in M, cf. eq. (1.4.10). Using the fact that e is a convolution

operator in r representation and goes to zero for |r-r’| larger than a

typical fluid correlation length and the transverse nature of the

incident and observed fields the factors (e+2) have been pulled out of

the integration and give |n2((Do)+2|2|n2(u>s)+2| . One may then replace

n(u ) by n(w ) in view of the fact that n(w) varies only very little

over the typical variation of us« For a more extensive discussion of the

conversion of (e+2) into (n2((jQ)+2) we refer to paper I section 6. The

discussion given there also applies to multiple scattering.

Using the fact that S is sharply peaked in the frequency one may replace
-*■

the frequency arguments of the propagator K by wQ. Furthermore we 

use the fact that S goes to zero if lra"rbl is larg°r than a tyPical 

fluid correlation length so that the m integrations over may be extended 

to infinite space.

U) Note that k - w Re n(w ) in this paper whereas we used kQ - «on(u>o)

in paper I.
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If we subsequently write ^^ra-r(3'UJa_ua_^ as a Fourier integral over 

S(K.,u -u .), with i b 1,...,m, one may perform the m integrationsX Q 0“ I

over r^. In this way one obtains an expression in which m integrations

over space-vectors have been replaced by m integrations over wave-vectors.
-»•

This may be done in sucn a way that (m-1) propagators K are still in 

space representation whereas the remaining (m-1) propagator K are in 

wave-vector representation. Furthermore one finds one 6-function in the 

wavevectors restricting the number of integrations over wavevectors 

essentially to (m-1). One may now convince oneself that, as in the 

case of double scattering (cf. section 3 and appendix B), close 

to the critical point the dominant contributions to each order are 

given by the socalled ladder diagrams

with m curly lines in the diagram for I .m

Using finally what amounts to again essentially the method of stationary 

phase for the integration over the (m-1) wavevectors one finds that 1^ 

may be approximated close to the critical point by eq. (2.6) if one 

integrates over ws. The us~dependence may also-easily be given 

but is not expected to be of much relevance.



5. The critical depolarization factor.

In a typical depolarization experiment one measures the scattering

intensity in a direction orthogonal to both the incident wave- and

polarization-vectors (it and u ). The ratio of the two scattering 
o o

intensities, one with a polarization vector ug orthogonal to uQ and

the other with u ° u is called the depolarization factor A. Owing to 
s o

the fact that the single scattering intensity vanishes for us,u0 ° ^

the first, and usually largest, contribution to the depolarized scattered

light is due to double scattering. One therefore has in good approximation

A ■ Id (dopolarized)/Ig (polarized), l

if one is not extremely close to the critical point where higher order 

terms might become important.

In our subsequent discussion we shall apply the theory presented 

in the previous sections to evaluate the depolarization factor for 

an experiment by Trappeniers, Michels and Huijser. In their experimen 

they measured A for C02 at the critical density for a temperature range 

between 0.02 and 0.7 degrees above the critical temperature. A 

similar experiment was recently done by Reith and Swinney for Xenon 

in a comparable temperature range. A cross-section of the scattering 

cell (top view) is drawn in fig. 3, details of the geometry, which are 

not relevant for our discussion, have been left out. The beam is 

from the left and its cross-section has a rectangular shape with a 

diameter of 4.5 mm in the horizontal direction and a diameter of 

in the vertical direction, the polarization is in the vertical 

The observed volume has the 9hape of a parallelepiped! the verti 

diameter was variable and the experiment was performed with vertical diameter 

0.7, 2 and 4 mm respectively. The average vertical position of the 

illuminated and observed volumes was the same (i.e. they were 

with respect to each other). For other data concerning the geome y 

see fig. 3.
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Fig. 3 Top view of the light scattering cell, drawn to scale.
Details irrelevant for our computation have been suppressed.
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Using eq. (5.1) for A. and eqs. (2.2) and (2.5) for tho single

and the double scattering intensities one has, using Clausius

flossotti for a p , oo

[(a)o/c)2(e-1) (e*2)/12nj 2{|dr2|dr1 d22 exp[-a(do+d21*ds) |

V0 V

s(V*2i)s(^r*0)(Ss-221)2rto,S21)2)

{s(Ks~Ko)|exp[-a(d^+d^)]dr’} 1 (5.2)

where we have used the fact that ^us*u0^ is zero or one *n anc* *s 

respectively. We now choose a coordinate frame with its origin in the 

center of \J^t the z-axis in the vertical direction and the x-axis in 

the direction of the boam (cf. fig. 3). Furthermore we assume that the 

vertical diameter of (and hence VgaVgnV^) is sufficiently small so 

that both I_, and I are linear in this diameter. This implies that A 
is independent of this diameter so that A may be evaluated in the limit 

that this diameter is zero. Indeed in the experiment 

no such dependence of A was found. Performing the integration in the 

denominator we then obtain

id
A - | Azdz (5*3)

-id

with

Az « [(uo/c)2(e-1) (e+2)/127r]2{S(M2)4a"2sinh(axo)sinh(ayL))

s(Ko{2[l-f(x1-x2)/d21j }i)exp[a(xi+y2+d21)J * ( ,‘

here d21 => [(x^x^2 ♦ (yi-y2)2 ♦ z2'|2 and d is the vertical diameter

of the observed volume. Furthermore Xg,-xQ,-yg,y0 ancJ

XL'~xL'yL'~yL are t^ie Pos*tions the boundaries of the observed
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and illuminated volumes respectively. The primes in the integrations 

over and y2 indicate as usual that the domain of integration should 

be further limited Dy excluding points for which the line connecting 

with crosses a barrier.

In appendix C we show that

A = lim A, (5.5)
* z*0

exists. Furthermore it is shown in this appendix that in the case 

that the O.Z. form of the structure factor, eq. (2.4), is used Aq 

may be calculated analytically. The result is

Aq » i"[(<*>0/c)2(e-1) (e*2)/12w]2kBTic f (2K^2/(1 ♦2K^2)) (5-6)

where

f(a) = 8a ^(l-a)C^- -1-2 arctg Vi-a2' ♦ (5.7)

For small values of a

fCa) » 1-a ♦ CT(a2) (5.8)

For the special case ko5=0,when f=1, eq. (5.6)

was also found in refs. 6 and 7. According to eq. (5.6) Aq depends

neither on the size of tho system nor on the value of the attenuation <x»

Aq does depend, however, on kQ5 an effect which will be important close

to T • In fact for C0o one has K ( ^ 0.65 for T-T ~ 0.02, so that c 2 o — c -

f 0.63. Extremely close to Tc when so that a-»-1, f(a) goes to zero as

fCa) 2l 2(koE)‘2(tr-2), kQC » 1 (5.9)

As a consequence Aq approaches a finite value if T goes to Tc«

If the attenuation in tho sample is sufficiently small, i.e. when 

aR « 1 where R is a typical horizontal diameter of the sample, it may 

be shown# see also Appendix C, that

A, " A [l-CTtzW)] if aR « 1 (5.10)
z O*" J
This implies that A satisfies

A - AQd[V (Xc^/R2)] if aR « 1 (5.11)
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The depolarization, factor .is therefore linear in the vertical diameter 

of the observed volume if d << R and aR << 1. Such a linearity i9 

confirmed by the experimental results and was first predicted by

Oxtoby and Gelbart ^ on the basis of a molecular theory for a rather 

idealized geometry.

If the attenuation is non-negligible, aR ^ 1. Az and therefore A 

cannot be calculated analytically. This is related to the fact that for 

finite values of a the expansion in z/R does not converge (cf. Appendix C). 

In that case we have integrated eq. (5.41 for Az numerically using a four 

dimensional Monte Carlo integral procedure. ^ In this calculation we 

have used the following critical parameters for CO^:

critical pressure: pc = 7.37 MPa

critical temperature: Tc = 304 K

compressibility: < = p”1 r(AT)”Y

with: AT = T-T (T>T )c c

Y ° 1.199

r = 0.650

critical correlation 
length e ■ 63(T-T )"Y/2 

c
R ky/2

refractive index: n = 1.106

Furthermore we have used for the attenuation 10,14)

a = (54Tr)"1(Wo/c)4(e-1)2(e+2)2KDTxB(2K^2/(1*2K^2))

with

g(a) » | a"3(1-a){-2a+(1*a2nn[(1*a)/(1-a)]} => 1-a*C*1a2) (5.14)

The resulting values for Az as a function of z are plotted in

fig. 4 for a number of temperatures. The variation of Az between zero and

two millimetres is about 14% for the temperature closest to Tci this

In this integration it is most convenient to replace as integration

variables by the variables t and * introduced in appendix C.
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Fig. 4 Az as a function of z for some

temperatures used in the 
experiment. The solid and 
broken lines are calculated 
for the actual value of a 
and for a=0 resp..

