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STELLINGEN

Het door Borchers ontwikkelde algebralsche formalisme, dat door hem
wordt toegepast in de relativistische quantum velden theorie, kan in
gegeneraliseerde vorm gebruikt worden om willekeurige klassieke en
quantum mechanische systemen te karakteriseren.

H. Borchers, Nuov. Cim. 24 (1962), 214.

Het is mogelijk om in de quantum veldentheorie een definitie te
geven van normaalproduct die geen gebruik maakt van een splitsing in
creatie- en annihilatie operatoren. Het is waarschijnlijk dat deze defini-
tie gebruikt dient te worden in de bewegingsvergelijkingen voor gekop-
pelde velden.

R. Stora, Les Houches 1971.

In een Wightman veldentheorie met '"mass gap' kunnen de asymptotische
vrije velden gegeven worden zonder de limietprocedure van D. Ruelle te
gebruiken.

D. Ruelle, Helv. Phys. Acta 35 (1962), 147.

Ten onrechte wekt H. Weyl het vermoeden dat de Hilbertruimte van
kwadratisch integreerbare functies op de eenheidscirkel een niet
separabele ruimte is.

H. Weyl, The Theory of Groups and Quantum Mechanics, p.32 Dover

Publications Inc.

Meting van de differentiele werkzame doorsnede van de reactie
* = o s ; : .
e e + 7w kan belangrijke informatie geven over boson resonanties met

C = +1, mits de lading van de uitgaande deeltjes gedetecteerd wordt.

Bij de berekening van fysische grootheden in het eendimensionale
X-Y model geven de a-cyclische en c-cyclische randvoorwaarden, zelfs in

de thermodynamische limiet, niet altijd hetzelfde resultaat.



A o . .
VII. Om de resultaten van e e '"colliding beam" experimenten goed te
interpreteren is een nauwkeurige analyse van de experimentele situatie,
i,h.b. van de meetnauwkeurigheid, noodzakelijk.

Hoofdstuk III van dit proefschrift.

VIII. De techniek die D. Yennie et al. gebruiken om te bewijzen dat
werkzame doorsneden in de quantum electrodynamica niet negatief worden
bij grote meetnauwkeurigheid, is niet bruikbaar voor numerieke berekeningen.
D.R. Yennie, S.C. Frautschi and H. Suura, Ann. Phys. (N.Y.) 13

(1961), 379.

IX. De suggestie van Y. Tokunaga et al. dat de door hen waargenomen
relaxatieverschijnselen in NiTl?(SOQ)2'6H20 toegeschreven moeten worden
aan het directe proces is onjuist.

Y. Tokunaga et al., Journ. Phys. Soc. Japan 35 (1973), 1353.
g ; = i
X, Het teken van de ladings asymmetrie in de reactie e'e >y ¥  kan

eenvoudig kwalitatief verklaard worden.

K.J.F. Gaemers 27 juni 1974
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CHAPTER I
INTRODUCTION
I. With the advent of e e colliding beam facilities, more refined tests
quantum electrodynamics have become possible [1]. As a consequence it has

become necessary to calculate more accurate theoretical cross sections for

the reactions:

(3)

In this thesis theoretical cross sections for these reactions are given

3 - s i ;
to order a~, a being the fine structure constant. These cross sections contain

parts where an extra photon is emitted (bremsstrahlung). The latter contribu-
tions are very much dependent on the experimental set-up and the procedure of
analyzing the data. Therefore great care has been given in handling these terms
without approximation.

For realistic experimental situations, numerical calculations have been
made.

The outline of this thesis is as follows. In chapter II a general discus-
sion on the role of quantum electrodynamics in colliding beam experiments is
given. Also the radiative corrections are discussed. In chapter III we describe
the analytic calculations of the virtual radiative corrections and the general
formalism to handle hard photons. In chapter IV numerical results are presen-
ted. Also recent experimental results will be given and compared with the
theoretical calculations [2]. Finally in several appendices Feynman rules and

: ; o+ + = -
detailed calculations for the process e e = |y U are given.




€H AP TER I

TESTS OF QUANTUM ELECTRODYNAMICS

AND e*e- COLLIDING BEAM EXPERIMENTS

II.1. Tests of quantum electrodynamics.

In studying scattering and decay processes of elementary particles it has
become apparent that there are at least three classes of interactions i.e.
strong, electromagnetic and weak. The other known interaction, the gravitational
interaction, has not been observed directly in elementary processes in contrast
to the other three. At present we have the best theoretical understanding of the
electromagnetic interaction.

Of all known particles, electrons, muons and photons do not participate
directly in strong interactions, so that electromagnetic interactions can be
studied practically without contamination of other interactions, by looking at
reactions involving only these three kinds of particles. In most cases effects
of weak interaction may be neglected compared with those of electromagnetic
interactions.

On the basis of quantum field theory most quantities concerning the beha-
viour of electrons, muons and photons can be calculated with arbitrary precision
as a perturbation series in the fine structure constant a(z 1/137). This theory
is called quantum electrodynamics (Q.E.D.).

Since the calculational rules of Q.E.D. were established, no essential
modification of the theory has taken place. A description of Q.E.D. and general
quantum field theory can be found in many textbooks [3]-[5]. With a few minor
modifications we shall use conventions and Feynman rules as stated in the books
by Bjorken and Drell *). For convenience of reference, conventions and rules
are explicitly given in appendix A.

Quantities which can be calculated in the framework of Q.E.D. and which
can be put to experimental tests, fall apart into two categories. The first

F

) For the photon field the Gupta-Bleuler formalism was used instead of the

formalism used by Bjorken and Drell where the radiation gauge is employed.

7



category encompasses the anomalous magnetic moments of the electron and muon,
and various level shifts in atomic systems (Lamb shift). These effects are
referred to as static quantities. A survey of these effects and a comparison
between experimental results and theoretical predictions may be found in a
review article by B.E. Lautrup et al. [6]. The second category consists of
cross sections for scattering processes where the particles involved are elec-
trons, muons and photons.

There are of course many such reactions like e.g. electron Compton scat-
tering (ye ~+ vye ) and Méller scattering (e e - e_e_). In principle, reactions
such as these can be used to test Q.E.D. In practice however one has to take

section measurements

for a specific reaction on the one hand and of performing reliable theoretical

calculations on the other hand ).

Around 1960 the following reactions were proposed to test Q.E.D.,

At present, experiments of this type have been performed in many laboratories

by means of c+c- colliding beams [1],[2]. In these experiments, electrons and
positrons describe a circular orbit in opposite directions. They are forced

to move like this under the influence of a constant magnetic field perpendicular
to the orbit. At well-defined places along the circle one lets the electron

and positron beams collide (hence the name). The enormous advantage of this

type of experiment is the possibility to study reactions at a center of mass
energy which cannot be reached in another way, combined with the fact that the

reaction rate can be made high enough so that good statistics are obtained.

0 Lowest order cross sections.
We will now give the lowest order cross sections for reactions (1), (2)

and (3) and mention various aspects of their behaviour with angle and energy ).

) Most theoretical calculations in Q.E.D. although straightforward are of
considerable complexity. Many theoretical results existing in the

literature contain calculational errors and/or misprints.

In all expressions in this section, where possible the relativistic

limit has been taken, i.e. terms of order m/E are neglected.




4+ £
a. e (py) +e (p) *v(q)) + v(q,)
In lowest order this process gets contributions from two Feynman diagrams

(fig. 1). Using standard procedures one arrives at the following expression

<'(p,) v(ay) ¢(p,)
v(9y)
Yigy)
¢(p.) Y(q,) e(p.)
Fig. 1 Lowest order Feynman diagrams for two gamma production.
for the differential cross section,
do" oo Jz 2 + sin" 9 25in ¢ 3
s e 75 52 Sy us L (4)
1 1 = B cos™ @ (I = B cos™ @)

In this formula, ais the fine structure constant, s the square of the center
of mass energy, 8 is the velocity of the incoming electrons (and positrons)
and finally, 6 is the angle between 5* and a] in the center of mass system.
This cross section is symmetric around 6 = 90° and exhibits strong peaking in
the forward and backward direction. Note however that even at & = 0% and

: AR . i
8 = 180 it remains finite.

- - + -
b. e (P+) +e (p.)+ e (q+) +e (q.)
In lowest order, this process gets contributions from two Feynman diagrams

(fig. 2), giving rise to a lowest order cross section

2 4 4

g ¢ 1 + cos (8/2 2¢ 8/2 e =
3‘ %; [ L?b (8/2) _ uoz (6/2) s 10k Ecan il < (5)
il A sin” (8/2) sin” (6/2)
The meaning of a and s is the same as under a), 9 is now the angle between

-> . . . . - . .
P, and q,. This cross section diverges in the forward direction; as a conse-

quence also the total cross section is infinite. This has to be expected as

9




¢(p) <lq.)
a b

Fig. 2 Lowest order Feynman diagrams j Bhabha scattering.

part of the scattering amplitude (corresponding to fig. 2a) can be regarded

as the amplitude for Coulomb scattering.

+ - + -
c. e (p) *+e(p)~>u(qg)+u(q)
In lowest order we have only one diagram (fig. 3) resulting in the cross

section
2 2
2y

S

(1 =.cas a)] s (6)

4 . 2
S du[é(l + cos ) +

In this formula, p is the muon mass and sp is the velocity of the outgoing
. 3 e 2 3 g
muons. The threshold for this reactlon1s Sth = 4u°. This cross section has a

3 P . =1
smooth angular behaviour. The total cross section behaves as s for large s.

IX:3s General remarks on radiative corrections.

In view of the numerical value of &, one could expect that the order a3
contributions to the cross sections for reactions (1)-(3) are of the order of
12 of the basic cross sections. It is known however, that corrections of the
order of 10% can be reached. Therefore if one wants to compare experimental
cross sections with theoretical ones with an accuracy of 17 it is necessary to
calculate the theoretical cross sections at least up to order a3. For the
processes (1), (2) and (3) the order a3 contributions to the cross section have
been calculated (for details see chapter III).

In calculating the first order corrections to the basic cross sections
one encounters the divergence difficulties of any relativistic quantum field
theory (i.e. ultraviolet divergences), supplemented by divergences inherent to

the presence of massless particles (photons), the so-called infrared divergences.

10




The elimination of these infrared divergences has important consequences for
the radiative corrections, as we will indicate.

The quantity of interest for cross section calculations is the modulus
squared of the scattering amplitude M. As the amplitude itself is given as a
power series in e (the charge of the electron) we find up to order g3 (o = e2/4n)

M| 2 = ot + uZMZIZ = ulellz + a3-2ke(M’;Mz) +0@a") . (7)
The contribution of aZIMII2 to the cross section will be called doo/dﬂ, these
order a” terms are given in section II.2 for the processes considered. The
contribution of the second term will be denoted by do'/dQ, the third term will
be omitted.

Even after disposing of ultraviolet divergences, do'/d? remains infrared
divergent. If one replaces in all calculations the photon propagator by

: 2
-igw/(k2 = A" + ie) the expression for da'/dQ will be of the form
Alog % +B+00) , (8)

thus exhibiting the singularity at A = 0. It seems that the order 33 contribu-
tions are infinite. A solution to this problem has been given in a basic paper
by Bloch and Nordsieck [7], a general analysis has been given by Yennie,
Frautschi and Suura [8].

