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Introduction.

In  the quantum theory of line spectra it is assumed that the laws of electro
dynamics cannot be applied to atomic systems, and the assumption is made that
an atomic system can exist without emitting radiation in a number of states, which
are called the “stationary states” of the system, and that a process of emission or
absorption of energy can only take place by a complete transition between two
such states. Further it is assumed that the radiation emitted or absorbed during
such a transition is unifrequentic, and that its frequency is given by

v =  ± ( E ' - E " ) ,  (1)

where E' and E" are the values of the energy in the two states, and where h is
P lanck’s constant. As well known B o h r  was able, on the basis of these assump
tions, to account in a convincing way for the frequencies of the lines of the series
spectrum of hydrogen and for some main features of the series spectra of other
elements. In the course of the last years the quantum theory of line spectra has
been developed considerably, due to the work of S om m erfeld , E p s t e in , S chw arz-
schild  and others, who, by extending B o h r’s original theory, were able to explain,
as regards the f r equenc i es  of the components, the characteristic fine structure of
the hydrogen lines and the effect which strong external electric or magnetic fields
have on these lines. Now B o h r 1) has shown in a recent paper, which contains a
general exposure of the principles of the quantum theory of line spectra, that it is
not only possible to get information as regards the frequencies of spectral lines,
but that at the present state of the theory we are also able to draw some con
clusions regarding the p o l a r i s a t i on  and i n t e ns i t i e s  with which these lines
appear, by considering the amplitudes of the harmonic vibrations in which the
motion of the particles in an atomic system may be resolved. On professor B o h r’s
proposal I have undertaken in the present paper to treat in detail the application
of his ideas to the problem of the intensity of spectral lines in the special case of

‘) N. Bohr, On the Quantum Theory of Line Spectra. D. Kgl. Danske Vidensk. Selsk. Skr, natur-
vidensk. og mathem. Afd., 8. Rtekke IV, 1, 1918. This paper will ill the following be referred to as:
N. Bo hr , loc. cit.
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the fine structure and in that of the Stark effect of the hydrogen lines, and to
compare the result of the calculations with the observations.

The paper is divided in two Parts.
Part I deals with the problem of the determination of the values of the ampli

tudes of the harmonic vibrations in which the motion of certain mechanical systems
may be resolved, and is divided in four chapters.

In § 1 a short account will be given of the theory of mechanical systems for
which the Hamilton-Jacobi partial differential equation may be solved by means
of separation of variables, and it will be shown how it is possible to reduce the
calculation of the amplitudes of the harmonic vibrations, in which the motion of
these systems may be resolved, to the evaluation of simple definite integrals.

In § 2 the method exposed in § 1 will be applied to the model of a hydrogen
atom which is uninfluenced by external forces, assuming that the motion is governed
by the laws of relativistic mechanics.

In § 3 the same method will be applied to.the model of a hydrogen atom,
which is subject to the influence of an external homogeneous electric field of force,
the intensity of which is so large that it is possible with a high degree of approx
imation to determine the motion by means of ordinary Newtonian mechanics.

In § 4 the perturbing influence is considered which a very weak homogeneous
electric field of force will have on the motion of the system considered in § 2.

Part II deals with the application of the calculations given in Part I to the
problem of the intensities of spectral lines, and is divided in four chapters.

§ 5 contains, besides a brief exposure of the theory of stationary states of
systems which allow of separation of variables, an account of Bohr’s theory of the
connection between the polarisation and intensities of spectral lines emitted by an
atomic system and the amplitudes of the harmonic vibrations in which the motion
of such a system may be resolved.

In § 6 a discussion is given of the application of the theory to the relative
intensities of the components in which the hydrogen lines are split up in case of
the Stark effect, on the basis of the formulae deduced in § 3.

§ 7 contains a discussion of the relative intensities with which the components
of the fine structure of the hydrogen lines appear, based on the formulae deduced
in § 2 and § 4.

In § 8 a brief discussion will be given of certain questions which stand in
connection with the application of the theory to the problem of the Zeeman effect
of the hydrogen lines.

Finally I wish to express my best thanks to professor N. Bohr, the creator
of the beautiful theory underlying the present paper, for his kind interest and
encouragement during the achievement of the work.



Part I.
Examination of the trigonometric series representing the

motion of the electron in the hydrogen atom.

§ 1. General method applicable to conditionally periodic systems.
Consider a mechanical system of s degrees of freedom, the equations of motion

of which are given by the set of canonical equations

dpk
di

dJ L
dqk’

dqk
~dt 4 - 8 Pk’

(k -= 1,2 . . . .  s)

where ql, . . .  qs is a set of generalised coordinates by means of which the positions
in space of the particles of which the system consists are uniquely determined,
while />!, . . .  ps are the canonically conjugated momenta, and where E is the energy
of the system, which is assumed to be a function of the p’s and q’s only. The so
called Hamilton-Jacobi partial differential equation is then obtained by writing
Pi — s— where S is a function of the q’s, and by putting E, considered as a func-0qt 8s
tion of the q’s and ^ - ’s, equal to a constant at ;

dS 8 S \
” dq1 ‘ ' "  dq j av (3)

A complete solution of this equation will contain, besides an additional constant C,
s — 1 other integration constants a2, . . . .  as. Now it may happen that, for a suitable
choice of orthogonal generalised positional coordinates qlt . . . .  qs, it is possible to
write a complete solution of equation (3) in the form

A Sk (qk j o-\ j a*)  - f -  C  > (4)

where Sk depends on the as and on q* onlj\ If this is the case it is said that the
equation (3) allows of “separation of variables” for the special choice of coordinates
under consideration, or briefly, that the system allows of separation of variables.

ÖS ^For such a system as seen from (4), will depend on the corresponding qk only;
moreover remembering thqt in Newtonian, as well as in relativistic mechanics, E
contains the p’s in the form of a sum of squares, ƒ must necessarily be the square
root of a one-valued function of q*. Hence,' denoting this. one-valued function by
Fk, we see that S may be written in the form
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9*_____________
VFk(qk; «*) d?*- (5)

If the a’s satisfy the condition that every function Fk(qk) possesses at least
two successive finite real simple roots qk and qk , between which the value of the
function is positive, the function S will, considered as a function of the q’s, possess
s moduli of periodicity, defined by

Ik= \V F k(qk; «x, •••«.) dqk, (* =  1, • • • *) (6)

where the integration is taken once up and down between qk and qk. It is clear
that the quantities I  thus defined are continuous functions of the a s in the region
where the a’s satisfy the just mentioned condition, and that generally the a s may
reversely be expressed as functions of the I s. Introducing these expressions for the
a’s in (5), we obtain an expression for S as a function of the q’s and of its moduli
of periodicity I1, . . .  ƒ*;

S =  Sk (gk;
l i J

' W k

>  \  VFk(qk ; Ilr . . . / « )  dqk. (7)

Let us now define a transformation of variables

d S d S . \ /Q\

which may be considered as transforming the variables qx, . . .  q$, pk, which
originally described the positions and velocities of all particles of the system at
any moment, into the variables 71( . . .  Is, wy . . .  ws. It is easily seen from the
përiodicity properties of S that wk, considered as a function of the q s and fs, will
increase by 1 if qk continuously oscillates once up and down between its limits
q'k and qk and returns to its original value; while if one of the other q s performs
a similar oscillation between its limits, wk will return to its original value. From
this we see that the q’s, and also the p’s, considered as functions of the w s and
the Fs, are one-valued functions of these variables, which are periodic in every of
the w’s with period 1, i. e. they assume their original values if the w s  increase by
arbitrary integers. The q’s may therefore be expanded in an s-double Fourier series
of the form

. „  y r M  2 ü £ ( n w i + . . . T s ms ) (9 )qk =  2. LTi j Tk e , > w

where the summation is to be extended over all positive and negative entire values
of the r’s, and where the C’s depend on the Ts only. Similar expansions will hold
for the p’s.
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Now, according to a well known theorem of J acobi, the transformation (8)
leaves the canonical form of the equations of motion unaltered, i. e. expressing by
means of (8) £  as a function of the Ts and w’s, the variations of the latter quan
tities with the time are given by

d h ____ dwk _ 6 E  .
dt ~  8wk ’ dt dlk " K i, .. *) (10)

Now E is, according to (3), equal to alt and consequently a function of the fs
only. The solution of the equations (10) is therefore immediately obtained by putting

dEh  =  constant, wk =  wkt -j- dk, wk =  j j - ,  (k =  1, .. . s) (11)

where the ffs are a set of arbitrary constants, while the w’s obviously depend on
the constants I  only. We thus see that there exists for the mechanical system under
consideration a family of solutions in which each of the q’s oscillates between two
limiting values depending on the constants Ilt . . .  It. It is easily seen that wk repre
sents the mean number of oscillations which the coordinate qk performs between
its limits in unit time, taken over a time interval in which a very large number
of such oscillations are performed. The variables w are called “angle variables” ;
the quantities I, defined as the moduli of periodicity of the function S, are canoni
cally conjugated to the w’s. Mechanical systems for which the motion may be
described by a set of angle variables wlt . . .  ws and canonically conjugated 7’s,
possessing the properties just considered, are called “conditionally periodic”.

Since the q’s describe the positions of the particles in space uniquely, the
displacement x  of any of these particles in any direction in space will be a one
valued function of the q’s. Considered as a function of the Ts and w’s, the displace
ment x  will therefore, just as each of the q’s, be periodic in each of the w’s with
period 1, and may consequently also be expressed by a trigonometric series of
the form

x  — SCr„ . . . Tle2,t<(T>,0>+

where the coefficients C depend on the Fs only and where the summation is to
be extended over all positive and negative entire values of the z’s. Introducing in
this expression the values of the in’s given by (11), we obtain for x, considered as
a function of the time, an expression of the type

X  =  ZCtx, . . .  T»e2,I'{(r»u,‘+ " - ^ " , ) *  + Cr1, . . . r , } ,  ( 12)

where the C’s and c’s are constants, showing that the motion of the particles of a
conditionally periodic system may be resolved in a number of harmonic vibrations
of frequencies \z1w1-\- . . .  rg(os\ the amplitudes of which depend on the quantities
h  only.

For the systems under consideration the number of the quantities <o, which
may be denoted as the “fundamental frequencies” characterising the motion, is
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generally equal to the number s of degrees of freedom. In special cases, however,
this number may be less than s, viz. in such cases where, for all values of the I s,
there exist one or more relations of the type

where the m’s are a set of integers possessing no common divisor. In fact it is
easily seen that by means of n relations of this kind it is possible to eliminate n
of the quantities a>k in the expressions t1 cu1 - \-  . . .  ts cos , so that these expressions
assume the form Tjw/ 4  • • • »-«'»*--•• Conditionally periodic systems for which
relations of the type (13) hold are called “degenerate” and play an important part
in the quantum theory. In § 2 we shall meet with a typical example of a degene
rate system.

We shall now proceed to derive expressions for the values of the coefficients
C, which occur in the expansion in a trigonometric series

where f(q1, . . .  q*) is a one-valued function of the q’s. According to Fourier’s theo
rem we have1)

where the q’s are regarded as functions of the iv’s and the 7’s. We shall transform
this expression into a multiple integral taken over the q’s, instead of over the w’s,
by means of the transformation formulae (8), which by means of (7) may be written
in the form

and consists of the sum of a finite number of products of functions which each
contain only one of the q’s. Transforming (14) we now get

i) See C. V. L. Charlier , Die Mechanik des Himmels. I, p. 106. It will be noted that the metho
followed in the present paper is a simple generalisation of the well known method by which the coor
dinates of a planet performing a Keplerian motion are expressed, by means of a simple Fourier series,

m k wu =  0 , (13)

f(qt , • ■ ■ 9.) =  2’Cr., .., +

*)e -27Tf(T,u>t +  . . .  + T„u>,) dw1 . ■ ■ dws, (14)

y « S i = v
6 Ik ^

i = 1

The functional determinant of this transformation is given by

g(a>lt mt) =  I d*S =  \eVFt =
d{qlf . . .  9») 16Ikdqt \ d lk

J  . . . .  ^f(ql} • • • q,)e~2,ciH Tk dlk AMi • • • d 9*> < 1 5 >

as functions of the time.
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where the integration must obviously be taken once up and down between the
limits of oscillation q' and q" of every q. Let us now assume that f(q lt . . .  qs) can
be written in the form of the sum of a finite number of products of functions,
which each depend on one of the q’s only:

fi<h> • • • ?*) =  f ir iq jh r (q z )  ■ ■ ■ UAqs). (16)
r

Then it is easily seen that the value of the coefficient C, given by (15), will be
equal to the sum of a finite number of products

where is a definite integral of the form
* 6  Si

(Pi =  U(q,)e dqt . (18)

The character of these integrals may be brought out clearly by effecting the
transformation

(19,

An oscillation of qi up and down between its limits q'i and q'ï corresponds to an
o C .

increase of <pi by 2 n. Further the functions will be periodic in (pi with period
2 k, unless k =  i, in which case we have obviously

dSt ^  <pt_
dli 2 jt

-|- periodic function of (pi (period 2 ic).

The integral (18) may therefore be written, denoting by P0, P 1, . . . P S a set of
periodic functions of <p with period 2 n, in the form

d>i =  —  \  P0(<Pi)<rtT‘*le - 2"i$TkPk(,f’‘)dfr.

It is possible to express the coefficients C in the simple form given by (17),
only if the function f(qlf ■.. qs) that we want to expand in a trigonometric series
can be written in the form (16). Now in the quantum theory a series expansion
of the rectangular Cartesian coordinates which describe the positions of the particles
of the system in space is asked for, and it might be of interest to investigate
whether these latter coordinates always may be expressed in terms of the coordinates
qlt ■ ■ ■ qs, in which separation of variables was obtained, by a formula of the form
(16). If the set of coordinates glf..... qs belongs to the well known class of „elliptical
coordinates1', it is at once seen from the general formulae holding for this kind

D. K. D. Vidensk. Selsk. S kr., naturvidensk. og m  a  them . Afd.t 8. Riekke, 111. 3* 3 8
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of coordinates, given by J a co bi1), that the Cartesian coordinates are functions of
the elliptical coordinates of the type (16). In the applications ol the quantum theory
hitherto made, separation of variables is always obtained in one or other set of
elliptical coordinates2), and, due to the special form of the expression for the kinetic
energy in mechanics, it seems highly questionable if, for a mechanical system con
sisting of particles moving under the influence of conservative forces, it is possible
to obtain separation of variables in other kinds of coordinates.

§ 2. Hydrogen atom undisturbed by external influences.
In this chapter we shall apply the above analysis to the problem of the motion

of an electron of mass m and charge — e rotating round a positive nucleus of infi
nite mass and of charge Ne, which attracts the electron according to Coulomb’s
law, assuming that the motion is governed by relativistic mechanics. As well known
this system represents the model of a hydrogen atom where the mass of the nucleus
is regarded as infinite. If the laws of Newtonian mechanics were applied, the electron
would perform a periodic Keplerian motion, but as sooq as the modifications in
the laws of mechanics, claimed by the theory of relativity, are taken into
account the motion will no more be simply periodic. The orbit of the electron
will, however, still be plane and may be described as a closed periodic orbit on
which a uniform rotation round the nucleus is superposed. Moreover, assuming
that the velocity v of the electron is small compared to the velocity c of light, the
closed orbit in question will differ from a Keplerian orbit only by small quantities
of the same order of magnitude as 0,/c3, while also the ratio of the frequency o of
the superposed rotation to the frequency of revolution of the electron in the closed
orbit will be of the same order as o’/c*.

From these simple properties of the motion it would be possible, quite inde
pendently of the theory of separation of variables, at once to derive trigonometric
series expressing the displacement of the electron in different directions as a function
of the time with neglect of small quantities of the order ^/c1. In fact, the expansions
in a trigonometric series for the Cartesian coordinates f  and ij of a point describing
a closed Keplerian ellipse are well known in celestial mechanics, and from these
expansions are easily obtained the expressions for the Cartesian coordinates x  and
y in a fixed system of coordinates, relative to which the system rotates uniformly
with the frequency o. An example of a procedure of this kind will be given at
the end of this chapter, where the influence of a magnetic field on the motion of
the electron in the hydrogen atom will be treated. For the present, however, we
will for the sake of illustration treat the problem by means of the general method

*) J acobi, Vorl. fiber Dynamik, p. 202.
8) Rectangular coordinates, polar coordinates and parabolic coordinates may all be regarded as

special cases of elliptical coordinates.
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discussed in § 1, making use of the fact that the system under consideration allows
of separation of variables in polar coordinates. This method also offers the advan
tage that it allows us to determine the coefficients C in the trigonometric series, which
represent the displacement of the electron, to any degree of approximation desired.

Consider the motion of the electron in the plane and let the position of the
electron be described by means of polar coordinates r and *p, where r is the length
of the radius vector from the nucleus to the electron and <p the angle which this
radius vector makes with a fixed direction. These coordinates are connected with
the ordinary Cartesian coordinates x  and y of the electron by means of the relation

x -\- iy  =  re1?. (20)
In order to find the expansion of x  and y in trigonometric series it will therefore
be sufficient to calculate the coefficients C in the series

re 1’*5 =  2'Ctv + (21)

where i»! and w2 are the angle variables which correspond to r and <p respectively
in the manner described in § 1.

Introducing the notation y =  (1 — 0*/ca)- , / *, where v3 =  +  f3 (~^r) is the
square of the velocity of the electron, the momenta pr and p<p which are canoni
cally conjugated to the coordinates r and ip will, according to the laws of relativistic
mechanics, be given by pT — m r — and pa — m rr3— 1). The total energy of the
system, which is equal to mc3(y — 1)------- , will therefore, considered as a func
tion of pr, pp, r arid <p, be given by

me3[{1 +  m3c3 i1
V'* ‘It

Ne3

The Hamilton-Jacobi partial differential equation will consequently be of. the form

« 1 me31 {1[{>
1- (  ( i ^ V - L . 1  (OS

m3c3\ \ 0 r /  ' r3 1 Ne3
r

As this equation does not contain <p, a separation of variables is directly obtained
8 Sby putting equal to the integration constant a2, which will represent the angular

momentum of the electron round the nucleus. This gives

as _  8s
dip Z*2’ 8t

l } _ 4  = ] /F (r). (22)

Introducing now the quantities 1 defined by (6), we get

h (23)

*) Compare for these and the following calculations P. Debye, Phys. Zeitschr. XVII p. 512 (1216).
38»
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where the first integral is to be extended twice between the two roots of the inte
grand. Evaluating these integrals and expressing the as  as functions of the 7’s, we
get, expanding after powers of l/c2 and neglecting terms containing squares and
higher powers of this quantity,

2 tt*N8e4m ƒ, (2 jtNe3\* (  3
01 ~  &  +  /,)* I c ) {  4 (h  +  IJ* (h +  I J l ) } ’ 2 ff-  (24)

In the expression for the energy av  the term which does not contain i/c* gives the
value of the energy for an unrelativistic motion, while the terms containing 1 /«* are,
as will be seen in Part II, determinative for the fine structure of the hydrogen
lines. We may, however, neglect these terms in the following since, for the purpose
of the present paper, it will only be necessary to calculate the values of the
coefficients C in (21) to the first approximation, i. e. with neglect of quantities
containing l/c* and higher powers of 1 /c*.

Introducing the above values for a1 and a2 in (22) we find in this way for S
the expression

2 , S  =  2 ^ d r + 2 )r ^ d ?  =  A  +  I ^ ,  (25)

where we have introduced the abbreviations

■ ■  < * >

It is easily shown that x P  will be equal to the half major axis of the orbit des
cribed by the electron.

