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Byron

’Tis pleasant, sure, to see one’s name in print; 
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Chapter 1

Introduction

1

■■ ■': a large • 
cverpowered

' isotopes of the element helium are found, 3He and 4He. These 
■ that, at normal pressure, remain liquid down to the absolute 

■■ solidify helium, a pressure of at least 25 • 105 Pa must be ap- 
behaviour is the small mass of the helium atoms, giving rise 

■nergy, and the weakness of the interparticle attraction, which is 
■large zero-point motion. Thus, helium is a true quantum fluid, in 

the sense that, low temperatures, quantum effects have a large influence on its be
haviour. Since the first observation of liquid helium, by H. Kamerlingh Onnes in 1908, 
there has been continuous interest in studying its quantum mechanical properties.

The most spectacular manifestation of such quantum mechanical effects is the su
perfluidity of '‘He. Superfluid ’’He, which at normal pressure exists below 2.18 K, can 
flow without dissipation, and has many other extraordinary properties that distin
guish it from the normal liquid that exists above 2.18 K. Theoretically, superfluidity is 
interpreted as Bose-Einstein condensation of the 4He atoms. This is a purely quantum 
mechanical effect that only occurs in systems composed of bosons (like 4He atoms). 
And indeed, liquid 3He, which consists of fermions, does not become superfluid in 
this way.

If one wants to understand the behaviour of liquid 4 He (e.g. to calculate the 
phase diagram) based on the properties of the constituent particles, the microscopic 
properties of the atoms, which are well known, must be translated into macroscopic 
properties of the fluid. This cannot be done exactly, except in the case of an ideal, 
non-interacting Bose gas, where the description of Bose-Einstein condensation is not 
very difficult. But this ideal system is rather artificial and unphysical, and certainly 
not a good model for a real fluid like 4He. To give a good description of this fluid 
one must take into account the interaction between the helium atoms, especially the 
strong short-range repulsion between them.

This can be done by using perturbation theory; by that method one can system
atically improve the way the interaction potential is treated. This has been done 
for a system of bosonic hard spheres, which is obtained when the attraction between 
the helium atoms is neglected. The hard sphere Bose gas has many features in com-
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that is mainly used in this thesi is to study 
' s of the 
system, 
all the 
is con- 

g freely 
te to an 
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of the potential is taken 
lattice site. To study

mon with real '’He. From this perturbative approach a number of low temperature 
properties of 4He are correctly found. However, this approach is only justified at 
low density, and not at densities like that of liquid 4 He. Also, the complexity of the 
calculation increases rapidly with the improvement of the approximation. Particu
larly for systems in non-trivial geometries, like thin layers of 4He, it is hard to obtain 
results in this way. This is apparent from chapter 6, where an essential quantity in 
the description of many-particle systems, the t-matrix, is examined. In particular its 
behaviour in a slab geometry and the cross-over from two to three dimensions are 
considered.

A different approach, and the one 
a simplified model that still, one expects, contains the essential ingr< 
real 4He fluid. In this way one can get insight into the behaviour o' 
if not quantitatively then at least qualitatively, without having to d< 
complexities of the real liquid. The model with which most of this 
cerned consists of bosonic particles that move on a lattice instead of 
through space. Their motion is further restricted to hops from one la> 
adjacent one. The interparticle interaction is represented by an inter:., 
two particles on neighbouring lattice points. The hard core 
care of by preventing two particles from occupying the same 
this model one can use the many techniques that have been developed for dealing 
with lattice models. The fact that both the movement of the particles and the inter
action between particles are localized, further facilitates the problem of calculating 
the properties of this system. Even so, it is impossible to treat this simplified model 
exactly, and approximations have to be made in order to extract information from it.

Before doing this, in chapter 2 we discuss the relation between the description of 
the real system of 4He particles, and the lattice model discussed above. It is shown 
how the model of interacting bosons in free space is transformed into the lattice 
model, and how the properties of the helium atoms correspond with the parameters 
of that model. Also, the lattice model is rephrased in terms of quantum spins, which 
is exactly equivalent to the original description. The correspondence between the 
spin-| XXZ model and the lattice model is discussed. The reason for introducing 
this pseudospin model is twofold. First, the wealth of knowledge about magnetic 
spin models can now also be applied to the lattice boson model. Second, it is, at 
least for the author of this thesis, easier to think about problems in terms of spins 
than in terms of particles. Since there is an exact, one-to-one correspondence between 
the two, this is largely a matter of taste. A major part of this thesis is devoted to 
the calculation of some of the properties of this model in two approximations.

In chapter 3 we apply the pair approximation of the so-called cluster variation 
method to the spin model. This is a well-known method to find the phase diagram 
of statistical systems, and its results are usually quite good. This is also the case for 
our spin model, although the fact that we are dealing with quantum spins gives rise 
to some complications. Nevertheless, in most cases the method works satisfactorily.
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In chapter 4 we apply the same method to spin models on a lattice with a more 
complicated geometry, like a slab that has a finite width in one direction. The cluster 
variation method is able to deal with these geometries very well, and the results are 
again quite good. Also, for this inhomogeneous geometry we find expressions for the 
profile of, e.g., the order parameter in the slab.

Chapter 5 concerns another method, the mean field renormalization group, which 
is again applied to the XXZ model. It appears that the simplest version of this 
method gives the same results as the pair approximation of the cluster variation 
method. This turns out to be a coincidence, and as the method is further refined the 
connection with the cluster variation method is lost. The mean field renormalization 
met' ■ '■ does not always work well when dealing with quantum spins, but it does 
pv ' iningful results for the phase transitions.
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Chapter 2

Preliminary considerations

eracting boson system

Mb =

(2.1.1)

commutation relations

(2-1.2)

3 = Tr (2.1.3)

with 0 = \/kBT, n the chemical potential, and Af the number operator given by

(2-1.4)

(2.1.5)

5

' ing bosons of mass m, with an interparticle potential <^(r,r'), 
■ :.miltonian in terms of the field operators V’(r) and ^d(r)

[^(r'), V>(r)J = 5(r' - r), 
[V,t(»-'),i/>t(r)] = [V’(r'), V’(r)] = 0.

V = j d3r V>*(r)^(r).

*<-)■-{(;)“-(7)"} •

To study the thermodynamics of such a system with a variable number of particles, 
one should consider the grand partition function, given by

In the case of 4He particles the interaction potential ^(r,r') depends only on the 
distance |r — r'|, and to a reasonable approximation it is given by the Lennard-Jones 
6 — 12 potential,

| / y d3r'/3r'V’t(r)V’t(r/)^(r>r')^(r')l(’(’')-

The field operators tp(r) and satisfy Bose



J. Other systems will, of course, have

The pseudospin model2.2

(2.2.1)

6

adius 
ound

are and

. The value they approach is in fact (V,t(ri ))(V’(r?'»)• -Ience> 
expectation value (■/’(’’)), an^ 

wave 
isate,

with a = 0.256 nm and c = 14.11 • 10-23 
different interaction potentials.

The phenomenon of superfluidity in a boson system is signalled by the appearance 
of so-called off-diagonal long-range order (ODLRO) in the one-particle reduced density 
matrix, = (V’*(ri)V’(r2)) [1]- (The average (...) must be taken in an
ensemble that allows the gauge symmetry corresponding to the conservation of the 
number of particles to be broken; e.g. the 77-ensemble introduced by Hohenberg and 
Martin [2].) A system has ODLRO when the off-diagonal elements of p^ arc non-zero 
in the limit |rj — r2| —> oo. 
the presence of ODLRO is equivalent to a non-zero 
(V’(r)) >s the order parameter of the superfluid phase. It is also the macro 
function of the superfluid condensate, and its square is the density of the 
|(V-(r))|2 = n0(r).

One can approximate the potential <£(r) by a hard sphere potential v 
<r. The attraction between the atoms is then replaced by a uniform 
potential which gives the system its density [3]. The resulting gas of hard ; s has 
many of the properties of the 4He system, including a superfluid phase. 1 .s ... s has 
been examined with perturbational methods [4]. The approximations made arc only 
valid for no3 1, where n is the density of the hard sphere gas. A number of low 
temperature features of 4He, like the linear slope of the energy spectrum, are correctly 
obtained by this method. But for parameters in the range of those appropriate for 
4He the above inequalities are not satisfied, and so the perturbative approach is not 
well founded. Therefore we turn to a different method to deal with the boson system 
under consideration.

In order to make the system described by the Hamiltonian (2.1.1) more manageable, 
we make some simplifications. First, we discretize space so that the bosons are 
restricted to move on a lattice. Second, we cut off the interaction potential <f>(r) 
such that only particles that are nearest neighbours on the lattice interact, with an 
interaction strength <f>0. The hard core repulsion of the interaction is incorporated by 
limiting the number of particles that can occupy a lattice site to one1.

The creation and annihilation operators for a particle at a lattice site i 
a{. They are related to the field operators by

V>(t,(r.) -
Vv0

where v0 is the volume of the cell surrounding a lattice site. All integrals over space 
are changed into sums through

* Instead of particles moving on a lattice, one can also think of cells in space that are, or are not, 
occupied by a particle.



I* (2.2.2)

[«i, <b] = [<4> <41 = [“■> a>] = °> (2.2.3)

(2.2.4)

(2.2.5)

(2.2.6)- a,),

(2.2.7)

isomor-

(2.2.8)
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I.
= 0.

and has eigenvalues 0 and 1.
To find the lattice version of the Hamiltonian (2.1.1), we discretize the kinetic 

energy term AS, which gives [5]

Here, N is the total number of lattice sites. The operators a* and a, have Bose 
commutation relations for different lattice sites,

<4 = +*CTj)

ai =

ajai = 2(1 + af)>

with fl = fi — ti2d/ma2.
The operators a, and aj with the commutation relations given above are 

phic to a system of Pauli spins [6]. By defining

N

and Fermi anticommutation relations for the same site in order to exclude double 
occupancy of a lattice site,

h2d N
T-tg - nAf =------ - y2(a!aj + <4°i) - a> 5? aia«a]aj - p 5? “!“•>

mza M M •■=>

.■or for site i is given by

with d the dimension, z the coordination number, a the lattice constant, and the sum 
running over vectors connecting site i with its nearest neighbours. The discrete

version of the total Hamiltonian used in the grand canonical ensemble is then



Hb-1^ = H + Eo

(2.2.9)

with

J =

.2.10)H

E = e-^Z, (2.2.11)

with

Z = Tre-w. (2.2.12)

follows from the free energy of the spin

(2.2.13)F=-kBT\n Z,

which corresponds to the pressure in the lattice gas,

(2.2.14)pV = fcBTlnE = — Eo — F.

(2.2.15)

8

as a spin Hamiltonian

The thermodynamics of these systems now 
system,

we can rewrite (2.2.7)

= -J + ^a}) - J, £ tr’a' - H £ a? + Eo,
(■J) to) i=l

It can be seen from (2.2.10) that the interparticle interaction <60 gives rise to the 
coupling J2 of the z-components of the spins, which is ferromagnetic (antiferromag
netic) for an attractive (repulsive) interaction. The x-y interaction arises from the 
quantum kinetic energy (2.2.6), and it is always ferromagnetic. The magnetic field H, 
which controls the magnetization (of), roughly corresponds to the chemical potential 
p governing the density of the lattice gas.

2
E° = Ar(-2+^~f82)-

The correspondence between the two systems is given by the fact tha. .he grand 
partition function E of the lattice gas is, apart from a trivial factor, e<. lai o the 
partition function of the spin system,

The number density (n;) of the lattice gas is, according to (2.2.8), given by

(to) = j(l + (<))•

h2d
2mzai'

h2d
2ma2 +

7 J‘~ T’

4 ’ 
h2d  

2ma2



(2.2.16)

(2.2.17)A
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a 
dcred v ■

as the ratio J/Jz,

can be interpreted

The ordered phases of the spin model depend on the specific values of the coupling 
constants J and Jz. If Jz is positive and larger than J, there is an Ising-like ferromag
netic phase, with the magnetization (a’) as the order parameter. For J > Jz > 0, the 
system will develop a magnetization in the x-y plane*, with (of) 0. On bipartite 
lattices, for —Jz > |J|, an antiferromagnetic phase forms with a non-zero staggered 
magnetization, (a*) — (a and b are the two sublattices of the bipartite lattice). 
In this case the sign of J is irrelevant, since for such a lattice the cases J > 0 and 
J < 0 are related by a global spin reversal on one sublattice.

In the la-L’ce gas the ferromagnetic Ising phase transition
g;..s ; . U-msition, since the order parameter is the density (n,). The x-y

“ \af) *s non-zero, corresponds to a phase with a non-zero expec- 
creation and annihilation operators, (a|) = (a,) 0, and hence

,‘hase, exhibiting ODLRO, is the superfluid phase of the lattice 
magnetic phase of the spin model corresponds to a phase where 
a repulsive interaction, preferentially occupy one sublattice. For 

■ e gas or liquid, where the interactions are usually attractive (as 
>, this phase seems to be of less relevance.

can be expressed

tj-.ft Stud, 
is the case i..

The relu.i . c importance of quantum effects

2h2d d ,,
------------= -------- A , 
mza2<f>o-----2zir2

where the de Boer parameter A is given by 

h

y/m<f>0a2

For a system of hard spheres we have A = oo, and this extreme quantum case 
thus corresponds to a pure x-y interaction (Jz = 0). Sinte the x-y ordered phase 
corresponds to the superfluid phase, the lattice version of the hard sphere gas has 
such a phase. This confirms the assertion that a hard sphere gas is a good model 
for liquid '’He. However, if we try to find realistic values for J and J2 for '*He by 
substituting the values m = 4 • 1.67 • 10~27 kg, </>0 = 14.11 ■ 10~23 J, and a = 0.256 nm, 
we find A = 2.67, and consequently J/J, = 0.18 in the case of a simple cubic lattice. 
So even though 4He has one of the highest known values for A, it is not high enough 
to make J/J2 > 1. Hence the corresponding spin model does not have an x-y ordered 
phase, and the lattice fluid does not have a superfluid phase. To find a ratio J/Jz 
that is larger than one, A should be larger than 6. So, by going from the continuum 
to the lattice in this way, one loses the possibility of accurately modelling real fluids. 
This is not surprising, since the nearest neighbour lattice model can never be more

[In two dimensions there can be no magnetization, and there is a phase with topological order 
instead. The methods we use cannot reproduce this, and give a phase with a finite magnetization, 
even in two dimensions. Therefore we cannot consider the subtleties associated with the so-called 
Kosterlitz-Thouless phase transition.
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can never 
system. The

lese possibilities 
of the hard sphere gas 

attractive interaction between the 
describing

■ viour,

quan- 
such a 
s, and 

hard-core repulsion (two vacancies cannot sit at the lattice 
ancies

Real-space renormalization is a powerful technique that has been applied to many 
physical systems [10, 11]. The idea behind this approach is to eliminate the original 
degrees of freedom (e.g. spins) in a system, and replace them by degrees of freedom 
on a coarser scale (e.g. the block spins introduced by Kadanoff [12]), while leaving the 
partition function of the system invariant. This procedure leads to a transformation 
between systems at different length scales. The transformation has a fixed point if 
the coupling constants of the system are chosen such that it is invariant under the 
transformation. For a system with a phase transition there are usually two trivial, 
attractive fixed points at T = 0 and T = oo governing its behaviour at low and 
high temperatures, and a repulsive fixed point corresponding to the critical point at 
T = Tc. Most applications of this technique concerned classical models, but several 
real-space renormalization group methods have also been applied to quantum spin 
models.

In this section we briefly review two of these applications. First we discuss a simple 
technique introduced by Migdal and Kadanoff, and subsequently a more general class 
of real-space renormalization techniques. In both instances, the quantum nature of 
the spins gives rise to two complications. The first is the fact that the terms in the

than a very simplified model of a real system. Still, as the case of the hard sphere 
gas shows, the lattice model does contain the essential physics of a quantum fluid.

Another objection to the lattice model is the observation that it can never have 
both a gas-liquid transition and a superfluid transition in the same 
competition between J and Jz forces the system to choose between tin 
and does not allow a combination of the two. In the case 
this is not a problem, because in the absence of an 
particles there is no gas-liquid phase transition. If one uses the model fo; 
4He, the best it can do is give a qualitative description of some aspects of i: 
like the superfluid transition. It will not reproduce the phase diagram i

The lattice model should be better suited for describing systems whe 
turn kinetic energy dominates over the interaction potential. A candid?.i 
system is the gas of vacancies that exists in 4He crystals [7]. They are 
they clearly have a 
site). Due to their small effective mass and the weak interaction betwe 
the kinetic term is much more important than the interaction term. An dditional 
bonus is the fact that the vacancies move on a real lattice, namely the hep lattice of 
the helium crystal. The lattice model is also often used in theories for high temper
ature superconductors that assume the existence of real-space electron pairs [8, 9]. 
Lastly, results obtained for the pseudospin model can, of course, also be applied to 
spin models for real magnetic systems.
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Fig. 2.1. The two steps of the Migdal-Kadanoff renormalization procedure 
for a rescaling factor 2. First, bonds (representing the coupling J between 
nearest neighbour spins (dots)) are moved in order to decouple the spins that 
are to be decimated (crosses). The coupling constant of the remaining bonds is 
consequently doubled. Next, the decimation of the spins is performed, giving 
a new, rescaled lattice, and a new coupling constant J'.

The renormalization procedure consists of two steps (see figure 2.1). First, a 
potential moving scheme introduced by Kadanoff [14] is applied. The result of this is 
a lattice with less, but stronger, couplings between the spins, which makes it easier 
to eliminate some of the spins in the next step. In the second step, a number of spins 
is summed out, so that the remaining spins form a lattice that is identical to the 
original one, but rescaled by a factor. The coupling constants for this new lattice are 
calculated from the original ones through the decimation of the spins. By iterating

Hamiltonian do not commute. This must be neglected when eliminating the original 
spins, and this is an approximation that is only valid at high temperatures. The 
second, more important problem is that the ground state of a cluster of quantum 
spins is generally not preserved in the decimation process. So if the original spin 
system is in the ground state, the new system of block spins, obtained after the 
decimation, is not. The effect of this is that the T = 0 fixed point is destroyed.

As a result of these two facts, real-space renormalization procedures are of limited 
use for quantum spins. In the region of the phase diagram where the z coupling is 
positive ar;-' • . ' r than the x-y coupling, the ground state is preserved, so that the 

. : / ■ hod gives reasonable results for the Ising part of the phase transi-
>s where the x-y interaction dominates, or where the z interaction 

he validity of real-space renormalization methods is doubtful.

i Kadanoff renormalization

■: renormalization techniques is the Migdal-Kadanoff method [13,
14, 15]. Be . \ c f its simplicity it has been used to get a qualitative picture of the 
phase diagrams of many classical lattice systems. Its application to quantum spin 
models [16], which we discuss here, is more problematic.
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the system at T = 0 is mapped onto a finite temperature, or 
point corresponding to a different symmetry class.

The effect of this is apparent in the calculation for the XXZ model. T 
netic Ising phase is described well, and the lower critical dimension of th 
model is correctly given as 2. The rest of the phase diagram is les. 
There, the renormalization flow for different symmetry classes of the H.

this procedure, and looking for fixed points, an approximation for the critical point 
and the critical exponents of the spin model can be obtained.

For classical spins, the strength of this method lies in the fact that it is exact 
in both the high and low temperature limits, and can thus be expected to give a 
reasonably good interpolation for intermediate temperatures. In particular near the 
lower critical dimension dc, where Tc is low, it should be a good approximation. For 
quantum systems, this is only the case for systems with Jz > J > 0 because of the 
two problems mentioned above [17]. Only then does the bond moving procedure 
preserve the ground state of the quantum spin system. For other value? J and Jz 

0 fixed

The procedure of decimating spins can hardly ever be performed exactly. Therefore 
an approximate procedure must be found to transform the old system into the new, 
rescaled system by replacing the spins inside certain cells by block spins. Apart from 
the Migdal-Kadanoff method, two other approximation schemes are widely used to 
perform the decimation [19, 20, 21, 22]. The cumulant approximation treats the cou
plings within the basic cells exactly, and perturbation theory is used for the couplings 
between the cells. This use of perturbation theory is rather dangerous, since the inter
cell couplings are generally of equal strength to the intracell couplings. Consequently 
the convergence of this method is not very good. In the cluster approximation the 
decimation is performed exactly for finite clusters. This method does give better 
results as the cluster size is increased, at the price of an increasing amount of book
keeping that has to be done to keep track of the contributions of the various clusters.

For quantum spins, both approximations involve a mapping of the 2N states of a 
subsystem of N spins onto 2N' states of a smaller subsystem of N' spins. In order 
to have a well-behaved renormalization transformation, there should at least be the 
usual fixed points at T = 0 and T = oo. The T — oo fixed point is always there, but 
to have a fixed point at T = 0 the ground state of the larger cluster should be mapped

omag- 
enberg 
ncing.

nian is 
directed towards the same T = 0 fixed point. Also, spurious fixed poin. 'ear at 
low temperature. In short, the low temperature behaviour of the transformation is 
not reliable here (for more details see [18]). Since the success of the Migdal-Kadanofl 
approximation rests upon the fact that it is an interpolation between correct proce
dures at high and low temperatures, it is questionable what its value is if one of these 
limits is no longer valid. Outside the Ising region of the phase diagram it is no more 
than an uncontrolled high temperature approximation.
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onto the ground state of the smaller one. Because one has considerable freedom in 
choosing the details of the transformation, this can usually be arranged for a simple 
model. But if one tries to apply one single transformation to a model like the XXZ 
model, for arbitrary ratios Jt/J, this is only possible in the region J, > J > 0. 
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Chapter 3

notion3.1

(3.1.1)
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neighbouring sites. Its Hamiltonian is given by

ci<7c;v+c’«c”)+t/52n,inil + MZ 52 ’ 
«■ (w).**'

modifications, this chapter has appeared in Phys. Rev. B 43 (1991) 13352

5>i„ (31-2) 
ia

’’luster variation approach to the spin-|
XXZ vsodef

Magnetic : ■ ..odcls have been extensively discussed in the literature. Interest 
in these models derives not only from the need to describe magnetic materials in 
a simplified way, but also from the fact that certain many-particle systems can be 
mapped onto such spin models. For instance, simple lattice gas models for classical 
[1,2] and quantum [3] fluids have been shown to be equivalent to Ising and XXZ spin 
models, respectively. Also, the extended Hubbard Hamiltonian can, in the limit of 
strong attraction, be mapped onto an XXZ spin Hamiltonian [4, 5]. Because of the 
assumed connection between high-Tc superconductivity and the Hubbard model, this 
has caused renewed interest in these spin models.

