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S T E L L I N G E N

I. Het door Borchers ontwikkelde algebraïsche formalisme, dat door hem
wordt toegepast in de relativistische quantum velden theorie, kan in
gegeneraliseerde vorm gebruikt worden om willekeurige klassieke en
quantum mechanische systemen te karakteriseren.

H. Borchers, Nuov. Cim. 24 (1962), 214.

II. Het is mogelijk om in de quantum veldentheorie een definitie te
geven van normaalproduct die geen gebruik maakt van een splitsing in
creatie- en annihilatie operatoren. Het is waarschijnlijk dat deze defini­
tie gebruikt dient te worden in de bewegingsvergelijkingen voor gekop­
pelde velden.

R. Stora, Les Houches 1971.

III. In een Wightman veldentheorie met "mass gap" kunnen de asymptotische
vrije velden gegeven worden zonder de limietprocedure van D. Ruelle te
gebruiken.

D. Ruelle, Helv. Phys. Acta 35 (1962),147.

IV. Ten onrechte wekt H. Weyl het vermoeden dat de Hilbertruimte van
kwadratisch integreerbare functies op de eenheidscirkel een niet
separabele ruimte is.

H. Weyl, The Theory of Groups and Quantum Mechanics, p.32 Dover
Publications Inc.

V. Meting van de differentiële werkzame doorsnede van de reactie
+ “ + " # « •  •e e -*• ir t t kan belangrijke informatie geven over boson resonanties met
C = +1, mits de lading van de uitgaande deeltjes gedetecteerd wordt.

VI. Bij de berekening van fysische grootheden in het eendimensionale
X-Y model geven de a-cyclische en c-cyclische randvoorwaarden, zelfs in
de thermodynamische limiet, niet altijd hetzelfde resultaat.



VII. Om de resultaten van e e "colliding beam" experimenten goed te
interpreteren is een nauwkeurige analyse van de experimentele situatie,
i.h.b. van de meetnauwkeurigheid, noodzakelijk.

Hoofdstuk III van dit proefschrift.

VIII. De techniek die D. Yennie et al. gebruiken om te bewijzen dat
werkzame doorsneden in de quantum electrodynamica niet negatief worden
bij grote meetnauwkeurigheid, is niet bruikbaar voor numerieke berekeningen.

D.R. Yennie, S.C. Frautschi and H. Suura, Ann. Phys. (N.Y.) 13
(1961), 379.

IX* Dc suggestie van Y. Tokunaga et al. dat de door hen waargenomen
relaxatieverschijnselen in N i T ^ ^ O ^ ^ ’ö^O toegeschreven moeten worden
aan het directe proces is onjuist.

Y. Tokunaga et al., Journ. Phys. Soc. Japan 35 (1973), 1353.

X. Het teken van de ladings asymmetrie in de reactie e+e -*■ p+p kan
eenvoudig kwalitatief verklaard worden.

K.J.F. Gaemers 27 juni 1974
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C H A P T E R  I

I N T R O D U C T I O N

I. With the advent of e e colliding beam facilities, more refined tests of
quantum electrodynamics have become possible [1]. As a consequence it has
become necessary to calculate more accurate theoretical cross sections for
the reactions:

+  -
e e -*■ YY »
+  -  +  -e e -> e e ,
+  -  + -e e p y .

(1)
(2)
(3)

In this thesis theoretical cross sections for these reactions are given
3 • •to order a , a being the fine structure constant. These cross sections contain

parts where an extra photon is emitted (bremsstrahlung). The latter contribu­
tions are very much dependent on the experimental set-up and the procedure of
analyzing the data. Therefore great care has been given in handling these terms
without approximation.

For realistic experimental situations, numerical calculations have been
made.

The outline of this thesis is as follows. In chapter II a general discus­
sion on the role of quantum electrodynamics in colliding beam experiments is
given. Also the radiative corrections are discussed. In chapter III we describe
the analytic calculations of the virtual radiative corrections and the general
formalism to handle hard photons. In chapter IV numerical results are presen­
ted. Also recent experimental results will be given and compared with the
theoretical calculations [2]. Finally in several appendices Feynman rules and

+  ”  +  “  .detailed calculations for the process e e -*■ y y are given.
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C H A P T E R  II

T E S T S  O F  Q U A N T U M  E L E C T R O D Y N A M I C S

A N D  e e C O L L I D I N G  B E A M  E X P E R I M E N T S

II.1. Tests of quantum electrodynamics.
In studying scattering and decay processes of elementary particles it has

become apparent that there are at least three classes of interactions i.e.
strong, electromagnetic and weak. The other known interaction, the gravitational
interaction, has,not been observed directly in elementary processes in contrast
to the other three. At present we have the best theoretical understanding of the
electromagnetic interaction.

Of all known particles, electrons, muons and photons do not participate
directly in strong interactions, so that electromagnetic interactions can be
studied practically without contamination of other interactions, by looking at
reactions involving only these three kinds of particles. In most cases effects
of weak interaction may be neglected compared with those of electromagnetic
interactions.

On the basis of quantum field theory most quantities concerning the beha­
viour of electrons, muons and photons can be calculated with arbitrary precision
as a perturbation series in the fine structure constant a(= 1/137). This theory
is called quantum electrodynamics (Q.E.D.).

Since the calculational rules of Q.E.D. were established, no essential
modification of the theory has taken place. A description of Q.E.D. and general
quantum field theory can be found in many textbooks [3]-[5]. With a few minor
modifications we shall use conventions and Feynman rules as stated in the books
by Bjorken and Drell ). For convenience of reference, conventions and rules
are explicitly given in appendix A.

Quantities which can be calculated in the framework of Q.E.D- and which
can be put to experimental tests, fall apart into two categories. The first
A
) For the photon field the Gupta-Bleuler formalism was used instead of the

formalism used by Bjorken and Drell where the radiation gauge is employed.
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category encompasses the anomalous magnetic moments of the electron and muonv
and various level shifts in atomic systems (Lamb shift). These effects are
referred to as static quantities. A survey of these effects and a comparison
between experimental results and theoretical predictions may be found in a
review article by B.E. Lautrup et al. [6]. The second category consists of
cross sections for scattering processes where the particles involved are elec­
trons, muons and photons.

There are of course many such reactions like e.g. electron Compton scat­
tering (ye~ -* *■ ye”) and Miller scattering (e e + e e ). In principle, reactions
such as these can be used to test Q.E.D. In practice however one has to take
into account the feasibility of performing accurate cross section measurements
for a specific reaction on the one hand and of performing reliable theoretical

&
calculations on the other hand ).

Around 1960 the following reactions were proposed to test Q.E.D.,

e e + yy , ( O

e+e ■*> e+e , (2)

e V  - p V  • (3)
At present, experiments of this type have been performed in many laboratories
by means of e+e~ colliding beams [1] , [2]. In these experiments, electrons and
positrons describe a circular orbit in opposite directions. They are forced
to move like this under the influence of a constant magnetic field perpendicular
to the orbit. At well-defined places along the circle one lets the electron
and positron beams collide (hence the name). The enormous advantage of this
type of experiment is the possibility to study reactions at a center of mass
energy which cannot be reached in another way, combined with the fact that the
reaction rate can be made high enough so that good statistics are obtained.

II.2. Lowest order cross sections.
We will now give the lowest order cross sections for reactions (1), (2)

J.J.

and (3) and mention various aspects of their behaviour with angle and energy ).

*) Most theoretical calculations in Q.E.D. although straightforward are of
considerable complexity. Many theoretical results existing in the
literature contain calculational errors and/or misprints.

*) In all expressions in this section, where possible the relativistic
limit has been taken, i.e. terms of order m/E are neglected.
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a * e+(P+) + e (p_) ■+• -y(qj) + y (q 2)

In  low est o rd e r  t h i s  p ro c e ss  g e ts  c o n t r ib u t io n s  from  two Feynman diagram s

( f i g .  1 ). U sing s ta n d a rd  p ro ced u res  one a r r iv e s  a t  th e  fo llo w in g  e x p re ss io n

F ig . 1 Louiest order Feynman diagram s fo r  tuo  garrna p ro d u ctio n .

f o r  th e  d i f f e r e n t i a l  c ro s s  s e c t io n ,

do _ a?_ r 2 + s in ^ e  _ 2s in ^0 ,
d£l, s , 2 2  , 2 2  2 - J '  (4)1 1 -  B cos 8 (I -  8 co sz 0 )z

In  t h i s  fo rm u la , a i s  th e  f in e  s t r u c t u r e  c o n s ta n t ,  s th e  sq u a re  o f th e  c e n te r
o f  mass en e rg y , 8 i s  th e  v e lo c i ty  o f th e  incom ing e le c t ro n s  (and p o s i t ro n s )

and f i n a l l y ,  8 i s  th e  an g le  betw een p+ and q j in  th e  c e n te r  o f  mass system .

T h is c ro s s  s e c t io n  i s  sym m etric around 8 -  90° and e x h ib i ts  s tro n g  peak ing  in

th e  forw ard  and backward d i r e c t io n .  Note however th a t  even a t  0 = 0° and
0 "  180° i t  rem ains f i n i t e .

b * e+ (P+) + e (p_) -* e+ (q+) + e~(q_)

In  low est o rd e r ,  t h i s  p ro ce ss  g e ts  c o n t r ib u t io n s  from two Feynman diagram s
( ^ 8 *  2 ) ,  g iv in g  r i s e  to  a lo w est o rd e r  c ro s s  s e c t io n

do m a?_ r ) + c o s^ (8 /2 )  2 co s^ (0 /2 )
dfi 2s 1 . 4 ,  -  2

+ s in H(0 /2 )  s in  (0 /2 )

2
+ J(1 + cos 0 )] . (5)

The meaning o f  a and s i s  th e  same as under a ) , 0 i s  now th e  an g le  betw een

p+ and q+ . T his c ro s s  s e c t io n  d iv e rg e s  in  th e  fo rw ard  d i r e c t i o n ;  as a conse­

quence a ls o  th e  t o t a l  c ro s s  s e c t io n  i s  i n f i n i t e .  This has to  be expected  as

9



<̂ (p+) e+(q+)

e+(P+>

<
e+(q+'

> e"(qje'(PJ

e"(pj e'(qj
o b

Fig. 2 Lowest order Feynman diagrams for Bhabha scattering.

part of the scattering amplitude (corresponding to fig. 2a) can be regarded
as the amplitude for Coulomb scattering.

In this formula, p is the muon mass and 6 is the velocity of the outgoingV 2muons. The threshold for this reaction is = 4p . This cross section has a
smooth angular behaviour. The total cross section behaves as s for large s.

In view of the numerical value of a, one could expect that the order a
contributions to the cross sections for reactions (1)— (3) are of the order of
1% of the basic cross sections. It is known however, that corrections of the
order of 10% can be reached. Therefore if one wants to compare experimental
cross sections with theoretical ones with an accuracy of 1% it is necessary to

3calculate the theoretical cross sections at least up to order o . For the
processes (1), (2) and (3) the order a contributions to the cross section have
been calculated (for details see chapter III).

In calculating the first order corrections to the basic cross sections
one encounters the divergence difficulties of any relativistic quantum field
theory (i.e. ultraviolet divergences), supplemented by divergences inherent to
the presence of massless particles (photons), the so~called infrared divergences.

c. e+ (p+) + e (p_) -*■ p+(q+) ♦ P (q_)
In lowest order we have only one diagram (fig. 3) resulting in the cross
section

cos 0) ]3 [JO + cos 0) +2s Pp (6)

-1

II.3. General remarks on radiative corrections.
3
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The elimination of these infrared divergences has important consequences for
the radiative corrections, as we will indicate.

The quantity of interest for cross section calculations is the modulus
squared of the scattering amplitude M. As the amplitude itself is given as a
power series in e (the charge of the electron) we find up to order ct3 (a - e2/4ir)

|M| - |aMj + a2M2 |2 - ot2|Mj |2 + a3-2Re(M*M2> +0(a4) . (7)

The contribution of a | M  |2 to the cross section will be called do°/dfi, these2 . 1 ,
order a terms are given in section II.2 for the processes considered. The
contribution of the second term will be denoted by da'/dö, the third term will
be omitted.

Even after disposing of ultraviolet divergences, dcf’/dft remains infrared
divergent. If one replaces in all calculations the photon propagator by
“igyv/(k - X + ie) the expression for da'/dQ will be of the form

Alog j  + B + 0(A) , (8)

thus exhibiting the singularity at X - 0. It seems that the order a3 contribu­
tions are infinite. A solution to this problem has been given in a basic paper
by Bloch and Nordsieck [7], a general analysis has been given by Yennie,
Frautschi and Suura [8].

The basis for the solution of the problem is the observation that in every
scattering process where charged particles are involved, extra bremsstrahlung
photons are produced whose energy may be arbitrarily small. In an experimental
situation it is impossible to observe all the emitted extra photons, so that
the cross sections for these processes have to be added to the "elastic" cross
section. Here we call elastic the process without extra photon emission. If we
follow this procedure we find that to order a3 one can have the basic process
with one extra photon. Apart from do /dfi and dc'/dfl we thus have a third
contribution,

. B „ B „do _ 3o .3,---+  d k . (9)
dfl 3fl3k

In this expression 3aB/3fl3Ê is the multi differential cross section where the
observed final particle is detected within solid angle dfi around a fixed
direction and where the extra photon has momentum in a region d3k around Ï. The
integration in (9) has to be performed over those photon momenta where this



photon is experimentally unobserved.
It turns out that the integral (9) diverges at the point k - 0, a diver­

gence which can be exhibited by taking in intermediate calculations the photon
mass to be X. If AE is an energy limit such that photons are not detected if
their energy is smaller than AE, expression (9) is of the form

Ain ̂  + C + 0(A) (10)

Here A is the same function of the kinematical variables as the function A used
in (9).