-5
A /A z o as a

function of T-T 
for four valuesC 
of z.
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results in a deviation from linearity for A of less than 7% which is

not large enough compared to the experimental error at those temperatures

to have been observed. ^ We have also plotted A^ in fig. 4 for a*0, in

which case Az is indeed nearly constant. This shows that the (ftz2/r2)

term in eq. (5.8) is not yet important for these values of z. We have

also calculated Az much closer to Tc> In fig. 5 Az/Aq is plotted as a

function of tn(T-T ) for a number of values of z. As is seen in this figure 
c

the value of A /A , which is one far away from T , decreases if one zo c
approaches Tc (for z i1 0); very close to Tq, however, this ratio increases

again. The reason for this increase is that some of the double-scattered

light follows a shorter optical path through the sample than the single

scattered light which makes it increasingly important for larger values of

a. It also follows that for AT £ 10_<+ °C the deviation of A from linearity

as a function of the vertical diameter d of the observod volume is not

more than the maximum deviation of about 7% which occurs for AT 0.02 C.

Our results for A are compared with the experimental results obtained by

Trappeniers, Michels and Huijser in fig. 6. The theoretical prediction

(solid line) given in the figure is the average value of the throe values

for A obtained for the three diameters of the observed volume scaled with

respect to the smallest diameter (0.7 mm). The agreement between theory

and experiment is rather good especially in the peak, except for the

value AT = 0.02 °C where the experimental value is too low. Further away

from Tc the difference may be explained by various contributions which

have been neglected close to the critical point, such as the molecu

contributions to I . and tho contributions discussed in appendix A 
d

and 0. The reason for the disagreement at AT “0.02 C is not yet clear 

but is possibly related to deflection of the beam in the gravity induced 

density profile. Tho broken line in fig* 6 represents tho 

a=0 which follow from eq. (5.6). It is seen that tho finite value of the 

attenuation is negligible within the experimental accuracy. The dotted 

line in fig. 6 represents the values for A if both o and kQ£ are taken
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Figs. 6 and 7

The depolarization factor A as 
a function of T-T scaled with 
respect to the diameter 0.7 mm- * 
Circles represent the 
experimental values from ref.
8. The solid line is the 
theoretical prediction. The 
broken and dotted lines are 
obtained from the theory by 
putting a=0 and (a=0, k £=0) 
resp..
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zero which follow using again eq. (5.6) with f(a)»1. Fig. 7 is a double 

logarithmic version of fig. 6, in which the theoretical values are also 

given for temperatures much closer to Tc and where the background has 

been subtracted from the experimental data. We see that A increases as the 

compressibility for AT > 0.03 °C, for smaller values of AT, where 

k £ > 1, A increases slowly and stabilizes at a value of about 3 parts 

in a hundred (for d - 0.7 mm) at AT ^ 10"4 °C. It should be noted that triple 

and higher-order scattering have not been considered, which may affect our 

conclusions very close to T^. Because of the agreement between the experimen 

results with the theoretical values obtained on the basis of double 

scattering alone wo conclude that triple and higher-order scattering are 

yet large enough, for AT > 0.02 °C, to have any measurable consequences-.

In the experiment done on Xenon by Reith and Swinney the smallest 

value of AT is roughly 0.05 °C. In their case the finite value of the 

attenuation is not yet important. They find a downward curvature in the log 

log plot of their data which, as we have seen, is a consequence of the 

increase of the correlation length. We do not expect triple and higher 

scattering to be important in the temperature range which they conside 

Moreover since such contributions would be positive they certainly wo 

explain the downward curvature of the log-log plot as was suggested in 

ref. 6.
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Fig* 8 Top view of the light scattering cell, drawn to scale.
Details irrelevant for our computation have been suppressed.
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5* Corrections to tho Qrnstein-Zernike plot.

In the interpretation of scattering data close to the critical point 

the so-called Ornstein-Zernike plot plays a crucial role. In this 

plot the inverse of the scattering intensity (per unit of V^J is 

plotted as a function of Ik -It |2/k2 = sin2 5 0 where O is the angle 

between the direction of the incident beam and the scattered light. Not 

too close to Tc this plot is a straight line, as is of course predicted 

by the Einstein theory (single scattering) together with the Ornstein- 

Zdmike form for the correlation function. The extrapolated value for 

0=0 is then used as a measure for the compressibility. If one comes closer 

to the critical point, however, deviations from linear behaviour occur.

One reason for this is the increasing value of the attenuation, an effect 

which one usually corrects for A derivation of the appropriate 

formula, eq. (2.1), for this correction on the basis of the molecular 

theory was presented in paper I. A second reason, which we shall discuss 

in this section, is multiple scattering. Since we are primarily interested 

in the influence of multiple scattering we shall net consider two’ other 

possible sources of the deviation from linearity, namely a finite value 

of the critical exponent r\ in the structure factor and a gravity 

induced density profile.

We shall now evaluate double scattering corrections to the Ornstein 

Zernike plot. In the calculation we again consider CC^* The experimenta 

details used in the explicit calculation are taken from the experimen 

on C02 by White and Naccabee. 13^ In fig.8a top view of their scat g 

experiment is drawn; details of the geometry which are not relevan

K) As long as Id is not too large it is sufficient to account for a finite 

value of n only in Ig.
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our discussion have been left out. The beam is incident from the left 

and its cross section is circular with a diameter S.^ a 0.16 mm. The 

polarization uq of the incident beam is in the vertical direction. The 

illuminated volume is therefore a cylinder with this diameter and a length 

£2 ■ 5.13 mm. In view of the small size of this diameter we will 

assume that the double-scattering intensity is a linear function of the 

corresponding cross section in£2, reducing the illuminated volume in essence 

to a line segment for the purpose of the integration. The observed 

volume has the shape of a parallelepiped with a vertical diameter 

£3 - 0.144 mm. The average vertical positions of VQ and VL were centered 

with respect to each other. The resulting cross section of Vg 0 

is somewhat peculiar in shape, in view of the fact that £3<^1» it is 

easy, however, to calculate the surface area which is 0g * 0.019 (mm)A.

The single-scattering intensity is linear in this cross-section. We 

note that the assumption of linearity is only correct if attenuation may 

be neglected over distances of the order of a few tenths of a millimetre.

Using eq. (2.2) for the single scattering one finds upon integration 

over Vg, substituting the Omstein-Zernike form for S, the Clausius- 

Mossotti value for <*QPQ end taking the sum over the possible directions 

of the polarization vector u ,3
Ve> " IoC(wo/c)2(c-1)(c+2)/12ir]2kBTic(1*2e2k^sin2i0)"1Vg(e)A(0) (6.1)

in which the scattering volume is given by

VSt0) " °sJVsin 8 (6.2)

where £^ * 0.36 mm, cf. fig. 0. The factor A(0) accounts for attenuation

For 101 or |w-0| smaller than arctg (U^iJcosOl _1)/£2) ;v 0.051 

eq. (6.2) is no longer correct. The divergence of Vg(0) in the forward 

and backward directions is therefore only apoarent and levels off and 
goes to a finite value for 0»O and *.
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and is given by, neglecting

M8) a exp[-la&2(1+1/cos 0)] (6.3)

For a=0 this factor is equal to one. Very close to Tc the attenuation 

effects should be taken into account, however.

Similarly one finds for the double-scattering intensity from eq. (2.5)

V2 V2
I dz2 d21d(9) - IQ[l(wo/c)2(e-1)(e*2)/127T]4(kDTK)2(iTr4^)£4A(0) [l

-l2/2 -43/2

exp[-a(x1+r-x2/cos6)J (r4-»-z2L(x2-x1 )sin0+y2cos0] 2)

(1*2k2^2[l-(x2-x1)/d21] )’1(V2k252[l-((x2-x1)cos0-y2sin0)/d21’J 3 (6,4)

where r = ((x2-x^)2+y2)2, d21 = (r2+z2)J and y2 = x2tg0. The 

integrals are evaluated in appendix D for the case that a may be neglected 

in the exponential factor in the integrand and under the assumption that 

kQ£ is sufficiently small compared to £2/fi-3 — 00 *

Id(6) " I0L^0/c)2(e-1)(e^2)/12ir]4(kDTK)2(1^2C2k2) 2jtt2^3A(6)

{[l-a2cos2(0/2)]_1' 2(1-a )"3£n(£2/e3)*f1(0,a)*f2(0,a)) (6.5)

where

T^(0,a) = a 4(1 + cos0) (1-v4-a2)-Ja 2cos0*[l-a2cos2(0/2)J 

C1-a2)“i{1*|£n[4(a"2-1)(1-/^?)(1*/-a2)“1])

♦ Cl-a2cos2(e/2)]"1a‘4(sin0)"1[l*a2sin2(0/2)] [0-2arcotg(V^-?cotE(O/2))

2it

M0,a) ^ fd<> £n* (1+a cos4>) ^[l+a cos(0-$)] -1

(6.6)

(6.7)

and

a £ 2C2k2(l+252k2)“1 (6*0)

^he last integral f_ takes account of the precise position of tho
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Fig, 9 The Ornstein-Zernike plot. The inverse of the single
scattering (solid line) and of the single- plus double
scattering intensity (broken line) per unit of volume and 
of incident intensity and corrected for attenuation as a 
function of sin2$0.
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boundary through

♦ = | sine| 1 max£ fsin$|, | cos© sinC0-«J>) | j (6.9)

The formula for I_,(0) given in eq. (6.5) contains a term proportional d
to *3 An(*2/£ ). For l3 sufficiently small compared to &2 this term

gives the dominant contribution. In fact for the values of and

used in the experiment this term gives roughly 80% of the double

scattering intensity depending somewhat on 0 and the temperature, however.

