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Chapter I

Outline

The observation of jots at the PP collider in CERN by the UA1 and UA2
experiments [1] made it possible to interpret and organize the experimental data
in a very clear and direct way. Jets are streams of hadrons moving more or less in
the same direction. They can be understood as a result of large angle scattering
of partons. These partons are the constituents of hadrons and are either qtiarks
or gluons. Each outgoing parton which originates from such a large angle collision
evolves into an observable jt-t through the mechanism of fragmentation. As long as
one is interested in the global properties of jets, such as for example energy content
or angular distributions, one can identify the outgoing parton with the jet. This
viewpoint gives a very direct interpretation of the theoretical model in terms of
experimental observables [2].

The model consists of two distinct parts. The first part describes the properties
of the parton within the hadrons, such as momentum distributions of the partons.
These distributions are the input parameters for the second part of the model. This
describes the actual collision of two individual partons, each from one of the colliding
hadrons. The interaction between these partons is described by Quantum Chromo
Dynamics (QCD). The description of the partons within the hadron belongs to the
realm of nonperturbative QCD, while the actual scattering process is described by
perturbative QCD. As one can see the study of jets at the colliders is a direct test of
the QCD description of the strong interactions. When one is also interested in the
hadron contents of jets one adds to the above model another part, which describes
the evolution of the outgoing partons into jets.

Another important reason to study jets is given by the fact that any new physics,
such as the detection of the top quark or the Higgs particle, is done by looking at
the decay products of these heavy particles. The decay products are leptons and
partons, which evolve into jets. The res»ilting experimental signal can be mimicked
by other, more conventional processes which give exactly the same final state [3]. An
example is the case where the top quark is heavier than the W mass. It is possible
that in a PP collision a top quark pair is produced. These quarks do not evolve into
jets because of their large mass, instead they decay via electroweak interactions into
a final state with jets and/or leptons. Other processes, the background processes,
can easily reproduce the same final state. So an important isstie is how to look
for specific properties of the signal produced by the b quarks. For instance, one
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considers the invariant mass distribution of the observed jets. One can then try to
apply cuts on the signal which reduce the background in favour of the top quark
signal [4]. Another important example is the search for the Higgs particle. Again
the background processes threaten the ability to observe this particle, and all kinds
of cuts must be applied to reduce this background with respect to that of the Higgs
boson signal [5].

From the above it is clear that calculations of multi jet final states are crucial
for the experiments at current and future colliders, especially with the increasing
beam energies of the colliders. Any new and interesting physics is hidden in a
background of multi jet final states, so it is important to be able to calculate the
background processes. Unfortunately the calculations of such background processes
are complicated. In this thesis we will study and develop methods to calculate these
multi jet final states. In chap. 2 the parton model is described, the application
of perturbative calculations is given and the shortcomings of the approach are
discussed. Furthermore the difficulties in evaluating the processes are discussed
following the historical development of the calculational methods. In chap. 3 we
introduce our basic calculational tool, the Weyl-van der Waerden spinor calculus.
This technique makes optimal use of the fact that in our calculations all partons are
taken massless. This reduces a lot of algebra which is necessary in more conventional
spinor calculus. The developed spinor calculus will be applied in chaps. 5, 6, 7
and 8, where the actual calculations of matrix elements are carried out. Chap. 4
introduces the recursion relations. These relations form a new technique, the basis
for calculating multi parton matrix elements. In the next four chapters the recursive
formulae will be applied to obtain relevant results. Firstly in chap. 5 the so called
Parke-Taylor conjecture [6] and related conjectures are proven. The Parke-Taylor
conjecture gives the matrix element for the scattering of two gluons to an arbitrary
number of gluons for special helicity configurations of the gluons. The validity of
this conjecture is important because approximate formulae for multi gluon processes
are based on it [7]. The proof is extended to processes involving a quark pair with
or without a vector boson. In chap. 6 we examine the soft gluon behaviour of multi
parton processes. A number of factorization properties are proven for scattering
amplitudes with an arbitrary number of gluons. These proofs make extensive use of
the recursive techniques developed in the previous chapters. The subject of chaps.
7 and 8 is the explicit calculation of multi parton helicity amplitudes. Chap. 7 is
concerned with n-gluon scattering, n < 8, while in chap. 8 the process involving a
vector boson and up to 5 partons is calculated.
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Chapter II

Introduction

In this chapter we explain in sec. 1 the for this thesis relevant part of the
theoretical model for jet phenomena. Also the necessity to apply phase space cuts
on the outgoing particles is discussed. These cuts are closely related to the jet
definitions and detector properties of the experiment. The second section gives a
historical overview of the methods used to calculate multi parton processes. The
problems encountered in such calculations will become clear from this survey.

1 The theoretical model

As already explained in the outline the model consists of two parts. The first part
describes the parton inside the hadrons [1], while the second part contains the actual
scattering of two partons into outgoing particles [2].

We will explain the model by giving the formula for the cross section of a PP
collision and examine the details by looking at different aspects of this expression.
The differential cross section for a PP collision at a beam energy \/s is given by

The measure for the probability of finding a parton of type i with momentum
fraction x of the hadron H is given by the structure function i^H(x, Q2). Therefore
formula (1.1) describes the collision of two partons, the active partons during a PP
collision. As can be seen from the formula it is assumed that during the parton
parton collision there is no interaction with the other partons, the spectator quarks.
This is only justified if the collision takes place at a small time scale or equivalently
at a high momentum transfer. This is exactly the type of collisions we want to
study, because the jets are a result of high momentum transfer scattering. Only
comparison with experiment can justify the above approximation. The summation
in eq. (1.1) runs over all types of partons and an integration is performed over all
possible momentum fractions.

The quantity (Tij(xiX2s) is the parton cross section at the available energy xAxis
for the partons. Up to a normalization constant, which contains statistical and
phase space factors, the parton cross section is given by the matrix element squared



denoted by \M\2. The calculation and properties of the matrix element M. for multi
part on final states is the subject of this thesis. The differential dPS stands for the
phase space variables of the outgoing particles. The matrix element squared also
contains the coupling constant (*s(Q2). This coupling constant depends, just as the
structure functions, on the scale Q2 at which the parton collision takes place. Since
QCD is an asymptotic free theory the coupling constant has the important property
that as(Q2) —> 0 as Q2 —> oo [3]. Because we are looking at large momentum
transfer events, i.e. a large Q2, we can use perturbative QCD to calculate the
parton cross section. At the CERN collider, with ^/s = C30 GeV, it was found that
the typical value of as — 0.2 for "jetty" final states.

To clarify the necessity of phase space cuts we will look at a specific process,
the scattering of 2 gluons into (n — 2) gluons or in other words n-gluon scattering.
The 4-gluon scattering at tree level, i.e. no loops included, is the lowest order
process, being of order Q | [4]. To calculate the next order in ns of the cross
section there are contributions coming from 4-gluon scattering, now including loop
contributions, and from 5-gluon scattering at tree level approximation [5]. These
two contributions are closely related as we will explain. The loop contribution to
the 4-gluon scattering will contain divergencies. The ultraviolet divergencies can be
absorbed in the coupling constant renormalization. Still there will be divergencies
left. These divergencies are related to the collinear and infrared singularities of
the 5-gluon matrix element. The divergencies occur when two gluons are collineair
or the energy of one of the outgoing gluons becomes zero. In the language of the
experiment this would mean two outgoing gluons are inside one jet, the jet is too
close to the beam to be observed or a jet is too soft to be observed by the detector.
The consequence is that not all 5-gluon scattering events will be observed as a 3-jet
event, but rather as a 2-jet final state. Thus a part of the 5-gluon cross section must
be added to the 4-gluon loop correction. The result is that the infrared singularities
cancel [6] whereas the initial and the final state collineair divergencies remain. The
latter type of singularities have to be absorbed in the initial parton distribution
function or final state fragmentation function respectively. This procedure goes
under the historical name of mass factorization [7]. Finally we are left with a finite
answer.

As is clear from the above the resulting cross section will depend on how a jet
is defined, for example what is the minimal separation angle between two outgoing
gluons to evolve into two separate observable jets. These jet definitions have to
be translated into phase spac e cuts which mimic the experimental situation as well
as possible. For instance, one can choose a minimal separation angle between the
gluons and a minimal transverse energy for an outgoing gluon. These cuts make
a separation in the phase space of 5-gluon scattering. On the one hand we have
events which do not fulfil the phase space cuts and are added to the higher order
correction of the 2 jet cross «ection. On the other hand we have events *vhich do
fulfil the cuts, adding to the lowest order contribution of the 3 jet cross section. We
will be interested in these lowest order tree level contributions to a specific process.

The fact that we limit ourselves to tree level calculations has important conse-
quences for the results obtained from these calculations. In higher order calculations



it is generally found that the corrections to tree level calculations only affect the
overall normalization of the cross sections and not the shape of distributions. Fur-
thermore the inclusion of higher order contributions reduces the dependence on the
scale Q2. This scale has to be chosen and depends on the prrtess one is consider-
ing. It is not always clear what the correct scale choice is. It is found that for the
n-gluon scattering the best choice for Q2 is a constant times the average transverse
momentum squared of the outgoing jets. The higher order terms reduce the effect
of this scale choice and thus making the answer, especially the normalization, more
reliable. When the number of outgoing jets is large this problem becomes acute, be-
cause the coupling constant is raised to a high power. For instance for the n-gluon
scattering amplitude the coupling constant is given by a j ~ 2 .

Because we limit ourselves to tree level calculations we must keep this in mind
whenever we want to compare the results with experiment. We must always be
aware of the fact that the overall normalization is not correct and that the result
depends strongly on the choice of the scale Q2. One can reduce these uncertainties
by looking at ratios of cross sections or by comparing differential cross sections with
the experimental data with the overall normalization as a free parameter. Let us
look at an example of a ratio of cross sections and compare the tree level calculation
with the experimental data. We define the quantity

for which the UA1 collaboration has presented experimental values [8]. The cross
section <T( W + n jets) stands for the production of a W vector boson in association
with n jets. We can compare the experimental results with the theoretical prediction
based on the tree level calculations of chap. 8 for n up to three. These results are
also given in fig. 2.1 together with the theoretical uncertainty which results from
the different scale choices and structure functions [9]. As can be seen from the
figure there is a broad agreement between experiment and theory.

To give an idea of the normalization uncertainties of tree level calculations one
has introduced the so called A'-factor [10]. This factor gives the constant by which
the tree level calculation must be multiplied to find the correct answer. The factor
depends of course on the specific process under consideration, the chosen scale,
beam energies, etc. For example in the case of four jet production at CERN the
A'-factor found from comparing experiment with the tree level calculation is given
by A' = 1.35 ± 0.08. Multiplying the tree level predictions with this factor brings
the theory in agreement with all kinds of experimental distributions and total event
rate for the 4 jet process [11].

The calculation of the higher order terms is complicated, for instance for the
n-gluon scattering only the first order correction is known to the 4-gluon process
[5]. The calculation of tree level amplitudes can be seen as a first step towards
complete calculation of a specific order in the coupling constant. Still the results
of the tree level calculations are relevant for the experiment as long as one keeps in
mind the above described uncertainties.
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Fig. 2 .1 . MuItipKcity of jets /„ as function of n. The shaded areas give the
theoretical predictions (including the uncertainties).



2 A historical review of the calculations

At first sight one could think that the calculation of tree level amplitudes is simply
the combining of the vertices given by the Feynmun rules into all possible con-
tributing diagrams for a given process. To clarify the problems one encounters we
will look at the historical development of the evaluation of n-gluon scattering. As
we will see the adding of a parton to this process necessitates the development of
new techniques in order to control the algebraic problems. The reasons for this are
twofold, first by adding a gluon to a process the number of Feynman diagrams is
increased by an order in magnitude [12]. On top of this each diagram in itself will be
build up of more and more vertices. Each vertex in itself is a complicated object, for
instance the 3-gluon vertex contains six terms. So putting these vertices together
to construct a diagram gives an explosive growth in the number of terms contained
in each diagram. Looking at these vertices another problem becomes clear. This is
that apart from a space-time part, i.e. the momenta and metric tensors, the vertices
also contain a colour part. These are a consequence of the non-abelian character of
the theory. Controlling these colour structures, which increases in complexity with
the adding of partons, is an important part of the problem.

We will now look at the history of the calculation of rc-gluon scattering. For
pure partonic processes the n-gluon matrix element is the process with the largest
number of Feynman diagrams. Furthermore it consists only of 3- and 4-gluon
vertices. As such it is a key process. If one succeeds to calculate the n-gluon
process, the processes where one replaces gluons with quarks are easily obtained
by applying the same techniques developed for the calculation of the pure gluonic
amplitude.

The first calculation was 4-gluon scattering [4] as early as 1978. These calcula-
tions where motivated to explain high transverse momentum production of hadrons
at the PP collider (one assumed the transverse momentum could be high enough
to apply pertubative QCD). The 4-gluon matrix element consists of four diagrams

(2.1)

where the sum runs over all different permutations of the external legs of the dia-
gram. The calculation was done with the standard spin summation technique. This
means one calculates \M\2 by summing over all the polarizations of the external
states. So one has to consider 4 x 4 = 16 terms at one time. The spin and colour
averaged matrix element squared turns out to be

with s, t and « the Mandelstam variables of a 2 —• 2 scattering process. The gauge
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group was choosen to be ST/(3) and g is given by the relation

A complication in calculating the matrix element squared with the above method is
the occurence of non-physical longitudinal components of the gluons. These com-
ponents have to be removed. The usual method is the so called ghost subtraction,
i.e. by adding some new Feynman rules for ghosts the longitudinal components are
removed.

In 1980 the 5-gluon scattering relevant for 3 jet production was calculated [13].
The finding of 3-jet events at PETRA [14] was a strong stimulus for these calcula-
tions. From the discovery of jets at the e+e~ colliders one realized that at the PP
colliders one should also see jets with the increased energy in the forthcoming ex-
periments at CERN. The methods used in ref. [13] are the same as for the 4-gluon
case, only now 25 diagrams are contributing

= W ) > - L H \+ y 0 •A<(1,2,3,4,5) = W ) > - L H \ + y 0 • (2.4)

So for the evaluation of |A4|2 one had to consider 25 x 25 = 625 complicated terms
at the same time. Moreover a diagram with three 3-vertices contains 63 = 216
terms, so the square of such a diagram contains 2162 = 46656 separate terms. Of
course a lot of terms will be the same, but it is clear from the above numbers that
one had to rely on algebraic manipulation programs to perform the calculation.
As a result the final answer is cumbersome and long, but it can be fitted into a
computer program in order to apply it phenomenologically. It is obvious one could
not proceed this way for the calculation of 6-gluon scattering. One year later, in
1981, the CALCUL collaboration turned their attention to the 5-parton scattering
amplitudes and found compact expressions [15]. These results can be most easily
obtained by using helicity amplitudes and an appropriate choice of polarization
vectors [16]. We will give the essential points of the method here, in chap. 3 we will
come back to it in more detail because it is one of the basic tools to calculate multi
gluon matrix elements. The helicity method consists of contracting all external
gluon states in the Feynman diagrams with their corresponding helicity vector. The
first consequence is that one can evaluate and simplify the matrix element before
squaring (looking at 25 diagrams is easier than considering 252 squared diagrams).
The second advantage is that no ghosts are needed for removal of longitudinal
components of the gluon polarization since the helicity states are transverse. The
last point is that one still has some freedom to choose the helicity vectors. By
making clever choices, i.e. make a specific gauge choice, one can reduce the number
of contributing diagrams (some diagrams will give a zero result in the specific chosen
gauge) and the number of terms in each diagram can be reduced considerably. With
the helicity method it is not necessary to use an algebraic manipulation program
because of the enormous reduction in the number of terms one has to manipulate.
By using the helicity formalism a very compact answer is readily obtained for the
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spin and colour averaged squared matrix element of 5-gluon scattering

• A',) J '
(2.5)

where N is the number of colours.
The finding of jets at the PP collider in CERN was a strong motivation to

calculate the four jet final state. It is interesting both as a test for QCD and as a
background process to new physics. The 6-parton matrix elements were calculated
[17,18] using the improved CALCUL helicity formalism [19] (i.e. a specific phase for
the polarization vectors is used) and supersymmetric relations between processes
with different partons [17]. The number of diagrams for the 6-gluon matrix element
is 220 and the matrix element is given by

M(l,2,3,4,5,6) = £

The improved CALCUL method and supersymmetry were not sufficient to find a
compact and presentable analytic expression. One could write computer programs
fast enough for phenomenological applications. Considering that the next step,
7-gluon scattering, consists of 2485 diagrams it was clear this method could not
be extended to more partons. Not even if one limites oneself to the writing of a
computer program which calculates the cross section numerically.

The solution to obtain compact answers lies, somewhat surprisingly, in the
colour structure of the process [20]. The 6-gluon amplitude calculated in this man-
ner will be discussed in detail in chap. 7. The treatment of the colour structure
in the matrix element can be done very systematical by projecting each colour
structure on the so called trace base. The resulting form of the n-gluon amplitude
is

M(l,2,.:.,n)=2ign-2 £ Tr(T"-Taj T-)C(1,2 n) , (2.7)
P(12-n-l)

as will be explained in chap. 4. The sum runs over all permutations of labels
1 through (n - 1). The generator of the SU(N) gauge group in the fundamental
representation is given by Tai. Its labels a, represent the colour of the corresponding
gluon. The function C(l ,2 , . . . ,n) is called the subamplitude and does not contain
any colour factors. This subamplitude possesses a number of properties which
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makes it an interesting and fundamental object to study and calculate. First of all
the subamplitude is cyclic invariant and has a reflective property, this in contrast
to the amplitude which is invariant under all permutations of the gluons. The
most important property is that the subamplitude is gauge invariant i.e. one is
free to choose the polarization of the external gluons. Another nice feature of the
colour decomposition in eq. (2.7) is that it is orthogonal up to leading order in the
number of colours JV, by which we mean that the amplitude squared, summed over
the number of colours of the gluons is given by

\P(12-n-l)

(2.8)
Sc instead of calculating the full amplitude one removes the colours of the diagrams
by projecting them on the trace base of eq. (2.7) and calculate the subamplitude
by combining the contributing Feynman diagrams. This reduces the number of
diagrams to be evaluated greatly. For instance for 6-gluon scattering we only have to
evaluate C(l, 2,3,4,5,6) which consists of 32 diagrams instead of the 220 diagrams
of the full amplitude. Furthermore, as can be expected from the factorial summation
in eq. (2.7), the number of contributing Feynman diagrams to a subamplitude will
only grow slowly with increasing number of external gluons compared with the
explosive growth of diagrams for the full amplitude.

From this point on progress was made in two directions. Firstly through recur-
sion relations [21] which describes the exact amplitude by recursivity in the number
of gluons, the subject of chap. 4. Secondly one has developed approximative for-
mulae for n-gluon cross sections [22]. Though the results for the approximations
are promising, they lack the ability to estimate the error and it is not clear how
to obtain improvements in the approximation, i.e. it is not a truncated series for
which the full series converges to the exact answer.

This concludes the historical overview for n-gluon scattering. As has become
clear from the above it is far from trivial getting numbers out of the Feynman rules
which can be compared with the experiment. For adding an additional gluon it is
necessary to develop a new technique to control the algebraic problems.

References

[1] R.P. Feynman, "Photon Hadron Interactions", Benjamin, New York, 1972;
W.L. van Neerven, "Parton Models", lecture notes, Nijmegen University, 1978;
F.E. Close, "An Introduction to Quarks and Partons", Academic Press, 1979.

[2] W. Marciano and H. Pagels, Phys. Rep. 36 (1978) 137;
A.J. Buras, Rev. Mod. Phys. 52 (1980) 199;
E. Reya, Phys. Rep. 69 (1981) 195;
G. AltareUi, Phys. Rep. 81 (1982) 1.

12



[3] A. Peterman. Phys. Rep. 53 (1979) 157;
A.J. Buras, Rev. Mod. Phys. 52 (1980) 199.

[4] B.L. Combridge, J. Kripfganz and J. Ranft, Phys. Lett. 70B (1977) 234;
R. Cutler and D. Sivers, Phys. Rev. D17 (1978) 196.

[5] R.K. Ellis and J.C. Sexton, Nucl. Phys. B269 (1986) 445;
F. Aversa, P. Chiappetta, M. Greco and J. Ph. Guillet,
Phys. Lett. 211B (1988) 465;
S.D. Ellis, Z. Kunszt and D.E. Soper, Phys. Rev. Lett. 62 (1989) 726.

[6] F. Bloch and A. Nordsieck, Phys. Rev. 52 (1937) 54;
N. Nakanishi, Prog. Theor. Phys. 19 (1958) 159;
T. Kinoshita, J. Math. Phys. 3 (1962) 650;
T.D. Lee and M. Nauenberg, Phys. Rev. B133 (1964) 1549.

[7] D. Amati, R. Petronzio and G. Veneziano, Nucl. Phys. B140 (1978) 54;
S.B. Libby and G. Sterman, Phys. Rev. D18 (1978) 3252, 4737;
R.K. Ellis, H. Georgi, M. Machachek, H.D. Politzer and G.G. Ross,
Phys. Lett. 78B (1978) 281; Nucl. Phys. B152 (1979) 285;
A.H. Mueller, Phys. Rev. D18 (1978) 3705;
J.C. Collins and G. Sterman, Nucl. Phys. B185 (1982) 172;
J.C. Collins, D.E. Soper and G. Sterman,
Phys. Lett. 134B (1984) 263; Nucl. Phys. B261 (1985) 104;
G.T. Boldwin, Phys. Rev. D31 (1985) 2616.

[8] UA1 collaboration: C. Alba jar et al.,
CERN preprint, CERN-EP/88-168 (1988).

[9] F.A. Berends, W.T. Giele, H. Kuijf, R. Kleiss and W.J. Stirling,
Phys. Lett. 224B (1989) 237.

[10] J. Badier et al., Phys. Lett. 89B (1979) 145.

[11] M. Valdate, XXIV International Conference on High Energy Physics,
Miinchen 1988.

[12] R. Kleiss and H. Kuijf, Nucl. Phys. B312 (1989) 616.

[13] T. Gottschalk and D. Sivers, Phys. Rev. D21 (1980) 102;
Z. Kunszt and E. Pietarinen, Nucl. Phys. B164 (1980) 45.

[14] R. Brandelik et al. (TASSO coll.), Phys. Lett. 86B (1979) 243;
Ch. Berger et al. (PLUTO coll.), Phys. Lett. 86B (1979) 418;
D.P. Barber et al. (MARK-J coll.), Phys. Rev. Lett. 43 (1979) 830.

[15] F.A. Berends, R. Kleiss, P. de Causmaecker, R. Gastmans and
T.T. Wu, Phys. Lett. 103B (1981) 124.

13



[16] P. de Causmaecker, R. Gastmans, W. Troost and T.T. Wu,
Nucl. Phys. B206 (1982) 53;
F.A. Berends, R. Kleiss, P. de Causmaecker, R. Gastmans, W. Troost and
T.T. Wu, Nucl. Phys. B206 (1982) 61;
P. de Causmaecker, thesis, Leuven University, 1983;
F.A. Berends, P. de Causmaecker, R. Gastmans, W. Troost and T.T. Wu,
Nucl. Phys. B239 (1984) 382; B239 (1984) 395; B264 (1986) 243;
B264 (1986) 265.

[17] S.J. Parke and T.R. Taylor,
Nucl. Phys. B269 (1986) 410; Phys. Rev. D35 (1987) 313;
Z. Kunszt, Nucl. Phys. B271 (1986) 333.

[18] J.F. Gunion and Z. Kunszt, Phys. Lett. 159B (1985) 167; 176B (1986) 163;
J.F. Gunion and J. Kalinowski, Phys. Rev. D34 (1986) 2119.

[19] R. Kleiss, Nucl. Phys. B241 (1984) 235;
Z. Xu, D.H. Zhang and L. Chang, Tsinghua University preprints (1984),
TUTP-84/3, TUTP-84/4 and TUTP-84/5;
F.A. Berends, P.H. Daverveldt, R. Kleiss, Nucl. Phys B253 (1985) 441;
R. Kleiss and W.J. Stirling, Nucl. Phys. B262 (1985) 235;
J.F. Gunion and Z. Kunszt, Phys. Lett. 161B (1985) 333.