The basis for the solution of the problem is the observation that in every
scattering process where charged particles are involved, extra bremsstrahlung
photons are produced whose energy may be arbitrarily small. In an experimental
situation it is impossible to observe all the emitted extra photons, so that
the cross sections for these processes have to be added to the "elastic" cross
section. Here we call elastic the process without extra photon emission. If we
follow this procedure we find that to order a3 one can have the basic process

with one extra photon. Apart from dco/dﬂ and do'/dQ we thus have a third

contribution,

B B
d
dQ afak
In this expression aoB/anaE is the multi differential cross section where the
observed final particle is detected within solid angle d around a fixed

: , . . 3 e
direction and where the extra photon has momentum in a region d k around k. The

integration in (9) has to be performed over those photon momenta where this




photon is experimentally unobserved.
v . . = -
It turns out that the integral (9) diverges at the point k = 0, a diver-

gence which can be exhibited by taking in intermediate calculations the photon
mass to be A. If AE is an energy limit such that photons are not detected if

their energy is smaller than AE, expression (9) is of the form
AE
Aln < * C+0(N) & (10)
Here A is the same function of the kinematical variables as the function A used

in (9).

: 3 3
The cross section up to order & can now be written as

B s 3 (1) |
afak

As can be seen from (8), (9) and (10), in this sum the limit A = 0 can be taken
without any problem and the order a3 cross section is a finite and well-defined
expression.

In order to give numerical results, one defines a correction factor éT by

aBe
+J — d’k . (12)
3Rk

0
do A »
T i A

In this way 6T is considered as a correction to the basic cross section, a

so-called radiative correction.

I1.4. Discussion of possible experimental situations.

It is now obvious that the calculation of the cross section to order 43
requires a knowledge of the experimental situation in order to calculate the
integral appearing in (12). Unfortunately realistic experimental situations
do not provide direct information on the momentum range of the undetected 1
photons.

As an approximation one often assumes that in the laboratory system the
photons with energy smaller than some value AE are undetected. If now AE is
small enough one can perform the integration (9) analytically, provided some
approximations (known as soft photon approximation) are made. Although this

procedure solves the infrared problem the assumption involved is not very

realistic.

Experimentally when measuring the reactions (1)-(3), one uses some criterion

to decide whether the observed pair of finmal state particles belongs to one of

12



reactions (1)-(3). One can imagine two rather distinct possibilities.
In the first place, if the two final state particles are detected and their
energies lie in the range [E - £, E], then one counts them as real events.
(E is the energy per beam.) In the second place one may select the final state
particles by the criterion that they are produced back to back. Then no energy
is measured, but it is established that their tracks make an angle § < r, where
the quantity ¢ is the given maximum acollinearity. If accidentally one also
sees the "undetected" photon, one has to add this event to the cross section.
We will outline a method by means of which the influence of these experi-
mental conditions on the photon phase space can be analyzed without using the
soft photon approximation. In this way the order u’ contributions are calcula-
ted for reactions (1)-(3). Although the calculations for reaction (1) have
been published by Berends and Gastmans their results will be included here

for completeness [9].

8 G Validity of the order u3 approximation.

As can be seen from (8) and (11), the correction factor & contains a term
which behaves like log(AE/m). From this we see that for very small AE, the
corrections may become large. Also in the more realistic treatment of the ex-
ternal photon it remains true that if the phase space available for the photon
is made very small, the corrections become large. From the full expressions it
can be seen that the contribution to ST from terms like log(AE/m) has the same
sign as this logarithm so that we have the paradoxical result that for small
AE the cross section to order u3 may become negative. It has been shown that
in cases where photon phase space is so small that this is the case, still
higher order terms in & are necessary to prevent the cross section from becoming
negative [8]. In other words there is an interplay between the measuring ac-
curacy and the required order in a to which one has to do the calculations.

At present it is not known what the quantitative relation is between the
volume of photon phase space and the necessary order of a. The only thing that
may be said is that if theory and experiment do not agree in situations where
the corrections dT are large and negative, one first has to take into account

higher order corrections before concluding at a breakdown of Q.E.D.




CHAPTER III

RADIATIVE CORRECTIONS FOR PROCESSES
OCCURRING IN

e+e_ COLLIDING BEAM EXPERIMENTS

III.1. Summary .

The methods used to calculate radiative corrections to the processes
(1I-1)=(1I-3) are the same for the three cases. For this reason we will treat the
case of muon pair production in full detail (because here the method is most
easily demonstrated), whereas for the other reactions only the numerical results
will be given [10].

As was indicated (chapter II) the calculation of radiative corrections
involves the evaluation of the interference terms between the order 02 term
and the lowest order term (order a) in the scattering amplitude. The contribu-
tions of these terms to the cross section will be denoted by do'/dR2. In the
following we will call these the virtual corrections. Furthermore when dealing
with the bremsstrahlung correction an integral over photon phase space has to
be considered.

First we will derive expressions for the virtual corrections; then we will
treat the external photons in the soft photon approximation and demonstrate the
cancellation of infrared divergences; finally the external photons will be
treated without approximation.

In all calculations we assume that the incoming electrons and positrons
are not polarized and also that the polarization of the outgoing particles is
not detected.
1T, 2, Kinematics and the lowest order amplitude for e+e~ -+ u+u—.

We will consider the reaction

e (p) + e (p) > u (@) + 1 () . (1)




l

The vectors in brackets are the four-momenta of the particles on the mass

shell i.e.

o

2)

H NN
~
r

o
)
~
o

In these expressions m and y are the electron and muon mass respectively *).
We choose the center of mass coordinate frame such that 5+ is in the positive
z-direction and H+ are in the x-z plane. The scattering angle 6 is the angle
between E+ and E+, E is the beam energy. From the momenta in (1) we construct

the Mandelstam invariants

2 2
A= fp.*p) = (g g ),
L= (Q+ i) P+)h N (q_ I P_)Z > (3)
a =g = p+)2 S L gl p_)2

Due to the energy-momentum conservation these variables fulfil,

2
P4

s+ t+um= ZmZ + 2u . (4)

If we express these variables in terms of 6 and E we get

s = AEZ 3
tm = (28 - m? = p? - 208% - o) @% = WDydeos 0) (5)
u = - (2E2 - m2 - pz + 2(E2 - mz)s(E2 - pz)écos 8)

The three-momenta of the particles are given by
> 2 2 2 2 .
B, = @ -adt, [q,]=c-1)t. (6

After these kinematical preliminaries we turn to the scattering amplitude.

In lowest (non-trivial) order the amplitude for reaction (1) reads:

M = i4ma/s)ua )y, v(a )v(p, )y u(p ) = i(4ma/s)T, , (7
U “+ - 0

“) Numerically we have:
m = 0.5110041(16) MeV
= 105.6595(3) MeV [11].




section as

"y Numerically: a = 1/137.03602(21) [11].

ek 4 ; -2
) Expression (11) has dimension (energy)

B = 1.9732891(66) x 10 'MeV em [11].

16

In the relativistic limit, i.e. s >> m~ expression (11) reduces to

corresponding to the diagram in fig. 3. In this formula o is the fine structure
constant ).
e'(p.) w'a,)
e(p.) wia-)
Fig. 3 Lowest order Feynman diagram for y pair production.

Using formula (A.18) we can write the corresponding differential cross

-> ')
do” T . i
—_—= o resnhds - |M‘ . (8)
d:;+ 16m s |p+| spins
In order to calculate this we need
2 2 2 2 2
Xy = mu ) |10! = 18 + 477 + s(m® + %) , (9)
spins
where we introduced the variable
+> > - - | :
R VL IR °!q+|cos e . (10)
Using this intermediate result we obtain
0 2 |q.] i Lu a0 :
(o} O + Z(m + VA
20 &L — «[4(1 + cos"¢) + @ W) (1 = cos™8)
da 2s [p+| '
9 9 (11)
sVl ']
. S ? cos 6]
&2

In order to calculate the

2 . . -
cross section in cm” one has to use the following conversion factor:
1




expression (I1II.6).
The order qz contributions to the amplitude arise from the vertex correc-
tions (figs. 4a-4b), the vacuum polarization (figs. 4c-4d) and the two-photon
exchange graphs (figs. 4e-4f). Since we are interested in the cross section to
order 33, we have to take into account the interference terms of the amplitudes

M - Mb, (corresponding to figs. (4a)-(4f) with the basic amplitude M.

III.3 The vertex corrections.
The matrix elements M® and Mb can be found using the Feynman rules of appen-

dix A and are given by

a

M = (%) k

1 [ r G(Q_)YUV(q+)3(p+)Ya(-¢++K+m)vu(¢_+K+m)qu<p_)
g (»,) (»_) (k) (12)

0 |—

AR

P - 52 [ Y G(q_)yu(d_*K+u)vu(-d++K+u)Yav(q+)G(D+)7“u(p_)

(q,) (q_) (k)

(12')
where we have introduced the symbols:
; 2 e :
(p,) = k™ ¥ 2(kp,) + ie ,
2 - K g
() = k™ ¥ 2(kq,) + ie , (13)
2 2 2
(k) = k= = AL i+ ig ,

here A is a small fictitious photon mass, introduced to regularize the infrared

divergence. The contribution of these amplitudes to the cross section is given
by

m S £ 2Re(M M2?P) | (14)
spins

&
1 9, 5, b

-

p
the star indicates complex conjugation.

Using the fact that the trace of a product of y-matrices equals the trace
of the product in reversed order it can easily be seen that the contribution
of diagram 4b can be obtained by substituting (m,p ) +> (4,9,) in the expres-

. > * a % S | =
sion for Z2Re(M M"). It thus suffices to calculate dg /dn*.

We now write M® in the following way

M = i(ma/s)ua )y, V@)V O (p, o mutp) (15)

17




e'(p,) 1'(q.) elp,) wia.)

e(p.) wiq.) elp) w(g-)
(b)

elp,) n'(q.) e(p,) u({

e(p.) wig-) elp-) TGN i
(d)

elp-) Q

(e)

S 3 - o Ls a3 nwiiual A rrded Y5 APV ' A O ~
ynman. diagrams for the virtual radiative corrections to

U pair production.




iy Yo (B, + &+ my e+ ¥+ my®
)

T Ape g
Qg2 J d'k = (16)
®,) () (k)

We proceed by splitting I'" into three parts according to the number of times

the vector k appears in the numerator of expression (15). We define

(1,1 ,1 ] = j d'k —+—E22 (17)
t (p,) (p_) (k)

and write the vertex function in the form

WRs e Al be M g il (18)
i , ¢
with b
MY =y (B, myR G+ my®
M =y [(-p, + my*C + YPGB + mIy* , (19)
o +
M,AGQ -y YJ,“'w"L -
o

The integrals (17) are calculated in appendix B, where we introduced an

auxiliary variable ¢. We find up to two terms of order A,,

—li:z m (¢ : :
[ = -i—f——-[¢log T J EtgEds] . (20)
m sin2é¢ 0
The integral I can be written as I = T4 ; with
H H a
Py
=217 ¢ :
I, = —3%. | (21)
m sin2¢
where we introduced A = (p+ = p_)/2. The integral I is decomposed in the
uv
following way.
E el gl el BN A FoE TP B 22)
UV 0%uv A"y Puwv? G
where P = (p+ + p_)/2. The coefficients are given by
2
| in” D
1g = 4L, = 2= 4 2021 - geotg 0]
' i
- k4 o
1.'. = T— = fl s (23)
. m sin2¢ =

19




2
-in” :
IP B (1 - ¢cotg ¢) - (23)
2m sin" ¢
Here I  is a divergent constant, to be disposed of by charge renormalization.