In this paper we will examine the spin-| XXZ Hamiltonian
N

H = -J £(<7?^ + -J,^
(•'.» (ij) •=*

The sum (i,j) runs over all nearest neighbour pairs in the TV-spin system, and the 
<7“ are Pauli matrices. We will only consider bipartite lattices, thus excluding the 
possibility of frustration. In that case the coupling constant in the x-y plane, J, 
can always be taken to be positive (i.e. ferromagnetic), because the cases J > 0 and 
J < 0 can be mapped onto each other by a rotation of spins on one sublattice. The 
coupling constant can assume both positive and negative values.

To make the connection with the extended Hubbard model we consider a system 
of electrons moving on a lattice, with interactions between electrons both on the same 
site and on

« = < £ (.
<M>»*

*Apart from some



(3.1.3)Jz = - -IV,
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are then

where cj^' is the annihilation (creation) operator for an electron of spin a on site i, 
while n,<, is the number operator n,<, = c^c,,. The hopping term contains the transfer 
integral t, the strength of the on-site interaction between the electrons is given by U, 
and of the inter-site interaction by W; the number of electrons is controlled by the 
chemical potential p.

In the limit of strong on-site attraction, U = —1(/| with |£7| 2> t,W, strongly 
bound pairs of electrons are formed, and (3.1.2) can be reduced to a H amiltonian in 
which singly occupied sites are excluded [5]. This Hamiltonian can b ca ■ into the 
form (3.1.1) as a pseudospin Hamiltonian, and to second order in t/|! leads to 
the following expressions for the coupling constants:

J = w Jz = ~W\~w' +
where z is the coordination number of the lattice. The pseudospin op-, 
given by

of = CilCq + cjjct,

<7? = fcrjCi! - icljclj
<7; = n,j + n;T — 1. (3.1.4)

The last equation implies a relation between the average magnetization and the elec
tron density n = (nj + nj):

n = {az) + 1. (3.1.5)

There are some special cases of the Hamiltonian (3.1.1), like the Ising and the 
isotropic Heisenberg models, about which much is known, both from analytical results 
and from approximations of different degrees of sophistication that have been applied 
to these models. But about the Hamiltonian in its full anisotropic form far less is 
known, and practically the only general method dealing with the properties of (3.1.1) 
is the mean field approximation. In the mean field approximation the correlations 
between fluctuations are ignored. In classical spin models such correlations can be 
incorporated quite accurately by the cluster variation method (CVM). The CVM has 
the intrinsic drawback that it can not account properly for the critical fluctuations, 
but it is quite successful in calculating phase diagrams. Moreover, by the coherent- 
anomaly method non-classical critical phenomena can also be incorporated [6].

We have applied the cluster variation method to the Hamiltonian (3.1.1), con
fining ourselves to its simplest form, which only uses two-spin clusters. As a first 
improvement over the mean field approximation, this already gives significantly dif
ferent results. It turns out to be possible to derive analytical expressions for the 
boundaries between most of the phases, while the behaviour of the system and the 
location of all phase boundaries can also be examined numerically. The CVM has 
earlier been applied to this Hamiltonian by Kulik and Pedan [7]. They made however



ster variation method

(3.2.1)■F = Tr(pi4) + fcBTTr(plnp),

(3.2.2)Trp 1.

The free energy F is then given by

(3.2.3)F = minT7 = Tr(po'W) + fcBT’Tr(polnpo) = E — TS,

where the density matrix that minimizes E is

(3.2.4)Po —

(3.2.5)
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where p = p(ji,.. ■ ,Jn) is 
satisfies the constraint

' .lies Wll.l I- 

ns found by

e-W

Tre-^'

of the CVM [8, 9] is the variational principle of statistical me- 
that the density matrix describing a system in equilibrium can 

.'zing the free-energy functional E. This functional has the form

a trial density matrix of a system of spins Ji,..., jn that

additional assumptions on the density matrices which cause their results to be quite 
different from what we obtain in this paper.

Using the cluster variation method we obtain global phase diagrams for arbitrary 
ratios J,/J, both ferromagnetic and antiferromagnetic, and for arbitrary fields h. 
Lattices with different values of the correlation number z are considered. We will 
examine these phase diagrams both in the context of a spin model and in connection 
with the Hubbard model, and compare them with the results of other approximations, 
and with exact results where available. Despite the fact that this method behaves 
unphysically at low temperatures, which make its results unreliable in some cases, in 
i hose cases ;■■■•: this behaviour does not interfere with the rest of the phase diagram 
■< ’suits -?■ . accurate.

The advantage of the formulation (3.2.3) is that one can write E as an infinite series of 
terms, each of which corresponds to a cluster containing a certain number of lattice 
points. One expects the importance of these terms to decrease as the cluster size 
increases, and an approximation can be made by neglecting all contributions except 
those corresponding to a limited number of small clusters.

To make an expansion for E in this way, we express it in terms of the reduced 
density matrices corresponding to the different clusters,

o(") = . Tr
51 f'tj N ■



(3.2.6)

(3.2.9)

(3.2.10)

(3.2.11)—T
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Since obviously the second term in (3.2.1) is -TS(N\ the functional J7 can be written 
as

f = Tr(p?f) + fcBTTr(pln/>)
= ETr(p!I>h?>) + £Tr(pS>?J>)

i (w)

+E^+-+e4
This expression is still exact, and an approximation can be made by making an 

ansatz for the density matrix that in some way truncates the expansion in cumulants. 
For example, taking all reduced density matrices as products of the 1-spin reduced

(3.2.7)

.e reduced 
it of view, 
fined by

(3.2.8)

be expressed in terms of the so-called cumulants S as

where all spins except the ones contained in the cluster, it,... , zn, are traced out. For 
a Hamiltonian of the form (3.1.1), that only contains on-site and nearest neighbour 
interactions, the first term of (3.2.1) can be expressed in the reduced density matrices 
as

Tr(pH) = £ + E Tr^’M?),

where hj1' is the on-site interaction of spin i and is the interact! between spins 
i and j:

hp’ = -fia?

+

Now it remains to write the entropy term in (3.2.1) in term? 
density matrices. A quantity that is convenient from a calculation 
as it involves only one reduced density matrix, is the cluster entropy

= -^Tr(p^lnp^).

These cluster entropies can 
follows

4t*-E^’+E^+-+^
• *<J

These relations implicitly define the S, and inverting them gives

sp> = si"
cm  cm cm m



(3.2.12)= -T

ion we will be using in this paper.

v j-spin cluster3.3

(3.3.1)(i = a, b).

x,y,z), (3.3.2)(a, fl
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■ <•'.» J

now be chosen such as to

<<J>

^FTr(plnp) =

To apply the CVM, one has to express the functional T in terms of variational pa
rameters, which is done by choosing a form for the trial density matrix. For a spin-| 
system one can always express the reduced density matrices in Pauli spin matrices. 
The coefficients of these matrices are the variational parameters of the problem. In 
order to be able to describe antiferromagnetic phases it is necessary to introduce, for 
a bipartite lattice, two 1-spin reduced density matrices, p\^ and pj\ one for each of 
the two sublattices a and b. The 2-spin reduced density matrix is of course always of 
the form p^ = p<2>.

Thus one can write

Pi1’ = | {1 + « +

density matrix p.1' causes all cumulants except to vanish, and leads to the mean 
field approximation. An improved approximation is obtained by also taking into 
account the 2-spin reduced density matrix pjj, where spins i and j are nearest neigh
bours. This is exact for the energy term in (3.2.11), and accounts for the correlations 
between neighbouring spins that are included in the term Higher cumulants in 
expression (3.2.11) are ignored in this approximation, and the entropy term becomes, 
for a lattice with coordination number z,

1 + £c>“ + £c“^
i.a a,P

with c“P = c“f = (<7"<rf). The parameters c“, cal3 must 
minimize T7.

In order to explicitly incorporate the bipartite nature of the lattice, which is of 
importance in the antiferromagnetic phase, we replace the sublattice magnetizations 
cf by the total magnetization m,

It is easy to see that cf = Trfjp^of) = (o'), and similarly for c’j and c?. Also 
expression (3.3.1) satisfies the constraint (3.2.2). For pW we write

p™ = 1
P 4



(3.3.3)

(3.3.4)

we
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- If the field h is zero, W is symmetric under 
angle rr 
plane z

- H is invariant under rotations of the spins in the x-y plane around the z-axis; 
will denote this symmetry by Rxy.

a rotation of the spins through an 
around any axis in the x-y plane. Choosing the line x = y in the 
= 0 for the rotation axis, the result of this spin flip symmetry is 

(<r“, a1, — az). We will denote this symmetry by F.

- Lastly, is invariant under a reflection of the spins in any plane containing the 
z-axis. If we take the plane x = y as the mirror plane then this symmetry 
operation, which we will call /, is the product of time reversal (which lets 
a —» —o’), a spin flip F as described above and a rotation Rzy. Whereas the 
first three symmetries all correspond to unitary operators, this one is antiunitary 
because it contains a time reversal.

m + <£),

and the staggered magnetization m,

™- «$)•

An additional advantage in introducing these parameters is that, instead of viewing 
them both as variational parameters as one would do when considering a spin model, 
it is also possible to fix m at an externally prescribed value, which would be desirable 
from the viewpoint of a Hubbard model with a given electron density ■ 3.1.5)).

Before giving detailed expressions for the reduced density matric first ex
amine the symmetry aspects of the problem; this is useful both for ■ ; insight
into the behaviour one should expect, and also into the structure o. matrices 
p. Considering the Hamiltonian (3.1.1) of the spin system, we find t has the 
following symmetries:

The presence or absence of these symmetries can be used to classify the different 
phases of the system. Since the symmetry of the phase is reflected in the form of 
the reduced density matrix, it can also be used to reduce the number of independent 
variational parameters. Namely, the only parameters that can be non-zero are those 
that correspond to operators that are invariant under the symmetries of the phase. 
For instance, the disordered phase has the full symmetry of the Hamiltonian, and 
this requirement causes all but a few parameters in the reduced density matrix to 
be zero. In the different ordered phases one (or more) of the symmetries of the 
Hamiltonian is spontaneously broken, and some of the parameters that were required 
to be zero by this symmetry assume a non-zero value. The most important of these

- Ti is symmetric under exchange of the sublattice labels a and b. This translation 
symmetry will be denoted by Tos.
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operators

invariant under the symmetries of the
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diff.
diff.

each 
sum 
x 
diff.

sum 
x
sum

+ Tb’^a +
+ virf + <?b

CT ,(7l

°a°b'<°b
4- <r’<7f,<r»crtl + azavb

^."b^b

field are fully described by the two 
that h 0, so that the Hamiltonian 
must add m as a third parameter, 

iree symmetries.

7
sum 
each 
each 
sum
X 
sum 
sum 
sum 
sum

F 
sum 
each

Fxi,

• The ferromagnetic Ising phase (FI)

In the ferromagnetically ordered Ising phase the spin flip symmetry F is spon
taneously broken, so we again have the three parameters c11, c*z, and m to 
describe this phase. The difference with the previous case is that, instead of 
being induced by a field, m is now a spontaneous magnetization, which is the 
order parameter of this phase. If the Ising symmetry is absent because of an 
applied magnetic field h the phase transition is destroyed.

symmetries 
Tab 
each
sum
sum
each
X
sum 
each

parameters is of course the order parameter of the phase in question, but in general 
any parameter with the same symmetry can and will become non-zero. Table 3.1 
displays the operators that are invariant under the symmetries of the Hamiltonian.

We will now list the properties of the phases that constitute the phase diagram.

•i • The operators that are
It is indicated whether the operators are (x) or are not (-) 

■■■ the symmetries mentioned in the text; if two operators are 
. it is indicated whether each one is conserved individually, or 

oniy b .ir ..um or difference.

• The disordered phase (D)

As can be seen from table 3.1, the only operators that are invariant under all 
four symmetries of the Hamiltonian are <r^ab 4- and <rzcrb. Consequently 
the properties of the disordered phase in zero 
parameters c" (= c5'1') and c". In the case 
is not invariant under the spin flip F, one 
since az 4- is invariant under the remaining th:



(3.3.9)

FI, and

(3.3.10)+ ....

= 52(A? + A?) In A?. (3.3.11)

-m)

(3.3.12)-Th)

(3.3.13)
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consider 
irbation

m + m)

we are allowed to treat it as a perturbation

and thus exactly solve the minimization equations throughout the pin 
Al.

Turning to the phases where rotation symmetry is broken, we mus 
the matrix pt, which does not commute with Sjot. We use a standar 
expansion to calculate the eigenvalues of p to second order in pi'.

A, = A? + A| + A? + ...

= • pi ■ ■ + 52

Pm

Pl2 = -Pa2 = ~

near the boundary of these phases, and
to p0 in this region.

Since it is rotationally invariant (commutes with Sfot), Po has a block diagonal 
form, only coupling states with the same eigenvalue for S{ot. This makes it relatively 
easy to diagonalize exactly, finding its eigenvalues A® and eigenvectors x,. One can 
then calculate the free energy functional T in terms of the parameters m, m, c*1, 
and c“, using

Tr p In p = 52 A; In A“,

Pi • ®f • Pi '
A?-A9

The first order term A' is zero because p\ only couples states with different eigenvalues 
for S[ot, while p0 only couples equal values of S‘ct. We are then left with the second 
order term, which is bilinear in the parameters cf, cT“, c*1, and cZI. To second order 
in these parameters the traces in (3.3.7) are

Trplnp = A® In A® 4-A2 In A® + A2

The last equality holds because Tr p = JT A® = 1, and so A2 = 0.
We will now compute the eigenvalues of the matrices (3.3.5) in this way. For pj1’ 

we find for the unperturbed eigenvalues

P°i = ^(1+ m + m) Pm = i(l + m

P«2 = j(l - m - ™) P°2 = -rn + m).

The second order corrections to this are

„2 =
2(m + m) 61 2(m — m)

=
2(m + m) 12 2(m — m)



(3.3.14)

+ higher order terms.

■- 2m

A°

A? (3.3.15)

A? = (3.3.16)+

(3.3.17)

(3.3.18)

{7’12^12 + P13^13 +

(3.3.19)

(3.3.20)
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are
Ph

i=a,b

+(1- m — m)
1 + m + rh
1 — m — rhm + m) — 41n2 +

1 + m — rh 1
1 - m + m J

' 1 isly for p^

.m + c")

m + m) ln(l + m + rh)

we find

Pik 
A? — A“

with j = 2, k = 3 for i = 1,4 and j = 1, k = 4 for i = 2,3, and where £ is defined by 
1/2

- 1

+(1 — m + m) ln(l —

+-£-m
m — m

P ceding

Consequently,

£Tr(/>‘»lnpS'’) = H(l +

m — rh) ln(l — m — rh) + (1 + m — m) ln( 1 + 
^-ln 
m + m

e _ m [ c"2\

The Pij are given by
Pn = Pji = (cf + c" + + c”))2
Pl3 = P3i = « + c« - <(ej + c"))2
P3< = P<2 = « - c” + <(c? - c"))2 
/’34 = P43 = (^-c"-«c:-c"))2.

Then we have for the last term in (3.3.7)

Tr(^>ln^)) = £A«lnA? + ^7?j 

^24^24 + ^34^34} + higher order terms, 
where

_ ln(A?/Aj°)
“ 4(A?-A?)’

AS -- - : I - 2m3 4 i\
A“ = l(l-2m + c”).

The second order terms
8(1+0 {aF^AJ



The minimization of T73.4

4> =

where

(3.4.2)

3.4.1

(3.4.3)

(3.4.4)

(3.4.5)

(3.4.6)= 0.

3.4.1.1

(3.4.7)
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-1/2

In

m
m

+ m)(l — 
-m)(l -

1 - z, 
= —

we find

Collecting all information from the previous sections and scaling F with NkgT we 
find for the functional to be minimized

T ■ = (3.4.1)
NkBT v

+ '-K.c”) -mH + £ Tr^1’ In ,<’>) + Tr(p<2> In p<2>),

kBrk = Tt' KB-L
K - Jz ‘1 kBT'

+ m)(l + m — m) 
+ m)(l — m — m)

m + fh) 
m — m)

‘“Al

The phases without x-y order

We will first consider the phases which do not have x-y order (D, FI, and .'•!). In these 
phases the parameters cf, c1*, and cZI are zero, and we only need to take into account 
the terms in (3.3.14) and (3.3.19) that are due to pp. This leads to an expression for 
4> that only involves the unperturbed eigenvalues: $ = 4>0. The minimization can 
then be done exactly, and we find expressions describing the behaviour of the system 
throughout these phases.

Minimizing 3>o with respect to the four relevant parameters

dtp
de?1
g$o
de™
dip
dm
g$o
dm

*1 = o

z, A? „ 
+iln4=0

r, zc" (= —zK + —- ( 
4m \

z „ z , A°A° 
= -2/f‘ + 8lnApf = ° 

- —
(1 + m
(1 + m

We will now apply these equations to the three phases D, FI, and Al.

The disordered phase

In the disordered phase we can set m = 0 in equations (3.4.3), (3.4.4), and (3.4.5), 
while (3.4.6) does not apply. From (3.4.3) and (3.4.4) we then find

. .. 1 + 2c” - c«4J< = In----- - ------------
1 - 2c11 - c"



(3.4.8)

2cs (3.4.9)

(3.4.10)a =

and c r

(3.4.11)

4// = 2(1 - z) In + z In (3.4.12)

(3.4.13)m(l — z +

(3.4.14)
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wb ned 0 = cosh2 2K.
From (3.4.5) we find

1 + m
1 - m

(1 + 2m + c")(l — 2m + c**)
(1 + 2<5r - c")(l - 2c11 - c22)'

It follows from (3.4.7) that

Defining a — e‘

:")tanh(2/<).

c“

3.4.1.2 The ferromagnetic Ising phase

If the external field H is zero, m is the order parameter for the ferromagnetically 
ordered Ising phase, which does not exist outside the H = 0 plane. Putting the field 
equal to zero in (3.4.12), one finds to first order in m

—) = 0.1 + c22'

The solution m = 0 corresponds to the high-temperature phase, and the point where 
the expression in brackets becomes zero, allowing a non-zero value for m, signals the 
onset of the ordered phase. The phase boundary is thus given by

1
z - 1

On the other hand, on the boundary with the disordered phase c?2 is also given by 
(3.4.11), and m is zero by continuity. Then (3.4.11) reduces to

•XI = (1 - c‘

(3.4.8) reduces to

(1 + 2m + c“)(l - 2m + c22)
(1 c«)(l - 2c“ - c22)'

(3.4.9) this gives an expression for c22

- 2 (rr0 + m2(g2 — <z<?))1/2
a — 0 ’

AKZ = In

1 + 2m + c22
1 - 2m + c22

Combined with (3.4.11) this gives m implicitly for given values of /<, Kt and H or, 
when m is viewed as an externally controlled parameter (like the electron density 
in the Hubbard model), it gives the field (or the chemical potential in the Hubbard 
model) that is required to obtain a certain value for m.

These equations completely determine the parameters that play a role in the 
disordered phase. Next we will consider the two Ising ordered phases.



(3.4.15)c

(3.4.16)

(3.4.17)

(3.4.18)

3.4.2

3.4.2.1
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The phases with x-y order
For the phases that do have x-y order (XY and M) we use the perturbation expansion 
(3.3.10), and so we can only find the boundaries where the order vanishes. As can 
be seen from (3.3.14) and (3.3.19) 4> now consists of the unperturbed term 4>0» plus 
a term due to the inclusion of pi to second order, which is bilinear in cf, c12, and c2 . 
So we can write $ = <I>o + cT • M • c, where the vector c is (cf, cf, c“,czx')T and M is 
a symmetric 4 by 4 matrix. Taking the derivative with respect to the parameters c 
then leads to the matrix equation M • c = 0. The trivial solution c = 0 is valid in the 
phases without x-y order, and the point where det M = 0, which allows a non-zero 
solution for c, indicates the phase boundary.

+ m)\ 
-m)J

e2K‘ — cosh 2K
e2K1 + cosh 2K

From (3.4.14) and (3.4.15) the equation for the boundary of the ferromagnetic Ising 
phase is found to be

Kc = -(In----- — + In cosh 2K).

The x-y ordered phase

First considering the x-y ordered phase, the matrix M can be simplified by using 
the sublattice symmetry, which is still unbroken in this phase. This allows us to set 
m = 0, which implies £ = 1 (where we take m | 0 in (3.3.17)). Also, of the four 
parameters in c only two are independent: cf = cf and c12 = c2x. We are then left 
with a 2 by 2 determinant,

3.4.1.3 The antiferromagnetic Ising phase

To examine the antiferromagnetic Ising phase one also needs to tab staggered
magnetization into account. Thus one needs all four equations ( to (3.4.6)
to describe this phase. An expression giving the phase boundary . found by 
combining (3.4.3) and (3.4.6) to give

4z/<  / (l + m + m)(l-m 
c =-------m In 7---------------H--------

z —1 \ (1 + m — m)(l — m

Then taking the limit m —» 0 this is

c“ = 3— 
z — 1

For m = 0 we can also use (3.4.9) and (3.4.11), and together these three equations 
determine the boundary of the antiferromagnetic Ising phase.

4z/<
z- 1



(3.4.19)det M = = 0,

where the

(3.4.20)= 0.+ 4z

Results3.5
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1 ~ Z 
2771

By substituting (3.4.9) and (3.4.11) into this equation 
betv.t ■ the : i ordered and the x-y ordered phases.

112^24 

^12 + ^24

1 + 777
1 — 777

are defined in (3.3.20). This leads to the following equation

1 — z 
-------In

m

one can find the boundary

Using the results of section 3.4 we can now construct phase diagrams for different 
values of z. We will first discuss the significant features of one specific example,

In } i + f(^i2 + ^24) f(^12 — ^24) 
2(^12 — ^24) f(^12 + ^24)

nixed phase

the sublattice symmetry is also broken. Consequently, fh is not 
.four independent parameters in c: cj, cf, c*z, and c*x. This means 
tha.i solve the full 4 by 4 determinant detM. The expression one finds
for ;V?, as weh s the equation it leads to, is rather cumbersome and unenlightening, 
which is why it has been moved to appendix 3.A. Still, the equation det M = 0 in 
combination with the equations (3.4.3) to (3.4.6), that hold in the Al phase, does 
give an analytic expression for the boundary between the antiferromagnetic Ising and 
mixed phases.

In contrast, the boundary between the mixed and x-y ordered phases cannot be 
found within our approximation. This is due to the fact that on both sides of this 
line the parameters cj, cf, c*z, and c21 are non-zero, nor are they small in this region. 
Therefore the expansion (3.3.10) is not valid here. Nevertheless, to get an idea of the 
location of the boundary we used a numerical algorithm. This algorithm minimizes 
$ as a function of the full set of parameters as they are included in (3.3.5). The 
results of this algorithm were also used as a check on the analytical calculations in 
the preceding sections.