[20] F.A. Berends and W.T. Giele, Nucl. Phys. B294 (1987) 700;

M. Mangano, S.J. Parke and Z. Xu, Nucl. Phys. B298 (1988) 653.

[21] F.A. Berends and W.T. Giele, Nucl. Phys. B306 (1988) 759.

[22] Z. Kunszt and W.J. Stirling,
Proceedings of the Workshop on Physics at future Accelerators,
CERN-87-07, Vol. II, 548;
C.J. Maxwell, Phys. Lett. 192B (1987) 190.

14



Chapter III

The helicity method

The helicity method for evaluating an amplitude will be discussed in this chap-
ter. In the first section we will look at the historical development of the helicity
formalism. The Weyl-van der Waerden method explained in sec. 2 is a next step
along this line. The Weyl-van der Waerden implementation of the helicity method
will be used extensively in chaps. 5 : 6, 7 and 8 for the explicit calculation of helicity
amplitudes.

1 Introduction

The most important aspect of the helicity method is the fact that it evaluates a
matrix element on amplitude level, i.e. one acquires a numerical result for the
amplitude before squaring. This is accomplished by introducing helicity states for
the fermions as well as the vector bosons. In ref. [1] the helicity states for the
fermions were introduced in order to reduce an amplitude with a fermion line,
including its spinors and ^-matrices, to a simpler expression with momenta and
polarization vectors. After this the squaring to obtain the cross section was easily
performed and short expressions were found. The method was elaborated in ref.
[2] and extended to amplitudes with more fermion lines. The extention to spin-|
fermions for the above method was given in ref. [3]. The polarization vectors for
the vector bosons were introduced in ref. [4]. One made a special choice for these
polarization vectors within the frame one was working. The authors of ref. [5]
related the helicity vectors of massless vector bosons to other outgoing momenta in
the amplitude under consideration. For instance, in the process

(1.1)

one could choose the helicity vectors of the photon 7 to be equal to

i

y/(P+P-XP+KXP-K)

This helicity vector has numerous advantages, one of which is that a number of
Feynman diagrams will become zero which dramatically simplifies the calculations.
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The result of this development is the powerful CALCUL method [6] for obtaining
compact expressions of helicity amplitudes. This method was extended to massive
spin-1 and spin-| particles in ref. [7]. Later the CALCUL method was considerably
improved by several authors [8]. The helicity vector in this improved CALCUL
scheme depended only on one arbitrary light cone vector instead of the two external
vectors of the original CALCUL method. The helirity vector is given by

with A'M the momentum of the spin-1 particle and P^ an arbitrary light cone vector.
This gauge four-vector can be choosen to be equal to one of the external vectors,
which reduces the calculation enormously. Another line of development was the use
of Weyl spinors [9,10,11,12]- The use of these Weyl spinors leads to considerable
simplification in calculations involving a lot of 7-matrix algebra. In the next srction
we shall merge these two lines of development into one very powerful scheme, which
uses both the advantages of the improved CALCUL method and the Weyl spinor
method [12].

2 The Weyl-van der Waerden implementation

In this section we will use the Weyl-van der Waerden spinor calculus [13] to imple-
ment the helicity formalism. One advantage of the formalism is that the quantities
concerning the space time part of an amplitude which appear in a calculation, i.e.
momenta, spinors and helicity vectors, are expressed using only one object, the Weyl
spinor. Another advantage is the absence of gamma matrices in the expressions.
The often complicated relations between these matrices one has to use in order to
simplify the expressions are replaced by simple rules for the Pauli matrices and the
Weyl spinors. A possible disadvantage of the Weyl-van der Waerden formalism is
that it is strictly confined to four dimensions. For the applications in this thesis
this is no impediment.

This section is divided into four parts. The first subsection introduces the Weyl
spinors and their calculational rules. In the second subsection the momenta are
translated into the Weyl-van der Waerden formalism. Special attention is given to
light cone vectors, being the momenta belonging to massless particles. The third
and fourth subsection describes the spin-| and spin-1 particles respectively in the
language of the Weyl-van der Waerden formalism.

2.1 The formalism

The Weyl spinor, VM> is a two dimensional complex vector. Its complex conjugate
is denoted by qfrj. Define the spinorial inner product between two Weyl spinors as

Arl>*B = 4>iA*} = (tfifc) (2-1)

and for its complex conjugates

*iA^A*a = txArt = {V'.V'2>* - (2-2)

16



The matrix e is defined as

/ 0 1 \
AB ,. r.AB I u x I In q\

^ B = e = ^ = e = ^ -1 0 J ( 2 3 )

The only relations between the spinorial inner products which are used in the
calculations are consequences of the following two identities for the e-symbol

1. Antisymmetry : eAB = —eBA ,
2. Schouten identity: eABeCD + EACeDB + eADeBC = 0 .

This last relation is a direct result from the fact that the spin space of the Weyl
spinors is two dimensional. The two above identities give rise to two identities of
the spinorial inner products. Contracting the first identity with 4'\A^2B results in

<<M'2> = - {&* , ) , (2.4)

in particular
(W' i )=0. (2.5)

Similarly the Schouten identity leads to

'3> = 0 . (2.6)

These two simple rules are all the spinor calculus which is necessary to manipulate
the Weyl spinors. Of course sometimes one needs relations in which not all labels
are summed away. The Schouten identity then leads to equations like

*M = 0 , (2.7)

and
(2.8)

2.2 The momentum vectors

The first step is the translation of momentum vectors into the Weyl-van der Waer-
den formalism. To start the derivation take a general momentum vector with real
components,

A'" = (A'°, A'1, A"2, A"3) = (A-0, K) (2.9)

with A'0 the energy component and (A'1, A'2, A'3) the components of the spatial
momentum vector K. This is translated in the spinor formalism by the relation

( 2 1 0 )
K — ** K - ( -Ko + A'3 A ' 1 + i A * 2 \ .
*AB = °ABK» ~ [ K l - iK2 A'o - A'3 J '

where «r° is the unit matrix and <r* are the Pauli matrices. Rrom the definition of e
in eq. (2.3) we can raise the indices

KAB _ ( AM -A',, \ _ ( K0-K3 -A', + iK2 \
-\-Ki2 Kn ) - { - K l - i K 2 Ko + K3 ) • { 2 1 1 )
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The complex conjugate of this matrix equals its transposed

(KAB)'=KBA.

A number of relations for Pauli matrices will turn out to be useful

*»AB*™ = 26A*6B
D. (2.12)

*AB*AB=26!. (2.13)

aABa"AC + aVkBa"XC = W6BC - (2.14)
Fromeq. (2.14) follows

dAcd
AB = dpjP6B

c = D«Bc (2.15)

and from eq. (2.13)
K A B P A B = {K, P } = 2 K P . (2.16)

Up to now we have used general four-vectors. At the energies of present day
colliders the masses of the fermions can often be neglected. Therefore we will look
in more detail at the properties of light cone vectors in the Weyl-van der Waerden
formalism. A light cone momentum will be translated in a dyad of a Weyl spinor
and its complex conjugate. In order to distinguish between a four-momentum and
its related spinor the former is denoted by an upper case and the latter by a lower
case letter. Eqs. (2.10) and (2.16) hold for any four-vector. For a null vector we
have

X> = K-K = ±{K,K}=0, (2.17)

which means that the determinant of the matrix KAB vanishes, and that K\B can
be written as a dyad of its eigenvectors, which are Weyl spinors

KAB = *i*a - (2-18)

The spinor kA is determined up to a phase factor. Suitable expressions are

fK0-Kze (2.19)

with c'° the arbitrary phase factor and w given by the relations

cosw = KJy/Jcf+Kj , sinw = K2/y/K? + A | , (2.20)

or a more for numerical applications useful form

. to I (A'i — iKi)ly/Kg — A"3 \ ._ _.. >
kA — e I y= rs- I (•'••'1)

with again an arbitrary phase factor. With this procedure all light cone vectors can
be decomposed in corresponding momentum spinors. The inner product between
two light cone vectors A^^ and K^ can be written as

2Kt^KS = 2A', • K2 = {Ku A'2} = |(fc,k2)\
2 . (2.22)

Thus the spinor inner product can be considered as the (complexified) square root
of the Minkowski inner product.
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2.3 The spin— particles

One could start directly with a Lagrangian in terms of Weyl spinors, but to keep the
derivations in a more familiar description, the usual Dirac Lagrangian is translated
into the spinor notation. To do this take the 7-matrices in the Weyl representation,
thus

( ° -ia% \ (993)

(2-24)= (J _!\
The Dirac spinor, its adjoint, and helicity projections in this representation are
given by

(2.25)

(2-26) -

and

(2-27)

Using the translations

(2-28)

¥ • 7" • * A, = ^ ^ ^ s + ^ A ^ ^ B , (2.29)

the Dirac Lagrangian

($ y (^$) (^$) 7 $) TO $ $ (2.30)

transforms into the Weyl Lagrangian

- im {^A<t>A-^A<l>A) • (2-31)

We will look at massless fermions, the equations of motion for massless spin-|
particles is given by

d ^ V s = 0 ^ B = 0 . (2.32)

In momentum space this leads to

KAB4>B = KAB$B = 0 , (2.33)
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with I/'H and 4>B the Fourier transforms of V'B and <j>B respectively. After multiplying
eq. (2.32) with dAC and using eq. (2.15) one finds

Di/,c = a<j>c = 0 => A ' 2 ^ c = A ' 2 ^ c = 0 . (2.34)

So, because the fermion is taken massless its corresponding momentum vector is a
light cone vector. We can now use eq. (2.18) in eq. (2.33). This leads to

kA(4<k) = kA(if>k) = 0 . (2.35)

Therefore I/'B and <j>B are proportional to kB. For a proportionality factor of one
we find as solutions of the massless Dirac equation (2.32)

$A=4>A = kA. (2.36)

This normalization choice leads to

4'AJB = h<i>B = kAkB = KiB , (2.37)

and from eq. (2.27) follows

u+(K) = t>_(Jv) =

u_(A') = t»+(A') = I hi 1 . (2.38)

The normalization choice is equivalent to the usual Dirac spinor normalization for
massless fermions

( J ) , V 0 )

/ 0 -ikAkB\
\ ikBkA 0 )

_ / 0 -iKAB\
V iKBA o ;

= f , (2.39)

where we have used eqs. (2.10), (2.18), (2.23) and (2.38). The Weyl spinor kA is in
a sense the square root of the the momentum A' and is easy to use in calculations.

2.4 The spin-1 particles

The equation of motion for a free massless spin-1 particle is given by

, OA» - d^d • A) = 0 . (2.40)

In the Lorentz gauge the equation of motion reduces to

OA, = 0 , (2.41)

d-A = 0 .
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This set of equations is easily translated in the spinor formalism by multiplying
with O»AB,

OAAB = 0 , (2.42)

{d,A} = 0.

Taking the Fourier transform of these equation one has

K2AAB = 0 , (2.43)

{K,A} = 0,
from which follows that the momentum vector is a light cone vector and decomposes
according to eq. (2.18) into Weyl spinors. The two degrees of freedom in the spin-1
field will be described in the helicity formalism. The right and left oriented helicity
vectors e± have the following properties

{e±,e±}=0, (2.44)

(e±)t = eT , (2.45)

{A',e±}=0, (2.46)

{ e ± , e T } = - 2 , (2.47)

where all helicity vectors are translated in the Weyl-van der Waerden formalism
using eqs. (2.10) and (2.16). With these four properties one can construct the
helicity vectors in terms of Weyl spinors. Property (2.44) prescribes the form

e+ifl = °AhB, (2-48)
e-AB ~ cAdB •

where a A , bA, cA and dA are arbitrary spinors. Property (2.45) gives a A = d^ and
1>A — CA, thus the helicity vectors become

e+AB = aAbB , (2.49)
e-AB = hAaB •

To fulfil property (2.46) choose a A = k^. This choice is made (and not 6̂  = fc^) so
that the positive helicity vector is given by e+ . Now the helicity vectors take the
form

e+AB = M B . (2-50)
e-AB = bAkB •

The normalization property (2.47) gives the condition

(kb) = y/2eia , (2.51)

where c'° is an arbitrary phase factor. This condition is easily solved and gives

bA = y/2eia-^-r . (2.52)
{kg)

21



The new spinor gA is called the gauge spinor and may be choosen freely except for
kA itself. Substituting this form of 64 in the helicity vectors results in

The argument of the helicity vector will often be omitted. Now an additional
condition on the helicity vectors will be introduced, the so called phase condition

K( f f l),e_G,2)} = - 2 . (2.54)

This additional property is fulfilled when we set the phase factor equal to one, and
the final form of the helicity vectors is

The phase property is introduced because one is now free to make another choice of
gauge spinor for each gauge invariant subset of diagrams without worrying about
the possible phase differences between the subsets of diagrams when one is squaring
the amplitude. Making another choice of the gauge spinor is a gauge transformation
of the spin-1 field according to

^ ^ K A B , (2.56)

which is easily shown with the aid of the spinor relation (2.7).
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Chapter IV

The recursion relations

A method is presented in which multi gluon processes are calculated recursively.
The technique is explicitly developed for processes where oaly gluons are produced
and processes where in addition to the gluons also a quark-antiquark pair with or
without a vector boson are present.

1 Introduction

Cross sections for processes involving a number of partons possibly together with
a vector boson like W, Z or a virtual photon are of importance for present and
future colliders. Although one may primarily be concerned with hadron colliders,
multi jet events are also relevant for c+e~ and e~P collisions.

Amongst the parton processes the pure gluon processes play a special role. On
the one hand, when one has techniques to calculate this process it is not too difficult
to incorporate a quark-antiquark pair with or without a vector boson. On the other
hand, in hadron collisions the gluons have the largest parton luminosity and have
the largest parton cross sections. Thus one often focusses on the gluon processes
[1]. A number of authors [2] derived involved expressions for 6-gluon scattering,
which they could evaluate numerically. A more systematic answer to the problem
of the six-gluon amplitude was subsequently found [3,4]. A major difference is the
colour split-up of the amplitude, see also [5].

The amplitude is written as

M( l , . . . , n )~ £ Tr (T" - . . I - )C( l , . . . , n ) , (1.1)
P(l,...n-1)

where ai , . . . ,o n denote the colours of the n gluons, Ta' are the colour matrices
in the fundamental representation. Moreover C is a subamplitude depending on
the momenta and helicities of the gluons. Even with these simpler expressions it
remains a formidable task to evaluate amplitudes with more than six gluons.

In this chapter we derive recursion relations as a technique to evaluate the
exact parton amplitudes [6]. In fact, in first instance a matrix element for n gluons
is calculated, one of which is off shell. From this current J the subamplitude
C(l,.. . , n) is obtained. The advantage is that for the calculation of an (n + 1)-
gluon process one can use the calculation of the n-gluon process. Both for analytic
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and numerical evaluation this is an assot. A numerical evaluation of the seven [7,8]
and eight [9] gluon process now becomes possible, although a straightforward use
of the recursion relations without further tricks [8] remains time consuming. On
the other hand, the recursion relation takes automatically into account all Feynman
diagrams. Writing down those diagrams would be a problem in itself, which is now
avoided.

Once one knows the gluon currents, they can be used as building blocks for
those reactions, where besides n gluons, a quark-antiquark pair with or without a
vector boson is produced. Thus in this chapter we introduce a recursive calcula-
tional technique for parton processes, which is suitable for analytical and numerical
evaluation.

The actual outline of this chapter is as follows. The recursion relation relevant
for the pure gluonic processes is derived in sec. 2, whereas the extension to processes
with a quark-antiquark pair is given in sec. 3. Sec. 4 shows how to obtain the
amplitudes and what the expressions for their squares in leading order in the colour
are.

2 The gluon recursion relation

In this section an expression will be derived for a matrix element of (n +1) outgoing
gluons, where one gluon is off shell. This quantity will be called a n-gluon current
•7^(1,2,... , n), where x and £ denote the colour and vector index of the off shell
gluon. The (n + 1) particle amplitude can be obtained from this current by a
suitable contraction with a polarization vector of the last gluon.

The current will first be introduced for 1, 2 and 3 gluons. It turns out that
the current J|" can be decomposed in a colour part and a space-time part J t . The
latter has a number of symmetry properties, related to permutations of the gluons
and is moreover a conserved current. For n gluons J^ ( l ,2 , . . . ,n) is again related
to J^( l ,2 , . . . ,n). For the latter a recursion relation holds, which relates it to all
J(( l ,2 , . . . ,m) with m < n. Again, this current is conserved and obeys certain
symmetry properties.

For one gluon we define

Jf(l) = #"re€ = 6aixJt(l) = 2Tr{T"xTr)Ji(l) = 2(a1x)Ji(l) , (2.1)

where cj is the polarization vector of the gluon, depending on the helicity and
momentum A'i of the particle. The colour of the gluon is at, the indices x and f
are summation indices. The SU(N) matrices in the fundamental representation are
denoted by T"\ The normalization is such that

T") = («.«*) = \6ai"2 , (2-2)

_£ I ^ XT J. f V **/

Obviously we have
A', • J ( l ) = 0 . (2.5)
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For two gluons we use the 3-vertex and introduce a propagator

2

if (1,2) =

1
*9 i^ '2,-(A'i + A'2))JQ1(1)JO2(2) ,(2.6)

with Vai<,2O3(A",, A'2,A'3) given by the 3-vertex

2

It is convenient to introduce

= - 9 / o i a 2 " 3 [(A',

L UUULC

(A',+A'2)2 ^
1

(A'i+A'2)2 V2

>•„*„-

9O1«S + (A'2 -

(A',+A'2))Ja

- 2A', • J(2)J«(1)

(2)

(2.7)

(2.8)

(2.9)
(2.10)

which obeys

Because of the antisymmetry property we introduce the suggestive notation

the bracket is however not a commutator. With this definition and using the relation

-f1"2"3 = {0x0203) - (030201) (2.12)

z
we now have

Jf(1,2) = 2g Y, Tr(TI"TIISTI)J(;(l,2)

= 2g Y, («i««2*)J«(l,2) , (2.13)
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with a sum over the permutations of (1,2).
In the case of three gluons the following four diagrams should be considered

2 1 3 ^ 3

jf (1,2,3)= \ J _ + \ _ L + \ J _ +2-^ (21

1 3 2 1
The first three diagrams give

fiKj + A'2, A3, -(A', + K2 + K3))

£ [(ya3x)-(a3yl)] £
z. P(l i2?3) pU2)

, 3 ) , (2.15)
f ( 1,2,3)

where P(l, 2,3) denotes a summation over the permutations of (1,2,3) and a factor
5; is necessary to avoid multiple counting. Moreover

K(m, n) = Km + A'm+1 + . . . + A'n , (2.16)

and
( l / ( 1 ) J ( 2 3 ) 1 + [ J ( 1 2 ) J ( 3 ) ] ) ( 2 1 7 )

The fourth diagram of eq. (2.14) contains the 4-vertex. This 4 gluon vertex is given
b v o o

£ u<*r,«3,<*4), (2.18)

r 4

with
A'(«i, a2-. «3, <**) = gaia3ga7a, — ga,a,ga2o3 (2.19)

and C(l, 2,3) denotes a cyclic sum. With this vertex the last diagram of eq. (2.14)
becomes

{(aia2a3x) - (^^aa*) + (a3a2a,i) -

(2.20)

where we have used the relation

- (n3n,n2a-)}. (2.21)
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The summation has been carried out over Xi,Z2,a-3 and y. The quantities fy are
strings of T matrices. The definition

{J(l), J(2), 7(3)}f = 2.7(1) • J(3)J<(2) - 7(1) • 7(2)7?(3) - J(2) • 7(3)7{(1) (2.22)

shows the same symmetry properties as eq. (2.17). The full three-gluon current of
eq. (2.14) now is

7X(1,2,3) = £ r(l,2,3) + Fx(l,2,3)
= 2g* £ (a,a2a3.T)J(l,2,3) (2.23)

P(l,2,3)

with

7(1,2,3) = _ L _ ( [ J ( l ) , j(2,3)] + [J(1,2), J(3)] + {J(l), J(2), J(3)}) , (2.24)

where we have suppressed the index £. The current has the following properties

7(3,2,1) = 7(1,2,3), (2.25)
7(1,2,3) + 7(2,1,3)+7(2,3,1) = 0 , (2.2G)

K(l,3)-7(1,2,3) = 0 . (2.27)

Properties (2.25) and (2.26) easily follow from the symmetry properties manifest
in eqs. (2.17) and (2.22). Current conservation (2.27) follows by writing out the
current.

The n-gluon current is a generalization of eqs. (2.1), (2.13) and (2.23)

J£(l,2,...,n) = 2 9 - 1 £ (a,aa--.aBaf)Jr
<(l12,...1n)1 (2.28)

P(I.2,-.,n)

where J^ is a generalization of eqs. (2.11) and (2.24)

f) \m=l
+ E E {J(l,...,m),J(m + l,...,k),J(k + l,...,n)}) . (2.29)

The notation is a generalization of eqs. (2.8) and (2.22)

[J(l,. . . ,m),J(m + l,. ..,«)] =
2*(m + 1,n) • J(l , . . . ,m) J(m + 1,...,n)

-2/c(l,m) • J(m + 1,...,n) J( l , . . . ,m)
+7(1,. . . ,m). J(m + l,. . . ,n) (K(1,ITI) - K(JTI + l ,n ) ) ,(2.30)

27(1, . . . , m) • J(k + 1, . . . , n) 7(m + 1,.. . , It)
- 7 ( 1 , . . . , m) • J(m + 1,.. . , *) J(k + 1,..., n)
-7(m + 1,..., k) • J(k + 1 n) 7(1, . . . , m) . (2.31)
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The current J(l, 2, . . . , n) has the properties

/ c ( l , n ) - J ( l , 2 , . . . , n ) = 0 ,
VJ J ( i , , . . . , t m , j i , . . . ,

Perm(i,»

(2.32)

(2.33)

<m < n - l , m + k = n .

(2.34)

Relation (2.34) needs some explanation. The permutations over which the summa-
tion is performed are those permutations of the set (i"i,..., im,ji>.. -,jk) where the
order within each set (i*i,... ,im) and (ji,..-,jNt) is preserved. For example taking
m. = 2 and k = 3 leads to

J(l,2,3,4,5) + J(l,3,2,4,5) + J(l,3,4,2,5) + J(l,3,4,5,2)
+ J(3,l,2,4,5) + J(3,1,4,2,5) + J(3,1,4,5,2) + J(3,4,1,2,5)
+ J(3,4,1,5,2) +J(3,4,5,l,2) = 0 . (2.35)

A special case arises when m = 1

J(l,2,3,...,n) + J(2,l,3 n) J(2,3,. . . ,n,l) = (2.36)

which is a generalization of eqs. (2.10) and (2.26). We will now prove recursively
in the number of gluons the validity of the above relations. The correctness for
n = 2, 3 is already shown. The correctness of eqs. (2.28) and (2.29) follows by
induction. So assume the validity for m < n, then the n-gluon current is obtained
from considering a 3-vertex and a 4-vertex with all possible currents attached

1 n)

n-2 n-1 1 1

'
(2.37)

In eq. (2.37) a summation over all permutations of the n gluons is performed. In
order to avoid multiple counting factors like ^ are introduced, since J ( l , . . . ,m)
contains all m\ permutations of the particles. Using the expression (2.28) <
rewrites the terms in (2.37)

one

),ic(m + l,n),-ic(l,n))
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xV°'a\ (K(1, m), «(m + 1, n), - * ( 1 , n))
x J a i( l , . . . ,m)/^(m + 1,...,n)

P(\ m)P(m+l,...,

] (2.38)

where fti and £i2 ^xe t n e strings of T matrices with labels ax---am and am+i •••«„.
Carrying out the i i , x 2 summation the first term of eq. (2.29) is obtained. The
4-vertex term becomes

X = '

l m)P(m+l k)P(k+i n)

I
I C( 1.2.3)

x J - ( l , . . . , m)Jtt'(m + 1,.. . , k)Ja3{k + 1,..., n), (2.39)

where fti, ft2 and Q3 are the strings of T matrices with labels a\ • • • am, am+i • • • at
and a/t+i • • • an. The 4-vertex term contains a cyclic permutation over (ft,-, ati) inside
the brackets. This particular expression follows from eqs. (2.18) and (2.21) and
can be rewritten as

{•••}=2 £ (01m*)[Ji:(a I,Oa;a3,0 + A'(<*3,a2;a1,0]. ( 2 l 4 0 )

P(l,2,3)

PVom this, the second term in (2.29) easily follows. This completes the proof of eqs.
(2.28) and (2.29).