In earlier discussions the occurrence of the logarithm was not noticed.

If one approaches the critical point the finite size of a will become

important first of course in A(0) which accounts for attenuation over the

longest distances and then by changing the value of the integral in eq.

(6.4). It is shown in appendix 0 that the finite size of a will only affect
f^(0,a) and f2(0,a) but not the term containing the logarithm. In

view of the fact that this logarithmic term is dominant the effects due

to the finite value of a on the integral are in general very small until

rather close to the critical point. The logarithmic dependence is affected,

however, if kQ5 > cf. appendix D. For kQ5 » ^^3 the loSarithm

will in fact vanish. We have also computer-integrated eq. (6.4) for Id(0)‘

It turns out that even for AT a 10 4 ^ eq. (6.5) is at most 8-s of.

In the plots wo have therefore always used the results of eq. (6.5).

In fig. 9 we have plotted the inverse single-scattering intensity

and the inverse ''total" scattering intensity per unit of volume and incident

intensity, and corrected for the attenuation factor A(0),
I V_(0)A(0)/I (0) and I Vc (0) A(0) (I (0) ♦IJ0)) 1 respectively, for a os s oS so ^
number of temperatures at the critical density as a function of sin |0j 
the Ornstein-Zerniko plot. In fig. 10 we plot the corresponding ratios of 

the single scattering over the single plus double scattering intensity.
As is to be expected Id is negligible for AT ■ 0.1 °C and is relatively

B) In ref. 5 a spherical sample was used. In that case one has no logarithmic 

dependence as may in fact be seen by taking %2 anc* *3 0Qua* *n 8C** (6*5).
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Fig- 10 The relative contribution of the single-scattering
intensity to the single- plus double-scattering intensity 
as a function of sin^0.
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small for AT = 0.01 °C. For AT - 0.001 °C Id contributes between zero and

30* to the total scattering intensity depending on the scattering angle.

Closer to T the double scattering intensity becomes so large that it c

is in general no longer correct to neglect triple and higher order

scattering contributions. An important and useful feature is that in both

the forward and backward directions (6=0 and ir) 1^ becomes negligible

compared to Is» The reason for this phenomenon is that Ig is proportiona

to V$(0) -v (sinO)"1 m) whereas Id may be shown to diverge as An 0

respectively An (tt-0) in the forward 3nd backward directions. Similarly it

is to be expected that higher-order than double scattering will also

vanish compared to Ig in the forward and backward directions. These results

imply on the one hand that contributions due to multiple scattering can bo

minimized by measuring close to the forward and backward directions and

the other hand that even rather close to the critical point k may be

by extrapolation to 0=0 as long as this extrapolation is not done

linearly. Wo want to emphasize that these conclusions depend strongly

on the nature of the scattering geometry. This explains e.g. why Oxtoby

and Gelbart ^ find a completely different behaviour.

Finally we note that linear extrapolation in the Ornstein Zernike plo

using the temperature independent slope found further away from the

critical point, will yield a value for x which is somewhat too large closer

to T . This may account for the sometimes observed apparent increase
K , 13)

of the value of the critical exponent y if one approaches i c«

See footnote on page 59 .
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Appendix A

In this appendix wa will show that the use of the stationary.phase 

method in the body of the paper is Justified by estimating the typical 

order of magnitude of the correction terms. We will use the following 

exact equality for a function f(k):

Jdk f(k)eiK'r « 2 it jdkjk2f(k £)eikr/ikrj - elk‘r/ikr CA.1l

-oo

where 0 is the angle between r and k. The equality may be derived simply 

by partial integration with respect to cos 0. The first term on the right 

hand side of eq. (A.1) is the stationary-phase approximation ^ for the 

original integral; the second term represents therefore the correction 

to this approximation.

We will now first consider the derivation of eq. (3.13) from

eq. (3.7). In this derivation we will disregard the frequency dependence

22of the scattered intensity in that we will integrate 1^ over u)s.

Eq. (3.7) then becomes, taking for simplicity’s sake o=0,

I22((S ,u) = C(2ir) ”3 [dkfu .k(£,u) )-u ]S(k -k)S(k-k )Iss JLS OOJ S o

exP(Vfy] P8-*( V?1 '“o3 J " • CA*2)
where

C = I rw2o2p2(n2*2)2/36ir]2 (A. 3)
O^OOO J

We now split the integral in eq. (A.2) in two parts, one part with

IrL-r. |<X = 271/unand the other part with |r0-r.|>X . In the first ,21,o o ■21lo
integral one may restrict the integration over r1 to Vg and the integration over 

r2 may be replaced by an integration over r » r^r^ which is restricted 

to a sphere with radius XQ. In the second integral we use equality (A.1) 
for the integration over k. One then obtains

I22 - CCJ^J^Jg) (A.4)

In view of the small value of a this will not affect the estimates 
of the correction terms in an essential way.
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whare

^1 C Vsl27r) J13k[us*K(£,uo) •uo]s(its-'it)S('^-'Ko) jdr oxp(iit'r)

r<Xo

[us*K(r,ujo) • Uq] = 4tt Vs(2tt) j dkdk1 [ug'ltdt,^'u^l

S(K -k)S(K-K )[u •K(k'-k#w >u I * C K * A cos k'A - sin k'A )k * 
s oLs oa'o o o

J2 = (2,t) 3 |dr2 [us-K(k.a)o)-uo]s(ks-k)S(k-ko)}

VL V0'lr2_:?ll>Ao

C1KI r2"^i 13 1 exp[ilt*(r2-r1)][us*it(r2-r1,«0)*u0]*

(A. 5)

(A.6)

J3 - -i(2ir)

00

jdk kjdr^jdr^ [u -K(kft,u> )-ft'|S(k -kft)S(kft-k ) 
l- s oo 's o

(A.7

VL VQ,|r2-r1|>A(

exp(ik|r2-r1|)[us*K(T2-r1,w0)-uo]

where 0 is the angle between it and i^-r^ and ft = (r2-r<j)/|r2 | •

We shall show that for critical scattering J1 and J2 may be neglected 

whereas is the approximation to I22 used in the body of the paper.

We may estimate J^ in the limit of zero molecular diameter, a»0.

In that limit the it propagators are given by eq. (3.9) "f°r values 

of k and u. For finite values of a the corrections to are of 

a/AQ or a/? and may therefore be neglected. In the estimation of 

of magnitude of we will furthermore use that e^ and e-j- are in go 

approximation equal and independent of k and o> • ar)d Put eL eT 

constant. The integral over x' may then be performed explicitly by 

complex integration. The result is

J13 WK)
2(i^)2C2w)-3|dltps.^(it.u,o).uol(i-^2|Tt-lts|2r1(i^2iK-Tto|2)

{ V [(2kAoe)_1 l(kAo*2Tt) _1 (eiKX°-1) *0^-2*)

2“1

"1(e“ikX°-1)]*kk/ek2-(e+2) 1] • uo)*

(A.0)

where we have also introduced the Ornstein-Zernike form of the correlation

function, eq. (2.3) together with eq. (2.4).
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We shall now analyse the behaviour of 3^ for very small and very 

large values of = 2TT^/XQn. In the limit that u)qC goes to zero it is 

convenient to rescale the integration variable x = k£. If one then 

replaces u>o£ by zero in the resulting expression one obtains

J1 * VstKBTK)2[^)45'3(2^r3|dx|3s-C5/ex2-te.2)’1].50|2t1«2)'2 (A.9)

Using the fact that the integral, which may in fact be calculated exactly, 

is of order unity we find the following estimate of J,

Ji “ <?Tvstk toY3) if w £ « 1 o
(A.10)

In the limit that goes to infinity it is more convenient to rescale

the integration variatle x = k/k . One then obtainso

VsCKbTk) ^0 k^\ 4(2tt) 3|dx[us’K(x,n ^J’u^Uk^) 2+jx-ils|2 ) 

jj*0£)~2+|x-i$0|2] [tfin2xe)""1 jjx+1)-1 (e2lTix-1) + (x-1)_1 (e"2lTix-1)]

♦ xx/ex -(e+2) % CA.11)

In the limit o>o5 goes to infinity one may replace (k^f;) by zero in the

integrand. The resulting integration is of order unity so that

J- - CTCV-Ck-ncc'Vk'1) if w i- »
t b b o o

.-2,2. -i
(A.12)

.2 .We see therefore that will, since k is proportional to increase

as £ for £k < 1 and becomes constant for Ek > 1. o o

Let us now consider 3^» In estimating the size of J2 we may extend the 

integration over ^-r^ to infinity. The integration over r^ may then be 

performed and gives a proportionality factor V^. Substituting also the 

Omstein-Zernike form of the correlation function one then obtains

J2 - VLtKBTx)2(2.r3|dK fd? Ps-K^.Uo)-uJ](1H2|Mts|2) 1

r>X

|2) \ikr) 1 exptik.r) fu -KCr,!!) ) • u I*
O 1 Z O 0J 1 A.131

For (i> E » 1 it is convenient to rescale x - k/k and y = rk
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-2