For the matrices M in expression (18) we find

Voo Mulp) = - 4V IY k)

G(p+)n““ﬁju(p_) = &(p+p_)5(p+>v“u(p_) - v (p) [y, PluGp))

Vp M %P u(p) = v IY e (24)

v(p, M PA 8 ulp) = ~((pp) + %)V )v ulp) + 2uv(p) Y, Flutp) ,

= \ L HOP p 9. = '
Vi IMP P ue) = ((pp)) *+ m)V(p )Y ulp)
We see that we can write
- M - R | v re
vip ) MMu(p) = V(e )Y'F, + z=lv"8, + B_IF,Julp) (25)

here Fl and F2 are functions of m2 and ¢ or of mZ and s. Now Fl is divergent

because it contains I via 10. By subtracting from Fl(s,mz) its value at s = 0

(which is equivalent to ¢ = 0) we can perform a charge renormalization. If we

look at M + Ma we see that we can transfer this F](O,mz) from Ma to M and

absorb it in the electron charge [3]. We will now call the difference Fl - FI(O),

Fl.
In terms of ¢ we find for F

1,2
F,o=-= {¢(1 9—|)+‘;rc'd'1+‘i109
] e T ng‘i‘lv Og A 0 S gu &J - g :.
o o 5.
RS RESVPLE % > (26)
.
F) = 7 5in2e
- R 2
For physical values of s, (i.e. s > 4m”), we have
$(s) = §{m - i log b} , (27)
with
b = Lo as= (1~ Amz/s)% (28)
i a2

20




These results for the vertex correction can be summarized in the following
way. We get the expression for M® if we replace the electron vertex YL in (6)
by
.“F ( 2 + —l_[~/F 15 3 ﬁ ]F (5 ml) 29)
Y 1 s,m ) 4m Y » + A% 2 ’ . &

From (14), (15) and (16) it can be seen that we only need the real parts of

FI,Z' Using the expression (27) for ¢(s), those are given by
2
ReF](s,mz) =-Z {1+ —'—*Zaz—a log b +
2
122 (i, - 37+ 3(log B)% = log b log(1 - B)] = (30)
2

+ a m
(1 + By T log b) log 7} 5

2 a (1 - a“ Y
ReF, (s,m") = %(—AZ—)_ log b . (31)

With the help of these functions we can write

a 0 ’ a,mag 9
S . 2ReF (s,n°) + L @y (32)
dQ dQ dQ
+ + -
where -
a,mag 2 |q] 12
. (mz) = X »+ (1 + :E—) Rqu(s,mz) . (33)
dn U | s 5
+ +

With these expressions and the substitution rule for the contribution of
b y > ’ s ; . A ; e
M" the vertex correction is given. (The index mag is used in (32) and (33)
a,ma = ;
because the term do"’ g/d‘u‘+ is due to the anomalous magnetic moment of the

electron.)

II1.4. Vacuum polarization corrections.,

In the treatment of vacuum polarization we will only calculate the effect
due to electrons and muons. We will ignore the contributions of hadronic inter-
mediate states for the following reason.

Hadronic vacuum polarization is not an effect which can be calculated from
field theory alone. The usual approach to obtain numerical corrections is the
use of dispersion relations, using as input the total cross section for
e+e- + hadrons, as a function of energy. However in doing so, new assumptions

beyond Q.E.D. have to he made.*)
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The assumption that the vacuum polarization tensor obeys a dispersion
relation has been tested experimentally in the region of the ¢ resonance

and was proven to be correct [12].

In case the center of mass energy is greater than | GeV, the cross section is

”

increased by % | (independent of energy) g ¥

; g ; > ! c - L4
We now turn to the calculation of the amplitudes M~ and M . These are

given by

. g G(q )Y v(q+)Tr[gdkP+K+m)yv(—P+K+m)];(p )y;u(p )
C & | S e ) + -
M = (T) = d k
i (m+') (m_)

(34)

‘v(q+)Trlw”(P.K+h)wG(—P+K*;)]3(p+)vvu(p_)

e () (8

(35)

where we introduced

(36)

y* . - % ’ - . . C < .
In appendix B i1s shown that (after charge renormalization) M can be written
as

)

M~ == Mell(s,m”) . (37)

e Sy A i : ¢ . ) - : : 5
We obtain M~ if in the expression for Il we make the substitution m -+ u. The

real part of Il is given by

> )
: 2 % 8 a” 1 B .
Re Ill(s,m™) = % [% = l; + als = 77)105 b] (38)

where definition (28) of a and b is used. The correction due to vacuum polari-

zation can be summarized as

Relevant formulae and the experimental inputs for this estimate can be

found in [21].

% 2 b ’ . L s h o 2
) The expression for Re Ii(s,m”) given 1n [10] contains the following misprint.
Ak ot e : ¢ | A% s S | a*

T'he coefficient of log b 1s given as (3 ~ j;) instead of (5 - 7;).




f , e
30 t) = - £ (s,u) (43)
d.. (‘ ’ d ’ »

+ +

2 - (<
It thus suffices to calculate M .
o . e . . . < »
We proceed by splitting M~ in three parts according to the number of times

the vector k appears in the numerator. We define

(4) (Q) (+) (=)

R : } : uE 1 S
and write the matrix element M in the form

o o S u )
M = (=)"(JT +J"T +.J e L (45)

M [18Y

A straightforward trace calculation provides us with the quantities

[X;x ;x ] =mu° ¥ T [T:1 ) ] (46)
Ll spins it i
and we have
e 3 a ‘
o 0 ¢ H +HV )
Ay - L e R e Rt TN (47)
dQ n s |p,| 2n° ) i
- +

The integral J is infrared divergent. It is convenient to write it as a

sum of two terms

J=(F +G)/2p% , (48)
where b
E = J dAk(V; = kD)/Q)QM® =)
(49)
G = J d'k/(a) Q) (+) .

Of these integrals only G is infrared divergent. To write J as in eq. (48) we

have made use of the fact that J can be written as

’ (50)

without a term proportional to P . Multiplying eq. (50) with A and Q , and
M M H
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solving for J, and J( we find

2,

fEeR, = B) <SqT@; + Fyl/2n ,

JQ = [z(FQ SR AN F)]/2A

where we have introduced

4 . :
d'k/(4,Q) (+) (=)
Similarly , for J _ we write down the decomposition
Y T

SNE K(‘)Q_“Qw + KX(QLA‘% + ‘:-..Q-.») : (53)

Also in this case terms linear in P_ are absent. We can again solve for the
H

coefficients of the tensors and find

.
> - L= 0 : \ o
X\U 3 (F G + HP + h‘.‘ + HQ) * I U& + JQ) .
: o L 2 o e
Kp = (F -G+ 2H, + H, + HQ)/_ (Jy * JQ) ”
) 2 2 ° S
K, = [Q°(dn, - P79, = K)) = t(IH, - P°J, - 16 )1/8 , (54)
') ) )
¢ = [A“¢i8, - P°J. - K) - o(iH_ - P73, - 4G N
Kq [ (4, - P7J, Kq) (i, = P7J, = 4 Q)]/
) ) | l 2
v s FATE - p21 = lG) - el I A
kx [A (JH& I J¢ ‘u¢> (‘HA . Iy ko)]/
To obtain J _ we have therefore to calculate the following simpler integrals:
H = d*k k /(8)(Q) (=) = HpP, + HA +HQ
“au " d'k k /() () = GA (55)
6 = [ d% x /@@ E) =6y
Qu J H Q'
The analytic expressions for the integrals F, G, HP’ H, Q and G, o are given in
A, A,Q

appendix B. It follows from these expressions that




-G + Hp + HA + HQ =0 , (56)

and consequently that KO and K, can be simplified to

P

K. = -}F + P;(Jg +J39)

2
K, = (§HP o KO)/P

The last step in the process of calculating dc"/d;‘./+ is now to contract

XL and X =~ with the different tensors of the decomposition of J and J
J MV M u

8%
I 2
X = (47 + 55)XO o o T
u 2 2 i 202 2; 2
XLA = -(20" + QT)XU = 287" + (28 + B8m" ")t + 2sA°(u” + i)
M 2 2 — . 2.2 . 2,2
X Q = ~-(2Q" + Qr)XO = 28t + (28" + 8m u )t + 25Q°(m” + is) ,
u
X = ]0X. + |2s71
uuguv 0 RaSL
(58)
¢ pHpV L i o
AUVP F Ab(ho + 2st) ,
A3 2 2 9 2 2
X AYAY B2ASX . & 8mR 4 Lk + 2m Azs R
UV 0
PV 2 2 2 2.2
X QQ =20%X + 8i"t" + 4sQ°t + 21°Q%s ,
MV 0
M,V MV 2 2 2 2 2.2
X (QA"+A"Q") = OTXU + 6st + 8(m"u” - 8%)t + 25A°Q
Hv

- : : e et I
We now isolate the infrared divergent part of do /du+. Notice that G is in-

frared divergent and that the infrared divergence of H, can be identified with

})
G. All other integrals being convergent, we have for the divergent piece of

e
do /du+.

e 92, ]q [

(93—) = = L Ty T G . (59)
. - 3 0 2

de. A T |p,| s 27
+ +

Note finally that with the definition (8) of X. the lowest order cross section

0
derived from the Feynman diagram of fig. 3 can be written as
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(o]
o

39 = %%— « = 2Re N(s,m‘) .
Q, Q, =
d '.0 X 397
ii;L A S = Re TNi(s,u")
dQ dQ SEam iy
+ +
c - c,d ¢ a,b, ..
We defined do /di, in the same way as do /d@,_ by means of eq. (13).
II1.5. The two photon exchange contributions.
We now turn to the box diagrams, figs. (4e-4f). Applying the Feynman
rules we get
ot x o B o
. 0 o ula )y, (=g yv(a )vip,)y (K-£+m)y ulp_)
M = (&2 J d'k = P~
(4) (Q) (+) (=)
-~ " < voB ¢ o (40)
£ aa (4 @Y CEQY V(g V(e )y (K-brm)y ulp )
M= (D { d'k '
‘ (8) Q") (+) (=)
We have introduced the following symbols
2 2
(A) ="k " = 2(kA) - P7 ¢+ 38 ,
2 2 :
Q =k - 2(kQ) - P +1¢e ,
2 > (41
Q") = k™ + 2(kQ') = BT #ie i
2 . 2 2 3
) ="K EL20kR) B E = ael
where Q = §(q+ - q_) and A is a small fictitious photon mass, introduced to

regularize the infrared divergence. The contribution of these amplitudes to the
cross section is given by

I a2y? ¢ 2reqfM®™E) (42)

2 o 1 .
an 16m°s |p, | spins

It can easily be seen that the contribution of diagram 4f can be obtained by
substituting (Q,u) + (-Q,u) in the expression for dce/dﬂ+ and by adding an
overall minus sign. Note that in the final expressions only even powers of the
masses appear. If the final result is expressed in terms of the Mandelstam

variables this is tantamount to
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:jo '.1—) !q+| = -
—_—= "B e :\() » (60)
di.+ 8 p+[
It follows that
=8 0,
(jﬁ ), = %?— = (41 + ) 'q IniB o (61)
R Q_ o

In appendix B we show that Im G can be rewritten in such a way that eq. (61)

becomes

4 g% (4t + s)[A(s,t)log(=5) + B(s,t)] . (62)

M
The total contribution of diagrams 5e and 5f becomes

_e+f

dQ
+

e
.do

d .
- [(dﬁ
+

do®
); + (ET:)iin. = (t+=uw] , (63)

where (dde/d;*) is obtained from eq. (47) and subsequent formulae by

fin.

omitting all integrals G and that part of H proportional to G.