The three properties (2.32) - (2.34) of the n-gluon current will now be proven.
The reflective property (2.32) is proven recursivly, so assume eq. (2.32) holds for
J( l , . . . ,m) with m <n then

J \m=,

m=l k=m+

(2.41)

x[J(n,. . . ,m +

n-2 n-1

m=l Ar=m+1
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*J("> 1)})x { J(n,..., k + 1), J(k m + 1)

To prove current conservation, eq. (2.33), we contract (2.29) with K(1, n) to get
terms of the following type

m),J(m + l,...,n)} =

([ic(l, m)]2 - [K(m + l,n)]2) J ( l , . . . , m) - J(m + 1 n) ,

(2-42)

(2.43)

Expression (2.43), inserted in the summation of eq. (2.2D) leads to

E E J ( ! m)-[J(m + l,...,lfc),J(Jfc + l , . . . ,n) ]
m=l fc=m+l

]£ ...,n)[K(l,*)]2 . (2.44)

This sum cancels the sum of the terms of type (2.42) in eq. (2.29), thus proving
current conservation.

The proof of eq. (2.34) can be easily given when we consider the current J|" of
eq. (2.28). The colour factor in eq. (2.28) originates from the colour factors of the
three- and four-vertices

i/—~ = 2([a l iaa]x), (2.45)

(2-46)

The replacement of the structure constants by eqs. (2.45) and (2.46) leads to terms
like (ay • • • anx) irrespective of the precise properties of the T"'. Suppose that we
take for T"1 a special matrix T6' which equals the identity matrix. This would
mean that the coupling of a gauge boson with colour 61 to the other gauge bosons
is zero since the structure constants are zero or in physical terms a photon does
not couple to a gluon. Therefore Jf ( 1 , . . . , TI) vanishes, which implies that for each
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ordering of the colour structure (a2 • • • an) the term in eq. (2.28) should vanish.
This gives the condition

(6,a2o3 • • • anx)J(l,2,3,..., n)
+ (a2a3 • • • anbix)J(2,3 n, 1) = 0 .

•«nr)J(2,l,3,...,n)

(2.47)

Since all the above colour factors are the same we have proved eq. (2.36). Property
(2.34) is obtained in a similar way. Replace Ta',..., T""> by matrices T*1 Tbm

such that
[ T \ : P ' ] = 0 , i = l , . . . , m , i = m + l , . . . , n . (2.48)

It means that we have two kinds of gluons. Within each kind the usual non-abelian
interaction is present but between the two kinds there is no interaction. Thus the
current with gluons with colours b\,..., 6m, am+\,..., an vanishes. Since all traces
are the same for which the order in the set {6;} and in the set {a,} are fixed we
get the vanishing of the coefficient of that type of trace. This coefficient is given by
eq. (2.34). One could also take the colour x of the off shell gluon equal to 6j. This
results in the equation

^ J ( l , 2 , . . . , n ) = 0 . (2.49)
C(l n)

Sofar we have restricted ourselves to two kinds of gluons in eq. (2.28). When this
is generalized to more kinds of gluons eq. (2.34) can be generalized accordingly.

It is sometimes useful to describe the successive terms in eq. (2.29) by means
of diagrams. For instance,

3. 2 3 3

7(1,2,3)= ;—r +
2 1 i

+ 2-

and
3 4

J(l,2,3,4) =

2. 3 4

3 2 1 2
4

2 1

3 4

+ 3- + 2-

2 1
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These diagrams have a clock-wise orientation for the labels 1,2,3,... ,n. This is
necessary since J( l , 2 , . . . , m) is not symmetric in the indices.

3 The spinorial recursion relation

In this section an expression will be derived for a matrix element, where a quark-
antiquark pair and n gluons are outgoing. The antiquark is off shell such that
we have a spinorial current J*(Q;l,2,...,n). In this notation Q stands for the
quark momentum. Moreover the numbers 1,2,..., n denote the n gluons and their
momentum. The colour j and the spinor index c of the off shell antiquark are
written explicitly, but will often be suppressed. The other colour indices will be
manifest in the explicit formulae. As in sec. 2 the current J will be expressed in
a sum of terms consisting of a colour factor and a current JC(Q; 1 , . . . , n) which is
independent of colour and for which a recursion relation holds.

For a single quark and no gluon we have

S>(Q) = SiMQ) (3-1)

or

J(Q) = SiMQ) = 6i>J(Q) • (3-2)

The one-gluon spinorial current is

(3-3)

with

£ _ . (3.4)
For two gluons the following diagrams should be considered.

K K K A

+2(x)IJ[(a1a2x) J(Q)/(1,2) + (a2a,x) J(Q)/(2,1)]}

m • ( 3 5 )

The one- and two-gluon currents eqs. (2.1) and (2.13) have been used in eq. (3.5).
The summation over x is carried out with the help of eq. (2.4), giving

; 1,2) = g2 Y. («i«2).iJ(Q; 1,2) , (3.6)
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with
J(Q; 1,2) = - ' — A

— m
We generalize the above derived expressions for the 0-, 1- and 2-gluon spinorial

currents to arbitrary number of gluons, giving

J(Q;l,2,...,n)=gn £ (a1a2---an)1JJ(Q; 1,2,.. .,n) , (3.8)

where
n - l J

This is proven by induction

'(l,...,n)m=O TO- I" " '• P(l,...,m) P(m+1 n)

• «m)u(i)/y(flm+i • • • anx)J(Q; 1 , . . . , m)fl(m + 1,...,n)
i

Q+if(l,n)-m '
(3.10)

The colour sum over x give terms | (ai • • • an)ij and — ̂ ( " I • • • o.m)ij(am+i • • • an).
The second term does not contribute since for each choice of the labels 1,. . . , m we
perform a summation over all permutations of the remaining m + 1,... ,n labels
which implies sums over cyclic permutations of the pure gluon current. Due to
eq. (2.49) the result for these terms is zero. In the special case where we have
~^j{ai — <*n-i)ij(an) this contribution also vanishes because Tai is traceless. Thus
we are left with the (a\ • • • an),j terms which lead to the eqs. (3.8) and (3.9).

In the following it will be useful to have a spinorial current with the outgoing
quark instead of the antiquark off shell. In exactly the same fashion we derive

Jj(l,...,n;P) = gn £ (a,a2 • • an), ,J(l, . . . ,n;P) , (3.11)
•P(l,...,n)

where j in the colour index of the off shell outgoing quark and P the momentum
of the outgoing antiquark. The current J is given by

P) (3.12)

and in general

^ . . . ,m)J(m + l , . . . , n ; P ) . (3.13)J ( l , - - , n ; P ) = ^

The notation for the currents (3.8) and (3.11) is such that the position of the
momentum Q or P determines whether one deals with an adjoint spinor or a spinor.

By means of the charge conjugation matrix C for which

Cv± = -u\ , u± C"1 = vl (3.14)
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where

one has

»± = \ (1 T 7s) » , u± = ̂  (1 ± 75) u , (3.15)

(3.16)

(3.17)

The ± sign in eqs. (3.16) and (3.17) denotes the helicity of the outgoing quark or
antiquark.

4 From currents to amplitudes and cross sections

From the pure n-gluon current and the spinorial currents the amplitudes and cross
sections for the parton processes with a large number of gluons can be obtained.
We discuss in this section the most relevant processes i.e. those with only gluons
and processes where in addition to n gluons a quark-antiquark pair is produced,
possibly together with a TV, Z or a virtual photon.

4.1 Scattering of n gluons

The amplitude for n-gluon scattering is obtained from the (n — 1) gluon current
J£(l,..., n — 1) by removing the propagator of the off shell gluon, contracting the
current with the polarization vector of the n gluon i.e. J£(n) and demanding
overall momentum conservation #c(l,n) = 0,

P(l n-l)

= 2ign~2 £ (flI---an)C(l,2,...,n),
P(l,...,n-1)

with

*(l,n)=O

(4.1)

(4.2)

From the definitions (4.2) and (2.29) of the gluon current together with the prop-
erties (2.32)-(2.34) it is clear that the function C( l , . . . ,n) has the following four
properties :

1. The subamplitude C is invariant under cyclic permutations,

C( l , : . . ,n) = C{m + 1 n , l , . . . ,m) .

2. The subamplitude C has a reflective property,

(4.3)

(4.4)
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3. There are linear relations between the subamplitudes C

Y, C ( i , , . . . , i m , j , , . . . , j * , n+ l ) = O , l < m < n - l , m+i- = n . (4.5)
Perm(ij)

The relations limit the number of independent n-gluon subamplitudes to (n —
2)! [7]. For m — 1 we have the special case

£ C(l,...,n) = 0. (4.6)
C(l,...,n-1)

4. The quantity C is gauge invariant.

The first property stems from the fact, that one can obtain C( l , . . . , n) from any
(n - 1) gluon current J(m + 1 , . . . , n, 1 , . . . , m - 1) by contraction with J(m). In
eq. (4.6) we keep n fixed, but one could also fix another label m, using eq. (4.3).
The property of gauge invariance here means that another gauge choice for a gluon
leads to the same subamplitude.

For the cross section one must square the amplitude (4.1) and sum over all
colours. In general this becomes complicated [4,6,7,8]- However the terms in the
cross section of leading order in JV can be obtained for any number of ghions. An
arbitrary term in the cross section contains the colour term

J ^ ( a i • • • a B ) ( a n a m o _ , • • • a 7 n i ) = -(<ii • - • a n - i « m n _ , • • -«m, )

- j j y K - v i K . . , - • « « . , ) • (4.7)

In leading order in JV the second term can be omitted. The remaining term is now
summed over an_i. Two different type of structures can occur

^ 2 ) - ^ ( « i ) ( « 2 ) , (4.8)

and

D(fi,a1..1fiaan_1) = hilMSh) ~ 5^(ni«a) , (4-9)

So in leading order in N only the first structure is of relevance leading to ^N(Qt fl2)-
When summing over an_2 the terms with neighbouring matrices an_2 are again
leading. Repeating this process we find

(4.10)

The last summation concerns (aiai) which gives with the normalization of eq. (2.2)
2(N2 ~ 1)- Up to 5 gluons the O(N~2) term is zero. From 6 gluons onward
interference terms between different C functions are present in the cross section,
but are suppressed by colour [3,4,7,8,9].
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Fig. 4.1. The process producing qq, n gluons and a vector boson.

4.2 The process producing qq and n gluons

The amplitude for a process with n outgoing gluons, a quark with momentum Q,
colour i and antiquark with momentum P, colour j can be obtained from either
one of the spinorial currents.

When we use eq. (3.8) we find

= -U(Q; l , . . . ,n)0 + fll,n) -m

= -ign Yl (°i-•an) I>P(g;l, . . . ,n;P), (4.11)

with

X?(Q; 1 . . . , n; P) = J(Q; 1 , . . . ,n)$ + fll, n) - m].<P)|P+Q+lt(1,n)=o - (4.12)

For the matrix element squared, summed over the colours of the partons we have

•J.fam}

E ( « i • • • ««).y^(<?;i,...,«,-P))[
1 -) / \P

(

where the last expression shows the leading N behaviour.

4.3 The process producing qq, n gluons and a vector boson

The typical structure for this process is depicted in fig. 4.1. The index /i denotes
a vertex ie6uT^'Mk to which A vector boson VJ, can be attached. The colour labels
are /, ifc and flavour labels f\,f2 are indicated in fig. 4.1. The vertex contains left-
and right-handed couplings

(^) ( H ^ ) (415)
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where for a photon
(4-16)

and for a Z boson

Tz H1 ~ 4v Qlx c Dz ~sw Qh c t A 1 7 \
£/,/, = */I/J > «/,/, = — " */i/2 • (417)

In eqs. (4.16) and (4.17) the charge Qjt and the weak isospin component j / 1 of the
fermions occur i.e. —1, —5 for an electron, | , ~ for an «-quark and - 5 , —^ for a
d-quark. The sine of the weak angle 0W is given by sw and the cosine by c\V. For
a W boson one has

In the last formula } \ is the partner of fa in the doublet, the Kobayashi-Maskawa
mixing matrix has been set to unity. Often we will denote the vertex of eq. (4.15)
by the shorthand notation T^.

The matrix element takes the form

p<w)m^>™ ! (n-m)]

= iegn Y. (^•••an)ijStt(Q;l,...,n;P)Vf>, (4.19)

with

S^Q; l,...,n,P)=J2 J(Q; 1,..., m)^ J{m + 1,.. . , n; P) (4.20)
m=O

and V*1 the polarization vector of the boson.
Using the C matrix of eq. (3.14) for which

C-1 y,C =-il, (4.21)

we have for FM = 7^

SII(Q;l,...,n;P)=(-l)nSll(P;n,...,l;Q). (4.22)

The matrix element squared, summed over all colours is again obtained in leading
order in N

(4.23)
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Chapter V

Solutions of the recursion
relations

The recursion relations of chap. 4 are used to derive rigorously amplitudes for
certain helicity configurations, where most of the ghions have the same helicities.
This proves a number of conjectures in the literature.

1 Introduction

In chap. 4 recursion relations for several currents were derived. They can be used
to calculate step by step any current with a certain number of gluons having a
specific helicity configuration. For some special helicity configurations the answers
become so simple and systematic that a generalization to an arbitrary number of
gluons presents itself [1]. They are the QCD counterpart of proven QED relations
[2]. They also exist in quantum gravity as was shown in ref. [3].

The generalizations to arbitrary number of gluons for these special hclicity am-
plitudes were conjectured in the literature. The first conjecture was made for the
n-gluon amplitude in ref. [4]. After that similar conjectures were proposed for
special helicity amplitudes of qq + n gluons [5], qqqq + n gluons [6] and V + qq + n
gluons [6] where V stands for a vector boson. Actually the proof [1] already existed
when the last conjecture was made.

The special helicity amplitudes form the basis of approximative methods for cal-
culating multi gluon processes. In ref. [7] approximations are proposed to describe
the pure gluon scattering, while in ref. [81 also a quark pair is included. The approx-
imation of the e+e~ —» qq + n gluon scattering is given in ref. [9]. Because all these
approximations are based on the special helicity amplitudes it is very important to
prove the conjectures of refs. [4,5,6] for arbitrary number of gluons.

The currents related to these special helicity amplitudes can be shown to satisfy
the recursion relation, so that we have the explicit solution of the recursion relation
for an arbitrary number of gluons. The helicity configurations for which this is
possible are those currents in which all gluon helicities are the same or all but
one are the same. With these gluon currents we can prove the conjecture of ref.
[4]. With a simple algebraic relation between the gluon current and the spinorial
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'•nrrent the latter can also be derived. With these currents we are able to prove
the proposed helicity amplitudes of refs. [5,6]. It should be noted that the relation
between gluonic and spinorial currents is proven without the help of an imbedding
of QCD in a N = 1 supersymmetric theory [10].

The outline of this chapter is as follows. Sec. 2 explains the steps necessary for
the recursive proof by looking at the simpler case of QED. A number of helicity
amplitudes with an arbitraty number of photons, which were proven in ref. [2],
will be derived with the aid of the QED recursion relation. In sec. 3 the gluon
recursion relation is solved for a number of helicity combinations. Whereas in sec.
4 the spinorial recursion relation is examined. In sec. 5 the solutions of the gluonic
and spinorial recursion relations are used to construct specific helicity amplitudes
for various processes and thus proving the conjectures of refs. [4,5,6].

2 QED examples for n photon emission

Before deriving the explicit expressions for the above currents, it is useful to explain
the various steps in the proof for a simpler case. That is the QED case for the
emission of n photons with the same helicity in a number of processes [2]. Firstly
a recursion relation for a QED spinorial current is given. Then it will be solved for
the equal helicity configuration of the photons.

Analogously to the n-gluon spinorial current (IV.3.9) we introduce an n-photon
spinorial current with an off shell positron

, (2.1)

where the electron mass is taken to be zero. The no-photon and 1-phot.on currents
are given by

(2.2)

(2.3)

Specifying the electron helicity to ±1 gives a simple modification of the current

J{Q±; 1 , . . . , n) = J(Q; 1,...,») ( ^ ^ ) - (2-4)

For the current where the electron is off shell and the positron on shell we have

] . . . , n ; P ) (2.5)

with J(P) = v(P). Again the helicity of the outgoing positron can be easily speci-
fied

J(l,..., n; P±) = ( ^ p ) W n;P). (2.6)
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To incorporate the photon helicities it is convenient to translate the currents into
the Weyl-van der Waerden spinor formalism [11] of chap. 3. For electron helicity
+5 and positron helicity — | one has

= - « W , (2-7)

JB(P-) = PB, (2.10)

.,n;P-) = e

X j

(2.11)

In these expressions the q and p denote the Weyl-van dcr Waerden spinors related
to the null four vectors Q and P . The polarization spinors of the photon are given
by eq. (III.2.55)

,2.13,

A current like (IV.4.20) t an be introduced as well, where we take for the vector
boson an off shell photon

£ )7(x J(m + l , . . . , n ; P - ) , (2.14)

or in spinor language

SAB(Q+;l,2,...,n;P-) =

m=0
(2.15)

The helicity amplitude for the production of n photons and an electron-positron
pair is given by

(2.16)
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For the reaction

e+(P+) + e-(P_) —» /i+(Q+) + fr(Q_) + 7(A,) + - - - + 7(A'n) (2.17)

with the photon emission off the muons the amplitude reads

A*(P+-;P.+;Q+- ,Q.+;l , . . . ,n) = c (p^~p ? SAB(Q-+;1 «;<?+-),

(2.18)
where

P + + P _ = g + + g _ + K(l,n). (2.19)

In order to evaluate (2.16) and (2.18) for certain helicity combinations, the cur-
rents J(P_+; 1+,.. -,n+), J ( l+ , . . . ,n+;P+-) and SM(P_+; 1+,-.. ,n+; P+-) are
required. The actual calculation will be simplified by choosing as gauge spinor p+,
such that

eiB(m) = y/2 ^ ± r . (2.20)

The one-photon currents for these specific helicities are

JB(1+;P+-) = 0, (2.22)
_+; l+ ;P + - ) = -2cJ 4(P_+;l+)P + B (2.23)

(P7J^fPP+» (2.24)

Inserting (2.21) in (2.9) gives the two photon current

(P_+A*,+A-2)»
f(P-+A-,)6DP»tfpg(A-2

\ (p+fc.Kfcip.X^P+X^P-

To simplify the current we use the relations

(P_ + Ki)GD kf = (P_ + A, + K^cotf , (2.26)
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and

(P_ + A", + K2)cDP+ (A'I + A',

= (P_ + A", + A'2)cD (P . + A', + A"2f
B pi P-E (2.27)

= - ( P . + A', + A'2)
2 <P+p_) , (2.28)

where we have used the relation (III.2.14). Applying these relations in eq. (2.25)
results in

P- + h\ + K2)ABP» ^ . (2.29)

For the other two-photon spinorial current we find

+ ; P + - ) = 0 , (2.30)

and consequently, through eq. (2.15), for the vector current

-2,(v/2)V(P_ + A', + K>UcP<ip+B n L | ^ p ) • (2-31)

A generalization of these results for arbitrary n presents itself in the form

, (2.32)

(2.33)
P-+;l+,...,n+;P+-) =

-2."(v5)-e-+' (P. + ̂ n J ^ p + B n J ^ C ' n N " (2-34)

l U P k K P )

The conjecture (2.32) requires a proof, eq. (2.33) is obvious and eq. (2.34) follows
directly from inserting eqs. (2.32) and (2.33) in eq. (2.15).

Assume eq. (2.32) to be valid for I < n, then for n photons we have from eq.
(2.9) :

( }

fJ^ry (2.36)
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To obtain eq. (2.35) use has been made of eq. (2.26). For eq. (2.36) steps (2.27)
and (2.28) have been used for the case of ic(l,n) instead of #c(l,2).

Inserting the vector current (2.34) in the amplitudes (2.16) and (2.18) gives

;l+,...,n+;P+-) = 0, (2.37)

M(P-+; 1+ (n - 1)+, n-; P+-)

\nen( P K \

( 2 3 8 )

e"+2(-O +P +P)- 9+q+BP+p-
e ( Q+ + P++P)

(f 39)
( }

Changing the fermion helicities in (2.38) and (2.39) to opposite values amounts
to the replacement {p+kn) —* (p-kn) and (p~q+) —» (p+^_). The results are in
agreement with those of ref. [2]. For the cross section of e+e~ —» n photons or
e+e~ —* (i+n~ + n photons, we can just square the expressions (2.38) and (2.39).
In the former the momenta P + , P_ should be changed into — P + , —P_ and the
helicities of the incoming electron and positron are —1 and +1 respectively.