According to (8) the angle variables wx and w% will be defined by

2 n w l =* 2 n xp \ ^ xi p i » ± 2 t x P - - r * t

dr
(27)

t)
2n(w2 —  Wj) =  2 ic

Introducing now the abbreviations

x * P I l  +  2 r x P — r8 +  9 ‘

l / T - T 1 , (28)

where e may be simply shown to be equal to the eccentricity of the orbit, and
introducing (compare (19)) a new variable </> by means of

r  =  * I a( l  -(-(s cos <f>),
it is easily seen that

(29)
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dr
V - x i PPi T{‘2 r x P ~ r t

=  d</>,

so that the equations (27) may be written in the simple form

2nw1 =  \  (1 -4- e cos <jj) d<p — (f> -(- e sin <[> -\- n,

2n(w2-  w j  V +  p =  f log 1 +  *5.' sin 4> + ,cos ^ .V 2 1/ 1 1 I I r  e 1 +  e cos <!>

(30)

1 -)- e cos <p (p.

According to the definition of angle variables, an arbitrary constant may be added
to the values of w1 and w2. In the present case the additional term n is written
on the right side of the first of the above equations in order to obtain a final
formula which is as simple as possible.

In order to obtain now the coefficients Crt, r, in the expansion (21), we might
proceed by directly applying (14), but the calculation can be made shorter by
observing that the mechanical system under consideration possesses symmetry round
the nucleus and that as a consequence of this all coefficients Cr,, r2 in (21) will be
equal to zero except those for which r2 =  l 1). This means that the expression
re'? e~2niw* will be a function of w1 only and may be expanded in a simple Fourier
series. In fact from (29) and from the second of the equations (30) we have

r e i p e 2*Hu,,-~w,) =  y /2 (i _|_ e cos ^ e i<pe  + l *L e -i<p )
v r /  1 +  e cos <p > (31)

=  x P  (e +  i e' sin <f> +  cos <p),
and this is, according to the first of the equations (30), a function of w1 only. Now
the coefficients AT in the series

e +  is sin <p -j- cos ^ =  ZAr e2niT,Vi (32)

are easily obtained by evaluating, according to Fourier’s theorem, the single definite
integral

At =  ^ (e'-(- ie' sin <p +  cos <p)e~2*iTWi du>lt

which is simply changed
of the equations (30)

so that

into an integral over <p because we have from the first

dw1 =  (1 +  e cos tfi) ^ ,

( ~  l)r
2n \

2 11

(e +  i s' sin <p -f cos </>) (1 +  e cos
0

i/i)e~iT</’- iST sin </> dé. (33)

’) See N. Bohr, loc. cit. Part I, p. 33.
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The product of the first two factors of the integrand may be written as a sum
of terms aL2e - 2iP +  +  a0 +  a2e2iv>. Remembering that

now
l _ \ e-in4,+ip sirup di/) =  Jn(p), («integer) (34)

where Jn(p) is the Bessel coefficient of argument p and order n, we see therefore
that At may be written as a sum of Bessel coefficients of different orders and of
argument re, each multiplied by a certain factor. Performing the necessary calcula
tions and contracting terms by means -of the well known formula

Jn — l(p)~\~^n + i ( p ) ~ — Jn(.p)> (̂ ®)
we finally get the result

At =  -  —  {(1 +  e') JT_ , (re) -  (1 -  e') JT+1 (re) J . (36)

This expression becomes undetermined for r =  0. By introducing, however, this
3 . . . .

value for r directly in (33) we get An =  n e' ^or exPans*on of x - { - i y  in a tri
gonometric series we therefore get from (31), (32) and (36)

x - \ - i y ^ exPéi*ii~W'+W')- xI32TT j(l+e')-/r-i(rs)—(1— e0^r+i(re) (37)

where the summation is to be extended over all positive and negative entire values
of r except r =  0, and where the factor xP, as mentioned, is equal to the half
major axis of the orbit of the electron.

The values of the coefficients are, as mentioned above, calculated with neglect
of small terms containing the square and higher powers of 1/e; it will, however, be
observed that, also if these terms were taken into, account, there would in the
expansion for x  +  iy  only occur terms of the form e2’t<<r~ 1“’»+u’«), due to the symme
try of the system.

The expressions for w2 and w2 as linear functions of the time are given by

wl =  a>1t +  i lt w2 =  <w2f -j- S2, (38)

where, according to (11), aix =  and <o2 =  at representing the total energy
of the system as given by (24), and where d1 and d2 are constants. We thus see
that the motion of the electron may be considered as a superposition of an infinite
number of circular harmonic vibrations, the frequencies of which are given by the
numerical values of r— 1 a>1 w2, where r may assume all positive and negative
entire values, and the amplitudes of which are directly given by (37).

The values of a>1 and <o2 differ only by small quantities of the order o’/c8, their
difference being equal to the frequency o mentioned on page 10, and become equal when
the relativity modifications are neglected (c =  oo). In this case the expression (37) gives
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x  +  iy =  - e x P e 2̂ ^ — x/82’— j(14-eV r-i(re) — (1 — eVr+ifre) j e a*ifr®' + <b, (39)

where m is the frequency of revolution of the electron in its Keplerian orbit, and
where d is an arbitrary constant. The last expression is easily seen to be identical
with the expressions for the coordinates of a point performing a Keplerian motion,
which are well known in celestial mechanics1), and from which, as mentioned in
the beginning of this section, the expression (37) could have been deduced directly.

In the preceding considerations the problem has been treated as the
problem of the motion of the electron in a plane. If we, however, consider the
motion of the electron in space, we have to do with a mechanical system of three
degrees of freedom. This system will appear as a degenerate system, because there
will occur in the trigonometric series representing the displacement of the electron
in any direction in space only two fundamental frequencies, viz. the frequency at1
of the radial and the mean frequency toa of the angular motion of the electron in
the plane of its orbit. In the presence of a h o mo ge n eo u s  magne t i c  field,
however, the system will no more be degenerate, because a third fundamental
frequency will occur in the motion of the electron, which no longer will remain plane.
In fact, assuming that the intensity of the magnetic force is so small that we may
neglect small quantities proportional to the square of this intensity, we have accor
ding to a well known theorem of L a r m o r , that every possible motion in the pre
sence of the magnetic field may be obtained by superposing on a possible motion
of the system without field a slow uniform rotation round an axis through the
nucleus which is parallel to the direction of the field. The frequency of this rota
tion will be given by

° " - ï h é H ' <*»

where c is the velocity of light and H the intensity of the magnetic force. From
this we see that the mean frequency of rotation of the electron round the above
mentioned axis, which we will denote by <w3, will be equal to <o3 =  . o ,̂ where
the upper or lower sign holds according to whether the direction of the superposed
rotation has the same direction as or the opposite of that of the rotation of the
electron round this axis.

Let us now ask for the trigonometric series in which the displacement of the
electron in different directions in. space can be expanded in the presence of a
magnetic field. Take the nucleus as origin of a system of rectangular Cartesian
coordinates x, y, z, the z-axis of which is parallel to the direction of the magnetic
field. Let the angle between the z-axis and the plane in which the electron at any
moment moves be denoted by and let the position of the electron in this plane
be described by means of rectangular coordinates $, tj, the jy-axis being perpendi-

*) See for instance Chaklieh, loc. cit. I, p. 215,
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cular to the „z-axis. Then the coordinates x, y, z defining the position of the electron
in space will be connected with f  and rj by means of the formulae

z =  f  cos-#, x  +  i y  — ( e s in 5 + .^ ) .e 2^ - ^ )f. (41)

Now, according to (37) and (38), the dependency on the time of the quantities ? and
» is expressed by

® exPe2ni(~‘°i+ w*)t — zFJ?— I(l- f-e')JT—t (re) — (1— e')Jz+i(re )|e27cî T~la>i+

where the summation has to be extended over all positive and negative values of
z, except r =  0, and where for simplicity we have taken the quantities i j  and in
(38) equal to zero, what is easily seen not to restrict the generality of the consider
ations. By means of this formula we get from (41), denoting cos » by /i and sin & by

z = A* P  2’j M  (1 +  e ')^ r- i( re )— ( l  — «') Jr+ t(« )| cos 2 n(z— 1 " i +  " 2) t

x + iy  =  ~ ( l+ //)e * /2e27r,(~“'1+<",)'— ^ | ( l + e’)^T-l(«)—(l-*^V)Jr+t(?*)J 1 U i + W ‘ ) t

_  I  1" ^ '  z I 3! 1- -  {(1—e') J r - l N  — (1 -K )^ r+ l (T£)j^ (r+ 1-,- 2«.,+<«,)/,

(42)

where again the summations are to be extended over all positive and negative entire
values of r except z =  0. It is seen that the motion of the electron may be regarded
as a superposition of linear harmonic vibrations parallel to the axis and of fre
quencies | r — 1 (ol -f- o>2 |, and of circular harmonic rotations perpendicular to this
axis and of frequencies | r — 1 a»x -j- a»a \ and | z -j- 1 <Dt 2 tu2 +  <u3 |. In the expres
sions, given by (42), for the amplitudes of these vibrations small quantities of the
same order as os/c* are neglected, just as in (37), while from the above calculation
it is seen that the magnetic field, at any rate in first approximation, does not affect
the values of these amplitudes.

§ 3. Hydrogen atom under the influence of a strong homogeneous electric
field of force.

In this chapter we shall consider a mechanical system, consisting of an elec
tron of charge -  e and mass m, which is subject to the attraction of a nucleus of
charge Ne and of infinite mass as well as to the influence of a homogeneous electric
field of intensity F, assuming that the motion of the electron is governed by
the laws of Newtonian mechanics. We shall assume that the force eF is small
compared with the force which the nucleus exerts at any moment on the electron,
and it will be our purpose to solve the equations of motion by means of trigono
metric series of the type (12), in such a way that we shall neglect in the calcula
tion of the coefficients C small quantities which are proportional to the first power



17 301

and to higher powers of F. For the system under consideration a separation of
variables can be obtained if p a r a b o l i c  c o o r d i n a t e s  are used to describe the
position of the electron in space1). If x, y, z, are the coordinates of the electron in
a system of rectangular Cartesian coordinates with the origin at the nucleus and
with the 2-axis parallel to the direction of the external electric force, these para
bolic coordinates may be defined by

z  =  x - \ - i y = V $ y e *9. (43)

* and ij are two parameters defining the two paraboloids of revolution which have
their common focus at the nucleus and their common axis parallel to the 2-axis
and which pass through the electron, while <p is the angular distance between the
x z -plane and the plane containing the 2-axis and the electron. Denoting in the

• • • doc d c 'usual way the differential coefficients -j-r, . . . .  by x , £, . . . . ,  the kinetic energy
of the system will be given by

so that the momenta, which are canonically conjugated to the coordinates £, ij and
<p, are given by

m i + J i
4 $ V

d T m £ -f-  ri . 6T » .
Pr ~  d<j> —

Denoting the distance Vx* +  y2 + of the electron from the nucleus by r, the
potential energy of the system will be represented by

P JVe*
r -f- eFz 2Në3 1 e(E— fj)F,

so that the total energy E, expressed as a function of p&, p , pp , £, tj, <p, which
enters in the Hamiltonian equations of motions (2) of the system, will be given by

E  = . 1 I 4 f _

2zlffjPi + r+j 0 -
2 Nei e($— ij)F.

The Hamilton-Jacobi partial differential equation will be obtained by introducing

p$ =  q-z , Py —  0—, Py, =  Q—, and by putting the expression for the energy thus
obtained equal to a constant ax:

_L(i
? +  rj[2m (4f(ii)’+4’( ïf r+ (N ï)0 V !w'‘+ j‘<f,-'i,)4

Effecting in this equation a separation of variables we find

') P. E p s t e i n , Ann. d. Phys. U , p. 489 (1916).
D. K. D. Vidensk. Selsk. Skr.. naturvidensk. og mathem . Afd., 8. Rsekke, III. 8. 39
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| |  =  * V -  a\ +  2 (m Ne* — a j  £ ■+ 2 m «q f 1 -  m eF ^ ,
v  C  «  S

—  =  — V— al +  2(m Nei +  a2) rj +  2 m a^* +  meFif,
<7 ^ &7J

dS
dip ~

where a2 and as are two integration constants. According to (6) the quantities Iv
I2 and I3 will now be given by

where in the expression for Ix and I2 the integration is to be extended twice be
tween the roots of the integrands. Expanding after powers of F, and expressing the
a’s as functions of the / ’s, we find

In these formulae 8' is a small quantity containing the second power and higher
powers of F, while 8" is a small quantity containing the first power and higher
powers of F. The term in the expression for the energy eq which is proportional
to F is of large importance for the determination of the frequencies occurring in
the motion of the system, but, since in the calculation of the coefficients C occur
ring in the trigonometric series representing the motion we shall, as mentioned,
neglect small quantities proportional to F and higher powers of F, we may neglect
this term, as well as the terms S' and 8". In this way we find, by introducing (46)
in (44), for S expressed as a function of £, rj, <p, Ilt  I2, I3,

I\ | |  ]/— al -f 2 (m Nei — a2) £ +  2 m a j*  — meF f 3,
" *

al +  2 (mNe* +  a2)i) Zmarf* +  meFr]*, (45)

h  =  \  as'd 9 >

«i =  —(ƒ*+,/,+/«)* 8 n* Nem
3 F

V I r I J  \  2 • Q - 2  \ T , (Ii +  +  f*) (A  72) -}- 8f,

at =  — m NeamNe*__^ -----h 8",mNe It +  It +
(46)

2 jr S )+f\VV'( (47)

where we have introduced the abbreviations
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* ~  4n*Ne*m’ 1 =  Ii +  h  +  h-

The angle variables ivl , w2 and w3 will now, according to (8), be defined by

2 7TWX - 2nd S - 1 £*d? x I(2 I ,+ I3) $ + £ 3 1
U d l x 2x P \  $  V - x3PsP + 2 x{2I1+ I 3) I $ ~ ? T 2 xP

2 nw2 - 2 n d S ~ 1 ?*d$ —  r / ( 2 / 1 +  / ^ f + f * 1
8 1 , 2 x P \  $  V - x aPaP + 2x(2I1+ I ,) I$ -$ l T"2 xP

2 jcw3 2 J S
i  f o e  - * * / , /» + * /( / , - m + p 1

8I3 2 x P \  $  ] /- x 3PaP+2x(2I1+ I3) I $ - $ 3^ 2 x P

W riting
Mx =  *(2 ! , + ! , ) ! ,  L \  = M l  —

x l31,

r) V—x3 PaP +  2x (2/jt+ / s) I y - i j *

Vdrj x I(2 Ix-\- I^rj +  yj*
V V -x*PaP + 2 x { 2 I t + I t) I ^ f

11 dr) — x3I3P  — x 1(^  — 1,) ij +  r)3
V V—x* PaP T M 2

(49)

(48)

* ( 2 / ,+ / , ) / ,  K  =  M \- K ?  =  4 x3 P I2 (I2-f*h)f

and introducing (compare (19)) instead of $ and rj two new variables <p and % by
means of the formulae

£ =  Mx L i cos tp,

it is easily seen that

d$ d<p,

M2 -f- L2 cos %,

_________ d r J
V -  x3PaP + 2 x (2 I l +  I3) I $ -  f 2 ” r7 V— x3 IIP  2 x (212 I3) rj —

and that the equations (48) may be written in the form

2nWl =  2xP (Ll Sin ^  +  Lz sin X) +  <P +

2 t t w 2 =  27p  (l i sin 'P  +  L2 sin X) +  X +

(50)

rf/>

2nu>a =  [Lx sin <£ +  L2 sin *) - f  — -  jr_ö_+f
) M j -j- L j cos (f> ' \

dy
L2 cos ̂  j

(a)

(b)

7 t . (C)

(51)

Introducing the notations

** =  2T P  =  +

the equations (51) (a) and (b) become

2 nw1 =  ox sin tj> -)- <f3 sin % -)- (f> -)- rc,

2 itw, — ox sin <p -|- <r2 sin % -\- ̂  n.
39*

(52)

(53)



304 20

Atv t.

These equations show that <p and and consequently f  and rj, are functions of wx
and wt only. From this it follows that the displacement z =   ̂ - of the electron
in the direction of the z-axis may be expanded in a doubly infinite series of the form

z =  J  =  2'Arlt To e2’t<<T*w*+T,w,), (54)

where the summation is to be extended over all positive and negative entire values
of rx and rr According to Fourier’s theorem we get for At„ t,

Mi, r, V L z * , -g —2)ti(rIM)l + r,«il) (/uji (foo2 (55)

Following the procedure given in § 1 we will now transform this integral in an
integral over <p and %. From (52) and (53) we get for the functional determinant
of this transformation

8{mv wtY _  1 l*i cos l + l  o i t o s é
8 (</> , / )  4 JT8 | cos^ <72 cos ^ +  1 4«r*

(1 COS Ip ff2 cosy). (56)

For z t z l
2 we get from (50)

f - j j  _  +  L . c o . i - L . c o ^  _  +  ,  J. ( . ,  co. t -  co. *).

Hence, if both rx and ra are different from zero, the integral (55) assumes the form
rMicrtZi:

V (fflcos^ — <TjCOs x) ( l+ a 1cos<p+a^cos z )e - ir'</>-i™'si»<f'-iT'x- iT,,‘sinXd<p d%, (57)

t/o 0̂
where r l  i r 2 ‘

The expression (57) is equal to the sum of six terms each consisting of the product
of two definite integrals of the type

/i2;r
constant x ~  \  (cos <p)v iT°l sin 4> d <p, (58)

where p is equal to 0, 1 or 2. This integral will be seen to be equal to a sum of
Bessel coefficients of argument rwj and of different orders, each multiplied by a
factor. Performing the necessary calculations, making use of (34), and contracting
terms by means of (35) and of

^ ( J » - l ( / 0 )  —  Jn + l(p) )  =  d p ^ n^  “  Snip))

we get the final result
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X I / ► iu-i;s
Ai-j. t, =  — (<Ta J tj (rdTj) JVj (r<r2) — ö-j J 1 T1(r<T1) J r J(r<72)) . (59)

As regards the term A0 „ in the expansion (54) for z, we have obviously
7Tfè2 7T

■̂00 — --J*)-)- ; ((Ti COS p — <72 COŜ ) (1 +  ®1 cos <!> 4~ av cos^) dp d%

=
li = -■ f2)"

The expansion for z in a trigonometrie series therefore assumes the form

z =  /,) +  * j , 2’i | f f 1JT1(tw1) / r , ( w 1) — <r1Jr'r1(rff1)Jr1(w1) |e 2,r<<r>,,l‘ + T»"*>, (60)

where the summation is to be extended over all positive and negative entire values
of z1 and r2, with exception of the combination z1 =  0, r2 =  0. For the combina
tions for which r =  tx -(- r2 == 0 the expression for the coefficients becomes unde
fined, but by introducing r =  0 in (57) it is easily seen that the coefficients in
question are equal to zero.

In order now to find the trigonometric series representing the displacement
of the electron in the direction of the x-axis and of the p-axis, we might follow
the procedure indicated in § 1, but the calculations may be made shorter, just as
in § 2, if we observe that the z-axis is an axis of symmetry of the system, as a
consequence of which the expansion for x  -f- ip will only contain terms of the type
Cc2*<(r,«, + r.w, + «%) _ jn fact; jf we note that

d p
Ml Lj cos p

X
d l

M2 -|-L2 cos^

— z log
(Mi ^i)Cos^ +  i ^ s i n ^ |

— ilog

(Mj +  Lj) (Mj -f  Lx cos p)

I (Mg +  L2) cos %- +  iK  sin |  }

2 n (u>2 — w.