Remark that our method treats all clusters as equivalent; therefore the magneti
zation 777 is constant throughout the system. Thus the mixed phase is stable when 
one insists on a homogeneous magnetization. This need not be so when the sys
tem is allowed to phase separate into regions with different values of 777. The mixed 
phase disappears when one does not choose a fixed value for 777, but fixes the field 
H instead, leaving 777 as a free variational parameter. It collapses onto a single line, 
forming a first order transition between the Al and XY phases, with 777 changing 
discontinuously across this line.
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Fig. 3.1. The phase diagram for z = 6 and H = 0. The phase boundaries 
according to the CVM are indicated by continuous lines. The dashed lines are 
those parts of the curves calculated in section 3.4 that do not correspond to 
a phase transition. The dotted lines are the phase boundaries as they are 
given by the mean field approximation. The circled crosses show the location 
of the phase transition for some special cases according to series expansion 
calculations.
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which is more or less representative for the general case. After that we will point out 
the differences and similarities with other phase diagrams. We start by considering 
the case z = 6, which corresponds to a simple cubic lattice (note that the plane 
triangular lattice, which also has z = 6, is not bipartite, and thus does not fall within 
the scope of our treatment). The phase diagram should of course be considered in a 
three-dimensional space, as a function of /<, and H. But we will first look at the 
plane H — 0, and later consider what happens as a magnetic field is turned on.

In figure 3.1 we have plotted the three curves corresponding to equations (3.4.16), 
(3.4.18), and (3.4.20). These equations are only valid for the boundaries between 
the ordered phases (FI, Al, and XY) on the one hand, and the disordered phase (D) 
on the other hand. Therefore only certain segments of the curves (the full curves in 
figure 3.1) have physical relevance. They represent second order transitions between 
the ordered phases and the disordered phase. Their location should be compared 
to the mean field approximation, which gives Kc = Kzc = 1/z (the dotted box in 
figure 3.1), and to the results from series expansions for certain special ratios of K 
and Kz (the circled crosses in the figure) [10, 11, 12]. The results of the CVM turn out 
to be in quite good agreement with the series expansion values, and in any case they 
are a substantial improvement over the mean field approximation. For some special
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Fig. 3.2. The phase diagram for z = 8, H = 0. The same description applies 
as given for figure 3.1. Those parts of the curves that do not correspond to 
a phase transition (dashed in figure 3.1) are omitted for clarity; they look 
qualitatively the same as in figure 3.1.

X

cases, like the ferromagnetic and antiferromagnetic Ising and Heisenberg models, our 
results agree with those of earlier calculations with the CVM [13], and of the constant 
coupling method [14], which can be shown to be equivalent to our method.

As for the boundaries between the ordered phases, they do not follow from equa
tions (3.4.16), (3.4.18), and (3.4.20). If H = 0 it is obvious from symmetry consid
erations that the AI-XY boundary lies on the line Kz = —K. The FI-XY boundary 
only exists for H = 0 and, again for symmetry reasons, it is immediately evident that 
it must lie on the line = K. Thus the sections of the curves (dashed in figure 3.1) 
that extend across those lines into a different ordered phase, like the part of the XY 
curve that lies inside the Al phase, have no physical relevance, because the equations 
that describe them do not apply inside the ordered phases.

However, the same can not be said about the parts of the XY and Al boundaries 
that curve back after crossing the line Kz = — K for a second time (also dashed 
in figure 3.1). These curves again represent a continuous phase transition between 
the ordered and disordered phases. This implies that the system, after entering the 
ordered phase at a certain temperature Tc, becomes disordered again at a lower tem
perature T'c, and remains so down to T = 0. This artifact of the approximation was 
already noted by Kasteleyn and Van Kranendonk for the Heisenberg antiferromagnet 
[14], It indicates that the 2-spin CVM approach fails at low temperature, possibly 
because the nearest neighbour correlations it takes into account are too short ranged

-U
-.2
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to describe long wavelength spin-waves, which play a role at low T [15]. Neverthe
less, as long as one can make a clear distinction between the high temperature range, 
where the results of the approximation are acceptable, and the low temperature region 
where the unphysical disordering takes place, this method is still a useful approach 
for obtaining phase diagrams. From figure 3.1 one would conclude that this is indeed 
the case for z = 6 and H — 0.

Turning to higher values of z, we see that figure 3.2, which is for z = 8 (a bcc 
lattice) and H = 0, presents essentially the same features as the previous one. The 
irrelevant and unphysical parts of the curves have been omitted for clarity; they 
are qualitatively the same as for z = 6. Again, the 2-spin CVM is a substantial 
improvement over the mean field approximation where the boundary of the disordered 
phase is concerned, and the unphysical disordered phase (not shown in the figure) 
lies at sufficiently low T. If z is increased further, the results of our method become 
more and more like the mean field ones, which are exact for z = oo.

Lowering z, we see that the case z = 4, for the two-dimensional square lattice, 
presents a different picture (figure 3.3). The part with Kz > 0 is acceptable, with the 
ferromagnetic Heisenberg transition shifted to K = oo as it should be. But the region 
with Kz < 0 seems rather problematic. A gap has opened around the line K, = —A, 
connecting the “physical” disordered phase at high T with the “unphysical” one at 
low T. This makes it impossible to clearly distinguish between the high temperature

Kz
Fig. 3.3. The phase diagram for z = 4 and H = 0. Again the description 
given for figure 3.1 applies. In this case the curves calculated in section 3.4 
have been entirely drawn as continuous lines, since it is impossible to divide 
them into real and unphysical phase boundaries in a meaningful way.

K
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0

XY
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6 and various values of H. The same 
a: H = 0.01; b: Ji = 1;

rig. 3.4. phase diagrams for z = 
description applies as for the previous figures.
c: H = 2; d: H = 5.

region where the approximation is valid and the low temperature regime where it 
fails. Hence one does not know how to interpret this part of the phase diagram for 
z = 4, and it seems that the limit of applicability of the approximation has been 
reached.

We will now consider the changes in the phase diagram when a magnetic field H is 
turned on. We will only consider the case z = 6, as it is representative for other values 
of z as well. Figure 3.4 shows 4 cross-sections of the three-dimensional phase diagram 
(containing K, K,, and H) at certain values of H. The first thing that happens as 
soon as one turns on a field is the disappearance of the FI phase (figure 3.4 a, where 
H = 0.01). The transition in the ferromagnetic Heisenberg model is also destroyed. 
The curve giving the XY phase boundary, which for H = 0 crosses the line Kt = K 
at the critical coupling for the Heisenberg model, is now split into two separate parts 
on different sides of this line. The part where K > Kz still indicates the XY phase 
boundary, which now runs very close to the line K, = K, while the part with Kt > K 
is irrelevant and does not indicate a phase boundary. The remainder of the figure is 
not perceptibly changed by the small field H = 0.01.

On increasing II some trends become apparent (figures 3.4 b to d). The XY 
boundary shifts away from the line K2 = K, while the irrelevant part on the other 
side of this line moves to higher and higher K values, and disappears from the figure. 
In the other half of the phase diagram we see that the boundary of the Al phase is

D

(a) :0 (b) 1D

(d>:□



15

10

5

.2
VTe

34

. oupling 
boundaries 

L- = -J/*

0
0

Fig. 3.5. Phase diagrams for z = 6 and two different values of ti otropy 
Jz/J. Plotted vertically is the magnetic field scaled by the -y 
constant, B = h/J. The solid lines again indicate the phase 
and the dashed lines the unphysical disordering at low T. a: .
b: Jz = -1.3J.

1.2.4 .6
T/Tc

shifted towards larger values of |/CZ|, and also changes in shape slightly. Combined 
with the narrowing of the XY region this leads to a shift in the boundary between the 
XY and Al phases, which leaves the line Kz = — K, where it was located for H =0, 
and moves into the region — Kz > K. This phase boundary now becomes first order, 
with m changing discontinuously when it is crossed. If the field is increased still 
further, the XY and Al boundaries no longer intersect (figure 3.4 d), and the same 
situation arises described earlier for z = 4 and H = 0. Again the approximation 
ceases to be valid beyond this point.

Another conventional way of drawing the phase diagram of a magnetic system 
is presented in figure 3.5. Here we have fixed the anisotropy Jz] J, and then plot 
T/Tc — KJ K versus the scaled field B = h/J = H/ K (we again take z = 6)- 
If the x-y coupling is predominant the picture is rather simple (figure 3.5 a, where 
Jz — —J/2). One finds the boundary between the disordered and the x-y ordered 
phases, with a critical temperature that decreases with increasing field, and at lower T 
the “unphysical” transition back into the disordered phase. A more interesting result 
is obtained for a model where the z coupling dominates (figure 3.5 b, Jz = —1.3J)- 
For low fields B there is an antiferromagnetically ordered phase, while for higher fields 
x-y order takes over. These two phases are separated by a first order transition. At 
low T there is again a return to the disordered phase.

Finally, we replot the data in a way appropriate for the Hubbard model. As was 
pointed out earlier, the externally imposed parameter in the Hubbard model is m.

(b) H(a) H

10 D

B
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corresponding to the electron density n = m + 1 (see (3.1.5)), instead of the field. 
This leads to the possibility of finding the mixed phase M in place of the first order 
transition between the Al and XY phases. Figure 3.6 shows the phase diagrams 
for different ratios Jz/J-, and again we have taken z = 6. The phase diagrams are 
symmetric around n = 1, because of the up-down symmetry in the spin model. In 
figure 3.6 we only show the half with n > 1. The region around n = 1 is an Al phase, 
which in this context is associated with a charge ordered phase (CO) (for — JZ>J one 
sees from (3.1.3) that the intersite interaction W is repulsive; in the charge ordered 
phase the electron density is distributed unevenly among the two sublattices so as to 
minimize the energy due to this repulsion). This phase is flanked by an XY phase, 
associated with the superconducting phase of the Hubbard model (SC). In figure 3.6 a 
there is a thin slice of the mixed phase in between these two phases, exhibiting both 
charge order and superconducting order. The boundary between the phases M and 
SC has been calculated with the numerical procedure mentioned in section 3.4.2.2. 
For larger values of \JZ/J| the two phases become disconnected, and the mixed phase 
disappears. This is again an example of the limitations of the approximation, since 
the unphysical phase at low T links up with the high T part of the phase diagram.

We have applied the cluster variation method to the spin-| XXZ model, using clusters 
containing 2 spins. For the phases without x-y order we have derived the equations

context of the Hubbard model phase diagrams are usually 
notion of the electron density n = m 4- 1 and temperature.

: ratios Jz/J are considered, all at z = 6. The phases CO 
•nd to the Al and XY phases, respectively, in the spin model.

. , b: Jz = —1.5J; c: Jz = —2J.

D

CO

SCV

D

CO /

(a)

0
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J_ 
0 

Kz
Fig. 3.7. A comparison between the CVM results with and without the as
sumption (3.6.1). The phase boundaries shown in figure 3.1 are reproduced, 
so again we have z = 6, H = 0. The solid lines are the result of the full CVM, 
and the dotted lines those of the mean field approximation. The dashed lines 
that form an interpolation between these two are the result of incorporating 
assumption (3.6.1) into the CVM.

that follow from minimizing the free energy functional. These equations describe the 
behaviour of the system in the disordered and the (anti)ferromagnetic Ising phases, 
and give analytic expressions for the boundaries between these phases. For the phases 
with x-y order we have made an expansion in the parameters that are associated with 
this order. This makes it possible also to find analytic expressions for the boundaries 
between phases with and without x-y order. To examine the behaviour of the system 
inside the x-y ordered phases, and to find the boundary between phases that both 
have x-y order, a numerical algorithm was used that performs a minimization of the 
free energy functional without any further approximation.

As was mentioned in the introduction, Kulik and Pedan [7] have also studied some 
of the properties of a Hamiltonian equivalent to (3.1.1) with the CVM. But instead 
of considering both c11 (= (crjoj)) and c“ (= (<z’<7j)) as independent variational 
parameters in the free energy functional T7, they make the assumption

c" oc c12,

while keeping as an independent parameter. This assumption does not seem to 
be justified, since one would expect that for any finite temperature there exists a 
correlation between both the x- and z-components of neighbouring spins, even if

Al

0

Fl
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As was 
phases 
one

pointed out in section 3.4.2.2, to find the boundary separating the AI and M 
one needs to take into account all four parameters cj, cj, c”, and c". Then 

finds the following expression for det M

the magnetization c2 = (a2) is zero. Indeed, it can be seen from equations (3.4.9) 
and (3.4.11) that in the disordered phase c“ as well as c" will be of order 0(1). 
Especially near the XY phase boundary the correlation c21 will be considerable, 
while the magnetization cf is still zero. As can be seen from figure 3.7, the result of 
incorporating the mean-field-like assumption (3.6.1) into the CVM is that the phase 
diagram (dashed curves) becomes an interpolation between the results of the mean 
field approximation (dotted lines) and the full cluster variation method (solid curves). 
Some of the important features of the full CVM result (asymmetry between positive 
and negative A., the fact that the FI and AI phase boundaries meet the XY boundary 
on the lines K: ±/<) are lost by making the assumption (3.6.1). Thus it is essential 
to include both. . ' and c22 as independent parameters in a CVM description of a spin 
model like the one discussed here.

Th. i grams calculated with the full cluster variation method are, for a 
certai, • parameters (z > 6, H not too large), a substantial improvement 
over the . . .: : approximation, and agree quite well with the results of series 
expansion methods. The cluster variation method does behave unphysically at low 
tempenatures, predicting a second disordered phase below the ordered phases, but 
for this range of parameters this does not interfere with the high-temperature part 
of the phase diagram.

However, for z < 4 and/or large values of H the disordered phase at low T links up 
with the one at high T. This makes the phase diagram calculated with our method 
unreliable in some regions, especially around J2 = —J. Other methods that have 
been used to study the phase diagram of the XXZ model also suffer from this diffi
culty in dealing with the antiferromagnetic sector. Some real-space renormalization 
group approaches that work well for the ferromagnetic Ising sector and the isotropic 
Heisenberg model turn out to be unable to deal with the rest of the phase diagram 
in an acceptable manner [16, 17]. Despite its shortcomings, the full cluster variation 
method seems to be a useful tool to examine the phase diagram of the XXZ model. 
It is considerably more sophisticated than the mean field approximation, and gives 
qualitatively better and quite accurate results over a range of parameters.
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* Apart from some modifications, this chapter will appear in J. Phys.: Cond. Matt.

Ths ?.ase diagram of the XXZ model for 
s -/id layered geometries^

TI:-: behaviour of systems as a function of their spatial dimension is an important 
issue in statistical physics. Indeed, some properties, like critical exponents and the ex
istence of a phase transition, depend almost exclusively on the spatial dimension and 
the symmetry of the model. Many of these quantities have been accurately calculated, 
e.g. with momentum-space renormalization techniques. In addition to these so-called 
universal properties, there are also quantities, such as the critical temperature, that 
do depend on the details of the geometry and the Hamiltonian of the model. In some 
cases real-space renormalization has been successful in calculating these properties. 
Also, various series expansion methods have achieved a high accuracy in examining 
some specific models. For quantum spin models, however, real-space renormalization 
runs into considerable difficulties, while series expansions cannot give a global picture 
of the whole phase diagram of more complicated models. This is why practically the 
only general method used to deal with such models is the mean-field approximation. 
Since this method gives only a crude approximation of the phase diagram, more so
phisticated approaches are needed. In this paper we use a more refined method to 
calculate phase diagrams and to study the influence of the spatial dimension on 
details of these diagrams.

In order to study the influence of the dimension on the behaviour of a system, one 
may consider geometries that can be made to cross over between different dimensions. 
We will examine two quantum spin models that can be changed from two- to three- 
dimensional by varying a parameter of the model. In the first model we consider 
how a collection of uncoupled two-dimensional layers changes into a fully isotropic 
three-dimensional system as the inter-layer coupling is turned on. Second, we turn 
to a model consisting of a slab of n such layers, which becomes three-dimensional as



(4.1.1)

42

N

= 52 +a.v<Tj) - - 52ha'-
(.j) .=i

we will examine the changes in the

The sum ’s over nearest neighbour spins only, and the <z“ ar; li matrices.
The spin coupling is anisotropic in spin space, i.e. J,? Jz,j, and bj ;ing J,y and
Jt,j to be different for different pairs of spins i and j, it can also b< 
in real space. In addition to the coupling there is a homogeneou 
in the z-direction. We will consider bipartite lattices only, so an 
phase can always be accommodated without having to take into ac 
For such a lattice we can assume

.misotropic 
tic field h 
omagnetic 

frustration.
that is positive, i.e. ferrom . since the 

model is invariant under a change of sign of J,-, [1] (we do not consider cases where 
different J,j or have different signs).

The Hamiltonian (4.1.1) is of interest for two reasons. First, it is interesting in 
itself, having two competing interactions, J and Jz, and both a continuous symmetry, 
for rotations of the spins around the z-axis, and a discrete up-down symmetry if 
h — 0. It also comprises various special cases like the Ising, Heisenberg, and XY 
models. Second, it is the Hamiltonian one obtains when writing a simple lattice 
gas model of a fluid consisting of interacting hard core bosons in the pseudo-spin 
formulation [1, 2]. As such, it has been used to examine both superfluidity [2, 3, 4] 
and superconductivity [5, 6, 7, 8], the latter in the framework of theories that assume 
the existence of preformed, real-space pairs in high-Tc superconductors. Apart from 
the obvious interpretation of the spin model as a magnetic system in a layered or film 
geometry, one could then also make a connection with superconductors that consist of 
weakly coupled layers, or superfluid films of 4He. This model is much too simplified, 
however, to give more than a qualitative picture of such systems.

The method we use to construct the phase diagram of the spin system is the 
cluster variation method using two-spin clusters. This method can be viewed as an 
extension of the mean-field approximation that also takes into account the correla
tions between neighbouring spins. It is the quantum version of Kikuchi’s variational 
method for classical spins [9, 10, 11], and it is essentially a mean-field-like method, 
e.g. it reproduces the mean-field values of the critical exponents. For getting a global 
picture of the phase diagram it is a considerable improvement over the mean-field 

= approximation, which is one of the few general methods applied to the Hamiltonian 
(4.1.1) so far. The cluster variation method has turned out to give quite good results 
for the phase diagrams of fully isotropic two- and three-dimensional quantum spin 
models [12, 13], despite some unphysical behaviour at low temperature.

In section 4.2 we will give a description of the cluster variation method, and then,

its width approaches infinity. For both models, 
phase diagram as these parameters are varied.

The specific spin model we will be studying is the spin-| XXZ model. Its Hamil
tonian is
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Tr(pW) + kBTTr(p\n p). (4.2.1)

li

^[p0] = E — TS. (4-2.2)F =

(4.2.3)P,

(4-2.4)— T
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(4.2.5)
(4.2.6)

in sections 4.3 and 4.4, apply it to the two geometries mentioned above. The results 
are discussed in section 4.5.

atrix must satisfy Trp = 1, and for the true density matrix p0 that 
■ue finds for the free energy

■=1 W>

F[p\

In this section we briefly outline the cluster variation method that is described in 
more detail in [13]. The starting point of this method is the variational principle for 
the free e.i.'.-gy T as a functional of the density matrix p of a system,

where the so-called cluster entropies S-1’ and are defined as

5?’ = -fepTr^lnp^),
S!/’ = -lflT< In /,,<?>).

These quantities are the most convenient from a calculational point of view, since 
they involve only a single reduced density matrix. All equivalent clusters have the 
same cluster entropy, and the number of non-equivalent clusters is determined by the

Tr 
spins

where all spins not in C are traced out. We will limit ourselves to clusters consisting 
of single spins and nearest neighbour pairs.

For a Hamiltonian like (4.1.1), that only contains on-site terms and nearest 
neighbour interactions h^\ one can, in this approximation, express F in terms of p,-1^ 

and pjp as follows

Au approximation can be made by expanding F in cumulants, and only considering 
the reduced density matrices p^ for a limited set of small clusters C. The reduced 
density matrix for a cluster C containing n spins is

J")  Pc —

F = f ^(pP’Aj^ + ^Tr^Ag)) 
i=i W)
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= z). (4.2.7)

(a = x ■■Pi” =

= ( 1 + + c?a?) + £ , (a, /?
\ a a,0 /

- If the x-y rotation symmetry is spontaneously broken, the system has a non
zero magnetization in the x-y plane. The order parameter for this x-y ordered 
phase is c”, while the other “order” parameters are c-f, cf*, and c*".

- In the case that h = 0 there is a phase where the spins order spontaneously in the 
z-direction. The order parameter for this ferromagnetically ordered Ising phase

- For negative values of Jz the system can order antiferromagnetically in the 
z-direction. The order parameter of this antiferromagnetic Ising phase is the 
staggered magnetization rfi; = |(c;a — c-J.

The functional T is now a function of the parameters c“ and c“f. These parameters 
are just the averages of the spin operators, c“ = Tr(p-'’<7“) = (a°), and likewise 

= (cr“crj). From the symmetry of the Hamiltonian and of the phases under 
consideration one can deduce two properties of these parameters. First, not all of 
them are independent, e.g. one can take cf = c)1 and cf* = etc. because of the 
rotation symmetry around the z-axis in spin space of (4.1.1). Second, some of the 
parameters are characteristic of the ordered phases of the system, i.e. they are only 
non-zero when a symmetry in the Hamiltonian is spontaneously broken. The most 
important of these is the order parameter of the ordered phase. We will refer to these 
parameters characteristic of an ordered phase as “order” parameters. The parameters 
can be classified accordingly:

- In the disordered, high temperature phase only and c" and, provided that 
h =4 0, the magnetization m, = |(cfo-|-c?t) are non-zero. There is no spontaneous 
breaking of any of the symmetries of the Hamiltonian.

geometry of the lattice and the phase that one wants to describe. In order to have 
the possibility to describe an antiferromagnetic phase we must at least distinguish 
between and where a and b are the two sublattices of the bipartite lattice. In 
a more complicated geometry there will be more types of one-spin clusters, and also 
several different types of nearest neighbour pairs, each with its own cluster entropy

This will be the case when we consider the anisotropic and layered geometries 
in sections 4.3 and 4.4.