3 The gluon recursion relation

The gluon recursion relation (IV.2.29) will be solved for two special helicity config-
urations. The configurations are those where all helicities are the same (here +1)
or all but one are the same. One can in these cases choose a gauge for the helicity
spinors such that for all polarization vectors (et- • e,-) = 0. Through the recursion
relation (IV.2.29) the currents keep this orthogonality property, thus the 4-vertex
contributions vanish. As in the previous section we use the Weyl-van der Waerden
spinor calculus. We have

22[J(l..,m),J(m + l , . . . , n ) ] i B , (3.1)
m=:1

where in eq. (IV.2.30) the inner product between 4-vectors has been replaced by
spinor contractions e.g.

n)-J( l , . . . ,m) - {/c(m + l,n), J ( l , . . . ,m)} (3.2)

= KdD(m + 1, n) J ^ l , . . . , m) ,
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which necessitates the factor 5 in eq. (3.1). A choice of gauge spinors which gives
{cej} = 0 is for the current J( l+,2+, . . . ,n+)

and for J ( l - , 2+ , . . . ,n+)

eAg(l) = " V ^ ^ ^ , (3-4)

e+B(i) = -y/o^y- , 2 < i < n , (3.5)

where b+ is at the moment an arbitrary spinor and

Note that we have chosen a different phase convention as in eq. (HI.2.55). One
obtains eqs. (3.4) and (3.5) by taking a — ir in eq. (III.2.53). The property
JAB(i) = XA(i)bs with 6 = 5+ or 6 = fcj extends through the recursion relation
(3.1) to the n-gluon current

T /-t \ Y 11 \L / Q W7\
**AB\ i * * ' i / — >i\ ' ' * • ' / B • \ " * ' /

Consequently, the recursion relation takes the simple form

j n-l

• ^ B U ' - - ' 7 1 ) = ~T\—w H ({«:(m + l , n ) , J ( l , ...,m)}JAB(m + l , . . . , n )
K\1in) m=l

(3.8)

Consider the equal helicity case in more detail

_ 2h (1+X2+X12X12)'

This leads to the conjecture

JAB(1+, 2+, . . . , m+)

where ((+l,m+)) = (+1X12) • • • (m - l,mXm+). For one gluon eq. (3.10) reduces
to eq. (3.3), which explains the introduction of a minus sign in the definition of
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the polarization vectors, eqs. (3.4) and (3.5). The conjecture will be proven by
induction. Suppose (3.10) to be valid for m < n, then using (3.8) we find

zr7&KAcV,n)i%b+Bp?-' , (3.11)

where

if,
When it is shown that

we have proven the conjecture (3.10). The validity of (3.13) can again be shown by
induction. For n = 2 it is easily verified to be correct. Suppose P"~2 is valid, then

E KV"n(li Tn)bi K £:{J7? + 1,n — 1) b. (n — 1, +1

m=l {(+liTr?+)X(+(m + !)>(" — 1)+)) (" — l."X"

V̂> Kr-nfl,TTJ)6. A"_ trb, ( m , m + l )
(m+X+,"i + l)

^ KdD{l,m)b^K^Eb^ (m,m
(n — l,nX"+) ' . ^ {(+!•> n +)) (m+X+,Tj + 1)

1

(3.14)

Since (cf. eq. (III.2.6))

(at) (6c) («c)

(fc+){+) (+X+) °̂-
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we have
"-1 (m,m + l) (in)

and

such that eq. (3.14) indeed reduces to (3.13).
In the case of J ( l — 2 + • • • n+) we use as starting point the currents

(3.18)

^ l ^ f • (3-19)
Using these currents and eq. (3.8) we find

J(l - 2 + ) = X , . a[J( l - ) , J(2+)] = 0 , (3.20)

J(l-2 i

The induction conjecture for I > 3 is given by

J( l - 2 + . . . / + ) = _V§ J(2 + . . - /+) c, (3.22)

where

c, = £ Am , (3.23)
m=3

Am = ̂ t
| ^ _ t | « * ( ° ( ^ ' ) T ) (3-24)

With eq. (3.22) for / < n in the recursion relation (3.8) we have

{K(2,n)1J(l-)}J(2 + ---n+)

'((m + 1)+ •••*+)]) (3.25)
m=3 /

(1 ,B)» {12)*
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- { K ( 1 , m), J({m + 1) + • - • r»+)} J(2 + - - • m+)) (3.26)

J(2 +•••„+) ( $

( l ) * (12)'

- g cm K ^ ( 2 , m) fc? «6
E(m + 1, „) tf ^ " m + l ) ) " ( 3 2 7 )

The way in which eq. (3.27) is obtained is similar to that of arriving at eq. (3.11).
The proportionality factor in eq. (3.27) is Cn-i for J(2 + •••(« — 1)+) from the
induction hypothesis and it should be proven that it is c,, for J(2 + - - - n+). The
difference of these proportionality factors is from eq. (3.23) known to be

K(l,n)ac - «(l,n - l)2cn_ l = /c(l,n)2An +2A'n - K(l,n - 1) cn_, , (3.28)

whereas from eq. (3.27) it follows

1.(1, »)"c - «(l,n -

In order to prove that eq. (3.29) reduces to eq. (3.28) we carry out the summation
in the second term of eq. (3.29), using eqs. (III.2.7), (HI.2.14), (3.16), (3.17), (3.23)
and (3.24)

S
E Am f - ^ B ( l , m - 1) fc^fcf ̂  - 2 K(m, n - 1) • Kn)
m=3 \ \ m i / /

=3

= -2KH-n(l,n-l)cn_1+X. (3.30)

At this point the first term in eq. (3.30) gives indeed the second term in eq. (3.28).
The rest R should give the term rc(l,n)2An. We find

R = — x
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2ic(l,m - 1)-Km KAD(l,m- 1) - K - 1)

(3.31)

( 3 3 3 )

where use has been made of eq. (IH.2.14) for obtaining eqs. (3.31) and (3.32).
The final result (3.33) is indeed K(l,n)2An, as can been seen from eq. (3.24). Thus
the general form (3.22) for 7(1 — 2 + • • • /+) is valid. Complex conjugation of the
currents (3.10) and (3.22) gives J ( l - , 2 - , . . . ,n-) and J ( l+ ,2 - , . . . ,n - ) .

4 The quark current and its recursion relation

Firstly we rewrite the recursion relation (3.8), which is valid for the special gauge
choice (3.3)-(3.5). Since it follows in general from eq. (III.2.7) that

KAc{l,n) JgD{\,... ,m) JBC(m + 1,... ,n) =
{K(1,TI), J(m + l,...,re)} JAD(\,...,m)

-{K(m + 1, n), J ( l , . . . , m)} ^ ( m + 1,..., n)

+JAc(m + 1,..., n) J*c(l m)«BD(l, n) (4.1)

we obtain from eq. (3.8) another form of the recursion relation

(4.2)
m=l

For this, use has been made of current conservation (IV.2.33) and the special form
(3.7), which leads to the vanishing of the last term in eq. (4.1). In terms of
•X^l,.••,") one has

(4.3)

For a quark with positive helicity the recursion relation (IV.3.9) is translated into
the Weyl-van der Waerden spinor formalism in the same way as was done for the
photon current in sec. 2:

(4.4)m_0

51



with
Jfl(Q+) = -<te • (4.5)

We now see that the recursion relations for XA(1,..., n) and Jj(l; 2 , . . . , n) are the
same. The starting point for Xg(l+,2+,..., (n + 1)+) is

(4.6)

Thus we find

+,2+,...,n+) (4.7)

From the expression for XA(Q+,2+,... ,m+, 1—,(m + 1)+ •,»+), wliich one
could evaluate in the gauge (3.4)-(3.5), we have similarly

JA(Q+; 2+,. . . , m+, 1-, (m + 1)+,..., n+) =

-Jgfal) A'.4(Q+, 2+, -.., m+, 1- , (m + 1)+,..., n+) . (4.9)

5 The amplitudes for specific helicity configurations

Since we have solved the recursion relation for currents in cases of specific helicity
configurations we can calculate the amplitudes for these situations as well. We
do this for n-gluon scattering with and without the production of other particles.
The additional particles are a quark-antiquark pair alone or in combination with a
vector boson. The results prove certain conjectures in the literature [4,5,6] to be
correct.

5.1 Scattering of n gluons

From the currents we make subamplitudes and from them the helicity amplitudes
according to eqs. (IV.4.1) and (IV.4.2). With the explicit expression for the current
JAB(2+,... ,n+) in eq. (3.10) we have

ic(I,n)=O

\ \ " (5-1)

= 0 .

The vanishing of this C-function is due to the overall momentum conservation,
which leads to a vanishing *(2,n)2. With the cyclic symmetry of the C-function,
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also the C-function with one negative helicity in an arbitrary position vanishes. The
helicity amplitude then vanishes as well

(5.2)

The first non-trivial helicity amplitude is M(l-,2— , 3 + , . . . , n+) , for which we
have to know the subamplitude C(l—, 3 + , . . . , m + , 2 - , (m + 1)+, • • • ,n+). With
the current J(2—,3+,.. . ,n+) we only obtain a C-function with adjacent negative
helicity gluons, arising from the «(2,n)~2 term in eqs. (3.22)-(3.24):

«(l,n)=O
l-,2-,3+

9.4 klB

, . . . , » + ) =

jABi^ ,

(Iff)"

^K(2,n)2e-[ABJAB(2-,3+,.

Ul)
 K(2,n-1)»

;t2nf(n2)fc2Cl-n6A-r
((23,n2)XnlX"l)-

.-,» + )

K(1,H)=0

K(1,TI)=0

2 {{12, nl)) '
(5.3)

For gluon 1 an arbitrary gauge spinor g^ is choosen. Due to gauge invariance this
spinor should drop out, as is explicitly shown in eq. (5.3). From the subcyclic
(IV.4.5,IV.4.6) and cyclic (IV.4.3) identities we find

C(2-,3+,4+,... ,n+,3+, 1-) .

From eq. (HI.2.6) one derives

[(«6){6c)(cd)]-1 + [{ac){cb){bd)}-1 = -kO-
(ab)(M)

and in general

- l

(5.4)

(5.5)

[{ab)(bc)(cd} • • • (yz)Yl + [ ( acXc6){6r f ) • • • (yz)]~l + • • • + {(ac)(cd} • • • (yb)(bz)Yl

{{ac){cd}-

With these relations we obtain from eq. (5.4)

<12)4

2 (13X32X24X45) • • • ( n l ) -

(5.6)

(5.7)
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Using again the cyclic and subcyclic properties we arrive at

,4+ ,3+ ,2 - ,

(12)4

(13K32){25X56) •

(12)<
43X32)] (252 \ (13X34X42) (14X43X32)7 (25)(56) - - - (nl) ' v ;

Since we know from the recursion relations what kind of pole terms belong to a
C-function we see that the first and second term on the left hand side correspond
to the first and second term on the right hand side. Repeating these arguments we
find in the general case

2 (13X34) •

which gives the amplitude

(5.10)

The contribution to the cross section arises from squaring the amplitude. Using the
leading order approximation (FV.4.10) we find

(5.11)

This now proves the conjecture of ref. [4].

5.2 The process producing qq and n gluons

In the amplitude for the production of qq and k gluons we need eq. (FV.4.12), which
in the Weyl-van der Waerden notation reads

TKQ+;l,...,k-P-) = iJA(Q+,l k)[Q + K(l,k)]AB
PB, (5.12)

with
(l,k) = 0. (5.13)

For the special case, where all gluons have the same helicity we insert eq. (4.8) for
Jji RUC1 fmd n '-^.nishing T> and thus a vanishing amplitude. Consider the case where
one of the gluons has a negative helicity, we use again the polarization vectors

0 (5-15)
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Inserting the recursion relation (4.4), using eq. (3.7) and

JA(Q+; 1 m) = cXA(Q+, 1,. . . , m) (5.16)

with some factor c we find

On the

with

+;l,.

other

c(i,:

hand,

2, . . , ?

» _ )

the

. - )

= —* 51 ^ B ( Q + ;
m=O

m=O

n-gluon C-function

2

• 1

is also

m)J« c

related

. . . . . » •

(m

m)

to

- 1

+ 1.

Y B

the

) e ^

quantities

(5.17)

(5.18)

ie(l,n) = 0. (5.10)

Using eqs. (4.2) or (4.3) and (5.15) we have

C(l ,2, . . . ,n-) = I KnAcb+DeiD{n) l £ £ X A ( l m)X*(m + l n - 1)
J m=l

= —l(n+X+n) £ Xg(l,...,n.).Y»(m + l,- . . . n - 1 ) . (5.20)
v^ m = i

Since both eqs. (5.17) and (5.20) contain a similar sum of terms, we find

C ( Q + 2 + m + W ™ + 1)+ • - .n .P - ) . (5.21)

where the factor c is taken from eq. (4.9) in which case b+ = Jtm. With the help of
the explicit form of the C-function (5.9) we now have

-,l-,(m + l )+, . . . ,n ;P-

= (v^)n

and therefore
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This proves the conjecture of ref. [5]. For the square of this helicity amplitude we
find after summing over the colours (IV.4.14)

'
" v ' (PQ) P ,^ ,«?-A' ,KA-, -A' 2 ) . . - (A- . .P)-

(5.24)

The case, where the helicities of the quarks are opposite from those in eq. (5.23)
is obtained by an interchange of p and q (modulo a phase factor), as can be seen
by C-conjugation, eqs. (IV.3.14)-(IV.3.17). When one wants the helicities of all
particles in (5.23) to have the opposite value one should take the complex conjugate
of all spinorial inner products {ij).

5.3 The process producing qq, n gluons and a vector boson

In this subsection we show how processes with vector boson production can be
incorporated, giving again explicit expressions for definite helicity combinations.
Specifically we consider

e+(P+) + e~(P_) - • 7* -> q(Q+) + q(Q-) + g( A',) + • • • + g(Kn) (5.25)

and
Z(P) -» 9(Q+) + <l(Q-) + ff(A'i) H \- g(Kn) . (5.26)

Similar results hold when a W instead of a Z is participating. Denoting the out-
going quark and antiquark flavours by /_ and / + we need the expression Sv of eq.
(IV.4.20) with the general vertex

2

as given in eq. (IV.4.15).
First we consider the helicity combination, where only the right-handed part of

F^, which is proportional to -R/_/+i can contribute. We find as in eqs. (2.14) and
(2-15)

S,(Q_+; 1,2,.. . , n;Q+-)

m=0

= iRV
s_sS$BY, JA(Q-+;l,...>m)JB(m + h--,'>;Q+-), (5.29)

where we have used in the last step eqs. (III.2.23) and (III.2.24). For the gluons
we choose the positive helicities with the polarization as in eq. (3.3) with 6+ = q+
such that we have (cf. eqs. (2.33) and (4.8)) only one term

£„(<?-+ ; l+ , . . . , n+ ;Q+- ) = iR)_ho** JA{Q-+;l+ n+)q+B

B

- .

(5.30)
56



In e. similar fashion one obtains

To this helicity combination only the left-handed part, proportional to the coeffi-
cient £/_y+ in eq. (5.27), contributes. The quantity 5^ has to be contracted with
V which for reaction (5.25) assumes the forms

c1 rj

The matrix element of process (5.25) for a specific helicity combination now becomes

_- , Q_+,Q+-;1+, ••-,«+)
^ (a, •••an),iV'"(P++,P_-)S(1(Q_+;l+ n+;Q+-)

and

Similar expressions arise for other helicity combinations of the fermions. This for-
mula also applies to

e~(P.-) + q(Q++) -> e"(P+-) + q(Q.+) + g(A',+) + • • • + g(Kn+) . (5.36)

In a similar fashion one could consider the process where a Z or W is produced
by a lepton pair. Expressions like (5.32) and (5.33) should be used (see chap. 8
for further details). Instead of this we sum over all polarization states of the Z
resulting in process (5.26). The polarization sum is given by

! > „ V? = -</„, + ^ - (5.37)
Vol. mZ
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Since P" SM = 0, we have in the case of eq. (5.30)

For reaction (5.26) we have

£ \M(Q.+,Q+-,P; 1+,• • •,n+)\2 = e\Rlu)
2gin2a- JV""1 (N2 - 1)

pol.Z

n+)l* -

For Q_ and Q+ we can take incoming momenta in eqs. (5.39) and (5.40) and for
P an outgoing momentum. Then (5.39) refers to a —, + helicity combination for
Q_,Q+ and (5.40) has a +,— helicity combination for the incoming quarks. In
this way we describe quarkpair annihilation into a Z and n gluons. When the Z is
replaced by a W eq. (5.39) vanishes and in eq. (5.40) one should use the parameter
Ly_f+. These relations proof the conjecture of ref. [6].
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Chapter VI

Multiple soft gluon radiation

The recursive calculational method [1] of chap. 4 is used to analyse the sys-
tematics of multiple soft gluon emission in multi parton processes [2]. Factorization
properties of the subamplitudes are discussed. The case of soft gluons with equal he-
licities leads to simple expressions. Explicit formulae for double soft gluon emission
are given. The hard partons in the processes are gluons, a qq pair with or without
a \'ector boson. The special assumption of strong ordering of soft gluon momenta
transforms the general expression into the ones known from the literature.

1 Introduction

It is well known that soft gluon emission is much more complicated than soft photon
emission. In QED one has the factorization property of the soft bremsstrahlung
amplitude

M(Pu...,Pr,Ku...,Km) = S(Pi,...,Pr,Ki,...,Km)Mll(Pi,...,Pi). (1.1)

The momenta of the soft photons are denoted by A'i , . . . , A'm whereas P\,.... P; are
the momenta of the hard process, which is described by the amplitude Mn . In
addition to the factorization of M into a bremsstrahlung part 5 and a hard part
Mu , the factor S itself factorizes

m

S(Pu--,PiJu,..,Km) = l[S(P1,...,Pl;Ki), (1.2)

which gives rise to independent photon emission. In QCD the amplitudes don't obey
the simple factorization property (1.1). When one decides however to consider a
decomposition of M into subamplitudes according to eq. (IV.4.1), one finds for
those subamplitudes factorization like in eq. (1.1). Although eq. (1.2) is then still
not valid, there are some special kinematical situations for which another kind of
factorization for S holds. These are the situations in which all soft gluon helicities
are the same and the case of a strong ordering of the soft gluon energies i.e. the
first one being much softer than the second one, which in turn is much softer than
the third etc.
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In the literature soft gluon emission cross sections have been studied [3,4,5]. In
ref. [3,4] the emphasis is on special momenta configurations for which a property like
(1.2) holds, in ref. [5] single soft gluon emission in specific four parton processes is
considered. In this chapter we studie the systematics of multiple soft gluon emission
[2]. When we have m soft gluons with momenta

A', = (w,-, K.) , i = 1 , . . . , m , (1.3)

we study the most singular terms in the amplitudes which behave like

M ~ ( w 1 w 2 " - u m ) - I . M , (1.4)

where
w i < | P J | , i = l , . . . , m , j = l , . . . , / . (1.5)

We shall analyse processes where only gluons participate and processes where be-
sides gluons also a quark pair with or without a vector boson is present. It will be
shown that the bremsstrahl'jng factor 5 does not depend on the underlying hard
process.

The advantage of introducing the subamplitudes C of eq. (IV.4.2) here is that
the soft gluon emission for the subamplitude can be shown to factorize as in (1.1).
Then it can be investigated whether some factorization equivalent to eq. (1.2)
occurs in special situations. Of course, even when the bremsstrahlung factors S are
known for the C-functions the expression for M becomes involved. This complicated
structure propagates into the cross section. Nevertheless it is worthwhile to have
a systematic procedure to find the soft gluon matrix elements. This could be of
importance for higher order calculations which require infrared cancellations. The
usual strong ordering assumption can be compared to the ?xact soft gluon emission
cross section. The simplest test case is the emission of two soft gluons, for which
we will give explicit expressions. The procedure to evaluate multiple soft gluon
emission will be presented and applied to some special cases.

The actual outline of this chapter is as follows. In sec. 2, 3, 4 and 5 we consider
pure gluonic processes. In sec. 2 the behaviour of the gluon currents under gauge
transformations is examined. This behaviour has to be known in the next sections.
Single bremsstrahlung is evaluated in sec. 3. Sec. 4 treats double bremsstrahlung
in great detail, whereas sec. 5 is concerned with multiple soft gluon emission. The
equal helicity case is shown to be simple and the strong ordering limit is applied.
Sec. 6 introduces a qq pair into the previous discussions, whereas sec. 7 adds an
electroweak vector boson.

2 The gauge behaviour of the gluonic current

We will need to know the gauge dependence of the gluon current (IV.2.29) in the
following sections. By this we mean we must know the current when replacing a
polarization vector by its corresponding momentum vector. Replacing polarization
vector J(m) by its momentum vector Km in the gluonic current (IV.2.29) gives the
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result

(2.1)

where

l,--.,A'm n)

i , . . . , j i f m , . . . , f )
j T m J M ( I+ l , . . . ,n ) ,

1< m < n , (2.2)

n-2

^ l , . . . , r i ) , (2.3)

, /c(Z+l,n)-! ' ( /+! , . . . ,n-l ,A'n)

(2-4)

We will now prove eqs. (2.1)-(2.4). The gluon current consists of two parts. One
part, expressed in a quantity 1^(1,... , n), depends on the specific gauge choice for
the helicity vectors and will not contribute to the physical amplitude. Another
part is gauge independent and is denoted by G^(l,..., n)rc(l, n)~2. The physical
subamplitude (IV.4.2) is determined by this gauge invariant part in the following
way

| (2.5)

Because of the gauge independence of the subamplitude one must have

Gp(l,...,Km,...,n) = 0, (2.6)

« ( J(l,n)G"(l,...,n) = 0 . (2.7)

Using eqs. (2.5) and (2.7) and the current conservation (IV.2.33) of the current JM

we arrive at the general form

(2.8)

Substituting for J(m) the momentum Km gives the gauge terms originating from
the gluon current of eq. (2.1) where the explicit expressions for 1^(1,..., Km,..., n)
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are given in eqs. (2.2)-(2.4). That these specific forms hold will be proven with
the help of the recursion relation (IV.2.29) and the generalized subcycljc identities
(IV.2.34).

The first step is to prove eq. (2.3) from which eq. (2.4) follows from the reflective
property (IV.2.32). When we replace in the two-gluon current .7(1) by A"i we find
from eq. (IV.2.8)

MKu 2) = ^ ^ [2A', • A'2JM(2) - K\ • J(2)(A', + A'2)J , (2.9)

from which follows
r,,(A'1,2) = J l ,(2). (2.10)

Again, explicit calculation gives

yM(A-,,2,3) = JM(2,3) - A l
K ( \ ( 2 ) ' a ' 2 ) ^ ( 3 ) • (2.11)

By means of induction and using the recursion relation it is established that

g K ( 1 ° - ^ ( A ; 2 f ) l n) . (2.12)

In order to prove eq. (2.2) the generalized subcyclic relations (IV.2.34) are used for
which we use the notation

52
Perm(.j)

= 0 , ( l < m < n - 1 ,m+k = n.) . (2.13)

A special case is
Ji^^^n) = 0 , (2.14)

which implies
l r( 1 ,A-2 ,3v . . ,n) = 0 . (2.15)

Thus we can write

y(l,A-2,3,...,n) = -£r(A' 2 ,3 , . . . , i , l , i+l , . . . ,n) , (2.16)

which upon insertion of eq. (2.12) proves eq. (2.2) for m = 2. Suppose that eq.
(2.2) holds for 1 < / < m. Then we prove it to hold for / = m. Indeed the relation

r ( l , • • •, m - 1 , A"m, m + 1 , . . . . 7i) = 0 (2.17)

expresses the I = m case into the known I < m cases, which can be seen to add to
eq. (2.2) with / = m.
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3 Single soft gluon emission in an n-gluon process

As a warming up for the next sections we will look at the single soft gluon behaviour
of the gluonic current. Consider the limit in which gluon 2 becomes soft which will
be denoted by underlining label 2. We then have from eqs. (IV.2.8), (IV.2.24),
(2.1), (2.10) and (2.11)

J(2,3) = SMJ(3) + ts»A'3 , (3.2)

<s) , (3-3)

From the recursion relation (IV.2.29), eq. (3.2) is easily generalized to

J(2,3,4,...,n) = *»J(3,4,...,n) + t»J(A'3,4,...,n) (3.6)

and similarly eq. (3.1), such that eq. (3.3) now becomes

J ( l , . . . , m - l , m , m + l , - . , n ) = (sm-im.+ sSLm+l)J(l,... , m - l ,

,.. • ..m-l, Km+t,m+2, ...,n).

(3.7)

Since we are interested in (J-functions and amplitudes only the first term in eq.
(3.7) is relevant, as can be seen from eqs. (2.1) and (IV.4.2). One has

C(l, . . . ,m-1,m,m+1,. . . ,n) = sm_, mm+1C(l,..., m-1, m+1, . . . n) , (3.8)

where

—1 ni ~r ^ni

A"m_i • Fm • A'
m + 1

with F^ the abelian part of the gluon field strength

F£" = A'm r{m) - A'm J"(m) , (3.11)

which shows explicitly the gauge invariance of the soft gluon factor.
In the following it is often useful to present results for specific helicities. As has

been shown in chap. 3, Weyl-van der Waerden spinor calculus [6] is very convenient
for this purpose. For the polarization vectors we choose

4*(0 = ekW = - v / 2 ^ , (3.12)
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• W O = e ^ ( O = - ^ ^ , (3.13)

leading to

^ - i E m + , - (^-,™m+iJ - V 2
( m _ l m ) ( m m + 1 ) • <3-15)

A similar result was reported in ref. [7]. The spinorial inner products (y) have as
usual the property

\{ij)\2^2KiKj. • (3.16)

Although the soft gluon factorization is simple when considering subamplitudes
like in eq. (3.8) it becomes more involved for the amplitude (IV.4.1) and the squared
matrix element. In leading order in the colour one has, after performing the colour
sums (IV.4.10)

|7H(l,...,n)|2 = a - 2 ( i V 2 - l ) £ |C(l,...,n - l,n)|2 , (3.17)
P(l n-l)

with

« = V • (318)

For n — 4,5 eq. (3.17) is exact, whereas for higher values of n interference terms
between different C-functions arise, which are however suppressed being of order
N~2 with respect to the terms in eq. (3.17). Consider gluon n as soft, apply eqs.
(IV.4.3) and (3.8) and rearrange the summation such that we obtain

\M(l,...,n)\2 = a-2(iV2 -1 ) £ £ k_lsl|
2|C(l,2,...,n-l)|2

P(1,..,T1-2)C(1 n-l)

= an-3(N2-l) £ 5(1,2,. . . ,n- l ;n) |C(l , . . . ,n- l) | \
P(l n-2)

(3.19)

with
S(l ,2, . . . ,n- l ;n) = a £ |*.-i»if • (3-20)

C(l,2,_.,n-1)

Thus the cross section does not factorize when gluon n becomes soft, instead one has
a weighted sum of squares of C-functions belonging to the (n — 1) gluon process.
For the cases n = 5 and n = 6 we explicitly evaluate eq. (3.19), where we also
perform the sum over helicities. We find from eq. (3.15)

A* C(1234)

( 2 3 )- = a ( ( 1 2 )

V(l -5X5- I I I
2) + (2-5X5-3) + (3-5X5-4) + (4-5X5-

(3.21)
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with
(i-j) = Ki-Kj. (3.22)

For n > 5 we get similar expressions.The explicit C-functions for 4 or 5 hard gluons
are obtained from the general formula (V.5.9)

C ( l - , 3 + , . . - , m + , 2 - , ( m

^r w (323)
2 (13X34) • • • ( m 2 X 2 m + l ) ••• ( n l ) ' { '

which gives

E | C ( l A 1 , 2 A , 3 A 3 , 4 A 4 ) r = 4 ( i ^ ^ ( ; x f 1 ) , (3.24)

and

Here use has been made of the fact that for all helicities equal, or all but one equal
the C-functions vanish. Combining the above results, one finds

£|-M(lA1,...,4A4,fiA5)|
a = 8a3(J\T2-l) £ £ ( i - j ) 4

A, [j=l j=.+l J

X j ^ L , ( 1 - 2 X 2 - 3 X 3 - 4 X 4 - 5 X 5 - 1 ) ' ( 3 2 6 )

and

1
X P(S. 8 ) (1-2X2-3X3-4X4-5X5-6X6-1) '

(3.27)

We have verified numerically that eq. (3.26) agrees with the soft gluon expression
in ref. [5]. It should be noted that although eq. (3.17) for n = 6 is leading order
in N, eq. (3.27) turns out to be numerically a very good approximation to the
exact soft gluon expression. The interference terms of order JV~2 undergo sizable
cancellations in the soft limit. For n > 6 this is not anymore the case [8].