3 •The cross section up to order a can now be written as

do
dO

do do'
dO dO d3k 01)

303k

As can be seen from (8), (9) and (10), in this sum the limit X 0 can be taken
without any problem and the order a cross section is a finite and well-defined
expression.

In order to give numerical results, one defines a correction factor 6̂ , by

•̂2_(1 + 6 )dO w r
do doJ_ +
dO dO d3k (12)

303k
In this way 6 is considered as a correction to the basic cross section, a
so-called radiative correction.

II.4. Discussion of possible experimental situations.
It is now obvious that the calculation of the cross section to order a

requires a knowledge of the experimental situation in order to calculate the
integral appearing in (12). Unfortunately realistic experimental situations
do not provide direct information on the momentum range of the undetected
photons.

As an approximation one often assumes that in the laboratory system the
photons with energy smaller than some value AE are undetected. If now AE is
small enough one can perform the integration (9) analytically, provided some
approximations (known as soft photon approximation) are made. Although this
procedure solves the infrared problem the assumption involved is not very
realistic.

Experimentally when measuring the reactions (l)-(3), one uses some criterion
to decide whether the observed pair of final state particles belongs to one of

12



reactions (l)-(3). One can imagine two rather distinct possibilities.
In the first place, if the two final state particles are detected and their

energies lie in the range {E - e, E], then one counts them as real events.
(E is the energy per beam.) In the second place one may select the final state
particles by the criterion that they are produced back to back. Then no energy
is measured, but it is established that their tracks make an angle S < 5, where
the quantity £ is the given maximum acollinearity. If accidentally one also
sees the "undetected” photon, one has to add this event to the cross section.

We will outline a method by means of which the influence of these experi­
mental conditions on the photon phase space can be analyzed without using the# 3soft photon approximation. In this way the order o contributions are calcula­
ted for reactions (1)-(3).Although the calculations for reaction (1) have
been published by Berends and Gastmans their results will be included here
for completeness [9].

3II.5. Validity of the order a approximation.
As can be seen from (8) and (11), the correction factor 6 contains a term

which behaves like log(AE/m). From this we see that for very small AE, the
corrections may become large. Also in the more realistic treatment of the ex­
ternal photon it remains true that if the phase space available for the photon
is made very small, the corrections become large. From the full expressions it
can be seen that the contribution to 6 from terms like log(AE/m) has the same
sign as this logarithm so that we have the paradoxical result that for small

• 3AE the cross section to order a may become negative. It has been shown that
in cases where photon phase space is so small that this is the case, still
higher order terms in a are necessary to prevent the cross section from becoming
negative [8]. In other words there is an interplay between the measuring ac­
curacy and the required otder in a to which one has to do the calculations.

At present it is not known what the quantitative relation is between the
volume of photon phase space and the necessary order of a. The only thing that
may be said is that if theory and experiment do not agree in situations where
the corrections 6 are large and negative, one first has to take into account
higher order corrections before concluding at a breakdown of Q.E.D.

13



C H A P T E R  III

R A D I A T I V E  C O R R E C T I O N S  F O R  P R O C E S S E S

O C C U R R I N G  I N

e+e~ C O L L I D I N G  B E A M  E X P E R I M E N T S

111.1. Summary.
The methods used to calculate radiative corrections to the processes

(II-l)-(II-3) are the same for the three cases. For this reason we will treat the
case of muon pair production in full detail (because here the method is most
easily demonstrated), whereas for the other reactions only the numerical results
will be given [10].

As was indicated (chapter II) the calculation of radiative corrections
2involves the evaluation of the interference terms between the order a term

and the lowest order term (order a) in the scattering amplitude. The contribu­
tions of these terms to the cross section will be denoted by do'/dfl. In the
following we will call these the virtual corrections. Furthermore when dealing
with the bremsstrahlung correction an integral over photon phase space has to
be considered.

First we will derive expressions for the virtual corrections; then we will
treat the external photons in the soft photon approximation and demonstrate the
cancellation of infrared divergences; finally the external photons will be
treated without approximation.

In all calculations we assume that the incoming electrons and positrons
are not polarized and also that the polarization of the outgoing particles is
not detected.

111.2. Kinematics and the lowest order amplitude for e e -*• p p .
We will consider the reaction

e+(p+) + e (p_) p+(q+) + P (q_) • 0)

14



The vectors in brackets are the four-momenta of
shell i.e. v

2 2P+ = m ,

2 2
p ± o  >  0

l+
° II *e wQ O
V o

the particles on the mass

(2)

In these expressions m and y are the electron and muon mass respectively *).
We choose the center of mass coordinate frame such that p+ is in the positive
z~direction and q+ are in the x-z plane. The scattering angle 0 is the angle
between p+ and q+, E is the beam energy. From the momenta in (1) we construct
the Mandelstam invariants

s " (p+ + P_) ■ (q+ + q_)2 ,
t = (q+ - p+)2 - (q_ - p_)2 , (3)
u “ (q_ - P+) 2 - (q+ - p_)2 •

Due to the energy-momentum conservation these variables fulfil,

s' + t + u ” 2m2 + 2y2 . (4)

If we express these variables in terms of 0 and E we get

2s = 4E ,
t - " (2E2 - m2 - y2 - 2(E2 - m2)1 (E2 - y V c o s  0) , (5)
u “ - (2E - m2 - y2 + 2(E2 - m2) (̂E2 - y2)^cos 0)

The three-momenta of the particles are given by

|p±| - (E2 - m2)* , |5± | - (E2 - y2)1 . (6)

After these kinematicel preliminaries we turn to the scattering amplitude*
In lowest (non-trivial) order the amplitude for reaction (1) reads:

M - i(4ira/s)u(q_)YlJv(q+)v(p+)Yyu(p_) - i(4ira/s)TQ , (7)
Jk
) Numerically we have:

m = 0.5110041(16) MeV
y = 105.6595(3) MeV [11].

15



corresponding to the diagram in fig* * 3* Xn this formula a is the fine structure
itconstant )•

u '(q -)

Lcnoest order Feynman diagram for y pair production.

Using formula (A.18) we can write the corresponding differential cross
section as

---- ‘ i i d  . My  2 |M|2 . (8)
d£2 16tt s |p+ | spins

In order to calculate this we need

X - m2y2 I |TQ |2 - {s2 + + s(m2 ♦' P2> » (9>
spins

where we introduced the variable

f - p+*q+ *= |p+l*|q+lcos 6 •

Using this intermediate result we obtain

- °L. j!*!. . [i(i + cos2*) + 2(l°2 ■* ^  (1 - cos28)
dfi 2s |p+ | s

. 8m y 2al **.+ ---j—  cos 8 J . )
s

2In the relativistic limit, i.e. s »  m expression (11) reduces to

(10)

01)

*) Numerically: a “ 1/137.03602(21) [11]•
”2*) Expression (11) has dimension (energy) . In order to calculate the

cross section in cm2 one has to use the following conversion factor.
He - 1.9732891(66) x 10_11MeV cm [ill.
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expression (II.6).
2The order a contributions to the amplitude arise from the vertex correc­

tions (figs. 4a-4b), the vacuum polarization (figs. 4c-4d) and the two-photon
exchange graphs (figs. 4e-4f). Since we are interested in the cross section to

3order a , we have to take into account the interference terms of the amplitudes
Ma - M , (corresponding to figs. (4a)-(4f) with the basic amplitude M.
III.3 The vertex corrections.

' a bThe matrix elements M and M can be found using the Feynman rules of appen­
dix A and are given by

Ma - ( V  i,IT S
d4 u ( O  Yyv (q+) V (p+) Ya (-jS++K+m) Yy ((S_+K+m) y °u (p_)

(P+) (P_) (k) (12)

( V  J- | dHk'Tl S 1
u (q_) Ya (^_+lt+P ) Yjj (“4++K+P ) Y°v (q+) v (p+) Yyu (p_)

(q+) (q_) (k)
( 12’ )

where we have introduced the symbols:

(P±) - k2 + 2(kp±) + ie ,

(q±) “ k2 + 2(kq±) + ie , (13)

(k) - k2 - X2 + ie ,

here X is a small fictitious photon mass, introduced to regularize the infrared
. The contribution of these amplitudes to the cross section is given

doa,k I 1*1+1 2 2 * a h
------------J ~  - 7 — V u  Ï 2Re(M Ma,°) , (14)
d£i+ 16ir s I p I spins

the star indicates complëx conjugation.
Using the fact that the trace of a product of y—matrices equals the trace

of the product in reversed order it can easily be seen that the contribution
of diagram 4b can be obtained by substituting (m,p+) +-+ (p,q+) in the expres­
sion for £2Re(M Ma). It thus suffices to calculate doa/dn .

We now write Ma in the following way

Ma = i(4irn/s)u(q_)y^v(q+)v(p+)ry (p+ ,p_,m)u(p_) , (15)

17



Fig. 4 Feynman diagrams for the virtua l radiative corrections to
)i pair production.
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where
pli = Z ia  [ d4k Ya (-*+  * * * * * + “ )Ya

(P+) (P_) (k)
0 6 )

We proceed  by s p l i t t i n g  TV in to  th r e e  p a r t s  a c co rd in g  to  th e  number o f tim es
th e  v e c to r  k ap p ears  in  th e  num erator o f e x p re ss io n  (1 5 ). We d e f in e

/ [1 ,k  ,k  k ]
A  w * u v

(p+) (p_) 0 0

and w r i te  th e  v e r te x  f u n c tio n  in  th e  form

“ • W  ■ I “ * 0 7 )

w ith
r y = (IMU t I M PS l  M»,0P) V

a oo

mU "  Ya ( -^ + ♦ m)y,i(l5_ + m)ya  ,

mIJ°  “ Ya [ ( “ tf+ + m)yUy° + y °y lJ(^_ + m )]ya  ,

Myap a y p a
M “ YaY Y Y Y

(18)

(19)

The in te g r a l s  (17) a re  c a lc u la te d  in  appendix  B, w here we in tro d u c e d  an
a u x i l ia r y  v a r ia b le  <f>. We f in d  up to  two term s o f  o rd e r  X ,,

T _ - 2 i i r2 r . .  m f*
1 “ ~2--------- U>lög T  + CtgCd?] .

m sin2(j> ' o

The in t e g r a l  I  can be w r i t t e n  as I  « 1 4 , w ith
t* y A y

t _ - 2iiT2ij)
A “ 2 . *m sin2<j>

( 20)

( 21 )

where we in tro d u c e d  A -  <P+ -  p _ ) /2 .  The in t e g r a l  I  i s  decomposed in  th e
fo llo w in g  way.

*iiv "  I 08yv + PA^y^v + I PPyPv ’

where P = (p+ + p _ ) /2 .  The c o e f f i c ie n t s  a re  g iv e n  by

2
*0 "  M 1»  ”  + 2 iir2 ( l  -  <|>cotg $ ) ]  ,

I '  -  — j-J 2  ̂ .  IT
A T ~  1 A »m sm2(j>

(22)

( 23)
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(1 - <j)COtg <J>) . (23)-iir
P 2 . 22m sin $

Here X is a divergent constant, to be disposed of by charge renormalization.
00

For the matrices M in expression (18) we find

v(p )MUu(p_) - - 4(p+p_)v(p+)YPu(p_) ,

v(p+)MUCAcu(p_) = 4(p+p_)v(p+)YWu(p_) - 2mv(p+) [yV,*]u(p_) ,

v(p+)MyCPga u(p_) - 4v (p+)yWu (p_) »

v(p+)MU<Jp4aA u(p_) = ~((P+P_) + 3m2)v(p+)YUu(P_) + 2mv(p+)[yP,?]u (p_) ,

v(p+)MpapPaP u(p_) - ((P+P_) ♦ m2)v(p+)YUu(P_) •

We see that we can write

v(p+)ryu(p_) - v (p+){yUF, + + ' 2̂5^

2 2 .here F and F„ are functions of m and $ or of m and s. Now F. is divergent2 2 *because it contains via IQ. By subtracting from Fj(s,m ) its value at s ■ 0
(which is equivalent to * ■ 0) we can perform a charge renormalization. If we
look at M + Ma we see that we can transfer this Fj(0,m ) from M* to M and
absorb it in the electron charge [3]. We will now call the difference Fj - Fj(0),

Fr
In terms of <j> we find for Fj ^

a 2
1 tt tg2<(>{<Kiog y  - o + etgcde) + -  i°g xA Jo

a ó
2 ir sin2t|>

For physical values of s, (i.e. s > 4m ), we have

with
<j>(s) = " i 1°8 »

b » ! —  , a = (1 - 4m2/s) ̂1 + a *

(26)

(27)

(28)
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These results for the vertex correction can be summarized in the following
way. We get the expression for M if we replace the electron vertex in (6)
by

YPFj(s,m2) + ^ [ y V,lS+ + |5_]F2 (s,m2) . (29)

From (14), (15) and (16) it can be seen that we only need the real parts of
Fj 2 * Using the expression (27) for ij)(s), those are given by

*  J L
2

2\ a r. . 1 + 2a ,ReF (s,m ) ----- {1 + ----r---  log b +ir 2 a

t-LijO») -  it2 + |-(log b)2 - log b log(l - b)] - (30)

2
0  + *"2^  log b) log “ } ,

ReF2(s,m2) - E  log b . (31)

With the help of these functions we can write

daa do° _ . 2. daa'ma8 , 2,-------— • 2ReF.(s,m ) + ------  (m ) ,
dft dft dfi+ + +

where
daa*ma8 , 2. o2 lq+ l(m )

s |P+ I
(1 + ) ReF2(s,m2)

s

(32)

(33)

With these expressions and the substitution rule for the contribution of
M“ the vertex correction is given. (The index mag is used in (32) and (33)
because the term do * 8/d0 is due to the anomalous magnetic moment of the
electron.)