(M2 +  La) (M2 -f- L2 cos ’%/
the equations (51) (b) and (c) give

I(Mj 4- Lj) cos 4- i K  sin y  } { (M2 4- L2) cos ̂  4 - iK  sin j

2 1 2  ̂ 2 ® (Mj 4* Lx) (M2 4* L2) (Mx 4- Lx cos )̂ (M2 4~ L2 cos / )

so that, making use of (43), we have

(x 4~ iy)e27rî "* ~ w>) == « gip + - w.)

/ / »  1 r ^ ----4  ...
=  e

+ +  ^1) cos Y  +  s i l ly  1 I  (Mt - f  L2) cos — iK  sin — J
^ 4 - Lx) (M2 4- L2)
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The last expression contains only <p and y  and is therefore a function of wx and w2
only, which allows of an expansion of the form

where the summation is to be extended over all positive and negative entire values
of r, and r2, and where the coefficients fi according to Fourier’s theorem are equal to

We will now transform this expression into an integral which is taken over <f> and
y, making use of the expression (56) for the functional determinant of the trans
formation. At the same time we will introduce the abbreviations

which allow us to express the quantities K, M„ Lv M2, L2, a1 and a2 in the form

K =  xPrs, Mx — xP(tl +  J,8), Lx — 2xP t1t13, a, =  Cltl3, \
M a —  z / 3 («g +  «33), L2 —  2  a2 =  e2e2S. f

In this way we get, denoting zt -j- r2 +  1 by r,

=  (— l)r —  a e**h +  (i23e iXI, +  i2e - M )  (1 +  q q3 cos <P +  ‘s ‘as cos*) ’

We see that the last expression becomes equal to the sum of a number of terms
each consisting of the product of two integrals of the type (58), where p is equal
to 0 or 1. Making use of formula (34), we may write each of these integrals as a
sum of Bessel coefficients of the same argument and of different orders. By means
of elementary calculations and making use of (35), we get in Jhis way for the B s
the final expression

f ir ,, r ,  = = -------- ” '|q3*23 ’̂ ' , ( t,<T1)«/t, ( t'0,2) q !2 «/r, + 1 (r<T,) Jrt +  1 ( r ff3) J • (®**)

This expression becomes indefinite for z =  0, but by introducing this value of z
directly in (64), we easily find

(x-\- iy)e2**(».-«’») =  2'f i r , , e27:4<r‘ + T« + 1 (61)

(M, +  Lx) cos
+  (M2 +  L2)

|  (M, +  Lx) cos ̂  -f iK sin J •
• { (M, +  L2) c o s |-  +  iK sin + r.+ i^ d u q dw2.

/  h  4 ~ f;

f ir ,, r, =  ( —  1 ) |/(M1+ L 1)(M2+ £ 2) M2 -f- L,M, +  L

. (1 -|- ax cos <!> - f  a2 cos y)e~*<T> + 4>~iTa'sin 4>~1 <T> + %>X-  Xdipdy
>2 itrtl jt

. e—Uxl + 1lt)<f>—lraii\-a<li — i(r, + 1lt)X—izaiAtiXd<pdy.
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— i o 2  x ̂ * i *83 ’ ®o, — ï g £2 {is * (66)

while for all other combinations of and r2 for which r =  rx-f-r2 +  l =  0 the
coefficients become zero. From (61), (65) and (66) we see therefore that the expan
sion of x  -j- iy in a trigonometric series may be written in the form

3
x - \- iy  =  2 *fs0i*28e2;rlt“ Wl + w,) +  {a{i8e2ir<(“ w, + w'*))

xP ^^Cl3 <23 JtJ {~&l) Jt, (ztr2) *1 *2 *̂rl + 1 (rffl) *̂r2 -f-1 (^ 2) 1 g 2 7Ti (Tj W\ +  Tgtfg -j- Wt)
(67)

where the summation is to be extended oyer all positive and negative entire values
of the r’s, with the exception of such combinations for which z — z, 7}- r8 -f- 1 =  0.

From (60) and (67) we obtain directly the expressions for z and x  -f- iy as
functions of the time by introducing for the w’s their expressions as linear func
tions of the time. According to (12) we have

wi — ®i  ̂+  î> w2 — ö>21 -j- <j2, w3 =  w3t-\-d3, (68)
where by means of the expression (46) for a, the w’s are, with neglect of small
quantities proportional to F2, found to be equal to

wi — ®> =  ««a — oF,
4jr2JW m  , 3 F ( / ,—/ 2) 3FI \ (69)

“• ------- P----+  “8i*Nem ’ ~  bF jSS’ j
while d„ d2 and S3 are constants.

Introducing (68) in (60) apd (67), and taking for simplicity dv d3 and 83 equal
to zero, we get

z = 3 1
2 — A) +  xI 2^ ~ { a2Jzi(z<T^)J'Tt(Ta3) — <rl J'T l (r<r2)}e27ri(r‘w' + T«<«•)*,

3
x  +  iy =  n xP (q<2 3 + <«»)t)

xP 2 — (q3 <23 Jt,{zô ) Jt, (za2) — q <2 Jt, + 1 (zô Jt, +1 (r<r2)} e2ni (T,a'1 + T,<U, +1"*) f.

(70)

It would be easy to write the series for z as a series of cosine terms with real
coefficients, but the form given above is more symmetrical. The formulae show
that the motion of the electron may be regarded as a superposition of an infinite
number of linear harmonic vibrations parallel to the direction of the electric force
with frequencies |r1tt*1-4-_r2a»,|, and of an infinite number of circular harmonic
rotations perpendicular to this direction and with frequencies {7,(0, z2(o2 -j- w3|. It
may once more be remembered that, in the above expressions for the amplitudes
of these frequencies, small quantities proportional to F and to higher powers of
F are neglected.

/
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From (69) we see that, if we neglect small quantities proportional to F3, there
exists a homogeneous linear relation with entire coefficients of the type (13) between
the (u’s, viz. fitj fiij — =  0, so that, as far as small quantities proportional to
F are  concerned, the mechanical system under consideration appears as degene ra t e
(see page 8) and the motion of the electron can be represented by trigonometric
series containing only two fundamental frequencies, for instance co3 and oF* Of these
two frequencies <o3 differs only little from the frequency of revolution of the electron
in a simple Keplerian ellipse corresponding to the motion for F =  0 and for which
the values of the Fs are the same, while oF, which is a small quantity proportional
to F, may be described as a- small frequency which is impressed on the motion of
the electron due to the perturbing influence of the external electric field.

It may be of interest to point out how it can be seen from the formulae (69)
and (70) in which manner this small frequency plays a part in the deviations of
the motion of the electron from a periodic Keplerian motion. First of all it will be
seen that the motion of the electron differs at any moment only by small quantities
proportional to F  from a Keplerian ellipse with major axis xP. Further, taking
mean values, over a time interval extending from t' to t' -|- ««, on both sides of
the equations (70), we get, denoting the mean values of x, y and z in this time
interval by f, rj, and C respectively, and neglecting small terms proportional to F,

C -  I

£ + i V =  2 x P ( t1tiae ~ i,ci0Ft - ( -  tac13eii:i0Ft),
(71)

where t denotes some moment within the mentioned time interval. Now the quan
tities £, rj and C have a simple meaning. In fact, since the motion which the elec
tron performs in the time intèrval t - * t  + 1 /», differs from the motion in a Keplerian
ellipse with major axis xP  only by small quantities proportional to F, the quantities
£, ij and £may with this approximation be said to represent the coordinates of the
mean position of the electron in the Keplerian ellipse which it at any moment may
be considered to describe. From symmetry it is seen that this mean position,
which may be called the “electrical centre” of the orbit, lies at a point on the
major axis, and a simple calculation shows that this point lies at a distance */»ea
from the nucleus if a denotes the major axis and s the eccentricity.1 *) The formulae
(71) therefore show that the Keplerian ellipse which the electron at any moment
may be considered to describe varies, under the influence of the electric field, its
shape and position in such a way that its electrical centre performs an elliptical
harmonic vibration in a plane perpendicular to the z-axis round the point in which
this plane cuts the z-axis. The major axis and the minor axis of the ellipse which
the electrical centre describes are equal to 3 x P t2ils) and 3xP\r1ii3 ‘ahsl respec-

i) This result follows at once from formula (39) on page 15. Compare also N. Bohr, loc. cit..
Part II, page 70.
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tively, while the frequency of revolution is proportional to the intensity of the field
and equal to Of. The variation of the plane of the orbit during this motion of the
electrical centre may be found by observing that the angular momentum of the
electron round the z-axis will remain constant, from which it follows that the area
of the projection of the orbit on the x-y-plane remains constant. It is easily seen
that the plane of the orbit is perpendicular to the plane through the major axis
and the z-axis every time the electrical centre passes one of the apses of the ellipse
which it describes. In Part II of Bohr’s paper the appearance of the small frequency
0/. has been discussed from the point of view of the theory of perturbations.

For the sake of the latter applications it will be of interest to examine the
special form which the equations (70) assume when one of the quantities Ix and I2
becomes equal to zero. If for instance we assume I2 =  0, it will be seen that the
fundamental frequency o>2 does not appear at all in the motion of the electron. In
fact, oj2 denotes the mean frequency with which the electron oscillates between two
paraboloids of revolution which are characterised by the roots of the integrand in
the expression for I2 given by (45). For I2 =  0 these roots coincide, so that the
amplitude of these oscillations has become equal to zero, which means that the
frequency w2 is not at all present in the motion. Introducing the value I2 =  0 in the
equations (70) we have, since in this case, as seen from (62), <t2 =  c2 =  0, L. =» 1,
‘is — e3> ai =  h and since J M  =  1>

x + i y

^  x l — P 2’~  J r(a1) cos 27rrtw1t,

3~ x P t l i3e2 **' <- <u* + "•> *— x P  2' — «IT_ ! (rtj) e2ni (T^ «•»+«<,>*,
(72)

where the summations are to be extended over all entire values of r except r =  0.
The equations (71) representing the motion of the electrical centre become

C =  f - f - i iy  ~= ^ x P e l tge ‘* 2n(9Pt ,

showing that the electrical centre will move in a circle and that the Keplerian
ellipse which the electron at any moment^ may be considered to describe possesses

a constant eccentricity equal to =  The plane of the orbit remains perpen
dicular to the plane through the major axis and the z-axis, while it rotates uniformly
round the latter axis with frequency oF. The projection of the orbit on the x-y-plane
is at any moment a circle while the cosine of the angle between the plane of the
orbit and the z-axis is equal to the eccentricity tv It will be observed that in the
present simple case the equations (72) could have been obtained from the expression
(39) for the motion of an electron in a Keplerian ellipse by imagining the orbit
placed in a position relative to the z-axis as that just described, and by giving it a
uniform rotation of frequency oP round this axis, applying the same method of
calculation as that followed on page 15.

D. K, L>. Vidensk. S elsk.Skr., naturvidelink, og m athem . Afd., 8. Rsekke, 111, 3 . 40
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§ 4. Hydrogen atom under the influence of a weak homogeneous electric
field of force.

In this section we shall consider the mechanical prpblem of the motion of an
electron which is subject to the attraction of a positive nucleus of infinite mass as
well as to the influence of a weak homogeneous electric field of force, and which moves
according to the laws of relativistic mechanics. The general case of this problem
in which the intensity of the electric force may have any value so that the devia
tions of the motion of the electron from a simple Keplerian motion, due to the
influence of the relativity modifications in the laws of mechanics, must be considered
as being of the same order of magnitude as those due to the electric field will be
treated in a later paper which deals with the general problem of the effect of an
electric field on the fine structure of the hydrogen lines. In this section we will
only consider the special case in which the electric field is so weak that its influ
ence on the motion of the electron is small compared with the influence which is
due to the relativity modifications.

Let the nucleus be situated at the origin of a system of rectangular Cartesian
coordinates x, y, z, the z-axis of which is taken parallel to the direction of the
electric force. The mass and charge of the electron will again be denoted by m
and - e  respectively and the charge of the nucleus by Ne, while the intensity of the
electric field will be denoted by F. Let further X be a small quantity of the same
order of magnitude as the square of the ratio between the velocity of the electron
and the velocity of light, and f  a small quantity of the same order of magnitude
as the ratio between eF and the forces which the nucleus exerts on the electron. We
shall according to the above assume that f  is s ma l l  c o mp a r e d  to X, and it will
be our purpose to solve the equations of motion retaining only small quantities of
the same order as X and f/x, and neglecting all quantities of higher order of magni
tude such as f, X3 etc. in the expressions for the coordinates x, y, z of the electron
as functions of the time.

Let us introduce polar coordinates r, <p, which in the well known way are
connected with x, y, z by the formulae

z =  r cos {X, * - f  iy =  rsinde'P .

The velocity v of the electron will then be given by v* =  (*■/<«)* + +
r2 sin2 # (fy/dt)2- Introducing the notation y =  (1 — •’Ve*)-1/* where c is the velocity
of light, the canonically conjugated momenta of r, #, <p are given by

Pr =  mï % ’ =  p<p =  myr*

and the equations of motion will be of the canonical form (2) where the energy E,
expressed as a function of the coordinates and momenta, will be given by )

>) Compare for instance A. Sommerfeld, Phys. Zeitschr. XVII, p. 506 (1916). See also § 2, page 11.
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E — me8 {>+ 1m8c8
,2  .  .

9>)f* L i

Proceeding in the same way as in § 2 and in § 3 we get
partial differential equation

Nea----------f- Fer cos &.

for the Hamilton Jacobi

«j =  me8 1 ( (dS \ 8 1 (dS \ 8 1 /ÖS\ 8\IV,
m8c8\ \ ö r /  ^~r8\ör /  ' r8sin2# l $ r /  I f 1 Ne8—  -f- Fer cos §, (73)

where S denotes a function of r, <p. This equation does not allow of separation
of variables, but we will solve the equations of motion by method of approximation,
by solving them first for F =  0 and after that considering the perturbing influence
which is due to the electric force. For F =  0, however, the problem is the same
as that which we have treated in § 2 with the only difference that this time we
consider the motion of the electron in space, and equation (73) is seen to allow of
separation of variables. In fact, we may put

Ö S    i / c v - \  ^ S  _  1 /  a a* Ö S
8 r  ~  a * ~ sin8"#’ T<p ~  ^

where F(r) has the same signification as in (22). We may now introduce the quan
tities Jp Jg, I3:

/ i = \ l /F 0 0 d r ,  /* =  \ | / a | 4  =  (75)

where in the first and in the second integral the integration is to be extended twice
between the roots of the integrand. It is easily seen that h/2n is equal to the angular
momentum of the electron round the z-axis, while (/, +  /,)/2* is equal to the total
angular momentum round the nucleus and plays the same part as the quantity It/2*
in § 2. The plane in which the motion takes place makes an angle with the a;-y-plane
the cosine of which is equal to A

h  +  7S The energy ax of the system expressed as
a function of the Ts contains l2 and I3 only in the combination It 13 and is with
neglect of small quantities of the same order as /I8 given by the expression (24) in
§ 2, with the only difference that I3 is replaced by I2 -|- Js. This gives

«X
2 z 8W3et m / /7T Ne*

c )*(■ V 1 ƒ(/*+ƒ») (76)

where I is written as an abbreviation for Ix -f- / 2 -f-13. By means of (75) also a2
d S d S Ö S "and a3 may be expressed as functions of the I’s, so that — , —  and ^  mav beor o a 8<p J

expressed as functions of the I’s and of r, & and <p respectively. Introducing the
expressions thus obtained in

(*r c* # r*
S (r, 8, (s, ƒ j, /g, I3

dr 8» dd- f ' dS
Up

40 ’
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which is a complete solution of equation (73) for F =  0, we may according to § 1
calculate the variables which are canonically conjugated to tv I2, I3 by means of
the formulae

The coordinates and momenta of the electron considered as functions of the Fs
and w’s are periodic in each of the m’s with period 1. The rectangular coordinates
x, y, z of the electron may therefore be expressed by trigonometric series of the
form 2 'C tv t„  Tt e 2 n i (T tW i + T,w, + T,w,), where the coefficients Crv r„ r3 depend on the Fs
only and where the summation is to be extended over all positive and negative
entire values of the r’s. The. values of the C’s may be calculated by means of the
general method exposed in § 1. We will, however, not enter on these calculations
because they are entirely analogous to those performed in § 2 and in § 3 and be
cause the result may be directly deduced from formula (42). They give that the
trigonometric series for z and x  -j- iy are of the form

z =  I'D,, cos 2;r (r — 1 iv1 +  w2), I ^
a; _!_ jy =  2D'r e2 l z i — 2D'le27Tifr*"1 -  2 «*+ «*>, j

where the summations are to be extended over all positive and negative entire
values of r, and where the coefficients DT, DT, Dr with neglect of small quantities
of the same order of X are given by the expressions

DT =  — xP  { ( l +  e')Jr-i(« )  — (1— *')Jr+l<«)}v D0 =  | epx1%
\  Q

Dt =  — ^-{(1 - f  e')Jr-x(re) — (1 — s')./T+i (re) j ,  D’0 =  j e ( l  - f  ( i ' ) x I \

Dt xP  i ^ j~ - j ( l  — *')JT-i{«) — (1 +  e')^r+i(re)|, Ö" ,u')x^a>

(78)

where
, ■ ƒ ,+ /,

I ’ c =  l/l — e'3,

V- j  _i_ j  ’i2 1 i3
p = V T ^ r ,

(79)

while Jp{x) represents the value of the Bessel coefficient of argument x  and of order
p. The formulae (77) and (78) are actually seen to coincide with the formulae (42),
deduced in connection with the problem of the influence of a small magnetic force
parallel to the z-axis, if in these formulae we replace <wxf, a>i t, a>3t by wv w2, w.t
respectively. A simple consideration would show that this is just what must be expected.

As long as we assume that F =  0, i. e. that we have to do with the system
in its undisturbed state, the motion of the electron is directly given by (77) if we
consider the Fs as constants and for wv wv w3 substitute their expressions as lineal
functions of the time by means of the formulae
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wk =  Oik t - f -  dk, dWje
dt

dE °
S i k ’

(* — ’ 1, 2, 3) (80)

where we have denoted by E° the energy of the undisturbed system expressed as
a function of the 7’s, which is given by the expression (76) for av Since this ex
pression contains I2 and I3 only in the combination 7a + 13, <o2 will be equal to <u3,
which means that the system is degenerate as it was already mentioned in § 2. If
we assume, however, that F is no lopger equal to zero the motion of the system
w'ill be perturbed; the coordinates x, y, z of the electron may still be expressed as
a function of the 7’s and the in’s by means of (77), but the 7’s will no more be
constant during the motion and the in’s will no more be linear functions of the
time. The rates of variation with the time of the 7’s and m’s will according to
Jacobi’s fundamental theorem, mentioned in § 1, be represented by a set of canoni
cal equations

dh
dt

ÖE dwk dE ,
dw i’ dt dlk ’ 1, 2, 3) (81)

where E is the total energy of the perturbed system expressed as a function of the
7’s and in’s. We may write E  in the form

E =  E° -|- E 1,

where E° is the energy which the system would possess if the perturbing forces
vanished suddenly and which, as mentioned, depends on the 7’s only, being given
by the expression (76) for av  while E 1 is the so called “perturbing potential”, i. e.
that part of the potential energy of the system which is due to the perturbing
force, and which corresponds to the term Fer cos # in (73). By means of (77) we
find for E 1, expressed as a function of the 7’s and w’s,

E x =  Fez =  FeZDr cos 2x{t— 1 w1 -f- w^), (82)

where the quantities DT with neglect of small quantities of the order X are given
by (78).