4 Double soft gluon emission

Let gluons 2 and 3 be soft and consider J(2,2,4). The most s> igular terms can be
read off from the recursion relation (IV.2.24), giving

J ( 2 ' 2 ' 4 ) = 2K4 • 1(2,3) ( [ J ( 2 ) ' J f e 4)]

WV'4 (4.1)
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with

( 4 2 )

, - J ( 4 ) - (J(2,3_) + s*J(2)) + f^A'4 • J(2)
'»* = 2AV(A'2 + A'3) • ( 4 3 )

Use of eq. (IV.2.25) gives

,3,2) = sm J(4) + r4a2A'4 (4.4)

with
•S432 = ^234 , *432. = <234 • ( 4 . 5 )

The recursion relation, eqs. (4.1) and (4.4) lead to

.7(1,2,3,4) =
K4) , (4.6)

with
SlM4 = «123 + S12S34 + 5334 . (4.7)

The general n particle case takes the form

~j-(tm-lmm+l + tm-i m^m+1 m+2) J ( l i • • • i A m _ l , TH+2, . . . ,Tl)

+[tm m-t-1 m+2 + ^m-1 m^m+1 m+2) J ( l i •> *" —1? A"m+2, . . . ,Tl)

+ t m _ i m t m 4 . i m + 2 J ( ! • • • • • ; A ' m - i , A ' m + 2 , . • • , n ) , (4-8)

with
sm-l mm±lm+2 = *m-l mm+l + sm-l m^m-t-l m+2 + •smm±lm+2 (4-9)

and

sm±lrn+2J(ni))

Again, the relevant two soft gluon factor can be expressed in the gauge invariant
abeliau field strengths F of eq. (3.11):

_ A"m_i • Fm

( A ' m _ l " A*m XA'm -

A ' m + i

I " A"m+2

XA*m+l " A ' m + ;
m+1 " A'm_l

XA"m_, • K(m,

«)

h i ) )

\l\m • Jv m + i^A m + i • A m + 2^iv m + 2 • K^m,m -+• i j j

We note two properties of the soft gluon factor. The first one concerns its symmetric
sum

Vlmm-Hm-fi + •Sm-l m±l_m m+2 = s m-l mm+2sm-l m±lm+2 • (4-12)
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This relation follows from

•Smm±_Im+2 + •sm±l_mm+2 = sm m±2sm+l m+2 , 14-1")

a similar relation for sm_lHLm±1, eqs. (3.4), (3.9) and (4.9). Notice that with this
symmetrization we have independent gluon emission as in eq. (1.2).

The second relation concerns the strong ordering of the soft ghions i.e.

ujm < wm+, . (4.14)

In that case eq. (4.10) gives

Sm-lsm±i = Sm-lTn±l(Sm-lm + Sam+1 ) +<mm±l , (4-16)

such that
^m-\ m.m±i.ru+2 — •Sm-lmm+l'Sm-la±lm+2 • (4-1')

The terms tmm+1 and tmm±1 in eqs. (4.15) and (4.16) can be considered as gauge
terms arising in sm_imjn±lm+2 by the replacement of J(m + 1) by A'm+i. Since the
factor Sm-immiim+2 Is gauge invariant these gauge terms should cancel. Here one
can also see~this cancellation explicitly upon using eq. (3.5).

As anticipated in sec. 1 we have a factorization of the C-function

C(l,-. . TO — l,gi , m + l , m + 2 , . . . ,n) = gm-imm+im+2^-(li • • • ,tn — l,m+2... ,n) ,
(4.18)

where in the special case of strong ordering the soft gluon factor itself factorizes,
but in a way different from eq. (1.2). When one takes the symmetric sum of the
soft gluon factors the result factorizes as in eq. (1.2).

When we consider the helicity dependence of the soft gluon factor we see in the
equal helicity case a split-up like in eq. (4.17) without the requirement of strong
ordering (4.14). Use of eqs. (3.12) and (3-13) in eqs. (4.2) and (4.5) gives

= 9<nH£&) 1 ( 4 1 9 )
mm±lm+2 - ^Q (m m+l){m+l T71+2) ' '

5m+lmm — •> ' T "~ 1 ' U M l

and with eqs. (3.14) and (4.9)

(m-lm+2)
+1 m+2) ' K '

which can be written as eq. (4.17) and thus factorizes. Similarly, or directly from
eq. (4.11), one obtains

(m-lm+1)'2 (m-lm)
2A"m_, • (Km + AVt-i) {m-l ™Y

)» (m+2m+lH
J2A'm+2-(A'm+A'm+i) <m+2m+l)J '
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and
sm-lmm+lm+2 = ( s m-l mm+1 m+2 ) i (4-23)

Sm-l mm-t-1 m+2 ~ \Sm-l jnm±lm+2) " (4-24)

We see from eq. (4.22) that in the unequal helicity case no simple factorization
occurs as in the equal helicity case. Only after assuming strong ordering one obtains
(4.17).

Next we turn to the double soft gluon limit in the matrix element squared. In
eq. (3.17) gluons (n — 1) and n become soft. Depending on the position of gluon
(n — 1) we get a different factorization

, . . . , n - 2 ) , (4.25)

iC(l,2,. . . ,n-2) . (4.26)

We introduce

5 ( 1 , 2 , . . . , n - 2 ; n - l , n )

I J I (J'm-ln^ml I |*n-2nl
Vm=2 /C(12-n-2)

(4-27)

|2

= «2 £
C(12-n-2) L' ' C(I2-n-2)'

(4.28)
= 5(1,2, . . . ,n-2;n-1)5(1,2, . . . ,n-2;n)

-2O2 Yi Re [Sn-2n=lal^-2aE=ll] • (4-29)
C(12-n-2)

Use has been made of eq. (4.12) to obtain eq. (4.28) whereas the definition (3.20)
is introduced in eq. (4.29). Note that the soft factor 5 for two soft gluons has a
part which factorizes into independent single gluon emission functions and * part
in which the soft gluons depend on each other. The latter part is typical for the
non-abelian theory.

In the limit that wn_i <tC u>n we use eq. (4.17) in eq. (4.27) such that we find

5(1,2 n - 2 : » - I n ) = 5(1,2 n-2, w;n - 1)5(1,2 n-2;w) , (4.30)

or for wn <C wn-i

5 (1 ,2 , . . . , n -2 ;n - ln ) = 5 ( l , 2 , . . . , n -2 ;n - l )5 ( l , 2 , . . . , n - l ; n ) . (4.31)

For equal helicity gluons n and n — 1 the same factorization holds, e.g.

= 5(1,2, . . . ,n-2,n+;(n- l )+)5( l ,2 , . . . ,n-2;n+)
= 5(1,2,.. . , n -2 ; (n - l )+ )5 ( l ,2 , . . . , (n - l )+ ;n+) . (4.32)

70



For the colour summed matrix element squared in the large N limit we have

\M(l,2 n- l ,n) l a

= an-4(JV2 - 1) £ 5(1,2,. . . , n - 2 ; n - l , n ) | C ( l , 2 , . . . , n - 2 ) | a .
P(l2-n-3)

(4.33)

When we also sum over the helicities we get

= <*n-4{N2-l) £ (
P(12-n-3) \\n-l

x £ |C( l ,2 , . . . ,n-2) | 2 . (4.34)
A,-.\n_,

The quantity 52 S c a n ^ evaluated explicitly for any n when use is made of eqs.
(3.15), (3.20), (4.21)-(4.24) and (4.29). The C-functions are known in an analytic
form up to seven gluons [8], such that n = 9 is at present the maximum value in
eq. (4.34).

5 Multiple soft gluon emission

The multiple soft gluon case can be derived in a way similar to the double soft
gluon case. When we consider (m — 1) soft gluons we should know all the soft gluon
factors for a smaller number of gluons.

We givs a few steps leading to the (m — 1) soft gluon factor

•7(2,3., • • • ,za,m+1) = -s23-mm-t-iJ(m+1) + *23...mm+tKm+i , (5.1)

with

= — 77—rA'm+1 • (J(2,3, .. . ,r

, J(2,3, - - , m ^ ) + • • • + S3i^,m+i J(2)) , (5.2)

= ^-rr rr r[ - J(m + 1) • (j(2,3,. . . ,m)

+i J(2,2, - - •, m-2) + • • • + s&^n+i J(2))

+Km+i • (tmm+, J(2,2, • • -,m-1) + <m-imm+t J(2,2,. • . ,m-2)

(5.3)
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From eqs. (IV.2.32) and (5.2) one finds

Sl23~m = K 0 Jil • (J(2,3 m) + S,2 J(3, • • • , 321)

+SmJ(±, . . . , m) + - • + ^123-m-|J(m) ) - (5.4)

Just as one obtains eq. (4.6) one now has

J(l,2,3, • • - ,m,m+l) = sm...mm+1 J(l,m+1) + gauge terms , (5.5)

where the gauge terms are currents in which polarization vectors J(i) are replaced
by momenta A';. These terms do no contribute to the subamplitudes. Instead of
having exclusively gluons 1 and (m + 1) hard one can have more hard gluons like
in eq. (4.8). This gives for the subamplitude

l n) . (5.6)

The soft factor is a generalization of eq. (4.9)

m+1 = ^123-m + 512 S3—mm+1 H • + •SI2^| ̂ t+l—mm+l + " h $23—mm+l - (5 .7)

This factor is gauge invariant i.e. the replacement of any polarization vector J(i)
by Ki ( 1 < i < m + 1 ) gives zero. This is a consequence of eq. (5.6), where the
l.h.s. possesses this property.

Certain sums lead to factorization as in eq. (4.12)

/ . s 123-1 [+1 -m m-H = •Sl23-lm+l •Sll+1-mm+l , (5-8)

where the sum runs over all those permutations of (2 • • • m) which leave the order
of the set (2 - - - /) and the set (/ + 1 • • • m) unaffected. A consequence of eq. (5.8) is

m

52 Sli^nm+l = II5Um+l - (5-9)
P(2-m) 1=2

Note that the r.h.s. of eq. (5.9) corresponds to the factorization of eq. (1.2).
We will now prove eq. (5.8). According to the definition of 5i2-mm+i we have

•Sm-mm+l = ^1234-m + ^12 ^34--mm+1 + ^12334—mm+l H 1" ^234—mm+1 , (5 .10)

1 = (•S123-l + *12 *3^1m+l H
x(JSH-4-ll-l-2-m + $11+1 -S/+2—m m-t-1 + • • • + ^1/4-11+2—m-1 -Smm+1 + sl+l 14-2—m m+1) •

(5.11)

Suppose the following identities hold

5 2 J123-»-t-l~m = ^123-l^ll+l-m , (5-12)

2 J 323—11+1--mm-H = 323-1 m+l ^l+l-mm+1 , (5.13)
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then the terms in eq. (5.10) will be modified upon summation over the permutations
as required in eq. (5.8). The changes are

3123-1 3H+I...m , (5.14)

+ +l S>+?-mm-M ' (5.15)

H h SU+U+2-l-t-fc-l •S2-fm+l--<f+t-mm + l • (5 .16)

(0<ifc + l < ? , f < ^ m )

The second term in (5.16) originates from combining factors of the type Si2-ib-u-n +
^i2-/+ifc-i + • - • + -SU-H 2-t-i and then using eq. (5.12). The terms in (5.16) are
characterized by having all the factors .siij...,-,, or Sii2...,n Si,-n+1...,-t. Thus we see that
eqs. (5.14)-(5.16) give the terms of the r.h.s. of eq. (5.11) and therefore the validity
of eq. (5.8) is proved.

What remains to be proved is the validity of eqs. (5.12) and (5.13). We only
consider the case of eq. (5.12), the other proof goes in a similar fashion. From eq.
(IV.2.34) one has

£ j ( l , . . . , U + l , . . . , m ) = 0 , (5-17)

where we sum over all those permutations of ( 1 , . . . ,m), which maintain the order
in the sets (1 , . . . , / ) and ( / + 1 , . . . , m). We can rewrite this sum in separate sums
Y}1^ depending on the position of 1 :

+ ••• + J ( / + l , . . . , n » , l , 2 , . . . , l ) = 0 , (5.18)

where J^*' denotes the sum over all those permutations of ( 2 , . . . , / , / + k,..., m)

which preserve the order in the sets (2 , . . . , ! ) and (l+k+ 1 , . . . ,m). Upon taking

the soft gluon limit for gluons 2 , . . . , m in eq. (5.18) we get, apart from gauge terms

•s12-»+l.m + 2 ^ S!±ll g12-i/+2-m

-| h J2 S/+1 -H-fc-ll Sl7-ll+k~m H + g/4-l-wl *12̂ J = 0 . (5.19)

Using induction for proving (5.12) we can perform the sums JT'fc) for it > 1 giving

-m H k...m
+ ••• + s,+,...mi 3 1 2 - , = 0 , (5.20)

or

EC)

= 0 - (5.21)
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The factor in parentheses can be rewritten by use of

'u^^t-l^ijt^., (5.22)

and the induction hypothesis for eq. (5.12) :

$11+2 /-H/4-3-m

• • - + ( -1 ) " - ' slm...l+l

(5.23)

The sums £'*' now preserve the orderings in each of the sets (I + k,...,/+ 1) and
(/ + k + 1 , . . . , m). In the l.h.s. of eq. (5.23) all terms cancel except the first term
in £ ( 1 ) . Combining eqs. (5.21) and (5.23) then proves eq. (5.12).

When ui2 <C W3, • •., wm we have from eq. (5.5)

J( l ,2 ,2, - - - ,m, m+1) = s1%h:Slm+1 J ( l , m+1) . (5.24)

Gluon 2 is soft compared to the other gluons, so we first apply eq. (3.7) on the
current. Because gluons 3 through m are soft relative to gluons 1 and (m + 1), we
use next eq. (5.5) to reduce the current further

J(l ,2,2, • . . , m , " i + l ) = 5i2 3J(l ,2,-- . ,m,m + 1) + gauge terms
ia^am+i J ( l , m + 1) + gauge terms . (5.25)

From eqs. (5.24) and (5.25) we see that

H = ̂ 123^13 -mm+1 • (5.26)

The gauge terms from eqs. (5.24) and (5.25) are irrelevant for physical amplitudes.
In the strong ordering case

• •• < u>m (5.27)

one finds by repeated application of eq. (5.26)

•Sl23-mm+l = Sl23*134 • " " •Slmm+1 • (5.28)

The two soft gluon factors can be generalized in the equal helicity case to an
arbitrary number of soft gluons. For the polarization choice of eq. (3.12) the explicit
form of the current J(2+, 3 + , . . . , m+) is known (V.3.10),

J ^ ( l + , . . . , m+) = (v/2) { 6 l ) ( 1 2 ) . . . { m f c ) - (5-29)

Using induction in eqs. (5.2) and (5.4) one then finds
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l l ^ I
( m i ) ( 1 2 X 2 3 ) - - ( m - l m ) •

Inserting eqs. (5.30) and (5.31) in eq. (5.7) now leads to

which implies the factorization form

lmm+1

Note that this factorization is the same as in the strong ordering case. As a conse-
quence of the definition of the soft factor in eq. (5.5), we can derive this factor also
directly from eq. (5.29) by taking gluons 2 through (m — 1) soft. This results in

(12X23). • • ( m - I n , )

4Sdra^fl'+). (5-34)

which gives a similar soft factor as in eq. (5.32). Note that the gauge dependent
term is zero for this choice of the gauge spinors.

For an explicit evaluation of the soft gluon factors for other helicity combinations
one has to calculate all currents up to J (2 , . . . , m). That is, one needs the same
information as one would need for an m-gluon hard scattering amplitude. So when
one knows the currents for m — 1 gluons one knows the expression for 2m — 1 gluon
scattering where m gluons are hard and m — 1 are soft.

6 Soft gluon emission in a process producing qq and n glu-
ons

The matrix element for the production of a quark, antiquark and n gluons with
outgoing momenta Q,P, A'i, . . . ,Kn is given by (IV.4.11)

M(Q; 1,2,...,n;P) =-ig" £ (a, •••an),/P(Q;l,2 n;P) . (6.1)

One may wonder whether we have for the subamplitudes V (generalized) subcyclic
identities like eq. (IV.4.5). If one replaces T"n by a unit matrix we are actually
calculating a process where gluon n has been replaced by a photon. We then have

M(Q;l,2 n-l,n;P) = -ig"-1eq £ (a, • • • an_,),/Z>(Q; 1,2,... ,n-l,n;P) ,
P<1 n-D

(6.2)
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with

+ P ( Q ; l , 2 , . . . , n - l , n ; P ) . (6.3)

The matrix element (6.2) describes the production of an outgoing quark pair with
charge eq together with (n—1) gluons and a photon with momentum Kn. In general,
when m gluons and (n — rn) photons are produced one has

,2, . . . ,m,m~+l, . . . ,n; JP} , (C.4)
P(l,....m)

where

; 1,2, - . . , m , m + l , . . . ,n; P) , (6.5)
perms

with a sum running over all permutations of ( 1 , . . . ,n) which preserve the order of
( l , . . . , m ) .

The soft gluon properties of the gluon current and the recursion relation (IV.3.9)
are the basis for the discussion of the soft gluon behaviour of the subamplitudes T>.
In the following gauge terms will occur i.e. currents J(Q\ 1,2,..., n) where one of
the polarization vectors J(i) has been replaced by Kt

(6.6)

J(Q) ——
K(ln)2

l , i . )T(t + l A'. n)

(6.7)

, . . . , n - l ) . (6.8)

These gauge terms give vanishing functions V(Q; 1 , . . . , A'm, ...,n;P) since the in-
verse propagator is not cancelled in eq. (IV.4.12) by the propagator. Instead it
becomes the Dirac equation for v(P).
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We will now prove eqs. (6.6)-(6.8). For the derivation of eq. (6.8) we need the
identities

, n) $ + ̂ (1, n) - m]"1 = J(Q) , (6.9)

, n j - r n ] " 1 , (6.10)

J(Q; 1,...,m)if(m+l,n) $ + //(1,n) - m]"1 = J(Q; 1,...,m)

J(QV(1. • • •' ™) + E J(Q; 1. • • •' k)4{k+l,... ,m) p +</(l,n) - mj .

fc=i J

(6.11)

The last equation follows from eqs. (IV.3.9), (6.9) and (6.10). In the recursion
relation (IV.3.9) we replace J(n) by A'n, insert eq. (6.9) and use eq. (6.11) to
obtain

?

y iik + i lMl+hn)-Y(l+l,...1Kn)
/Jbi ' ' " ' n(l+l,n)2

(6.12)

One can show upon using eq. (2.4), that the term in curly brackets vanishes thus
proving eq. (6.8).

We now turn to eq. (6.6). Using eq. (6.9) one has

J(Q;A',) = - J ( Q ) . (6.13)
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Using this result, the explicit form Y(Ki,2) and again eq. (6.9) one finds

J(Q;A',,2) = J(Q)K{h2\\\\^2) . (6.14)

This then leads to the hypothesis

, (6.15)

which can be proven to be correct by induction. We prove eq. (6.15) for n = m,
assuming its validity for m < n. The recursion relation leads to

= - \j(Q)f(Ki, 2 , . . . , n) + J(Q; A' , ) / (2, . . . , n)

1=2

(A'i, 2 , . . - ,n) - 7 ( 2 , . . . , n)

g<(U'X "
/c(l,n)2

The explicit form (2.3) for l'(A"i, 2 , . . . , n) then gives a vanishing term in the square
brackets, giving eq. (6.15). For the proof of eq. (6.7) one again calculates some
explicit cases, which can be generalized into eq. (6.7), which then is proven by
induction. Also here eqs. (6.9) and (6.11) have to be used together with the
explicit forms of l ' ( l , . . . , A'm , . . . , k).

We discuss explicitly single and double soft gluon emission. From this discussion
it will be clear how to generalize it to multiple soft gluon emission. For single soft
gluon emission we need the A*i —* 0 limit of various expressions :

= sQlJ{Q)\ (6.17)

1,2) = (sQi + s12)j(Q;2)+*i2J(Q;A'2)

= SQuJ(Q;2) + tl2J{Q;K2), (6.18)

where the previous definitions (3.4) and (3.9) now also incorporate the momentum
Q. It is easy to extend (6.18) from two gluons to n gluons and to consider other
positions of the soft gluons. The general results are

J(Q; 1,2,..., n) = sQt2 J(Q; 2 , . . . , n) + t w J(Q; A ' 2 ,3 , . . . , n) (6.19)
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; l , . . . , m , . . . , n ) = s m _, m m + , J{Q; 1, . . . , m - l ,
; l , - . - ,A 'm- l ,m+l , . . . , n )

; l , . . . , m - l , A " m + 1 , . . . , n ) , (6.20)

or in terms of the subamplitudes

(6.21)

l , . . . , n ; P ) , (6.22)

. (6.23)

The last expression can be obtained most conveniently by starting with a spinor
current where the antiquark is on shell (IV.3.11).

We now turn to the colour summed matrix element squared. In leading order
in N we find

1 £ \V(Q;l,... ,n;P)\2 . (6.24),...,n;P)\ = a £
JV P(l-n)

This approximation will turn out to be not as good as in the pure gluon case. When
(n — m) gluons are replaced by photons as in eq. (6.4) one has to replace (n — m)
factors a by

Q = {eqf . (6.25)

Moreover the sum then runs over all permutations of ( 1 , . . . , m). When gluon n is
soft eq. (6.24) becomes

\M(Q;l,...,n;P)\2 = a " ~ 1 ^ 1

x £ S(Q,l,...,n-l,P;n)\V{Q;l,...,n-l;P)\2 ,
P(l--n-l)

(6.26)

with

S(Q, 1, . . . , n - 1, P; n) = a l)sQ!ii |2 + £ | 5 m s m + 1 1 2 + |Sn_, a P | 2) . (6.27)
\ m=l /

This factor is similar to S( l ,2 , . . . ,n - l ;n) defined in eq. (3.20). It is not cyclic
invariant in ( Q , l , . . . , n - 1,P) since it lacks a term |spng|2. Summed over the
helicities of gluon n we have an expression similar to eq. (3.21)

U Q - « X n - l ) ^ ( m - n X n m + 1) > l n X n P ) j l }
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In eq. (6.28) we have neglected the masses of the quarks. Including them would
give an additional term

-am2[(Q-r7)-2+(P.n)-2] . (6.29)

For explicit calculations in the helicity formalism one needs the subamplitudes
V{Q+; 1 , . . . , n; P—). Consider the massless quark case. The subamplitudes vanish
when all gluon helicities are the same. For n — 2,3 it is sufficient to use (V.5.22)

and the rules for changing all helicities and only the quark helicities. The former
means complex conjugation of the whole expression (6.30), the latter the inter-
change of p and q in the numerator.