III.4. Vacuum polarization corrections.
In the treatment of vacuum polarization we will only calculate the effect

due to electrons and muons. We will ignore the contributions of hadronic inter­
mediate states for the following reason.

Hadronic vacuum polarization is not an effect which can be calculated from
field theory alone. The usual approach to obtain numerical corrections is the
use of dispersion relations, using as input the total cross section for
+ “ t
e e ■+■ hadrons, as a function of energy. However in doing so, new assumptions
beyond Q.E.D. have to be made. )
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) The assumption that the vacuum polarization tensor obeys a dispersion
relation has been tested experimentally in the region of the $ resonance
and was proven to be correct [12].

In case the center of mass energy is greater than 1 GeV, the cross section is
increased by ± 1 % (independent of energy) ).

• c dWe now turn to the calculation of the amplitudes M and M . These are
given by

mc = (f)2 4r
s

d4k
u(q_)y V(q+)Tr[yU (p+K+m)yV (-f+K+m)]v(p+)yVu(p_)

(m+)(m_)
(34)

. , . . u(q )Y v(q.)Tr[yU (?.l(+p)Y (-?+fc+p) ] v(p )y u(p_)..d ,a. 2 1 ,4, - p + +M = ( - )  —  I d k
(P+)(b_)

(35)

where we introduced

(m+) “ (k ± P)2 - m2 + ie ,

(p±) *= (k ± P)2 - p2 + ie

(36)

In appendix B is shown that (after charge renormalization) M can be written

(37)MC “ - M*II(s,m )

We obtain Md if in the expression for II we make the substitution m  -*■ p. The
real part of II is given by

Re II(s,m2) = ^  ~ g")l°8 b] > ) (38)

where definition (28) of a and b is used. The correction due to vacuum polari­
zation can be summarized as

) Relevant formulae and the experimental inputs for this estimate can be
found in [21].

**) The expression for Re II(s,m2) given in [10] contains the following misprint.
1 ar . 1 a \The coefficient of log b is given as (-j jO instead of (-̂  g") •
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(43)(s,t) (s,u)

It thus suffices to calculate Me.
We proceed by splitting Me in three parts according to the number of times

the vector k appears in the numerator. We define

[J;J ;J ]y ’ yv
, f 1 ;k ;k k ]

d4k — L hI j l v L
(A) (Q) (+) (-)

and write the matrix element Me in the form

(44)

Me “ (— )2(JX + JWT + JUVT ) .
it y yv' (45)

A straightforward trace calculation provides us with the quantities

[X;V xyv] - m2n2 *spins
(46)

and we have

dae a2 1 |q+ |
— ---- ^  Im(XJ t X Jp + X Jvv)
|p+ | 27T2 W

(47)

The integral J is infrared divergent. It is convenient to write it as a
sum of two terms

J - (F + G)/2P , (48)

where
F - | d4k(P2 - k2)/ (A) (Q) (+)(-) ,

d k/ (A) (Q) (+) .
(49)

Of these integrals only G is infrared divergent. To write J as in eq. (48)
have made use of the fact that J can be written asy

J - J.A + J_Qy A y  Qxy ’ (50)

without a term proportional to P . Multiplying eq. (50) with A and Q , and
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solving for and Jp, we find

JA “ [t(FA + F> " Q (FQ + F>1/2A »

Jp = [t (Fq + F) - A^(Fa + F)]/2A ,

2 2 2where we have introduced A * A Q - t , and

(51)

A,Q d k/(A,Q)(+)(-) (52)

Similarly , for J ^ we write down the decomposition

J = K e + K_P P + K.A A + K.Q Q + K ^ Q  A + A Q )yv 08yv r y v A y v Qxyxv , x'^y v y v (53)

Also in this case terms linear in P^ are absent. We can again solve for the
coefficients of the tensors and find

HO

01w
+ h p + ha + V +  p 2 ( J A +  V r

* p -
(F -  G +• 2Hp + Ha ♦  Hq )/2P2 - ( J A ♦ J (? ’

II [ Q2 ( i H A " p 2 j A
-  K0 )  - T ( i H A -  P2Ja - i e A) ] / A

Nor U 2(Jh q -  V  -
t (JHq -  P2Jq - j Gp ) ] / A

Kx “
[ a 2 ( J h a -  i G A)  - ' (*h a -  A  '-  KQ) ] / A

(54)

To obtain J we have therefore to calculate the following simpler integrals:yv

d \  k/(A)(Q)(-) - HpPy ♦ HAAp ♦ HQQy ,

d k k^/ (A).(+) (“) = »

d k k^/(Q) (+) (-) “ GpQy

(55)

The analytic expressions for the integrals F, G, Hp, HA p and G ^ p are given in
appendix B. It follows from these expressions that



-G + lip + HA + HQ -  °  , (56)

and co n seq u en tly  t h a t  K and Kp can be s im p l i f ie d  to

K0 -  -JF  ♦ P2 ( J a ♦ J Q) ,

(57)
Kp -  (iHp -  KQ) /P 2 .

The l a s t  s te p  in  th e  p ro ce ss  o f  c a lc u la t in g  i s  now to  c o n t r a c t
X and X w ith  th e  d i f f e r e n t  te n s o ra  o f th e  decom position  o f J  and J  :

v  I * w y yv

X -  (4t + is)X p -  s 2i  ,

“ " (2a2 + 4 t)X 0 “ 2 s t2  + (2 ®2 + 8,“2U2) t + 2sA2 (p2 + j s )  ,

KpQ “ ~(2Q + 4t )Xq — 2st + (2s + 8m2p 2)x  + 2sQ2 (m2 + j s )  ,

W  “  ,oxo + ,28t •
(58)

xuvpWpV “  *8<X0 + 2 ” > •

11 \ )  2  9  2  9  9 9
Xp^A A “ 2A Xq + 8m t + 4sA + 2m A s  ,

XuvQ‘iQV -  2Q2Xq + 8p2x 2 + 4sQ2t + 2y2Q2s ,

K,v (Q**AV + A1JQV) -  6tXq + 6s t 2 + 8(m2p 2 -  s 2) t + 2sA2Q2 .

We now i s o l a t e  th e  in f r a r e d  d iv e rg e n t p a r t  o f  daC/dfl . N o tic e  th a t  G i s  in ­

f r a re d  d iv e rg e n t and th a t  th e  in f r a r e d  d iv e rg e n ce  o f  Hp can be i d e n t i f i e d  w ith
G. A ll o th e r  i n t e g r a l s  b e in g  c o n v e rg en t, we have f o r  th e  d iv e rg e n t p ie c e  of
doe /dfl :

dfi+ X
2 '  ^ +‘ 4t + s

* |P + | S3
1 T „— =• Xm G

2rr
(59)

Note f i n a l l y  t h a t  w ith  th e  d e f in i t i o n  (8) o f  X_ th e  low est o rd e r  c ro ss  s e c t io n
d e r iv e d  from  th e  Feynman d iagram  o f f i g .  3 can be w r i t t e n  as
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( 39)

dft+  +

We d e f in e d  d a C> /d fl+ in

2*2Re n (s ,m  ) ,

2Re n (s ,v i2 *)

e b /th e  same way a s  da ’ /dSl+ by means o f  e q . (1 3 )•

I I I . 5 . The two p h o to n  ex ch an g e  c o n t r i b u t i o n s .

We now tu r n  to  th e  box  d ia g ra m s , f i g s .  ( 4 e - 4 f ) .  A p p ly in g  th e  Feynman

r u l e s  we g e t

Me
, u (q  )Y O(-0 +p)Yav (<l+)v (p .)Y ^(K -^+ m )Y Olu (p _ )

^4^  ~ a  p *  +____________________

(A) (Q) (+) ( - )

<5r>2 d4k
u (q _ )  Yg (-K-Q+u)YaV(q+) v ( p +)YB (K-4+m)Y « (P_)

(40)

(A) ( Q ' ) ( + )  ( - )

We h av e  in t ro d u c e d  th e  fo l lo w in g  sym bols

(A) -  k 2 -  2(kA) -  P2 + i e  ,

(Q) -  k2 -  2(kQ) -  P 2 + i e  ,
(41)

(Q ')  -  k 2 + 2 (k Q ') -  P 2 + i e  ,

(± ) -  k2 ± 2 (kP ) + P2 -  A2 + i e  ,

w here  Q •  i ( 9 + -  q ) and X i s  a s m a ll  f i c t i t i o u s  p h o to n  m a ss , in t ro d u c e d  to

r e g u l a r i z e  th e  i n f r a r e d  d iv e r g e n c e .  The c o n t r i b u t io n  o f  th e s e  a m p litu d e s  to  th e

c r o s s  s e c t i o n  i s  g iv e n  by

1 J ^ t L m V  1 2Re(M*Me , f ) . (42)
dn 16it2 s |p + | s p in s

I t  can  e a s i l y  be  s e e n  t h a t  th e  c o n t r i b u t i o n  o f  d ia g ra m  4 f  can  be  o b ta in e d  by

s u b s t i t u t i n g  (Q ,v ) -*■ ( - Q ,y) in  th e  e x p r e s s io n  f o r  d a e /d n + and by a d d in g  an

o v e r a l l  m inus s i g n .  N ote t h a t  in  th e  f i n a l  e x p r e s s io n s  o n ly  even  pow ers o f  th e

m asses a p p e a r .  I f  th e  f i n a l  r e s u l t  i s  e x p re s s e d  in  te rm s  o f  th e  M andelstam

v a r i a b l e s  t h i s  i s  ta n ta m o u n t to
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( 60)
da° _ lqJ

d«+ ‘  s 3 \ t j  0

I t  fo llo w s th a t

/do®. do0 2a . 1
(d 0 d £ J  tt (4x s)  7 T+ + 2ir

lm G (61)

In  appendix  B we show th a t  lm G can be r e w r i t te n  in  such a way th a t  eq . (61)
becomes

do® do®
(-a?r>x “ ”  d i r T F  (4 t + • )U (» ,t ) iö g < - % )  + B(S, t ) ]  . (62)

+ y A*

The t o t a l  c o n t r ib u t io n  o f diagram s 5e and 5f becomes

do®+^ r rdae  ̂ /do® .- . . .
~ d f i~  l ( d f T \  + (dfl“ ) f i n .  "  ( t  *-*■ • (63)

'  + A +

0
where (do /dR+) ££n  ̂ i s  o b ta in e d  from  eq . (47) and subseq u en t fo rm ulae  by
o m ittin g  a l l  i n te g r a l s  G and th a t  p a r t  o f Hp p ro p o r t io n a l  to  G.

In  th e  l im i t  E >> y,m and f o r  s in  6 >> y /E , m/E (E ■* J / s ) ,  our e x p re ss io n s
f o r  th e  two photon  graphs reduce  to  th o se  e x i s t in g  in  th e  l i t e r a t u r e  [1 3 ].

I I I . 6 . The i n e l a s t i c  r e a c t io n .

As was in d ic a te d  in  I I . 3 th e  in f r a r e d  d iv e rg e n ce s  o c c u rr in g  in  th e  v e r te x

c o r r e c t io n  I I I . 3 and th e  two photon  exchange c o n tr ib u t io n s  I I I . 5 c a n c e l a g a in s t

a s im i la r  d iv e rg e n ce  which a r i s e s  from  th e  c ro s s  s e c t io n  f o r  th e  i n e l a s t i c
r e a c t io n

e (P+) ♦ e (p_) y+(q+) + y (q_) + y (k ) , (64)

For t h i s  r e a c t io n  we w i l l  f i r s t  e s t a b l i s h  th e  e x a c t d i f f e r e n t i a l  c ro s s  s e c t io n .
The c ro s s  s e c t io n  f o r  r e a c t io n  (64) w i l l  be o b ta in e d  from  th e  e x p re ss io n

where

, Bdo ct3 1

2.V 5J •V I  |HB| 264 (p+
sp in s

+ p_ -  q+ -  q_ -

.3 .3 .3,a q d q d k
k)--—-  — I  — .

q + o  q - 0  k 0

4
1

i-1 i - l Ni /Di

(65)

( 66)
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e* (p.)

Fig. 5 Feynman diagrams fo r  the production o f  a y p a ir  accompanied
by rea l photon emission.

The four terms in M® arise from the four diagrams of fig. 5. The denominators
take the form

D, - - 2(kp_)s\ D2 - - 2(kp+)s' ,

D = 2(kq_)s , D4 - 2(kq+)s ,

9 it
with s' ■ (q+ + q_) )•

The numerators consist of an electron and a muon part contracted with a
photon polarization four vector, ea-

N, - l"4W « aK-(D r N2 - E^(2)eaMv(2) , ̂

N3 = Evi(3)eaMll0,(3) , N4 - ^(4) z J P 'W  ,
with

Ey a ( l )  - v(p+)YP(l5_ - U + m)Yau(p_) ,
EU“ (2) = v(p+)ya(-^+ + K + m)Yyu(p_) ,

Ejj(3) “ *„<*> “ v(P+)Yuu(p_) , (fi9)
M^(l) - (2) - u(q_)YjJv (q+) .