[)
In the limit E >> y,m and for sin 6 >> u/E, m/E (E = %/;), our expressions

for the two photon graphs reduce to those existing in the literature [13].

III.6. The inelastic reaction.

As was indicated in II.3 the infrared divergences occurring in the vertex
correction III.3 and the two photon exchange contributions III.S5 cancel against
a similar divergence which arises from the cross section for the inelastic

reaction

+ - + - ;

e (p) +e (p) »uq) +u () +yk , (64)
For this reaction we will first establish the exact differential cross section.

The cross section for reaction (64) will be obtained from the expression

3 3 3

B_ &> 1 .22 . Bi24 Ja, d'q_dk
dog~ = N Skl M| T8 5, wps-q, =g k) e
21°s |p+| spins % %0 %o
where (65)
EMil 4 4
M- = i M., = .4 N./D (66)




—

wlq,

y(k)

€lo) pigd

© (d)
Fig. 5 Feynman diagrame for the production of a w pair accompanied

by real photon emission.

- . B > - . =4 s
The four terms in M arise from the four diagrams of fig. 5. The denominators

take the form

]
n

2

oy

- 2(kp_)s', D - 2(kp+)s' >

N

(67)

[}

2(kq_)s , D, = 2(kq+)s 3

IS

2 %
with s' = (q_ + q_) Y
The numerators consist of an electron and a muon part contracted with a

photon polarization four vector, €_.
o

N, = ' (e M (1) , N, =EX@eM (2 ,
il S (68)
N, = E (e MB) , N = E We M@
with
EY(1) = Vv (B - ¥ + myTu()
E“%(2) = Vv (B, + ¥ + My ue)
E (3) =E (4) =v)yul®)
u u ) +7 74 (69)
Mo(1) = M (2) = ulq )y, viay)
M 3) = a@ )y (. + K+ Wy
*) Because of the extra photon emitted it is no longer true that (p, * p_);

2 - 2 :
(q+ + q_)  as was the case with the virtual corrections.
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M @) = W@V A, -k vy . (69)

9
The quantity z |MB|” is now written in the form
spins .
4 N.N. 4 F..(p,,P_»9,,9_,k)
z %= ¢ I et e gy A ‘ (70)
¢ i 4 D.D. 4 :
spins 1,]J=] spins 1] 1,3=1 DiDj

The expressions for Fij are given in appendix C.

From eq. (65), multi-differential cross sections are derived, and the
question of the choice of integration variables now arises. Since we are
primarily interested in the simulation of e e - p+u‘ by the emission of an
extra photon, it is preferable to choose anyhow d2 , the solid angle of the ut
as variable. For the other three variables, one could choose, e.g. 90 99
and ¢, the energies of the p+ and u—, and the angle between the (E+E+) and
(a+a_) plane. Since we want to integrate (numerically) over these three
variables to find the simulated e e - u+u- events, it turns out that it is
more practical to choose variables in which the places of rapid variation in
the multi-differential cross section are easily located. The cross section
peaks sharply whenever the photon is emitted parallel to the electron or
positron direction (and, to a lesser extent, to the u+ or U direction). So it
is advantageous to use the angular variables of the photon. The polar and
azimuthal photon angles, GY and ¢Y, are taken with respect to a frame where
E+ defines the z-axis, and 3+ A $+ the y-axis.

As third variable, k = [KI is used, which is convenient in order to ex-
hibit the infrared divergence associated with k - 0.

From eq. (65), we obtain

- 3 =
90 a [q+| k 29 4 Fi'
= mu z =l »
. 2 -+ s g
M 3k 2n%s p,| . _,, %0 e i,j=1 ;D
p+0 -~ Y
lq, | (71)

The expression for this cross section takes a very simple form when one
assumes that in the quantities Ni’ the photon momentum can be neglected, and
that the emission of a photon does not alter the momenta of the muons. This
approximation is obviously good when the photons are sufficiently soft (soft

photon approximation). In this case we find
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90 o }q+[ k™
- X.*B , 2
30,309k 2n%s° |p.| 2p. k. O ¥
e s Pil “P4o%p
where
P_ P, q_ g, %
B = . T+ ’ 73)
oD "~ Ty " T * Ty K220

the square is to be taken in the sense of a Lorentz inner product.

In the expansion for B two sets of terms can be distinguished. First we

have:
P_ Py o q_ B n s
By = - R =T & ' 74
R T I T A T I TRk @)
the remainder is
By == BT 5 (75)

The contributions from Bs cancel the i.r. divergences in the vertex correction,
whereas BD just compensates the divergences in the two photon exchange graphs.
As with the virtual corrections we have given the photon a small mass A
such that now we have to distinguish between k = EE\ and kO = v%z + A2
In the following it will be useful to integrate the cross section for
isotropic photon emission, from zero momentum up to a specific maximal photon

momentum kl' For the term denoted with S we find

dU: kq +1 27 30 ng -
aa_ = { dk ( d(cos 6 ) [ dé. Yoy T [‘;'S(m ’k]) +
" ‘0 /=1 ! 0 Y '...~+‘)¢; 3 Q,
2
+ é‘s(‘.i ’kl)] . (7(,)
with
')
) & 1 + a” 2k]

@S(m »k]) L {[2 + ZT log bllog e

2 (77)

) Heas 2a

| : 2
7 log b + = [sz(l ) * i(log b) ]}

”) For the meaning of the subscripts S and D see sect. IV.I.
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It can be seen from (30) and (32), that the sum of doa/du+, dcb/d;’i+ and
daZ/d“ no lonber contains terms which d1VLrge if A = 0.

For dug/d:.+ defined in analogy with do /dg we find

dui dao
o (18
. + +
with
L )k
D(s,t) = f% {47 + s) [A(s, t)lo&(———ﬁ + C(s,t)] = (t = u)} . (79)

For the details of these integrations we refer to appendix B. From eq. (62)
it is explicitly seen that here also the A dependence disappears.
We have thus seen that the infrared divergences disappear by taking into

account inelastic processes as well as elastic ones.

| 5 2 Ky 48 Phase space and acoplanarity.

We will now derive formulae which can be used to translate certain ex-

perimental constraints in limits on the integration variables k, 6 and ¢
Y

(see eq. (76)).

Y

A useful tool is the Dalitz plot for the three particles u+, u and y. In
a Dalitz plot the kinematical configuration of the outgoing particles is deter-
mined by three coordinates which are 99 99 and ¢ (see page 29).
These coordinates have the advantage that a volume element in phase space is

+099-9 +0°4
Some often occurring conditions, like OY = constant, or § = constant,

directly proportional to dq d$ without a (q _O,¢) dependent factor,

& . 54 -+ 3 -
where & is the angle between q_ and q_, represent curves in the Dalitz plot,
i.e. they are relations between the variables 40 and 9_g° (From now on we will
not mention the ¢ dependence and concentrate on what happens for fixed ¢ in the
9,029 plane, which plane is the Dalitz plot.) A special case is the boundary
of the Dalitz plot itself. These curves are obtained by using the four vector
n“, defined as
L. ZEUvDUP

SLEET (80)

or

u ~2¢ UVDOP q

a¥ = sl (81)

where P = (p+ + p_)/2 as was the case with the virtual' corrections. In the
c.m.s., only the spatial components are different from zero: they are propor-

A - - -+ < > . . 2
tional to the vector products q, Aq_orq, A kg ive. proportional to sin § or
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2
sin BY. So we find for n”, on the one hand

S T A e
—APU|q*l |q_| sin é ,

I'JZ 3 2
L UL R
and on the other hand (from eq. (80)),

PP (pq)  (Bq)

2 2
(Pq) B (a,9.)| = —4P; |49,

(Pq_) (q,9)) ut 9

Combining (84) with either (82) or (83), and eliminating (q*q_) with

=
(9,9.) = =u" = 2Py + 2P (q,q * d_g)

we obtain the curves for fixed sin § or sin 0_.
Y

The fixed sin § relation reads

The upper sign corresponds to curve 1 in fig. 6, where cos § < 0, and the

lower sign to curves 2 (cos 6§ < 0) and 3 (cos & > 0). The boundaries of the

Dalitz plot are a special case:
(90)
n+

The upper sign corresponds to curve I, where § = 7 3 = 7, the lower sign
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: plot for the u pair. The curves 1 and 2 are the lines

T

where the muons make an angle m — y. The shaded area

to curves II and III, where § =7, 6 =0 and § =0, 8 =7 respectively. At
the points A and B, |a_| and |a+| vanish.

In a similar fashion, using egs. (83) and (84), fixed ﬂY curves are found.
Gy

o

S8 i e T DL a2
the curveg 1y, 2 and 3,

Fig. 7 Dalita plot for the p pair, showi
£ v & 3

where © =z 6 and 6_ = m - 8.
¥ Y

In fig. 7 an example is drawn: along | and 3, cos 6_ < 0, and along 2

Y
cos SY > 0

: ; + - + |
Experimentally, when measuring the e e =+ y yu reaction, one uses some
criterion to decide whether the observed u pairs belong to this reaction. We

will consider two distinct possibilities.
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In the first place, if the two muons are detected and their energies lie
in the range [p+O =3 p+0], then one counts them as real events *). In the
second place, one may select the muons by the criterion that they are produced
back to back. Then, no energy is measured, but it is established that their
tracks make an angle § < z, where the quantity £ is the given maximum acol-
linearity.

There exists also the possibility of choosing inelastic events only, i.e.
to study reaction (4) explicitly. This is done by accepting only those events
for which the acollinearity angle or the acoplanarity angle exceeds a certain
minimum. Experimentally, the acoplanarity angle, defined as the angle between
the ;+e+ plane and the ue. plane, is a convenient variable for displaying
results.

Returning to the first case, one has to evaluate the influence of reaction
(64) by integrating EJB/SQ+B&YBR over the shaded area of fig. 7 and over the
full @Y range. In the second case, one has to integrate over an area in the
phase space between the curves cos 8 = =] and cos § = cos(m - ¢) = z. Since

there usually exists a threshold energy for the muons, below which they

E
th’
cannot be detected, the available phase space is further restricted by the

S35 " . &=
conditions q > Et For every ¢ , one then has to integrate the |y u y cross
+ Y

0 h*
section over the shaded area in fig. 6.

In chapter 1V we give experimental results obtained at CEA. These data
were analyzed using the second criterion [2].

As can be seen from fig. 6, the integration region can be divided into
five areas. Going from point C to the origin, they are characterized by the

following limits:

-] €§ cos 8 < 1
Y
-1 € cos 8 < £ (k,2)
Y 1
fv(k,z) < cos EV < 1
gl(k’bth) £ cos vY < fl(k,z)

fz(k,z) < cos QY < gz(k’ELh)

2P

(=1=z+2[(1 + 2)(} = += (1 = 2))]%} /(1 - 2)

i 5
“ 4Py

Notice that the energies of the muons can never exceed Py’
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kii= 2P = B - B+(E

0 th WS

N

s |
th
(92)

k., = 2P =R e B+(E

3.
3 0~ “th th?2/ >

and the functions gl(k’Eth> and gq(k'Eth) are given by the right hand side
of the equation
2P SR S ¢ k
0l k- aq,, +Kkq

cos 8 = = o > (93)

by inserting for 9o the expressions

U0, " %o " Ben T ks 95" E P4

respectively.
The functions fl(k,z) and fz(k,z) are also obtained from eq. (93) by
inserting the 9% values corresponding to the intersections of a fixed k-line

with the curves | and 2 of fig. 6. These two %0 values are the roots of the

equation
>

Yy ~ by *+c=0 , (95)

where ? y
2 21202 2
2 £ n =
b= 2P -k, ¢c=y = [y =2 . L e )]% v (96)
0 e Z2

with o “222 .