In the limit that wq£ goes- to infinity J2 becomes, using

arguments as given in the corresponding discussion of

-? 2 -1 , (A.14)J2 = t^VL(KBTK5 ) Kc1) if » 1

For u>o5 << 1 it is more convenient to rescale x a and y r/t

the limit that u)q£ approaches zero J2 then becomes

J2 ■ VLCKBTK)Y3C2iTf3 Jdx )

y>*0/5

-1 -+ -*■ {-*■ + + , + t* (A. 15)
(ixy) expCix«y) Iu_*K(y ,0)'u^l

If the lower bound in the integration over y would be onc»one

find J_ - CT(v, CKRTK)2r3) similar to J1 in that case. Because of the 
Z L D 1

lower bound, however, an additional factor is obtained

/ 7-7 a (A.15)J2 B (7(Vl(KbT<)2C if «0* << 1

in view of the fact that ^ ahd V,. are of the same order of magnitude 

this implies that

(A.16)
J2 « Jn if u)qE, « 1

whereas they are of the same order of magnitude for uQZ >> 1•

In the body of the paper the contribution due to J3 *s analyzedj

there is shown that

Jq a (/fvc(KRTK)2K^d) if wq£ « 1

if woC » 1J3 - tf^V^ToV^d) 

whore d is a typical diameter of the scattering sample. The rela 

order of magnitude is therefore

(A.17) 

(A.10)

(y(lkQ£) (kQd) ) if

ffCCK d)”1)
0

if

(A.19) 

CA.20)

For a typical scattering experiment kQd ^ 10 • This implies that

will become dominant for k £ somewhere between 0.1 and 0.01.
o
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Appendix B

In this appendix we shall show that the contributions of I22. 

t13 ^ T3li and I are of the same order as the correction terms of the stationary 

phase approximation to I22 discussed in appendix A. Integrating the left- 

and right-hand sides of eqs. (3.5) and (3.8) over and substituting 

the Omstein-Zernike structure factors wg get, using again a=0*

i31(J5s,us) - ctk,
-f

3Tx)2(1*52|Ks-k0|2)"1(us*uo)(2TI)"3 dk us-K(k,uo)

C1^C2|ks-k|2) 1 jdrn |dr2 exp [itk^k-k^) • (r^^)] •|^r2-rylJd) ‘u0 [6,1)

V5 VS

l22(^s.ug) = C(kBT«)2(2n)'3 Jdk -uj (1^21ks‘k|2)

cv^Ik-kJ2)"1 j dr^ fdr2 exp[i (ks+kQ-k) • (^-^)]

V V S S
i ■+■ •* , + (B.2)

with the constant C defined in eq. (A.3). Similar to the discussion of 

the correction term J2 in appendix A we may now extend the integration over 

one of the space variables to infinity. One then obtains

I31(fis.ug) = CVs(kQTK)2(1*C2|ks-ko|2) 1(us-uo)(2tt)“3 jdk (1 +£21 kg-k|2)

"u *it(k,u )*K(k +k-k ,u» ) • u (0.3)
s o o s o o

■ CVs(k0Tx)2 Jd£ (1*c2|ks-k|2) 1 (1*£2|t-tQ\2) 1

[u8-*(«.«0) *uoJ fus*it(lts^o-lt,c,o) -uj * CB.4)

Introducing rescaled integration variables similar to the ones we introduced

22in the discussion of and J2 in appendix A the estimation of I2 is

straight-forward. The result is

We exclude the special case that k a -k in I22 and k «* k in I31
s o i so
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CJ1 ° C(T(VstKBTK)V3) (8.5)
22

a2

and

t22

for uq5 « 1

l2 ■ C 0[\J (k. Tk£"2) V1)
!T£llVQIKt J *0 J f0r W0^ >> 1

31In order to give an estimate of I 

as a sum of two terms

I31(fis,us) = C(J4*J5)

(3.6)

we write this contribution

(5.7)

with

J4 “ -VS(kBTK)2(1^2|Vlto|2)"1(';'s^o)(27r) Jdk (dV*|)'2(1^2lVJ|2)

u *K(k,to ) • K(K ♦K-k ,a> ) • u 
5 o o S O 0

(8.8)

J5 " VkBT<)2^ 2MH2|ks-ko|2) 1 (us*uq) (2n)"3 dk |£s‘k| “2us*it(k,&)0)

K(k +k-k ,co ) • u o s o o
(3.9)

Along the same lines as in appendix A one may estimate J. and one finds

OTvs(kBTK)2c"3)
for w £ « 1

^4 = OiM,_(kT<£ 2) K **) for w £
6 B n n » 1

(8.10)

(B.11)

rhe integrand in is of a different nature than e.g. the one in

In that it tends to zero as k 2 Instead of k for large values of k if one
■f

Jses eq. (3.9) for it. This would lead to a divergent integrand. In view
-*■

this, eq. (3.9) may not be used for all values of kj the fact that K

'pproaches zero for k > k = 2n/a is essential to make the integral convergent

tether than using the more complicated general expression for K valid for

'U values of k which was derived in ref. 10 we will simply use eq. (3.9)

ind introduce a cut-off at k = k^. Neglecting furthermore terms of

®lative order a/A we may take k , k and u> equal to zero in the integrand.□ 3 s o o

In fact one finds CJ5 = {(15tt) ^aopokB^K^ ^3 + ^°opo^*s^s'Us^ 

if the proper expression for K, is used.

69



The result is, using as in appendix A the simplification eT » ° e a n ,

V-(kRTic)V2(1*e2|K -k |2)"\u -u ) (2tt)~^u • [dk k'2l<(K,0) *it(k,0)-u 
ora ‘so1 so s J

k<Kn

» 3'W2(c*2)2(e2*2)Vs k^T<5~2 ^(k^) lV“o)2 

This leads to the following contribution to the scattering intensity

cj5 - J3"5*"5 "2a2p2c"2(E*2)2(e2>2)K..TKc’2K
OO D

i v*A

(0.12)

(9.13)

13I obviously contains exactly the same contribution. The value of CJ,. 

is in general a few per thousand of the single scattering intensity. This 

contribution will in a wide range of temperatures and densities around the 

critical point be submerged in, and therefore be indistinguishable from, 

the single-scattering intensity. The only effect of not correcting for it 

is a small error in the measured compressibility but not in the critical 

exponent y. In view of this one may in general also neglect this contribution 

in the evaluation of the multiple-scattering intensity.

Appendix C

In this appendix we shall prove the existence of lim Az, evaluate
z-*0

this limit and study the behaviour of &z for small values of z.

We introduce the integration variables s and *> defined by

(x1-x2)|z| 1 = s sin *. and (y1-y2)|z| 1 = -s cos <1 into eq. (5.4). One

then obtains

Az - [(uo/c)2(e-1)Ce*2)/12Tr]2 {S(kQ/2)4a“2 sinh (axQ) sinh (ay^)"1

x0 yL 2v R/
jdx2 |dy1 exp[-a(x2+y1)] jd*. sin2*. 2 jds g(s,*>) exp[-a|z|{(s ♦!)

+ s(cos $ ♦ sin <>)}] (C.1)

where
70



Sis,*) = s3(s2*1)73S(ko{2[>3 sin* /(s2+1)i]})S(ko{2[l ♦ s cos* /(s2*1)3]})

(C.2)

and where R = RCx^y^*) i sup [(x.j-x^My^y^J * accounts for the 

position of the boundary.

We shall now prove that the following equality holds for any posi
rui"1

Urn (ds gts.o) exp [-o|z|{(s2*1)J*sCcoa * * sin *))] * Jds gCs.*) CC.3)
ZH-0 JQ 0

Take s such that for an arbitrarily chosen positive e r
oo

|Jds g (s, *)| = |ds g(s.*) < i -al . ee < Je (C.4)

where we have used the fact that g(s,*) > 0. The lenght l is the 

maximum diameter of the sample which implies that e can be used as 

a lower bound for attenuation effects; in general e al is of order one. 

Using furthermore that the exponential factor, cf. eq. (C.3), converges 

uniformly to one for z+0 in the interval 0<s<s£, we may choose a 6 

such that for |z|<6

€ £ 
|Jdsg(s,*) exp£-a| z| { (s2+1) ^*s(cos **sin *)}J - Jdsg(s,*)| < Je (C.5)

It then follows that ■)

R/ zl
dsg(s,*) expl-a|z| { (s2+1)^+s(cos *+sin *)}] - jdsg(s,*)|

e E
jdsg(s,*) exp f-a| z|{(s2+1)3+s(cos *♦ sin *))] - Jdsg(s,*)|

R/lz| -
♦ | jdsg(s,*) exp[-a| z| {(s2+1 )^+s(cos *+sin *)}J| ♦ | jdsg(s,*)| < e

S Sre e (C.B)

It thus follows that the limit exists. Upon substitution of eq. (C.3) 

into eq. (C.1) the integrations over x2 and y^ may easily be performed

In fact it is assumed in the argument that R > i. which is nc 
necessarily true for all values of x2,y, and This do0s not affsct th0 
conclusion, however.
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and one obtains
2it *

Ao " " ^Uo/c)2/(e'1)(e*2)/12ir]2Cs{k0*/2)]"1 [d$ sin2^ jds8*s*^

0 0
(C.7)