M^“ (3) - u(q_)Ya(»i_ + * + y)Yyv(q+) ,

-------- 2
*) Because of the extra photon emitted it is no longer true that (p+ + p_)

(q + q^)^ as was the case with the virtual corrections.
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(69)MU“(4) = u(q_)YU(-j(+ - K + p)Yav(q+) .

The q u an tity  £ |M^|^ i s  now w r itte n  in  the form
sp in s A

£
sp ins

The expressions for F^. are given in appendix C.
From eq. (65), multi-differential cross sections are derived, and the

question of the choice of integration variables now arises. Since we are
priMtily interested in the simulation of e e + y p by the emission of an
extra photon, it is preferable to choose anyhow dfl , the solid angle of the y+ ,
as variable. For the other three variables, one could choose, e.e. a a+ _ » 6 H+gt H_o
and $, the energies of the y and y , and the angle between the (p q ) and
(9+9_) plane. Since we want to integrate (numerically) over these three
variables to find the simulated e+e ■+• y+y“ events, it turns out that it is
more practical to choose variables in which the places of rapid variation in
the multi-differential cross section are easily located. The cross section
peaks sharply whenever the photon is emitted parallel to the electron or
positron direction (and, to a lesser extent, to the y+ or y- direction). So it
is advantageous to use the angular variables of the photon. The polar and
azimuthal photon angles, 0 and * , are taken with respect to a frame where“► , Y
q+ defines the z-axis, and q+ A p the y-axis.

third variable, k = |k| is used, which is convenient in order to ex­
hibit the infrared divergence associated with k -*■ 0.

From eq. (65), we obtain

•_*L - *’ RJ k .. * »<»2 ,->■ , ~------------  m y £ -- •*- .
3V V k 2'  ■ Ip . I  2p -  k .  i a .  t  c o .  e ‘ . i -1 » i» j

0 15*1 k (71)

The expression for this cross section takes a very simple form when one
assumes that in the quantities , the photon- momentum can be neglected, and
that the emission of a photon does not alter the momenta of the muons. This
approximation is obviously good when the photons are sufficiently soft (soft
photon approximation). In this case we find

l » V -  f  f -I* ^ • P- q” , - k> . „ 0,
i,j-l spins l j i,j-l D.D.i J
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(72)
3oS a3 |S+ | k2

---------------- = — s - y  — ------------------X *B ,
2tt s | P+ | 2p+()k0

w h e re

P - P+ <J- <1+ s 2
B ^(kp_) (kp+) (kq_) + (kq+)^ ’ ^73^

t h e  s q u a r e  i s  t o  b e  t a k e n  i n  t h e  s e n s e  o f  a  L o r e n tz  i n n e r  p r o d u c t .

I n  t h e  e x p a n s io n  f o r  B tw o s e t s  o f  te rm s  c a n  b e  d i s t i n g u i s h e d .  F i r s t  we

h a v e :

’ P -  p +  . 2  q -  q +  2
BS “  "  ( (k p _ )  "  (k p + ) } "  ( (k q _ )  "  T k q ^T 5 ’ (74>

th e  r e m a in d e r  i s

B -  B„ ) • (75)

The c o n t r i b u t i o n s  fro m  B c a n c e l  t h e  i . r .  d iv e r g e n c e s  i n  t h e  v e r t e x  c o r r e c t i o n ,

w h e re a s  B^ j u s t  c o m p e n s a te s  t h e  d iv e r g e n c e s  i n  t h e  two p h o to n  e x c h a n g e  g r a p h s .

As w i t h  t h e  v i r t u a l  c o r r e c t i o n s  we h a v e  g iv e n  t h e  p h o to n  a  s m a l l  m ass X
j 2 2

s u c h  t h a t  now we h a v e  t o  d i s t i n g u i s h  b e tw e e n  k  = | k |  an d  kg  = / k + \  .

I n  t h e  f o l l o w in g  i t  w i l l  b e  u s e f u l  t o  i n t e g r a t e  t h e  c r o s s  s e c t i o n  f o r

i s o t r o p i c  p h o to n  e m i s s io n ,  f ro m  z e r o  momentum up  to  a  s p e c i f i c  m ax im al p h o to n

momentum k .

w i t h

L.. F o r t h e  te rm  d e n o te d

das fk i r+1
dfi dk  d ( c o s  6.

+ ■* 0 7 - |

6 (m ^, ks
) -  -  £  {[2  + I

1 IT

i *
a  l o g  b  +

d<|>Y 3ft 3ft 3k+ Y

+ 6g(y  , k j ) ]

[ 6 g (m , k j )  +

(76)

+ a
lo g  b l l o g

a?-
(77)

[ L i-  (2 1 + a ) + i U ° g  b )  ]}

) F o r  t h e  m e a n in g  o f  t h e  s u b s c r i p t s  S a n d  D s e e  s e c t .  I V . 1.
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a bIt can be seen from (30) and (32), that the sum of do /d0+ , do /d0+ and
do^/dO no longer contains terms which diverge if X = 0.

S g S •
For dcC/cUl defined in analogy with do_/dfi we findS + & *

with
<S,,(s,t) (78)

6 (s,t) - { (4t + s)[A(s,t)log(-^-)2 + C(s,t)] - (t u)} . (79)

For the details of these integrations we refer to appendix B. From eq. (62)
it is explicitly seen that here also the X dependence disappears.

We have thus seen that the infrared divergences disappear by taking into
account inelastic processes as well as elastic ones.

(see eq. (76)) .
A useful tool is the Dalitz plot for the three particles y , y and y. In

a Dalitz plot the kineinatical configuration of the outgoing particles is deter­
mined by three coordinates which are q+g> q_Q and (see page 29).
These coordinates have the advantage that a volume element in phase space is
directly proportional to dq+gdq_gd$ without a (q+Q»q_Q,<t>) dependent factor.

Some often occurring conditions, like 6 = constant, or & = constant,
where 6 is the angle between q and q_, represent curves in the Dalitz plot,
i.e. they are relations between the variables q+^ and 9_g« (From now on we will
not mention the <p dependence and concentrate on what happens for fixed $ in the
q q plane, which plane is the Dalitz plot.) A special case is the boundary
of the Dalitz plot itself. These curves are obtained by using the four vector
n , defined as

where P - (p + p_)/2 as was the case with the virtual*corrections. In the
c.m.s., only the spatial components are different from zero: they are propor­

III.7. Phase space and acoplanarity.
We will now derive formulae which can be used to translate certain ex­

perimental constraints in limits on the integration variables k, 0 and

ny , 2ew p a p
v^+p°‘~a * (80)

or
yvpoP q kv +p a (81)

tional to the vector products q A q_ or q+ A k, i.e. proportional to sin 6 or
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s in  6 . So we f in d  f o r  n , on th e  one hand
y

2 | 2 i-+ 12 . 2.n » -4 Pq Iq+ | |q _ | s in  6 ,

,2i + i2, . 2 .  2 „
n = - « 0 |q + | (PQ -  q+Q ~ q_Q) s in  y

and on th e  o th e r  hand (from  eq . ( 8 0 ) ) ,

(83)

( 82)

p 2 (Pq+) (Pq_) 1 q+o q-o

n2 = -4 (Pq+) p 2 (q+q_)

CM Op41fl
q+0 »2 <q+ o

(Pq_) (q+q_) p q_0 (q+q_) p 2

(84)

Combining (84) w ith  e i t h e r  (82) o r  (8 3 ) , and e l im in a t in g  (q+q_) w ith

(q +q_) -  V  -  2Pq ♦ 2P0 (q+0 + q_Q) , (85)

we o b ta in  th e  cu rv es f o r  f ix e d  s in  6 o r  s in  0
y

The f ix e d  s in  6 r e l a t i o n  rea d s

where

/ \2  I-*- 12i-*- 12 2,(nq+Q + p ) -  Iq+ | |q _ | cos 6 ,

n -  q_0 -  2P_0 , p -  i ( n 2 -  q20 + 2p2)

(86)

(87)

More e x p l i c i t l y ,  t h i s  le ad s  to  th e  cu rves

w ith

Vo - 2 , T ‘ V I ,  5q -  (q_Q -  p ) cos 6

|q _ |2co s2S (p2 -  n V  + y2 |q _ | 2co s2fi)

( 88)

(89)

The upper s ig n  co rresp o n d s to  cu rve  1 in  f ig »  6 , where cos 6 < 0 , and the

low er s ig n  to  cu rv es  2 (cos 6 < 0) and 3 (cos 6 > 0 )•  The b o u n d arie s  o f  th e

D a li tz  p lo t  a re  a s p e c ia l  c a se :

q+0 * B±(q_0 * ')  = ± |q _ |  "
n + q.

-] • (90)

The upper s ig n  co rresp o n d s to  cu rve I ,  where 6  =  it and 0 ^  m t t ,  th e  low er s ig n
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Fig. 6 Dalitz plot for the y pair. The curves 1 and 2 are the lines
where -the muons make an angle ir - ?. The shaded area is the
experimental phase space.

to curves II and III, where 6 = tt, * 0 and 6 = 0 ,  0 = it respectively. At
the points A and B, |q_| and |q | vanish.

In a similar fashion, using eqs. (83) and (84), fixed 0 curves are found,
q-o

Fig. 7 Dalitz plot .for the y pair, showing the curves 1, 2 and 3,
where 0 s 0 and 0 * it - 0.Y Y

In fig. 7 an example is drawn: along l and 3, cos 0 <0, and along 2
cos 0 >0.Y

Experimentally, when measuring the e e y y reaction, one uses some
criterion to decide whether the observed y pairs belong to this reaction. We
will consider two distinct possibilities.
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In the f i r s t  p la c e , i f  the two muons are d etec ted  and th e ir  en erg ies  l i e
• _  '  i  *in  the range [p+Q ~ e ,  P+qJ » then one counts them as r e a l even ts ) .  In the
second p la c e , one may s e le c t  the muons by the c r it e r io n  that they are produced
back to  back. Then, no energy i s  measured, but i t  i s  e s ta b lish e d  that th e ir
tracks make an angle 6 < £, where the q u an tity  £ i s  the g iven  maximum a c o l-
1in e a r it y .

There e x i s t s  a ls o  the p o s s ib i l i t y  o f  choosing in e la s t i c  even ts o n ly , i . e .
to  study re a c t io n  (4) e x p l i c i t l y .  This i s  done by accep tin g  only those events
fo r  which the a c o l l in e a r ity  an gle or the acop lan arity  angle exceeds a ce r ta in
minimum. E xp erim en tally , the acop lan arity  a n g le , d efined  as the angle between
the y e p lane and the y e p la n e , i s  a conven ient v a r ia b le  fo r  d isp la y in g
r e s u lt s .

Returning to  the f i r s t  c a s e , one has to  eva lu a te  the in flu e n c e  o f  rea ctio n
(64) by in te g r a tin g  3a /3f2+3J1_̂ 3k over the shaded area of f i g .  7 and over the
f u l l  <l>̂ range. In the second c a s e , one has to  in te g r a te  over an area in  the

■1 and cos S m cos(ir -  C) = z .  S incephase space between the curves cos 6
there u su a lly  e x i s t s  a thresh old  energy fo r  the muons, E ^ ,  below which they
cannot be d e te c te d , the a v a ila b le  phase space i s  fu rth er r e s t r ic te d  by the
co n d itio n s q+  ̂ > E ^ . For every 1(1 , one then has to in te g r a te  the y+y y  cross
s e c t io n  over the shaded area in  f i g .  6.

In chapter IV we g ive  experim ental r e s u lts  obtained a t  CEA. These data

were analyzed u sin g  the second c r it e r io n  [2 ] .
As can be seen  from f i g .  6 , the in te g r a tio n  region  can be d iv id ed  in to

f iv e  a rea s. Going from p o in t C to  the o r ig in ,  they are ch aracterized  by the
fo llo w in g  l im it s :

( i ) 0 s k s k,

( i i )  kj < k < k2

( i i i )  k S k S k^

( iv )  k2 £ k £ k^

(v) k2 « k s

-1 i  cos 9 s 1 ,
y

-1 S C O S 0^ 6 f | ( k , z )  ,

f 2 ( k ,z )  s cos 6 t  1 ,

g l ( k , Eth )  < cos 9^ s f j ( k , z )

f 2 (k ,z )  6  cos 0 < 82 (k >Et h )

(91)

Here

2Pn{ - l - z + 2 [ ( l  + z ) ( i  - J l »  (1 -  z ) ) ] * } / 0  -  z)
4P0

) N otice  th a t the en erg ie s  o f  the muons can never exceed p+_.

( 92)
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k2 - 2Po - Et h - M Et h ’ »  ’

k3 “ 2P0 “ Eth " B+ (Eth ’ z2) •

and the fu n ction s
o f the equation

cos 6
Y

by in se r t in g  for

8 l (k,EW  and g2 (k,E th^

_ 2p0 (p0 -  k  -  q+0) * H

k R + l

q+Q the ex p ressio n s

are g iven  by the r ig h t hand s id e

+0
(93)

r e s p e c t iv e ly .