What remains to be done is to find a suitable parametrization for the reduced 
density matrices. In dealing with a spin-| system one can always express these 
matrices in terms of Pauli spin matrices:
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Pi

(4.2.8)

4

(4.2.9)

At = A° 4- A’ + O(cx<), (4.2.10)

and hence for the trace (4.2.9)

(4.2.11)

(4.2.12)
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1 + c? 
(1 + «)<

Tr(p In p) = £ A* In A* = £(A£ + A2) In A° + O(^). 
k k

The eigenvalues p one

where A* are the eigenvalues of the matrix p. It was shown in [13] that, if one is only 
interested in locating the phase boundaries, it suffices to calculate the eigenvalues 
perturbatively up to second order in the x-y “order” parameters cf, c?’, and c-2. For 
a continuous transition one can then find the boundaries between the ordered phases 
and the disordered high temperature phase, since these parameters are small near 
the phase boundaries. The first order term Aj[ turns out to be zero, and one finds for 
the eigenvalues

finds in this way for p-1’ are

= 1
* 2

r+cj + c22 (1 - :)(cj + c22) 
e*

(1 - i)« + c") -2ic^
2^ (1 - £)(<? - c")

1-cf + cJ-c22 (1 - .)(cj - c22) 
(l + .'XcJ-c22) l-cf-c^+c"

We can express the reduced density matrices in these parameters as 
bases {]+), |—)} and {| + +), | + —), | —|-), |-----)} have been used):

is m,. In the following we will generally assume that h / 0, and occasionally 
make a remark concerning the case h = 0.

where we ii.?. .. for clarity, omitted the label ij for the parameters c°f in the expression 
for p*2'. While it is easy to calculate the energy part in (4.2.4) with these expressions, 
for the entropy part we need to evaluate traces like

(i-*K > 
l-c? )'

= J(i + <), p°2 = i(i-<).
2 

2<

Pii
/ 1 

:.!(cj + c21) 1+cf-cJ- 
+ c22) 2c22

c2* (1 + l)« - c22)

1
2' 
£ 
2cf’
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(4.2.13)

(4.2.14)+
is defined

(4.2.15)

$ =

+

+

(4.2.17)

where
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N

(4.2.16)

finds for the free energy

NkgT

4c112 

« -2c11

Ptn ]

1/2

-1

are (again dropping the label ij)To zeroth order the eigenvalues A,j of pj2'

A? = |(l + < + cJ + c22), 
^ = |(l + («-< + 4c“2)1/2

A» = 1(1-(«-cJ)2 + 4c“2)’/2

The second order terms are
. 1 f Pkm

8(1+e2) 1 - A^ 
with m = 2, n = 3 for k = 1,4 and m = 1, n = 4 for k = 2,3, and w 
by

A? =

The Ptm are given by

P12 = Pzi = (cj + c" + £« + c”))2 ,

P13 = P31 = (<? + c” - f(cj + C“))2 ,

Pu = P12 = (<? - c” + f(cj - c21))2 ,

P34 = p43 = (cj-c2i-e(cr-c22))2.
On substituting all this into expression (4.2.4) for T7 one 

functional per spin <1>

= E 2K^X+K> + E Hc'\
«> •=> J

E E^b'k + 1“ Aiji
(b) 1=1

- E E(M°t + M2t)l°M°t + (p°t + Pjt) lnp°t > ,
<b) ‘=1 J



(4.2.18)H =

where

(4.2.20)
c=o

The spatially anisotropic geometry4.3
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To apply the method described in the previous section to a specific geometry, one only 
needs to identify the different types of clusters, and count how often they occur in the

K/<ij - kBT' K,ii ~ kBT' H ~ kBT

After also expanding this expression to second order in the other “order” parameters 
(like m,), it can be separated into two terms. The first one, $0, only contains the 
parameters associated with the disordered phase, cf”, cfj, and m,, while the other 
one, 4>2, is bilinear in the various “order” parameters. (If one wants to consider the 
case h = 0, one should expand $ to second order in m,, too, and include m,- in the 
set of -deF' parameters.) <I> can now be written

‘ <l>2 + ...
■I cr-M-c + ..., (4.2.19)

■ containing all “order” parameters, and M is the symmetric matrix

The matrix M itself only depends on the parameters of the disordered phase, c?*, c??, 
and m,. Since <h2 does not contain terms that are a product of “order” parameters 
for different phases, the matrix M is block diagonal. It contains a block MA‘ cor
responding to the “order” parameters of the antiferromagnetic Ising phase, a block 
MXY for those of the x-y ordered phase, and in the case h = 0 a block MFI for the 
ferromagnetic Ising phase.

Now the minimization of 0 in the disordered phase boils down to minimizing 0o, 
since the minimization with respect to c gives the equation M ■ c = 0, which in this 
phase has the trivial solution c = 0, i.e. all “order” parameters are zero. In an ordered 
phase, on the other hand, there is also a solution for the minimization equations for 
<!> with some elements of c non-zero. The two solutions bifurcate for detM = 0, so 
this is the equation giving the phase boundary. Since M is block diagonal the three 
different phase boundaries follow from

det Mp = 0, (4.2.21)

with P = Al, XY, FI for the antiferromagnetic Ising phase, the x-y ordered phase, 
and the ferromagnetic Ising phase, respectively. The procedure for finding the phase 
boundaries is then to first solve the minimization equations for $0 for the disordered 
phase only, substitute the result into M, and then to solve (4.2.21). In some cases, 
e.g. when the field h is zero, this can be done analytically, but if necessary the whole 
minimization can be done numerically.



4.3.1

(4.3.1)

= kBN
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5
2

For this geometry the Hamiltonian (4.1.1) reduces to

*=E +
Will

extends

The calculation of Mp

lattice. As a first example we will consider a cubic lattice with a spatially anisotropic 
interaction. The lattice consists of a collection of parallel quadratic planes, and 
the coupling between spins that lie in the same plane is different from the coupling 
between spins in adjacent planes. We will take the coupling within the planes to be 
larger than that between planes, so one has a stack of (more or less) weakly coupled 
layers. By varying the ratio of the inter-layer and intra-layer couplings from zero to 
one, the system changes from a collection of uncoupled, two-dimensional quadratic 
lattices to an isotropic three-dimensional cubic lattice.

N

E - E ha<-
<.f)X i=l

The summation 53<o>|| extends over all nearest neighbour pairs of spins inside the 
layers, while the sum 52(o)x runs over nearest neighbour pairs that lie in adjacent 
layers. The couplings Jj| and Jz ||, and and Jz± are the intra-layer and inter-layer 
couplings, respectively.

Apart from the distinction between the sublattices a and 6, all sites of the lattice 
are equivalent. There are, therefore, two one-spin reduced density matrices, pa 
and pj1’, and two corresponding cluster entropies, Si’’ and Sj1’. There are also two 
different types of two-spin clusters, since in this geometry a cluster of two spins in 
the same layer is not equivalent to one of two spins in adjacent layers. Thus one has 
two two-spin reduced density matrices, P|2’ and p±\ and two cluster entropies, S|| 

and Consequently, one finds for the energy terms in (4.2.4)

Tr(pH) = £ Tr(p^h^) + £ Tr(p<2)/£>) + £ Tr(p^h^)
■'=* Will (v)J.

= —N (4 JiicjJ1 + 2 J, ||cjf + 2 Jxcl1 + Jz x<* + mh) , (4.3.2)

since out of the 6 neighbours of a particular spin 4 lie in the same layer, and 2 lie in 
adjacent layers. For the entropy one similarly finds

kB Tr(p In p) = / 5 E Sj" - E - E 1
( •=> Will <o)J- J

£ Tr(p<» In pj1’) + 2 Tr(p<’> In p'2>) + TY^ In p£>) | (4.3.3) 

q=a,b z



4>0

(4.3.4)

-In 2,

(C =||,-L). (4.3.5)

oc

(4.3.6)

=

(4.3.7)

where

,4K,( (4.3.8)

is

= 0(.4.3.9)
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cosh2(27<f).

1 + 2m + cj_z
1 — 2m +

1 + m
1 — m

are simply the expressions (4.2.13) with

= e

ac?1

Oc^

Equations (4.3.6) can 
isotropic lattice [13],

I 1 .
F + 2ln

rxx Cc

<7^ + — 2 4- m

= l(l-^)tanh(2K<),

M2 - Me))*'2

ex K,

- (4/<||C^ + 2K,n<tf + 27<±c" + K,±<% + mH) 
-5P(1) + 2P<2) + P[2).

The contributions from the three terms in (4.3.3)
parameters eqi:?l to zero

^ln(l — m

The disordered phase is described by five parameters, viz. m, cjj1, Cn', c”r, and 
Cx- The values of these parameters can be found by minimizing 4>o, which in this 
case is given by

°C =
The result of minimizing in m

~^0 = —H + ■£- (-5P'1’ + 2P<2) + Pf’)
- H 5 In 1 + m I In 1 + 2m +

H 2 1 - m+ 1 - 2m + cj*

are obtained by setting the “order” 
in the eigenvalues of the density matrices. This gives

,, , 1 + m\
’) + m In --------

1 — mJ

i

The eig?. vab. : in the disordered phase
cf = cj m.

Performing the minimization with respect to c"°, we find that the equations for
C =|| and C =± decouple, and that they are the same apart from an overall factor,

5 1-2) 1 22/<<-^2’ = 27<(--ln^ = 0,

9 (21 1 -*21A?4

be solved, and the result is the same as that for an infinite



(4.3.11)MA' =

and

(4.3.12)

(4.3.13)(C =11,-L)-

(4.3.14)MFI = —5 +

Results4.3.2
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5
1 — m2

4m =

The phase diagram we obtain for this geometry is shown in figure 4.1 for different 
values of the spatial anisotropy r;, and the magnetic field H equal to zero. We 
will always take the anisotropy in spin space equal for the intra-layer and inter
layer couplings, so that for the spatial anisotropy we have r] = K^_/K\\ = 7<zj./^||- 
The two-dimensional case is recovered for r] = 0, and the three-dimensional one for

This equation should be solved, together with (4.3.7), to give m as a function of H, 
or, if m is considered as an externally imposed parameter, it gives the field H required 
to produce that value of m.

The second order term 4>2 is

= cT ■ M • c, (4.3.10)

where the vector cT = (rh,<f , cjj* , c^’) contains the “order” parameters. The matrix 
M is a block diagonal matrix consisting of a 1 by 1 block M*', giving the coefficient 
of the term quadratic in fn, and a 3 by 3 block MXY coupling the other three “order” 
parameters, (<+, c?jx, c^*),

J"2,2

M

where

If one wants to consider the case h = 0, m must be set equal to zero in 4>o, and 
included in the vector c. M will then also contain a 1 by 1 block MF' giving the 
coefficient of m2, which is equal to 

4 2
l+<f +

1 , A« 1 A° 
+ ^lnAj}3 + 2^lnA«3’

— “ mlni---~ + 4(4 + 4) + 2(4 + 4),m 1 — m

= <1=4(4-4),
= <1 = 2(4-4),
= 4(4 + 4),
- <j = o,
= 2(4+4),

i
2<T
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KZ||
Fig. 4.1. f phase diagram for the spatially anisotropic geometry. The phase 
boundaries have been drawn for r) = 0 (dotted), 1/4 (short dashes), 1/2 (long 
dashes), 3/4 (dot-dashed), and 1 (solid). The magnetic field H is zero.

V = 1. The other three values, r? = 1/4,1/2,3/4, interpolate between these two. The 
structure of the phase diagrams is roughly as follows: at high temperatures (around 
It'll = Z<x|| = 0) the system is in the disordered phase (D). The ordered phases one 
finds at lower temperature are the ferromagnetic Ising phase (FI) for > Z<|| > 0, 
the antiferromagnetic Ising phase (Al) for — K,|| > A'n > 0, and the x-y ordered 
phase (XY) for ZCy > |Z<2|||. The boundaries between these three phases and the 
disordered phase follow from the equations detMp = 0. For H = 0 the Ising phases 
are separated from the XY phase by the lines Z<[| = Z<2|| and Z<|| = — ZC2||.

As r/ is increased from zero to one, the disordered region (D) shrinks, the phase 
boundaries moving towards lower values of K (higher temperatures). The general 
shape of the disordered region changes little; for the Ising, XY, antiferromagnetic 
and ferromagnetic Heisenberg models one has Z</ < K*Y < K*H < for most 
values of rj. Two qualitative changes take place. First, the critical coupling of the 
ferromagnetic Heisenberg model, which is infinite in two dimensions, becomes finite as 
soon as the inter-layer coupling is turned on. This is consistent with the fact that the 
lower critical dimension of this model is 2. Second, the antiferromagnetic Heisenberg 
model does not exhibit a phase transition for t?<1/4. This is related to the fact that 
the cluster variation method, and similar approximations, predict a spurious phase 
transition at low temperatures [12, 13, 14). As the temperature is lowered, both the 
Al and XY order disappear, and the system remains disordered down to T = 0. 
For low dimensions, and in this case for small r), this artifact of the approximation

FlD

0
0

■yf I / 
7 / / 
// /
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The slab geometry4.4
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Fig. 4.2. The critical temperature for the spatially anisotropic ry, as 
a function of t). The values of kgTc/\J\ have been plotted for me pecial 
cases of the XXZ Hamiltonian, viz. Ising (squares), XY (crosses), antiferro
magnetic Heisenberg (triangles), and ferromagnetic Heisenberg (circles) inter
actions. The lines have only been drawn to guide the eye.

interferes with the phase transition at higher temperature. So, unfortunately, no 
conclusions can be drawn about the behaviour of the antiferromagnetic Heisenberg 
model near two dimensions, which is of great interest in connection with theories 
of high-7), superconductors. For t)>1/2, this unphysical transition takes place at 
such a low temperature that it is clearly separated from the physical ones, and the 
phase diagram is barely influenced by it. In fact, for the three-dimensional isotropic 
case (q = 1), it turns out that the accuracy is quite good when compared to high 

temperature series expansions.
In order to show the change of Tc from its two-dimensional value to that for three 

dimensions, figure 4.2 shows a plot of fcsTc/m = l/|/f| versus the spatial anisotropy 
q. The values given are for some special cases of the Hamiltonian (4.3.1), namely the 
Ising, XY, antiferromagnetic and ferromagnetic Heisenberg models.

Another geometry that shows a cross-over from two to three dimensions is that of 
a slab consisting of a finite number, n, of simple quadratic layers. We will take the 
coupling constants equal in all directions, and by letting n run from 1 to oo the system 
changes from a two-dimensional simple quadratic lattice to a three-dimensional cubic 
lattice. The Hamiltonian is basically given by (4.1.1), with Jjj = J, Jsij = J*, a 
homogeneous magnetic field h, and the sum running over n layers containing N/n



4.4.1

n4>

+

(4-4-1)

n«>o

(4-4.2)+
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spins each. The top and bottom layers have free boundary conditions. A similar 
calculation for the Ising model can be found in [15].

= E [-4(/<<|f + -Hmr + ± + S£>) - 2S<i

+ S«).1
■ 2kB

The last term is a correction due to the fact that the top and bottom layers have 
only one neighbouring layer. In the disordered phase the non-zero parameters are 
mr, c^|J, and c^jj for every layer, and cj:* and for every pair of adjacent layers 
(c?“ = (c“xo + c?“t)/2)- Hence we find for 4>0

-4(/<<|f + y^) - Hm, - 5P^ + 2P<jJ’}

The calculation of Mp

Since the slab has only a finite thickness, there is no translation symmetry in the 
direction perpendicular to its surface. Therefore all n layers (which we will indicate 
by an index r running from 1 to n) are different, except for a reflection symmetry in 
the middle plane of the slab, so that layers r and n + 1 — r are equivalent. Quantities 
that refer to oi. layer only, like the one-spin cluster entropies and the cluster entropy 
for two he same layer, will be given an index r indicating the layer they
refer • s that refer to two adjacent layers, like the cluster entropy for two
spins layers, will also be given an index r, now indicating that they refer
to lay. 1. For these quantities the reflection symmetry means that those
labell. r are equivalent. The two sublattices necessary for the description
of an agnetically ordered state are defined on the cubic lattice, so that a
site on sublatt a in layer r is adjacent to sites on sublattice b in layers i— 1, r + 1, 
and r.

For each layer r we consequently have two one-spin cluster entropies, and 
S'V. and one cluster entropy for two spins within the layer, 5*^. There are two 

cluster entropies for spins in different layers, where the spin in layer r is on the 
a sublattice and the one in layer r-f-1 on the b sublattice, and where this is the 
other way round.

For the free energy functional 4> this leads to the expression
n
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(4.4.3)(C=l|,-L).

4.4.2

(4.4.4)

with

(4.4.5)
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■low CT =

< For the
( ,-^)/2

where both spins in the cluster are in 
= mr. For two spins in adjacent 

= m,+i. The 
he disordered 
■s .be done 

ation, an

The case H — 0
In general the determination of the phase boundaries for the slab geometry must 
be done numerically, but if H = 0 one can proceed analytically, which we will first 
do for the x-y phase boundary. In this case the description of the disordered phase 
simplifies due to the fact that there is no magnetization profile mr. For H = 0 and 
mT = 0, (4.4.2) becomes

/ll(^,^) = -4(Z<<|J + ^)-51n2 + 2^>, 

= -2(K^ + ^.<1) + P<1>.

Now minimizing 40 with respect to a parameter c““ of the disordered phase gives

n n—1

where

■P?’ = | (ln(l - mJ) + mr In 
z \ 1 — mr

Jb=l

In the disordered phase, the eigenvalues AJ||t, 
layer r, are obtained from (4.2.13) by setting cj = cj 
layers, r and r +1, we get from (4.2.13) by setting cj = mr and ■ 
presence of the magnetization profile mr prevents us from treatin': 
phase analytically, so the minimization in the presence of a field 
numerically. If H is zero, however, and consequently there is no m 
analytical treatment is possible. This will be done in the following

The second order term 4>2 is again of the form $2 = cT ■ M • c 
(mr,6“,6",cj,cj|pcj^,cjj) contains a large number of “order” par 
antiferromagnetic Ising phase there is the staggered magnetization r 
for each layer. In addition, the quantities 6““ = (c““o — c°±b)/‘2 a.i- a! non-zero 
when the two sublattices a and b are different, which gives rise to these new “order” 
parameters. For the x-y ordered phase c contains the magnetization in the x-y plane, 
cj, the intra-layer correlation cjj'j , and the two inter-layer correlations <%.]_ and cjj. 
For the case h = 0 the parameters mT must be set equal to zero in 4>0, and included 
in c as the “order” parameters for the ferromagnetic Ising phase. The structure of 
the matrices Mp is given in appendix 4.A.



(a = x,z), (4.4.6)

- (4-4.7)= 0.

(4.4.8)Cr<

(4.4.9)

(4.4.10)

u

(4.4.12)v

find the system of equations ——n$2 = 0, which turns out to be

(4.4.13)
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i

term in (4.4.4) containing the parameter c"“. Moreover, 
on c“° is the same for any r

4uc£2

+ <+1)2+ «(<?-<+1 )2

The expr. 
equation 
r and £. 
lattice, r ... ■>

Minimizing <>2 we

c“ =

To find the phase boundary, 
energy functional,

-5e‘,) + 22d| + £2 Qr± + 21” + Q{n\

+ ac? = 0,
“(v-r + ^>Cr + acr+l = 0 (1 < r < n), 

acxn_x + bicx = 0,

with

Q'1’ = <2,
4

= y? k in ^r( k =
k=l

and, using (4.4.7),
K, - K

2(c” - c1*) ’
K, + K

2(c*z + c“)‘

cxx

= 2K-|ln^ = 0,
Z Ar(3

'2) rx 1 1_ (-^r<l)2

’ 4lnA?<2A?<3

only depend, through (4.4.3) and (4.2.13), on cJJ and <££. The 
.t determine the correlations c““, can be solved independently of 
ns one finds are again just the same as in the case of an infinite

e2K‘ — cosh 27<
e2K- + cosh 2/C ’

sinh 2/<
e2K‘ + cosh 2K

we calculate the second order term <t>2 of the free

(4 4 11)(C =±)?4-4 J

d
d^n^° = = °’

because there is only one 
apart from an overall factor of 2, the dependence of 
and C. So, as in (4.3.6), we find for all r and (

2.K - ~ -- z:' 1

d
dc^
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(4.4.14)b = - 10,

Z» = 9

(4.4.15)

or

(4.4.16)

and

(4.4.19)= 5,

(4.4.20)
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—b ± \/b2 — 4a2
V* =---------Ta---------

Kz — K 
C*z - c*1

c“ -
K.-K 
c" - c11

The system (4.4.13) admits solutions of the form cj = ayT. From the equation 
for 1 < r < n we find

a(yr~' + /+1) + by' = 0,

6(K, - K)-

< = + Py'_. (4.4A1)

Substituting (4.4.17) into the equations for the boundary layers then gives

(6iy+ + ay\)a + (bxy_ + ay2_)P = 0,
(M+ + ayj-1)a + (i>iy" + ay"~')P = 0. (4.4.18)

The trivial solution a = p = 0 gives the disordered phase, where the magnetization 
is zero; at the point where the determinant of the coefficients vanishes, the solution 
bifurcates, and this signals the transition into the x-y ordered phase.

It follows from (4.4.15) that y+y_ = 1, and for b2 > 4a2, are real. For b2 < 4a2 
they are complex conjugates, so y+ = e-1*, y_ = e**. For high temperatures one finds 
that b2 > 4a2, giving real y±. Lowering T, one comes to a point where b2 = 4a2, and 
V+ = y~ = 1. This happens at T^oo), the critical temperature for the infinite cubic 
lattice. Due to translation invariance, the spontaneous magnetization of this system 
is homogeneous. The equation b = —2a is equivalent to

:2K' + cosh 2K
e2K, _ e2K

which is indeed the equation for the phase boundary of a system with coordination 
number z = 6 as found previously [13]. At Tc(oo) a layer of finite width is still 
disordered, since the bifurcation of the solution of (4.4.18) has not yet taken place.

Below Tc(oo), we have y+ = e~'* and = e’*, so cf = ae~'r^ + Pe"*, with 
tan<^ = ^/4a2/62 — 1. The determinant of (4.4.18) then gives

(&i + ae-<*)2 = e_2(n_1),*(51 + ae’*)2.

K. + K 
c" + c~ ’ 

^ + 2^±* 
:x c“ + c11 

- + ^±*-8. c“ + c”
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7c(oo). 1 mg (4.4.21) for small <f> and large
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1 +c*2

1
1 + c“

Using (4.4.21) combined with (4.4.15), (4.4.24), and (4.4.25) we can construct the 
phase diagram for H = 0.

The solution with <f> = 0 corresponds to the bulk transition temperature Tc(oo), and 
does not indicate a phase transition in the finite slab. This transition corresponds to 
the first non-zero value of <f> satisfying (4.4.20), which is a solution of

6! + ae-* = _e-("-i)**(61 + ae'*). (4.4.21)

Hence we find that the solution of (4.4.21) corresponding to the smallest non-zero 
an n-layer slab. In the limit of 

•f <f> at Tc(n) approaches its value for the infinite lattice, <t> = 0 at 
n we find that <f> goes to zero as 

q given by q = —(3a + 6i)/(a + 6i) calculated at Tc(oo). It can 
0 for all K and K,.

? critical temperature, we also find the shape of the order param- 
. onset of the ordered phase. The normalization is determined 
terms of 4>, but since at Tc(n) the amplitude is zero anyway, the 

is the only quantity of interest. We first observe that, in order to 
have a re.il value magnetization, we must have [} = a’, so

czr = |a|(e-(r*+*°) + e'(r*+*°)) = 2|a | cos(r<f, + fa). (4.4.22)

The angle fa can easily be found from the symmetry requirement that cj = cj+1_r, 
which gives fa = 0 - ?r/2 = —(n + 1)^/2, and

cz = 2|a| sin(r^ + 0). (4.4.23)

Exactly the same treatment can be applied to the ferromagnetic and antiferro
magnetic Ising phases; the only difference lies in the expressions for a, 6, and bt. For 
the ferromagnetic Ising phase they are

1
1 + c" 

10
1 + c*
__ 9
1 + c“

- + 2------- 10,
12 c22

and for the antiferromagnetic Ising phase

K 1
c22 1+c22’

K 10---- +
0"

6i = S~ +
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Fig. 4.3. The phase diagram for the slab geometry. Phase boundaries are 
given for n = 1 (dotted), 2 (short dashes), 3 (long dashes), 4 (dor-dashed), 
and oo (solid). The magnetic field H is zero.