Y = ”l " ?2 - £ = ZPO(PO - k) - qu : (97)

In appendix D, it is briefly indicated how eq. (95) is derived.
For the numerical integration of aoB/ax+aayak, one finally has to know all
the scalar products occurring in the functions Fij in terms of the variable

k, cos &Y,and ¢Y. In order to obtain the scalar products in terms of these

variables we use

2bP_(P. = k) = kcos® [’PZ(P Dy Ry k2cos®e_ - 12)]%

; . 2bP (P, cos i 4P, (P, ) u (k cos " b
5 >
e b™ - k"coszi'rw

(98)
If we now want to integrate SUB/QQ+Buyak as given by (71) over the region

of phase space defined above, we will get the same divergence as in the soft
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photon approximation. We avoid these problems by means of the following
procedure. The region of phase space is divided in two parts; an isotropic
part 1, given by (91-i) and an anisotropic part AL, given by (91-ii)=(91-v).

We now split the integration in the following way

BJB aws
J ——'————dﬁdk=J ——— dQ_3k +
I+AI 3030 9k Y I 2Q,99 9k

+ Y + Y

w7 B S B
[ a (o o) 2 I 90
1 Rl 3R _9dk AL 23Q 90 ok
=y Y
The first integral was performed analytically (76)-(79). The second integral
is convergent, because the singularity is subtracted out and finally the third
integral is convergent as well.
The final results for do/dQ+ can be written as follows

0

£8 5 8y - do

a2 = (1+8) . (100)

A part of the total correction GT is known analytically, i.e. GA which cor-
responds to the sum of the virtual corrections and the correction due to the
emission of a soft photon with maximal energy kl. The other part 6N has to be
evaluated numerically and represents the effect of hard anisotropic brems-
strahlung and the difference between hard and soft bremsstrahlung over an
isotropic region.

The numerical integration was done over separate regions in phase space,
chosen in such a way that small regions with a rapid variation of the integrand
were attributed as many integration points as large regions with a small
variation. Over every region, the integration was done using the multi-dimen-
sional integration routine RIWIAD, which itself distributes the integration
points as efficiently as possible over the integration domain [16].

Finally we turn to the study of reaction (64) looked upon as a lowest
order process in its own right. One of the quantities which is most likely to
be measured is the distribution of events as a function of the acoplanarity
angle, ¢.

» - . > .
Let us introduce a new coordinate frame with P, along the z-axis and

;+ A E+ along the y-axis. Then E+ has a polar angle 8 and a vanishing azimuthal
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angle. The corresponding quantities for q are 8' and ¢'. When we have an
elastic event, 8' = 7 - 6 and ¢' = 7. Therefore, it is natural to define the
acoplanarity angle by ¢ = 7 - ¢'.

The above-mentioned acoplanarity distribution is then defined by

B
do _ 90 s BN AR ,
ri J 3Q+9Q_3q_0 d(cos 68 )dJ+dq_O : (101)

where the integral has to be carried out over the phase space region deter-

mined by the experimental conditions:
8 . <6,0" <0 ; (102)

%029 2 Eth ® (103)
We assume that the detection of u+ and p goes over the full azimuthal
range, giving a factor 2m. If this is not the case, it is easy to make the
necessary corrections.
Again, as the charge is undetected, we have to add do(y)/dy and
do (27 - ¢)/dy, giving twice expression (101).

The integrand in eq. (101) is given by

-> -

aoB E. a3 mzuz |q+||q_| é Fij
an_a9_dq_ 2 - % L b

- 0 4m 2P0|p+| 2, = a_y * 4, ]f l cos § L1s3=1 DD,

q+
(104)

Only the integration over 9 deserves some explanation. Once 8' and ¢'
are given, cos § is fixed. The WS integration runs, when § < iw, over that
part of line 3 in fig. 6 which is allowed by condition (103). Similarly, when

6 > im, one has to integrate along the allowed portions of lines 1 and 2.

I1I.8. Bhabha scattering and two gamma production.

The virtual and soft photon corrections for Bhabha scattering were cal-
culated by Redhead and Polovin [14]. The hard photon matrix element was cal-
culated by Swanson [15]. The hard photon corrections to Bhabha scattering can
be calculated in the same way as we presented for mu-pair production, making

use of the above-mentioned work. The formulae for the phase space integration
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and acoplanarity can be obtained from those in (III.7) if everywhere the muon
mass y is replaced by the electron mass. Details of this calculation can be
found in [10].

Also the corrections to two gamma production can be calculated in essen-

tially the same way. Details can be found in [9].




CHAPTER 1V

NUMERICAL RESULTS AND DISCUSSION

Summary
We will present results on the three processes (II.1)-(II1.3). In the first
place we will look at the reaction e e - e+e_ because recently experimental
results have become available on this process. Then we will look at e+e— + Uy
where we distinguish two separate cases. First we assume that experimentally
the charge of the outgoing muons is not detected. In this case the sum
- do (8) - do(m-8)
df dQ

S(8) (1)

is measured. The amplitudes M® and Mf of chapter III do not contribute to S.

This is also the case for the inelastic contribution arising from interference
between amplitudes where the electrons radiate and where the muons radiate. The

- d ; 3 7 ; : :
function S defines (to order a”) a correction & _ which is defined by

S

daU

$(8) = 2 a0 (1 + SS)

+
The fact that for the function S, the two photon exchange graphs do not contri-
bute is a consequence of a theorem by Potzulo [17].

If their charge is not measured the events will be selected according to
the criterion that the muons have enough energy to trigger the detectors and
that their traces are sufficiently collinear.

In case the charges are measured the full differential cross section is
measured and all amplitudes contribute. Now also the energies of the muons will
be known accurately so that here we apply the criterion that the energy loss
of the muons does not exceed a fixed energy g, i.e.

q'0>E—g.

Now we also define a function
D(8) = do(B)/dQ+ - do(mw - 5)/d:2+ -

and a corresponding 60 by




n 580G
D(8) = 2 -d-:- . tSU

Finally we will look at e'e » Yy @ reaction which was studied by
Berends and Gastmans [9].

For the three reactions we will give a table of the lowest order cross
section at energies of 1,2,3 and 5 GeV per beam. Then tables will be given
where the corrections are given for specific event selection criteria. Finally
a table will be given for the acoplanarity distribution. Here one obtains in-

formation on the pure inelastic process, i.e. the basic process with one extra

photon emitted.

Iv.2. Bhabha scattering.
As the differential cross section for Bhabha scattering diverges in the

y - - ) 0/ 0
forward direction, we only give the values of do /d!;‘+ from 0 = .

Table 1

The lowest order cross section for Bhabha scattering
(in nb) for different values of the beam energy,

Pso (in GeV), and the scattering angle, 8.

3.0 5.0

9

1585 10 | 5706 10
597.0 214.9
13.85 12.18
6.08 2.19
.30

0
0.
0
0

0.

The order uj contributions are given as a correction éT such that the cross

: ; y : 0, . ! " .
section to this order is given by do /d:;+ (1 + :T). In table 2 the OT are given
. - : 0 e
for the case that the acollinearity does not exceed 10 . Furthermore the minimum

energy necessary to trigger the detection system is taken to be 0.2 GeV. )
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The errors on the corrections are errors in the numerical integration.

Table 2

The radiative corrections (in %) to the lowest order
cross section for Bhabha scattering for different values
of the beam energy, Pig (in GeV), and the scattering

angle, 6. The acollinearity angle ¢ = IOO,

and the threshold energy Eth = 0.2 GeV.

3.0

o :
the corrections

From table 2 we see that in the neighbourhood of 6 = 5
become large and positive. (This effect differs from the one mentioned in

section II.5.) It can be understood as follows. If we look at the Coulomb

A + = + - it a
scattering graph for e e + e e we see that emission of an extra photon in

the region of small 6 reduces the momentum transfer through the photon in the
t-channel, thus increasing the amplitude (which behaves as t_l). This enhances
the inelastic amplitude which is large already if the extra photon is emitted
parallel to one of the charged particles.

We will now give the acoplanarity distribution do/dy. Here we assume that
the outgoing electrons and positrons are detected within the angular range
45° < 0, 135°. Here also the threshold energy is 0.2 GeV (table 3).

Re;ently experimental data have become available on Bhabha scattering.
The experiments were performed at beam energies of 2.0 GeV and 2.5 GeV. The
criteria for selecting events and the procedure of analyzing the data are
described in [2]. The main features are, a maximum collinearity of 150 and a

threshold energy of 0.8 GeV.




Table 3
The acoplanarity distribution, do/dy¢ for Bhabha scattering, for a beam energy

of 2.0 GeV and for different acoplanarity angles y. The threshold energy

E,, = 0.2 GeV, and 8 . = 45°, 0 r 135°.

0

l 10°

. 20° | 0.86 % 0.01 \
40° ‘ 0.22 + 0.01

. 60° 0.10 % 0.0l l

| 90° . 0.05 £ 0.01 .

>1zo° 0.03 % 0.0l
150° 0.03 = 0.0l i
180° 8.46 + 0.08 |

S0r } data points [

ged predictions ‘
40+F - -
30F % TJ’”

number of events (per 8°)

BN o ot

80 e B0 HO050 unsi2D
scattering angle © (degrees)

N 2 anmnttonod pariitoles 2
ron of secattered parvicLes

In fig. 8, the experimental and theoretical cross sections are given for
a beam energy of 2.5 GeV. In order to compare experiment and theory both the
experimental and theoretical cross sections are integrated over the 8 range of
the detection apparatus (450 < 8 < 1350) giving Cexp and o© .*) (For both

th
*)  Note that these c's are not total cross sections.
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. 3 3 DN o :
energies the order a” corrections were =7.7 * 0.8%Z.) We now define the ratio

R = JEXP/Uth. The analysis of the data yielded the following numbers for this
ratio.

E = 2.0 GeV R =0.93 = 0.10

E=2.5 GeV R=1.03 % 0.09

Une can parametrize the breakdown of Q.E.D. if one multiplies the photon
c 2 2 A = .
propagator by a factor (1 £ q~/(q° - A)). The results given correspond to the

following lower limits on A_. (90% conf. level.)

E= 2.0 GeV ﬂ+ > 9.8 GeV, A_> 10.5 GeV
E= 2.5 GeV A+ > 9.7 GeV, A_ > 4.7 GeV

Using the conversion factor given in the footnote on page 16, one can give

~' in cm. ((10 (;A':V)_l x Z.lO~lscm.) The results thus indicate that for dis-
tances greater than = 2.10—15 cm Q.E.D. gives an accurate description of nature.
Besides the differential cross section for Bhabha scattering one has also
measured the acoplanarity distribution (in integrated form). In this way
theoretical predictions for the reaction e e - e+e-y can be compared with

experiment. Experimentally one defines

N (Y. ) = N(y)/N ‘ s
lexp('mxn) (V)/‘tot ()
where N(y) is the total number of events with Py > boia and Ntot is the total
T + = - .
number of e e *+ e e events. The theoretical counterpart ﬁQED(w in) can be
m

calculated if one integrates expression (III-101) over the indicated region. The
results displayed in table 3a show excellent agreement between experiment and
theory.

Table 3a

Noncoplanarity-angle distribution

al-g R —
VLmin HQ%P KQED
(%) (Z)

B 3.5 * 1.3 3.6 + 0.3

10° 2.6 + 1.1 2.1 % 0.3

20° 1.7 + 0.9 1.1 + 0.3




IV.3. Mu pair production.
3 + = . = - . .
For the reaction e e = § § we give in table 4 twice the lowest order
cross section. Because of the symmetry of the cross section around 8 = 90°

we only tabulate it for angles up to 90°.