The fu n ction s f j ( k , z )  and f^Ck.z) are a lso  obtained  from eq. (93) by
in se r t in g  the q va lu es corresponding to  the in te r se c t io n s o f a f ix e d  k - l in e
w ith  the curves 1 and 2 o f  f i g .  6.  These two q va lu es are the roo ts  o f  the
equation

q+0 “ bq+0 + c “ 0 * (95)
where

,  ,2  2 2 ,, 2 2. .
b -  2P0 -  k , c -  y  -  [ y2 -  « + * P 0> -  P ) j i

1 -  z2
(96)

w ith
r 2 2£ + u z 0

Y  ’  1 -  Z 2  ’  5  "  2P0 (P0 -  k> -  * • (97)

In appendix D, i t  i s  b r ie f ly  in d ica ted  how eq. (95) i s  d erived .

For the num erical in te g r a t io n  o f  3<jE/3rj+3fi^3k, one f in a l ly  has to  know a l l
the sc a la r  products occurring in  the fu n ctio n s F „  in  terms o f  the v a r ia b le
k, cos 6y» and In order to  ob ta in  the sc a la r  products in  terms o f th ese
v a r ia b le s  we use

2bP0 (P0 ■ k) ~ k c o s e Y[4p0 < r0 -  k ) 2 + P2 (k2c o s2e -  b 2) ] ia  _  =  I w  _______________  Y

+0 ^  27 ------------b -  k cos 0
Y

(98)
I f  we now want to in te g r a te  3o /3fi+3n^3k as g iven  by (71) over the reg ion
o f phase space d efin ed  above, we w i l l  g e t the same d ivergen ce as in  the s o f t
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photon approximation. We avoid these problems by means of the following
procedure. The region of phase space is divided in two parts; an isotropic
part X, given by (91-i) and an anisotropic part AI, given by (91-ii)-(91-v).
We now split the integration in the following way

d(2 dk
I+AI 3(2 3J1 (2k Y+ Y

-- — ---- d(2 3k +
3(2 3(2 3k Y+ Y

I
3(oB - gS) +
3(2 3(2 3k+ Y ' AI 3(2 3(2 3k+ Y

(99)

The first integral was performed analytically (76)-(79). The second integral
is convergent, because the singularity is subtracted out and finally the third
integral is convergent as well.

The final results for dcs/dS2 can be written as follows

+ 6A + V V (100)

A part of the total correction 6 is known analytically, i.e. 6^ which cor­
responds to the sum of the virtual corrections and the correction due to the
emission of a soft photon with maximal energy k.. The other part 6^ has to be
evaluated numerically and represents the effect of hard anisotropic brems—
strahlung and the difference between hard and soft bremsstrahlung over an
isotropic region.

The numerical integration was done over separate regions in phase space,
chosen in such a way that small regions with a rapid variation of the integrand
were attributed as many integration points as large regions with a small
variation. Over every region, the integration was done using the multi-dimen­
sional integration routine R1WIAD, which itself distributes the integration
points as efficiently as possible over the integration domain [16].

Finally we turn to the study of reaction (64) looked upon as a lowest
order process in its own right. One of the quantities which is most likely to
be measured is the distribution of events as a function of the acoplanarity
angle, i|i.

Let us introduce a new coordinate frame with p along the z—axis and
p A q+ along the y—axis. Then q+ has a polar angle 0 and a vanishing azimuthal
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a n g le . The co rresp o n d in g  q u a n t i t i e s  fo r  q a re  è ' and When we have an

e l a s t i c  e v e n t, 0 ' = ir -  0 and <t>' = it. T h e re fo re , i t  i s  n a tu r a l  to  d e f in e  th e
e c o p la n a r i ty  an g le  by i|i ■ tt -

The above-m entioned a c o p la n a r i ty  d i s t r i b u t i o n  i s  th en  d e f in e d  by

% ~ \  3 n ln _ 3 q _ Q d(cos e , >dn+dq-o  * <l01>

where th e  in t e g r a l  has to  be c a r r ie d  o u t ov er th e  phase  space re g io n  d e t e r ­
mined by th e  e x p e rim en ta l c o n d i t io n s :

0 . £ ,0 ,0 ' £min ( 102)

q+0’q-0  *  Eth  • <»03)

We assume th a t  th e  d e te c t io n  o f  u and u goes ov er th e  f u l l  az im u th a l

ra n g e , g iv in g  a f a c to r  2ir. I f  t h i s  i s  n o t th e  c a s e ,  i t  i s  easy  to  make th e
n e c e s sa ry  c o r r e c t io n s .

A gain, as th e  charge i s  u n d e te c te d , we have to  add dcr(i|))/dijj and
da(2ir -  t p ) / d t p ,  g iv in g  tw ice  e x p re s s io n  (1 0 1 ).

The in te g ra n d  in  eq . (101) i s  g iv en  by

30^30 3q _
2 2m p I q J I t l

4ir 2P0IpJ 2*0  '  q-0  +  q+0
JH

l q J
. i , j “ l D.D.COS 0 J 1 j

(104)

Only th e  in te g r a t io n  over q_^ d e se rv e s  some e x p la n a tio n . Once 0 ' and <j>'
a re  g iv e n , cos 6 i s  f ix e d .  The q in te g r a t io n  ru n s , when 6 < | tt, ov er th a t

p a r t  o f  l i n e  3 in  f i g .  6 w hich i s  allow ed  by c o n d it io n  (1 0 3 ). S im ila r ly ,  when

6 > Jir, one has to  in te g r a te  a long  th e  allow ed p o r t io n s  o f  l in e s  1 and 2.

I l l , 8 . Bhabha s c a t t e r in g  and two gamma p ro d u c tio n .

The v i r t u a l  and s o f t  photon  c o r r e c t io n s  f o r  Bhabha s c a t t e r in g  w ere c a l ­

c u la te d  by Redhead and P o lo v in  [1 4 ]. The hard  pho ton  m a tr ix  elem en t was c a l ­

c u la te d  by Swanson [1 5 ]. The hard  pho ton  c o r r e c t io n s  to  Bhabha s c a t t e r in g  can

be c a lc u la te d  in  th e  same way as we p re se n te d  fo r  m u -p air  p ro d u c tio n , making
use o f  th e  above-m entioned work. The form ulae f o r  th e  phase space in te g r a t io n
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and acoplanaricy can be obtained from those in (III.7) if everywhere the muon
mass y is replaced by the electron mass. Details of this calculation can be
found in [10].

Also the corrections to two gamma production can be calculated in essen­
tially the same way. Details can be found in [9].
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C H A P T E R  IV

N U M E R I C A L  R E S U L T S  A N D  D I S C U S S I O N

IV.1. Summary
We will present results on the three processes (II.1)-(II.3). In the first

place we will look at the reaction e e -*• e e because recently experimental
results have become available on this process. Then we will look at e+e" -*■ y+p~
where we distinguish two separate cases. First we assume that experimentally
the charge of the outgoing muons is not detected. In this case the sum

s(0) - ê s m . + .d_gJ r - . e ; ,n
dfi dfi 1*/

« « 6
is measured. The amplitudes M and M of chapter III do not contribute to S.
This is also the case for the inelastic contribution arising from interference
between amplitudes where the electrons radiate and where the muons radiate. The

3function S defines (to order a ) a correction 6 which is defined by

S (6) do
dfi. 0  + V (2)

The fact that for the function S, the two photon exchange graphs do not contri­
bute is a consequence of a theorem by Potzulo [17].

Ü  their charge is not measured the events will be selected according to
the criterion that the muons have enough energy to trigger the detectors and
that their traces are sufficiently collinear.

In case the charges are measured the full differential cross section is
measured and all amplitudes contribute. Now also the energies of the muons will
be known accurately so that here we apply the criterion that the energy loss
of the muons does not exceed a fixed energy e , i.e. q q > E - e.

Now we also define a function

D(0) = da(0)/dS2+ - da(ir - 0)/dfi+ (3)

and a corresponding 6D by
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(4)

Finally we will look at e e -*■ y y a reaction which was studied by
Berends and Gastmans [9].

For the three reactions we will give a table o£ the lowest order cross
section at energies of 1,2,3 and 5 GeV per beam. Then tables will be given
where the corrections are given for specific event selection criteria. Finally
a table will be given for the acoplanarity distribution. Here one obtains in­
formation on the pure inelastic process, i.e. the basic process with one extra
photon emitted.

IV.2. Bhabha scattering.
As the differential cross section for Bhabha scattering diverges in the

forward direction, we only give the values of dc^/dfl+ from 0 ■ 5°.

Table 1

The lowest order cross section for Bhabha scattering
(in nb) for different values of the beam energy,

P+q (in GeV), and the scattering angle, 0.

N **0
0 \

1.0 2.0 3.0 5.0

5° 1427 103 3566 102 1585 102 5706 101
20° 5373 1343 597.0 214.9
40° 304.6 76.15 33.85 12.18
60° 54.75 13.69 6.08 2.19ooON 11.66 2.92 1.30 0.47
120° 6.08 1.52 0.68 0.24
140° 5.35 1.34 0.59 0.21
160° 5.19 1.30 0.58 0.21
175° 5.18 1.30 0.58 0.21

3
The order o contributions are given as a correction 6 such that the cross
section to this order is given by do^/dfi+ (1 + 6 )• In table 2 the 6̂ , are given
for the case that the acollinearity does not exceed 10°. Furthermore the minimum

if
energy necessary to trigger the detection system is taken to be 0.2 GeV. )
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) The errors on the corrections are errors in the numerical integration.

Table 2

The radiative corrections (in %) to the lowest order
cross section for Bhabha scattering for different values

of the beam energy, p (in GeV), and the scattering
angle, 0. The acollinearity angle £ = 10°,
and the threshold energy E = 0.2 GeV.

X p t0
9 \

1.0 2.0 3.0 5.0

5° 9.7 + 0.6 22.2 ± 1.5 33.9 ± 3.6 46.1 ± 3.4
20° 1.2 ± 0.1 1.7 ± 0.1 2.0 ± 0.1 2.2 ± 0.1
40° - 3.6 ± 0.1 - 3.6 ± 0.1 - 3.8 ± 0.1 - 3.9 ± 0.1
60° - 6.3 ± 0.1 - 6.5 + 0.1 - 6.7 ± 0.1 - 6.8 ± 0.1
90° - 8.3 ± 0.1 - 8.6 ± 0.1 - 8.8 ± 0.1 - 9.0 ± 0.1
120° - 8.9 ± 0.1 - 9.1 ± 0.1 - 9.3 ± 0.1 - 9.4 ± 0.1
140° - 8.7 ± 0.1 - 8.7 ± 0.1 - 8.7 ± 0.1 - 8.8 ± 0.1
160° - 7.9 ± 0.1 - 7.5 ± 0.1 - 7.4 ± 0.1 - 7.3 ± 0.1
175° - 7.3 ± 0.1 - 5.9 ± 0.1 - 5.7 ± 0.1 - 4.5 ± 0.1

From table 2 we see that in the neighbourhood of 0 * 5^ the corrections
become large and positive. (This effect differs from the one mentioned in
section II.5.) It can be understood as follows. If we look at the Coulomb
scattering graph for e e -*• e e we see that emission of an extra photon in
the region of small 0 reduces the momentum transfer through the photon in the
t-channel, thus increasing the amplitude (which behaves as t" ). This enhances
the inelastic amplitude which is large already if the extra photon is emitted
parallel to one of the charged particles.

We will now give the acoplanarity distribution do/dij/. Here we assume that
the outgoing electrons and positrons are detected within the angular range
45 S 0+ S 135°. Here also the threshold energy is 0.2 GeV (table 3).

Recently experimental data have become available on Bhabha scattering.
The experiments were performed at beam energies of 2.0 GeV and 2.5 GeV. The
criteria for selecting events and the procedure of analyzing the data are
described in [2]. The main features are, a maximum collinearity of 15° and a
threshold energy of 0.8 GeV.
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Table 3
The acoplanarity distribution, do/dijj for Bhabha scattering, for a beam energy

of 2.0 GeV and for different acoplanarity angles i|>. The threshold energy
E - 0.2 GeV, and 0 . =■ 45°, 6 - 135 .th min max

*

5° 9.32 ± 0.16
10° 2.99 + 0.03
20° 0.86 ± 0.01

Oo 0.22 ± 0.01
60° 0.10 + 0.01

OOo> 0.05 + 0.01
120° 0.03 ± 0.01
150° 0.03 ± 0.01
180° 8.46 ± 0.08

i r

J data points
____ i -----qed predictions

60 ' 80 too n
scattering angle 0  (degrees)

Fig. 8 Angular distribution of scattered particles in elastic e e

e+e~ scattering at the energy %P+q - 5 GeV3 and the predicti
of QED normalized to the total number of observed events.

°oo 50
&
A  40
tf}
|  30
9
^ 20
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In fig. 8, the experimental and theoretical cross sections are given for
a beam energy of 2.5 GeV. In order to compare experiment and theory both the
experimental and theoretical cross sections are integrated over the 0 range of
the detection apparatus (45° S 0 S 135 ) giving °exp an<1 °tj1* ) (I'or both
*) Note that these a's are not total cross sections.
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f 3
energies the order a corrections were -7.7 ± 0.8%.) We now define the ratio
^ °exp^ath' analysis of the data yielded the following numbers for this
ratio.

E - 2.0 GeV R . o.93 ± 0.10
E - 2.5 GeV R - 1.03 ± 0.09

One can parametrize the breakdown of Q.E.D. if one multiplies the photon
propagator by a factor (1 ± q /(q - A+)). The results given correspond to the
following lower limits on A+. (90% conf. level.)