For n = 3 eq. (6.26) leads to

(P-Q)

(Q • 1X1-2X2-3X3-P) • ( 6 3 1 ]

In contrast to the 5-gluon case, eq. (3.26), the expression (6.31) is not exact in
the colour N. In order to discuss the exact formulae we first give for n = 2 , 3 , 4
the complete hard gluon result thus improving on eq. (6.24). The colour summed
matrix elements squared are

\ ± \ , (6.32)

( 6 3 3 )

{|D(Q;1,2,3,4;P)|2-^|D(Q;1,2,3,4;P)|2

|_P(1234)
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{ ; 1,2,3,4; P)(p(Q; 2,14,3; P)-P(Q; 4,2,3,1;P)

-P (Q;4 , l , 3 ,2 ;P ) -P (Q;3 ,2 ,4 , l ;P ) - I ' (Q ;3 , l , 4 ,2 ;P ) ] j

(6.34)

In eq. (6.33) the sum over permutations for the second term implies that there are
terms where 3 is a photon, 2 is a photon etc. In eq. (6.34) the sum over permutations
induces in the third term pairwise equal terms since the order of e.g. photons 3
and 4 does not matter. In the expression (6.34) interference terms between the
subamplitudes arise like in the six-gluon process. The following notation has been
introduced

!>(<?; 2,1,4,3; P) = £ Z>(£;2,1,4,3;P) , (6.35)
N'v'""' ̂ ^ perms

where all permutations of (2,1,4,3) are taken which leave the order (2,1) and
(4,3) unaffected. In contrast to the pure gluonic case we find for n = 2,3 non
leading terms in N~2. These terms spoil the quality of the approximation (6.24).
The photonic terms and the terms described by eq. (6.35) are absent in the pure
gluonic case because of the subcyclic identities (IV.4.5).

Taking gluon 3 soft one has

N2 -
* " " " S(<?,1,2,P;3)|P(<?;1,2;P)|2

,2; 2J ,. 1.2; P)|2 + ̂  ( l + ̂ ) \sQ3_P\2\V(Q; 1,2; P)|2J

(6.36)

with amongst others

•P) (P-3)2 '

When we neglect quark masses the required subamplitudes are simple, e.g.

(6.37)

Summing over the helicities of all partons we obtain in the massless quark case

AT2 — 1
D|M(Q;l,2,a;P)|a = 8a3^—-L

hel. "

81



2

3X3 •

I
• 3X3 • P)j '* + N*){Q- 1X1 • PXQ • 2X2

(6.39)

where
^(12345) - (1 - 2X2 • 3X3 • 4X4 • 5X5 -1) . (6.40)

Taking gluon 4 soft in eq. (6.34) one finds

E|A<(Q;l ,2,3,4;P) |2 = 16a4-
hel.

3

IQ-P)2 \
• PXQ • 4X4-P)J

\N2 N4 N6J ( Q l X l PIQ-2X2- PXQ-3X3-PXQ-4X4
(6.41)

In this limit the interference term arising from the last curly bracket in eq. (6.34)
has been neglected. Numerically this term turned out to be very small just as tbis
happens in the six gluon case (3.27).

Double gluon bremsstrahlung can be discussed along similar lines as in sec. 4.
One starts with

1,2) + J(Q; l)/(2)

f from which follows

J(Q; 1,2,3) = sQmJ(Q; 3) + (tm + aqjfo) J(Q; K3) , (6.43)

where
+ sQls13 + «123 , (6M)
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which can be written as eq. (4.11). For the subamplitudes one finds in general

n;P) , (6.45)

V(QA m-hm w;P) = am_2m_imm+iP(Q;l,...,m-2,m+l1...1n;P),

(6.46)

-..,n-2;P). (6.47)

Using the leading order in N colour summed matrix element squared we see that
taking gluon n and (n — 1) soft one needs

, . . . , n - 2 ; P ) , (6.48)

V(Q; 1 , . . . , 1-1,2=1,BUi, • . . , n - 2 ; P) = *_, n ^ . l K Q ; 1, . . . , n -2 ; P) , (6.49)

where 1 < i, j < n — 1, for i, ji = 2 one takes for i — 1 (j — 1) momentum Q and for
i, j = n — 1 one takes momentum P.

The factor multiplying \T>(Q; 1 , . . . , n -2 ; P)|2 in eq. (6.24) now becomes

2 £

[ n-3
sQn-lnl^Qnn-U + 2J smn-1 n

(6-50)

The factor 5(P,1 , . . . ,n - 2,Q;n - l,n) is analogous to 5(1,2,.. . ,n - 2\n - l , n )
of eq. (4.29). The latter is cyclic invariant in the labels ( 1 , . . . , n — 2), the former
would need in each sum one additional term like e.g. |son-inpl2 to become cyclic
invariant in the labels ( P , l , . . . , n - 2,Q). The colour summed matrix element
squared now becomes in the double soft limit

£ S(Q,l,...,n-2,P;n-l,n)\V(Q;l,...,n-2;P)\2+O(N-2)\.
-n-2) J

(6.51)

Multiple soft gluon emission can be easily discussed in analogy with the above
double radiation and with the help of sec. 5.
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7 Soft gluon emission in a process producing qq, V and n
gluons

For completeness we also briefly discuss soft gluon emission in a process where
besides gluons and a quark pair also a vector boson is produced. The matrix
element is written as (IV.4.19)

M(Q,P;V;l,...,n) = iegn £ (Ol •an)ijS^Q; 1,.. .,n;P)V . (7.1)
P(l - n )

The soft gluon behaviour of 5tf(Q; 1, . . . , n; P) is determined by that of the quark
current and antiquark current e.g. eqs. (6.19), (6.20) for the former and similar
ones for the latter. For double soft gluon emission relations like eq. (6.43) should
be used. The gauge terms should cancel in S^, this we will now explicitly show.

In addition to eqs. (6.6)-(6.8) and (6.13) one needs the analogous relations

P) = J(P), (7.2)
p , _ K(l,n)-r(l,...,n-l,A'n)
P) ^ - ^ J(P), (7.3)

, - - . ,n;P)

" M " ' V n '* "^ (7-4)

Kd^K^u,...^),,,,, ( 7 5 )

For the simplest cases it is easy to see that the gauge terms cancel e.g.

= J(Q)I\. J(F) - J(Q)I\,

= 0 . (7.6)

For the most general case we split eq. (FV.4.20) into a number of terms

5,(0; 1, . . . , #„. , . . . ,n;F) = J(Q)r^J( l , . . . , A'm,... ,n;P)

+J(Q; 1,..., m-l)rM J(A'm,..., n; P)

l=m+l

(7.7)
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For all terms the previously derived gauge terms eqs. (6.7), (6.8), (7.4) and (7.5)
should be inserted. Although the number of terms expand they cancel eventually.

Now we know the gauge terms cancel in the vector current we get for the single
soft gluon emission

Su(Q;l,2,...,n;P) = sQl2S^(Q;2,... ,n;P) , (7.8)

S»(Q;l,...,m,.-.,n;P) = sm., mm+,S,,(Q; 1 , . . • , m - l , m + 1 n;P) ,

(7-9)

S (<(Q;l,...,n;P) = sn_ laPSM(Q;l n-l;P) , (7.10)

and for double soft gluon emission

£„(«?; 1,2,3,...,n;P) = aQlp5 |1(Q;3,...,»i;P) , (7.11)

S/AQ; l , . . . ,m—l.TTl , . •• ,n;P) = 5m_2m-lmm+l

x5,(Q;l m - 2 , m + l , . . . ,n ;P) ,

(7.12)

5M(Q;l,...,nzl,n;P) = sn.2a=1JLPSlt{Q;l,...,n-2;P) . (7.13)

For multiple soft gluon emission analogous expressions are obtained.
Since the matrix element (7.1) has exactly the same colour decomposition as

the matrix element (6.1) the expressions for the matrix element squared such as
eqs. (6.24), (6.26), (6.32)-(6.34), (6.36) and (6.51) also hold for the process with a
vector boson. One just makes the replacement

l>(Q; l ,2 , . . . ,n ;P)-^S ( 1 (Q; l ,2 , . . . , r I ;P)F ' ' , (7.14)

to obtain the relevant expression. When the subamplitude T> has some photons
instead of gluons the subamplitudc Sp V similarly contains photons.

The process with a single gluon, which was physically not relevant in the previous
section can occur here and has the colour summed matrix element squared

\M(Q, P; V; 1)\2 = a^l^iQ-1; P)V\* . (7.15)

In order to obtain explicit expressions for the soft gluon expression for a low number
of hard gluons one needs for 5,, expressions like eq. (6.30). These expressions are
given by eqs. (V.5.30) and (V.5.31). In chap. 8 the current 5P will be calculuted
explicitly for up to three gluons.
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Chapter VII

Exact expressions for multi gluon
scattering

In this chapter we use the recursive method to obtain building blocks from
which n-gluon scattering amplitudes can be constructed. The method is discussed
in detail for up to 8 gluons. For 4, 5, 6, and 7 gluons exact analytic results are
given.

1 Introduction

In PP collisions multi jet events have been seen, a maximum number of six jets
has even been reported [1]. In future experiments multi jet events will be produced
copiously. The calculation of the hard scattering processes is involved. The n-gluon
scattering processes (= 2g —* (n — 2)g) being one type of the many possible parton
scattering processes illustrate the situation. A historical review of this calculation
was given in chap. 2. For six gluon scattering [2] reasonable simple expressions can
be obtained [3,4] when the following colour decomposition is used (IV.4.1)

£ Tr(Tai-Ta2---Ta") C(l,2,...,n) . (1.1)

The number of Feynman diagrams contributing to a n-gluon process is rapidly
growing with the number of external g'.uons [5], as can be seen from table 7.1.
When one want to calculate processes with seven or more gluons one has to rely on
a different technique. This is the recursive scheme [6] developed in chap. 4, which
can be used for analytical as well as for numerical evaluations [5,7,8].

The actual outline of this chapter is as follows. In sec. 2 the tools of the recursive
method are used to illustrate the analytical calculation of multi gluon scattering.
Sec. 3 uses the recursive methods to find the analytic expressions for four and five
gluon scattering, whereas in sec. 4 the six gluon subamplitudes are derived. In sec.
5 the analytical results for the subamplitudes of seven gluon scattering are given,
being a result of 2485 Feynman diagrams.
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n
3
4
5
6
7
8
9

10

number of diagrams
1
4

25
220

2485
34300

559405
10525900

Table 7.1. The number of contributing Feynman diagrams to rc-gluon scattering.

2 The building blocks for multi gluon scattering

In this section we use the recursive method of chap. 4 to show how certain building
blocks can be used to obtain analytical results for up to 8 gluons. The recursive
method makes it possible to calculate the n-gluon currents J ( l ,2 , . . . ,n) of eq.
(IV.2.29) recursively in n. At first sight one needs the current J ( l ,2 , . . . ,n) in
order to calculate (n + l)-gluon scattering. This is certainly sufficient to obtain the
scattering amplitude and a straightforward numerical implementation would use
the ra-gluon current because the chance of making errors this way is minimal [5].

Here however we would like to use the diagrammatic structure of the amplitude
A4(l,... ,n+l) in order to find an expression for M. in terms of currents J ( l , . . . ,m)
with m < n. For the case of 6, 7 and 8 gluons these expressions are given in
detail and they depend on at most the 4-current for n = 8 and the 3-current for
n = 6,7. The purpose of this section is to derive these representations of M in
terms of "short" currents. We shall also give explicit analytical expressions for
the 3-currents, which will lead to the explicit 6- and 7-gluon amplitudes [7] in the
following sections. For the 4-currents we do not use as yet analytical results but we
can calculate them numerically and then use these currents in the above mentioned
representation of M(l,..., 8). This gives an evaluation of A4(l,..., 8) which is
numerically faster than the full recursive method [8].

The building blocks which we require are the 2-current J*(l,2), the 3-current
7*(1,2,3) and the 4-current J*(l,2,3,4). In terms of Feynman diagrams 7*(1,2)
and 7*(1,2,3) are given by

X,fl \ X,fl
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Jjj(l,2,3)

x / y 3 /

+ 2

The black dot denotes the off shell gluon, the numbered lines represent on shell
gluons. All momenta are outgoing. In the definition of the current J*( l , . . - ," ) a
propagator —i//e(l, n)2 has been included for the off shell gluon. The 4-current con-
sists of 25 diagrams which would be needed for 5-gluon scattering. The amplitude
M{\, 2 , . . . , 6) can be expressed in 2- and 3-currents in the following diagrammatic
expression

• (2-1)

In this formula the sum over all permutations of the six gluon labels should be taken.
The factors in front of the diagrams correct for multiple counting, or in other words
give the number of different diagrams when multiplied by 6!. For instance the first
term gives 6!/(2 x 3! x 3!) = 10 diagrams involving 3-currents i.e. 160 Feynman
diagrams, the second gives 6!/(24) = 45 and the third 6!/(3! X 23) = 15 Feynman
diagrams. Thus in total we have the usual 220 Feynman diagrams for 6-gluon
scattering, which we can summarize as follows
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In the same way the 7-ghion amplitude can be written as

M(l,

+

2

C-V
\2/

7) =

1
3! 2-

4

.7)

Y
I (IV
2 V3!7

V
-

a i 3 —

s,-,

5

6

5 6

+ U J 3!
2 1

(2.2)

A similar counting of Feynman diagrams gives

42 4 4 1 \
2*3! + 233! + 233! j

Use of the 4-current ^vcs the following representation of the 8-gluon amplitude
r

4 5
„ 1 / 1 \ 2 3 ^

A<(1 ,2 , . . . , 8 )= 5Z 9 ( 4 ? ) I K<1 '41

1 8
\
4 5

+ 1 = 1 (=7) 2

1

5 6

2 1

The corresponding number of Feynman diagrams is

25* 42 42 4
+ S 5 ^ + + 233!

2 1

(2.3)

8'
4 1 \

233! + 2^4! J
= 3 4 3°° '
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In the first term of both eq. (2.1) and (2.3) one propagator of the current had to
be removed.

These examples show that the currents J ( l , . . . , m) are useful as building blocks
for n-gluon amplitudes. We next show that the colour free subamplitudes C(l,..., n).
defined in (FV.4.2), can be expressed through the representations (2.1)-(2.3) in
terms of the colourless current J ( l , . . . , n). In the following we will use a shorthand
notation for the Lorentz structure of the 3- and 4-vertex in which two or three
colourless currents come together. This notation is given in eq. (IV.2.30) and
(IV.2.31) respectively.

We express the diagrammatic representations in terms of the currents J. As an
example we give the translation of the third term Ms in eq. (2.2). There are three
currents J(l,2), J(3,4) and J(5,6,7) joined by a 3-vertex. Using eq. (IV.2.28) we
find

I
P(l 7)

= i& E if''*313 E E E
" * - P(l 7) \ P(1.2)P(:l,4)P(5.6.7)

X2V[J(1,2) ,J(3 ,4)]-J(5.6 .7)J . (2.4)

Carrying out the colour sums over r,- results in

M3 = 2ig5 £ {a,a2 ••-nT)[ j( l ,2) ,J(3,4)1 - J ( 5 , 6 , 7 ) , (2.5)
P(i 7)

where we have used eq. (TV.2.21). So the contribution to C( 1,2,... ,7) of this
particular term is

C3= E f/(l,2),J(3,4)]-J(5,6,7). (2.6)
C(1.....7)

where the sum runs over the cyclic permutations of labels 1, . . . , 7.
Treating every term in this way eqs. (2.1)-(2.3) lead to

C(l ,2, . . . ,6)= £ (i*(l,3)2J(l,2,3)-.7(4,5.6)

l), J(2), J(3,4)} • J(5,6) + i { / ( l ) , J(2,3), J(4)} - J(5.6)

(2.7)

l,2,...,7)= Y. f[j(l,2,3),J(4,5,6)]-J(7)
C(I,...,7J V

l,2), J(3,4), J(5,6)} • J(7) + {J(l,2), J(3). J(4)} • .7(5.6.7)
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+{J(l), J(2), 7(3,4)} • 7(5,6,7) + { J(l), J(2,3), J(4)} • 7(5,6,7)

+ [7(1,2), 7(3,4)]-7(5,6,7)) , (2.8)

( ^ ( ( 7 ( 5 , 6 , 7 , 8 )
C(l 8) \ *

+7(1,2)- [7(3,4,5),7(6,7,8)] +{7(1,2,3),7(4,5,6),7(7)}-7(8)

+i{J(l,2,3), J(4), 7(5,6,7)} • J(8) + {7(1), J(2,3), J(4,5)} • 7(6,7,8)

+{7(1, 2), J(3), J(4,5)} • 7(6,7,8) + {7(1,2), 7(3,4), 7(5)} • 7(6,7,8)

+ J{7(1,2),7(3,4),7(5,6)}- 7(7,8)) . (2.9)

In order to get explicit analytic results for these sttbamplitudes one requires
analytic expressions for the 3- and 4-current. For the 3-current we have a compact
form. The explicit form of the 3-current contains the abolian part of the gluon field
strengths

f T = A?e?-A7e?f (2.10)

and is separated into a gauge invariant part and a non-invariant part (VI.2.8)

7.(1,2,3) = G ^^f } + g ^ [*(l,3),r.(l,2,3) - «(l,3),r,(l,2,3)] , (2.11)

«(1,3)-
G ( 1 2 3 )

(AVA'2)(AVA'3)

— A'2 • 7i ( 7 3 • Fj),, — A'2 • 7 s ( 7 j • F2)(i

+ A 2 • 73 A1 • 72 7i,, + A'2 • 7i A'3 • 3i 73,,],

(2-13)

with obvious notations, for example (F% • Fi),,u = Fx^aF^,,, (7i • F2 • F^),, =

JiaFZ'Fw and Tr(Ft • F2) = FlmJ?.
The gauge independent part G of the current 7 determines C( 1,2,3,4) as can be

seen from eq. (IV.4.2). For our calculations we need the full expression including
the F-tenns. It is convenient to have the explicit forms for G for various helicity
combinations. Using the Weyl-van der Waerden spinor calculus [3] of chap. 3 we
define

GAB=°UABG» (2.14)

so that
2+,3+) = 0 , (2.15)
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The other helicity combinations follow from complex conjugation

G^IA.^A, , 3A3) = ( G ^ ( l -A,,2 -A2 ,3 -A3))" • (2.19)

With these 3-currents we will determine in the next section 4- and 5-gluon scatter-
ing. In sec. 4 we will calculate with the aid of eq. (2.1) and the above 3-currents
the 6-gluon amplitude. While in sec. 5 we will calculate in a similar fashion the
7-gluon amplitude, using again the 3-currents and eq. (2.2).

3 The 4- and 5-gluon amplitudes

We already determined the 4- and 5-gluon helicity amplitudes in chap. 5 (eq.
(V.5.11)). For completeness we give here the spin and colour summed matrix ele-
ments squared of 4- and 5-gluon scattering. The 4-gluon scattering matrix element
squared is given by

|A<(1,2,3,4)|2 =

p § 3 ) ( I - 2 * 2 - 3 J 3 . 4 X 4 - 1 )

and the 5-gluon squared matrix element is

with (i • j) = A'j • Kj. One could also derive the above amplitudes with the 3-cunents i
of eqs. (2.15)-(2.19) and using eqs. (IV.4.1) and (2.11). The terms containing |
Y],(l, 2,3) cancel in the 4-gluon case, because of momentum conservation. 1

An alternative formula for the 4-gluon scattering can be obtained by using the (:.
3-current of (2.12). This leads to the subamplitude I

• F2. F3 • F4) - \Tr(Ft - F2)rr(F3 • F4))

^ , ~ , . , , , , - 2 A' . -AiAa-As

This equation is explicitly gauge invariant and is valid in any space-time dimension.
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4 The 6-gluon amplitude

The 6-gluon matrix element can also be determined without the recursive scheme
as was done in refs. [2,3,4]. Here, however, we will use the recursive scheme and
use the decomposition of the amplitude in 3-currents according to eq. (2.1). With
this technique the pole structure of the 6-gluon amplitude will become transparent
and without much calculational effort the answer of refs. [3,4] is obtained.

Inserting the expression (2.11) into eq. (2.7) we find

«W 6). £ (ia"A'>-ff4-'-''+»(i.l.>.«.i.6)) (4..)
C{l,... Z KU°J /

with

+ 5(7(1), 7(2,3), 7(4)} • 7(5,6) + |[j(l,2),7(3,4)] • J(5,6) .

(4.2)

The first term in eq. (4.1) contains the poles with three momenta. It is gauge
invariant in itself. The term A' is also gauge invariant but the invariance is not
manifest since the quantities Y and the 2-currents are not gauge invariant objects.
The factorization of the pole terms with three momenta is obvious. There are three
3-pole terms of this type

G(l,2,3) G(3,4,5) G(2,3,4)G(5,6,1) G(3,4,5)G(6,1,2)
K(1,3)* + K(2,4J» + K(3,5)» • K '

In a specific helicity amplitude not all three terms are necessarily present. For
instance, whenever a contraction occurs of the type

n(l,3)Ac i f /c(1.3)iD kiD = K ( 1 , 3 ) 2 ( ^ ) (4.4)

the pole «(1,3)2 drops out. This will be the case for every amplitude with 4 equal
helicities and two opposite ones. This leads to the general form (V.5.9) for this
type of amplitude, e.g.

(Jo)6 /12V
^ ^ (4-5)

Thus the 3-pole terms can only be present when three helicities are equal and the
rest opposite e.g. C ( l + , 2 + , 3 + , 4 - , 5 - , 6 - ) contains K(2,4) 2 and K(3 ,5 ) 2 poles.
The terms of eq. (4.3) give directly the terms of refs. [3,4] corresponding to the
3-poles. Take as an example the term containing the 3-pole K(1 ,3) 2 in the subam-
plitude C ( l + , 2 + , 3 - , 4 + , 5 - , 6 - ) . The pole term is given by the first term in eq.
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(4.3). For this specific helicity amplitude it results in

(

(ft • A',)(A', • K3) ) \y/2 (A'4 • A5)(AS • A's)

(12)'2(56)2(4|1+2|3)2

,3)* (A', • A2)(A2 • A'3)(A', • A'sXA's • A'6) '

(See for the notation eq. (5.6).)
The quantity X which gives the term with only 2-poles leads to the result of

[3,4], after some effort. The term X is most easily calculated using the helicity
formalism of chap. 3.

The resulting subamplitudes with 3 positive and 3 negative helicitics are given
by a set of three C-functions. With this basic set of C-functions one can derive
all the other C-functions with the use of the reflective and cyclic properties. The
subamplitudes have a basic pole stucture as can be readily seen from eq. (4.1), only
the numerators are helicity dependent. This general structure is given by [4]

C(l, A,; 2, A2; 3, A3; 4, A4; 5, A5; 6, Ae) =

gC(A'i+A'2+A'3)2 + CA(A2+A3+A'4)2 + AB(A3+A'4+A'5)5\

(4.6)

For (Ai, A2, A3, A4, A5, A6) = (+ , + , + , - , - , - ) we have

.4 = 0

B = (56X23)'(1|2

C=(45K12)*(3|1 + 2 |6) ,

see for notation eq. (5.6). Note that in this helicity subamplitude the (A'i4A*2+A'3)2

pole drops out. This can directly be understood with the help of eqs. (2.15) and
(4.3). For (A,, A2,A3,A4,A5, As) = ( + , + , - , - , + , - ) we find

.4 = (46K12)'(5|1 + 2|3)

C = (34X12)' (5|3 + 4|6>.
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Finally for (A,, A2, A3, A4, A5, A6) = (+, - , +, - , + , - ) we find

A = (46)(13)*(5|l + 3|2)

B = (24X51)" (3|2 + 4|6>

From the cyclic symmetry and the property that complex conjugation loads to
opposite helicities we have the relations

(C+++ (456123))*,

C++"+"(123456) = (C++—+-(432165))*, (4.7)

C+-+-+-(123456) = (C+-+-+-

With these relations all helicity combinations can be obtained from the above set
of three subamplitudes.