Table 4

2d00/d£L‘+ for mu pair production, for different values of the

beam energy, Py (in GeV) and the scattering angle 6.

2.0 . 5.0

14 1.29 0.57 .21
.86 v 22 0.54 .20
.10 .03 0.46 .16
.24 0.81 0.36 .13
.62 .66 0.29 .10
.61 .65 0.29 .10

We will first consider the case where the charges of the muons are not
measured. As for Bhabha scattering we allow a maximum acollinearity of 10° and
a threshold energy of 0.2 GeV. We find the following corrections for és. These

. o
are symmetric around 6 = 90°.

Table 5

The radiative corrections (in Z) to mu pair production
(no charge measurement), for different values of the beam energy,
Py (in GeV), and the scattering angle 8; the acollinearity

angle ¢ = 100, and the threshold energy Eth = 0.2 GeV.

3.0 5.0

o

7.1%0.8
0.8%0.4
~2,9£0.2
-4.820.1
-5.7£0.1




The numbers listed in the row 6A are the corrections if one assumes the
validity of the soft photon approximation. In this case the maximum photon
energy is taken to be the energy corresponding to kl in the Dalitz plot of
fig. 6 (chapter III).

The soft photon approximation yields a contribution which is (almost) in-
dependent of the angle 9, whereas the full contribution from hard photon emis-
sion changes this picture considerably. For small 6 hard photon emission gives
important contributions.

This can be understood as follows: if 6 is small, the region of strong
peaking of the matrix element squared lies close to the border of the Dalitz
Plot and hence a large part of it is in the allowed region of phase space.

If the charges of the muons are measured we will assume that also the
energies of the outgoing particles can be determined. We therefore assume that

an event contributes to the cross section if q €. In table 6, € is

2 p >
+0 +0
taken such that the muons have at least 907 of the maximum energy. We tabulate
separately the corrections which are even in cos 6, (65) and the corrections

which are odd in cos 8, (6D).

Table 6

The percentage corrections GS and GD for mu pairs production

for different values of the beam energy, Py (in GeV), and the

scattering angle 6; the threshold energy Eth = 0.9 Pyo’

R0 : 1.0 - : 2.0 - = 3.0 : : 5.0 :

8 S D S D S D S D
52 | -10.0 | 14.0 | -11.6 | 15.8 | ~12.6 | 16.4 | -13.7 | 16.6
20° [-9.8| 8.0 -11.4| 8.1 |-12.4| 8.1 -13.6 | 8.2
40° [ -9.2| 4.3 | -10.8| 4.3 | -11.7 | 4.3]| -12.9 | 4.3
60° | -8.2| 2.2|-9.7]| 2.2 |-10.7| 22| -11.7 | 2.2
85° | -6.6| 0.3|-7.8| 0.3|-85]| 0.3|-9.7] 0.3

(all numbers are + 0.1)

In this case the shape of the allowed photon phase space is such that now around
8 = 90° the hard photons contribute considerably to the correction.

One may wonder whether approximate calculations reproduce these results.
As can be seen from table 5 the soft photon approximation differs considerably

from the exact calculation. Even if the soft photon expression (III-72) is
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integrated over the full phase space large differences occur. It has also been
suggested that it would suffice to consider radiation from the electrons only.
In the case of no charge detection this changes 6A and GN up to 50%. In this
specific situation these changes almost cancel, but one could imagine situations
in which only the isotropic phase space would contribute, and then the changes
in éT would be considerable.

Finally results for the acoplanarity are presented in table 7. We tabulate
2do/dy for a beam energy of 2.0 GeV other conditions are the same as for Bhabha

scattering.

Table 7

The acoplanarity distribution (in nb) for mu pair production

for a beam energy of 2 GeV, a threshold energy of

0.2GeV, ®_. = 45°, etV 135°.
do |
¥ 23
5° 1.28
10° 0.46
20° 0.14
40° 0.04
60° 0.02 |
90° 0.01
120° 0.01
150° 0.02
180° 0.06
IV.4. Two gamma production.
For the reaction e+e_ + Yy we present a table of the lowest order cross
section. Because this cross section is symmetric around 8 = 90° (like in the

muon case) only values of 6 up to 900 are tabulated.

Then using the same criteria as for Bhabha scattering we give the correc-
tions in table 9.

Finally the acoplanarity distribution is given in table 10. The calcula-

tions for this reaction have been taken from [9].
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Table 8
The lowest order cross section (in nb) for two gamma production
for different values of the beam energy, Pyo (in GeV).

and the scattering angle, 6.

- o -—— s e
N
| e

N 1.0 2.0 3.0 5.0
[ 0 ! — = z P

|
5° 1360 339.9 151.1 54 .39
20° 83.45 | 20.86 9.27 3.34
|

40° 19.91 4.98 | 2.21 0.80
| 60° | 8.64 2.16 0.96 0.35
| 90° J 5.08 gb o 1.30 0.58 0.21
i = ! —

Table 9

The radiative corrections (in 7) for two gamma production

for different values of the beam energy, Pyo (in GeV) and the
scattering angle 6. The acollinearity angle z = 100, and the
threshold energy Ech = 0.2 GeV.
210
8 i 1.0 2.0 3.0 5.0
¢ "1 1135 0.8 15.2 + 1.0 17.7 % 1.2 19.0 £ 1.4
20° =0.1%0.3 [ -0.220.4 | -0.320.4 | -0.3%0.4
40° - 42202 | ~4.6%0.2 | -5020.2 | -5.2%0.2
60° ~ 5.9 + 0.1 - 6.4 £ 0.1 - 6.8 £ 0.1 - 7.3 £ 0.1
| 90° = 6.7420.1 | =74 20,1 | -7.820.1 |-8.3%0.1
: IV.5. Conclusions.

‘ For future Q.E.D. experiments with ee colliding beams at high energies
and accuracies at the level of a few percent, the full radiative corrections

‘ to order u3 have to be taken into account. In particular when two body events
are selected by the criterion that they are back to back, quite hard photons
can be emitted. The exact matrix elements for hard photon emission have to

be used.
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Table 10

The acoplanarity distribution (in nb) for two gamma production

for a beam energy of 2 GeV, a threshold energy of

0.2 GeV, 6 . =45°, and 8 __ = 135°,
min max
rgi; do/dy 1
|
B *’0* "‘_ et
L5 ‘ 1.94
10° 0.77
20° ; 0.32
40° 0.15 |
|
60° ‘ O 31
90° 0.08
l ‘
| 120° 0.07 |
150° | 0.07
180° 0.06 |

In this thesis a flexible method is given to calculate radiative corrections
for colliding beam experiments. Within this method different experimental
situations can be easily represented. This method has actually been applied in
a specific experiment (Bhabha scattering) [2]. The experimental results indicate

that at 2.0 GeV and 2.5 GeV there is a good agreement with theory.
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APPENDIX A

A.l. In this appendix conventions, Feynman rules and cross section
formulae, used in this thesis are summarized.

A 2 o 0.¢21 2 3 O
Contravariant four-vectors are denoted by k" =(k, k', k“, k™) = (k , k).

The diagonal elements of the metric tensor are given by 8o = "8 = "8

... 2
-g33 = 1, all other elements are zero. The notation for inner products of
. ’ e . o . .
four-vectors and three-vectors is (pq) and p*q respectively. For derivatives
we use 9 = =y .
H oX
Ae2s The spin -} fermions e and p are described by means of the Dirac

equation.

(-iy"3  + m)y(x) = 0. (A.1)
H
The 4 x 4 matrices y satisfie the anti-commutation relations.

1 v < | % .
Yy} = 28" m, yoyMyY =y ) (A.2)

where Il is the unit matrix. For the contraction of four-vectors with y-matrices
3 I " y 5 . 0123
we write p y' = §, furthermore we define y> = iy vy y vy .
M
A specific representation can be given with the help of the 2 x 2 Pauli

matrices

0 1 Q=3 1 0 /
-l sy O, = ] N \73 ( ‘ (A.3)
10 & i 0 o -1
We have (each entry is a 2 x 2 matrix)
0 n 0 k 0 ;
y = A k| » k= 1,2,3. (A.4)
0 -l -Ok 0

In actual calculations we need the following trace formulae.

) + means herm. conjugate.
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Try = 4,
5

Try =0,

Tri¥ = 4(ab),

Trabéd = 4[(ab) (ed) + (ad)(bc) - (ac)(bd)], (A.5)
Rl R R e

Try> 4¥ =0,

Tr,'5é5¢d = biagﬁyéa“bﬁcydé,

here €4BvE is the totally anti-symmetric tensor (e 1)« Furthermore the
»Y

0123 ~
trace of an odd number of y's disappears. In the reduction of products one

often uses,

vuAY“ = -24,
y. &8y" = 4(ab), (A.6)
v Abey" = -2684.

The plane wave solutions of the Dirac equation are characterised by the spinors

u(g,s) and v(;,s), s = 1,2,

( ¢
e s
> - m+wp)i |
u(p,s) = (T) ‘ P'T-: ’
f = %
\m + w(p) )
(A.7)
D+ 0 ¢
> s
> m + w(p)
+ o m+ w(p) i
V(l’;b) 1 ( 2m ) - | ’
{ - el
> Y 2
w(p) =vVp~ + m"
In these expressions, ;S are eigenvectors of 03 with eigenvalues +i(s = 1)

and =1(s = 2). The spinors u(E,I) and V(B,2) correspond to electrons and posi-
trons which have (in their rest frame) a spin component +j in the z-direction.
The other two have spin component -4 along the z-direction.

The Pauli adjoint of a spinor is given by ;ﬁyu. In summing over polarisa-
tions we need

Bl i
7 u(p,s)u(p,s) = (§ + m)/2m ,
s=1]




2
ilv(ﬁ,s);(;,s) = =(=p +m)/2m . (A.8)

s

The fermion field operator is given by

[ 1 1 ) > > -1 (px
p(x) = _l_jF | d’p( ) § b(B,s)u@,s)e tPX)
CZn) s w(p) s=1
+ d+(ﬁ,s)v(p,s)cl(px) . (A.9)

Py = w(p)

o + + .. ’ ;
T'he operators b, d, b , d are annihilation and creation operators for elec-

trons and positrons fulfilling

' N A Wity e ool 2a g £33 oy
{b(p,s), b (p',8")} =6__,67( - p") ,
(A.10)
s PP " e >
td(p,8), d (p',8")}, =6 _.87(p - p")
All other anti-commutators vanish.
The propagator is given by
[ 4 ~-i(p3
Sp(x) = —— | a'p sy P
(2m)
(A.11)
: _ i(p + m)
o A gt o
P —m + ie
A.3. The photon field operator is given by
" | YT . L > o =i(kx) + i (kx)
AT (X) = ——ps L e (k,2)[a(k,)\)e + a (k,\)e |
A3 I g
(2m) (Zko)‘ A=0
(A.12)
where ky = |%| . X
The photon annihilation and creation operators a and a fulfil
- + 3, ' )\)\" - o>,
[a(k,2), a (k',1")] = -g™" 5(k - k") , (A.13)
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all other commutators (also those with fermion operators) vanish.
The propagator is given by
|

) . [ a*k D ()e
! (2m) i

-1 (kx)

The polarisation vectors are given by

e*(k,0) = (1,0,0,0) ,
e¥(k,1) = (0,e(k,1)) ,
e’ (k,2) = (0,e(k,2)) ,
e¥(k,3) = (0,k/|k|) ,

where Z(K,I), E(K,Z) and k/]K| form an orthonormal set in three-space. For

sums over transverse polarisations, we may use

e &, e’ &, ) = -g" (A. 16)
A=]
provided the photons are coupled to conserved currents, which is the case in

QED.