The phase diagram we find for the slab geometry is shown in figure 4.3 for n = 
1,2,3,4, and oo and H = 0. For the two- and three-dimensional cases n = 1 and 
n = oo they are of course equal to the results for the infinite lattices with coordination 
number z = 4 and 6, respectively, while the double layer corresponds to the case z = 5. 
The basic features of the phase diagram are the same as in section 4.3, with in this 
case the unphysical gap around /G|| = — /Cy disappearing for n > 2. Figure 4.4 again 
displays the behaviour of Tc when going from two to three dimensions.

For this geometry we also calculated the order parameter profile in the layer. In 
particular for the x-y ordered phase this is of interest, since the order parameter cj 
(indicating off-diagonal long range order) corresponds, in the pseudo-spin formulation 
of the quantum lattice gas [1], to the superfluid condensate wave function. It was 
shown in the previous section that the shape of the order parameter profile at Tc 
is given by oc sin(r^ + O'). In figure 4.5 we show the profile for the XY model 
in a slab of n = 30 layers. The critical coupling for this thickness is /<c = 0.2243, 
which corresponds to <t> = 0.09873, and 0 = 0.04045. As a comparison we have also 
drawn the result of numerically minimizing the full free energy functional $ at a 
coupling slightly below Tc, K = 0.2244. The plots have been scaled so as to coincide 
at their maxima. Obviously the approximations made in section 4.4.2 hold in a small 
temperature range below Tc. For temperatures farther below Tc, the magnetization 
cj starts to saturate in the interior of the slab, and since this behaviour is governed

.2 
K
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Fig. 4.4. The critical temperature for the slab geometry for various values of 
n. The values of kBTc/\J\ have been plotted for some special cases of the XXZ 
Hamiltonian, viz. Ising (squares), XY (crosses), antiferromagnetic Heisenberg 
(triangles), and ferromagnetic Heisenberg (circles) interactions. The lines are 
a guide for the eye.
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by the higher order terms in 4> the order parameter profile is no longer sinusoidal.
Some conclusions we can draw from the behaviour of cj near Tc are, first, that all 

order parameters become non-zero simultaneously at the same temperature, so there 
is no separate surface transition. Second, the order parameter drops almost to zero 
at the slab boundary; in fact the profile goes through zero at r0 = (n + l)/2 — tt/2/>, 
which is right outside the slab. In the limit n -too we find that r0 = (1 —?)/2 < 1/2. 
This supports a proposition that was made recently [16], that the use of Dirichlet 
boundary conditions in finite size scaling theory would be fairly realistic.

Farther away from Tc, we observe that there are two effects that suppress the 
value of the order parameter in a layer with respect to its value in a three-dimensional 
lattice. For any temperature, its value will be lower in the outer layers, because of 
the proximity of the free boundary layer. Second, for temperatures just below Tc, 
the order parameter will be smaller than its three-dimensional value over the whole 
width of the slab, because Tc for the three-dimensional system is higher. For low 
enough temperatures, the magnetization takes on its three-dimensional value in the 
inner layers of the slab. The order parameter profile for a 30-layer slab is plotted in
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A^oeeoo

•X
■A

■o



.04

.03

.01

0
0 10 20

r

.4

El.2

A

figure 4.6 for various values of K for the XY model (Kz = 0).

Discussion4.5

60

.02
X

Cr

X

Cr

To examine the merits of the cluster variation method applied to these spin models, 
we will compare its results with those of other approaches. We first examine the Ising

30
0 L

0
■ I .

10

i I i
20

r
Fig. 4.6. The order parameter profile c* in a 30-layer XY slab for K = 0.225 
(dotted), K = 0.23 (short dashes), and K = 0.25 (solid). The critical coupling 
for n = 30 is Kc = 0.2243. Also plotted are the values of cj in a three- 
dimensional lattice at the same coupling strengths (open symbols).

Fig. 4.5. The order parameter profile cj near Tc in a 30-layer XY si. = 0). 
For n = 30, the critical coupling is Kc = 0.2243, giving <t> = ’■ 3 and
9 = 0.04045. The solid line shows sin(rd>+ 9), scaled to match th ' t of a 
numerical minimization slightly below Tc (at K = 0.2244), which is given by 
the dotted line.
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CVM
T89“
3.92
4.32
4.52
4.64
4.71
4.76
4.93

n
T"
2
3
4
5
6
7
oo

kBTc/J. 
mean-field
4
5
5.33
5.5
5.6
5.67
5.71
6

series 
Z27- 
3.23 
3.65 
3.88 
4.03 
4.14 
4.21 
4.51

Table ;
of n . ■d are the mean-field estimate kgTJ Jz = 6 — 2/n, the result
of the Uvo-sp; . cluster variation method, and the series expansion result of 
Capehart and Fisher [17].

transition, since the Ising model is both the simplest and the most intensively studied 
model described by a Hamiltonian of the form (4.1.1). The Ising model is known to 
have ordered phases with a non-zero magnetization in two and three dimensions, and 
in both dimensions the cluster variation estimate of Tc is considerably better than 
that of the mean-field approximation. Hence one would expect its result to be an 
improvement for the slab geometry, too. This is indeed the case, as is shown in 
table 4.1, where we compare the results of these two approximations with those of 
series expansion techniques [17] for the pure Ising case K = 0. Similarly, for the 
spatially anisotropic geometry one would expect the cluster variation result to be 
an improvement over the mean-field estimate kBTc/J\\t = 4 + 2rj. Thus the Ising 
transition seems to confirm the pattern one usually finds for classical models: the 
two-spin cluster variation method overestimates Tc, but much less than the mean-field 
approximation. In turn, the cluster variation result can be expected to improve when 
one uses larger clusters. Also, as long as the Hamiltonian is Ising-like (X, > K > 0), 
there is no unphysical transition back to the disordered state at low temperature.

The situation for the x-y transition is more complicated. For the slab geometry 
one expects a transition to a phase that does not have a magnetization, since it is 
known that such a phase cannot exist at T 0 in a finite slab [18, 19], This phase 
might have topological order a la Kosterlitz-Thouless [20]. For thick slabs the tran
sition should cross over to a three-dimensional x-y transition. For the anisotropic 
geometry, on the other hand, a three-dimensional x-y transition is expected, only 
crossing over to a two-dimensional transition in the limit of uncoupled layers. The 
cluster variation method is not capable of producing a topological phase transition 
in these situations, and yields, as a refined mean-field method, transitions to an x-y
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I
XY
AH 
FH

CVM 
0447 
0.451

CVM 
0403 
0.224 
0.246 
0.275

series 
0.441 
0.635

phase with a non-zero magnetization. Only the location of the cri; 
can be meaningfully extracted from the cluster variation method.

series 
0.222 
0.248 
0.260 
0.298

those of
. ' lOWQ

< and
nple

simple cubic 
mean-field

0467
0.167
0.167
0.167

mperature 
it agrees rea

sonably for the pure XY model (7fz = 0), we may expect that in the general case 
K, / 0 it also gives a good description of the phase boundary. The fact that the 
behaviour of Tc as a function of n is qualitatively similar to that for the Ising model 
is confirmed by renormalization group studies [21].

The situation near the Heisenberg model (7<z — ±K) is particularly delicate. 
In the slab geometry, being basically two-dimensional, the transition point should 
diverge to Kc = oo for all slabs of a finite thickness. In the anisotropic geometry 
Kc stays finite for all anisotropies except for the case of uncoupled layers. To a 
certain extent the cluster variation method shows this picture for the ferromagnetic 
Heisenberg model. It gives a transition temperature T = 0 for the two-dimensional 
case, but finite transition temperatures in all other cases. It gives an increase of Kc 
for finite layers near the Heisenberg model, but fails to produce the divergence of Kc 
(or Tc = 0).

For the antiferromagnetic Heisenberg model the picture is similar but blurred by 
the interference of the spurious disordered phase at T = 0. The fact that for layer 
thicknesses below n = 3 the transition temperature drops to zero cannot be seen as a 

■ virtue of the cluster variation method, since it gives a similar behaviour for sufficiently 
anisotropic geometries. Incorporation of long wavelength fluctuations is an essential 
ingredient to improve the phase diagram at points where higher symmetries of the 
model drive the phase transition to T = 0.

A further comparison with series expansion results [22] is shown in table 4.2 for the 
two- and three-dimensional infinite lattice. In all cases the cluster variation method 
gives a considerable improvement over the mean-field result. Also, whereas the mean
field approximation gives the same value of Kc for all models listed in table 4.2, the 
cluster variation method has K\ < K*r < KZH < in accordance with the

Table 4.2. The results of the cluster variation method compared wi 
the mean field approximation and of series expansion techniques [' 
are the critical couplings for the Ising, XY, antiferromagnetic Heis 
ferromagnetic Heisenberg models, on a simple quadratic (z = 4) a 
cubic (z = 6) lattice.

simple quadratic 
mean-field

045
0.25
0.25
0.25
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from the elements gi 
pointed out in section 4.4, for

(r = 1,..., w)
(r = 1,..., w — 1)
(r = 1,..., w — 1).

; .ads
i. hese

series results. We may conclude that while the cluster variation method does not 
always give a good description of the phase transition, its estimate for the critical 
temperature is in general quite good. Especially in cases where it is not feasible to 
examine the whole phase diagram by more sophisticated methods, it is a useful tool.

2W3r-2,3r-l

Jvl3r-2,3r-2

In this appc 
described in 
in an n-layer 
that pertain 
parameters, • 
two layers d 
symmetry on 
Af-j = A/J-. i'he eh oents that

:ve the structure of the matrices Mp for the slab geometry 
Due to the reflection symmetry there are w different layers 

w = n/2 for even n, and w = (n + l)/2 for odd n. Quantities 
■ne layer will, therefore, give rise to w independent “order” 
xact number of “order” parameters for quantities that concern 
n being odd or even, and also on the effect of the reflection 
rder” parameters. The matrices Mp are always symmetric, 

are not given below, and that cannot be obtained 
ven below by using this symmetry are all zero. As was already 

n = 1 and 2 the results are equivalent to those for 
an infinite lattice with coordination number z = 4 and 5 respectively. Hence we will 
assume here that n is larger than 3.

For the antiferromagnetic Ising phase the situation is as follows. The staggered 
magnetization, mT for each layer, gives rise to w different “order” parameters. The 
quantities 5“ and <5" give an additional w — 1 parameters. There is no 5“", since 
for even n the layers w and w + 1 are equivalent because of the reflection symmetry, 
and hence <5“° = 0, and for odd n, 6"“ = So in total the vector c contains 
3w — 2 parameters connected with the antiferromagnetic Ising phase; these elements 
of c will be ordered as follows:

1
2

1
2

c3r_2 = rhr
C3r-1 =

C3r = 6“

In this notation the elements of MAI are, for r < w:

A?||2
A?||3 
a?||2
A?||3 

+ o “+-1 + , ,2 1

-8
1 — mJ 
-10

1 - mJ
1 f
2 I '

2

2

AJ.

2wJ 7r

. AJ..

+ 4^_G_ 4ojr_i \
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1
2

"J and w — 1 different 
additional parameter —

__ 1
4u>w

1
4ww

-10
1 - m?,

^3w-2,3w-2

^wl3

1
+ 2

_ + _Lln^!l2
■w ^w||3

Tw—11

7w-i •

2<r± 

h

b A^_/
1 .

-5 
1 - ml

1
+ 2

In the x-y ordered phase there are w parameters cj and 
parameters and cjx. Finally, if n is even, there is one ; ’ ” *

JW3r-2,3r+l

A/AI2W3w-2,3w-2

A/AI JVI3r,3r+l

lfAI JW3r-l,3r-l

MAI JW3r-2,3r

VAI^Sr-l.Sr

JKI3r-l,3r+l

AfAIJVI3r,3r

1 
4A?X1 

1 
4A“X2 
In ^°±2
1 A5- 

Ar±3

i, 
= 2'mr ~ mr+1>

The following definitions have been used

1
4A?77

1
4A?x3

i r
2\

~2 “ 4^r+) + ^(1 ~ ^7r

U/r U/r Cvr

= -^7
Wr

= ^3r-2,3r-l

c*;r )

From the last layer there is, for even n, a contribution

, 2 ■ ^112 . 1 .>°12
■I A°II3 2<,x >^3

1
4u>r

«•- - “A'}
f . a;_.

i
<41

***«/—1
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find, for r < w

1 + mi
1 — mi

±lnl±^l + 8b}N + ^}
7>h\ 1 — 772 j V J

^U?(^ + 4±)+4± + 4±} 

l±^ + 8{^ + ^} 
1 — mr I J

{e.2(^+^)+^+^}

{C2-! (^3-,X + ^,X) + + ^-1X} (r / 1)

= 8{<y-^}
{f?(^-^)+^3 -^}

A/xy iW4r-l,4r+l

AfXYJW4r-3,4r-2

(r = 1, . . . , w)
(r = 1,..., w)
(r = 1,..., w — 1)
(r = l,...,w- 1) 
(for n even).

MXY m4r-3,4r

a/xy1V14r-3,4r - ••

AfXYJKJ4r —2,4r—2

MXYJW4r-l,4r-l

AfXYJKi4r-3,4r+l

MXY JKi4r-3,4r-1
2 

1+f?
= TT^ {^ + ^-^3-^}

= 8{^ + ^}
{e2(^+^x) + ^3 +^}

cw± because of the reflection symmetry. So in total c contains 4w — 2 parameters for 
odd n, 4w — 1 for even n, ordered as follows:

2
i+f?
^0 , ----- Inmr

2
+ l+«

2
+i+e

2 
1+C2
I ^2 {^12 — ^34 ~ ^13 + ^24 }

2 
i+e?

C4r-3 =

C4r_2 = C^|| 

c4r-l =

C4r = <1
c4w-i = Cl

For the matri • ;?p' '
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s -}

1 + mw
1

Mr'* ■* r.r

+ 4{CJI + ^1}

The last few elements are, for ,
10 , -------In
mw

2
i+e

JV14 w—3,4w—3

AfXY jk<4w-3,4w-2

A/xy 
jk/4w-3,4w-3

1 A0 ' _2_ ln
Al±3

+ _L_
a°±3

i i 
1+41+ 4<G* 

i i
4<i 

^r —1±2 

A?.

A/XY jk'4w-3,4w-2

ifXY JW4w-3,4w-l

MXY ■'w4w-2,4w-2

MXY ■/W4w-l,4w-l

and for odd n

1
4<*ix

1 i a°±2
4<I A°±3’

even we find

even n

' + 8 {^1 + £”11} + 2

{£-i (^3-IX+^r1-1-) + ^r,x + ^1X}

= 8 {£^-£”11}
= 2{£^-£^}

= s^ + c11}
= 2 {£^ +£^} ,

M" = -10 +

1/2 «-<■») 

2<I

-Aln 
mw 

2 
i+a

= 4{^I-£”I|} 
= 4{£r'l + £?l|}. 

We have used the definitions 
t ~c?+i)2

k 4<I2 
l°(A?g/A?tro) 
4(A?ci-A?<m)

Finally, if h = 0, there are w parameters mr for the ferromagnetic Ising phase, 
giving a vector c:

Cr = mT (r = l,...,w), 
and a matrix MFI (for r < w): 

8 
i+^ll 

8
’1 + <H 

1
+ i + <ii± 

i

while for r - w and n



+<‘,„ = -io + ++
and for n odd
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Chapter 5

5.1 Intrc tion

i

(5.1.1)

69

Mean field renormalization group for the 
spin-| XXZ modeP

The mean field renormalization group (MFRG) method introduced by Indekeu et al. 
[1, 2] has turned out to be a rather successful method for computing phase diagrams 
and critical properties of statistical models. The strength of this method lies in 
the fact that it gives quite good results (at least for the critical temperatures) at 
a relatively low computational cost. As a result it has been applied to a variety of 
classical and quantum spin systems. The relative simplicity of the method makes it 
possible to examine reasonably complicated models for a variety of lattice structures 
in two and three dimensions. In this paper we apply the MFRG method to the spin-| 
XXZ model, and draw some conclusions about its value in this case.

The XXZ model is described by the reduced Hamiltonian

The sum 52^,^ is over nearest neighbour spins, and the are Pauli matrices. If the 
z coupling Kz is positive (ferromagnetic), and larger than the x-y coupling ZV, the 
system has an Ising-like ferromagnetically ordered phase (FI), with a non-zero mag
netization along the z-axis. If the x-y coupling dominates, there is an ordered phase 
with a magnetization in the x-y plane (XY). If Kz is negative (antiferromagnetic) an 
Ising-like phase with a non-zero staggered magnetization forms for bipartite lattices 
(Al). (For such lattices there is a symmetry between K and — /T, and hence between 
the ferromagnetic and antiferromagnetic XY phases. We will always take K positive 
in this case.) A lattice that is not bipartite cannot accommodate such a phase due 
to the frustration of the lattice. We will not consider the phases that form under 
such circumstances. The FI phase has already been discussed by Plascak [3], and

!This chapter has been submitted to J. Phys. A
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(5.2.3)
(5.2.4)

H=O
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dHca

dm(K, H,0) 
dH
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boundary spin. (We only

The mean field renormalization group
In this section we will first describe the MFRG method as it appli 
model, and then discuss the differences that arise when it is a 
Hamiltonian (5.1.1). We calculate, for an Ising model with a cc 
and a magnetic field H, the magnetization m of a finite cluster c 
e.g. one of the clusters shown in figure 5.1. The magnetization 
presence of a symmetry breaking boundary condition, so that the c 
in an effective magnetization m0, simulating the influence of the si. 
lattice. Because of this effective magnetization the spins on 
cluster experience an extra effective surface field Hcn = aKmt 
of lattice points outside the cluster that are adjacent to a 
consider clusters, as in figure 5.1, where all spins are boundary spins, and all spins 
are equivalent. A generalization for a case where this is not so is easily made.) The 
basic idea of the MFRG is to repeat this calculation for a different cluster of N' spins 
(TV' < TV), with different parameters K', H', and m^, and view the results as if they 
were related by a scaling transformation.

Postulating finite size scaling for the two clusters leads to the following relation 
for the singular part of the free energy per spin, f = f}F/N, in d dimensions

H', = ldf{K, H, (5.2.1)

The length rescaling factor t is discussed further on. The magnetization is given by 
m = —df/dH, so differentiating (5.2.1) with respect to H we find

m'(K', H', H, (5.2.2)

with H' = P" H, where is the scaling exponent of the field H. Expanding (5.2.2) 
to first order in H and gives

c'K'x'(K') = aKx(K), 
where

we will extend the calculation to include the other phases as well. It turns out that 
the behaviour of the MFRG for the XY and Al phases is fundamentally different from 
that for the FI phase.

Additional interest in the Hamiltonian (5.1.1) derives from the fact that it is 
equivalent to that of a lattice gas of interacting hard-core bosons [4, 5], and it has 
been used to describe both superfluidity and superconductivity.
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By differential-

X (Kc ) + K.
K'=KC

(5.2.9)

(5.2.10)

and

(5.2.11)
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ihould adopt for the length rescaling factor 
the original choice of Indekeu et al., which is

with respect to K at the fixed point one finds 

die

-nm (

a'K'x'(K') = eJ~’/H-’/HSaI<xW,
instead of (5.2.4), while (5.2.3) still holds. Because of the introduction of an extra 
unknown in (5.2.10), one needs two equations to determine both d — yn ~~ Vhs 
the fixed point self-consistently. These are obtained by considering three clusters o 
sizes TV, TV', and TV", and imposing the scaling relations

= ed2~VH

In obtaining (5.2.4) m0 is supposed to scale like m, i.e. mJ, = td~VHmo, which in turn 
gives = a'K'm'o = a'K'matd-'IH.

If (5.2.4) has a fixed point K' = K = TVC, then (5.2.2) describes a scaling property 
of the magnetization near K = Kc and H = = 0. This point is identified with
the critical point, which is given by the equation

°'x'(Kc) = ax(A'c). (5.2.7)
The scaling exponent follows from (5.2.3) at K' = K = Kc. Because for the 
clusters that w .pins are also boundary spins, we always have x(-^) = xU^Y
It then follows 3) and (5.2.4) that yH is given by

a

I = lK'=KcJ &K \k=Kc 

a[x(Kc) + I<c W<)|

The thermal exponent yr = l/i/, defined by dK'/dK\K=Kc = PT ■> can calculated 
from this equation.

It is not obvious what definition one si
especially for small clusters. We use 1

based on the number of spins in the cluster, € = (N/N'Y^. It is argued by Slotte [6] 
that the estimates of the critical exponents are improved if one considers the number 
of interactions instead, which leads to a different value for f.. We will comment on 
this in the discussion.

A refinement of the MFRG method was proposed by Indekeu et al. [2], who showed 
that, for large clusters, the effective magnetization mo should scale like m'o = fyHSmoi 
with yf/s the scaling exponent for a surface field. Combining this relation with (5.2.2) 
leads to
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: the 
Iron

Fig. 5.1. The clusters that are used in the calculation. The single art! the 
pair are used for all lattices; the triangle for the triangular and fee 
square for the square and cubic lattices; the tetrahedron and the 
for the fee lattice.

The clusters we use are shown in figure 5.1. With these clusters we apply the MFRG 
method to the two-dimensional triangular and square lattices, and to the three- 
dimensional cubic and fee lattices. We start by employing the simpler scheme using 
two clusters, since that gives more possibilities to compare results for different sets of 
clusters. Also, it is reasonably well behaved, in contrast to the three-cluster scheme,

and mJ = m'g = This leads to unique values for c
the fixed point, but for yr, Vh, and yt/s one finds slightly different 
two equations (5.2.11).

When applying this method to the XXZ model, several changes take place. First, 
different ordered phases can occur in this model. The magnetization m must then 
be replaced by the order parameter of the phase under consideration; this can be 
the magnetization in either the z-direction or in the x-y plane, or the staggered 
magnetization. The field H couples to the order parameter, so it can be a magnetic 
field along the z-axis or in the x-y plane, or a staggered field. In all cases, the 
order parameter is given by m — —df/dH. Second, the single coupling constant 
K is replaced by the pair (A", Kz). One now finds a fixed line K(KZ) in the space 
of the two coupling constants instead of a single fixed point. As in the case of 
phenomenological renormalization [7, 8], this fixed line converges to the critical line 
for large cluster sizes. The values of yu and y-j- one finds from (5.2.3) and (5.2.9) will 
in general depend on the ratio Kz/K. This dependence, which is not in accordance 
with universality, should disappear when the cluster sizes increase. In addition, the 
value one finds for yy also depends on the way dK'/dK is defined in the (K,KZ) 
plane. We will always take the derivative along a line Kz/K = constant, but for 
large enough clusters any choice should lead to the correct value [8].