The squaring of the matrix element can be done in leading order in the colour
approximation, given by eq. (FV.4.10)

|JW(123456)|2 = (£f) ( iV 2 - l ) ( £ |C(123456)|2) . (4.8)
Col.

The exact squared matrix element is given by

col. *

x £ (|C(123456)|2
/>( 12345) \

+ ~ x [<7(135264) + C(153624) + C(513642)] * J (4.9)

as was shown in refe. [3,4]. A detailed analysis of squaring procedures, the numerical
implementation and the effects of the leading order in colour approximations is given
in ref. [7]. |

5 The 7-gluon amplitude |
-t

In this section the analytic results giving rise to helicity amplitudes of seven gluon "'
scattering are presented. The helicity combinations with five or more equal helicities
were already calculated for arbitrary number of gluons in chap. 5. Specifying n = 7
in eqs. (V.5.2) and (V.5.10) give the equations for these helicity combinations. The
helicity combination with three positive and four negative polarized gluons will be •
determined in this section. For this helicity configuration we need four independent . ;
subamplitudes. From these the other subamplitudes can be obtained by cyclic j.;i

: }
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permutations, reflections and relabeling. The subamplitudes are obtained with the
method of sec. 2. Taking the large number of Feynman diagrams in consideration
the end result is still reasonably compact.

The formulae below show a specific pole structure which we like to discuss. The
pole terms one would expect in the sub&mplitude C( 1234567) are the 2-poles

(A', + A'2)
2, (A'2 + A'3)

2. (As + A'4)
2, (K< + A's)

2, (A's + A'6f, (A'6 + K7)
2, (K7 + A', f

(5.1)
and the 3-poles

(A", + A'2 + A'3)
2, {K-i + A'3 + A'4)

2, (A'3 + A'4 + A'5)
2, (A'4 + A'5 + A'6)

2,

(A'5 + A'6 + A'7)
2, (A'6 + A'7 + A', )2, (A'T + A', + A'2)

2. (5.2)

However, sometimes 3-poles do not occur as we have already seen in the previous
section for the 6-gluon case. This depends on the helicity configuration as can be
readily understood by looking at all the diagrams contributing to a certain 3-pole.
Let us take as an example the 3-pole (A'i + A"2 + A'3)2, the contributing diagrams
to this pole are given by

= K ( 1 , 3 ) 2 J ( 1 , 2 , 3 ) J ( 4 , 5 , 6 , 7 ) . (5.3)

If gluon 1, 2 and 3 have the same helicity the pole (A'l+A'j+Aij)2 will be cancelled
because of eqs. (2.11) and (2.15). Such an argument can easily be extended to
an arbitrary number of gluons. Consider as an example the subamplitude with
the following helicity configuration C(l+,2+, . . . ,m+,(m + l)Am+1,...,nAn). This
subamplitude will not contain the poles (A'i + A"1+i + • —\- Kj )2 with 1 < i < m — 2,
ii + 2 < j < m because of the vanishing of the gauge invariant part of the current
J»(i+, • • • ,j+), i-e. G,.(i+ i + ) = 0.

The subamplitudes with five (or more) equal helicities are already calculated in
chap. 5, eqs. (V.5.1) and (V.5.9). For instance

C(l±,2+,3+,4+,5+,6+,7+) = 0 (5.4)

and

C ( l - , 2 - , 3 + , 4 + , 5 + , 6 - h 7 + ) =

We will now give and discuss one of the four different helicity configurations of
the subamplitudes which determine the matrix element. The others are given in
ref. [7]. The following abbreviations are used

i+j + k)2 = {Kt + Ki+Ktf (5-6)

(a\b + c\d) = {ab)-(db) + {ac)'(dc) = kaAkdB(Kh + KC)AB .
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The subamplitude is given by

, 3 + , 4 - , 5 - , 6 - , 7 - ) =
(56X67X71)(1|6+715).42

{2,3}{3,4}(2+3+4)2{5,6}{6,7}{7,l}(6+7+l)2
(12)-(45)2(56X67)B((56)*(3|1+2|6){l,2}{3,4}{4,5}(3+4+5)2{5,6}{6,7}{7,l}
(12)>(23)-(45)2(67);i((34)-(l|6+7|4) + <35)*{1|6+7|5))

{3,4}{4,5}(3+4+5)*{6,7}{7,l}(6+7+l)2

{3,4}{4,5}(3+4+5)*{5,6}{7,l}{l,2}(7+l+2)2

(23)'(45X56X67)2A((64)'(l|2+3l4){2,3}{3,4}{4,5}{5,6}{6,7}{7,l}(6+7+ip
(45X56X67) AB(l+2+3f 1

{1,2}{2,3}{3,4}{4,5}{5,6}{6,7}{7,1}J

with A = (23)'(1|2+3|4> and B = (12)*(3|1+2|7).
Considering the number of 2485 Feynman diagrams this is a surprisingly short

expression. Because of the helicity configuration a large number of poles are absent
as was explained above. This is demonstrated in the expression, namely the only
3-poles that appear are the expected ones, (Aj + K3 + K4)

2, {K3 + K4 + Ks)
2,

(Kg + Ki + A"i)2 and (K7 + A'i + A'2)2, i.e. a 3-pole must contain the momenta of
gluons which have different helicities. For the other helicity combinations one will
find more different propagators and subsequently the expressions will be longer [7].

In the case of the helicity combination of all but two equal helicities it was
possible to generalize the helicity amplitude to a arbitrary number of gluons [9] and
could subsequently be proven [6] in chap. 5. One may wonder whether the case with
all but three equal helicities can be generalized in a similar way. Comparing the
six and seven gluon helicity amplitudes of eqs. (4.6) and (5.7) no systematics are
revealed. So how to generalize this particular helicity combination to an arbitrary
number of gluons is not yet clear.

The squaring of the matrix element can again be done in leading order in the
colour approximation, given by eq. (IV.4.10)

D |X(1234567)|2 = (£f)5 (N2 - l) ( £ |C(1234567)A . (5.8)
COI. \ - / \P(1234S6) /

Details on the exact squared matrix element are given in ref. [7].
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Chapter VIII

Processes involving a vector boson
and up to five partons

In this chapter exact expressions are derived for the matrix elements of parton
processes relevant for jet production in e+e~,77, e~P ajl<i PP collisions. For the
latter the formulae describe the production of a vector boson in conjunction with
up to three jets. The possibility to evaluate cross sections in an arbitrary dimension
and for massive quarks is kept open for the most relevant processes. Explicit results
for helicity amplitudes of massless partons are given for all processes. The general
structure of the process V —t qq + n gluons emerges from the explicit calculations
up to n = 3 [1]. A systematic use is made of recursive techniques [2], the abelian
part of gluon field strengths and spinor calculus [3].

1 Introduction

The development of exact calculations for processes, where besides partons a virtual
or real vector boson participates is less advanced. This can partly be understood
when we compare the number of diagrams for some typical processes like

gg -* ng (l.l)

?! ~> "5 (1-2)

V -> qq + ng (1.3)

V -> qqq'q' + (n-2)g . (1.4)

Up to n = 5 the number of diagrams is listed in table 8.1. We see that process (1.3)
contains more diagrams than process (1.1). Moreover, processes (1.3) and (1.4)
contain less symmetry than (1.1) and (1.2). The virtuality of the vector boson also
complicates the evaluation. From the experimental point of view the process

V -f (n + 2) partons (1.5)

is as interesting as the pure parton processes. The matrix elements are needed for
jet production in the following collisions

e-(P_) -* (n+2)jets , (1.6)
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Process
99-*ng
qq-*ng

V —* qq ng
99 -»4Y(»»- 2)9

V^qqqlq'(n-2)g

n = 0
-
-
1
-
-

n = l
1
1
2
-
-

n = 2
4
3
8
1
4

71 = 3

25
16
50
5

24

n = 4
220
123
428
3G

196

n = 5
2485
1240
4670

341
2040

Table 8.1. Number of contributing Feynman diagrams.

7

c-(P)

P

+ P

+ P

+ P

- • X

"* (
-> X

+ (n

+ v

+ l)jets,
') ^ 4. V
) )

+ n jets,

(1-7)

+ l)jcts, (1.8)

(1.9)

where the momenta of the leptons are P+,P-,P and P'. In reaction (1.6) up to
five jet eventshave been seen [4]. Muon scattering experiments have seen jets [5],
whereas in PP scattering process (1.9) has been established, with n = 1 [6]. For all
these processes exact numerical (and sometimes analytical) calculations exist up to
n = 2. Besides tree level calculations [7] for (1.6) also QCD corrections [8] have been
performed up to n - 1. The reactions (1.7) and (1.8) will be measured at HERA,
the first one occurring through the Weiszackcr-Williams approximation in small
angle electron scattering, the second one in deep inelastic scattering. Numerical
studies have been carried out in ref. [9]. For reaction (1.9) analytical [10] and
numerical [11] evaluations have been performed as well.

In future experiments multi jet events in reactions (1.6)-(1.9) are expected, so
an extension above n = 2 is called for. This chapter gives all tree level matrix
elements up to n = 3 in analytical form. Beyond n = 3 the process (1.3) can still
be calculated numerically in a straightforward way by means of recursion relations
of chap. 4. Since this parton subprocess is expected to be dominant in (1.5) one
should get a reasonable estimate for multi jet events in reactions (1.6)-(1.9). Our
results indicate that the diflFerence in computational speed between the numerical
evaluation of analytic expressions and the recursive numerical calculation decreases
in such a way that for n = 4 it becomes less urgent to perform analytical calculations
for process (1.3). For process (1.4) we only give the result for n = 2,3. In principle,
one could introduce also here a recursive method, but we have not done so.

As we will see, our result allows a straightforward replacement of a gluon by a
photon. This means that our formulae also apply to 4 jet production in photon-
photon collisions, where one photon can also be off shell.

Ref. [12] also addresses the problem of the processes (1.6)-(1.9) (n < 3). Their
approach is the straightforward approach of writing out Feynman diagrams, which
can subsequently be programmed. Their colour decomposition is the same as in eq.
(IV.4.19). No attempt is made to simplify the matrix elements before numerical
evaluation. With the results of this chapter and of refs. [1,12] numerical studies
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have been performed in ref. [13] of process (1.9). In ref. [14] process (1.6) is studied
for a virtual photon exchange. The matrix element was obtained using the standard
spin summation techniques with a algebraic manipulation program.

In this paper the systematics of process (1.3) is emphasized. The general struc-
ture for arbitrary n becomes clear. Up to n = 3 explicit compact formulae are given.
For reaction (1.4) the gain in simplicity is far less than for (1.3). For completeness
analytical formulae are given.

In order to describe all processes (1.6)-(1.9) at the same time we calculate S,,
(see eq. (IV.4.19)) in

,...,n;P) = V"Slt(Q;l,...,n;P) (1.10)

for (1.3) and fM in

,..-,n) = vfIA(Ql,Q2,Q3,Q4;l ») (1.11)

for process (1.4). In these expressions V is the polarization vector of the vector bo- -
son, whereas S^ and Tw are currents, containing quarks and gluons. These currents f
dependon the momenta K\,..., A'n of the outgoing gluons, Q,Qi,Q-z (PIQIIQA) ° f ?
the outgoing quarks (antiquarks), the helicities and colours of the partons. The cur- H
rents also contain the QCD coupling constant g and the electroweak vertex which j)
we denote by leS^T^'?1, given by eq. (IV.4.15). It will be usefull in the following ?'
sections to translate r j ^ 1 ' * in the Weyl-van der Waerden formalism of chap. 3 .
Using eqs. ( I l l 2.23) and (III.2.24) we find

where the left-handed coupling £/",/, and the right-handed couplings Rjtf2 are given
in eqs. (IV.4.16)-(IV.4.]8) for various combinations of fermions and vector bosons.

The lepton couplings are needed for reactions (1.6) and (1.8). For (1.6) we have

v; =

and for (1.8)

V? = eu(P')rZ"-^u(P) , (1.15)

1
yZ _ c)j/yv>pZ.re x ti(/1) (1.1C)

„ ^ «(P) , (1-17)
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where s = (P++ P-f and Q2 = (P - P')2- The charged current case is described
by eq. (1.17). The matrix elements for reactions (1.6) and (1.8) are given by

M = V?$Z + VgSJj (1.18)

and
M = V&S? (1.19)

and similar expressions with TM. The labels 7, Z or W on SM or % refer to the
type of vector boson coupling to the current. Of course, SM and Tu which will be
subsequently given for reaction (1.5) should be crossed appropriately for reactions i
(1.7)-(1.9). This will be indicated in sec. 5.

In the case of massless leptons one can introduce helicity states in V". Using
the Weyl-van der Waerden formalism one obtains for e+e~ annihilation

(1.20)

V*(e+-;e-+) = ea^^pP & , V£(c+-,e-+) = ea^p\pl j ^ . (1.21)

For electron scattering we find

^ ) = e^Bp'-pB^JI, (1.22)

whereas the charged current reaction gives

) = 0 , V&(-;-) = e<7^flp^p'fl Q2
L}M^ • (1-24)

For translation of eqs. (1.18) and (1.19) in the spinor formalism relation (III.2.12)
is useful.

The actual outline of the chapter is as follows. In sec. 2 two of the steps to
obtain 5M are carried out analytically, such that the building blocks for 5M are
obtained. This leads in sec. 3 to the explicit Sw expressions up to 3 gluons. A
general structure for n gluons is conjectured. The quantities TM for 0 and 1 gluon
are discussed in sec. 4. Sec. 5 explains how to square the amplitudes and discusses •
crossing, which is necessary to obtain (1.7)-(1.9) from process (1.5). Some helicity I
currents are given in sec. 6.

2 Analytic results for the gluon and spinorial currents

The central quantity to be calculated in this chapter is VSP(Q; 1, . . . , n; P), the
amplitude for the decay of a real or virtual vector boson into qq and n gluons

V - q(Q) + q(P) +g(K\)+-+ g(Kn) ,
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where V is the polarization vector of V. For the explicit analytical results the
maximum number of gluons will be three, for numerical results there is no limit
other than computer time. The quantity Sp is evaluated in three steps. In the first
step we evaluate recursively pure gluonic currents J^(l ,2 , . . . ,m) for all m < n.
Contracting those currents with the polarization vector of gluon (m +1) would give
the (m-t-l)-gluon scattering amplitude, see eq. (IV.4.2). However here they are used
as building blocks in recursion relations for the spinorial currents J(Q; 1,2, . . . ,£)
and J( l , ...,£; P) with £ < n. Again, contracting these currents with v{P) or u{Q)
would give amplitudes for qq + n gluon production from the vacuum as indicated
in eq. (IV.4.12). They can also be used as building blocks for Sp. This current is
given by

S, , (Q;l ,2 , . . . ,n;P) = ieS- £ (T" • 7"" •• •T a ») i j ^(Q; 1,2, . . .,n;P) (2.1)

where S^Q; 1 , . . . , n\ P) is the colourless current of eq. (IV.4.20).
In chap. 5 we have shown that in the case of massless quarks the expression

(IV.4.20) for 5,, can be calculated explicitly for a specific helicity configuration,
given in eqs. (V.5.30) and (V.5.31). These equations are in the notation of this
chapter given by

{ q i m . . . { n p )

1 2 } . . . ( n p ) • (2-2>

In these expressions the notation of Weyl-van der Waprden spinor calculus has been
used (see chap. 3). The above derivation is feasible since the gauge invariance of
5^ makes it possible to choose specific gauge spinors in eq. (III.2.55) for the gluon
polarizations which simplify the recursion relations. For other helicity combinations
the simplifications are not so great that one can evaluate Sp for all n. One has to
build up the expressions by increasing n step by step. This has to be done for
every helicity combination. Although this procedure will give the required answers,
we follow here a different path. We postpone the specific choice of the helicities.
Instead, we express gauge invariant objects in terms of the abelian parts of the
gluon field strengths for which we already showed their usefulness in chaps. 6 and
7. The abelian part of the field strength is given by

which will often be contracted with 7 matrices

(2.4)

In a later stage the helicities can be chosen, such that from one expression for Sp in ;
terms of F.'s the various helicity amplitudes are obtained. In the helicity formalism, A
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and using the Weyl-van der Waerden notation, the abelian field strength get a simple
form

as can be seen by using eqs. (in.2.10), (HI.2.18), (in.2.23) and (III.2.55). Note
that due to the gauge invariance the gauge spinor drops out. These forms lead to
simplifying relations like

M W = o, (2-7)
0 , (2.8)

O, (2.9)

where we used eqs. (III.2.10), (IH.2.23) and (III.2.38).
One could refrain altogether from inserting the helicities and proceed in the

standard way to obtain the squared matrix element. Then one can keep the fcrmion
masses and one can give a result in an arbitrary dimension. The Sp expression in
terms of /J's is reasonably compact since the gauge cancellations have already been
performed.

For the pure gluonic part of the calculation one needs the currents J(l) , J(12)
and J(123). The last one is non trivial. It gives through eq. (IV.4.2) the gauge
invariant subamplitude C(1234). Therefore, one can write

C(1234) = a.u (FuFt, F3) * T U M ) = 0 , (2.10)

with
<*^(K,F2,F3) = -a^(FuF2,F3) . (2.11)

This implies for Jp(123), see eqs. (VL2.1)-(VI.2.8).

^ r P TTW - M l , 3)Y;(123)] (2.12)

with
G,(123) = 2K"(1, 3)a^(F,, F2, F3) . (2.13)

In other words, JM(123) contains a gauge invariant part G ( 1 (123) /K(1 ,3 ) 2 which
contributes to the subamplitude C, the gauge dependent part Yj,(123) does not
contribute to the subampfitude C because of momentum conservation and transver-
sality of the fourth gluon. The explicit expressions for 6^(123) and 1^,(123) are
given in eqs. (VII.2.12) and (VII.2.13).

The spinorial currents are similarly divided into a gauge invariant part Go and a
gauge dependent part Y. The explicit forms are derived from the recursion relations
(IV.3.9) and (IV.3.13). In general we have
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J(h2 n;P) = G0(l,2 n;P) + Y(l,2 n;P) , (2.14)

with a priori different masses m and m for quark and antiquark. Up to n = 3 we
obtain

G0{Q) = J(Q) = u(Q), (2.15)

(2.16)

-At

G0(Q; 12) = G(Q; 12)^+^(1,2) - nip1 + TS^Pf^l, , (2.18)
16y - A A A

( 3 L W )

, (2.20)

16 (/• Ai Ai • A?

V'(Q; 12) = -£^Go«?; 1)- *QKlJ'£-Q
T

JlKlJ

A (V V A

G0(Q; 123) = G(Q; 123)0+^(1,3) - m]"1 + i — ^ 2 ^ ^ - _ , (2.21)
64 V • Ai Ai - Aj A2 • A3

G(Q; 123) = - G o ( Q ) ^ ^ - j G ( Q ; 1 2 ) » ^
Ktl^)14 4 A2-A3

. A", A', A', A-2 • A-3

] (2.22)

V(Q;123) = - ^ -

A | • A2 A2 • A3

\Q • F, - A'2 h J3 - (|Q A', J, • J2 - Q J, A', J2) Kt - J3

Q * A| A | * Aj A2 * A3

- K ( i y ] G ' ( Q > - (2-23)
In the case of massless quarks the last term of eqs. (2.19) and (2.22) vanishes. In
order to see this one uses a relation due to Kahane [17] (corollary A|)

(7» ,7M • • • 7M» + 7 M . • • • 7M7M. )7a = 7a(7« • • • 7 M . 7 « + 7«,7M2. • • - 7 M ) • (2-24)
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The above expressions give the amplitudes T> for the production of qq and n
ghions through eq. (IV.4.12). Thus one finds for n = 2

V{Q;12;P) = Go

= G(Q;12)v(P)

16

and for massless quarks

TKQ; 12;P) = ̂ S(Q)^ffe t f ^ M P ) • (2-26)
16 Q • Ai Ai • Aj

The case of J( l ,2 , ...,n;P) is related to the above expressions (2.15)-(2.23) by :
charge conjugation. The corresponding quantities for the second spinorial currents I
in eq. (2.14) can be obtained from the charge conjugation operation given in eqs. [f
(1V.3.14)-(IV.3.17). For example from eq. (2.17) one derives |

Y(Q;l)C-l = -YT(l;Q), (2.27) |

VT(1;P) = £ ^ V ( P ) , (2.28)

j ^ (2.29)

Similarly from eqs. (2.18) and (2.19)

G0(P;2l)C-1 = Gj(12;P) , (2.30)

1 , (2.31).̂7(P) ff,
16 P • A2 A2 • Ai

Go(12; P) = (f +,/(l, 2) + m]"1 G(12; P) + i - ^ . J(P) , (2.32)
lo A] • Aj A2 • "

with

2K2 P
These examples show that the quantities Y(l, 2 , . . . , n; P), G0(l, 2 , . . . , n; P) and
G( 1,2, . . . , n; P) are obtained from the known quantities Y(P; n , . . . , 2,1),
Go( P; n , . . . , 2,1) and G(P; n,..., 2,1) by reading the latter backward. Every gluon
and every Jfi introduces a minus sign and in the propagator —m changes into +m.
We are now ready to construct the current S^Q; 1,.. . ,n; P).
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3 The vector current for V —» qq + n gluons

The spinorial currents of the previous section will now be used to constnict 5,,
as indicated in eq. (IV.4.20). The division of the spinorial currents into a gauge
independent part Go and gauge dependent part Y now pays of. The vector current
5,, is gauge independent and therefore the terms 1' will combine into a gauge
independent part.

The trivial ri = 0 result is

SAQ;P) - JiQW.HP) = Go(Q)T.G0(P). (3.1)

For n = 1 we show the steps explicitly, for n = 2 and 3 we omit them.

(3.3)

Here and in the following we use the notation

/«(»»,".+ i »)= K'JK'FT"[F'IK m- (34)

( . 4 • A r a ) ( A m • A m + i ) - - ( A n • IS)

The quantities .4 and B are momenta like Q,P or A";. In the latter case we write
e.g. fip. The quantities f^g can easily be evaluated for specific helicities using the
Weyl-van der Waerden formalism, e.g.

(3.6)

2 + 1 4 + 5 6+1 - r ^ 6 ( n l ) ' ( 1 2 ) ' ( 2 4 ) ' { S < > ) ' ( a 3 ) < 3 5 X 5 6 ),2+,3-,4+,5-,6+) [V2)

(3.7)

where we have used eqs. (2.5) and (2.6). The vertex F,, is a shorthand for the
vertex r%flh given in eq. (1.12).