A.4. The scattering of particles is described by the invariant amplitude
M, which is a scalar under Lorentz transformations. In quantum electrodynamics,
the amplitude M is found if one sums the contributions of all graphs for a
specific process. We get

M= eM(l) + eZM(Z) +

k : ; 5 g -
where M( ) contains the contributions of graphs with k vertices.

(k)

In order to calculate ekM we have the following rules.

1° For incoming fermions and outgoing anti-fermions we have the factors

u(p,s)

v(p,s)




2° For outgoing fermions and incoming anti-fermions we have the factors

—
u(p,s) D — e
I}?
-> P —
v(p,s) p*

3° For incoming or outgoing photons we have a factor

EH(K,A)

Internal fermion lines get

o~

l( + m) e @
2 -
P: =:m ¥ e joug

5° 1Internal photon lines get

“lgu\) Brrrraprrrrasd
k2 + ie i

6° Vertices get a factor

: M
i H
i Y

7° Internal momenta are fixed by four-momentum conservation at the
vertices. Free momenta are integrated over. Each momentum integration gets a
factor (2“)—4.

8° Closed fermion loops get - Trace. The trace is to be taken over

spinor indices.

A.S. With the invariant amplitude we can calculate cross sections by means

of the formula

m m,
do = ! ! 2 |M|2(2n)464(pI + Py ~

v, = vl wlp)) wip,)

9, - ...qn)dﬁ(q‘) ....dQ(qn) . (A.18)
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Here we assumed that the two incoming particles are fermions. The volume

elements have the following form

. . 1 . ’
1f the 1 particle is a boson

e . th . . = A
if the 1 particle 1s a fermion.

)
= o . | & < . » o 3 .
If polarisations are not measured, |M|™ has to be averaged over initial polari-

sations and summed over final polarisations.
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APPENDIX B

B.1. In this appendix the evaluation of the Feynman integrals and the
bremsstrahlung integrals for the mu-pair case will be given. These integrals
can all be expressed in terms of logarithms and dilogarithms. The dilogarithm

is defined as follows [18].
z
Li?(z) = -( log(l ) dy, (z complex) . (B.1)
2 Jo %

Due to the multivaluedness of the integrand, this is a multivalued function.
We take a branch cut along the real axis from +1 to + w,

The following integral (for which we write Uij in the following)

1 -y,
ogly >Jl

r=|

J(n n y = y 2

b(-)o;tlryix)j) Jr e dy , (B.2)
‘0 i

(all arguments of U are real) can be expressed in terms of dilogarithms as

follows:
Nai Y Hye™ ¥i
05 = Re(Li,( s T S B 53 logly, - y.|
< — = J
YJ Y3 Yj Yi
T Y4
+ log| e U s (B.3)
T T Y
U.. = {(log|n, - i)z—g(lo] = v:»*
A PRt L TR &Ny = ¥41
B.2. The integral I.
Using the Feynman parametrisation and performing the k-integration, we
find
l 1
I = _iﬂz { 2ydy [ dx 75 : > : (B.4)
‘0 Jo 2(y"p, + (1 = y)2%)
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In this expression we introduced

px = (1 - x)p+ = Xp_

If we neglect terms of order A, the y integration yields
2

.2
d

== log(5) -
2 A~
px

We now introduce a new variable ¢ by

s = im°sin’d , (O<s<im)= (0<¢<D . (8.7)

" - 3 2 -
For physical values of s, i.e. s > 4m” we have to make an analytic con-

tinuation. In this physical region we find
¢ = 4{m - i log b}
where we introduced
2, 4
a= (1 - 4m"/s)
We now change integration variables in (B.6).

2% - | =85
tg ¢

With this substitution one easily finds

a4 $
- T
I=—=T— [¢ log % + J EtgEdE]
m-sin 2¢ 0

The integral Iu'

In the same way we arrived at (B.4) we find

If we now use the same substitutions as for I we immediately arrive at




_)"7 4 .
AT G WIS e S (B.13)
M a | A . ’
sin 2¢
B.4. The integral I .

HV

If we use the Feynman parametrisation and perform a shift in the k inte-

gration we find

2 A ; B | 2
(1 rl TRO: - o e 56 il -8 - T o -
1 = } 2ydy J 5% { a Uy x') »r{) }x XU" XV
» \J J ) ’ -~ = . & y -
= Vg (k Y Py (B.14)

Here we used the fact that the symmetry of the integrand allowed the replacement

kxk- -+ {g‘vk‘. We now split up the integral in two terms.
Y U

2
fow ey 242
Uy pv UV
A 1 1
lﬁy) o igp“ J 2ydy [ dx J dak ) ]v 7 9 3
MV v . Jo i o SR
0 (k y p,)
| | | 22 2
2 ( ( L, 8, Y P IR B
1E;) 13 2ydy | dx ( 4"k — X 553 = . (B.15)
0 o (e S O
X
. . £1) 5 . . . Az M nw (1) :
The integral Iuv 1s ultraviolet divergent. We ''calculate I“u by sub-
tracting and adding an infinite constant.
I, = dé : B.16
o TR e e (B:18)

(¢ 22l e e

2
If we use the substitutions (B.7) and (B.l10) the integrals Ifl‘”) can be

U

evaluated and we find

(1) P :
Ly =g, [T, + 2in7(1 - ¢cotg ¢)] ,
‘ - (B.17
(2) i rin> 194 j%e 1. . S
L e o T A A = ——— (1 = pcotg ¢)P. P ,
Vv 8 SRV v S ” H WV 2 il H WV
m sinZd 2m sin ¢

B2 T P
where I =1, + in” - ir log(m“/A").

in

B.5. Vacuum polarization.

We will now look at the amplitude ME defined in (III-34). From this
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expression we take the following integral.

Hv i -
(P2,m?)

Il

Zia J a*k Try (@ + K+ m)y (P + §+ m)]
4 @,) (m_)

where (m ) were defined in (III-36). The integral (B.18) is divergent. Due to
these di;ergences it is not clear that I"° fulfils Puﬂuv = 0 as it should [3].
If we use the Pauli-Villars method of regularisation, gauge invariance can be
secured in all steps of the calculation [20].

We define

nHv

2012 N MV Z 2
‘IReg(P sm ) = P> Cin (P ,mi) 5

1=]

where the constants ci are chosen such that

In the final result we let m, > for i = 2, =--- N. By means of the

Feynman parameter trick and a shift in the k-integration we find

HV -io

vV HV Vv
h Z v -

d k

2 2 2 2
Jl J 4 ZPUPV 2R P & (P Px-ﬁmi ik™)
¢ dx
1

JReg 3

4 0 (k2 + P2 - Pi - mf + i£)2

(B.21)

where Px = (1 - 2x)P.

nHV
i
Reg

: 2
AL S J d*k — SHE ) 5
i (k™ * {P7(x = x") = m; - ge)

A\ 3 2
ap'eV- "% 1D « 4g"n(?

’

2 2 2 2
n(z) . 4P (x = %) me + ik

2
A = B0 = 5ty ~ mi + ie)®

(2)

Due to the conditions (B.20), Il is identically zero. This can be seen by

using the following identities,




‘ 2
r [l,mf,k‘]

I 2 N ) 2 2
% c. dék —_— = —in” E c:[1,m5,2m7] log mt . (B.24)
s e 2 22 il | 1 1 1
i=] / (k™ = m.) i=1]
i
As a consequence we have Pwni:g = 0. By the same argument as used for the

2 A . RV ; UV
Vertex correction, we obtain the renormalized I by subtracting II at the
] 2 ; o 5 . ; .
point P~ = 0. In this difference the limit mi + @ for i = 2.-- N can be taken

and we find, using (B.24),

uv 1\ 1 2
v = 4(P¥pY- g"Ve4)1 ,
with 1 2
10 w4 2 4P 2
= 13 -Blnz J dx(x - x")log[l - 4_} (x - x7)]. (B.25)
4 0 m-

2
1f we now apply the substitutions (B.7) and (B.10), (remembering that 4P° = s)

we can easily evaluate II; we find
wod e .l 1= & B IR ats o
S {5 = ¢l * 3oty ¢) (1 pcotg o)} (B.26)

With the expression (B.8) for $ we can write

2 2
a 8 a” | a’, ,in
I=+={z=-==+a(z->)CEE+ : .2
I=+r3 G- 3 *aG -G * log b)) (B.27)
If we now look at (III-34) and the definition of 1"V in (B.18) we see that in
order to obtain M we have to multiply M with -II. 2 The contribution to the

cross section can thus be obtained by multiplying dso/d;l+ by -2Rell.

B.6. The integral G.
Using the Feynman parametrisation and performing the k-integration, we
find
2 : : 2 2 2
G = =inm f dy { dx y/(y"p, + (1 = y)r%), (B.28)
b3
0 0
where now p‘\c = Xp. ¥ a - x)q+. After the y-integration, we obtain in the limit
A=>0 2
im I dx Py -in s
G=-2—| X iogd) = [A(s,t)log = + B(s,t)] (B.29)
2 2 A 2 o
0p A
X
¥* )

Here we have to use the fact that Pp;(p+)yuu(p_) = Pva(q_)YVV(q+) = 0,
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where

with the funct

(Here A(x,y,2)

Thus
1
_qZ
B.7. The
F =
where
YE -
Qx E
c =

The y integrat

With the help of

1\(S,L)

B(s,t)

1 1 p;
A(s,t) = g% > B(s,t) = j 9% log <1§)
s 0p,

the functions Uij we can evaluate B(s,t). We find

- u® - w - [*(t,mz,vz)]ix

I ; ,
£t = af (et D))

[f«(t,mz,u')')]-i log

A(s,t) 10g(i§) + [*(L,ml,uz)]‘

T
j

ions Uij defined in (B.2) and

, . TN 2.3 <3
{t + 1 =m" + [A(t,u",m)]?*}/2¢,

- SPETE
{t + pl -m - [l(t,pz,mh)]if/Zt,

- 2xy = 2yz =E2xz)

s
2
A

) + B(s,t)] .

- 1[A(s,t) log(

integral F.

Standard methods allow us to write

; 1 ¢l 1 2 2 y
R z Y 2C
xnz ( dx I dy [ dz L E(E 2+ ; ) >
-0 0 0 (X" =+ C)
5 : ¥ >
P - 2yzi— LY 4y2 = Ayzz + 352 + y'ZZQi ;

(l 'X)Q"’XA 3
92
Pe(2yz~~ 1)

ion is readily done, yielding

(B.30)

(B.32)

(B.33)

(B.34)




1 ]

Again, Py has been defined following eq. (B.28). (Note that this P, differs

from the p_ used in the calculation of the vertex integrals.)
X

Let us call the first term in eq. (B.35) Al and the other one A,. For
the z-integration gives
) 1 2 ')
S p T
L7 dx X N .
:\.] =*—2— ——Z lOg'—=—T— B(S,L) (B.
‘0p s
X
with the help of (B.29) it also turns out that
=3
A\,) 3P e A(s,t) ’ (B.
- &
so that
—L; Im F =} B(s,t) . (B.
ol
B.8. The integrals HP’ HA and HQ.
The integral H is readily written in the form
: )
) rl ] p SN p;
H = -in® J dx [ dy —5—yt b, (.
g 0 ‘o yp + (1-yn"
X
where
P, = XP, + (1= x)q+, p; =xA+ (1l -x)Q-P . (B.
Separating the numerator in the three vectors and doing the y-integration,
obtain I l .
2 2 ( > ) X 3
H =P [6+in® [ 95 -ir%s XX _in’Q sh iy (B.
H M 0 2 ] 0 2 U 0 )Z
Py Py Px

Repeated use of the expression for A(s,t) gives

! .
=3 p T:E Im G + jA(s,t) ,

-
8
n

-iAx(s,t) s (B.