N = 1 N = 2

- yns and
• is from the

V
N = 6
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figure 5.1, x(/C) is 
for K 
either

= 0.1 give the various approxi- 
are the additional fixed points

0 L
0

Fig. 5.2. The behaviour of a\(K) for several clusters in the fee lattice. N - 1: 
solid line; N = 2: dotted line; N = 3: short dashes; N = 4: long dashes; 
N = 6: dot-dashed. The intersections near K 
mations for Kc\ the intersections at higher K 
discussed in the text.
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which turns out to give unacceptable results in some cases when applied to the small 
clusters we use here.

On applying the two-cluster scheme to the Hamiltonian (5.1.1), one immediately 
notices a difference in the behaviour of for the FI phase on the one hand, 
and the XY and Al phases on the other hand. In the FI phase, for the clusters in 

monotonously increasing from one at K = 0 to some constant value 
—* oo. In the Al and XY phases it has a maximum, after which it decreases to 
zero (even TV), or to some non-zero value (odd TV). This reflects the fact that 

for the FI phase the ground state of a cluster has the largest “susceptibility” %, while 
the ground states for the XY and Al phases have either x = 0, or a relatively small 
non-zero value. As a consequence, when comparing ax(-f^) f°r different clusters, as in 
(5.2.7), there can be additional fixed points apart from the one indicating the phase 
transition, caused by the re-crossing of ajffA’) f°r ^arSe K • I*1 most cases there is a 
clear distinction between a solution of (5.2.7) indicating the phase transition, which 
clearly moves towards some limit for larger clusters, and the other zeros, which do not 
have this scaling behaviour (see figure 5.2 where ax(K) is shown for the fee lattice

■ I .
2

1—1
1
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The triangular lattice
The phase diagram obtained with the two-cluster method for the triangular lattice 
is drawn in figure 5.3. Around K = K, = 0 the system is in the disordered phase 
(D). When K, is increased, ferromagnetic Ising order sets in (FI), while for increasing 
K the system enters the x-y ordered phase (XY). The parts of the phase diagram

liln
-.4

J

ill.

-.2

i I N
.4

i i I i i

.2

for various clusters). Moreover, these spurious zeros usually lie at such large values of 
K that they are far removed from the region where the phase transition takes place, 
and they will in general not show up in the phase diagrams shown. (An exception to 
this is the square lattice case, which is discussed further on.)

i I i

0

Kz
Fig. 5.3. The phase diagram for the triangular lattice. The dotted line is the 
result for N1 = 1,N = 2, the dashed line for N' = 1,N = 3, and the solid line 
for N' = 2,7V = 3. The crossed circles represent exact and series expansion 
[9] results. The lower left half of the phase diagram, where the dominant 
interaction is antiferromagnetic and where frustration effects play a role, is 
not treated here.

1 | I I I | I I T 1 I I [—I I I I-T7

XY x/ —
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0 1 0
K/K, K2/K

Fig. 5.4. The exponent yr for the triangular lattice, plotted along the phase 
boundaries in figure 
dashed line for N' = 
and series [9] results

0
-1

5.3. The dotted line is the result for N' = 1,7V = 2, the 
1, N = 3, and the solid line for N' = 2, N = 3. The exact 
are given by the dot-dashed lines and the crossed circle.

.6 
Yt

where an antiferromagnetic interaction dominates have been left blank, since we do 
not consider phases where frustration effects play a role. As was already shown in 
[3], the results for the FI boundary improve as the cluster size is increased. Although 
the critical coupling for the isotropic Heisenberg model (K = Kz) remains finite, it 
increases rapidly with cluster size, tending towards the exact result Kc = oo. The 
XY phase boundary is also seen to move towards the series result for larger clusters 
[9].

The critical exponent yr is shown in figure 5.4. Again, the result improves with 
increasing cluster size, roughly approaching the exact result t/r = 1 for the FI tran
sition, yT = Q for the isotropic Heisenberg case, and the series result yT = 0-7 for 
the XY phase [9]. Except for the region near K = Kz where the cross-over between 
different values of yT takes place, the dependence on the anisotropy is slight. From 
(5.2.8) it is seen that in the two-cluster method yn does not depend on the coupling 
constants K and Kz. The best estimate for the triangular lattice (N' = 2, N = 3) 
gives yH = 1.55, compared with the exact result yn = 1.875 for the FI boundary, and 
a similar value from series expansions for the XY transition.

XYFl
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K,
Fig. 5.5. The phase diagram for the square lattice. The dotted line is the 
result for N' = — 2, the dashed line for N' = 1,7V = 4, and the solid line
for N' = 2,N = 4. The crossed circles represent exact and series expansion 
results [9].

The square lattice

For the square lattice we obtain the phase diagram shown in figure 5.5. It also includes 
the antiferromagnetic Ising phase (Al), which occurs for large negative Kz. We only 
plot the upper half of the phase diagram, which is symmetric under reflection in the 
line K = 0. Here again, the location of the FI boundary improves as the cluster sizes 
are increased. The isotropic Heisenberg model has Tc = 0, which is the exact result, 
for all cluster sizes. For the XY phase the spurious fixed points discussed above show 
up in the phase diagram. For the combinations N' = 1,7V = 2 and N' = 1, N = 4 
the XY phase boundary curves back for large /V, thus suggesting that the system 
re-enters the disordered phase at low temperature. For these values of N' and N the 
MFRG for the XY phase does not have a fixed point at T = 0. Instead, for a constant 
ratio KJK > —1, there is, in addition to the repulsive fixed point indicating the 
phase transition, an attractive fixed point at lower T. As KJK is decreased towards 
— 1 these points approach each other, and they eventually meet and are annihilated. 
The same happens for the Al phase where KJK approaches —1 from below. This 
leaves a gap in the phase diagram around Kz xs —K. For N' = 2, N = 4 there is a 
fixed point at T = 0, so there is no re-entrance into the disordered phase. The gap 
around Kz = — K has remained in roughly the same position, giving support to the 
conclusion that there is a region around Kz = —K, in this last approximation given 
by —1.22 <, KJK <, — 0.55, where the disordered phase extends down to T = 0,

Al D Fl

0
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4
J

-.2 0

Kz
Fig. 5.6. The phase diagram for the cubic lattice. The dotted line is the result 
for N' = 1,N = 2, the (short) dashed line for N* = 1,N = 4, and the (long) 
dashed line for N' = 2, N = 4. Also included is the result of the three-cluster 
method discussed in section 5.4, with N" = 1,N' = 2,N = 4 (solid line). The 
crossed circles represent the results of series expansions [11].

flanked by XY and Al phases.
The results for the exponent yr are similar to those for the triangular lattice, 

showing a reasonably flat plateau for the FI, Al, and XY phases, at values around 
respectively 0.8, 0.8, and 0.5 in the best approximation (N1 = 2,N = 4), and in this 
case dropping to zero for the isotropic Heisenberg model and in the region around 
K = —K,. The best estimate for yn gives yn = 1.59.

The three-dimensional lattices

The phase diagrams for the three-dimensional lattices are shown in figures 5.6 and 
5.7. For the cubic lattice there is some improvement as the cluster size is increased 
in most regions of the phase diagram. The exponent yr again slowly varies along 
the phase boundary, assuming values of approximately 0.8, 0.7, and 0.6 for the FI, 
XY, and isotropic Heisenberg transitions in the best estimate (7V/ = 2, N = 4), while 
for the magnetic exponent we find yH = 1.98. As a comparison, field theoretical 
methods, give yr = 1.59,1.49, and 1.42, respectively, and yu = 2.48 [10].

For the fee lattice we find that, in contrast to the general trend, the inclusion of 
the largest cluster (N = 6) does not give better results. This confirms the observation 
that, especially in lattices with high coordination numbers, the improvement is not

D

XY

1 b' a
i 

.1
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we find

When applying the scheme using three clusters to the situations discussed above, 
one cannot a priori expect the results to be an improvement. Although this scheme 
does put the MFRG method on a sounder footing, and guarantees the convergence of 
large-cluster results, it is not necessarily an improvement for the small clusters used 
in the present calculation. In the first place, the assertion that the effective order 
parameter m0 scales like a surface field only holds for large clusters. Second, whereas 
the location of Kc in the simpler method is independent of the length rescaling factor

always monotonic as the cluster size is increased [2, 12]. For the exponents 
values that are slightly better than those for the cubic lattice.

I

H-1

I I I I I I I I I I'd

0 .1

Kz
Fig. 5.7. The phase diagram for the fee lattice. The dotted line is the result 
for N' = lyN = 2, the dashed line for N' = 2, N = 3, the solid line for 
Nf = 3,JV =4, and the dot-dashed line for N' = 4, N = 6. The crossed circles 
represent the results of series expansions [11].
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in the three-cluster scheme it does depend on £. The definition of € for small 
clusters is rather arbitrary, and this arbitrariness affects the calculation of Kc. For 
very large clusters the exact definition of £ matters less, since there a variation of 
a few lattice spacings in the linear size of the cluster will not make a great deal of 
difference. For small clusters, however, a slight change in £ can give quite different 
results.

Especially for the XY and Al transitions the limitations of this scheme for small 
clusters will become apparent, since then also the large-K tails of x(7C) come into 
play. In those instances ■ here the differences in the two-cluster scheme between the 
combinations N,N' . nd ’ /V" are small, the three-cluster scheme will only give 
slight shift in the 1c 
results that are fur 
and may not even 1

A first instance ■ 
small clusters is em 
boundary can be cc 
shifting Kc for the

a 
f the phase boundary. When the two combinations give 
<t, the three-cluster scheme will also give a large shift, 

eptable results.
culty of this more sophisticated scheme in dealing with 
for the triangular lattice. While the result for the FI 
good, giving Kc = 0.235 for the pure Ising case, and 

here we find some
.additional fixed point at high 7C, for the pure Ising model 

can be dismissed as clearly being outside the region
* r one 

finds for the XY phase. This line describes a zig-zag in the region between Kz/K = 1 
and Kz/K = —1, which is clearly not a very sensible result. It shows that in this 
case the results of the three-cluster scheme for small clusters should not be taken too 
seriously. Similar behaviour is found for the square lattice, where the differences in 
behaviour for the various combinations of cluster sizes are even greater than for the 
triangular lattice.

For the three-dimensional lattices the differences between the various combina
tions of clusters were rather small, and consequently the three-cluster method is 
better behaved for these lattices, only giving a small shift in the location of the phase 
boundary. For the cubic lattice, the resulting phase diagram is shown in figure 5.6, 
which does show an improvement over the two-cluster method. In contrast to the 
two-cluster case, (5.2.8) does not hold now, so the exponent yn varies slightly along 
the phase boundary. Its value does not improve noticeably when compared with the 
previous results, and neither does the estimate for the exponent yr. For the surface 
exponent one finds yns ~ IT, compared with the field theoretical value 0.8 [13].

The phase diagram for the fee lattice, figure 5.8, is also better than the result 
of the two-cluster method. As in the previous section, we see that the combi
nation of the largest clusters does not necessarily give the best result. While for

= 2, N' = 3, N = 4 we find phase boundaries that are quite close to the series 
expansion estimates, the agreement becomes worse for N11 = 2, N1 = 4, N = 6, and 
the combination N" = 3, N' = 4, N = 6 fails to give a fixed line that one can identify 
with the phase boundary. The best estimates for the exponents are similar to those

side
otic; Heisenberg model to infinity, even 

trouble, in the shape of an 
located at K ~ 1.2. This point
of the real phase transition; the same can hot be said of the phase boun ary
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for the cubic lattice, and no great improvement over the two-cluster results.
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-I

Fig. 5.8. The phase diagram for the fee lattice. The dotted line is the result 
for N" = 1,2V' = 2,AT = 3, the solid line for N" = 2,N' = 3,N = 4, and 
the dashed line for N" = 2,N' = 4,7V = 6. The crossed circles represent the 
results of series expansions [11].

I 1 1 1

■ I .
0 

K2

i i i I i

.1
■ I ,

We have seen that applying the two-cluster version of the MFRG method to the 
XXZ model leads to quite good results for the phase diagram. It is certainly an 
improvement over the mean-field approximation, which gives the critical lines K = 
1/z and Kz = -iA/z. Both the value of the critical coupling (see table 5.1 for an 
example) and the overall shape of the phase diagram are greatly improved when 
compared with this approximation. It is especially striking that for small clusters, 
where the computational effort is relatively small, the improvement over mean-field 
is already considerable. For larger clusters the results improve even further, but the

D
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MF 
0.167

MFRG2 1,2
I0.224

MFRG2 1,4 I MFRG2 2,4 I MFRG3 1,2,4 | series 
0.226

Table 5.1. The critical coupling Kc of a pure XY-model (Kx = 0) on a cubic 
lattice, according to the mean field (MF), two-cluster MFRG (mfrg2 N\ 
three-cluster MFRG (mfrg3) approximations, and the series result [11].

convergence is not very Also, especially for lattices with a high coordination 
number, where the; ny possible ways to form larger clusters, the improvement
is not always mono? 2]. The critical exponents that one finds as a by-product
of this method are *gh estimates; much more accurate values can be found
by field-theoretical The nature of the ordered phases is determined by
the boundary cone ployed to break the symmetry. So, the XY phase is an
ordered phase with ro magnetization, while it is known that two-dimensional
XY models exhibit • T ;>t type of long range order. Nevertheless, the MFRG result 
can be expected to give s >me indication of the location of the phase boundary.

Thus the performance of the MFRG method for the XXZ model, which exhibits 
different types of ordering, and is an essentially quantum mechanical model, is about 
the same as for the classical Ising model. There are some differences, though, which 
mostly become apparent at low temperatures. For the XY and Al phases one might 
find additional fixed points, as discussed in section 5.3. These points lie at high values 
of JC, and usually do not interfere with the phase diagram. But for low dimensions 
and/or low coordination numbers, when Kc itself is relatively high, as in the case of 
the square lattice, they do show up in the phase diagram for some combinations of 
clusters. Even there, the phase boundaries one finds for these clusters are not radically 
different from what one finds for a combination that does not lead to additional fixed 
points. It may be remarked that the appearance of spurious zeros is also noticed 
in the pair approximation of the cluster variation method [14, 15]. In fact, the case 
AT = 1,7V = 2 of the MFRG is equivalent to this approximation, just as for the 
classical pure Ising model it is equivalent to the Bethe-Peierls approximation.

The three-cluster version of the MFRG method is less successful for the XXZ model. 
One reason for this is that the method is geared to the use of large clusters; neither 
the introduction of a surface exponent yus nor Ibe role played by the length rescaling 
factor £ are compatible with the use of small clusters. If one examines the values of 
yu and y^s for the three-dimensional lattices, one finds that yus ~ d — which 
is the relation that would follow from the method without a surface exponent. So 
for small clusters the effective field does not really scale as a surface field. Also, the 
arbitrariness in defining for small clusters affects the location of the phase boundary.

In the case of the XXZ model there is the extra complication of the spurious fixed 
points that occur at high K. Especially for the two-dimensional lattices, where they
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The /-matrix for collisions of hard 
spheres in a a r geometry^

* Apart from some

The dynamics of helium an b. qualitatively represented by a hard sphere system. 
The interaction potential betw. .. He atoms is of the 12-6 Lennard-Jones type. In 
making the connection with hard spheres the attraction is represented by a uniform 
background potential giving the system its density (see e.g. Lee et al. [1]). Such a 
model fails of course to describe the transition from the dilute gaseous phase to the 
dense liquid phase, for which the attraction is crucial, but it is believed that e.g. the 
phase transition from normal fluid to superfluid is qualitatively the same for the hard 
sphere Bose gas as for 4 He.

The advantage of the hard sphere Bose gas is that one single parameter, the 
diameter a, controls the interaction and that one can change this parameter from 
zero, where the gas becomes ideal, to a value a corresponding to the 4He value in 
the Lennard-Jones interaction. In this way the properties can be continuously tuned 
from ideal behaviour to 4He-like behaviour. To cope with the fact that the potential 
is singular one has to use the Z-matrix, which remains finite even for a hard sphere 
potential.

Since the interesting phenomena in helium occur at low temperatures, low mo
menta are dominant, which allows a further simplification of the interaction to its 
scattering length. Then the interaction is replaced by a ^-function with the scattering 
length as strength, thus ignoring all momentum structure in the matrix elements of 
the interaction. For a three-dimensional system (d = 3) the scattering length equals 
the diameter a of the hard spheres.

Superfluidity also occurs in lower dimensional systems such as thin layers of He. 
Popov [2] and Fisher and Hohenberg [3] have recently pointed out that the scatter
ing length, or what would be its equivalent, behaves qualitatively different in two-

modifications, this chapter has appeared in Physica A 161 (1989) 63



t(z) = V + V (6.1.1)

(6.1.2)

satisfying the equation

r3 (6.1.4)

(6.1.6)

(o|t(0)|o) = (6.1.7)
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an external spherical potential V(r). The t-operator is

(z - Ho - V)fl(z) = z - -Ho- (6.1.3)

This equation is conveniently analyzed in the mixed representation (r|fl(z)|fc) 
where, for a particle of mass p, |fc) is a state with kinetic energy h2k2 jlp. and |r) one 
with position r. In this representation (6.1.3) obtains the form of an inhomogeneous 
Schrodinger equation

G+-v <r>)
which has to be solved with the boundary condition that (r|fl(z)|k) remains finite 
when r goes to infinity. This boundary condition derives from the interpretation of 
(r|fl(z)|fc), for z = h2k2/2fi + ie with s J. 0, as [4]

(r|fl(z)|fc) = (r|fc+), (6.1.5)
with |i+) the outgoing state which follows from the incoming state |fc) when it is 
scattered by the potential V. Once (r|Q(z)|fc) is obtained it leads with (6.1.2) to the 
t-matrix

(fc'|t(z)|fc) = y dr(fc'|r)V(r)(r|Q(z)|fc)

In d = 3 the zero-momentum, zero-energy limit of the t-matrix is proportional to the 
scattering length a

tfa_
4(1 T2

dimensional systems. It is the purpose of this paper to show the continuous crossover 
from d = 2 to d = 3 behaviour when the thickness of the layer 2w varies from w a 
to w » a.

The notion of scattering length may be most easily illustrated by considering 
scattering of a particle in 
defined by the equation

1
z-Ho

Here Ho is the kinetic energy operator and z is a complex p .amccer with the di
mension of an energy. We will always take Imz > 0. It is u ul introduce the 
so-called Moller wave operator fl(z) [4], defined as

Vfi(z) = t(z)



(6.1.8)

(6.1.9)

a2

due to the fact
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In a d = 2 system this limit vanishes, leading to additional complications in the many 
body theory for hard disks.

It is well known that the scattering of two particles of mass m is equivalent to 
the scattering of one particle of mass m/2 by an external potential. Therefore we 
can easily adapt the previous equations to describe the scattering of two particles by 
substituting a = The kinetic energy of the center of mass, being a conserved 
quantity, onl ca ?es a shift in z, leading to a new parameter a

ft2 2
—o m

The externa
is the kinet
now eigenst 
substitution- ;

—a- .
m

al V is in this case equal to the interparticle potential, while 'Hq 
with respect to the center of mass. The states |fc) and |r) are

Yo and the relative position operator, respectively. With these 
becomes

+ “ V (r)) ~

For general fc, k' and a (6.1.6) is the off-shell /-matrix [4]. If k2 = k12 and 
= k2 ie with e positive and infinitesimal it becomes the on-shell /-matrix, which 

is proportional to the scattering amplitude. In this paper we will investigate scattering 
at low energy and low momenta. In particular we will calculate the term that is lowest 
order in the particle momentum, which is obtained by setting k = k = k0, with |&o) 
the lowest-momentum eigenstate of Tdo, which also has the lowest energy. We will 
then examine what happens when a2 approaches k% 4- ie.

We will do these calculations for a system of hard spheres moving in a layer. The 
particles can move freely in the x- and ^-directions, but in the z-direction they are 
confined to the thickness 2w of the layer. The boundary condition for this system 
would be that the wave function is zero whenever one of the two particles hits the 
layer boundary. Unfortunately, this cannot be written as two separate boundary 
conditions for the relative and center of mass coordinates r and R, and we would 
not be able to separate the center of mass motion. Therefore we turn to a slightly 
different system where we do split off the center of mass motion, and impose boundary 
conditions on (r|Q(a)|fc).

In sections 6.5 and 6.6 we will discuss two different boundary conditions, one 
where (r|Q(a)|jfe) is periodic with period 2w and one where it is zero for |z| = w. 
In sections 6.3 and 6.4 we will consider the two limits of a layer geometry, those of 
infinite and zero thickness. Since these cases are relatively easy we will calculate 
the off-shell /-matrix for general Jb, k' and a and then see what happens in the on- 
shell, low energy and low momentum limit. In sections 6.5 and 6.6 though, we will 
immediately set k = k' = k0 and a2 = k$ 4- ie in order to simplify the calculation. 
But first, in section 6.2, we will make some simplifications that are due to the fact 
that we are considering hard spheres.



The hard sphere t-matrix6.2
the limitingthat

for r < aoo
(6.2.1)V(r) =

0

(6.2.2)for r < a.

for r a.

s zero on

•responding homogeneous equation,

(6.2.4)

(6.2.5)

(6.2.6)

(6.2.7)at r = a.

multiply

u
(6.2.8)
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32

(r|fl(a)|fc) = (r|fl,(a)|fc) + (r|ft/,(a)|fc), 
where the last term satisfies

(6.2.3)

the surface

The particles 
potential is

zero for

for r > a.

we describe are hard spheres with diameter a, so

■n 1.9) is
50 - >;Ve

(a2 + V2)(r|fl*(a)|fc) = 0.
The special solution can always be taken as 

(r|n,(a)|fc) = (r|fe)
and the condition on the surface r = a now reads

Since (r|fl(a)|fc) is finite everywhere the term V(r)(r|fl(a)| 
r > a. In order for this product to be finite for r < a we mu.

(r|fl(a)|fc) = 0

Then we only need to solve (6.1.9) for r > a:

(a2 + V2)(r|fl(a)|fc) = (a2-fc2)(r|fc)
The region r < a is taken care of by demanding that (r |fl(a) |fe/ 
r — a.