W8 shall now evaluate Aq for the case that the structure factor 

is given by the Ornstein-Zernike relation. Substituting the Ornstein- 

Zamike form for S, cf. eq. (2.3) with eq. (2.4), one obtains

00 2IT
Ao " D»c/C)2(e-1) (c^2)/12ir]2kBT»c(V252k^)jds|d<. s3(s2*1)"3sin24>

0 0

<1*2*V[>9 sin* /(s2+1)i])"1{i+2^2k2[l*s cos* /(S2♦ 1) }"1 (C.B)

Introduction of t = s2/(s2*1) yields
1

Ao * [C“0/c)2(e-1)(c+2)/12ir]2kBT>c(1*2C2k2)"1i|dt t I(t)

with
2tt

I(t) » jd* sin2* (1+a/t sin *) 1 (1+a/t cos
0)

(C.9)

2w
b2 jd* sin2* (sin* +b) 1 (cos* +b) 1 

0

where a and b are given by 

a = 2£2k2/(W52k2) and b = (a/t)"1

(C.10)

(C.11)

We now introduce the variable C = exp(i*). The integration is then over 
the unit circle in the complex c plane
I(t) - -b2|dC(C4-2c2*1)[j;(J:2+2ibt-1)(c2*2bf1)]'1 

- -b2jldcU4-2c2*1) [cU"^) (C"C2) (C-iC.,) (C”U2)] ~1 (C.12)

where

C1 = -b-Vb -1 and U 2 -b+V'b2^i' (C.13)

Taking ths residues in the poles of the integrand inside the unit 
circle at C“0# C”C1 and C-iC1 and using the identity (c4*1) “
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(C.14)I(t) - 2ir[Vl-a2t (2-a2t)]_1

2t)iThe integral over t is easily calculated by the choice of 

as the integration variable

fdt t I(t) = 4TTa‘4(£ -1-2 arctg /l-a2 ♦ Vl-a^)

0

If one substitutes this result into eq. (C.9) one obtains eq

with (5.7).

We now consider the behaviour of Az for small values of 

If oR « 1 for all values of x^y., and $ thB exponential factor for 

attenuation in eq. (C.1) may be replaced by unity. We subseque y

R/ |_Z | co CO
ds g(s,4>) = jdsg(s,<

i
R/

dsg(s,$). The first integral yields A

In the second integral one may expand g(s,4>) in powers of 1/s 

(g(s,$) is analytic in s=~). Integration of the resulting expression 

over s leads to a power series expansion in (z/R) • The lowes 

correction goes as (z/R)2. This leads immediately to eq. (5.10j.

In the case that aR > 1 it is necessary to take the exponential
'v

factor, due to attenuation, in eq. (C.1) into account. This expon 

factor, however, has an essential singularity in s=®. As a con q 

of this it is no longer possible to construct an expansion in p 

of (|z|/R).

Appendix D

The double-scattering intensity given in eq. (6.4) may be written 

in the following form

Id(6) " Ionwo/c)2^-1)(e>2)/12ir]4,(kDTic)2(in^)A4A(0)J (0.1)

where J i9 the integral appearing in eq. (6.4). Introducing two new 

variables t and * by (x -x2) - r cos (0-*), x2 - r sin (0-$)cotg'0 
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(D.2)

. 2. 2 2 -1and t » r (r +z ) the integral becomes 

J - *CV2tVf2

with
1/2 t 3 2 it *1

^ jdz jd$ |dt(1-t) ^ (1+a/t cos $) ^(1+a/t cos(8-<{0) ^A(z,4>,t)
-IJ2 0 0

l /2 t 3 2n Z2

^2 " “ | dz jd$ |dt (1+t cos2<*>) (1+a/t cos «$>) 1 (1+a/t cos C0-<J>))
-IJ2 0 0

A(z,$,t)

(0.3)

-1

(0.4)

i n t
3 2 n Z2

J3 " 2» jdz jd* [dt(l-t)"1 (1+a/t cos*)”1 (1+a/t

-1/2 0 t4
3

cos(0-*)) 1A(z,<^,t)

(0.5)

where

t1 i 12(12+4z2)’1 and t2 = 12(1^+4zV)"1 CD.6)

with

* = | "sin 0| 1 max 0 sin <j»|, |cos 0 sin (0-<J>) jj (0.7)

The position of the plan-parallel plates which serve as boundaries of 

the sample is accounted for by ♦. The factor a has been defined in 

aq. (C.11). Effects due.to attenuation are contained in

A(z,*,t) = exp [-az(t/(1-t))^(sin0) ^(sin 0 + sin * + sin (0-<J>))3 (0.8)

In the evaluation of these integrals we shall use the fact that i.3/£2

and therefore z/ln are small. In view of thi9, t. and t„ are both close 2 12

to one. In and J3 the integrand is singular in t=1j the integrand in J2»

however, is not singular in t=1 and one may therefore replace in good

approximation t^ by 1 in this integral.

We shall now first evaluate J^, J2 and J3 in the case that the attenuation

may be neglected, A(z,*,t) » 1. Note that this does not necessarily imply that

the factor A(0) in I . and I which accounts for attenuation over larger d s

distances, cf. eqs. (6.1) and (6.4), is also close to unity! Consider first J^. 

, The integration over * may be replaced by an integration over the unit circle
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<

in the complex plane by the substitution ? “ exP 6/2)^

Similar to the discussion in appendix C this integral is 

the sum of the residues in the two poles inside the unit

result is
V2 t,3 1

dt (1-t)"1(1-a2t)"iC1-a2t cos2(0/2))‘ ldz I
~V2 0

We now substitute x = Vi-a2t and obtain

(0.9)

* (1-a2cos2(6/2)

V2 1
) 1 | dz|dx{(1-a2) 3[(x-Vl-a2) 1-(x+/l-a2) j

-I /2 x.3 1

? 9 i (D*10)
"2[x+tg( 0/2)] >

where X, - The integration over x is elementary end yields

i n
3r 2 2 -.-if 2 -i I (1-Vv-a2) (x^Vv?)

1 - fr-- cos (e/2)J Idz{1"a J anrri.vT?)(x.V77)

“V2
(D.11)

♦ cotg (0/2) [0-2 arcotg(x1 cotg(0/2))]>

In order to perform the integration over z we will use the fact 

z « *3/2 « Jl2/2. Expanding x1 one obtains

x, . ClV^MzV1]* - /Ta2' [1.2 4 e^i-a2,’1 * C^,| ID.12)

l2

We note that very close to the critical point, where a approaches 

the expansion coefficients diverge. So close to the critical point, 

it is no longer justified to neglect attenuation effects and
comment on that region later. Upon substitution of eq. (D.12) one ob __||

J, - *3l1-a2cos2(e/2)f1l1-a2f!<2 in(i2/*3>.2.tn[4a'2CI^HI-V^hWwT) ]

. »£? cotBC8/2)[e-2 arootg(/-72' cotgl0/2)fl ‘D-13)

Note the occurrence of the term proportional to *3*ntt2/*3)• Thi9 term'

which is due to the singularity of the integrand in t»1 (of. eq.

the reason that the integration over z can not be evaluated in a more simple
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manner, by making the integral essentially linear in *3, as was done 

for some other integrations.

In J2 we may safely replace t^ by 1 neglecting again terms of higher 

order in ; the integrand is not singular in t»1. The integration

over z is simply an integration over a constant. Furthermore the integral

over $ may be performed in the same way as the (> integration in 

The result is 

1
J2 - -t3 jdt[(1-a2t)"*(1*t cos2(J0))(1-a2t cos2(i0))_1 

0

♦ a 2cos0(1-(l-a2t)~*)J 

Using again the substitution x

(D.14)

1-a t one obtains for this integral

*^2 = ^3a &C1- ) (sin 0) ^(0-2 arcotgCV^I -a2 cotg(0/2))

♦ 2(1+ cos 0)(1- -a2cos 0] CD. 15)

Finally in we use the fact that both t^ and t2 are close to one.

In good approximation one may then replace the /t factors in eq. CD.5) 

by unity, assuming again that a is not so close to unity that complications

may arise for small values of $ or 0-$. The integration over t may then

be performed and gives

£3/2 2tt
1_
2it M-v2 0

d$ t£n *)(1+a cos ^)-1(1+a cos(0-<J>))-1 CD.16)

where higher-order terms in z/£2 have been neglected. Performing the

integration over z one then obtains 

2ir
J3 » " ^ £3 Jd$ t*n *H1+a cos <}>) ^ (1+a cos (0-(J>)) 1 CD.17)

0

Substituting J2 and ^3 as Biven by eqs. CD.13), CD.15) and CD.17)

into eq. (D.1)tusing also eq. (0.2), one obtains the result used in section 6.

Effects due to attenuation cannot be calculated analytically in such 

detail. In principle one could probably evaluate the lowest order terms 

in an expansion of A(z,$,t) and therefore the integrals in powers of a.
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The higher-order-terms contain powers of z(1-t) Using this fact 

may easily convince oneself by inspection of the .various integral 

the higher-order terms in a do not contribute to the term proporti 

to H3£nU2/Jt3) but only to the linear term. In the calculation we also 

used that a is not too close to onej if one is very close to the 

point CT-Tc 3x10~5 °C) this is no longer true. One may in fact also 

evaluate for such values of a but the resulting expressions are 

more complicated and we will therefore not give them explicitly 

ourselves to the remark that for kQ5 >> ^2^3 l°Ear*^fn*c U8P® 

vanishes.
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III. LIGHT SCATTERING FROM CRITICAL BINARY MIXTURES

Synopsis

The theory of chapters I and II is extended to apply to scattering 

from critical binary mixtures. This extension leaves the essential 

structure of the scattering formulae unaltered.