Owing to the fact that the trigonometric series for E l does not contain a term
which is independent of the w’s, we may simply proceed in the calculation of the
perturbations in the following way1), by putting

4  =  7£-f 7* , wk =  w°k +  w \ , (* = 1 ,  2,3) (83)

where I°k, w°k represent the solutions of the equations (81) for F =  0, and where
Ik and w\ contain only small quantities proportional to F and to higher powers of
F. For ik and wk we have

*) It may be observed that, by applying to the quantities 7* and W k  a so called infinitesimal
contact transformation, the results of the following considerations contained in the formulae (85) and
(86) might have been deduced in a way which, from an analytical point of view, is more elegant. Com
pare J. M Burgers, Het atoommodel van Rutlierford-Bohr (Haarlem, 1918), where a treatment of this
kind has been used in the discussion of a number of problems concerning perturbed atomic motions.
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I n  constant ,
t d E ° \

=  o>ict -f- 8k, <Ok — y~ö~jkJ > =  1, 2, 3) (84)

where we have denoted
Iv  I2, I3 the values l\,
first consider

* Q .
7°

the value of -j-=-, obtained by introducing for
J

7® respectively. In order to find the 71’s and u»l ’s let us
the first three of the equations (81). As E° does not depend on the

w’s they may be written in the form

dti
dt

8E l
8wk ' (k =  1, 2, 3)

The right sides of these equations are, as seen from (82), functions of the 7’s and
w’s, but if in the calculation of the 7 ̂ s we neglect second and higher powers of F
we may for the 7’s and w’s introduce the values for l \  and w°k given by (84), so

that the differential coefficients become equal to known functions of the time.
Neglecting for simplicity, here as well as in the following, the constants dk appearing
in (84), this gives

J  71 ______
=  2n eF I(x— \)D°r s \n 2 n (T -

j / i  ____
2 iteF2 D°t sin 2 it{t— l ^  +  cojt,

where the quantities Dar denote the expressions obtained by replacing in the quan
tities Dt the 7’s by the 7°’s. These equations may be directly integrated and give,
if the arbitrary constants are chosen such that in the expressions for the P ’s no
constant terms appear,

7* =  — eF2  A L - ^ —— cos 2 it (r — 1 +  o<2) t ,
T —  l W j  +  fflj

n®
1\ — — eF 2  - -----

T ----1 COt

II o.

cos 2 n (r — 1 (o1 -f- a»3) t ,
(85)

Among the terms on the right side of each of these equations the term correspond
ing to t  =  0 is much larger than the other terms because for r — 0 the denomi
nator (r— i)<o1-\-w2 becomes equal to — +  m2, and this quantity, which will
be denoted by o, is a small quantity of the order L In fact, from (84) and (76) we have

o =  — +  co2 (dE°\ L /8E°) 2it2N3ei m /nNei\ i 4
\ J h ) '0~  7®3 I c j 7° (7® -(- 7®)2

(86)

The term in (85) corresponding to r =  0 becomes therefore of the order fjx, and
we may according to what has been said in the beginning of this section neglect
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the other terms in (85) which are of the order f, so that we get

I\ — D°eF— cos2)r(-o ' <o,)t

=  — eF —2 cos 2 ?r (— w1 w2) t
I\ =  0.

(87)

It is seen that -(-1\ — 0 as far as small quantities of the order fix are concerned.
As a consequence of this the value of the “inner” energy E°, which during the
perturbations will perform small oscillations, will yet remain constant as far as
small quantities of this order are concerned. That this must be the case might have
been seen directly from general considerations. It is further easily seen by means of (85)
that the amplitudes of the oscillations which Eu performs, will be small quantities of
the order f, but that the total energy E =  E°-\~Ei, which is constant during the motion,
will, as far as small quantities of the order f  are concerned, depend on I°lt I°3 and
*1 only, in a way which is exactly the same as that in which E° depends on Jv
Iv  / 3, expressed by (76) if we take ak =  E°.

We will now calculate expressions for the w’s by means of the last three of
the equations (81). They give, if we neglect small quantities proportional to F3,

d(w°k +  w\)  =  d(E° +  E1) 8E°  ■ d E 1 _  / 8 EU\ d2E°  i d E l
dt dh  d i k + J i ;  — \ J i ; ) + ? d U T rI r ^  d l k ’

where ) #has the same significations as in (84) and where the summation is

be extended over r — 1, 2, 3. As ——  == cok =  > this equation gives

d w l _ y S3E°
dt r d l kd l / r

d E 1 .
TTk • <* =  1’ 2>3)

to

It is seen that the terms on the right side are functions of the Z’s and the u>’s,
which may be written as trigonometric series all terms of which contain the factor
F. In these series we may again replace the Fs and w’s by the I°’s and w°’s, given
by (84) as functions of the time, and with reference to the corresponding calculation
for the I1 s it is only necessary to keep the periodic terms of frequency— == 0.
This gives, making use of the fact that I[ 4- I] as given by (87) is equal to zero,
dwl _  „da»r .1 . „ÖDt „ —,___
dt r d l \  r cos (r — 1 <wi + 0*2)/

— a)*) r d n°
II +  eFd j f cos 2}r( - a,l +  «»*) t

eFI — 0̂ DA. 8DI
d ll  0 ^  e i l ) cos2f f (— =  ep 0 — - /^ s ] c o s 2 w ( —

/  d l k \  0 / *) I'

Integrating and choosing the integration constants such that the w1 ’s do not contain
constant terms, we get
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w \  =  { l ? )  ®*n ^  =  ! ’ 2, 3) (88)

The frequency o given by (86) is easily seen to represent the frequency of the slow
rotation of the Keplerian orbit which the electron at any moment may be considered
to describe (compare page 10). The appearance of this small frequency o in the
denominators in the expressions on the right side of (87) and (88) may physically
be interpreted by observing that the deviation of the undisturbed orbit from a perio
dic orbit, which is characterised by this frequency, is small, so that even a small
external force is sufficient to produce large changes in the character of these deviations.

In order to find now for the perturbed motion the expressions for the coordi
nates x, y, z of the electron as a function of the time, with the approximation
mentioned on page 26, we shall put

x  =  x° +  x l , y =  y° +  y\i z =  z0 +  zl , (89)

where x°, y° and z° represent the values of these functions for F s= 0, while x l, y1
and z1 are small quantities of the order f/X. From (77) and (84) we find for *°, yw
and z° V- -J rXJ u '-' ‘V - t ‘ ' • ' -

z° =  £D& cos 2 jr(r — 1? « j - f  * • 1
x« 4- iy° =  2 Dt' e ^ ^ W -"»+ 2’Z)?"e2*<tr+ 1»,-r2o», + o»J«. J

The quantities x 1, y1 and z1 will be given by
8z
dwk1 -

8(x +  iy)\
8wk ' 0

u>k,

(91)

where the summations are to be extended over k  — 1, 2, 3 and where the I  ^ and
w1 ’s are the functions of t given by (87) and (88), ^rhile the quantities
(g(a^ + Itf)) j are functions of t obtained by first differentiating the
expressions7 °for z and x  +  iy given by (77), and by replacing in the expressions thus
obtained the I ’s by the constants l\ and the id’s by wk =  (okt.

It is seen from (91) that for zl and cc1 +  iy ‘ we obtain expressions in the form
of trigonometric series. While in the series for z° the frequencies corresponding to
the single terms were of the form | r — 1 <ux +  (ot | they will for z1 be of the form
i (r — 1 wj +  o>2) ±  (— a*i +  (»2) I» so that there appear, owing to the perturbing force,
new frequencies in the motion of the electron parallel to the direction of the electric
force, the amplitudes of which are of the order fix, and the frequencies of which
are of the form awv a — 2 +  2 oj.2 and a +  2 o>1 — 2 wv where a is a positive integer.
As regards the motion perpendicular to the direction of the perturbing field, .we see
that, while x° +  iy° contained only terms of frequencies 1 r — 1 w1 +  a>„ j and
jT + la i j  — 2«>2 +  w»|, x 1 +  iy1 contains terms of frequencies | (r — 1 a>s)
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i  (— wi +  ot-i) I and | (r -f- 1 — 2 w2 -f- o>3) -± (— a>j +  ots) |» so that in this motion
there appear new frequencies of the form a — 2 a», +  w2 +  a>3, a + ~2<a1 — w2 — m3,
awi—-ö>2-\-a)3, am1-{-a>2— oj3, a-\-2o)i —3iol -\-ai3 and a ~ 2 (o 1Jr3(oi —co3, where a
is again a positive integer. Since the quantities at2 and w3 appearing in the cal
culations do not differ from each other as far as small quantities proportional to F
are concerned, we see that the motion of the perturbed system under consideration
with the approximation in question may still be- represented as a sum of harmonic
vibrations the frequencies of which are built up of only two fundamental frequen-
cies tu1 and <o2. In the undisturbed system appeared only frequencies a — 1 (ox -j- a>2,
a -f- 1'a^ — a>2; in the perturbed system appear the new frequencies a — 2(u1Jr 2(o2,
aa>i, a - f  2 «ij — 2<av  The new frequencies are seen to be equal to the sum or to
the difference of two of the frequencies appearing in the motion of the undisturbed
system, and correspond to the sum-tones and difference-tones in acoustics. [That to
the first approximation only sums and differences and not other linear combinations
of the original frequencies appear, lies in the circumstance that the perturbing field
is homogeneous, so that its potential is a linear function of the Cartesian coordinates
of the electron.1) In fact, as a consequence of this the quanlities l \  and w\ appearing
in (91) contain according to (81) only frequencies which appear also in the undis
turbed motion of the electron. The same is the case for the quantities
in (91), so that the new frequencies in the perturbed motion can only be sums or
differences of frequencies occurring in the undisturbed motion.]

Although with the approximation mentioned co2 and a>3 do not differ from each
other, the fact that they are not identical will nevertheless be essential for the des
cription of the motion over a time interval of the same order as !/ƒ> (compare note
on page 79). For sake of the applications in § 7 We shall therefore keep <o2 and a/s
separated in the following formulae, what, as it will be discussed more closely in the
paper mentioned on page 26, will be justified on account of the special character of
the system under consideration.

Let us now proceed to the explicit calculation of the trigonometric series for
z1 and for a:1 +  iyl. For z1 we get from (91), (88)* (87) and (77), omitting in the
calculations for the sake of simplicity, here as well as in the following, the index (°)
in 1°, ƒ", 7J and in Ö?,

z 1 = v ldDr 8 Dt\ „  „ ,-----
■" (  Q j  ' q j  J  cos 2 n  (t — 1 co1 -|- a>a)£  cos 2 jt(— at1 c

—  2 o D t  ( r  -  1'y^r sin 2 » (r 1 a » l  w t )  t  sin 2 w 1

D° + oD* ( f )cos 2 7T (r — 2 oĵ  “j~ 2 t

. y
cos 2n T(o1t,

*) Compare Bohr, loc.'cit. Part f, p. 36.
D, K. D. Videusk. Selsk. Skr., naturvidensk. og m athem . Afd., 8. Rtekke, III. S.

(92)
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where the summations are to be extended over all positive and negative entire
values of r  including zero. Now from (78) and (86) we find by means of elementary
calculations, omitting, here as well as in the following, for the sake of simplicity
the argument re of the Bessel coefficients,

8 Dt 8 Dt =  XI  {(1 +  e') (1 -  re ' V r - i  +  (1 -  •') U +  « ' 2) Jr+,}
2 re2

x i t \ v A

8 tD , 3 . l + 4 e 2
=  2 xI f t ~

2r//e'

° (

e') Jr_i — (1 — e') Jr+i),

8

(93)

3  T'
=  2 xI fiee'

Introducing these values in (92) we find after some simple reductions

z1 —
3 eFx*P y  M

2 ree'

. _j_ e') ((l 4 -£') (3 c' —2) — re' (5 — 3 e '2)) Jr_i +  (1 — e') ((1 — e') (3 e' +  2) +  re' (5 — 3 e '2)) Jr+i} •

• COS 2 JT (r —  2 ü>x +  2 W2) t

_ V  {(e>2 +  (1 +  e') (2 +  5 re> 2)) J r - i  +  (e>2 -  (1 ■— «') (2 +  5 re>2»  Jr+i} cos 2 jr TOl f
2 re

The expressions for the coefficients become undefined for r  — 0, but by directly
introducing r  =  0 in (92) we find that the coefficient to cos 2 jt (— 2 + ^ 2 ^ )  M s^qual
to 1 while the Constant term in the second series becomes equal to •
Further it will be observed that in the second series the terms corresponding to
values of r, which are numerically equal but of opposite sign, may be taken
together, so that we finally get for z1

z1 = 3 eF xi 1° *
4o

^ tJ~ cos 2 7r(— 2 w1 +  2at2) t +  2'2^ee’'/

. {(1+  s') ((1+ e') (3e'—2) — re' (5—3 e' *)) J r - i  (re) +  (1— e') ((1 — e') (3 e’+  2) +  re' (5 3 e '2)) Jr+i (re)} •

•co s2 ;r(r— 2 at1-\-2a>^)t
3(— e2 +  e' V 2) 1 2’— {(2 +  5«2 e '2 r) J r-i (re) +  (— 2 +  5//2 e '2 r) Jr+i (re)} cos 2jtTa»1t

e' re'

(94)

where
/o =  / ;  +  ƒ” +  ƒ», e' =  e = 1 /1  — e '2,

■* 2 I 8n + i v
n =  i / r ^ ' 8,

and where in the first series the summation is to be extended over all positive and
negative entire values of r  except r  =  0, and in the second series only over all
positive entire values of r except r =  0.

By a calculation quite analogous to that for z1 we may from (91), (88), (87)
and (77) deduce similar expressions for x x +  iyl. Thus we find
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From (78) we obtain

dT[  J =  ~ x I l ^ T {(! +  e') (! — « ' 2) (1 — e’) (1 -|- r e '2) Jr+i} —

* ^ 4 r * * ^  7 -̂ £,)^r_i — (1  — e')Jr+i},

öDr <9 DL 1 _ „ ' ,
8Ti ~ d l l ^ x I  ' l H i ) ( 1 -  re' *> * “ » + (1 +  Ê') <* +  re' *> * + 1} +

+  * 1 4~ ?  {(1 «') «k-l — (1 +  £') Jr+i},

2 * « V

By means of these relations and of (93), (95) may be reduced to

(95)

, . . , 3 eFxaIoi
f + ' O  4o

+  2~g T r t« ’‘ ^ (1 +  *'> ft* +  *"> <3e' -  2) ~  ">'(5 -  3 s '1)) A - i ( n )

+  (1 -  e') ((1 — e') (3 e' - f  2) - f  re' (5 — 3 e '3)) Jr+i (re)} e2*‘ <o, + u,,+ w,)t

—  e 2 n i (2<w,- 3a>, +  <u,l(
2e'

“ 2  ((! ~  e') (d  -  s') (3e' +  2) -  re '(5 -  3 e'*)j Jr- 1 (re)

+  (1 +  s>) ((1 +  e') (3e' — 2) +  re '(5 — 3 e '3)) JT+1 (re)}e2*<(?+»«»-s<», + «»,)*

-j- 3^^ s '  <ya + tt*&)

rf* ^ r{ (3  -j- 5 r  (1 +  e'/u')) Jr-i(re) +  (3 — 5 r (1 — s'/u'))Jt+i(re)}e27r<<T“'»-°'*+«'»h t

4 r

3 ( 1 + / ) ^
2e'

g 2 7r i  (— 2 (dj +  fill +  fii|) <

(96)



320 36

where the summations are to be extended over all positive and negative entire
values of r except r =  0, and where Iu, s, s’, n and «' have the same signification
as in (94).

In the special case where the undisturbed orbit is circular, i. e. e — 1,. s =*= 0,
the formulae (94) and (96) assume the simple form

z> 3eFx21° (3 fi2 — fi2 cos 2 7T 2 cu2 t) ,

Xi _|_ iyl =  3e F ^ J ° ^ 3^ , c2n i i . Wt +  w,)t  _ M liV )e2T((m1+<0,)t ,
(97)

27Ti(—3o/« + OJ9)t J .

From this it is seen that in this case the frequency a»1, which did not appear in
the undisturbed motion, has also disappeared from the perturbed motion. Moreover
we learn from (97) that the perturbed motion, with the approximation involved in
this formula, takes place in a plane which rotates uniformly round the z-axis with
a frequency (— w2 -f- a>3). In this plane the perturbed motion is periodic with period
o)2 and may be represented by

c +  i ? =- - x F * e2»««*« - f  — ft (3 -  <2*«">.*),

where the ij-axis is perpendicular to the z-axis. The ‘‘centre of gravity” of the per
turbed orbit is seen to be displaced, under the influence of the electric field, to a

3eF x2J°8 • j-point on the f-axis situated at a distance — j — 3[i from the nucleus, in a direc
tion opposite to the direction of the componënt parallel to the faxis of the force
which the electric field exerts on the electron.

Another case in which the perturbed motion assumes a simple character is
that for which the plane of the undisturbed orbit is perpendicular to the direction
of the electric field (jtt' =  1, ju =  0). In this case (94) and (96) assume the form

3eFx*P* V ,  J e , ,  , , Jr+i(re)) cos 2 n Tw1t x l +  iyl (98)

We see that the frequency tu2 does not appear in the perturbed motion, and from a
comparison of (98) and (90) we learn that this motion may be described as a Kep-
lerian motion of frequency w1 in a plane which makes a small angle equal to
3cF*™ 2e w-th the a..y.p]ane> an(i which rotates with a frequency %

round the z-axis. The minor axis of the Keplerian ellipse is at any moment paral
lel to the a?-j/-plane, and the direction in which the electrical centre is “pushed”
out of the x-y-plane coincides with the direction of the force which the perturbing
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electric field exerts on the electron. In the paper mentioned in the beginning of
this section where the general problem, in which the perturbations due to the
electric force are not small compared to those due to the relativity modifications,
will be treated, it will be possible to elucidate the meaning and importance of the
simple character of the perturbations in the two special cases just described from a
general point of view.



P art II.
Discussion of the intensities of the components of the

hydrogen lines.

§ 5. Application of the quantum theory to the problem of the intensity of
spectral lines.