The solution of (6.2.3) can be written as the sum of the special solution £l,(a) of 
(6.2.3) and the general solution fl/, (a) of the corresponding homogeneous equation, 
so

(r|n*(a)|fc) = -<r|k)
The fact that V(r) is zero for r > a and that (r|fl(or)|fc) is zero for r < a can 

be used to rewrite (6.1.6). Before taking the limiting behaviour (6.2.1) we 
(6.1.9) by (fc'|r) and integrate over the sphere U with r < a. This yields

-a2 [ dr(fe'|r)(r|fi(a)|fe) + - [ dr(fc'|r)V2(r|fl(a)|fc) 
Ju m Ju

-jfdr(fe'|r)V(r)(r|fl(a)|fc) = ^(a2 - k2)J(k', k),

where is defined as

fi2
m



(6.2.9)

(6.2.10)

< n:

(6.2.11)

(6.2.13)

(6.2.14)

just integrals over the eigenstates (r|fc),

(6.2.15)

(6.2.16)

containing (r|fhl(a)|fc),

(6.2.17)
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> zero, because then (r|fl(a)|fc) is zero 
outside U, we see from (6.1.6) that the

*i2 f h2
- / ds . (fc'|r)V(r|fi(a)|fc) + -(fc2 - a’)J(fc',fc).
m Js m

use the fact that

Q =----- a2J(k',k),m
and where the most important term is the one

*2 r

= — ds ■ (fc'|r)V(r|Q/l(a)|fc). 
772 Js

In the limit of low momentum and low energy the terms Q and K, will in general 
turn out to be either zero or equal to a constant that is cancelled by a term in ./a- 
Therefore most of the effort of computing the t-matrix goes into calculating (6.2.17).

where we defined
£(*',*) = [ drV{k'\r) • V(r|fc), 

Ji/
we see that the term proportional to k2 J in (6.2.11) is cancelled. This reduces
the equation to

(V|t(a)|fe> =^4-^ + ^, 
where we have two terms that are 

*2
KL = — £(k\k) m 

and

If we st . tit (6.2.4) and (6.2.6) and

^dS.(fc'|r)V(r|n,(a)|fe) = J ds ■ (fe'|r)V(r|fc)

= J dr (fc'|r)V2(r |fc) + </rV(Jb'|r) • V(r |fc)

= —k2J(k',k) + £(k',k), (6.2.12)

J(fc',fc) = [ dr{k'\r)(r\k).
Ju

In the limit (6.2.1) the first term in (6.2.8) is
inside U by (6.2.2). Because V(r) is zero <
third term is equal to — (fc'|t(a)|fc), and (6.2.8) becomes

(k'\t(<. ■■!&) dr(k'\r)\72{r\^a)\k) + ^(k2 - a2)J(k',k).

The first t. e right hand side of (6.2.10) can, by partial integration and using
Gauss’s th' d (6.2.2), be rewritten as an integral over the surface 5 of U. the
result is



6.3

(6.3.1)(r|fc) =

(6.3.2)

(6.3.3)

(6.3.4)

(6.3.5)

(6.3.6)•F* = -

90

'a

= o.
inr. es we find that 

notions of the

in the case Im a > 0 (see appendix 6.A).
are fixed by (6.2.7). Using the expansion of (6.3.1) in spherical

one finds that

“ 1

= E E y-i'j((^)yIm(r)y^(k),

A layer of infinite width
In this section we will consider particles moving in a layer of infinite width, or in 
other words in three-dimensional space (see also van Leeuwen and Reiner [5]). In 
that case the eigenstates of Ho are plane waves

e.kr 
(2ar)3/2’

The eigenstate with lowest energy and momentum, |ko), has
On writing the homogeneous equation (6.2.5) in spherical co 

(r|fl^(a)|fc) can be expressed as a combination of spherical H 
first kind, h+(x), and spherical harmonics Yim(i)

oo I

(r|n*(a)|fe) = £ £ B,mfc+(ar)ylm(r)y^(fc). 
1=0 m=—l

Hankel functions of the first kind have been used because they :isi the boundary 
condition for r —> oo in the case Im a > 0 (see appendix 6.A).

The coefficients Bim 
waves,

e>fc-r
(2tt)3/2 :
' > 1=0 m=-

and the orthogonality of the spherical harmonics we find the coefficients Bim

[2-1 jl(ka)
V rr hf(aa)

To calculate the t-matrix element we first note that, since in this case S is a 
spherical surface, the surface element ds points in the radial direction, so the gradient 
in (6.2.17) may be replaced by the radial derivative, giving

Th = —a2 [ dr(fc'|r)^-(r|nA(a)|fc). 
m Js dr

Substituting (6.3.1), (6.3.2), (6.3.3), and (6.3.4) and using the orthonormality of 
spherical harmonics this yields

—EE 
1=0 m=-l 1 ' '

where /'(g) = (d//dx)I=,.
Combining (6.3.1) with (6.2.9) and (6.2.13)



(6.3.7)J(*',fc) =

and

(6.3.8)£(fc',fe) = fc'. fcy(fe',fc),
so

(6.3.9)K. .

Substitu

(fc c,’,-

(6.3.11)

(6.3.12)

6.4

(6.4.1)
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1 
27T2|fc - fe'P

sin |fc — fc'|a
I* - fc'|

a —» 0

— a cos

(6.3.10)

To find the low-energy, low- 
= o. With (6.A.1) and (6.A.3)

(o|t(a)|o) = - —
771

--(<?-*' k)J(k',k).
•77

6) and (6.3.9) in (6.2.14) we find (cf. [5])
*2 r

=---- l(a2-k'k)J(k',k)
m

+ ~ ji(ka')ji(k'a')aa
1=0 m=—l

This is the t-matrix element for general fc, k' and a. 
momentum behaviour we first let k and k' go to k0 
we see that (6.3.10) reduces to

1 23 1 . 12Z»+(ara)'|
6^“ a ~ h^ajj ■

For the on-shell t-matrix we set a2 = k^ + ie = ie with e J. 0. Consequently 
and |aa| <C 1. Using (6.A.4), (6.3.11) for small aa becomes

(o|t(«)|o) = ^-4
zm 7TZ

This is the familiar result (6.1.7) that in three dimensions the t-matrix approaches 
a constant value in the limit of low momentum and low energy. This value is pro
portional to the scattering length, which for hard spheres is equal to the diameter 
a.

A layer of zero width

For the case of a layer of zero width we just repeat the calculation of the previous 
section in two dimensions (quantum scattering in two dimensions is discussed by 
e.g. Lapidus [6] and Adhikari [7]). The vectors k and r in this section are all two- 
dimensional and the eigenstates of "Ho are

,ikr
(r|*) =

Z7T



combina-

(6.4.2)

(6.4.3)

(6.4.4)

(6.4.5)

(6.4.6)

(6.4.7)

Y~c,2a2 - (6.4.8)

(6.4.9)
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I

or, with (6.A.10)

(o|t(or)|o) = —z-~ [in(ora) + £ 
zm 7r L 2t

+ 7-In2] *. (6.4.10)

This shows that in two dimensions the on-shell t-matrix element vanishes in the limit 
of low momentum and low energy.

where S is a

= o yields

(o|t(a)|o) = - — 
m

and again fc0 = o.
If we express (6.2.5) in polar coordinates we can write (r|Q/,(a)|fc) as a 

tion of Hankel functions of the first kind, 77+(z), and ph <ise factors e""*

(r|nA(O)|fc) = £ Bmtf+(ar)e’’n<*-*‘>,

m=—oo

the angles between r and k, respectively, and the x-axis. This
00 when Im ct > 0. Making use

♦ 2 00

= E Jm(ka)Jm(k'a)Oa 
m=—00

Similar to (6.3.9) we have

IC + g =----- (a2 - k' ■ k)J(V,fe).
m

Combining (6.4.6) and (6.4.7) and setting k = k' = k0 

1 , , 1 
4ir“ “ 2r°aHf(aa) ) ’

where we have also used (6.A.5) and (6.A.9). We again set a1 = ie, and with (6.A.11) 
we see that for small aa (6.4.8) becomes

(o|t(a)|o) = -E* 
2m n0(aa)

where <f> and are
expression satisfies the boundary conditions for r 
of the expansion

.fcr ~ -m
-S- = E

m=—oo

we find the Bm from (6.2.7)

= im Jm(ka)
2» ^m(.aaY

In two dimensions (6.3.5) becomes

-a [ ^(fc'|r)^-(r|fih(a)|fc), 
m Js or

circle of radius a, and with (6.4.1), (6.4.2), (6.4.3) and (6.4.4) we find

A2 ........................ B^aa)
H+(aa)



z

0 a2w

6.5

(6.5.1)(r|fc) =

(6.5.2)
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ite layer with periodic boundary condi
tions

Fig. 6.1. The geometry of the problem for w < a

We now consider a layer of finite width 2w, and in this section we will take as boundary 
condition that (r|Q(a)|As) is periodic in z, as we explained in the introduction. A 
suitable set of eigenstates of is

eik T

2iry/2w’

where r = (p, z) with — w < z < w, and As = (Asy, A:,), where kz must equal kn = nir/w 
for some n (n = 0, ±1, ±2,...) to ensure periodicity. Of course, |As0) has As|| = o, k2 = 
0.

As before we are interested in the low energy and low momentum behaviour of 
the t-matrix. In contrast to the previous sections we will not use general As, As and 
a but take k = As' = k0 = o and |aa| <C 1 from the start, since this considerably 
simplifies the equations. In order to solve the homogeneous equation (6.2.5) we must 
discriminate between the cases w < a and w > a. First we will treat the case w < a.

6.5.1 The case w < a
The geometry of the problem for w < a is sketched in figure 6.1. Writing (6.2.5) in 
cylinder coordinates we see that the solution which is finite for p —♦ oo and periodic 
in z can be written as

(r|n*(a)|o) = £ £ Bm„^(anP)eii"*«im(*-*‘).

m=—oo n=—oo

where a„ is defined as



sin 6

(6.5.4)

idei.l of <t> we can

(6.5.5)

(6.5.6)tikna cos 0

(6.5.7)Bn =

(6.5.8)

(6.5.9)

(6.5.10)(n / 0).
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& 1

-1 
2?r\/2w

-1 
2%\/2w

Writing p = r

Note that (6.5.2) cannot be used when w
For w < a the value p = 0 is excluded, so

To determine the coefficients Bmn we use
and z = r cos 6 the basic equation becomes

oo oo

= E E ^^(anasineje’^-^’e^f*-**), 
m=—oo n=—oo

where — w/a < cos 6 < w/a. Because the left hand side is inde 
take

ana = ay/a2 - k2 = ik„a

(6.5.3)

> a, because H*(anp) diverges for p = 0. 
there is no problem.

(6.2.7) with fc = o.

Separating the term with

— — Inaa — 1 — —(7 — In 2) — — A — 
It 7T 7T

r, [2>z, . , ................2i
“ [ rr ' " rr

+ E BnHo («.<■ sin fl)ei*-“’’.
n^O

We get rid of the divergent term Inaa by taking B'o = — 1. From (6.5.3) we see that
for small aa

Bmn — Bn6m,0

and (6.5.4) reduces to
00

= E Bn/fo’(omasin0)e'
n=—00

Because |aoa| = |aa| C 1, as we can see from (6.5.3), the term n = 0 plays a 
special role. To prevent the right-hand side of (6.5.6) from becoming divergent for 
aoa —» 0, see (6.A.10), we define

(2iry/2w)~1B(l
Hq (aa) + 2iA/ir'

where A is an unknown constant. If we substitute (6.5.7) in (6.5.6) and multiply by 
2ir\/2w [/f^(aa) + 2tA/rr] we obtain

-H$(aa) - *A = E B^H} (ana sin 11.

n = 0 and using (6.A.10) for small aa, this yields

... 2i , 
' rr

B'o 1^—(In aa + In sin 8) + 1 + —(7 — In 2)j



(6.5.11)

.(6.5.12)(r|fi

(6.5.13)dr(o|r) — (r|QA(a)|o).

'iknrcosO (6.5.14)

or, with the definition

(6.5.15)

we find

(6.5.16)
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rmination of A and B'n for the moment, we turn to the com- 
.trix. For small aa we can now write (6.5.2), using (6.5.5) and

2i 1 
ir a

^2 B'nH^(ik„r sin 0)e' 
Ln^O

(2?r) 2(2w) 1 

H+(aa')+2iA/ir

we find for small aa

Fk = — m

T 2•rh = —a 
m

d
+ 77“ dr

,iniryz I

J y=l/*

n^O

(2ttx/2w) 1
H+(aa) 4- 2iA/ir

To calculate J-\ we must integrate over the surface S that encloses U which is, for 
w < a, a truncated sphere. On the spherical part S’ of this surface we may again 
replace the gradient by the radial derivative, because the surface element ds points 
in the radial direction. On the top and bottom planes, at |z| = w, the gradient may 
be replaced by the ^-derivative, and because (r|Q(a)|o) is periodic this derivative is 
zero. So we only need to integrate over S'

= —a2 f dr(o|r)^-(r|flA(a)|o).
m Js> or

From (6.5.12) and (6.5.13) and using (6.A.10)

2jt w/a

J d(/> J sin Od0
0 —w/a

Mn(s) = y dx-^- |/f0+(inrrj/\/l - z2)e'

+7^]" {-i+S ■ 
J I n#0 >

Using this and (6.A.6) we can rewrite (6.5.9)

In sin 0 = A - B^Ko(knasin0)eik’'ac°‘‘l
n^O

This equation determines A and the remaining B'n. It is independent of a, and so are 
A and the B'n. We have not been able to solve this equation analytically, in particular 
to find a cb ■ • d expression for the most important quantity A as a function of w/a. 
A numeric? scho .e to determine A and B'n simultaneously could however easily be 
worked out

Leaving
pu tat ion o
(6.5.7)

i
7T2



immediately

(6.5.17)

(6.5.18)

(6.1 '6), so

. (6.5.19)(o|t(a)|o) v f • i

(6.5.20)In

(6.5.21)

(6.5.22)

(6.5.23)

(6.5.24)
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can be 
find that to lowest

(•■-?)
the only contribution to the /-matrix

j.-. ndent of a. 
;n we see that, 

momentum

n*±+inir(3

Consequently for small aa

W2 

a2

are easy; from (6.5.1) we

ft2 [„+, x 2i = — Hj(aa) H----A
m tv ---- ~2 + 7“TV2 ~

we obtain

02 = -2A + 2^Bne' 
nj£O

The constants A and Bn are simply the Fourier coefficients of fl2, which 
calculated straightforwardly, and with (6.5.22) and (6.5.23) we 
order in w/a

The other two contributions to (o|t(a)|o) 
see that with k = fc' = k0 = o (6.2.15) gives

(C = —kiJ(ko,ko) = 0 m
and it is simple to show that

Q =----- a2J(o,o) =------—
m m 4r

3/2 
e"’=

n^O

In (6.5.19) A and the B'n, which are found by solving (6.5.11), art
Therefore the only a dependence in (6.5.19) is in the factor in fro: 
just as in the two-dimensional case, the on-shell t-matrix vanishes 1> ic 
and low energy.

The result (6.4.9) can in fact be recovered exactly by letting w/a —» 0. If in 
(6.5.11) we substitute cosfl = (w/a)P with —1 < < 1, we find

n^fiO

Using (6.A.8) we can write this for small w/a

Scaling A and B'n as follows

~w2 
A = A— 

a2

w2
3

w2
a2



(6.5.25)

(6.5.26)

Also, for small ■■■■/a

(6.5.27)

independent of w/a. Substituting (6.5.25), (6.5.26), and (6.5.27)

(6.5.28)x

And for w/a —» 0 this reduces to

(6.5.29)

(6.5.30)M„(l) = 0 for n = ±1, ±2,...

(6.5.31)(o|t(a)|o)

(6.5.32)

have not been able to reproduce analytically. Now
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with C„ 
in (6.5.19

and (6.5.19) simplifies to

2f_______ 1_______
2m 7t2 Hj(aa) + 2iA/ir

3/2
e

which we 
w > a.

A/,. 'a. (-
a

we turn to the case

Numerically solving (6.5.11) suggests with remarkable precision that for w — a

B'n =

A = in^-y,

r
(o — //o’(aa)m

3/2
_nir —6 w

(-1)" pl

which is exactly equal to the two-dimensional result (6.4.9).
If, on the other hand, we consider the limit w/a = 1 it can be shown that

6 a2

i w2l
3?r a2 J

i 1 w
7T2 4?r3 a



z

2w
i; ii

6.5.2

(6.5.33)

(6.5.34)

(6.5.35)

(6.5.36)
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di

B,+ 
2?ry/2w

Fig. 6.2. The geometry of the problem for w

1%

The case w > a

When w > a we cannot use the expansion (6.5.2) in the regio a ; ■ < w because 
there p can become zero. So we divide space into two regions (see figure 6.2):

Region I : a < r < w

- n(oa)n'(ar)} p<(cos0) 
n,(aa) J

1 n0(ar)
2rr>/2w n0(oa)

and

ni(aa) = -<5(,0 - B?jt(aa), 

so we can rewrite (6.5.33)

(r|0£(a)|o) =
l=o

Region II : r > w.

In region I we write (6.2.5) in spherical coordinates, and since neither r —» oo nor 
r = 0 in this region, the solution can be written as follows

OO /

(r|rt'(a)|o) = £ £ {B,t,Jl(ar) + B^ar)} Ylm(r).
1=0 m=—l

In region II we still use the expansion (6.5.2), and we can again take Bmn — Bn6m,o- 
One of the equations that determines the coefficients Bfm, Bj~m, and Bn is (6.2.7). 
At r = a we use (6.5.33) and for the coefficients B±m this yields, using the cylinder 
symmetry of the problem 

p± 5
“ 2rr\/2w m'°



atr = w

at r = w.

(6.5.39)B,

(6.5.40)

The eqi io.

(6.5.41)

(6.5.42)

(6.5.43)

We

(6.5.44)^ = -

(6.5.45)< = 0

(6.5.46)
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(6.5.37)

(6.5.38)

i-

— ^1,0-

and now

an ansatz like (6.5.7)

We still need two equations to fix the remaining Bt and Bn. These equations 
follow from the fact that (r|fiA(a)|o) and its radial derivative must be continuous at 
r = w. So the two equations are

(r|fi'(a)|o) = (r|n”(o)|o)
^(’•|Qj(a)|o) = J^(r|fl"(a)|o)

To solve hes quations we again use

(If)) + 2zA/tT

B0- = -^ 
7r a

In addition we get two equations that determine, in principle, the values of the 
remaining coefficients A, B'n1 and B** for n and I / 0.

Turning to the /-matrix, we need to calculate When w > a the surface S is a 
sphere. Consequently we get the same expression as in section 6.3

/ <ir(o\r)^-(r\Q,k(a')\o). 
m Js or

now substitute (6.5.36), (6.5.40), and (6.5.42), and with the orthonormality of
the Legendre polynomials and using (6.A.3) and (6.A.4) we find for small aa

»2 f
- B0+(o, m [

Of course we still have

h2 , h2 a2 a3
Q =----- a2y(o,o) =------ ------

m moirw

. 2f /
:w) 4---- A

IT

B?'
ow) + 2iA/ir

ne obtains after substituting (6.5.2), (6.5.33), (6.5.39), and (6.5.40) 
into (6.5 37) d (6.5.38) are rather long and cumbersome, and they are treated in 
appendix 6.B. The important results that we find are

Bo = ~l

and



For |aa| 1 the t-matrix is

(6.5.47)

IO

(6.5.48)

where

(6.5.49)

Supposing the B'n do not diverge for w/a —♦ oo, we see that for large w/a

(6.5.50)

(6.5.51)

and in the limit w/a —♦ oo this is

(o|i(or)|o) = (6.5.52)
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a

aw instead of aa 
i (6.5.31). So, for

.’-.ral ation factor in 
t-matrix this 

of A for large 
■ver cos 0 from 
f the Legendre

If we substitute this in (6.5.47) and multiply by w/rr we find

which is the same as (6.3.12).

Sn = — J dxHg (inrrx/l — z2)e,n’1

Ha
2m x2’

A =— — 
a

This formula is very similar to (6.5.31), only the argument of is • 
and A still depends on w/a. For w = a, of course it is the same as 
any finite w, the behaviour of the t-matrix is still the same as in two dimensions: it 
vanishes in the on-shell, low momentum and low energy limit. Only when w/a —» oo 
do we recover the three-dimensional behaviour.

If we let w/a —» oo, we first of all need to change the n- 
(6.5.1) to (2x)-3/2 to get the same result as in section 6.3. 
implies multiplying it by w/-x. Then we need to find the be 
w/a. If we take (6.B.4), substitute (6.5.42) and integrate all 
—1 to 1, all P|(cos0) for I > 0 drop out because of the orthogo 
polynomials. The remaining equation is

4 = ln2-^ + £B;sn, 
njfcO

ft2 2i w
(°R(«)I°) = — 2m x3Hf(aw) - 2iw/*a

(o|t(a)|o) = ---------1______
2mir2 H^(aw)+ 2iA/n



6.6

sin kzz, (6.6.1)or

(6.6.2)k„z

with

(6.6.3)

(6.6.4)

|aoa| <K 1. Then we define as in (6.5.7)

(6.6.5)Bn =

(6.6.6)

(6.6.7)(n / 0)ana = ay/a* - fc2
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B'o = -1.

then substitute, for |a<>a| 1

cos koa cos 0 
2-zy/w

= ay/kl - kl = iP„a

If we

a2 = a2 - fc2.

At r = a we have (6.2.7), so 
oo

= BnHo(a„a sin fl) cos k„a cos 9.
n=0

According to (6.6.3) aj = a2 — k^, and so

Ho(aoa) + 2iA/v'

Substituting this in (6.6.4) and multiplying by 27r^/'‘'[^<t(°,ou) + 2iA/r] produces an 
equation similar to (6.5.8). Using (6.A.10) for |or0a| <1 we can again eliminate the
divergent term In or0a by taking

A finite layer with zero boundary conditions
In this section we will adapt the calculation of the previous section to a different set of 
boundary conditions. Instead of periodic boundary conditions we take (r |Q(a)|Js) = 0 
at |z| = w. Since this requires the same general approach as before we will be 
somewhat less specific and stress the differences and similarities between this section 
and section 6.5. We will treat the case w < a and for w > a we will only quote the 
result. Eigenstates of Ho that are zero at |z| = w are

= coskzz or -—7=
'W 2.TVy/W

where kt st be equal to kn = (2h+1)tt/2w and kn = (n+l)?r/w, respectively,
for some .1,2,...). The lowest energy eigenstate |fc0) is fc|| = o, kz = k$ =
tt/2w. A- rumediately set k = k' = k0 and a2 = k% + ie, so |a2 — A^|a2 <C 1.