1 • Introduction

In chapters I and II relatively simple formulae were derived for Ugh 

scattering from a critical nonpolar simple fluid on the basis 

molecular theory. The consequences of these results have been 

in detail for two experimental geometries. In this chapter t y

extended to light scattering from a critical nonpolar binary fluid 

Kim and Mazur have given an analogous extension of the y y

Bedeaux and Mazur^for the dielectric tensor of a critical Simple fluid.

In section 2 a short summary is given of that part of the scattering 

theory of chapter I, which applies also to multicomponent systems. The 

scattering intensity is again expressed in terms of fluctuatio 

dielectric tensor around its macroscopic value.

In section 3 the intensity of the scattered light is expressed in 

fluctuations of the densities of the two components or equivalently 

concentration fluctuations. For this purpose we use a relation, 

the fluctuating dielectric tensor and the fluctuating total polanzabi y 

density of the binary mixture. This relation, which was derived by Kim 

and Mazur , enables us to express the scattering intensity in terms 

fluctuations of the polarizability density around its average value. The 

only difference with the formulae for simple fluids is the fact

polarizability density is now the sum of the polarizability densities of 

the components of the mixture. The scattering intensity is th 

expressed in terms of cross- and autocorrelation functions of fluctuations 

of the densities of the components. For the evaluation of higher-order 

scattering intensities use is again made of the Gaussian approximation for 

the correlation functions. It is found, that, similar to the case of 

simple fluids, multiple scattering near the critical point is in essence 

a contraction of consecutive uncorrelated single-scattering events.



2. Summary of the formal scattering theory

In sections 2 and 3 of chapter I we presented a formalism for the 

scattering of light from a fluctuating dielectric. Since no explicit form 

of the fluctuating dielectric tensor was used in these sections, the 

theory applies not only to nonpolar simple fluids but also to nonpolar 

fluid mixtures, which will be considered below. We shall briefly review 

this formalism in this section.

For the intensity (per unit of solid angle) of the light which is

scattered in the direction 5$ with polarization vector u and frequency
s v s

ijg, eq. (1.3.6) yields

2 4I(ns,us,us)2ir6(u)-a)s) = (4ir) u) dr dr' ug*M(r ,(i)g | r' ,gj) *ug

exp Q*a (o)s) ds+ikg • (r' -r )] (2.1)

where units are chosen in such a way that the light velocity in vacuum 

is unity and where is the observed volume, dg the average distance from 

r and r1 to the surface in the direction of the observer and a the 

extinction coefficient, which is related to the complex refractive index n 

by

a(w) = 2w Im n(w) (2.2)

The wavevector of the scattered light is

tc = [w Re n(w (2.3)
s ^ s N s-1 s

-f
The tensor M which contains the effects due to correlations in the fluid 

sample and the incident field in the medium is given by

M(r.wir'd)') = <Ap(r,o))Ap*(r',a)')> (2.4)

where the brackets indicate an ensemble average. Due to stationarity
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(2.5)

P = (V0

M contains a 6-function in the frequencies, which was already us

writing eq. (2.1). The fluctuating variable Ap, which is defined as

->
Ap E (eb-e) *e = Aeb'e’ 

is the source of the total scattered field. In eq. (2.5) £b is

fluctuating dielectric tensor, relating the fluctuating polarization 

density p to the fluctuating field e,

(2.6)

while e is the macroscopic dielectric tensor, relating the macroscop’

. • ■+ _ +
polarization ? = <p> to the macroscopic field E = <e> ,

+ ^ (2.7)
P => (e-l)-E

Thus Ae, is the fluctuation of the dielectric tensor around 
b

macroscopic value.

Using the wave equation in the medium one may express the fluctuating 

field (and hence Ap) in terms of A?b> t and the wave propagator F£ which 

propagates light through a non-fluctuating medium with dielectric tensor

e. This yields for Ap (cf. eq. (1.2.15)).

-y -y _ j
Ap = Aeb* (1+Fe* Aeb)

(2.8)

-r
so that M is given in terms of Aeb and E by

i( r,u|?*,w») = <[A?b-(l+le-Aib)"^g(?,^|Alb-(l+Fe.A£b)’1-f]*(r',o,*)>
(2.9)

From eqs. (2.5), (2.6) and (2.7) it follows that <Ap> - 0 and hence,

that (cf. eq. (1.2. 16)X

<Ae,-(l+F • Ae, ) ~ > = 0 
b e b

The fact that the average of Ap, which is the "source" not only of the 

singly but also of the multiply scattered fields, is equal to zero, is

(2.10)



an important and useful feature, which is absent in other theories of

multiple scattering. In the next section we shall relate the fluctuations

of the dielectric tensor Ae, to fluctuations of the densities of the two
b

components of the fluid. _____________

3. The scattering intensity in terms of concentration fluctuations

In this section we shall first express the scattering intensity in terms 

of autocorrelation functions of the polarizability-density fluctuations 

in the fluid mixture. For that purpose we introduce the polarizability 

density y^ as the sum of the polarizability densities of the components

Yb(r,t) •= l avpv(?,t) (3-0
V

with and the molecular polarizability and molecular density of 

component v. For the average polarizability density yQ we then find

To = <v = l w ■ I Vv (3'2)
V V

The fluctuation of the polarizability density around its average value 

is then

iYb E Tb-Y0 - l “V(PV-P°) - l Vpv (3-3)
V V

with p° the average density and Ap^ the density fluctuation of component v.

In ref. 3 the relation between the polarizability density an<* 

the fluctuating dielectric tensor was shown to be

V1 ’ V‘4rb>"' (3’4)
where the operator G is given by
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G(r-r'; t-t') =
(3.5)

0 if | r-r'|>a

J(?+?+)(r-r'if |r-r'|<a

-*■

with a the smallest molecular diameter in the mixture and ? the retar 

vacuum wave-propagator, cf. eq. (1.2.7)* For density fields Py(r>E^ whic 

vary slowly in space and time compared to the molecular diameter, 1*e> 

for the long-wavelength, small-frequency components of the molecular 

densities, eq. (3.4) reduces to (see ref. 4)

eb(r,t)-l = Yb(r,t) Q- ^ Yb(r,t)] 1

which is the Clausius-Mossotti (or Lorentz-Lorenz) relation on the level 

of the fluctuations. For the considerations in this chapter it is suffici 

to use the simpler eq. (3.6) rather than eq. (3.4). Confer also appendices 

B of chapters I and II for a discussion of this point.

As in section (1.4) the macroscopic Clausius-Mossotti function y is

defined by the relation

? . _ s „ i Vi (3,7)
e-l = Y* 0- 3 y)

and the fluctuation of the polarizability density around the macroscopic 

Clausius-Mossotti function

t t o 5 (3-8)
iYb - Yb-r = 8ybn0-r

In appendix (I.B) it has been shown that 4?b and ^ satisfy the following 

very useful relation

Aeb* (l+Fe*Aeb)~l « |<e+2) • AYb* 0+K* AYb) (E+2)

-+
with a propagator K defined by

i,i(!+2).[fE-(i2)-]-(!+2) + (3;10)

Using eqs. (3.9), (2.8) and (2.9) we may express Ap and M in terms of Ayb•
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The result for M is

M(r,oj|rV) = 3 4< C(e+2) • Ay • (1+K-Ay )_1 • (e+2) *|] (r ,w)

C(e+2) • Ay • (1+K* Ay ) 1 • (e+2) •?] * (r \u> ’): (3.11)

In order to express M in correlation functions of Ayb> i.e. in the 

various cross- and autocorrelation functions of the density fluctuations 

of the components we need a relation between Ay, = y -y and Ay, = y.-Y •b D D DO

This relation may be otained in the following way (cf. eqs. (1.4.11) - 

(1.4.14)). From eqs. (2.10) and (3.9) one gets

<Ayb-(l+K-Ayb) > (3.12)

As is clear from eq. (3.8), Ay -Ay° does not fluctuate (y, , the only
b b D

fluctuating quantity involved, cancels), so that

(Ayb-Ay°)*<(1+K-Ayb) J>+<Ay£(l+£*Ay^) *> = 0 (3.13)

It follows that

Ayb - Ayb-<Ayb(l+K-Ayb) ]>*<(1+K*Ayfe) l> 1 (3.14)

Solving this equation by iteration one obtains an expansion for Ay^ 

in terms of Ay°

Ayb-Ayb+<Ay^KAyb>-<AY^K*Ay^ Ay°>+ ^((Ay®)4) (3.15)

If we expand M in terms of Ayb and insert this expansion for Ayb,
-*■

an expression is obtained for the tensor M in terms of autocorrelation

functions of the polarizability-density fluctuations Ay°. Using
b

translational invariance and stationarity we may define the correlation 

function S as

S(r-r' (3.16)

For the higher-order correlation functions we use the Gaussian
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approximation as was done in chapters I and II. Up to fourth order one

then has

<Ay°(1)AY°(2)Ay°(3)> = 0

Y^4<Ay°(1)Ay°(2)AY°(3)Ay°(4)> = S(1-2)S(3-4) +

S(1-3)S(2-4)+S(1—4)S(2—3)

where the arguments i(i=l ,2,3,4) stand for (r^,t^). The program 

sketched above has been worked out for a one-component system in chap 

The more general results, which are obtained in a similar way, ar 

following

8 -1 %

'll
■4<[(l+2) .AY°(i+2) •£] [(?+2) -AY°(e+2)

M12 = ^21

*13 " *+31

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

where the dagger denotes hermitian conjugation and the horizontal lines

indicate which pairs of Ay£ are correlated.