According to R u th e r fo r d ’s theory of atomic structure the atom of an element
consists of a number of electrons surrounding a positive nucleus, the mass of which
is very large compared with that of the electrons and the charge of which is equal
to Ne, where N is an integer and where —e denotes the charge of an electron. In
the simple case where the atom consists of a nucleus and one electron only, viz.
for a neutral hydrogen atom (N =  1), a helium atom which has lost one electron
(N =  2), a lithium atom which has lost two electrons (N =  3), etc. it has been
possible to develop methods which allow us to fix the stationary states, not only when
the atom is undisturbed by external influences, but also when it is exposed to the
influence of constant small external forces. In special cases, where the external field
is of such a character that the perturbed atom allows of separation of variables,
the stationary states will, according to the theory developed by Som m erfeld  and
by Epstein, be given by

h  =  nkh, (k =  1 , ---- s) (99)

where Ix, . . . .  Is are the quantities defined by (6), and where nl , . . . .  ns are a set
of positive integers, while h is P lanck 's constant1). For instance, in the case of a
hydrogen atom (positively charged helium atom, etc.) which is exposed to a homo
geneous electric field of force, the intensity of which is so large that its influence
on the motion of the electron is large, compared to that which is due to the modi
fications in the laws of Newtonian mechanics claimed by the theory of relativity, the
stationary states will be fixed by the conditions I t =  nxh, I2 =  n2h, I3 — n2h, where
I v  I2, I3 are the quantities defined by (45) in § 3. If, however, the system is degenerate

l) Compare P. E pstein , Ann. d. Phys. L., p. 489 (1916). A method which allows us to treat the
problem of the stationary states of a perturbed hydrogen atom in more general cases has been deve
loped in Part II of BoHn’s often mentioned paper. This theory will, from the point of view of introduc
tion of angle variables, be discussed in the paper mentioned in the beginning of § 4, in which it will
especially be applied to the problem of the simultaneous effect of the relativity modifications and of a
homogeneous electric field on the hydrogen spectrum, which problem cannot be treated by means of the
method of separation of variables.
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(see page 8), the number of conditions which fix the stationary states will be less than
the number of degrees of freedom and equal to the number of fundamental frequencies
characterising the motion, but just as in the case of a non-degenerate system these
conditions will be sufficient to fix the value of the total energy of the system, which is
determining for the frequencies of the spectral lines. If we, for instance, consider the
undisturbed hydrogen atom in space, we have to do with a system of three degrees
of freedom, the motion of which is characterised by two fundamental frequencies
only. Separation of variables is possible for any set of polar coordinates with the
centre at the nucleus, and three quantities Iv I2,13 may be defined by the formulae
(75). There will, however, only be two conditions characterising the stationary states,
viz. fj == nxh and I2 -f  /3 =  n2h (or, with the notation of § 2, =  /ijh, I2 =  n2h), in
intimate connection with the fact that the direction in space of the axis of the system
of coordinates used for the separation is arbitrary, so that the quantities I2 and I3
themselves naturally must remain undetermined in the stationary states. A very
important example ot a degenerate system is further afforded by a system consisting
of an electron and a nucleus, the motion of which is governed by Newtonian
mechanics; this system will in the following be denoted as the model of a “simpli
fied hydrogen atom”. The motion of this system is simply periodic and its statio
nary states will therefore be characterised by one condition only. Separation of
variables may be obtained in an infinite multitude of sets of coordinates, for in
stance in any set of polar coordinates and in any set of parabolic coordinates with
the nucleus at the centre. In both of these cases we obtain three quantities Iv I2,
/s, which coincide with the analogous quantities in §4, if we take the velocity of
light c infinitely large, and with the analogous quantities in § 3, if we take the
intensity of the electric force F equal to zero. The stationary states will in both
cases be fixed by the single condition /  =  Ix -f-12 -f- I3 =  nh, where n is a positive
integer, in intimate connection with the fact that, due to the arbitrariness in the
choice of the set of coordinates used for the separation, the values of Iv I2, I3
themselves must remain arbitrary in the stationary states. We therefore have directly
from the formulae (24) and (46) that the energy in the stationary states of the
simplified hydrogen atom is given by

2ni Ni ei m 2 ir3N*e*m
E  =  — • ; - ƒ « .  . • ------------n *~h * • ( 1 0 0 )

The frequency of revolution in these states will according to (11) be given by

dE 47T2 N2e4 m 4s-3 AT2e4m
a , - J ï =  ---- 1*—  ~  n*h* > (101)

while the major axis of the Keplerian ellipse described by the electron may be
easily shown to be equal to

9 _  P n3/ia
2s 3iVe3m 2'»r2Ne3m ‘ ‘ d02)
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The eccentricity of the orbit and the position of its plane in space are undetermined
in the stationary states.

In the deduction of the preceding formulae, the mass of the nucleus is
regarded as infinite compared with that ot the electron. If we take into account
that the mass of the nucleus is finite, the motion of the simplified hydrogen
atom will still be periodic, the electron and the nucleus describing both a
closed Keplerian orbit with their common centre of gravity at one of the foci,
and separation of variables may again be obtained for any set of polar coordi
nates as well as for any set of parabolic coordinates with this centre of gravity at the
centre. Performing the necessary calculations, it is easily found that the necessary
modifications to be introduced in the above formulae on account of the finite mass
of the nucleus are obtained by replacing, in the expressions for E and <o, the quantity
m bv =  — ™ ... where M represents the mass of the nucleus. The expres-

y M + m  1 +  m/jf’ F . . .  .
sion for the major axis of the orbit of the electron remains the same, while the
major axis of the orbit of the nucleus becomes equal to ' F°r lhe energy
in the nth stationary state of the simplified hydrogen atom we thus get

£  _  _  2 - 8N3e4,'g_, (103)

In the calculations in § 2, § 3 and § 4, the correction for the finite mass of
the nucleus has not been taken into account, but since the motion of the electron
treated in these sections shows only small deviations from the periodic Keplerian
motion just considered, it is on account of the small value of m/M obviously per
mitted to neglect this correction in the calculation of these deviations and of their
effect on the total energy in the stationary states.

From the above it is seen that the stationary states of a conditionally periodic
system are fixed by a number of conditions of the type Ik =  nkh. Calling this
number r, the total energy will be a function of. n1 }---- nr, and according to (1)
the frequency v of the radiation emitted during a transition between two stationary
states, which are characterised by n1 =  n ', . . . .  nr =  nr and n1 =  n,, . . . .  nr =  nr ,
respectively, will be given by

v — E(n\, . . . .  n'r) -  E « ,  . . . . < ) } .  (104)

The state of largest energy, characterised by n.'t, . . . .  n'r, will in the following be
denoted as the “initial state”, the state of smallest energy, characterised by n " ,---- n”,
as the “final state” of the transition in question. Formula (104) allows us to calculate
all possible values for the frequencies of the spectral lines which may be emitted
by the system. Thus, for the spectrum of the simplified hydrogen atom, we get from
(104) for the frequency v of the radiation emitted during a transition from an initial
state to a final state characterised by n' and n" respectively — such a transition
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will in the following be indicated by the symbol (n' -* n") —

v\T2 ( * 1 \ ,T 2n3ei m . . . . .
N  In "2 n '2) ’ K ~  (10j)

If we put N — 1, formula (105) represents, as shown by B o h r , to a high degree of
approximation the series spectrum of hydrogen. Further, if we put N =  2, we should
on the theory expect that (105) would represent the line spectrum which would be
emitted by a helium atom which has lost one electron. Certain lines observed by
P ic k er in g  in stellar spectra ((7-»4), (9-»4), . . .) ,  and by F o w l e r  in a vacuum tube
containing a mixture of hydrogen and helium ((4—> 3), (5—>3), . . . )  were assumed by
B o h r  to belong to this spectrum; and the theory was subsequently supported
by E vans’ observation of these lines in the spectrum of a tube filled with care
fully purified helium, which did not show the ordinary lines of the Balmer series
((3->2), (4->2), ...) , but which, in addition to the series observed by P ic k er in g

and by F o w l e r , showed a new series of lines lying close to the positions of the
Balmer lines and which on the theory correspond to (6-»4), (8->4), . . . l *).

In the theories given by S o m m e r fe l d  2) for the effect of the relativity modifica
tions, by E p s t e in 8) and by Sc h w a r z s c h il d 4) for the effect of a homogeneous electric
field, and by S o m m e r f e l d 5) and by D e b y e 6) for the effect of a homogeneous magnetic
field on the hydrogen lines, every stationary state of the simplified hydrogen atom
appears, so to speak, as split up in a number of stationary states in which the values
ot the total energy differ only little from the values given by (103). Thus, in the case
of an electric field acting on the atom, the stationary states are fixed, as mentioned
above, by three entire numbers nv n2, n3, and to a stationary state of the simpli
fied hydrogen atom characterised by a given value of n will “correspond” all
stationary states of the atom, perturbed by the electric field, for which nx -j- na -|- n3
is equal to this value. Also the three fundamental frequencies <wx, to2 and <o3,
characterising the motion of the perturbed atom, will only differ little from the
frequency of revolution w of the simplified hydrogen atom. The effect on the spec
trum, which will be due to the influence of one of the agencies mentioned, and
which may be calculated from (104), will consequently consist in the splitting up
of every hydrogen line in a number of components lying very near each other. As
well known, the above mentioned authors have in this way obtained results as
regards the frequencies of these components, which are in convincing agreement
with the experiments on the fine structure, the Stark effect and the Zeeman effect
of the hydrogen lines.

*) See E. J. Evans, Phil. Mag. XXIX, p. 284 (1915).
s) A. Som m erfeld , Ber. Akad. München, 1915, p. 459.
8) P. E pstein , Ann. d. Phys. L. p. 489 (1916).
*) K. Schwarzschild, Ber. Akad. Berlin, 1916, p. 548.
5) A. Som m erfeld , Phys. Zeitschr. XVII, p. 491 (1916).
°) P. D ebye, Phys. Zeitschr. XVII, p. 507 (1916).
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Relation (1) allows us to determine the frequency of the radiation emitted during
a transition, but gives no information as regards the i n t e n s i t y  and p o l a r i s a t i o n
of this radiation. Now the mechanism of the radiation process with which the
quantum theory operates is quite unknown and must, on account of the essential
discontinuity involved in relation (1), be entirely different from the radiation process
in ordinary electrodynamics, which is essentially continuous. Due to this discon
tinuous character, it has been necessary to introduce in the quantum theory the
notion of the “a-priori probability of spontaneous transition” between two stationary
states of an atomic system, which was used by E in s t e in  j) in his explanation of
the law of temperature radiation on the basis of the quantum theory. Imagine an
atomic system in one of its stationary states, and let us for the present assume that
it is uninfluenced by external radiations. Then the system must be assumed to possess
a tendency within a given time interval to pass spontaneously to one of the other
stationary states of the system for which the value of the total energy is smaller;
in analogy with the circumstance that on ordinary electrodynamics a vibrating
electron will emit radiation and loose energy independent of surrounding radiations.
A measure for this a-priori probability of spontaneous transition is given by the
quantity A’„, introduced by E in s t e in , which is defined in such a way that A'„dt
represents the probability that the atom in a stationary state characterised by one
dash (') will pass spontaneously within a time interval dt to another stationary
state which is characterised by two dashes (")• Besides the quantities A, E in s t e in

has introduced other quantities B which are defined in a corresponding way and
which measure the probability that a transition will take place due to the presence
of radiation in the surrounding space, in analogy with the circumstance that on
ordinary electrodynamics a vibrating electron will emit or absorb energy due to
the action of the electric and magnetic forces in the electromagnetic radiation
existing in the surrounding space. These probabilities of transition due to the
surrounding radiation will, however, be proportional to the density of this radiation;
as a consequence of this, it is easily seen that the value of A„ alone will be the
determinative factor for a calculation of the intensity with which the corresponding
spectral line will be emitted by the vacuum tube (or flame) in which the radiation
is excited. In fact, in the luminescent gas (or vapour) this radiation is excited by
impact of electrons, due to which one electron or several electrons are knocked out
of the atom, so that the atoms in their different stationary states will not be in
temperature equilibrium with the radiation present in the surrounding space; on
the contrary, the density of the latter radiation will be comparatively very small,
and the quantities B will not play any considerable part in the determination of
the intensity of the spectrum. If v is the frequency of the radiation emitted during
a certain transition, and a' the number of atoms present in the vacuum tube (or
flame) in the initial state, the energy of the radiation of frequency v emitted in
unit time will consequently be given by a’ xA'„xhv.

A. Einstein, Phys. Zeitschr. XVIII, p. 121 (1917).
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Although the radiation process in the quantum theory is so much unlike the
radiation process in ordinary electrodynamics, it was shown by Bohr that there
exists an intimate fo rmal  c on n e c t i o n  between these two theories. This connec-

' tion refers in the first place to the frequencies of the radiation which on the
quantum theory will be emitted by the atom and the frequencies which on the
ordinary theory of electrodynamics would be emitted. Consider thus a transition
between two stationary states of a non-degenerate conditionally periodic system of
the type described in Part I, the initial state and final state of which are characteri
sed by nt =  n'x, . . . .  n, =  n, and n1 =  n", . . . .  it, — n" respectively, where
n1, . . . . n e are the integers appearing in the conditions (99), and consider the
multitude of mechanically possible states of the system lying “between” the initial
state and the final state, for which the quantities Jv  . . . .  I, are equal to Ik =
{nit +  n'k)} h, (k =  1 , ----f|, where J assumes all values between 0 and 1.
Then it is easily proved that the frequency v of the radiation emitted during the
transition under consideration is equal to the mean value, taken over all states
from l - O l o l - l ,  of the frequency (n '— n")co1 + ---- {n,— n'i)co, which ap
pears in the motion of the electron when this motion according to (12) is resolved
in its constituent harmonic components. In fact, from (11) it follows that the
difference in the total energy for two neighbouring mechanically possible states,
characterised by /x, . . . .  I, and It -f- 8Ilf . . . .  I,-\- 81, respectively, may be expressed
by the formula

dE =  cô  +  . . . .  co,8I„  (106)
so that we get from (1)

rtf «= i /tf =  l n i  \

v =  Ti\ 8E =  7 i\ +  • • • =  \  dl{(n,1— nl)<o1+  . . .  (n',~ n;')<a«}-|(107)
vx * o J 0 j

Especially in the region of stationary states where the n’s are so large, that
for small values of the numbers nk— nk the motion in the initial and in the final
state differ relatively little from each other, the co’s may be considered as constant
when  ̂ varies from 0 to 1, so that th e  f r equency  v of the e mi t t e d  r a d i a t i o n
app r o ach es  a s y m p t o t i ca l l y  to the  f r equency  « —<)*»!+ : . . .  (n',-n',')co„
p r e s en t  in t he  mot ion  of the  Sys tem.1)

From this remarkable connection in the limit of large n’s between the fre
quencies of the spectral lines to be expected on the quantum theory and the fre
quencies Tiaq-I-----T,a>, of the harmonic vibrations in which, according to (12),
the motion of a conditionally periodic system may be resolved, and which there
fore according to ordinary electrodynamics would occur in the electromagnetic

^ee Bohh, 1°c- cit. Part 1, p. 31. Compare J. M. Burgers (Het atoom model van Rutherford-Bohr,
Haarlem, 1918), who recently has also called attention to this asymptotical relation in the region of large
n’s, without entering, however, on the bearing of this relation on the problem of the intensity and
polarisation of spectral lines. _

42*
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radiation emitted by the atom, we may according to Bohr draw the conclusion
that also th e  i n t e n s i t i e s  and po l a r i s a t i on s  of the  s pec t r a l  l ines  emi t t ed
in the  region of large  n’s wil l  a s y m p t o t i c a l l y  be the  same as the
i n t e ns i t i e s  and  p o l a r i s a t i o n s  of the  c o r r e s p o n d i n g  l ines  which  on
o r d i n a r y  e l ec t r odyna mi c s  would be emi t t ed  by the atom.  This hypo
thesis is in agreement with the fact, that in the limit of large wave lengths P lanck’s
formula for the intensity distribution in temperature radiation coincides with the
formula of Rayleigh and J eans, which is deduced on the basis of ordinary
electrodynamics. Now the radiation energy emitted in unit time by an electron
performing in a certain direction a linear harmonic motion which may^be repre
sented by sc =  C cos 2 jr <u f, where C is the amplitude and w the frequency of the
vibration, would, according to the laws of electrodynamics, be proportional to the
mean value of the square of the acceleration of- the electron and would therefore
be given by gC3w\  where g is a universal constant with the value of which we
are not concerned here. From the above we may therefore conclude that, for a
conditionally periodic system consisting of a single electron moving in a fixed field
of force and the stationary states of which are determined by (99), the a-priori
probability of spontaneous transition between an initial state characterised by the
large integers n'x, n2, n'g and a final slate characterised by n1 =  n., rt, na=  na r2,
ns =  n'8 — r„, where r1, r2, r8 are a set of positive or negative integers which are

small compared to n\ , n'a, n'8, will be asymptotically given by gC^w^lhw — ^  C V ,

where m =  t1w 1 - f  r2cu2 +  r3ö»3 represents the frequency of the emitted radiation and
C the amplitude of the harmonic vibration of this frequency occurring in the
motion of the electron in the initial state or in the final state. For simplicity it has
in this consideration been assumed that the vibration of frequency r 1a)1 +  ri wi +  r3«*8
is linear, parallel to a given direction, and we may therefore further conclude that
the radiation emitted during the transition in question is linearly polarised in this
direction. In the cases where, on ordinary electrodynamics, the radiation of frequency
rjWi +  rjtOj +  rjWg in the states under consideration would be circular or elliptical
we shall naturally conclude, that the probability of transition can be calculated in a
corresponding way, and that the radiation emitted during a transition will be
circularly, resp. elliptically polarised, the directions in space characterising these
polarisations being the same as those characterising the corresponding harmonic
vibrations in the motion of the system.