E - 2.0 GeV A+ > 9.8 GeV, A_ > 10.5 GeV
E “ 2.5 GeV A+ > 9.7 GeV, A > 4.7 GeV

Using the conversion factor given in the footnote on page 16, one can give
A± in cm. ((10 GeV) * ; 2.10 15cm.) The results thus indicate that for dis­
tances greater than ; 2.10 15 cm Q.E.D. gives an accurate description of nature.
Besides the differential cross section for Bhabha scattering one has also
measured the acoplanarity distribution (in integrated form). In this way
theoretical predictions for the reaction e+e -*• e+e y can be compared with
experiment. Experimentally one defines

n,>(i|i • ) “ noio/n . ‘/2exp m m  tot (5/

where N(iji) is the total number of events with ip > üi . and N is the total_ + **■ + — m m  to t
number of e e e e events. The theoretical counterpart n0ED(<J>min) can be
calculated if one integrates expression (III-101) over the indicated region. The
results displayed in table 3a show excellent agreement between experiment and
theory.

Table 3a

Noncoplanarity-angle distribution

^min
nexp
(%)

nQED
(%)

5°
10°
20°

3.5 ± 1.3
2.6 ± 1.1
1.7 ± 0.9

3.6 ± 0.3
2.1 ± 0.3
1.1 ± 0.3
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IV.3. Mu pair production.
For the reaction e+e ■+■ p+p we give in table 4 twice the lowest order

cross section. Because of the symmetry of the cross section around 6 = 90
we only tabulate it for angles up to 90°.

Table 4

2do /dO for mu pair production, for different values of the
beam energy, p+^ (in GeV) and the scattering angle 0.

\ p+o
0 N.

1.0 2.0 3.0 5.0

5° 5.14 1.29 0.57 0.21
20° 4.86 1.22 0.54 0.20
40° 4.10 1.03 0.46 0.16
60° 3.24 0.81 0.36 0.13
85° 2.62 0.66 0.29 0.10
90° 2.61 0.65 0.29 0.10

We will first consider the case where the charges of the muons are not
measured. As for Bhabha scattering we allow a maximum acollinearity of 10 and
a threshold energy of 0.2 GeV. We find the following corrections for 6g. These
are symmetric around 0 “ 90 .

Table 5

The radiative corrections (in %) to mu pair production
(no charge measurement), for different values of the beam energy,
p+Q (in GeV), and the scattering angle 0; the acollinearity

angle C “ 10°, and the threshold energy E ^ “ 0.2 GeV.

1.0 2.0 3.0 5.0

0 \ 6A 5t 6A 6T fiA fiT 6A ÓT

5° -6.0 5.5±0.6 -7.0 6.610.7 -7.5 7.110.8 -8.2 8.010.8

20° -6.0 0.5±0.3 -7.0 0.710.4 -7.5 0.810.4 -8.2 0.910.5

40° -6.0 -2.7±0.2 -7.0 -2.810.2 -7.5 -2.910.2 -8.2 -2.910.3

60° -6.0 -4.3+0.1 -7.0 -4.610.1 -7.5 -4.810.1 -8.2 -5.010.2

90° “6.0 -5.110.1 -7.0 -5.510.1 -7.5 -5.710.1 -8.2 -5.910.1
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The numbers listed in the row 6^ are the corrections if one assumes the
validity of the soft photon approximation. In this case the maximum photon
energy is taken to be the energy corresponding to k̂  in the Dalitz plot of
fig. 6 (chapter 111).

The soft photon approximation yields a contribution which is (almost) in­
dependent of the angle 0, whereas the full contribution from hard photon emis­
sion changes this picture considerably. For small 0 hard photon emission gives
important contributions.

This can be understood as follows: if 0 is small, the region of strong
peaking of thé matrix element squared lies close to the border of the Dalitz
plot and hence a large part of it is in the allowed region of phase space.

If the charges of the muons are measured we will assume that also the
energies of the outgoing particles can be determined. We therefore assume that
an event contributes to the cross section if q+Q z p - e . In table 6, e is
taken such that the muons have at least 90% of the maximum energy. We tabulate
separately the corrections which are even in cos 0, (6g) and the corrections
which are odd in cos 0, (6^).

Table 6

The percentage corrections 6„ and 6 for mu pairs productiono D
for different values of the beam energy, p+Q (in GeV), and the

scattering angle 0; the threshold energy Eth = 0.9 p .

^ P + 0
e X

1.0 2 .0 3 0 5 .0
fiS 6D fiS 6d 6S fiD 6S 6d

5° - 10.0 14.0 - 11.6 15.8 - 12.6 16.4 - 13.7 16.6
20° -  9.8 8.0 - 11.4 8.1 - 12.4 8.1 - 13.6 8.2
40° -  9.2 4.3 - 10.8 4.3 - 11.7 4.3 - 12.9 4.3
60° -  8.2 2.2 -  9.7 2.2 - 10.7 2.2 - 11.7 2.2
85° -  6.6 0.3 -  7.8 0.3 -  8.5 0.3 -  9.7 0.3

(all numbers are ± 0.1)

In this case the shape of the allowed photon phase space is such that now around
9 = 90 the hard photons contribute considerably to the correction.

One may wonder whether approximate calculations reproduce these results.
As can be seen from table 5 the soft photon approximation differs considerably
from the exact calculation. Even if the soft photon expression (III-72) is
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v

i n t e g r a t e d  o v e r  th e  f u l l  p h a se  sp a c e  l a r g e  d i f f e r e n c e s  o c c u r .  I t  h a s  a l s o  b een

s u g g e s te d  t h a t  i t  w ould s u f f i c e  to  c o n s id e r  r a d i a t i o n  from  th e  e l e c t r o n s  o n ly .

I n  th e  c a s e  o f  no c h a rg e  d e t e c t io n  t h i s  ch an g es 6^ and 6^ up to  50%. In  t h i s

s p e c i f i c  s i t u a t i o n  th e s e  ch an g es a lm o s t c a n c e l ,  b u t  one co u ld  im ag in e  s i t u a t i o n s

in  w hich  o n ly  th e  i s o t r o p i c  p h a se  sp a c e  w ould  c o n t r i b u t e ,  and th e n  th e  changes

in  w ould  b e  c o n s id e r a b l e .
T

F i n a l l y  r e s u l t s  f o r  th e  a c o p la n a r i t y  a r e  p r e s e n te d  in  t a b l e  7 . We t a b u l a t e

2do/diji f o r  a  beam e n e rg y  o f  2 .0  GeV o th e r  c o n d i t io n s  a r e  th e  same as  f o r  Bhabha

s c a t t e r i n g .

T a b le  7

The a c o p la n a r i t y  d i s t r i b u t i o n  ( i n  nb) f o r  mu p a i r  p ro d u c t io n

f o r  a beam e n e rg y  o f  2 GeV, a th r e s h o ld  e n e rg y  o f

0 .2  GeV, 0 . = 4 5 ° , 0 -  135°.m in max

2 —d \J/

5 ° 1 .2 8

10° 0 . 4 6

20 ° 0 . 1 4

4 0 ° 0 . 0 4

6 0 ° 0 . 0 2

9 0 ° 0 .0 1

120° 0 .0 1

150° 0 . 0 2

180° 0 . 0 6

IV .4 . Two gamma p r o d u c t io n .

F o r th e  r e a c t i o n  e  e -*• yy  we p r e s e n t  a  t a b l e  o f  th e  lo w e s t o r d e r  c ro s s

s e c t i o n .  B ecau se  t h i s  c r o s s  s e c t i o n  i s  sy m m etric  a ro u n d  0 = 90 ( l i k e  i n  th e

muon c a s e )  o n ly  v a lu e s  o f  0 up to  90° a r e  t a b u l a t e d .

Then u s in g  th e  same c r i t e r i a  as f o r  Bhabha s c a t t e r i n g  we g iv e  th e  c o r r e c ­

t i o n s  in  t a b l e  9 .

F in a l ly  th e  a c o p la n a r i t y  d i s t r i b u t i o n  i s  g iv e n  i n  t a b l e  10. The c a l c u l a ­

t i o n s  f o r  t h i s  r e a c t i o n  h ave  b een  ta k e n  from  [ 9 ] .
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Table 8

The lowest order cross section (in nb) for two gamma production
for different values of the beam energy, p (in GeV).

and the scattering angle, 0.

339.9 151.1 54.39
83.45 20.86
19.91 0.80

2.16 0.96
5. 18 0.58

Table 9

The radiative corrections (in Z) for two gamma production
for different values of the beam energy, p+^ (in GeV) and the
scattering angle 0. The acollinearity angle 5 ■ 10°, and the

threshold energy E . = 0.2 GeV.th

6 N . 1.0 2.0 3.0 5.0

5° 11.3 ± 0.8 15.2 ± 1.0 17.7 ± 1.2 19.0 ± 1.4
20° -  0.1 ± 0.3 -  0.2 ± 0.4 -  0.3 ± 0.4 - 0.3 ± 0.4
40° - 4.2 + 0.2 - 4.6 ± 0.2 - 5.0 ± 0.2 - 5.2 ± 0.2
60° -  5.9 ± 0.1 -  6.4 ± 0.1 -  6.8 ± 0.1 - 7.3 ± 0.1
90° - 6.7 ± 0.1 - 7.4 ± 0.1 - 7.8 ± 0.1 - 8.3 ± 0.1

IV•5 4 Conelus ions.

For future Q.E.D. experiments with e e colliding beams at high energies
and accuracies at the level of a few percent, the full radiative corrections

3
to order a have to be taken into account. In particular when two body events
are selected by the criterion that they are back to back, quite hard photons
can be emitted. The exact matrix elements for hard photon emission have to
be used.
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Table 10

The a c o p la n a r i ty  d i s t r i b u t i o n  ( in  nb) f o r  two gamma p ro d u c tio n

f o r  a beam energy  o f 2 GeV, a th re s h o ld  energy  o f

0 .2  GeV, 0 . = 4 5 ° , and 0 = 135°.min max

f da/dijj

5° 1.94

10° 0 .77

20° 0 .32

40° 0 .1 5

60° 0.11

90° 0 .0 8

120° 0 .07

150° 0 .07

180° 0 .06

In  t h i s  t h e s i s  a f l e x i b l e  method i s  g iv e n  to  c a lc u la te  r a d ia t iv e  c o r re c t io n s

f o r  c o l l id in g  beam ex p e rim en ts . W ith in  t h i s  method d i f f e r e n t  ex p e rim en ta l

s i t u a t i o n s  can be e a s i l y  r e p re s e n te d .  T h is method has a c tu a l ly  been a p p lie d  in
a s p e c i f i c  experim en t (Bhabha s c a t t e r in g )  [2 ] .  The e x p e rim en ta l r e s u l t s  in d ic a te

th a t  a t  2 .0  GeV and 2 .5  GeV th e re  i s  a good agreem ent w ith  th e o ry .
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A P P E N D I X  A

A.1. In this appendix conventions, Feynman rules and cross section
formulae, used in fhis thesis are summarized.

Contravariant four-vectors are denoted by kU = (k , k1, k2, k3) = (k°, It) .
The diagonal elements of the metric tensor are given by g ^  = -gj j = -g ~

~®33 “ *» °tller elements are zero. The notation for inner products of
four—vectors and three—vectors is (pq) and p*q respectively. For derivativesg
we use 3 = t -tt •P 3xP

A.2. The spin -j fermions e and p are described by means of the Dirac
equation.

+ nO^(x) « 0. (A. 1)

The 4 x 4  matrices y satisfie the anti—commutation relations,

z p v, , |iv „ 0 p 0 p+ *.{y »y } = 2gK • li, y yMy ■ y p ) (a . 2)

where 11 is the unit matrix. For the contraction of four-vectors with y-matrices
we write furthermore we define y3 « iy y y2y3.

A specific representation can be given with the help of the 2 x 2  Pauli
matrices

(A. 3)

(A. 4)

) + means herm. conjugate.
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1 0.

'0 -i’

i 0. c3
1 0'
0 -1

We have (each entry is a 2 x 2 matrix)

0 - 11 o' k 0 o .'y *
.0 "n .

» Y “ kK 0 j
1,2,3.

In actual calculations we need the following trace formulae.



TrU -  4 ,

T r y 5 -  0,
T r 44 * 4 ( a b ) ,

T r 4 4 4 4 = 4 [ (a b ) ( c d )  + (ad) (be) -  ( a c ) ( b d ) ] ,

T r 4 j 4 2 • • ■* 2 n  “ T r * 2 n  * 2 n - T * ‘ * 2 * 1 ’
T r y 5 44 -  o,
T r y 5 4444 "  4iEaey5a“ becYd6’

(A. 5)

h e re  ea g  ̂ i s  the  t o t a l l y  a n t i - sy m m e tr ic  t e n s o r  (Eq j 2 3  = 0 *  Furtherm ore the
t r a c e  of  an odd number of  y ' s  d i s a p p e a r s .  I n  th e  r e d u c t io n  o f  p ro d u c ts  one
o f t e n  u s e s ,

Yy4YP “  -2 4 ,
Yy44yU “ 4 ( a b ) ,  (A. 6)

y )j444y11 = -2444.

The p la n e  wave s o lu t io n s  o f  th e  D irac  e q u a t io n  a r e  c h a r a c t e r i s e d  by th e  sp in o r s

u (p»s) and v ( p , s ) , s * 1 ,2 ,

u ( p , s ) ,m + co(p). J
v 2m ' P '0

m + m(p)

v ( p , s ) ^m + io(p) '  J
2m

r -► -►
— E I £ _  ^
m + uj(p)

*s

(A. 7)

io(p) = / p 2 + 2m

In th e s e  e x p r e s s io n s ,  <J>g a r e  e ig e n v e c to r s  o f  a^ w i th  e ig en v a lu es  + l ( s  * 1)

and - l ( s  “  2 ) .  The sp in o r s  u ( p , l )  and v ( p ,2 )  correspond  to  e l e c t r o n s  and p o s i ­

t ro n s  which have ( i n  t h e i r  r e s t  frame) a s p in  component +J in  th e  z - d i r e c t i o n .