For n = 2,3 we find

S,.(Q;12;P) =

+fqp(12)G0(Q)TllG0(P) + G0(Q; l)TMG0(2;P)

+/ip(2)G0(Q; l)r,,G0(P) + G0(Q; 12)rpG0(P), (3.8)
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SW((?;123;P) = Go(Q)r,,Go(123;P) + /g2(l)Go(Q)r,,Go(23;P)

+/<j3(12)Go(Q)r(1Go(3;P) + /QP(123)G O (Q)

+G0(Q; 1)1^0(23; P) + /,3(2)GO(Q; l)T^G0{3; P)

+ / I P ( 2 3 ) G 0 ( Q ; 1)T^G^P) + G0(Q; 12)T»GQ(3; P)

+/JP(3)G 0 (Q; 12)r^G0(P) + G0(Q; U3)T,G0(P). (3.9)

From these explicit evaluations we are led to a conjecture for the n-gluon vector
boson current. Introduce

(3.10)
with the understanding that m = 0 and m + fc + l = n + l correspond to Q and P
respectively. Then eqs. (3.3), (3.8) and (3.9) generalize to

m=0 4=0

SJ.Q;! n;P) = £j^G0(Q;l m)T^(m;m + l m + k;m + k + 1)
=0

xG0(m + k + l n;P). (3.11)

Note that also eqs. (2.16), (2.18) and (2.21) suggest a generalization for the gauge
independent part G0(Q; 1 , . . . , n):

G 0(Q;l , . . . ,n) = G ( Q ; l , . . . , n ) g + i / ( l , n ) -m]~l

+ I Go(Q).^ .. ' V . . » ' p - : • (3.12)

Although the general formula (3.11) requires the knowledge of (3.12) for a specific
evaluation, it offers an insight in the general structure. For instance, the pole
structure of 5,, becomes transparent. The object T^(m; m + 1 , . . . ,m + k;m + k + l)
contains short poles as can be seen from eq. (3.4), whereas G0(Q; 1,. .• ,m) and
Go(w»+fc+l, ...,n;P) contains besides the short poles also the longer pole terms like I
[(Q + ̂ l .m)) 2 -??! 2 ] - 1 and [(K(m + k + l,n) + P)2-m3]-*. The further structure
depends on functions like G(Q;l,...,m) which determines qq —* m gluons (cf.
eqs. (IV.4.11) and (2.25)). These functions in turn are determined by the gauge
invariant part of the gluon currents G,,(l,... ,m), which give m gluon scattering
(cf. eqs. (IV.4.1) and (2.10)). Although we cannot prove the conjectures (3.11) ;
and (3.12) we can perform a consistency check. In fact, the equations of (2.2) ]
should also follow from the conjectured formulae. This is clear from the following ' >
argument. From the relations •:

D(Q+;l+,2+,...,n+;P-) = 0, (3.13)

D«?-,l+,2+,.. . ,n+;P+) = 0 , (3.14)

follow :
G(Q+;l+,...,n+) = 0 , (3.15) \

G(l+ n+;P-) = 0 . (3.16)
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This then determines the functions Go

= 0 . (3.18)

Because of eq. (3.18), the general formula (3.11) now simplifies to

; 1+,.. •, n+; P~) = G0(Q+; 1+,..., n+)rpG0(P-)

1)+, - - -, «+)G0(Q+; 1+,..., m+)r^G0(P_)

0(P-) . (3.19)

Expressing F,,, the currents and fmp in spinor notation and using eq. (3.17) one
finds

sm[Q+; i+, • • •,«+; P-) = a&jrt
n - l

+ E /«*•(("* + 1)+ »+)GoA(Q+; 1+ m+)G0B(P-)

+ fQp(l+, • • •, n+)G0 y i(Q+)rMG0 8(P-)]

("»P)
{,1)

°PB

which is indeed the first equation of (2.2). In a similar fashion one obtains the other
helicity amplitude.

The matrix elements of the vector current are thus given by eqs. (3.1)-(3.9) for
up to three gluons. At this point everything is expressed in terms of F"s and the
spinors u(Q) and v(P).

Eventually one likes to obtain a colour summed matrix element squared. For
this it is useful to introduce symmetrizations in certain gluon variables like

( ( ? ; l , 2 , . . . , n - l , n ; P ) , (3.21)

; 1,2,.. . ,m,m+l , . . .,n;P) .
Perms

(3.22)
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where the sum runs over all permutations of ( l , . . . , n ) which preserve the order
of ( 1 , . . . , m). The amplitudes containing m + 1 , . . . , n are in essence amplitudes in
which gluons m + l , . . . , n are replaced by photons, as has been discussed in eqs.

(
It should be noted that eq. (3.21) offers the possibility to calculate jet production

in 77 physics. The electron which scatters over a sizeable angle gives a V* (cf. cq.
(1.13)) to be contracted with SM. The electron which has only small angle scattering
is treated in the Weiszacker-Williams approximation, which gives a photon n. In
eq. (2.1) one should then replace one coupling constant g by eQj, i.e. the quark
charge.

The colour summed matrix elements squared now read (no averaging)

N2 — 1
\M(Q; 1; P)\2 = c2<t-jj- \VS,(Q; 1; P) |2 , (3.23)

f £ |1'^(Q;1,2;
LP(12)

(3.24)

± f E
i V [P(123)

\M(Q; 1,2,3; P)|2 = « V ^ ± f E { I VS^Q; 1,2; P)|2

(3.25)

The charge e which has been extracted from FM and thus from 5M (cf. eqs. (1.12)
and (2.1)) is explicitly shown. The quantity a contains the QCD coupling constant
9

a = ̂ f , (3.26)
where JV denotes the number of colours in the SU(N) gauge group. At this point
one can still choose for a calculation in an arbitrary dimension. Moreover the
mass of the quarks has not been neglected. With standard polarization sums for
quark spins and gluon spins (in fact —</,,„ is sufficient due to the use of the gauge
invariant F's) one obtains the required expressions. However one can also choose
for 4 dimensions and massless quarks. In that case the translation into Weyl-van
der Waerden spinor calculus is worthwile. The helicity amplitudes can be easily
obtained, they are given in sec. 6.

Using these explicit helicity amplitudes in a numerical calculation or using the
recursion relations of chap. 4 makes a difference in computing time, from table
8.2 one concludes that for an increasing number of gluons the advantage of analytic
expressions decreases.
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n
2
3
4
5

Recursive
0.0708

0.745
11.8

247.6

Analytic
0.0193

0.251
-
-

Ratio
3.68
2.96

-
-

Table 8.2. CPU time in seconds needed on a VAX 750 for the calculation of the
matrix element squared of e+e~ —+7" —* 99 + n gluons.

4 The process V -+ qqqq + n gluons

In this section the process (1.4) will be considered for n = 0,1. The quarks are
massless, the extension to massive quarks is straightforward. The outline of the
calculation is given, specific helicity amplitudes are listed in sec. 6.

First we analyze the colour decomposition along the lines of chap. 4. (see also
ref. [18]). We start with the process (equal or unequal flavours)

9i929394 (4.1)

where the quark (antiquark) i has momentum Qi, helicity A,-, flavour fa and colour
f,. The coloured current is given by

T^QuQuQ3,Q*) = 4,(1234) - AM(1432) + 4,(3412) - .4,(3214), (4.2)

where 4,(1234) is given by the two diagrams of fig. 8.1. Note that 4,(1234) does
not contain a«jy quark permutations. Once it is known TM can be obtained. In 4»
we factorize 01; I the colour and flavour factor

4,(1234) = ieg* ShJtBi'Hl2U) (4.3)

with

(4.4)

These expressions easily give helicity amplitudes once spinor calculus is used. The
results are collected in sec. 6.

As a check on the above calculation one can take the collinear limit of quark 93
and antiquark 94. Also current conservation serves as a check. The coUineair limit
relates fl'lA(1234) to SM(Q,; A';Q2) according to

(4-5)
x=±i
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1,

V 3

2

Fig. 8.1. The process V —* qqqq.

where A" is a gluon null vector, Q3 = zK, Q4 = (l- z)K. The functions hx (A3, A4)
read

(4-6)

This collinear limiting behaviour has been used as a numerical check on all hecility
amplitudes of this process. The squared matrix elements numerically agree with
those of ref. [10].

For the process
V -»0i?2?394<7 (4-7)

we again write

+ All(Q3QiQlQ2;l)- A^QsQ^Q^l). (4.8)

The amplitude AM(QiQ2Q3Q4;l) originates from 4^(1234) by adding one gluon.
This leads to the 12 diagrams of fig. 8.2. Thus we have

1 = 1

12

) . (4-9)

where the factors C, have the form

(4.10)

114



Cn =CU = -

Thus An decomposes into four gauge invariant parts

A,(QiQ2QaQ4; 1) = ieg36hU [S^T^B'^Q

with

(4.12)

From these functions the helicity amplitudes are derived, see sec. 6. Again nu-
merical checks have been carried out based on the collinear limit of quark 93 and
antiquark q4, on the soft gluon limit, on current conservation and on the gauge
invariance of the external gluon.

The collinear limiting relations are

Bf;/2(Q,A1,Q2A2,Q3A3,Q4A4;W1) = £ ft.x(A3,A4)5(.(Q1A1;A'A,l'r,;02A2),

A=±l

lvt) = 0, (4.13)

[ 4
A = ± l ' *•

On the other hand, when the gluon becomes soft we get the limits

Q2,Q3,Q*),

Q2,Q3,Qt), (4.14)
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Fig. 8.2. The process V —> qqqqg.

with

s*p for gluon helicity + ,

f o r g l t l o n h e l i c i t y ' '
(4.15)

When more gluons are emitted the number of different amplitudes B increases since
the colour structures generalize to terms like (ax • • • am)clC4 (am+i • • • an)C3C2-
again develop a recursive scheme to evaluate these amplitudes.

5 Squaring and crossing

In this section we briefly indicate the results of the colour summation in the squared
matrixelements (1.18) or (1.19) with 7), as given by eqs. (4.2) and (4.8). Moreover,
we indicate the crossing rules in order to obtain from reaction (1.5) the reaction
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For the colour summation we introduce for eq. (4.2) the notation

4

T,, = 5>,A1(., (5.1)

where

^ ( 5 . 2 )

4) , A2ll = -Allt(2 ~ 4) , (5.3)

t]3 = »/,(l ~ 3,2 ~ 4) = Vl , A* = AXl,(\ ~ 3,2 ~ 4 ) , (5.4)

»?4 = Vi(l « 3) = i;2 , ^ = -.4,^(1 <-> 3) . (5.5)

The colour summed matrix element squared reads

£ m^jZC^VAi^VA^T (5.6)
colour {-i-x

with the matrix C

( A A A A

A A A A
A A A A
A A A A

where

A = E I».I2 = N 2 - 1 ,
colour

A = E «h'fi = - ^ + ̂ -
colour

In a similar fashion eq. (4.8) is written as a sum over 16 amplitudes

= ieg%3ftBil,(Ql,Q2,Q3,Q4;l) , i = 1,4

]

e1+4 = e,(2 <-> 4 ) , A+< = -A& «"• *) -

e l + 8 = c.-(l « 3,2 •-» 4) , A1+8 = ^(1«-», 2 « 4) ,

ei+12 = e.(l *-» 3) , Ai+l2 = -Ml <-»3). 5

Note that | •

e 9 = e2 , £io = £i , en = £4 , £\i = ̂ 3 ̂  LJ^
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£13 = £16 = £7 (5.11)

The colour summed matrix element squared is written as eq. (5.6) with i,j = 1,16.
The 16 x 16 matrix C can be written in terms of 4 x 4 matrices

with

CA =

cc =

C =
c CD CA CB

\ cD cc cB CA

Oj 64 62 O2

O4 0\ 02 02

02 02 t>6 04

62 $2 $4 ^6

^4 ^1 ^2 ^2

Oj 64 S2 $2

&2 &2 $4 ^6

O2 O2 Og 04 )

The constants Si are given by

CD =

83 83 87 84

83 S3 84 8-i

87 84 65 />5

84 87 Si Si

83 63 84 87

S3 63 87 64

84 S7 S5 Ss

87 64 65 Si

(5.12)

(5.13)

colours

(5.14)

As to the momentum dependent part of eq. (5.6) one should note that for the
contraction of V and T^ one could use eq. (III.2.12).

We now turn to the problem of crossing. All the explicit currents for helicitv̂
states are given for outgoing partons as in eq. (1.5). In order to obtain 5 or T
for reactions (1.7)-(1.9) one has to change one or more partons from outgoing into
incoming.

When the parton is an outgoing gluon it is characterized by a momentum K and
polarization vector eA

:JThe matrix element is a function M(K, eA(A')) and in spinor
language a function M(kji,k^). When the gluon is incoming with momentum A''
and helicity —A the matrix element is obtained from the previous one by taking
M(-K',ex'(K')) = M(-K',e-X(K')). The spinors «u and Jfĉ  are related to the
corresponding momentum by eq^JIII.2.18). The amplitude for the process with an
incoming gluon takes the form M(ik'A, ik1^). For the spinors arising from momenta
this prescription is obviously correct. For the spinors arising from the polarization
vectors this is also the case, since under the replacement

and consequently

(5.15)

(5.16)
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we have according to eq. (III.2.55)

= 4(A")- (5-18)
For the quarks one can use a similar replacement as in eq. (5.15) i.e.

9A - WA , U -» k'x > (519)

when the incoming antiquark has a physical momentum Q', whereas the outgoing
quark had momentum Q. Denoting the known amplitude by M{Q,ii\{Q)) we
have as amplitude for the crossed process M(—Q1, »A(C))- For *he substitution
Q —» — Q' eq. (5.19) is adequate, however when we make the replacement

(5.20)

the spinors transform as (eq.(III.2.38))

1A -* q'A, 9i - • U (5-21)

which differ from eq. (5.19) by a factor «". Thus one can apply the replacements
(5.19) for quarks when at the same time one multiplies the amplitude with a factor
(—i)n«, where n, is the number of crossed quarks. The reason that we don't want
the occurence of a complex phase factor is that in the evaluation of the helicity
amplitudes we use complex conjugation which would lead in eqs. (4.2) and (4.8)
relative phases in some of the amplitudes. For instance we have the replacement

M(qA,qA) - -iM(iqA,iqx)

if we make a outgoing quark (antiquark) an incoming antiquark (quark).

6 The helicity currents

In this section helicity currents for massless quarks are given for process (1.3) for
n = 0,1,2,3 and for process (1.4) for n = 0,1. These currents are suited for direct
numerical computations and gives the analytic expressions for eqs. (1.6)-(1.9) up
to 5 partons.

The current S^ as denned in eq. (IV.4.20) is given by

A, , . . . , nA n ;P - ) , (6.1) |

SM((?-; 1A, nXn;P+) = Lv
hh(y/2Ta*BSAB(Q-, 1A,,..., nAB; P+) . (6.2)

The factor (v^)" is made explicit like in eq. (2.2). We list here the quantities
SAB(Q+; 1 Ai,. . . , nAn; P - ) , the other current with the quark helidties flipped fbl- ,
lows from the relation ;

t«?+; 1(-A,) n ( -AJ ;P- ) ) ' . (6.3) | ^ 1
9 -
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The quantities in the expressions are first of all the spinorial inner products of chap.
3. We also introduce the notation

(a\B+C\d) = af.dpiB+Cf = (ab)m{db) + (ac)'(dc) (6.4)

where the last step only holds for null-vectors. Because we have specified the
helicities of the quarks and use a fixed order of the gluons, we adopt the following
shorthand notation

SAB(Q+;l\i,...,n\n;P-) = SAB(+;\1--\n;-). (6.5)

First we have the trivial n = 0 result

SAB{+; - ) =

Secondly, the n = 1 results are

y combinations

(Q+Kt+K2)

0»t2)*(A'i+A

{Q+Kt)ADki

(4fJfci)"(A»+J(

'SA^+

ADPDPB

9+A'l)jD*fPB

™t+Pu£

*(xVi -\-I\2)

• ^ + A 1 + A 2 ) 2

Last we list the two of the eight helicity combinations for the n = 3 case. The
others are given in ref. [1]. The two helicity combinations are

! 7
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(h\Q+A', |fc3)(q+A',

<*,*2

(Q+A-.

Pk2y
1*2) ('

+A"2 )iD*3°(A-3

A3+P;

A'3)*(i

S P W ? + A ' 3 + P ) 2

iTp)iBir i"3+p)2
iT2+A-3+P)2

1*2

Next we give the results for the current T of eqs. (4.2) and (4.8) for respectively
V —* qqqq and V —» qqqq + g. First we look at V —* qqqq. Here T is decomposed
in the four A,,-functions of eq. (4.2). These functions have no quark permutations.
The colour and flavour factor is split off resulting in a colourless B^-function, eq.
(4.4). There are again two sets of helicity amplitudes, namely the right-handed
coupling

2 - , Q3A3, Q4A4) = « y i / 2 ^ B J ? i B « ? i + , Q2-, Q3A3, Q^) (6.6)

and the left-handed coupling

B^Qx-,Q2+,Q3A3,Q4A4) = L]lba*BHAB{Qx-,Qt+,Q3X3,Q4X4). (6.7)

We list the two possible combinations of H^B(Q\+,Q2—IQS^QA^*)- The other
If-functions follow from complex conjugation

HAB(QI-, Q2+,Q3A3,04A4) = {HBA{Qi+,Q2-,Q3(-A3), CM-A*)))" • (6-8)

The two possible //-functions are
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The process V —* qqqq + g is more involved. Again we have four A,,-functions
(eq. (4.8)) which build up the current f^Qx&^Q^Q^, A'i). After the colour de-
composition we arrived at eq. (4.11) which contained four gauge invariant functions
Bi,,. If we specify the helicities of quark 1 and antiquark 2, which couple to the
vector boson, we can again devide the current in a left-handed and right-handed
part as was done in eqs. (6.6) and (6.7). We only list the right-handed part, the
left-handed part follows from complex conjugation of the associated If-function
similar to relation (6.8). The right-handed B^-functions are given by

(6.9)

(6.10)

B3t> = y/2Rv
hJl<T*BH7AB, (6.11)

& \ } (6.12)

where we have suppressed the obvious function arguments. The functions H, arise
from the further decomposition of the Bi functions in gauge invariant substructures.
Of the four right-handed helicity combinations of the nine different .ff^g-functions
we give one helicity combination. See for the other helicity combinations ref. [1].

The expressions for the /f;(+; —h —; +) functions are given by

, _ . , _ (929*)9IA(Q2+Q3+Q4+A', )CB(Q3+A'I f DQ2D

H4A ( + - + - ; + ) = fa*i)'(fc*i)*(qi+g»+A'i)ilptfte»

+

+

ff«io(+-+-;+) = -

122



i +Q3+K
(94M {q3q4)'(,Q3+QA+A'i )2(

(fli |Q3+A'i|g4)(Qi +Q3-
(?3*l){*lSf)(03+Q4+A'i)a(<

(gsfci) (fci94)(Q3+Q4+A'I )2(<

(ft«4>(Ql + A^ )J(D^)(Q2+^
(«1 *l) (tig2)(<?3 + Q4)2(Q2+<

(9294)29M(Q2+Q3 +

(92*l){9394)(Q2+03+Q4)2((
(q3\Q\+A'I I92XQ1+ft+J

(?1 fcl) (*l?2)(Q3+04)2(Ql +<

Qi+Q3+Q4+Ki)2

Q4)dBkf
?2+Q3 + Q4+A'l)2

*'l)iD0?92B
?3+C?4+A',)2
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Samenvatting
De eigenschappen en het berekenen van multiparton processen

Op CERN te Genève en FNAL (Fermilab nabij Chicago) worden protonen en
antiprotonen met zeer hoge energie aan elkaar vestrooid . Uit zo'n botsing resul-
teren soms een of meer zogenaamde "jets", eventueel tezamen met Ieptonen. Een
"jet" is een stroom hadronen die zich min of meer in dezelfde richting bewegen. De
hadionen hebben als kenmerk dat ze zijn opgebouwd uit partonen, dit zijn quarks
en gluonen. Het proton en antiproton zijn voorbeelden van hadronen. Tijdens
een botsing tussen een proton en antiproton komt het soms voor dat de twee bot-
sende partonen onder een grote hoek worden verstrooid. Zo'n parton, dat zeer veel
energie heeft, zal gaan fragmenteren naar minder energetische partonen. Al deze
partonen zullen, als hun energie laag genoeg geworden is door het fragmenteren,
gebonden worden tot hadronen. Deze hadronen zullen min of meer dezelfde richting
hebben als het oorspronkelijke parton. Ook de som van de energieën van de hadro-
nen zal ongeveer gelijk zijn aan de energie van het oorspronkelijke parton. Dus uit
het bestuderen van de "jets" leren we iets van de interactie tussen de individuele
partonen. Deze interactie wordt beschreven door de sterke wisselwerking, ook wel
quantum chromo dynamica (QCD) genoemd. Met behulp van QCD kunnen we de
verstrooiingsprocessen tussen de partonen berekenen en voorspellingen doen over de
te verwachten meetresultaten bij de experimenten. Ten eerste kunnen we hiermee
toetsen of QCD de interacties tussen de partonen correct beschrijft. Ten tweede
is het belangrijk om deze processen goed te kunnen voorspellen zodat nieuwe ver-
schijnselen kunnen worden waargenomen. Deze nieuwe verschijnselen zijn in het
experiment niet zonder meer te onderscheiden van de reeds bekende processen.
Door deze bekende processen, de zogenaamde achtergrondprocessen, nauwkeurig te
berekenen, kunnen we nieuwe verschijnselen waarnemen als afwijking op de achter-
grondprocessen. Het is nu duidelijk dat het voor de experimenten belangrijk is
dat botsingen waarbij "jets" en Ieptonen ontstaan theoretisch goed beschreven zijn.
Deze berekeningen zijn gecompliceerd, vooral als bij een parton-parton botsing vele
partonen ontstaan. Bijvoorbeeld een parton-parton botsing kan resulteren in vijf
uitgaande hoog-energetische partonen, ieder evoluerend in een aparte "jet71.

In dit proefschrift worden nieuwe methoden geïntroduceerd om bovenstaande
multiparton processen uit te rekenen. Deze methoden zijn geschikt om zowel nu-
merieke als analytische resultaten te verkrijgen. In hoofdstuk 2 wordt het theoreti-
sche model, bestaande uit het parton model tezamen met QCD, verder toegelicht.
Ook wordt een historisch overzicht gegeven van het meest gecompliceerde multi-
parton proces, gluon-gluon verstrooiing naar n gluonen. Uit dit overzicht wordt
het duidelijk welke problemen men ondervond bij het berekenen van dit proces en
welke methoden ontwikkeld werden om verder te komen. Met name het zogenaamde
heliciteitsformalisme was een belangrijke stap. Hoofdstuk 3 vertaalt dit heliciteits-
formalisme in de Weyl-van der Waerden spinor notatie. Deze spinorrekening zal
onze basis rekentechniek worden bij het berekenen van de multi parton processen.
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Het heeft vele voordelen boven de conventionele Dirac spinonekening, met name
voor massaloze deeltjes. In hoofdstuk 4 behandelen we de recursierelaties. Deze
relaties maken het mogelijk een proces recursief uit te rekenen, dus bij het toevoe-
gen van een nieuw parton maken we gebruik van al eerder gedane berekeningen
van processen met minder partonen. Hierdoor zijn we in staat processen uit te
rekenen met zeer veel gluonen, zoals zal blijken uit de overige hoofdstukken. Het
eerste resultaat wordt gegeven in hoofdstuk 5. Hier worden processen berekend
waarbij het aantal gluonen willekeurig is, zij het voor specifiek gekozen heliciteiten
van de gluonen. Dit is een deel van het totale antwoord voor het proces. Voor
het totaal moeten we sommeren over alle mogelijke hcliciteitscombinaties van de
gluonen. De berekende speciale heliciteitscombinaties kunnen dienen als basis voor
het formuleren van benaderende formules voor het totale proces. Deze heliciteits-
botsingsdoorsnedes waren voordien alleen bekend als postulaten. Met behulp van
de recursierelaties kunnen in dit hoofdstuk deze postulaten met volledige inductie
bewezen worden. Dit wordt gedaan voor processen waarbij naast een willekeurig
aantal gluonen ook aanwezig kunnen zijn een quark-antiquark paar en eventueel een
vectorboson dat kan vervallen in leptonen. Hoofdstuk 6 bestudeert het gedrag van
"zachte" gluonen, hetgeen van belang is voor hogere orde correcties op het proces.
Explicite analytische antwoorden voor multigluon processen worden met behulp van
de recursierelaties berekend in hoofdstuk 7. De recursierelaties stellen ons in staat
om de analytische antwoorden uit te breiden tot processen met zeven gluonen. Dit is
relevant voor botsingsprocessen met vijf "jets". Met de technieken uit dit hoofdstuk
zijn we ook in staat het proces met acht gluonen numeriek te evalueren. In hoofd-
stuk 8 worden parton processen berekend waarin ook een vectorboson voorkomt.
Deze processen zijn belangrijk voor experimenten om verscheidene redenen. Zo is
het vinden van een top quark een belangrijk doel van de huidige experimenten. Het
"top quark" is een theoretisch voorspeld deeltje dat noodzakelijk is om het theo-
retische model intern consistent te houden. De processen berekend in hoofdstuk 8
vormen hierop een achtergrondproces.

De in dit proefschrift verkregen resultaten kunnen binnenkort worden vergeleken
met de nieuwe experimentele gegevens van met name Fermilab. Hierdoor is het
mogelijk QCD te toetsen bij hogere energieën en voor processen met veel "jets".
Ook naar mogelijke afwijkingen kan worden gezocht. Dit kan resulteren in het
vinden van het "top quark" en/of het vinden van nieuwe onverwachte verschijnselen.
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