Returning now to the region of stationary states where the n’s in (99) are
small numbers, we may assume, according to Bohr, that there will still exist an
in t i ma t e  connec t ion  between the  coef f ic ients  C a ppea r i ng  in the t r i g o n o 
me t r i c  s e r i e s  of the  type  (12) by w h i c h  the  mot i on  of the  sys tem may
be r e p r e se n t e d  a nd  the  a - p r i o r i  p r o b a b i l i t i e s  for  t r a n s i t i o n s  between
these  s tates .  Thus, if for the displacements of the particles in all directions in
space the coefficient Cr?,. . t°, corresponding to the frequency z" w1 + ---- z°wa. is
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equal to zero, independent of the values of the r s, we must expect that there will
be no possibility for a transition between two stationary states for which
n\ — n" =  rj, . . . . n — nj' =  r“. If the coefficient in question is equal to zero,
independent of the values of the r s, only for the displacement of the particles in
a certain given direction, we must expect that a transition for which n' — n" =  t°,
. . . .  n's — rig =  T, will give rise to a radiation polarised perpendicular to this direc
tion. An important application of this consideration may be made to systems pos
sessing an axis of symmetry, as for instance the systems discussed in § 3 (and in
§ 4). For these systems the motion of the electron may, as it is directly seen from
some simple general considerations given by Bo h r 1), be resolved in a number of
linear harmonic vibrations of frequencies r1(u1 -j- r2<w2 parallel to the axis of
symmetry, and of a number of circular harmonic rotations of frequencies t1o>1-\-
r2 a»2 +  a>3 perpendicular to this axis. We must therefore expect that only such
transitions will be possible for which n3 remains unaltered, giving rise to an emission
of light polarised parallel to the axis, and such for which ns decreases or increases
by one unit, giving rise to an emission of light which is circularly polarised
perpendicular to the axis. Since for the systems under consideration will

mé TC
represent the angular momentum of the electron round the axis of symmetry, we
see that during transitions of the first kind this angular momentum remains

« /l
unaltered, while for transitions of the second kind it decreases or increases by -— .2)2 it J

While these considerations in many cases allow us to draw definite conclusions
as regards the p o l a r i s a t i o n  with which the different lines of the spectrum of an
atomic system are emitted, we meet, however, with a very difficult problem if we
ask for a closer estimate of the i n t en s i t y  with which a spectral line, correspond
ing to a possible transition between twó stationary states characterised by values
for the n’s in (99) which are not large, is emitted. In fact, this intensity will in
the first place depend on the a-priori probability A'„ for the spontaneous occurrence
of the transition in question. Although, of course, we must claim that the proba
bility of spontaneous transition between two given states depends on the mechani
cal properties of the system and on the two sets of numbers n', . . .  n'8 and n", . ■. n'é
characterising these states, we cannot expect to obtain an exact expression for this
probability which depends in a simple way on the amplitudes of the harmonic
vibrations of frequency (n' — n")cox . . .  (n,'— n j ' ) i n  the motion in these stales;
just as it is clearly impossible to express the frequency of the emitted radiation

*) loc. cit. Part I, p. 33.
2) Compare in this connection Bohr  (loc. cit. Part I, p. 34), who has pointed out that a considera

tion of conservation of angular momentum, which takes into account the amount of angular momentum
present in the electromagnetic radiation emitted during a transition, gives a convincing support of the
assumption that the angular momentum of the system round the axis cannot change hy more than Il 2n-
Compare also A. R dbinowicz (Phys Zeitschr. XIX, p. 441, p. 465 (1918)), who by a similar consideration
of conservation of angular momentum has independently arrived at some of the conclusions drawn by
Bohr as regards the spectrum of atomic systems possessing an axis of symmetry.
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in a simple way in terms of the values of this frequency in the two states. With
reference, however, to the fact, that it is possible, as shown in the preceding, to
represent the frequency v of the emitted radiation in a simple way as the mean
val ue  of the mentioned frequency, taken over the continuous multitude of mechani
cally possible states characterised by /* =  nk-\- k(n'k — nk) (k =  1 , 2 . . . * )  where ?.
takes all values between 0 and 1, the expectation lies at hand that it might also
be possible to obtain an expression for the probability in question by comparing
the emitted radiation with the intensity of the radiation emitted on ordinary
electrodynamics by an electron performing a simple harmonic vibration which
may be represented by

£ =  C c o s2 jtv<, (108)

where C is equal to a suitably chosen mean value of the amplitude C* of the
vibration of frequency (n[ — n"jo»1 . . . .  (nj — n's’) cuK occurring in the motion in
the different states characterised by different values for A.1) The value for the pro
bability A'„ for the spontaneous occurrence of the transition in question would then
be given by The exact determination of A),, however, is at present a quite un
solved problem which involves fundamental difficulties. But, even if the exact value
of AJ, was known, a calculation of the intensities would moreover require the know
ledge of the number a' of atoms which in the initial state are present in the vacuum
tube; the determination of this number, which will obviously vary to a large extent
with the experimental conditions (pressure, voltage, etc.), is in general a difficult
problem in itself.

i) Among the possible expressions for such a mean value, an expression of the type

C es: log C^dA (109)

offers itself naturally, since, with this definition of C, the expression Ce2^in«, of which (108) forms the
real part, appears directly as the logarithmic mean value of the expression

Qe { (»i~»i) «*■ + .... (#g—»*)<»*ƒ t,
the real part of which represents the corresponding harmonic vibration which occurs in the motion of
the system in the states. characterised by the different values of A . It follows from the well known
properties of such logarithmic mean values that it makes no difference whether we take the mean
values of the squares of the amplitudes or the squares of their mean values. It may moreover be
remarked that in the special case where the relative intensities of the components into which a given
hydrogen line is split up are asked for, — and in which, as mentioned in the text below, it is possible to
obtain a direct test for a formula representing a theoretical estimate of the relative values for the a-priori
probabilities of transition between the different pairs of stationary states, — the above mean value pos
sesses the advantage that we shall obtain the same relative values for the estimate for these probabilities,
whether for C we take the amplitude (or the „relative* amplitude introduced on page 52) of the vibra
tion itself or the “amplitude” of the corresponding velocity, or acceleration; a point the importance of
which will be understood when it is remembered how small our actual knowledge of the mechanism
of radiation is. In § 8, however, it will be shown, in connection with the theory of the Zeeman effect,
that mean values of the type C8, as defined by (109), can never represent an exact expression for the
relative intensities of the components, because they do not satisfy the fundamental condition that
small external forces can only produce small changes in the intensity distribution of spectral lines.
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There exists, however, one case in which it seems possible ón .the basis of
the above considerations to obtain direct information about thé relative intensities
with which different- spectral lines are emitted, viz. if we consider the components
in which a spectral line, emitted by an atomic system which is degenerate, is split
up due to the influence of some agency on the atom. Examples are afforded by
the fine structure of the hydrogen lines which is due to the influence of the
relativity modifications, and by the Stark effect of the hydrogen lines which is due
to the influence of an external homogeneous electric field of force on' the
hydrogen atom. In order to fix the ideas let us consider especially the case of the
Stark effect. Under the influence of the external force a given hydrogen line (n'r->n")
will be split up in a num ber of components, corresponding to transitions for which
the initial states will be characterised by different combinations n1 === n\, n a =  n'g,
ns ns (hi +  ni +  n'g =  n') and the final states by corresponding combinations
ni» na* na (n , 4~ n a +  n 's =  n")‘ Since the values of the total energy in the different
initial states are approximately equal, it seems in the first place allowable to con
clude that in the vacuum tube th e  n u m b e r s  of  a t o m s  p r e s e n t  i n  t h e s e
s t a t e s  w i l l  be  a p p r o x i m a t e l y  p r o p o r t i o n a l  to t h e  d i f f e r e n t  a - p r i o r i
p r o b a b i l i t i e s  of  t h e s e  s t a t e s .  In fact, this assumption presents itself natural
ly, in analogy with the corresponding property of a statistical distribution of a large
number of atoms which is in temperature equilibrium ; although of course the state
of equilibrium in the luminescent vacuum tube will, as mentioned, not in general
be a temperature equilibrium. As it will be seen in the following sections, the
assumption in question seems to be confirmed in a general way by the observations
In the case of the Stark effect the atom forms a non-degenerate conditionally perio
dic system, for which the different stationary states will be a-priori equally probable
(see Bohr, Ioc. cit. Part II, p. 25), and we shall consequently expect that the different
initial states n\, n ', n'8 are of approximately equal occurrence in the luminous gas.

Moreover the different frequencies {n\ — n"1)uil (n'a — n")a3 occurring in
the motion of the electron in the different corresponding initial states, as well as
in the different final states, (and also in the different states characterised by
h  — h \ n ’l  +  — nj.')} (k =  1, 2, 3) for a same value of are approximately the
same, and equal to (n '— n")a>, so that the relative intensities with which, on ordi
nary electrodynamics, radiations of these frequencies would be emitted from these
states are simply proportional to the squares of the amplitudes C of the harm onic
vibrations of these frequencies, occurring in the motion in these states.

We are therefore led to expect that i t  w i l l  b e  p o s s i b l e  to f o r m  a n  i d e a
of  t h e  r e l a t i v e  i n t e n s i t i e s  w i t h  w h i c h  t h e  d i f f e r e n t  c o m p o n e n t s
of  t h e  S t a r k  e f f e c t  w i l l  a p p e a r ,  b y  c o m p a r i n g  t h e  i n t e n s i t y  o f  e a c h
c o m p o n e n t  w i t h  t h e  v a l u e s  of  t h e  s q u a r e s  o f  t h e  a m p l i t u d e s  o f  t h e
c o r r e s p o n d i n g  h a r m o n i c  v i b r a t i o n s  o c c u r r i n g  in t h e  m o t i o n  o f  t h e
s y s t e m  i n  t h e  i n i t i a l  s t a t e  a n d  i n  t he  f i n a l  s t a t e  a n d  in t h e  m e c h a n i -
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c a lly  p o ss ib le  s ta te s  ly in g  “b e tw een ” th ese  s ta tes . In § 6 the values of these
squares in the initial states and in the final states will be calculated on the basis
of the expressions for the amplitudes deduced in § 3, and it' will be shown that,
simply from a consideration of these values, it is actually possible to account in
main features for the intensities of the different components observed by Stark.
In § 7 the same method will be applied in order to estimate the relative intensities
of the fine structure components of the hydrogen lines, in which case the above
consideration needs a slight modification, due to the fact that the a-priori proba
bilities for the different stationary states are no more equal to each other. It must,
however, be emphasised already here that the method in question can only be
expected to give a rather rough estimate of the relative intensities, especially when
the n’s involved in the different stationary states are very small numbers. In the
theory of the Stark effect we shall, for instance, meet with transitions for which
the amplitudes of the corresponding frequency are equal to zero in the initial
state, as well as in the final state, and where, as a matter of fact, the intensity of
the corresponding component is different from zero. A closer discussion of these
transitions shows, however, that the value of the amplitude of the vibration of
corresponding frequency in the mechanically possible states lying “between” the
initial slate and the final state is different from zero for these transitions. In order
to account for the finer details of the observations, we are therefore naturally
induced to try to improve the estimate of the relative intensities of the components
by comparing these intensities, not with the squares of the corresponding ampli
tudes in the initial states and final stales only, but with some suitable mean value
of these squares taken over the mechanical states which lie between these states, and
which are characterised by the different values of A between 0 and 1. Especially the
logarithmic mean value of these squares, of the type defined by (109) in the
note on page 46, would seem to lend itself naturally to such an attempt. A compu
tation of these logarithmic mean values, however, would involve laborious numeri
cal calculations and has not been given in the present paper, because we cannot
expect, as mentioned in the note referred to, to obtain in this way an exact
determination of the relative intensities (compare page 100) and also because, at
the present state of the theory, the agreement with the observations obtained by
the simpler calculations in this paper may be considered as very satisfactory.

Although we have thus met with a case where Bohr’s considerations about
the connection between the quantum theory and the ordinary electrodynamical
theory of radiation may be directly applied to estimate the relative, intensities
of spectral lines, it must be remembered that this estimate is based on the neces
sary continuous connection between the unknown laws governing the intensities
with which spectral lines are emitted in the region where the n’s in (99) are small
and the law which governs these intensities in the region of very large n’s. The
estimate in question must consequently be expected to become the more uncertain
the smaller the numbers nJt . . .  n, are which characterise the stationary states
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involved in the transitions. It is therefore of great importance that, just in the case
of spectral lines which are split up in components, it is possible to obtain some
direct information as regards the relative intensities of these components in a way
which is quite independent of the preceding considerations. In fact, a simple
consideration of continuity or, as Bohr  calls it, a consideration of the necessary
“stability of spectral phenomena” 1), assures us at once that the intensities of the
polarised components in which an unpolarised spectral line splits up under the
influence of small external forces will be such, that the  e n s e mb l e  of all c o m p o 
nent s  t oge t he r  wi l l  show no c h a r a c t e r i s t i c  p o l a r i s a t i o n  in any d i r e c 
tion,  if small quantities proportional to the intensity of the external forces are
neglected. If we consider for instance the Stark effect or the Zeeman effect of the
hydrogen lines, viewed in a direction perpendicular to that of the electric or of
the magnetic field, the sum of the intensities of the components polarised parallel
to the field must be equal to the sum of the intensities of the components polarised
perpendicular to the field. The information about the intensities given by this state
ment becomes more valuable the smaller the number is of the components in
which the line is split up, but in general this occurs just in the cases where the
n’s involved in the different transitions are small numbers and where consequently
the estimate of the a-priori probabilities of spontaneous transitions, based on a
consideration of the amplitudes of the harmonic vibrations in which the motion of
the atom may be resolved, becomes especially uncertain.

§ 6. The Stark effect of the hydrogen lines.
In this section we will discuss in detail the estimate for the relative intensities

of the components of the Stark effect of the hydrogen lines, which can be obtained
from the calculations in § 3 on the basis of the considerations given in § 5, and it
will be shown that it is possible to account in a convincing way for the relative
intensities of the components which have been observed by Stark2) in the case of
the hydrogen lines Ha, Hp, Hr and Hd.

If the intensity of the electric field acting on the atoms is so large that the
relativity modifications in the laws of mechanics governing the motion of the
electron may be neglected, the hydrogen atom will form a mechanical system
which allows of separation of variables in parabolic coordinates (E pst e in ). This
separation has been performed in § 3 and, as mentioned in the preceding section,
the stationary states of the atom will be fixed by the three conditions

h  == nA  h . =  n2h, Is =  n3h, (HO)
’) Bohr, loc. cit. Part II, p. 85.
*) J. Stark, Elektrische Spektralanalyse chemischer Atome, Leipzig, Hirzel (1914). This monograph

contains a survey of Stark’s investigations on the effect of an electric field on spectral lines until. 1914
D. K. D. Vldensk. Selsk. Skr., naturvidensk. og m athem . Afd., 8. Rtekke, III. 3. 43
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where Iv  I2 and I3 are the quantities defined by (45), and where n1( n2 and n3 are
positive integers. The different stationary states, characterised by different combina
tions of the n’s, will in the following be denoted by the symbol (nv n2, n3); they
are, as mentioned, a-priori equally probable, but it must be kept in mind that,
while and n2 may assume the values 0, 1, 2, 3 n3 can only assume one of
the values 1, 2, 3, 4 ___In fact, it was pointed out by Bohr that states correspond
ing to n3 — 0 cannot represent possible stationary states of the atom because there
is an essential singularity involved in the motion in these states1).

The value of the total energy in the stationary states will be obtained by
introducing (110) in the expression (46) for the total energy of the system. The
frequency v of the radiation emitted during a transition between an initial state
(n\, n'2, n'8) and a final state (n" n", n") — such a transition will in the following
be denoted by the symbol (n\
be given by

n' ri. K, n", n") — will then, according to (1),

where

3hF
8 7T2 Nem

vo =

2 7T3 N3 e4 * m

and where
ri =  n' +  n'8 -f- n'8,

J =  n' «  -  n't) -  n" « '  -  n’’) ,

n" — n" -f n" +  n".

(Ill)

The expression for v0 coincides with formula (105) holding for the frequencies of
the spectral lines emitted by the simplified hydrogen atom, when the mass of the
nucleus is considered as infinite. The additional term in the expression for v is pro
portional to the intensity F of the electric force and allows us to calculate the magni
tudes of the displacements from the position of the original line of the different
components in which this line splits up under the influence of the electric force8).
As shown by E pstein  and by Schw arzschild , formula (111) is in excellent agree
ment with the frequencies of the different components of the hydrogen lines ob-

1) Bohr, loc. cit. Part II, p. 75. In this connection it may be observed that in states for which
„ _  0 the motion of the electron would take place in a plane, and that, if the relativity modifications are
neglected, the angular momentum of the electron round the nucleus would in the course of the motion
become equal to zero at regular intervals and change its sign, so that in the course of time the elec
tron would in general collide with the nucleus. On the other hand, if the relativity modifications are
taken into account, the perturbing influence of these modifications would become very large and of the
same order of magnitude as the influence of the electric field when the angular momentum approaches
to zero. As will be shown in the paper mentioned in the beginning of § 4, the value of this angu ar
momentum will never pass through zero and the motion of the electron would in the states in ques
tion be essentially different from that in the non-relativity case. It was pointed out by Bohr, however,
that this circumstance does not, from the point of view of the quantum theory, remove the singular
character of these states, which compels us to exclude them from the ensemble of possible stationary states.

2) See P. Epstein, Ann. d. Phys. L„ p. 489 (1916), K. Schwarzschild, Berl, Ber. p. 548 (1916). The
correction for the finite mass of the nucleus in the expression for v will, according to what has been
said in §5 on page 40, be taken into account by simply replacing the above expression for v„ by that
which is given in formula (105).
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served by Stark . Thus the displacements of these components from the original
positions of the lines are all entire multipla of the quantity ^  Nem » which is the
same for all lines of the spectrum, and which is proportional to the intensity of
the electric force. Moreover the Stark effect of the hydrogen lines was found to be
s ymmet r i ca l  as regards the displacements as well as the intensities of the compo
nents. This agrees with the fact that to each component on one side of the position
of the undisplaced line there will correspond one on the other side which is ob
tained by interchanging the values of n\ and n'2, as well as of n" and n", and for
which the value of A will be numerically equal to that for the first component
but of opposite sign. That two such components will also appear with the same
intensity is directly explained by observing that the motion of the electron in two
states of the atom for which I3 and I, -f-12 are the same, but for which the value
of fj in the one is equal to that of /2 in the other, will be symmetrical so that the
a-priori probabilities of spontaneous transition corresponding to the two compo
nents must be expected to be equal1).

Looking apart from the symmetry of the effect, the relative intensities with
which the components appear on Stark’s photographs vary in an irregular way
from component to component, but are independent of the intensity of the electric
force. Further, as regards the polarisation, Stark  * found that, when viewed in a
direction perpendicular to that of the electric field, the lines show a number of
components polarised parallel and a number of components polarised perpendicular
to the direction of the field. When viewed in a direction parallel to the field, only
the latter components appeared, with the same intensity distribution, but without
showing characteristic polarisation. It was pointed out by E pstein  that the polarisa
tion of the components obeys the rule, that the components which, according to
(111), would correspond to transitions for which n'8— n" is an even number are
polarised parallel to the direction of the field, while components, which would
correspond to transitions for which n' — n" is uneven, are polarised perpendicular
to the field. On Bo h r ’s theory this rule receives an immediate explanation because
according to this theory, as it has been discussed on page 45, only two kinds of

*) Here we have looked apart from the interesting dissymmetry in the intensities of the compo
nents of the hydrogen lines, which under certain experimental conditions appears in Stark’s observat
ions, and which consists therein that the components on the red side of the position of the original
line appear more, or less, intense than those on the blue side according as the direction of the electric
field is the same as, or the opposite of, the direction of propagation of the positive rays by means of
which the hydrogen lines are excited (see J. Stark, loc. cit. p. 40). This dissymmetry affords, as pointed
out by Bohr (Phil. Mag. XXX, p. 404 (1915)), an interesting support for the general principles underlying
the application of relation (1), because it indicates directly that the different components correspond to
entirely different processes of radiation the relative occurrence of which may depend on the experimen
tal conditions. Thus the dissymmetry in question must be ascribed to the fact that, under the men
tioned conditions, the number of atoms in the vacuum tube present in a state (a, b, c) and in a state
(b, a, e) will no more be equal to each other but will depend on the orientation of the electric field
relative to the direction of the positive rays.

43*
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transitions will be possible, viz. transitions for which n8 -— ns' — 0 giving rise to
radiation polarised parallel to the field, and transitions for which n'8 — n" =  ±  1
giving rise to radiation polarised circularly in a plane perpendicular to the field.1)
The components corresponding to the latter transitions will, however, appear as
unpolarised when viewed parallel to the field because, due to the symmetry of the
atom round the axis of the field, the numbers of the transitions, corresponding to
such a component, which give rise to light polarised circularly in one direction
and in the opposite direction, will in the mean be the same.

In order to discuss the i n t e n s i t i e s ,  we have in the following given tables
for the estimate of the relative intensities of the Stark effect components of the
hydrogen lines Ha, Hp, Hy, Hs, as it can be obtained by the method exposed in § 5.

In the first column the different possible transitions between two stationary
states are characterised by their symbols (n', n'a, n'8 -> n", n" n"). On account of the
symmetry of the Stark effect we have only given those transitions which give rise
to components lying on one side of the undisplaced line ( J>0) .  Transitions which
correspond to the same value of A and which therefore contribute to the same
component in the observed effect are collected by brackets. As regards the
stationary states involved in these transitions we have, according to the above,
assumed that no stationary states exist for which n3 =  0. Each table is divided
into two parts, the first containing the transitions for which n'8 — n" =  0, corres
ponding to “parallel” components, the second containing the transitions for which
n8 — n" =  ±  1, corresponding to “perpendicular” components.