The o th e r  two have s p in  component - J  a long  th e  z - d i r e c t i o n .
& 0The P a u l i  a d j o i n t  o f  a  s p in o r  i s  g iven  by t|i y . In  summing over  p o l a r i s a ­

t i o n s  we need

j  u ( p , s ) u ( p , s )  -  (4 + m)/2m ,
8 - 1
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(A. 8)s»]v(P»s)v(p,s) = -(-(( + m)/2m .

The fermion field operator is given by

* 0 0 ---- ^72 f d3p(-^“)i I b(?,s)u(?,s)e-i(px)(2ir) ' w(p) s“l

+ d+(p,s)v(p,s)ei p̂x  ̂ ,

P0 “ <o(p) .

The operators b, d, b , d are annihilation and creation operators for
trons and positrons fulfilling

{b(p,s), b+ (p',t')}+ = 6sgI63 (p - p') ,

{d(p,s), d+ (p',s')}+ = 6gg,S3 (p - p') .

All other anti-commutators vanish.
The propagator is given by

5F W  - ( d4p S (p)e-i(px> ,(2*rJ F

2

Vp) i(ti + m)2 2p - m  + it

A.3. The photon field operator is given by

AP0 0 ----i ep(t,X)[a(tx)e-i(kx) + a+(Ê,A)e
(2iry'1- J (2kQ)i A-0

where k - |k| .

The photon annihilation and creation operators a and a+ fulfil

[a(S,A), a+ (£’,A')] - -gU *«({ - S') ,

(A. 9)

elec-

(A.10)

(A.11)

i(kx).
J 9

(A. 12)

(A.13)
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all other commutators (also those with fermion operators) vanish.
The propagator is given by

Df (x ) ---- —  d4k Dp (k)e“l(kx)
V» (2tt)

Dp* (k)
”iguv

k2 + ie

The polarisation vectors are given by

(A.14)

eU (£,0) > (1,0,0,0) ,
ey (Ê,l) - (0,£(£,1)) , (A.,5)
ep (£,2) » (0,£(£,2)) ,
eU (Ê,3) = (0,£/|£|) ,

where £(£, 1), £(£,2) and k/|£| form an orthonormal set in three-space. For
sums over transverse polarisations, we may use

Ï eu (£,X)ev (£,X) -g,iv * (A-16)
A" 1

provided the photons are coupled to conserved currents, which is the case in

QED.

A.4. The scattering of particles is described by the invariant amplitude
M, which is a scalar under Lorentz transformations. In quantum electrodynamics,
the amplitude M is found if one sums the contributions of all graphs for a
specific process. He get

M - eM(1) + e2M (2) + .... (A-17)

where contains the contributions of graphs with k vertices.
In order to calculate e^M ^ we have the following rules•
1° For incoming fermions and outgoing anti-fermions we have the factors

u(p,s) p+

v(p,s) —
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2" For outgoing fermions and incoming anti-fermions we have the factors

u(p,s) i -
P+

v(p,s)

3 For incoming or outgoing photons we have a factor

ev (ïc,A)
k+

4° Internal fermion lines get

i(^ m) » m -»
p - m + ie p-»-

5° Internal photon lines get

“igUV »»»■!»♦*
,2 . k-*-k + ie

6° Vertices get a factor

7 Internal momenta are fixed by four—momentum conservation at the
vertices. Free momenta are integrated over. Each momentum integration gets a
factor (2ir]T .

8 Closed fermion loops get — Trace. The trace is to be taken over
spinor indices.

A.5. With the invariant amplitude we can calculate cross sections by means
of the formula

do “l “2 ,„,2/0 ,4.4,-----  -----  |M| (2ir) 6 (p. + P, -
u(p,) w(p2)

<lj " • • »<ln)df2fq,) ....dn(qn) (A.18)
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Here we assumed that the two incoming particles are fermions. The volume
elements have the following form

dfl(qj)

.3d q.
(2ir)J 2 q .0

.3m.a

if the i particle is a boson

if the i particle is a fermion.

2If polarisations are not measured, |M| has to be averaged over initial polari­
sations and summed over final polarisations.
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a p p e n d i x  b

B.l. In this appendix the evaluation of the Feynman integrals and the
bremsstrahlung integrals for the mu-pair case will be given. These integrals
can all be expressed in terms of logarithms and dilogarithms. The dilogarithm
is defined as follows [18].

dy, (z complex)
y (B.l)

Due to the multivaluedness of the integrand, this is a multivalued function.
We take a branch cut along the real axis from +1 to + «>.

The following integral (for which we write IK . in the following)

UfrQ.npy^y.)
fli log|y ~ |

y - y.
dy . (B.:"o y ' yi

(all arguments of U are real) can be expressed in terms of dilogarithms as
follows:

üij " RelLi2<-
n0 ' yi

>  -  L i 2 (
nl “ yi, + log|yi - yj| •

log| nl ~ yi.

n0 " yi
t i + j , (B.3)

üii “ i(los|nj - y±|)2 - i(l°g|n0 - y±|)2 .

B.2. The integral I.

Using the Feynman parametrisation and performing the k-integration, we
find

I - __________1_________
2(y2P^ + (1 - y)X2)

(B.A;
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In this expression we introduced

(1 - x)p+ - xp_ (B.5)

If we neglect terms of order X, the y integration yields
2

I * -iir
0 2p

12 2'

We now introduce a new variable i)> by

2 . 2s * 4m sin <J> , (0 < s < 4m ) •"> (0 < $ < 4)

(B.6)

(B.7)

For physical values of s, i.e. s > 4m we have to make an analytic con­
tinuation. In this physical region we find

♦ ” J{ir - i log b) ; (B.8)

where we introduced

1 - a a = (1 - 4m2/s)^1 + a

We now change integration variables in (B.6).

tg S2x - 1 tg $

With this substitution one easily finds

.2 fP-2iir
m sin 2<p

[♦ log f etg£de] .

(B.9)

(B.10)

(B.ll)

B.3. The integral I .
In the same way we arrived at (B.4) we find

I = -iirU
1 dx
o p2 Pxu ‘X

(B. 12)

If we now use the same substitutions as for I we immediately arrive at

56



(B.13)1 = I.A ; IAy Ay A
-2iïï̂ ij)
sin 2<(>

B.4. The integral 1yv
If we use the Feynman parametrisation and perform a shift in the k inte­

gration we find

2ydy [ dx | d"k
o Jo

. ..2 2 2. , 2 2 2
4 .  ië y v (k  ~ y  Px } + ig yvy px  + y  px y Pxv

,.2 2 2.3(k - y Px) (B. 14)

Here we used the fact that the symmetry of the integrand allowed the replacement
i 2k k ■* ig k • We now split up the integral in two terms.

I ‘ - 1 ^  + 1 ^yv yv yv

I0) - U  f'2ydy "yv * “ yv  J 0 d4k /v2 2 2x2(k - y Px)

r ( 2 )
1 ("I
2yd y .4. lgyvy2px + y2pxypxv

dx 1 d k ----~ 2----2 2,3(k - y px)
(B.15)

r ( 0The integral I'V is ultraviolet divergent. We "calculate" 1 ^  by sub-yv ° yv
tracting and adding an infinite constant.

1d4k
(k2 - A2)2

(B.16)

If we use the substitutions (B.7) and (B.10) the integrals I^1’2  ̂ can beyv
evaluated and we find

o
yv “  ^ y v 11» + 2i7r 0  "  *cotS *)] .

j(2) m "iff2 _ iir2d>
yv 8 “yv 2 . », y v „ z . i. - ■ - ■- y vm sin2i|) 2m sin <p

(B.17)
■2 . 2 (1 * ^cot8 lt’)p p

2, .2.where 1^ = I. + iff - iir log(m /A )

B.5. Vacuum polarization.
We will now look at the amplitude Mc defined in (III-34). From this
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expression we take the following integral.

nyv -iot
(p2’n2) 4 If3

d^k Trt' (? * U + m)y (-? + )t + m)]
(m+) (m_)

(B.18)

where (m+) were defined in (III-36). The integral (B.18) is divergent. Due to
these divergences it is not clear that Ir fulfils P̂ H**V * 0 as it should [3].
If we use the Pauli-Villars method of regularisation, gauge invariance can be
secured in all steps of the calculation [20].

We define

nyv , 2  2. N _yv, 2 2.
i-1

(B.19)

where the constants c. are chosen such thatl

N n , N 2 A
I  c. = 0, and £ c.m. - 0 ,
i-1 1 i-1 1 x

c. = 1, nr = m .
(B.20)

In the final result we let for i = 2 , ----N. By means of the
Feynman parameter trick and a shift in the k-integration we find

r \  r , 2P P - 2P P - g (P2 - P2 +m?-4k2)nyv -ia . N , ,4. y v yv yv °yv' x l 2 '

7? ̂  V *  J d " ------^ r p " - '  p~-m?'+ ie)2------

where P^ - (1 - 2x)P.

(B.21)

where
Reg 4(pV -  ĝ p2) n(1) + 4g‘JVn(2) ,

n (1) “ - 3  .? c. dx I d4k
4ir i-1 '0

8(x - x )
2 2 2 2 2(k + 4P (x - x ) - nr + ie)

l(2) - = %  ! c. ['dx
4ir i-1 j0

2 2 2 . 2, 4P (x - x ) - m. + k̂
2 2 2 2 2(k + 4P (x - x )  - mf + ie)

(B.22)

(B.23)

(2)Due to the conditions (B.20), n is identically zero. This can be seen by
using the following identities,
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N
E Cj

i-1  1
d4k

t l ,m ? ,k 2]

772  2~2(k -  m^)
. 2 N r . 2 „ 2, 2- ïir  1 c . L1 ,m. ,2m. J log  m.

i-1  1 1 1 l
(B .24)

As a consequence we have P^llJ^ -  0 . By th e  same argum ent as used f o r  th e

v e r te x  c o r r e c t io n ,  we o b ta in  th e  ren o rm a lize d  nyv by s u b tr a c t in g  nyv a t  th e

p o in t  P -  0 . In  t h i s  d i f f e r e n c e  th e  l im i t  m  ̂ -*■ ”  f o r  i  = 2 .— N can be taken
and we f in d ,  u s in g  (B .2 4 ),

nwv -  4 ( ? V -  gwvp 2)n ,
w ith

* f 1 2
11 ■ • " S in 2 dx(x  -  x2) lo g [ l  -  —  (x -  x2) ] .  (B.25)

4it '  0 m

I f  we now app ly  th e  s u b s t i tu t io n s  (B .7) and (B .1 0 ), (rem em bering th a t  4P2 -  s)
we can e a s i l y  e v a lu a te  II; we f in d

n “  + f  %  “  0  + - |c o tg 2<|>)(l -  (j>COtg <J>>}

W ith th e  e x p re s s io n  (B .8) f o r  if we can  w r i te

n * + f ' T + a(l  ' T)(T + log b)}

(B .26)

(B.27)

I f  we now look  a t  ( I I I - 3 4 )  and th e  d e f i n i t i o n  o f  nyv in  (B .18) we see  th a t  in

o rd e r  to  o b ta in  Mc we have to  m u lt ip ly  M w ith  - n .  The c o n t r ib u t io n  to  th e

c ro ss  s e c t io n  can th u s be o b ta in e d  by m u lt ip ly in g  do^/dfl by -2Ren.

B .6 . The in t e g r a l  G.

Using th e  Feynman p a ra m e tr is a t io n  and perfo rm ing
f in d

2 f l  r \
G -  - i x  dy dx y / ( y 2p2 + (1 -  y)X2) ,

J0 J q x

th e  k - in te g r a t io n ,  we

(B .28)

where now p^ -  Xp+ + (1 -  x )q + . A f te r  th e  y - in te g r a t io n ,  we o b ta in  in  th e  l im i t

ix
2 0 p

x . ,  x.
2

- i x
[ A ( s , t ) lo g  + B ( s , t ) ] , (B .29)

X*

*)
H ere we have to  use th e  f a c t  t h a t  Pyv (p +)Yy u(p_) -  Pv u (q_)yVv (q +) -  0 .
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w here

A ( s , t ) , B ( s , t )  -  f  ^ l o g  &
O p  ' 0  px  x

With t h e  h e l p  o f  t h e  f u n c t i o n s  I h .  we can  e v a l u a t e  B ( s , t ) .  We f i n d

. /  .. r w .  2 2x1" l  ,  i t - y 2 - m 2 - [ X ( t , m 2 , y 2) ] ^ iA ( s , t )  = [A ( t ,m  ,y  ) ]  2 l o g  |------- ^ ------- =------—  ■ ’
t  -  y -  m + [A (t ,m  ,u  ) ] 2

B ( s , t )  = A ( s , t )  lo g ( -—) + [X (t ,m 2 , y 2) ]  ^  2 p .U. . (0 ,1  , x .  ,x.
8 i , j - l  J •

w i t h  t h e  f u n c t i o n s  U^. d e f i n e d  i n  (B .2 )  and

Xj -  { t  + y 2 -  m2 + [ X ( t , y 2 ,m2) ] ^ } / 2 t ,

x 2 -  { t  + y 2 -  m2 -  [ X ( t , y 2 ,m2 ) ] ^ } / 2 t ,

P£ -  ( + 1 , - 1 ) .