In order to study these formulae for scattering from a critical binary 

mixture we need the properties of the correlation function S. In the 

critical point the equal-time (equilibrium) correlation function

S(k) = S(k,t=0) (2ir)
-1 dui S(ic,a))

(3.24)
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is singular in the zero k limit due to composition fluctuations.

Neglecting molecular contributions and contributions to S(k) arising from 

"reduced total density" fluctuations of the fluid, we write for the 

dominant part of S(k) near the critical point of the mixture (cf. ref. 3)

S(k) = S(k,t=0) = (2tt) 1Jdco S(k,co)

■ (3.25)

with kg Boltzmann's constant, T the temperature, P the pressure, 

xj = P°(p°+p£) * the roolar fraction of component 1 and y| the difference 

in the chemical potentials of components 1 and 2. The correlation function 

depends on k via the scaling function f(£k) where £ is the correlation 

length. If £k < 1 we may use the Ornstein-Zernike form for f(£k)

f(£k ) = (IhV)'1 (3.26)

The correlation function S(k,to) depends on the frequency in a 

complicated way. One not only has to take into account the frequency 

dependence of the composition-fluctuation correlation function, but also 

'the effect of the cross-correlation for different times between the 

composition fluctuations and the "reduced-density fluctuations" (which 

are defined in ref. 3). We shall not analyze here the frequency 

behaviour of S(^,to) in more detail (cf. ref. 5). For the binary-mixture 

analogues of the estimates in appendices (II.A) and (II.B) it is again 

sufficient to analyze the contributions to the frequency-integrated 

intensity, which does not contain frequency-dependent correlation functions.

The remaining analysis of multiple-scattering intensities is the same 

as in chapters I and II and one arrives at results which are identical to 

the ones summarized in section (II.2) if one replaces
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2 2 a p o o by y‘

by
o(—-)2 

'3x j T ,P

-3v!
(—-) ,ppo4

in the corresponding formulae of chapter I and H*

One thus sees, as was to be expected, that the results 

binary mixtures are not really different from the results 

simple fluid. One may again conclude that critical multiple scatt 

from fluctuations is essentially repeated single scatteri g
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De moderne theorie van de verstrooiing van licht aan niet-polaire 

vloeistoffen en gassen gaat terug op het werk van Smoluchowski en Einstein 

in het begin van deze eeuw. Zij verklaren de verstrooiing uit de fluctuaties 

van de dielectrische constante rond de waarde bij de gemiddelde dichtheid. 

Met behulp van de dichtheidsafhankelijkheid van de dielectrische constante 

kan men dan de verstrooiingsintensiteit in laagste orde uitdrukken in de 

correlatiefunctie van dichtheids-fluctuaties. Vanwege juist deze relatie 

(en uitbreidingen hiervan) is lichtverstrooiing een belangrijke techniek 

geworden voor het onderzoeken van de eigenschappen van een grote klasse 

van systemen. Uit de over de frequentie geintegreerde verstrooiings

intensiteit kan men eigenschappen bepalen van fluida in evenwicht, zoals 

de compressibiliteit; uit de van de frequentie afhankelijke verstrooiings

intensiteit zijn transport-eigenschappen te bepalen, zoals de viscositeit 

en de warmtegeleiding. In het bijzonder bij het kritische punt, waar veel 

van deze grootheden divergeren, heeft de lichtverstrooiing een wezenlijke 

rol gespeeld in het onderzoek naar, en dus het begrijpen van, de 

verschillende singulariteiten.

In 1937 ontwikkelde Yvon een moleculaire theorie voor lichtverstrooiing 

aan een gas of vloeistof bestaande uit klassieke puntdipolen. Het inkomende 

veld, dat aan de vergelijkingen van Maxwell in vacuum voldoet, induceert 

dipoolmomenten in de moleculen; deze dipoolmomenten wekken secundaire velden 

op, die andere dipoolmomenten induceren, enz.. Op deze wijze ontstaan de 

enkel- en meervoudig verstrooide velden. De formule voor enkelvoudige 

verstrooiing verschilt van het resultaat van Einsteins fenomenologische 

theorie in die zin, dat zij niet de "lokale-veldcorrectie" bevat. Pas in 

1955 is deze tegenspraak tussen de twee theorieen opgeheven door Fixman, die
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aantoonde dat de moleculaire 

fenomen

gebracht in de 

Er zi

theorie tot dezelfde uitdrukking als de 
ologische leidt als ook bijdragen van hogere orde in rekening 

moleculaire theorie. 

zijn verscheidene redenen 

is. Ten eerste bevat de 

informatie

interpretatie van

bi.jdragen van

waarom meervoudige verstrooiing van belang 

intensiteit van meervoudig verstrooid licht 

rrelatiefuncties van hogere orde. Ten tweede wordt de 

gegevens van verstrooiingsexperimenten bemoeilijkt door 

meervoudig verstrooid licht aan de totale verstrooiings-
mtensiteit,

itische pu 

£en theorie

vooral als die groot zijn, zoals bijvoorbeeld dicht bij het 
kritische punt.

ofwel moleculai

verstrooide

voor meervoudige verstrooiing kan ofwel fenomenologisch, 

air zijn. In de fenomenologische theorie zijn de meervoudig

velden het gevolg van meervoudige verstrooiing aan flue 

in de dielectrische constante en dus in de dichtheid. De

* maar ze hebben het
formules bevatten wel de bekende lokale-veldcorrecties, 

nadeel, dat ze divergeren, tenzij men ad hoc de electromagnetis 

propagator afkapt voor golfvectoren die groot zijn in verg 

inverse moleculaire diameter. In de moleculaire theor’ 

verstrooide velden het gevolg van meervoudige verstrooi' g 

In dat geval kunnen lokale-veldcorrecties alleen doo 

resommaties worden verkregen; er treden echter geen 

theorieen bevatten seculiere (of schaduw-) termen. 

corresponderen niet echt met verstrooiing, maar 

verandering in de doorgaande bundel en de verstrooide vel 

van intensiteitsverliezen door verstrooiing-

Het doel van dit proefschrift is, een moleculaire theorie te ge

waarin de verstrooiingsintensiteit wordt ontwihheld naar correlatiefuncties

. „ in gebruikelijke moleculairevan fluctuaties in de dichtheid en me ,



theorieen, naar correlatiefuncties van de dichtheid zelf. Op deze wijze 

heeft men enerzijds het voordeel, dat de theorie vanwege haar moleculaire 

karakter geen divergencies bevat, terwijl ze anderzijds nauw aansluit 

bij de fenomenologische theorie zodat bijvoorbeeld de correcties voor het 

lokale veld zonder resommatie worden verkregen. De mogelijkheid van een 

dergelijke theorie werd gesuggereerd door het werk van Bedeaux en Mazur, 

die de dielectrische constante voor hetzelfde systeem op soortgelijke 

wijze hebben bestudeerd. Als een verdere verfijning van de theorie wordt 

de fluctuerende dielectrische constante ontwikkeld rond de macroscopische 

waarde en niet rond de waarde bij de gemiddelde dichtheid. Hierdoor blijken 

de seculiere termen niet op te treden; in plaats daarvan worden attenuatie- 

effecten in de bundel en in de verstrooide velden in rekening gebracht.

In hoofdstuk I wordt een eenvoudig model van een eencomponentig 

isotroop niet-polair fluidum beschouwd. Hierin bestaat het fluidum uit 

puntdipolen met constante polariseerbaarheid. Dit "model van klassieke 

puntdipolen", dat ook gebruikt is door Yvon, Fixman en Bedeaux en Mazur, 

is slechts geldig zolang de electrische velden weinig varieren over 

afstanden van de orde van de moleculaire diameter. Met behulp van de 

technieken van Bedeaux en Mazur kan men een expliciete formule afleiden 

voor de fluctuerende dielectrische constante in termen van de moleculaire 

polariseerbaarheid en de fluctuerende moleculaire dichtheid. Verder worden 

formele uitdrukkingen gevonden voor het totale verstrooide veld en de 

totale verstrooiingsintensiteit. Door het toepassen van alleen alge- 

braische transformaties wordt het verstrooide veld eerst uitgedrukt in 

fluctuaties van de dielectrische constante rond de macroscopische waarde 

en vervolgens in fluctuaties van de dichtheid. Tenslotte worden het

verstrooide veld ^n de verstrooiingsintensiteit) ontwikkeld naar deze

• • • • • defluctuaties. De term in deze ontwikkeling die evenredig is met de n
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macht van de dichtheidsfluctuaties is dan gedefinieerd als het n maal 

verstrooide veld. Er moet op worden gewezen, dat de precieze betekenis 

van "het n maal verstrooide veld" afhangt van de wijze van ontwikkelen 

en dus verschilt van de ene theorie tot de andere. Het algemene gedeelte 

van dit hoofdstuk is hiermee afgesloten. Bij de expliciete bepaling van de 

intensiteit van meervoudig verstrooid licht moet men integreren over 

correlatiefuncties van hogere orde, die niet goed bekend zijn. Met het oog 

op de behandeling van kritische verstrooiing zijn formules gegeven voor 

het geval de Gaussische benadering mag worden gebruikt voor de correlatie

functies van hogere orde. Voor dit geval wordt een diagrammatische ont- 

wikkeling in het kort besproken.