The second column contains the value of J  =  «'(/ij — n'3)— n"(n"— n'), which,
as seen from (111), determines the displacement of the component under consider
ation from the undisplaced line; the third, fourth and fifth columns contain the
values of zx =  n\ — n", t2 =  n3 — n”, rs =  n8 — n".

The sixth and seventh columns contain the values R' and R" of the “relative
amplitudes” of the harmonic vibrations of frequency zl w1Jr  z2ai2 z3<o3, occurring
in the motion in the initial and in the final state respectively; where by
relative amplitude is understood the ratio of the amplitude of this vibration to the
half major axis of the Keplerian ellipse which the electron at any moment may be
considered to describe. This half major axis remains constant during the motion
and is equal to the value for an given by (102), i. e. equal to the quantity xP occur
ring in the formulae (70) and (72). The expressions for the values of the relative
amplitudes of the linear vibrations parallel to the field and of the circular vibrat
ions perpendicular to the field in a given stationary state, characterised by a certain
combination of the n’s, are directly obtained by introducing (110) in the formulae
(70) which represent the motion of the electron parallel and perpendicular to the
direction of the field. In this way we find, denoting, as in § 2, the Bessel coeffi
cient of order p and of argument p by Jp(p), and its derivate with respect to p
by J'p(p),

*) N. Bohr, loc. cit. Part II, p. 77.
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2
+  r2ft>a) =  J'T,(r<Tg) — ax J'T^Ttrj) J t, ( to2)}

2 ( \=  -{.«Ai (zffj J r jr a ^  — a2Jn  (rtfj) J r2 + i (r<r2) — f f j  J Tl _ i (twx) Jr8 (rw2) }
and

ft f rx <ü! +  r2 « 2 -+- a>3) =  -  \ i 13t23 Jrt ( r^ )  J t2 (r<r2) — q t2 «A-x + 1 (rffj) Jr, + 1 (r<r2)}
respectively, where

( 112)

(113)

al ’T - l /n i(n i  +  n3), ' ^ - V n t (n3 +  n3), n =  H j  4 -  n2 +  n3,

h = \ / r h
V n ’ C2 ==‘w (114)

z =  v, +  r2 +  r3.

*13 =
\ / n 1 +  n3
V n ’ *23 ~

1 / n 2 +  n3
V n

If one of the quantities nx and n2, say n2, becomes equal to zero the expressi
ons for the amplitudes become much simpler. The character of the motion in the
corresponding states of the atom has been considered in detail in § 3 on page 25,
where it was seen that the motion of the electron in these states may he resolved
in a number of linear vibrations of frequencies ï-j <o1 parallel to the field and a
number of circular harmonic rotations of frequencies T1iol -\-w3 perpendicular to
the field, so that the amplitudes will be equal to zero unless r2 =  0. For the ex
pressions for the relative amplitudes of the vibrations of frequencies z1tu1 and
ri<Oi +  o>3, we find from (72) and (110)

ftfoo/j) =  - q J r ( « i )  =  — ( J r - i ^ q )  — J r  + ifrq )} ,T 7

R(T1ai1 +  w3) =  - ] / ^ « f r 1(«1),

where h =  y — , t =» n =  n1 +  n3, (n2 =  r2 =  0)

In the formulae (113) and (116) holding for the relative amplitudes of the
circular rotations, z3 is considered to be equal to -f- 1. In the case where t3 =  — 1,
however, i. e. for transitions during which the angular momentum of the electron
round the axis of the system increases by f»/2 r, we may obviously apply the same
formulae if only we reverse the sign in the values for z1 and z2. For the relative
amplitudes of the linear vibrations we have both in (112) and in (115) given two
expressions, the former of which is more symmetrical, while the latter lends itselt
better to numerical calculations as long as no tables of the functions J^ip) are
at hand.

The eigth and ninth columns in the tables contain the squares of ft' and ft",
which quantities, according to the considerations in § 5, should be expected to
afford an estimate for the relative intensities of the different components. Here it

(115)

(116)
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may be remarked that the introduction of the values of the “relative amplitudes”
instead of the values of these amplitudes themselves offers, with reference to the
considerations just mentioned, a great advantage. Thus it will be remembered that,
in the case of the estimate of the intensity of a given component, we have beforehand
no direct information as regards the relative importance of the values of the corres
ponding amplitude in the initial state and in the final state. For this reason it is of
importance that in our tables the amplitudes should be characterised by numbers
which for the initial states and for the final states are of the same order of magni
tude, but this is just obtained by the introduction of the relative amplitudes.

Finally the tenth column contains the experimental values for the intensities
published by Stark in his most recent paper on the Stark effect of the hydrogen linesl *).
These values refer to the relative intensities Of the components of same polarisation
belonging to one and the same line, and are according to Stark’s statement rather
uncertain on account of the well known difficulties involved in the determination of
these intensities from the density of the image of the components (“Schwarzung”) on
the photographic plates. A reproduction of Stark’s photographs of Hp, Hr, H# will be
found on Plate II, Fig. 5.3 *) For the sake of completeness we have, for the lines Hfi,
Hr and in an eleventh and twelfth column added the values for the relative densities
of the images of the components on the photographic plate, given by Stark in his
above cited monograph; the densities of the components on the red side of the
undisplaced line are given in the eleventh column, those on the blue side in the
twelfth column.

At the head of each table we have, for the sake of orientation, indicated the
magnitude in Angstrom units of the displacement corresponding to J  =  1 for a
field strength of 100.000 Volt/cM. These values are calculated by means of the
following relation, which is directly found from (111),

52 32 3  h 105 * 1
d X =  displ. (J =  1; 100.000 Volt/cM) - 1 0 - * - ^  =  10~8 -  3ÖÖ =  ÏV 6)41' 1 (W ’

where X represents the wave length of the spectral line, expressed in Angstrom units.
When considering the tables I, II, III and IV it will in the first place be observed,

that for most transitions the value of R" is equal to zero. This is due to the fact
that to the stationary state of the simplified hydrogen atom characterised by n =  2,
which forms the final state for the transitions giving rise to the lines of the Bal-
mer series, there corresponds, in case an electric field is applied, only three statio
nary states, viz. [002], [101] and [Oil], and that the motion of the electron in these

l) J. Stark, Ann. d. Phys. XLVIII, p. 193 (1915).
a) J. Stark, Elektrische Spektralanalyse chemischer Atome, Tafel III, fig 1. The arrows on the

photograph of Hp indicate the position of the unreal lines (“Geister”) which, on account of the imperfec
tion of the grating, accompany the image of a component situated at the place of the original line.
The arrow on the photograph of Hy indicates the position of the mercury line 4359 A, which, as it is
seen, appears with considerable intensity.
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states is of an especially simple character. Thus in the state [002] the orbit of the
electron is circular and perpendicular to the direction of the field, and the motion
contains only the frequency w3, while in the states [101] and [Oil] the motion contains
only the frequencies t w v  z — m3 and r<u2, z — 1 m i  +  co3 respectively. As a conse
quence of this there exists for each of the lines considered in the tables only one paral
lel component and one perpendicular component on each side of the undisplaced line
for which the values of R'2 and R" 3 are both different from zero, while moreover
there appears in Ha at the place of the undisplaced line a perpendicular compo
nent, corresponding to a transition between two circular orbits (003->002), for
which R'2 and R"2 have the maximum value 1. Ju s t t h e s e  componen t s  are
seen gene r a l l y  to be the s t r onges t  in the  o bs e r v a t i on s  on the  Stark
effect .  From this we may conclude that, when estimating the intensities by the
present method, the amplitudes in the final states play a part no less important than
those in the initial states, in agreement with what beforehand might be expected from
the principles on which this method is based. Considering further the other compo
nents for which R" is equal to zero, it will be seen from the tables that the values
of R'2 give in general a good picture of the observed intensities of these compo
nents. For instance for any two components of the same polarisation of a given line
the component of larger intensity corresponds generally to that for which R'2 has
the larger value. In order to facilitate a comparison between the theory and the
experiments we have in fig. 1, 2, 3 on Plate I and fig. 4 on Plate II represented
schematically the estimate for the theoretical intensities, in such a way that the
lengths of the lines representing the different components are taken proportional to
the values of R' s -f R"2. At the same time we have in these figures reproduced the
schemes, given by S t a r k 1) , representing the result of his above mentioned recent

Table 1.
Ha, 6562,8 A (3 -* ■  2).

displ. (A =  1; 100 000 Volt/cM) =  2,8 A

Transition A *1 T2 Ts K R" jr* JT* int. obs.

I l l  -> Oil 2 1 0 0 .46 0 .21 0 1

Par. • 102 002 3 1 0 0 .51 0 .26 0 1,1
201 -> 101 4 1 0 0 .62 .57 .38 .33 1,2
201 -> 011 8 2 —1 0 0 0 0 0

003 -> 002 1 0 0 0 1 1.00 1.00 1.00 1.00
|  2,6111 002 / 0 4 1 —i .26 0 .07 0

Perp. 102 -> 101 1 0 0 1 .75 .62 .56 .39 1

1 © 5 1 —1 1 0 0 0 0
201 -* 002 6 . 2 2 —1 .05 0 .00 0

>) Ann. d. Phys. XLVI1I, p. 205 (1915).
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Table II.
He, 4861,3 i  (4-* 2).

p  displ. (d =  l ;  100 000 Volt/cM) — 1,52 A

Transition d *1 T8 R R' R* R'* int. obs. Red Blue

112 002 0 1 1 0 1 0 0 0 0 1,4 0,10
211 ->■ 101 2 1 1 0 .02 0 •0OO5 0 1,2 0,22 0,16

(4) 1 0,26 0,36

Par. ■211 Oil 6 2 0 0 .15 0 .o21 0 4,8 1,00 1,12
202 002 8 2 0 0 .17 0 .o30 0 9,1 1,40 1,73
301 -> 101 10 2 0 0 .21 .17 ,o45 ,o30 11,5 1,63 1,88

(12) 1
301 -> Oil 14 3 —1 0 0 0 0 0

(0) 1,4 0,62
112 -» Oil 2 1 0 1 .12 o .0)4 0 3,3 1,08 1,08
103 0021
211 -*■ 002/

4
4

1
2

0
i - I

.19

.06
0
0

.<>36
•o04

0
0 } 12,6 2,03 2,03

Perp. 202 -> 101 6 1 0 1 .19 .19 ■o37 .037 9,7 1,64 1,78
(8) 1,3

202 -> Oil 10 2 —1 1 0 0 0 0 1,1 0,34? 0,45
301 -> 002 12 3 . 0 —1 .02 0 .0OO5 0 1 0,27? 0,25'

Table III.
Hr , 4340,5 A  (5-»2). .

'  displ. (J =  l ;  100 000 Volt/cM) =  1,21 A

Transition A T2 *8 R R ' tf2 int. obs. Red Blue

221 -►  Oil 2 2 1 0 .033 0 .ooll 0 1,6 0,58 0,58
212 - >  002 5 2 1 0 .022 0 .00O6 0 1,5 0,58 0,52
311 ->■ 101 8 2 1 0 .ol3 0 .00I6 0 1 0,19? 0,27?

Par. 311 Oil 12 3 0 0 ,o74 0 .oo55 0 2,0 0,67 0,91
302 - »  002 15 3 0 0 .o93 0 .0086 0 7,2 1,56 1,70
401 - »  101 18 3 0 0 .112 .08O .0125 .oo63 10,8 1,76 1,78
401 Oil 22 4 —1 0 0 0 0 0 1?

113 - >  002 \
221 -*  002 ƒ

Ó
0

1
2

1
2

1
—1

.065

.031
0
0

.oo41

.oo09
0
0 } 7,2 2,18

212 101 3 1 1 1 .057 0 .oo32 0 3,2 1,56 1,56
212 -> Oil 7 2 0 1 .o45 0 .oo20 0 1,2 0,74 0,76

Perp. 203 002) 10 2 0 1 .o85 0 .oo72 0

'co 1,70 1,78
311 -»■ 002 / 10 3 1 —1 .025 0 .00O6 0
302 -> 101 13 2 0 1 .088 .o89 .oo77 .080 6,1 1,90 1,88
302 Oil 17 3 —1 1 0 0 0 0 1,1 1,51?

1401 002 20 4 0 —1 .014 0 .oo02 0 1 0,49 1,51?
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Table IV.
Hg,  4101,7 i  (6 -» 2).

dispi. (4 =  1 ; 100 000 Volt/cM) =  1,08 1

Transition int. obs.

0,73 (?)

measurements on the intensities of the components. Components the appearance of
which was regarded by S tark  as questionable are indicated by a ? sign.

On the whole it will be seen, that it is possible on B o h r ’s theory to account
in a convincing way for the intensities of the Stark effect components. Before dis
cussing in detail each of the lines observed by St a r k , however, it may be useful
to insert some general remarks to which a closer consideration of the preceding
tables naturally gives rise.

In the first place it will be observed that the agreement between theory and
experiments revealed by these tables is intimately connected with the circumstance
that we have disregarded stationary states for which n3 =  0, i. e. for which the
angular momentum of the electron round an axis through the nucleus parallel
to the electric force would be equal to zero (compare page 50). In fact, if such
states were taken into account (it follows from what has been said in the note on
page 50 that, due to the influence of the relativity modifications, the formulae
(70) and (71) would not be applicable to the states in question) we should expect
the appearance of a number of additional components of rather strong intensities;
the absence of such components may be considered as an experimental confirmat
ion of the non-existence of stationary states of the type under consideration. Further

D. K. D. Vidensk. Selsk. Skr., naturvidensk. og mathem. Afd., 8. Raekke, III. 3. 44
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it is of interest to notice that for a transition where one of the r’s is negative, i. e.
during which one of the n’s increases, the value of R' is always either very small
or equal to zero, and that in agreement with this the corresponding component, if
observed at all, is very weakx). It is easily seen that, from a mathematical point of
view, -the reason for the small values of R’ in such cases lies in the circumstance
that the coefficients CTl, ... t, in a convergent trigonometric series of the type (12)
not only converge to zero when the numerical value |ii -f- • • • r#| of the sum of the
r’s increases, but also when the sum |.rx|-f- . . .  |r*| of the numerical values of the
r’s increases, | rt +  . • • r, | remaining constant.

Special interest is afforded by transitions of the type (n'lf 0, n'8 — 0, n2', n'8). For
these transitions both R' and R" are equal to zero, but, as mentioned in the former
section, it is not allowable from this to conclude that such transitions are impossible,
in intimate connection with the fact that the amplitude of the vibration of fre
quency n\ — n > 3 +  (n'8 — n”)ws, although equal to zero for the motion in the
initial state and in the final state, is different from zero in the mechanically pos
sible states which lie “between” these states and which are characterised by Ix =
Xn\, I2 — (1 — X)n”, I3 — n" +  A(n'8 — n") (0 <  -1 <  1). As seen from the tables
weak components corresponding to transitions of the type under consideration seem
actually to have been observedi) 2).

For transitions of the type (a, a, c -> b, b, c) the amplitude of the vibration
of frequency (a — b)<ul -)- (a — b) oi2 is equal to zero, not only in the initial state
and in the final state, but also in the states characterised by l1 =  l i =  b +  X{a — b),
Is =  c, due to the symmetry of the motion of a state for which fx =  I2. From this
we may probably conclude that a transition of the type under consideration is
impossible. In the tables we meet with two examples of such a transition, viz.
(112 -»002) in Hp and (222 — 002) in Hd. In Hs no corresponding component has
been observed, but in Hfi a weak component has been recorded. The appearance of
this component, however, (if not due to “Gittergeister”) does not necessarily mean a
disagreement with the theory, but is possibly due to the influence of the relativity
modifications, as it will be discussed below.

When we consider the values of fl'2 and R”‘2 as affording an estimate for the
intensities of the components it must be remembered that in § 3 these values are
calculated with neglect of small terms proportional to the first and higher powers
of the electric force. It is easily seen, however, that we may look apart from these
small terms, not only on account of the preliminary and approximative character of
the discussion, but also because errors of at least the same order of magnitude are

i) It will be observed that the point under consideration has an interesting connection with
Sommerfeld’s suggestion that only such transitions would be possible for which all n’s in (99) decrease
or remain unaltered (hypothesis of the “Quantenungleichungen”. Compare A. Sommerfeld, Ann. d. Phys.
LI p. 24 (1916). Compare also E pstein’s discussion of the intensities of the Stark effect components).

t) (202 -> Oil) in Hjg; (302 — Oil) in Hy; (402 — Oil) in Hty. Components corresponding to (401 — 011)
in Hy and (501-*011) in H,y are recorded by Stark as questionable.
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already involved in the assumption that the different initial states, corresponding
to one and the same stationary state of the simplified hydrogen atom, are of equal
occurrence in the luminous gas. Moreover the uncertainty involved in the estimate of
the intensities from the density of the image of the components on the photographic
plate is so large that, with intensities of the electric force of the order of magni
tude used in S tark ’s experiments, a possible dependency of the relative intensities
of the components on the intensity of the force cannot be brought to light
experimentally. It may in this connection be of interest to remark that for states
for which / 2 =  0 the amplitudes of the vibrations of frequency t 1(u 1 -p r2ai2 - |-  r3a>3
occurring in the motion of the system will, also if the first and higher powers of
the electric force are taken into account, still be equal to zero if r2 is different from
zero (compare § 3, page 25), while in general the amplitudes of the vibrations of
frequency r1<w1 +  r2ö>2, where rx =  r2, will be small quantities proportional to the
intensity of this force in states for which Ix — I2.

Another point which we have disregarded in the calculations in § 3 is
the influence which the modifications in the laws of mechanics, claimed by the
theory of relativity, have on the motion of the electron. This influence will be
treated in detail in the paper mentioned in the beginning of § 4. Here it may only
be remarked that this influence will consist partly in a small effect on the frequen
cies of the Stark effect components, partly in a small change in the relative inten
sities of these components. Thus the components will, on account of the relativity
modifications, be displaced from the positions determined by (111) by small quantities
of the same order as »2/c2 where v is the velocity of the electron and c the velocity
of light, in such a way that the symmetry of the Stark effect will be disturbed.
The intensity of the electric field applied in Stark’s experiments is, however, so
large that such a dissymmetry cannot be detected. Further the effect of the relativity
modifications on the values of the amplitudes of the harmonic vibrations, in which
the motion of the electron can be resolved, will consist in the addition of small
terms of the same order as »2/c2f . Especially, in a state of the atom for which
I t =  / 2, the amplitudes of the vibrations of frequencies tj a>1 +  r2 <w2, where =  r2,
will no more be equal to zero but equal to a small quantity of this order1).
Components corresponding to transitions of the type (aac-> bb  c) must therefore
be expected to appear with an intensity of the same order as ( o2/ c2f ) 3. This might
probably explain the appearance of the component corresponding to (112 ->002) in
Hfi, mentioned in the above; this explanation is seen to claim that the intensity
of the component under consideration decreases for increasing intensity of the
electric field2).

*) The appearance of these vibrations of new frequencies in the states under consideration is
analogous to the appearance of vibrations with new frequencies and of amplitudes which are of the
same order as Fc2/U2 jn the problem treated in § 4.

s) On Stark’s photographs of the Stark effect of H s  for a field of 28 500 VoltlcM the relative
intensity of this component seems actually to be much stronger than on the photograph corresponding
to a field of 74 000 Volt/cM.