2 2 2(Here A ( x ,y , z )  ■ x + y + z -  2xy -  2yz -  2 x z ) .

Thus

—^  lm G « -  J [A (s ,  t )  log(-4r) + B(s , t )  ] .
2n X

B .7 .  The i n t e g r a l  F.

S ta n d a r d  m ethods  a l l o w  us t o  w r i t e

F -  I . 2 f d x  ( ‘dy f ‘dz ?2.<p2 . F 2 > 2C)
J o  -*0 J o  (x + C)^w here

2 2  2 2 2 2 2 2 2
Y* = P (1 + 2yz - 4 y + 4 y  - 4 y z + y z ) + y z Q  ,

Q = (1 -  x) Q + xA ,

C = P (2yz -  1) .

The y i n t e g r a t i o n  i s  r e a d i l y  d on e ,  y i e l d i n g

( B .30)

(B.31 )

) .

(B .32)

(B .33)

(B.34)
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F - iir dz z {
1
d
O

i d
+ iir I dx dz z {

22 , .. , 2 2, 2 2 . ,Z Px “ s(z - 1) 2z Pxlz Px - (z - l)s]

s(2 - z)
2 2

z P„
(B.35)

log
2[z2p2 - (z - l)s]2 s(z - 1)

Again, p has been defined following eq. (B.28). (Note that this p differsx x
from the p used in the calculation of the vertex integrals.)

Let us call the first term in eq. (B.35) Aj and the other one A^. For Aj
the z-integration gives

1
in—  log —  “ ~ 2~  B(s»t)

O p  sX
with the help of (B.29) it also turns out that

3

so that
A 2  “  ~  ~ T  A ( s , t )  »

In F * | B(s,t)

(B.36)

(B.37)

(B.38)

B.8. The integrals Hp, and H-.
The integral is readily written in the form

H “ -iïïU .
1 rl yP + y2p'
dx d y ---- P -2 2 2 *o y px + (i ■ y)x

where
xp+ ♦ (1 *• x)q+, p' - xA + (1 - x)Q - P

(B.39)

(B.40)

Separating the numerator in the three vectors and doing the y-integration, we
obtain

P,,[G ♦ iir2 [ 4f] f -iir2Q f (l. ~,x)dx (B.41)
0 P„ y ^0 p2rx

Repeated use of the expression for A(s,t) gives

2iri'
— Im Hp “ — ^  lm G + ^A(s,t) ,

2ir

— 2 lm H - -JA (s,t) ,
2it
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where
— 9 Im Hn “ lA(s,t) - A (s,t)] ,2 u w x

Ax(s,t) * xdx r, .m. 2 . 2 2.., .— 5- = U°g(-) + (t + vi - m )A(s,t)]/2t
0 Px

(B.43)

Interchanging m and y in A^ gives A - A^, exhibiting the symmetry in and H-.

B.9. The integrals F. _ and G.6 A,Q A,Q
It is clear from the definition of these integrals that and Gq can be

obtained from F. and G. by replacing m -* y. It thus suffices to calculate FA A A
and G.. One easily proves that

-iïï dx I dy 2y/[y2(l - 2x)2P2 - y2P2 + (1 - y2)m2 - ie] .
(B.44)

The x-integration yields
. 2-ITT /l - a((l - y)/y)2 - 1
2P2 0 y/l - a((l - y)/y)2 /l - a((l - y)/y)2 + 1

2 . 2 .  . (B.45)where a = (m - ie)/P . It is profitable now to assume a < 0, so that after­
wards an analytic continuation has to be made. A change of variables leads to

~  Im F - --- ~--T
2ir2 A s(l - B2)

dz log z
0 z2 + 2z[(l + 32)/(l - g2)] + 1

(B.46)

6 = 0 -  m2/P2)*,

which can readily be evaluated in terms of dilogarithms to yield

- 7  Im FA ■ [Li2((g - 1)/(B + 1) - Li2((3 + 0/(3 - D)]/2s3 .
(B.47)

From the definition of G. followsA

GA “ V®2 + 2{l d4k/(+)<~) " I d4k/(A)(+)}/s32 , (B.48)

which eventually leads to
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> im ga 1 > Im PA 1 .
2ir (3 2 ir sg m

B.10. The bremsstrahlung integral.
Using the Feynman trick we find

d3k 1

|ï|<k, k 0  (p+k) (P_fc) J 0
.3. 1d k ----

(pxk)
2 *

_̂ 2 2
with k^ = v k  + X and where px was defined in (B.40). Performing
gration and omitting terms of order X gives

R = 2if dx[a(x)log(-^-)2 + c(x)] ,
with

a(x) = (pxQ - px )

c (x) - a(x) log px0 'Px '

Px0 + IpxI
Noting that p = E and that

2 2 2(PxPjp = t(x - x ) + | i ( l - x ) + m x  ,

we find for the integral dx a(x), the function A(s,t) which was
(B.31). 0

The integral of c(x) is somewhat more involved. Going over to
integration variable y, defined by

[-tx + (t + p2 - m 2)x + E2 - y2]^/E « y - x(-t)^/E ,

the integral of c(x) can be evaluated as

rl
C(s,t)

We have introduced the symbols

2 o 1 ^
dx c (x) - [X(t,p ,m ) ]2 Z ei5.U(n0 ,n1,y.,:

0 i,j=l J 1

( + 1 , - 1 , - 1 , + 1 ) , = (-'1,-1,♦!,♦!) ,

(B.49)

(B.50)

the Is-inte-

(B.51)

(B.52)

(B.53)

given in

the new

(B.54)

ir.) . (B.55)
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nQ = (1 - U2/E2)i , n, - (1 - m2/ r V  + (-t) ̂ /E

y, “ -1 - {t + u2 - m2 - [X(t,vi2,m2)] ̂ }/2E(-t) ̂ ,

y2 = “1 “ (t + y2 - m2 + [X(t, 2,m2)] ̂ }/2E(-t) ̂ ,

y3 “ yl + 2 »

y4 = y2 + 2 "

(B.56)

Putting all this together we have

2kl 2R = 2ir[A(s,t)log(-^-) + C(s,t)] (B.57)

Using these expressions we can calculate all the integrals occurring in
(111-76) and (IXI-79).
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A P P E N D I X  C

In this appendix, the explicit expressions for

Fi .(p+,p_,q+,q_,k) - I N^N.
J spins J

(C.l)

are given.
In fact, several relations among the functions F^. hold, such that it

suffices to know only three of them to know them all, e.g., j, F]2 and F^.
From the reality of F^j, it follows that

F = Fij ji (C.2)

Since in the traces of eq. (C.l) odd powers of m (or p) are always combined with
an odd number of y matrices, and, therefore, vanish, we can replace m by -m
(or p by -p) without changing anything. The following relations are then
obtained:

F22^P+,P-,q+,q-,k) “ Fn(P-*P+»<l+><i->k) *

F14̂ P+,P-,q+,q-,k> “ ~Fi3(P+»P_»'l_»<l+«k) »
,, (C.3)

F23(p+>p_»q+>q_»k) = -F 13(p_»p+»q+»q_,k) ,

F24^p+’p-,q+ ,q- ,k) ” F13(P->P+» >*1+ >k) •

Finally, from the similarity between the muon and the electron part, it follows
that

F33(P+»P_><l+.«l_»k) “ Fn (q+»q_»p+»p_.-k) ,

F44(p+»P_.q+.q_»k) “ F22^q+,q- ,P+’P-,-k  ̂ * (C.4)

F34^p+ ’p- , q + ,q - ’k ) “ F i 2 (q+,q - ' p+»P-*“k  ̂ •
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The explicit expressions for Fjj, and are

m2p2Fn  = -[4m2 2 (p+q+) (p_q_) + 2(p+q_) (p_q+)

“ s' (p+p_) - s (q+q_) + s s' ]

+ [4m2 + 4(kp_)] [2(p+q+)(kq_) + 2(p+q_)(kq+)

” 2(q+q_)(kp+) + s'(kp+)]

- 4m2(kp_)[2(q+q_) - 2s'] ,

m2p2Fj 2 * ^(P+P_)[2(p+q+)(P_q_) ♦ 2(p+q_)(p_q+)

~ S'(P+P_) “ s(q+q_) + s s']

- 2(p+p_)[2(P,q+)(kq_) + 2(P'q_)(kq+)

~ 2(q+q_)(kP')]

- 2(kP')[2(p+q+)(p_q_) + 2(p+q_)(p_q+)

- 8(q+q_) + s s' - 2m2y2] (C.5)

- 8m2(kq+)(kq_) + 8(kp+)(p_q+(p_q_)

+ 8(kp_)(p+q+)(p+q_) ,

m2y2FJ3 = - [4(p_q_) - 2(kq_) + 2(kp_)]

[2(p+q+)(p_q_) + 2(p+q_)(p_q+) + m2s' + y2s]

+ 2(p_q_) [2(p+q+) (kq_) + 2(p+q_)(kq+) + 2y2(kp+)

“ 2(p+q+)(kp_) - 2(p_q+)(kp+) - 2m2(kq+)]

- 2(kp_)[2y2(p+q+) + s'(p+q_)]

+ 2(kq_)[2m2(p+q+) + s(p_q+)]

+ 8(p+q+)(kp_)(kq_) + 4m2(kq+)(kq_)

+ 4y2(kp+)(kp_) ,

with

P' * P+ + P_ * 2P .

•p 2
With these expressions, one can now calculate ï |m | of eq.(IXI-70). We

have verified that, in the charge symmetric y y case, they lead to an expres­
sion which coincides with that recently obtained by D'Ettore Piazzoli [19].
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A P P E N D I X  D

In order to derive eq. (III-95), one has to solve for q from eq. (III-86) when
cos 6 “ z and

q-0 “  P0 q+0 ~  k  '

By introducing the variable x = q+Qq_0, one finds the equation

x2(l - z2) - 2x(5 + z2p2) + 52 + z2y2(b2 - y2) - 0 ,

with the solutions

9 t2 j. 2 2/v2 2\ 1, r 2 E + z u (b ~ u ) i ix - Y ± [y ~ ------- =— *-5----— ']1 . (D.3)
1 - z

The quantities Y» £> and b have been defined in eqs. (III-96) and (III-97)
From the definition of x and eq. (D.l), one arrives at

(D.l)

(D.2)

2q+oqlr> - b q n + y - [Y2 - i - t 8^ < b^ - ^ ) l*
2 2 2

- - ' b

21 - z
(D.4)

By examining the limit u -*■ 0, one finds that the lower sign in eq. (D.4)
has to be taken.
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S A M E N V A T T I N G

. . 3In dit proefschrift worden de werkzame doorsneden gegeven tot orde a
van de processen

+ -e e + n  ,
+ - + -e e e e ,
+ - + -e e p p .

Kennis van deze werkzame doorsneden is noodzakelijk als men de theorie
van electromagnetische interacties (quantum electrodynamics) wil toetsen met
behulp van experimenten waarbij men electron- en positronbundels laat botsen.

De theoretische werkzame doorsneden bestaan uit twee bijdragen met een
o

verschillend karakter. In de eerste plaats worden tot op orde a bijdragen
gegeven voor bovengenoemde reacties. Deze bijdragen zijn divergent. De diver­
gentie wordt veroorzaakt doordat de massa van het foton nul is en wordt infra­
rood divergentie genoemd.

Omdat in de genoemde reacties geladen deeltjes versneld worden, kunnen de
reacties nooit zuiver „elastisch" zijn en moeten zij vergezeld gaan van de
uitzending van extra fotonen (Bremsstrahlung). Deze fotonen kunnen een wille­
keurig kleine energie hebben en het is daarom experimenteel niet mogelijk om
onderscheid te maken tussen b.v. de reactie e e -*■ p V en de reactie e+e
+ -U V Y.

Om nu op zinvolle wijze experiment en theorie te vergelijken, moet bij de
werkzame doorsnede van het proces zonder extra foton emissie de werkzame door­
snede gevoegd worden van de reactie met foton emissie. Ook deze bijdrage is
infrarood divergent en wel zodanig dat in de som deze divergenties juist tegen
elkaar wegvallen. Een probleem is nu om uitgaande van een specifieke experimen­
tele situatie te bepalen welke fotonen niet worden gedetecteerd.

In hoofdstuk II worden enige opmerkingen gemaakt, over electromagnetische
interacties en worden in laagste orde de werkzame doorsneden voor de drie reac­
ties gegeven. In hoofdstuk III worden voor het proces e+e ■* p+p de berekeningen

• 3gegeven van de botsingsdoorsnede tot op orde a terwijl hier bovendien een
flexibel formalisme wordt ontwikkeld waarmee de invloed van experimentele con­
dities op de waarneembaarheid van Bremsstrahlung fotonen kan worden geanalyseerd.

69



In hoofdstuk IV worden resultaten van numerieke berekeningen gegeven. Ook worden
hier voor het proces e e -*■ e+e (Bhabha verstrooiing) de theoretische werkzame
doorsneden vergeleken met recente experimentele gegevens. Hier blijkt dat er
een zeer goede overeenstemming is tussen experiment en theorie.
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De tekeningen in dit proefschrift werden vervaardigd door de heer
W.F. Tegelaar, het typewerk werd op snelle en accurate wijze verzorgd door
mevr. E. de Haas-Walraven.

De „Nederlandse Organisatie voor Zuiver Wetenschappelijk Onderzoek"
(ZWO), stelde de auteur instaat om in 1971 de zomerschool te Les Houches
te bezoeken.
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