- 1% A e i
0 0 z'p, ~ s(z 1) 22 px[z e (2 1)s]
- (B. 3
i 1 R z°p,
ks i‘?z : dx ( dz z { = 25(2 2) s log X}
‘o o 2[2:";)\1 - (2 = 1)8]° s(z - 1)

36)

37)

38)

39)

40)

we

41)

42)




—l? In H, = ~4{AGs,t) - A (s,0)] ,
2n
where

. Fakd
E%; - [log(%)“ w X0+ 5o~ mOACL D170, (B.43)
0 p

X

Interchanging m and p in Ax gives A - Ax’ exhibiting the symmetry in H, and H

A Q’

B.9. The integrals F and G o
o 4,Q 4,Q
It is clear from the definition of these integrals that F. and G. can be

Q Q

obtained from FA and GA by replacing m » p. It thus suffices to calculate FA

and GA' One easily proves that
~in2 (! . 2 22 2.3 2, 2
B\ —= [ dx [ dy 2y/[ly° (1 - 2x) “P° - yP° % (1 -y )m" - ie]
2 P (B.44)
The x-integration yields
s dopd v = 2
r, - in [ dy 1 - 1og Y1 - a((l Az)/y)z !
2P J0 y/l = a((l = y)/y)° 1= a((l - y)/y)° + 1
(B.45)

2 : 2 : X
where a = (m~ - ie)/P”. It is profitable now to assume a < 0, so that after-

wards an analytic continuation has to be made. A change of variables leads to

1

—13 In F, = 2 5 J 5 <L ;°g 2 3 (B.46)

27 81 = 85 20 " 2lcra gR) (1= 5]+ 4

8 = (1 -m2/pHl,
which can readily be evaluated in terms of dilogarithms to yield

— mF, = (L, (8 - D/(B + 1) - Li,((8 + /(B - 1))]/2s8

2% (B.47)
From the definition of GA follows

G, = F, /6% + 2{J d*k/ () (=) - J d*k/ () () 1/s8% (B.48)

which eventually leads to
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The bremsstrahlung integral.

Using the Feynman trick we find

ooy

&k
J k
Kk, ©

with ko =

gration and omitting terms of order A gives

@0 (K

frase

djk s ’

2
(pxk)

(B.50)

2 2 . . > . P g
Yk~ + A~ and where p, was defined in (B.40). Performing the k-inte-

I s
R = 27 dx[a(x)log( A])h + c(x)] (B.51)
2 ‘0 -
with
a(x) = (qu = ) >
P P.o = IP.|
X ! b, prés
c(x) = a(x) 7:0 log =9 = (B.52)
e, | Pro * 1P|
Noting that Pyo = E and that
K : ? 1 2 (B.53)
- S Y g - ) % ¢ _
(pxpx) t(x X) B( x) mx 5

1
we find for the integral

(B.31). o

The integral of c(x) is somewhat more involved.

integration variable y, defined by

92

2 2
[tx™ + (£ * u

) ) 2 ;‘
-m)x + E° - y"]%/E =

the integral of c(x) can be evaluated as

rl
C(s,t) =
‘0

We have introduced the symbols

£ =

1

= (*1,=1,-1,+1),

, 2.2 ok
dx c(x) = [A(t,u",m)]?

dx a(x), the function A(s,t) which was given in

Going over to the new

I
¥ = x{=t)*/E ,

(B
4
Z €:6.U(n sn,s¥:s¥:) (B
X x ) ’ ’ t /
i,5= 33 ( | B Al
(=1,-1,+1,+1) ,

«54)




) 2.5 }
(1 = m“/E®)* + (~v)?*/E ,

Pt

|
¥y -1 = {t+u° -m" = [A(t,u",m7)]2}/2E(-)¢ ,
(B.56)
2 2 205259 % !
¥V, B==] = 8% U =48 ® ['(L, ,m )]*}/2E(-t)* ’
‘) - \l * 2 >
Yy =Ygt 2
o VA
Putting all this together we have
2k,
R = 2n[A(s,t)log(——)" + C(s,t)] . (B.57)

Using these expressions we can calculate all the integrals occurring in

(I1I-76) and (I1I11-79).




AP PENDETX €

this appendix,

the explicit expressions for

ij(P+'P—’q+'q"k) = z N.N. (C.1)

spins

are given.
In fact, several relations among the functions Fij hold, such that it

suffices to know only three of them to know them all, e.g., F F and F

117 712 13°
From the reality of Fij’ it follows that

Since in the traces of eq. (C.1) odd powers of m (or p) are always combined with
an odd number of Yy matrices, and, therefore, vanish, we can replace m by -m
(or ¥ by -u) without changing anything. The following relations are then
obtained:

Fl'(l’+’p_’q*"1_:k) | Fl](p_:P_f’q‘_aQ_»k) »

)

I:l‘/‘(l),"-p_'(i*:q_yk) » _F]B(P*sp_s‘]_!q_’,rk) )
(C.3)
3PP sq,,05k) = <F 5(p_,p,,9,,9..kK) ,

Foy(PysP_»q,,9_,k) = Fla(P_sP, 59 59,,k)

+?

Finally, from the similarity between the muon and the electron part, it follows

that

1“33(1’*,13_:‘1“(1_,1() - F] 1 (q+»Q_,P+’P_,‘k) ’
FQA(P+,P_.Q+,q_,k) = F22(q+,q_,p*,p =k) ., (C.4)

B (PysP_9,49.5k) = F ,(q,,9_5P,»P_»7k)




The explicit expressions for F
Z 2

1 F12 and F|3 are

muF, = - [4m 2(p,a,)(p_q_) + 2(p,q_)(p_q,)

- s'(p,p) = s(q,9) *+ss'l
[4m” + 4(kp_)1[2(p,q,) (ka_) + 2(p,q_) (ka,)
2(q,q_) (kp,) + s'"(kp)]

4m®(kp_) [2(q,q.) - 28" ,

4(p,p_)[2(p,a,)(p_q) *+ 2(p,a_)(p_q,)
s'"(p,p_) - 8(q,q) * s s']

2(p,p_) [2(P"q,) (kq_) + 2(P"q_)(kq,)
2(q,q_) (kP")]

2(kP') [2(p,q,) (p_q.) *+ 2(p,a)(P_q,)
s(q,q_) + s 8’ - 2m?u?)

8m’(kq,) (ka_) + 8(kp,) (p_q, (p_q_)

8(kp_) (p,q,)(p,q.) »

[4(p_q_) = 2(kq_) + 2(kp_)]

[2(p,q,) (p_a_) + 2(p,q_)(p_q,) * n’s' + u’s]
2(p_a_) [2(p,q,) (ka_) + 2(p,q_) (ka,) + 2u°(kp,)
2(p,a,) (kp_) - 2(p_a,) (kp,) - 2n°(kq,)]

2(kp_) [24%(p,a,) + s'(p,q)]

2(kq_) [20% (p,q,) + s(p_q,)]

8(p,a,) (kp_) (ka_) + 4m’(kq,) (ka_)

2
4y (kp+)(kp_) -

p! = =
E P, *+ P 2P .
: - B2y ¢
With these expressions, one can now calculate Z|M ] of eq.(III-70). We
o zs . 3 P
have verified that, in the charge symmetric u Y case, they lead to an expres—
sion which coincides with that recently obtained by D'Ettore Piazzoli [19].
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APPENDEX P

In order to derive eq. (III-95), one has to solve for q+0 from eq. (III-86) when

cos 6§ = z and

q—() - - q+0 -k . (D.1)

By introducing the variable x =

9409-g> One finds the equation

2

5 . - 3 n > a
Rall 5= zz) - 2x(¢ + z”uz) + & + z"pz(b2 -u) =0 (D.2)

with the solutions

2 <R AP 2
2 & +zu(b7-u)]£_ (0.3)

l =25
The quantities y, &, and b have been defined in eqs. (III-96) and (III-97)

From the definition of x and eq. (D.1), one arrives at

: 2 )22 2
% 7t S i R i e ’
Qo ~ bty Iy e RS (D.4)

By examining the limit u + 0, one finds that the lower sign in eq. (D.4)

has to be taken.
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SAMENVATTING

; 3
In dit proefschrift worden de werkzame doorsneden gegeven tot orde o

van de processen

Kennis van deze werkzame doorsneden is noodzakelijk als men de theorie
van electromagnetische interacties (quantum electrodynamica) wil toetsen met
behulp van experimenten waarbij men electron- en positronbundels laat botsen.

De theoretische werkzame doorsneden bestaan uit twee bijdragen met een
verschillend karakter. In de eerste plaats worden tot op orde a3 bijdragen
gegeven voor bovengenoemde reacties. Deze bijdragen zijn divergent. De diver-
gentie wordt veroorzaakt doordat de massa van het foton nul is en wordt infra-
rood divergentie genoemd.

Omdat in de genoemde reacties geladen deeltjes versneld worden, kunnen de
reacties nooit zuiver ,elastisch" zijn en moeten zij vergezeld gaan van de
uitzending van extra fotonen (Bremsstrahlung). Deze fotonen kunnen een wille-
keurig kleine energie hebben en het is daarom experimenteel niet mogelijk om
onderscheid te maken tussen b.v. de reactie e'e - u+u- en de reactie e'e -

U U_Y .

Om nu op zinvolle wijze experiment en theorie te vergelijken, moet bij de
werkzame doorsnede van het proces zonder extra foton emissie de werkzame door-
snede gevoegd worden van de reactie met foton emissie. Ook deze bijdrage is
infrarood divergent en wel zodanig dat in de som deze divergenties juist tegen
elkaar wegvallen. Een probleem is nu om uitgaande van een specifieke experimen-
tele situatie te bepalen welke fotonen niet worden gedetecteerd.

In hoofdstuk II worden enige opmerkingen gemaakt over electromagnetische
interacties en worden in laagste orde de werkzame doorsneden voor de drie reac-

» + - - ;
ties gegeven. In hoofdstuk III worden voor het proces e e = U+p de berekeningen

gegeven van de botsingsdoorsnede tot op orde a3 terwijl hier bovendien een

flexibel formalisme wordt ontwikkeld waarmee de invloed van experimentele con-

dities op de waarneembaarheid van Bremsstrahlung fotonen kan worden geanalyseerd.
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In hoofdstuk IV worden resultaten van numerieke berekeningen gegeven. Ook worden

: + - + - <% % ;
hier voor het proces e e -+ e e (Bhabha verstrooiing) de theoretische werkzame

doorsneden vergeleken met recente experimentele gegevens. Hier blijkt dat er

een zeer goede overeenstemming is tussen experiment en theorie.




De tekeningen in dit proefschrift werden vervaardigd door de heer

W.F. Tegelaar, het typewerk werd op snelle en accurate wijze verzorgd door

mevr. E. de Haas-Walraven.

De ,Nederlandse Organisatie voor Zuiver Wetenschappelijk Onderzoek'
(ZW0), stelde de auteur instaat om in 1971 de zomerschool te Les Houches

te bezoeken.