In hoofdstuk II wordt de theorie toegepast op meervoudige verstrooiing 

bij het gas-vloeistof kritische punt. In dit hoofdstuk is overal de 

Gaussische benadering gebruikt; afwijkingen hiervan kunnen in principe 

zeer dicht bij het kritische punt tot belangrijke bijdragen leiden, die 

hier niet in rekening zijn gebracht. Met behulp van de benadering van 

stationaire fase worden de verstrooiingsformules verder vereenvoudigd.

We vinden als resultaat, dat, ten gevolge van de lange dracht van de 

correlatiefuncties van dichtheidsfluctuaties, nabij het kritische punt 

die situaties het meeste bijdragen waarin de afstand tussen twee opeen- 

volgende verstrooiingen groot is in verhouding tot de golflengte van het 

licht. Bijgevolg reduceert de intensiteit van meervoudig verstrooid licht 

tot een contractie van opeenvolgende onderling onafhankelijke enkelvoudige 

verstrooiingen. Dat dit het geval is, is door Reith en Swinney onlangs 

(op grond van de theorie van Oxtoby en Gelbart voor kritische meervoudige 

verstrooiing) als verwachting uitgesproken en experimenteel geverifieerd.

In paragraaf (II.5) wordt dit resultaat gebruikt om de depolarisatie- 

factor te berekenen voor het experiment van Trappeniers, Michels en Huijse:
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die deze factor hebben gemeten voor CO^ dicht bij het kritische punt. In 

dit geval is de depolarisatiefactor in laagste orde gelijk aan de 

verhouding van de intensiteit van twee maal en van een maal verstrooid 

licht. De theoretische voorspelling kan analytisch worden berekend en stemt 

erg goed overeen met het experimentele resultaat. Hierdoor wordt de 

conclusie bevestigd, dat nabij het kritische punt meervoudige verstrooiing 

een contractie is van opeenvolgende onderling onafhankelijke enkelvoudige 

verstrooiingen.

In paragraaf (II.6) berekenen we de invloed van dubbele verstrooiing 

op de "Ornstein-Zernike grafiek". Deze grafiek waarin het omgekeerde van 

de verstrooiingsintensiteit gegeven wordt als functie van sin i0 met 0 de 

strooihoek, zou een rechte lijn zijn als er alleen enkelvoudige 

verstrooiing was. Uit het snijpunt van deze rechte met de verticale as 

(0=0) berekent men de compressibiliteit, die naar oneindig gaat in het 

kritische punt. Op deze wijze wordt de kritische exponent y door middel 

van lichtverstrooiing bepaald. Teneinde de rechte lijn te vinden die door 

de theorie voor enkelvoudige verstrooiing wordt voorspeld, moet men de 

intensiteit van meervoudig verstrooid licht aftrekken van de totale 

verstrooiingsintensiteit. De correcties voor meervoudige verstrooiing 

blijken voor voor- en achterwaartse verstrooiing naar nul te gaan in 

verhouding tot de intensiteit van de enkelvoudige verstrooiing. De 

intensiteit van dubbele verstrooiing is expliciet berekend voor een preparaat 

van CO2 en de geometrie van het verstrooiingsexperiment van White en 

Maccabee. Het blijkt, dat dubbele verstrooiing belangrijk wordt, als, bij 

de kritische dichtheid, de temperatuur minder dan 0,01 °C van de kritische 

temperatuur afwijkt.

Aangezien veel experimenten worden gedaan bij het kritische punt van 

binaire mengsels, is het van belang een soortgelijke theorie te ontwikkelen
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voor meervoudige verstrooiing aan kritische binaire tnengsels. Dit gebeurt 

in hoofdstuk III gebruikmakend van de uitbreiding die Kim en Mazur gegeven 

hebben voor de theorie van Bedeaux en Mazur. Weer is het resultaat, dat 

kritische meervoudige verstrooiing een contractie is van opeenvolgende 

onderling onafhankelijke enkelvoudige verstrooiingen.
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was het mij mogelijk in 1976 vier weken te werken aan de University of 
Maryland bij Prof. J.V. Sengers en Prof. R.F. Chang.

Mevrouw H.E. Kruyt-Mesman heeft dit proefschrift getypt; de figuren in 
hoofdstuk II zijn getekend door de heer W.F. Tegelaar. Tot degenen buiten 
de Leidse universiteit die lk dankbaar ben voor de met hen gevoerde 
discussies en/of de van hen verkregen experimentele gegevens behoren in 
ieder geval Prof. J.V. Sengers, Dr. J.M.H. Levelt-Sengers, Prof. R.F. Chang, 
Prof. N.J. Trappeniers, Drs. A.C. Michels, Drs. R.H. Huijser,
Prof. J.A. White en Dr. B.S. Maccabee.
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STELLINGEN

1.

3.

Met behulp van de in dit proefschrift ontwikkelde theori 
is ook de intensiteit van meer dan twee maal verstrooid 
licht te berekenen voor experimentele geometrieen. Hier 
bij kunnen in de sterrenkunde ontwikkelde technieken van 
dienst zijn.

Dit proefschrift.

H.C. van de Hulst, I.C.E.S. JJj8 ( 1963) 583.

De in hoofdstuk I van dit proefschrift gegeven theorie 
leidt ook tot redelijke resultaten voor de depolarisatie 
factor van argon bij zeer lage dichtheid.

Dit proe fs chrift.

W.M. Gelbart, J.Chem.Phys. 57 (1972) 699-

Het is niet verwonderlijk, dat de experimentele resul- 
taten van Beysens e.a. betreffende kritische dubbele 
verstrooiing overeenstemmen met de theorie van Oxtoby
en Gelbart.

D. Beysens, A. Bourgou en H. Charlin,
Phys.Lett. 53A (1975) 236.

D.W. Oxtoby en W.M.
60 (197!*) 3359.

Gelbart, J.Chem.Phys

b. De kleine systematische afwijkingen tussen de experimen
tele resultaten van Chang en Sengers betreffende licht- 
verstrooiing bij het kritische punt van een binair meng- 
sel en de door hen theoretisch voorspelde resultaten, 
zijn niet te wijten aan dichtheidsfluctuaties.

H. Burstyn, R.F. Chang en J.V. Sengers, niet 
gepubliceerde resultaten.

5- In een groot gebied nabij het kritische punt van een 
binair mengsel is de centrale piek in het spectrum van 
de verstrooiingsintensiteit de superpositie van de 
centrale pieken ten gevolge van concentratie- en tempe- 
ratuurfluctuaties.

C. Cohen, J.W.H. Sutherland en J.M. Deutch, 
Phys.Chem.Liq. 2 (1971) 213.



6. De door Kim e.a. berekende correlatielengte vertoont 
niet de te verwachten symmetric in de afstand tot de 
kritische hoogte.

D.M. Kim, D.L. Henry en R. Kobayashi, Phys.Rev.
A10 (197U) 1808.

7* De conclusie van Marchand, dat de irreversibiliteit in 
het verkrijgen van informatie uit negentropie te maken 
heeft met het feit dat deze informatie "vrij" zou zijn 
(in de zin van Brillouin) is aanvechtbaar.

A. Marchand, J. Physique 3J_ ( 1976) 297*

L. Brillouin, Science and Information Theory,
Academic Press, New York, 1962.

8. De analyse die door G.O. Zimmerman e.a. wordt gegeven 
van het kritische gedrag van de magnetische susceptibi- 
liteit van CMN, leidt tot tegenstrijdige resultaten.

G.O. Zimmerman, D.J. Abeshouse, E. Maxwell en 
D.R. Kelland, Proc. l4th Int. Conf. on Low 
Temperature Physics, Otaniemi, 3 (1975) 180.

9- Op eenvoudige wijze is in te zien dat ideaal vierde ge- 
luid in helium II een chemische-potentiaalgolf is bij 
constante entropie per volume-eenheid.

S.J. Putterman, Superfluid Hydrodynamics,
North Holland, Amsterdam, 197^*

10. Het is mogelijk voor het door Dekeyser en Rogiers be- 
sproken gegeneraliseerde XY model in een dimensie een 
impliciete oplossing te geven voor de vrije energie per 
spin.

R. Dekeyser en J. Rogiers, Physica 81A (1975) 72.



errata

P. 51 k = pc1 t(at) Y _ 1
x = p~ r(at) yt

C 1

P. 57 Ik -k |2 /k2
b O 0 M0i2/^

p. 58, eq.(6.1) 1+2£2k2sin2§0
0 ->■ 1+^£2k2sin2^0

0

p- 65 integral over x* ->• integral over k'

P- 66, eq.(A.13) (i+52|£-ko|2)-i (l+C2|k-ko|2)-1}