For w o. .an, in analogy to (6.5.2) and making use of the cylinder symmetry 
of the problem -nd the fact that (r|jfe0) is even in z, write

oo

(r|flft(a)|fc0) = BnH$(anp) COS

n=0



the remaining equation reads

(6.6.8)0),

(r|nA(a)|fc0) = — Hf(aop) cos koz

(6.6.9)

i' of S, this

(6.6.10)

L6.11)

with

(6.6.12)

and

I
In this case K. is not zero, but

102

(2Vy/w)~1
H^(a0a) + 2iA/x

i 1 T 2i , 2i, , „/
---- r + — — lnaoa + ld---- (7-In 2)

V 4» T 7T

n>0

x cos ((2n + l)^p) j

r s2
R(s) = / dxzsinzln(l------x2)

J

(6.6.13) 
v=l/»

h2 r ., x 2i A 
= — H^(aoa) + —A m [ 7r

+ 52B'nJf0+(^np)cc 
n>0

In calculating we can again limit the integration to the spheric 
time because at |z| = w the eigenstates (Jb0|^) are zero. We find

r - K\2J-h = —a
m

/ dr{k0\r)^(r\fth(a)\k0)

or, with (6.6.9) and (6.A.10) for small aoa

77- ( Hf(iVn2 4- niryVl - x2) 
' oy

<2n(s) = J dlCOS (

ln(sin 0) cos(k0a cos O') = A cos(fc0a cos 0)
- 5? B’nKo{Pna sin 0) cos(fc„a COS 

n>0

where we have also used (6.A.6). This is again an 
which A and the B'n can be determined.

With (6.6.5) and (6.6.6) we now have for (6.6.2)

equation independent of a from

1
47TTV2



(6.6.14)

and

(6.6.15)

so

K C (6.6.16)

(k ■'

(6.6.17)
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7T2

In aQa + 1 + y (7 — In 2)) ■

For sm

+ ^Efln<?n(w/a) . 
n>0 )

Since for small aoa the term in parentheses is equal to (c*oa), it cancels the con
tribution of the first term on the right-hand side of (6.6.17). The remaining terms 
are all proportional to [/fo’(aoa) + 2M/7r]-1:

*2
(M(«)IM = --m

All terms inside the braces are independent of a, so 
the same as for periodic boundary conditions. It can 
it exactly reproduces (6.5.29).

Thus we find that changing the boundary conditions considerably changes the 
problem; e.g. neither k0 nor a vanish in the low energy, low momentum limit. This 
causes the equations to become more complicated than in the previous section. Nev
ertheless, the behaviour of the t-matrix is qualitatively the same: it vanishes in the 
on-shell, low momentum and low energy limit.

For the boundary conditions considered here the case w < a seems rather un
physical: while the hard spheres do not fit into the layer, their wave functions are 
supposed to be zero on the boundary |z| = w. The case w > a however is physical, 
and there we find the same behaviour of the t-matrix:

+ ^R^/a)

t2

G=-—a2J(h0,k0),

“ 2^ ^B'nQn(w/a) I. (6.6.18) 

n>0 )

the behaviour of (As0|f (or)|fc0) is 
also be shown that for w/a —* 0

e second term in (6.6.16) vanishes and we then have

'.:) = K. + G + J-h
h2 i n2— _.——|— 
m 4tt m

1 /2i

a2
2xw2

i2 1 .2

iA
2ir2

J/70+(a0a) + ^-A 
. 2i,

jr



—A

w/a1

c iitionsa function of w/a for periodic bouno

(6.6.19)

Discussion6.7
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II

(6.7.1) 

function of the ratio of the layer width 2w to the
2m Tt

_______ 1________
H^(aow) + 2iA/?r

So for these different boundary conditions the result is the same.

Fig. 6.3. The behaviour of A as

(fco|t(a)|A:o) <*

We have computed the (-matrix of two hard spheres confined to a thin layer in the 
limit of low momentum and energy. It is found that the (-matrix behaves as

[in aos + ^ + 7 — In 2 + ,

a

-ln- + 7-
0 L

0

(fe'|t(Q)|fc)

where s = max(a,w) and A is
hard sphere diameter a. The parameter a0 is related to the energy by (6.1.8) and 
(6.5.3). The function A(w/a) depends on the boundary conditions which are imposed 
on the wave matrix (r|fi(or)|fc) from which the t-matrix is calculated by (6.1.6). In 
figure 6.3 a sketch is given of A(w/a) for periodic boundary conditions.

The simplest case considered here refers to periodic boundary conditions in the 
relative motion of the two spheres. In this case the result (6.7.1) can be intuitively 
understood by considering the following electrical analogon. The equation for the 
homogeneous part (6.2.5)

(a2 + V2)(r|nA(a)|fc) =0 (6.7.2)
becomes for a = 0 the Laplace equation, and (r|fl)l(0)|fe) may be considered as an 
electrical potential. It vanishes at infinity and on the sphere r = a it satisfies, for 
small k, the condition



(6.7.3)

(6.7.4)

:-C t

.-.io

Appendix 6.A: Bessel functions

(6.A.1)

(6.A.2)
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(r|QA(0)|fc) = _(r|fc) « -

■gy follows from this “potential” as

on the sphere,

/>+(*) ~(-.)'+1^;

In this paper we use the following properties of the spherical Bessel functions [8]:

= -Ai’(i);

for x —► oo:

ds • V(r|n*(0)|4),
~'s

over the normal component of the electric “field” 
total “charge” on the sphere.
rix is the total charge on the sphere for a potential which is zero at 
by (6.7.3) on the sphere. The periodicity requirement transforms 
a row of spheres along the z-axis. From large distances this row 

charged infinitely long cylinder. It is well known that this leads to 
divergent potential at infinity. Thus in order to keep the potential 

charge on the sphere (or the t-matrix) must vanish. As or-1 may 
a cut-off length the vanishing of the t-matrix as given by (6.7.1)

1
2xV2w

The t-matrix for low momentum and enerj

(fc'|t(0)|fe) = j

or as the integr .1 
which eq; -s -J

Thus 
infinity a; 
the prob 
manifest 
a logarif ? 
zero at i . nit; 
be interp rete? 
follows.

From this viewpoint it is surprising that the boundary condition where we require 
(r |^a(<*)|&) to vanish for |z| = w leads to essentially the same result. The difference 
is that a does not vanish, but rather assumes the value &q = (tt/2w)2 which is 
not necessarily small. So the singular behaviour (6.7.1) occurs at the lowest energy 
possible in the layer. Thus one cannot use the interpretation of (6.7.2) as a potential 
equation.

Neither of the two boundary conditions treated here correspond fully to the bound
ary conditions appropriate to a real layer. As has been mentioned the requirement 
of the vanishing of the wave matrix (rj r2|Q|Jfei fc2) when either of the two particles 
hits the boundary |z,| = w couples the relative motion to the center of mass motion. 
This makes the analytical treatment substantially more complex. The fact that two 
different boundary conditions in the relative space, which may be considered extreme 
opposites, lead to essentially the same result makes us confident that (6.7.1) also 
holds for the real case. The function A(w/a) will then of course differ from the A 
calculated here.



for x —> 0:

(6.A.3)

(6.A.4)

(6.A.5)

(6.A.6)

(6.A.7)

(6.A.8)K0(x)

for x —♦ 0:

(6.A.9)

(6.A.10)

(6.A.11)(m > 0),

n0(au>) +

(6.B.1)tiknwco»0
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ill

x‘ 
(21+1)!!’

—ihf(x) Rs —

Jm(x) ~

W0+(x) «

jl(x) RS

ni(x) « -iA+(z) Rs -^2fjl+P'•

For the ordinary Bessel functions we use:

£-H+(x) = -/f+(x);
ax

^o(x) = y/f0+(ix);

for x —» oo:

xm
2"" ml’ 
2i , 2i,
— In x + 1 4---- (7 — In 2),

«(•>.(?)■

where 7 = 0.57721566 ... is Euler’s constant.

Appendix 6.B: The continuity equations at r = w

We will show in this appendix how (6.5.37) and (6.5.38) lead to the results (6.5.41) 
and (6.5.42). After substituting (6.5.2), (6.5.33), (6.5.39), and (6.5.40) into (6.5.37) 
and multiplying by 2?r-y2w [//□’(aw) + 2iA/tt] we find

- [Kf(aw) + 2iA/.] (jo(«w) - g^«o(aw) +

+ Bo ' fjo(ow) - Jo^Q:a^ n0(aw)>)
\ n0(aa) J

+ 52 B*' 0'(QW) - Pi(cos5)
I ni(aa) J

= B'oHq (aw sin 0) + 52 B'nHf(anw sin 0)e'
nffcO



7T

(6.B.2)

(6.B.3)

■ lion is

(6.B.4)

(6.B.5)

ii(aa)

(6.B.6)

cos 6 from -1 to 1 the terms with I > 0 vanish because
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n[(aw) > P/(cos0)

- J^Qg|nf(aw)| P/(cos0) 
n/(aa) J

For aw —♦ 0 we

-l(,nQW +*+ 7
+e bi+/

2i /
= P,— > -naw sin 0 +

+ ' . 7 (anw sin

n,(aw)J /’/(cos 0)

oo

+ '

(■ - 3 «°*

find, with (6.5.10) and (6.A.10)

-ln2 + 4)+B0-(l-J)
_ nt(aw)| fl(cos0) 

n/(aa) J
7r i— 4- 7 — In 2j
^iknw cos 0

I QJo(aw) - a

+Bo ' (ajo(QW) - a

= —Hg'(aw sin 0)a sin 3
+ E B'^ [^o(.anrsin0)eit"rc°*,]r_w 

n^O

Again letting aw —» 0 this gives
OO f

^B°'+E B>'a p'(Qw) -
= -~ + E5n^[^(«<n^i*"rCO-9:

n^O

Integrating this equation over
of the orthogonality of the Pi(cosB). Thus we obtain

OO x

o'+E B'+' p,(“w)
= -^lnsinfl+ 52B^0+(a„wsine)ei*"wc“1’. 

n^O

A second relation follows from (6.5.38). With (6.B.3) we find

To get rid ■:

B'=

The remaii. .»

ergent term In aw we take



(6.B.7)

(6.B.8)

be obtained by solving (6.B.4) and (6.B.6).
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2a _+/ 4i 1 v—\ 1 . .
W2 7T W W

njfO

where the integral M„(x) is defined by (6.5.15). From (6.5.30) 
0 for n / 0, so
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Samenvatting

het gedrag van een 
de eigenschappen

>tatistische mechanika is het beschrijven van 
tleriaal (gas, vloeistof, vaste stof), uitgaande van
'ide deeltjes (atomen, moleculen etc.). Hoewel deze eigenschappen 
kend zijn, is het toch slechts zelden mogelijk om het gedrag van 
tai van deze deeltjes hieruit exact af te leiden; die gevallen waarin 

5 betreffen in het algemeen een geidealiseerde situatie en niet een

feit dat de andere isotoop  .
superfluiditeit niet vertoont.

De wisselwerking tussen 4He-atomen is goed bekend: op korte afstanden stoten 
zij elkaar sterk af, zodat zich geen twee atomen op dezelfde plaats kunnen bevin- 
den, en op grotere afstanden trekken zij elkaar zwak aan. Op zeer grote afstand 
verdwijnt de wisselwerking vrijwel geheel. Toch is het ondoenlijk om deze eigen
schappen te vertalen in eigenschappen van de vloeistof 4He. Alleen voor een ideaal, 
niet-wisselwerkend Bose-gas kan deze berekening uitgevoerd worden. Om de wis-

Het doel 
macrosco. 
van de sa. 
vaak zee< 
een zeer • 
dit wel n: «
werkelijk : est: d systeem. Daarom is het vrijwel altijd noodzakelijk benaderingen 
te maker* om tc-t een resultaat te komen.

Het materiaal dat aanleiding heeft gegeven tot het onderzoek in dit proefschrift is 
helium en in het bijzonder de isotoop 4He. Onder normale omstandigheden is helium 
gasvormig, maar bij lage temperaturen is het een vloeistof. Het is het enige materiaal 
dat zelfs bij het absolute nulpunt slechts onder hoge druk vast wordt. De oorzaak 
hiervan is de sterke nulpuntsbeweging, die ook bij zeer lage temperaturen de zwakke 
aantrekkingskracht tussen de heliumatomen blijft tegenwerken. Dit geeft al aan dat 
quantummechanische effecten een grote invloed hebben op het gedrag van helium bij 
lage temperatuur. Een nog spectaculairder voorbeeld hiervan is het optreden van 
superfluiditeit.

Boven een temperatuur van 2.18 K is 4He een normale vloeistof; daar beneden 
is het superfluTde. Superfluide helium heeft verschillende bijzondere eigenschappen, 
waarvan de belangrijkste is dat het zonder weerstand kan stromen. De theoretische 
verklaring voor dit verschijnsel is het optreden van Bose-Einstein condensatie van de 
heliumatomen. Dit is een bijzonder soort fase-overgang, waarbij de quantummechani
sche beschrijving van de microscopische eigenschappen van de atomen ook tot uiting 
komt in het gedrag van de vloeistof op macroscopische schaal. Het treedt alleen op 
bij deeltjes die bosonen zijn, zoals 4He-atomen. Dit is in overeenstemming met het

> van helium, 3He, bestaande uit fermionen, een dergelijke
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dit proefschrift wordt voor een an:' 
een realistisch model van wisselwe; 
een sterk vereenvoudigd model, d 

het werkelijke systeem bezit. Dit mode 
rooster bewegen. Hun beweging is beperk

selwerking tussen de atomen in de berekening mee te kunnen nemen moet dus een 
benadering gemaakt worden.

Een mogelijke aanpak is om een gas van harde bollen als uitgangspunt te nemen 
en de aantrekkende wisselwerking te verwaarlozen. Dit kan door middel van storings- 
theorie. Een nadeel van deze methode is dat zij vooral geschikt is voor een gas bij lage 
dichtheid en niet bij dichtheden zoals die van 4He. Ook worden de berckeningen in 
deze benadering snel gecompliceerd, vooral als met bijzondere externe omstandighe- 
den rekening gehouden moet worden. Dit blijkt uit de berekening in hoofdstuk 6, 
waar een belangrijke grootheid in deze methode, de t-matrix, wordt uitgerekend voor 
een systeem in een dunne laag.

In de overige hoofdstukken van 
gekozen. In plaats van te proberen 
nen te behandelen, beschouwen wij 
de essentiele eigenschappen van 
bosonische deeltjes die op een 
gen tussen aangrenzende roosterplaatsen. De wisselwerking tussen de de 
gerepresenteerd door een wisselwerking tussen twee deeltjes als zij op na 
terplaatsen zitten. Met de harde afstotende kern van de wisselwerking wor.

•ipak 
d >oso-

emin
, uit
:ron- 
ordt
oos-

rc: ning 
gehouden door te verbieden dat er meet dan een deeltje op een roosterpla. s i: :■ zit
ten. De eenvoud van dit model ligt in het feit dat de deeltjes, in plaats van door de 
hele ruimte te bewegen, zich slechts op discrete roosterpunten kunnen bevinden, en 
dat zowel de beweging als de interactie van de deeltjes zeer plaatselijk is.

Een bijkomend voordeel van het werken met een zeer vereenvoudigd roostermodcl 
is dat het niet alleen 4He beschrijft, maar ook talrijke deeltjessystemen die dezelfde es
sentiele eigenschappen hebben; bijvoorbeeld een gas van gaten in een vast 4He-kristal, 
of paren van elektronen die voorkomen in sommige theorieen voor hoge-temperatuur 
supergeleiders. Om de berekeningen aan dit model te vergemakkelijken wordt in 
hoofdstuk 2 een equivalent model geintroduceerd: het spin-| XXZ model. In plaats 
van bewegende deeltjes op een rooster beschrijft dit model magnetische quantumspins 
op een rooster; eenvoudig kan aangetoond worden dat deze twee modellen equivalent 
zijn. Het introduceren van dit pseudospinmodel leidt dan ook niet tot andere uitkom- 
sten, maar alleen tot een andere manier om de uitkomsten te beschrijven. Het geeft 
ook de mogelijkheid om deze resultaten toe te passen op modellen voor magnetische 
materialen en om ze te vergelijken met bekende gegevens voor zulke modellen.

Toch is zelfs het roostermodel te moeilijk om exact op te lossen, en in dit proef
schrift worden verschillende benaderingstechnieken toegepast. De eerste benaderings- 
techniek is de cluster-variatie-methode, die in hoofdstuk 3 wordt geintroduceerd. Met 
deze methode kan het fasediagram van het pseudospinmodel berekend worden. De 
specifieke kracht van deze benadering is, dat het effect van correlaties tussen naaste- 
buur-spins wordt meegenomen. Het resulterende fasediagram is een grote vooruitgang 
vergeleken met simpelere benaderingsmethoden. Ook is het goed in overeenstemming 
met wat al bekend was uit andere berekeningen. In het bijzonder de vorm en de sym-
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-en.
■etc •

van de overgang van twee naar drie dimensies.
k 5 wordt tenslotte de gemiddelde-veld renormalisatiegroep toegepast 

twee en drie dimensies. De resultaten van de simpelste versie van 
jn hetzelfde als die van de cluster-variatie-methode. Bij het verfijnen 

:ng blijkt echter dat dit slechts op toeval berust en dat er geen funda- 
ikomst tussen beide methoden bestaat. Het blijkt dat het toepassen 
de op quantumspins soms grote problemen kan opleveren, maar net 

een goed beeld van het fasediagram.

metrie van het fasediagram worden goed weergegeven.
Na de cluster-variatie-methode op homogene systemen in twee en drie dimensies 

toegepast te hebben, wordt in hoofdstuk 4 aandacht besteed aan systemen met een 
meer gecompliceerde geometric. Eerst wordt een drie-dimensionaal systeem met een 
anisotrope wisselwerking behandeld en vervolgens een systeem in een dunne laag. 
Deze beide systemen kunnen zowel twee- als drie-dimensionaal gedrag vertonen en de 
overgang tussen die twee gevallen wordt bestudeerd. Ook is het mogelijk om groothe- 
den te berekenen als functie van de diepte in de laag. Net als voor homogene systemen 
zijn de resu'terende fasediagrammen bevredigend, ondanks enkele inconsistenties in 
de b< chrij”

Ir. hoo I 
op s 
deze 
van 
men 
van 
als cb • ariatie-methode geeft zij toch
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Tot de promotie wordt met het oog op de beperkte ruimte 
in de Senaatskamer uitsluitend toegang verleend op 

vertoon van een bewijs van toegang.

N.B. Met tijdrovende parkeermoeilijkheden bij het 
Academiegebouw moet rekening gehouden worden.

Receptie na afloop van de promotie 
in het Academiegebouw, 
Rapenburg 73, Leiden.
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begon ik 
augustus 
ik onder 
De titel 
Frenkelp.? 
af. Per I

>oren. Na in 1983 aan het Hermann

n I-'.- 
cemi .

der Mate , or; prof. dr. J.M.J.
Rijksuniversiteit .Leiden aan een promotie-onderzoek te beginnen.

Tijdens mijn promotieperiode bezocht ik verscheidene conferenties, namelijk de 
’’International Conference on Thermodynamics and Statistical Mechanics, Statphys 
17” die in 1989 in Rio de Janeiro plaatsvond, en, in 1991, de "Rencontre de Physique 
Statistique” te Parijs. Ook nam ik in 1989 deel aan de "International Summer 
School on Fundamental Problems in Statistical Mechanics VII” te Altenberg, West- 
Duitsland, en de "Workshop on Computational Physics and Cellular Automata" in 
Ouro Preto, Brazilie.

Op 29 sept1 nber T65 werd ik in Amstelveen geb  
Wesselink lie; Amstelveen het eindexamen Gymnasium-/? te hebben behaald, 

e Natuurkunde aan de Vrije Universiteit in Amsterdam. In 
het propaedeutisch examen af. Mijn afstudeeronderzoek deed 

: tof.dr. A. Lodder, in de werkgroep theorie van de vaste stof. 
ptie luidde "Symmetric bij Bloch-elektronverstrooiing aan een 

In november 1987 legde ik het doctoraalexamen Natuurkunde 
C'87 trad ik in dienst van de stichting Fundamenteel Onderzoek 

van Leeuwen aan het Instituut-Lorentz van de



Stellingen

1. Om

R.C. Brower et al., Phys. Rev. Lett. 38 (1977) 1231

4. De door Matsubara

T. Matsubara

M. ’t Hart, le Albert Verwey-l ezing, Leiden, 3 november 1989

en II. Matsuda, Prog. Theor. Phys. 16 (1956) 569

6. Maarten’t Hart heeft geen gelijk met zijn bewering dat de meeste wetenschap- 
pelijke experimenten ongecontroleerd blijven omdat zij nooit gedupliceerd wor- 
den.

5. De term XY-model zou uitsluitend gebruikt moeten worden voor modellen van 
quantumspins. Het gebruik van deze term voor klassieke spins met twee vrij- 
heidsgraden geeft aanleiding tot verwarring.

een juist beeld te krijgen van het effect van een onzuiverheid op het gedrag 
van geleidingselektronen in een metaal is het wenselijk een zelf-consistent bere- 
kende onzuiverheidspotentiaal te gebruiken.

A. Lodder et al., J. Phys. F 18 (1988) 1057

3. De eis dat een real-space renormalisatie-transformatie de symmetric van de 
Hamiltoniaan behoudt, maakt het onmogelijk voor het XXZ-model een der- 
gelijke transformatie te construeren die in het hele fasediagram toegepast kan 
worden.

2. Het feit dat bij het toepassen van de paar-benadering van de cluster-variatie- 
methode op klassieke spinsystemen bij lage temperaturen geen terugkeer naar 
de ongeordende fase optreedt, wijst erop dat het wel optreden van dit effect 
bij quantumspins een gevolg is van het quantummechanische karakter van de 
spins.

en Matsuda geconstateerde afname van de kritische tem- 
peratuur bij het toenemen van de dichtheid van een quantum-roostergas treedt 
slechts op bij dichtheden groter dan 1/2. Vanwege de deeltje-gat symmetric 
neemt de kritische temperatuur beneden deze waarde juist toe bij toenemende 
dichtheid.



Dirk Jan Bukman, februari 1992.

intelligence bij degenen die deze 
de kandidaten.

proefschrift te voegen stellingen werd teruggebracht 
zou dat de kwaliteit van die stelling ten

de spiegels komen 
gesloten pad waarin 

de spiegels wordt het 
oo het aantal banen

9. De intelligentietests waarvan in sommige selectieprocedures gebruik wordt ge- 
maakt zeggen vaak meet over het gebrek aan 
tests toepassen dan over de geschiktheid van

10. Indien het aantal bij een 
tot een, zoals in Belgie gebruikelijk is, 
goede komen.

7. Beschouw een vierkant 2 x N rooster met periodieke randvoorwaarden. Op elk 
roosterpunt wordt een tweezijdige spiegel geplaatst zodanig dat een lichtstraal 
afkomstig uit een naaste-buurpunt over een hoek van 90 graden naar links of 
rechts afgebogen wordt. De twee mogelijke orientaties van 
voor met waarschijnlijkheden p en 1 — p. Een baan is een 
een lichtstraal rond beweegt. Door het plaatsen van 
rooster in banen verdeeld, zodanig dat in de limiet N —* 
per roosterpunt gelijk is aan p(l — p).

8. Zoals het woord hoogleraar al aangeeft zijn de didactische kwaliteiten van een 
hoogleraar minstens even belangrijk als zijn wetenschappelijke kwaliteiten.
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