44*
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In § 5 it has been mentioned that we possess, quite independent of the estimate
which is based on the calculation of the amplitudes of the harmonic vibrations in
which the motion may be resolved, another source of information about the inten
sities in the fact that the polarised components in which an unpolarised spectral
line is split up will, when taken together, show no characteristic polarisation in
any direction. This allows of an instructive application in case of the Stark effect
of Ha. In fact, adding the values for R'2 and R"2 belonging to the parallel compo
nents, we get 1,70 and 0,66 respectively, while adding the R'2’s and R"2’s for the
perpendicular components, we obtain 2,19 and 1,78. From this it follows that the
intensities of the perpendicular components compared with those of the parallel
components must, for the hydrogen line under consideration, be expected to be
considerably smaller than it would follow from a direct comparison with the values
of R'2 and R"2. Especially the component corresponding to a transition between
two circular orbits perpendicular to the direction of the electric force, (003 002),
will be much less intense than the values of R'2 and R"2 would indicate. In an
even more striking way a consideration of this kind applies to the ultra-violet
hydrogen line (2 -* 1), for which the values of the n’s in the stationary states are
still smaller. Thus, under the influence of an electric field, this line will split up in
two parallel symmetrical components of equal intensity, (101->001) and (011->001)
(R'2 =  0,33, ƒ?"3 =  0), and one perpendicular component (002 ->001 )(R'2 =  1, R”2 =  1),
and since the sum of the intensities of the former must be equal to the intensity of
the latter, we see that the tendency for a transition between the two circular orbits
[002] and [001] is again much less than it might have been expected from a direct
consideration of the values of R '2 and R"2. In the discussion in § 7 of the fine struc
ture and in § 8 of the Zeeman effect of the hydrogen lines we shall meet with
analogous phenomena as regards the transitions between circular orbits. In the case
of the Stark effect of Hfi, Hr  and Hs  there are so many components that it is impos
sible to draw any further conclusion from the fact that the sum of the intensities
of the parallel and of the circular components must be the same.

The fact that the tendency for a transition between two stationary states in
which the electron describes a circular orbit is less  than would be expected from
the corresponding values of the R’s {R' =  R" =  1) stands probably in close connec
tion with the fact, to be mentioned in the following (see page 61), that the ten
dency for other transitions to final states in which the electron describes a circular
orbit (for such transitions R" is always equal to zero) is l a r g e r  than would be
expected from a consideration of the amplitudes of the corresponding harmonic
vibration in the motion of the electron. Thus both these facts clearly indicate a
tendency of the estimate of the probability of transition between two stationary
states based on a consideration of the motion in these stales (and in the states
lying “between”) — in contrast to other mechanical states of the system — to give
exaggerated results in cases where these motions show singularities. On the whole it
will be seen, from the following discussion, that the experiments on the Stark
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effect not only afford a confirmation of the validity of the considerations in § 5,
but also, in many respects, seem to give indications of the way in which these
considerations may be extended.

Let us now discuss more closely each of the lines considered in the tables.
As regards Ha it is seen that the , intensity of the undisplaced perpendicular

component has been found to be the strongest of all components observed, in agree
ment with what should be expected from the large values of the corresponding
quantities R' 2 and R'"2. Further it is seen that the increase of the intensities of the
parallel components in the direction of increasing A is very well illustrated by the
values of the corresponding R2’s. In addition to the components observed, the
theory predicts the existence of weak parallel components at A =  -j- 8 and of weak
perpendicular components at J  =  -j- 5 and J  =  _j_ 6.

For Hp Stark records parallel as well as perpendicular components corres
ponding to A =  2, 4, 6, 8, 10 and 12, but, according to Stark’s own statement, it
was very difficult to obtain good photographs of the Stark effect of this line, and
a long exposure was necessary in order to obtain all components on the plate.
These difficulties may account for the small discrepancies which seem to exist
between the different observations on one hand and between these observations
and the theory on the other hand, since during the long exposure any unreal
component (“Geist”) due to the imperfection of the grating would have special
opportunity to appear. Thus according to the theory no parallel components at
A =  4 (and A =  12) and no perpendicular components at A =  0 and A =  8
should appear, while Stark’s photographs would indicate the existence of such
components. (It must, however, be remarked that, as seen from the table, the
perpendicular component at A =  8 was not recorded in Stark’s publications before
1915). Further the intensity of the perpendicular component A =  6 would according
to the theory be stronger than the perpendicular component A =  4, in agreement
with the photograph reproduced in fig. 5 on Plate II, but in disagreement with the
\alues 9,7 and 12,6 for the relative intensities of these components appearing in the 10th
column of Table II. The possibility for the appearance of a parallel component at
A =  0 has been discussed on page 58 and 59. On the whole it will be seen that the
agreement between the theory and the observations is satisfactory, and it seems
probable that this agreement will be improved by further experiments.

In case of the Stark effect of Hy it is seen that the agreement between the
measurements and the estimate afforded by the theory is rather distinct for most
components; but the perpendicular component at A =  0 (113->002), and also the
parallel component at A — 5 (212 —> 002), appear undoubtedly stronger than we
would expect from the corresponding values of R '2. This may have connection with
the fact that, for the corresponding transitions, the final states correspond to a
circular orbit of the electron (compare page 60).

In case of the Stark effect of Hfy it is especially satisfactory that it has been
possible to explain the non-appearance of a component corresponding to the trans-
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Par.

Transition J

331 -> Oil 2
322 -> 002 7
421 -> 101 12
421 ->' 011 16
412 -> 002 21
511 -> 101 26
511 -> Oil 30
502 -> 002 35
601 -> 101 40
601 -> Oil 44

223 -> 0021 0
331 -> 002/ 0
322 -> 101 5
322 -> Oil 9
313 -> 0021 14
421 -> 0021 14
412 -> 101 19
512 -> Oil 23
403 -> 0021 28
511 -> 002/ 28
502 -> 101 33
502 >̂ 011 37
601 -> 002 42

Table V.
He, 3971,2 A (7 -» 2). .

displ. (J  =  1; 100 000 V/cM) =  1,01 A

'  T a
Ta R R' R°- f l " s

3 2 0 •Oil 0 .00OI 0

3 2 0 .o04 0 .00OO 0
3 2 0 .0OO5 0 .00OO 0
4 1 0 .o20 0 .oo04 0
4 1 0 .0I 6 0 .oo03 0
4 1 0 .014 0 ,oo02 0
5 0 0 •o31 0 . .00IO 0
5 0 0 .046 0 ,oo21 0
5 0 0 .o49 .o2G ,oo24 .0007

6 — 1 0 0 0 0 0

2 2 1 .o22 0 ■oo05 0
3 3 —1 .012 0 .00OI 0
2 2 1 .019 0 ,oo04 0
3 1 1 .017 0 .oo03 0
3 1 1 .023 0 .oo05 0
4 2 —1 .o il 0 .00OI 0
3 1 1 .o22 0 .oo05 0
4 0 1 .014 0 ,oo02 0
4 0 1 .033 0 .ooll 0
5 1 - 1 .0O8 0 .00OI 0
4 0 1 ,o33 .o30 .ooll .0009
5 —1 1 0 0 0 0
6 0 — 1 .o07 0 .00OO5 0

ition (222 -> 002). (The relativity modifications would, as mentioned above, give rise
to the appearance of this component with a small intensity inversely proportional
to the square of the electric force, but it is easily seen that in the present case this
effect must be expected to be much less than in the case of the analogous compo
nent in Hfi.) A discrepancy between the values of R'2 and the observed intensities
seems to exist in the case of the weak parallel components. Thus the component at
J  =  12 appears stronger, while the component at A =  20 appears perhaps weaker
than it would be expected from the corresponding values of R 'a. Further the per
pendicular component at A =  6 appears stronger than we should expect from the
table. These discrepancies are more or less analogous to those observed in case of
H y ’, thus the parallel component at A —  12 and the perpendicular component at
A ~  6 may be considered as analogous to the components A — 5 and J  — 0 in
Hr, and correspond also to transitions for which the electron in the final state [002]
describes a circular orbit. As regards the problems in question it may further
be observed that, especially in the case of Hy and H the value n — 2 in 'the final
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states is so small in comparison with the value of n in the initial states, that we
cannot be astonished to find that a simple consideration of the values of the R2’s
in the stationary states is unable to account for the finer details of the intensity
distribution. In a case like this we are naturally induced to try to improve the esti
mate of the relative components by taking into account the values of the R ’s in
the states lying “between” the initial states and the final states (compare § 5, page 48);
it may, however, be shown that by means of such a consideration the estimate
would not be essentially modified as regards the intensities of components corres
ponding to transitions for which the electron in the final state describes a circular
orbitl).

In the preceding pages we have compared the theory with the observations on
the Stark effect for the first four lines of the Balmer series. Owing to the agreement
obtained it seems possible to predict the character of the Stark effect of other
hydrogen lines which have not yet been experimentally investigated, and which
correspond to other values of n' and n" in (111). In Table V we have therefore
given a scheme of the values of the R2’s referring to the Stark effect components
of Hs (7 —> 2), and in fig. 6 on Plate II a schematical picture of the theoretical esti
mate of the intensities of these components, obtained, just as the analogous schemes
in fig. 1 . . .  4, by taking the lengths of the lines which represent the components
proportional to R '2 R"2. It must, however, be remarked that we may expect, in

*) This will be seen from a consideration of the following table in which, for the parallel compo
nents of H,y, we have, besides the values of R  in the initial state aud in the final state, given also the
value Rm which JR takes in the mechanical state lying in the middle between the initial and the final

state |  If. =  ^ («( _j_ n^') h, (k  =  1, 2, 3 ) j .  The values of Rm give no indications of a tendency for the

component A —  12 to appear stronger than it  would be expected from the values <Jf R' only. On the
other hand the ratio  of R m to R' is, for the component A —  20, much less than  for the other compo
nents; this may be connected w ith  the fact, mentioned in the text, th a t th is component appears w ith

Transition A JR' Rm it"

222 -> (1, 1, 2) -> 0 0 2 0 0 0 0
321 -> (2, 1, 1) -> 101 4 | ,o08 o09 0
321 -> (1.5,1.5,1) -> Oil 8 .027 .023 0
312 -> (1.5,0.5,2) -> 002 12 ,o20 ,ol7 0
411 -> (2.5,0.5,1) -> 101 16 ,ol6 .014 . 0
411 -> (2, 1, 1) -> 011 20 .o45 .o23 0
402 -> (2, 0, 2) -»  002 24 j ,o60 .o46 0
501 -> (3, 0, 1) -> 101 28 I .066 .o65 •o43
501 -> (2 5,0.5,1) -> 011 32 0 .o07 0

less intensity than  was to be anticipated from the value of R'. The value of Rn  for the component
A =  32, for which both R' and R" are equal to  zero, suggests th a t this component will appear w ith an
intensity of the same order of magnitude as the component A =  4.
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analogy with what was the case for Hr and Hs, that this estimate will be exagger
ated in the case of components corresponding to transitions for which the electron in
the final states describes a circular orbit (J  =  7, d =  21; J  =  0, d =  14), in
such a way that these components will appear stronger than it would be expected
from the values of R'8 in Table V.

The considerations in this chapter may naturally also be applied to the pro
blem of the Stark effect of the lines of th e  he l ium s p e c t r u m  which correspond to
N =  2 in (105). The experimental data for these lines, however, are not nearly so
complete as for the hydrogen lines, only a few measurements referring to the strong
visible line 4686 A (4 -* 3) and to the ultra-violet lines 3203 A (5-» 3) and 2733 A
(6-> 3) having been published. When a strong electric field is applied we must
expect that the lines in question will show a symmetrical resolution in a number
of components the frequencies of which can be obtained from (111), and an estimate
of the relative intensities of which can be obtained from the preceding considera
tions. Table VI contains the values of R'2 and R"2 corresponding to the components
of the Stark effect of 4686 A, while fig. 7 on Plate III contains the schematical pic
ture of the theoretical intensities. An observation on the Stark effect of the 4686 A
line in helium for a comparatively small electric field has been published by E v a n s

and C r o x s o n 1) and is also contained in a recent paper by N y q u is t 2) on the effect of
an electric field on the helium spectrum. The photographs of both these authors show
distinctly that the resolution of the line in question is symmetrical, but the electric
field used in their experiments was not strong enough to separate the different
components the existence of which is claimed by the theory. Thus E v a n s  and C r o x s o n

observed only a symmetrical broadening of the line, but in N y q u is t ’s photographs
the line in question was resolved into an undisplaced perpendicular component
and two symnfetrical parallel components, which are indicated in fig. 7 by arrows.
The distance of each of the latter from the undisplaced line amounted to 3,2 A for a
field of 100.000 Volt/cM (the largest intensity of the field in the experiments amounted
to 38600 Volt/cM). This would correspond to a value of J equal to 3>2/o,7i =  4,5
which value is seen to be in excellent agreement with the position of the centre of
gravity to be expected for the strong theoretical parallel components at J  — 2, 3, 4,
5 and 6 (compare Table VI and fig. 7).

Measurements on the effect of an electric field on the ultra violet helium
lines 3203 A (5->3) and 2733 A (6-»3) have recently been published by St a r k  j).
Also in these experiments the intensity of the electric field, which amounted to
28500 Volt/cM, was not strong enough to obtain separately the different theoretical
components. Tables VII and VIII, which are arranged in the same way as the pre
ceding tables, contain the values of R’2 and R"3 corresponding to these components,
while fig. 8 and 9 on plate III contain a schematical picture of the results obtained in

’) E. J. Evans and C. Croxson, Phil. Mag. XXXII, p. 327 (1916).
*) H. Nyquist, Phys. Rev. X, p. 226 (1917).
s) J. Stark, Ann. d. Phys. LVI, p. 569 (1918).
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Table VI.
Helium, 4686 A (4->3).

displ. (d =  1; 100 000 Volt/cM) =  0,71 A

Transition J *1 Ts Ts r R ' R* it"8

121 - >  021 2 1 0 0 .37 0 .14 0
112 012 3 1 0 0 .42 0 .1 8 ' 0
211 -* • 111 \ 4 1 0 0 .55 .46 .30 .21
103 - »  0 0 3 / 4 1 0 0 .45 0 .21 0
202 -» • 102 6 1 0 0 ' .57 .60 .33 .25
301 - »  201 6 1 0 0 .63 .62 .40 ‘.39
211 - >  021 10 2 —1 0 .01 0 .00 0
202 - >  012 • 11 2 —1 0 0 0 0 o ‘
301 - >  111 , 12 2 —1 0 0 .01 0 .00
301 021 18 3 —2 0 0 0 0 0

004 —» 0 0 3 1 0 0 0 1 1,00 1,00 1,00 1,00
112 —► 111 i 0 0 0 1 .67 .58 ' .45 .33
112 - >  003  J 0 1 i —1 .19 0 .04 0tgrH

1 0 0 1 .81 .75 .66 .56
211 -♦ 102 / 1 1 l —1 .28 0 .08 0
202 -> 201 2 0 0 1 .62 .49 .39 .24
112 -» 021 6 1 —1 1 .04 0 .00 0
103 0121 7 1 —1 1 0 0 0 0
211 -» 0 1 2 / 7 2 0 —1 .01 0 .00 0
202 —» 111 \ 8 1 —1 1 0 .04 0 .00
202  —» 0 0 3 / 8 2 0 -rl .04 0 .00 0
301 -» 102 9 2 0 — 1 .04 .02 .00 .00
202 -*  021 14 2 —2 1 0 0 0 0
301 -» 012 .  15 3 — 1 - 1 0 0 0 0

these tables. In the case of the line 3203 A Stark records two symmetrical parallel and
two symmetrical perpendicular components which for a field of 100.000 Volt/cM would
be displaced from the original line by an amount 3,8 A and 1,9 A respectively.
These displacements would correspond to d =  1,9/0,33 =  5,7 and J =  3,8/0,33=  11,5
respectively; as seen from fig. 8, in which the positions of the components observed
by Stark are indicated by arrows, this is in excellent agreement with what we theoreti
cally should expect. In the case of the line 2733 A Stark records two symmetrical
pairs of parallel components, which for a field of 100.000 Volt/cM would be displaced
from the original position of the line by 1,2 A and 5,1 A respectively, while their
relative intensities are indicated by the numbers (1) and (6) respectively; and one
symmetrical pair of perpendicular components, which for a field of 100.000 Volt/cM
would be displaced from the original line by 3,7 A, and the relative intensities of
which are indicated by the number (4), together with an undisplaced perpendicular
component, the intensity of which is indicated by the number (7). The values of d

I). K. D. Vidensk. Selsk. Skr., 8. Rtekke, naturvidensk. og mathem. Afd. III. 3. 45
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Transition

Par.

221,-» 111 Vj
*113 =» 003 ƒ I
212 -► 102
311 ->• 201 j
221'—>"021
212 -> 012
311 -»  111 1
203 -»  003 /
302 -> 102
401 ■-> 201
311 -> 021
302 -> 012
401 -» 111
401 -► 021

Perp.

122 - »  021
113 -*  0121
221 - »  012 /

212 - * •  111 1
104 —» 003 >
2 1 2  ^  0 0 3 J :

203 -»  1021
311 -»  102/
302 -»  201 I
212 - »  021 j
203 012 \
311 -> 012 /
302 -*  111\
302 -»  003/lj
401 -*  102 |j
302 -»  021 I
401 -»  012

Table VII.
H elium , 3203 A (5 -> 3).

dispi. (J =  1; 100 000 Volt/cM) =  0,33 A

J *1 T a r» K 11" J fs fl"s

0 1
I

1 0 0 0 0 0
0 1 1 0 0 0 0 0
2 1 1 0 .02 0 .oOO 0
4 1 1 0 .03 0 .oOl 0
6 2 0 0 .10 0 .olO 0
8 2 0 0 .10 0 ,o09 0

10 2 0 0 .17 .10 .#29 .009
10 2 0 0 .15 0 .023 0
12 2 0 0 .19 .13 .037 .0I8
14 2 0 0 .22 .20 ,o47 .o4i
16 3 —1 0 .01 0 .oOO 0
18 3 —1 0 0 0 0 0
20 3 —1 0 0 .01 0 .oOO

26 4 —2 0 0 0 0 0

1 1 0 1 .08 0 .0O6 0
3 1 0 1 .12 0 ,ol5 0

3 2 1 —1 .05 0 o03 0
5 1 0 1 .14 .10 .019 .o il
5 1 0 1 .18 0 .o33 0
5 2 1 —1 .04 0 .o02 0
7 1 0 1 .20 .20 .o40 .o39
7 2 1 —1 .07 0 ,o05 0
9 1 0 1 .18 .16 .o32 .027

11 2 — 1 .025 0 .oOl 0
13 2 —1 1 0 0 0 0
13 3 0 -1 .02 0 .0OO5 0
15 2 —1 1 0 .015 0 O.00
15 3 0 —1 :02 0 .0005 0
17 3 0 - 1 .02 .01 .0005 .o00

21 3 —2 1 0 0 0 0

23 4
1

- 1 - 1 0 0 0 0

corresponding to the observed parallel components are 1.2/0,24 =  5,0 and 5.1/0,24 — 21,2
respectively, and the values of J  corresponding to the observed perpendicular
components are 3,7/0,24 =  15,4 and 0 respectively; as regards the outer parallel compo
nents these values are, as seen from fig. 9, where again the positions of the compo
nents observed by Stark are indicated by arrows, in excellent agreement with the
positions of the centres of gravity of the strongest components in the theoretical effect.
As regards the two inner parallel components, however, we should, on the theory,
rather expect the appearance of a single diffuse line in stead of two separate compo-
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Table VIII.
Helium, 2733 A (6 -*■ 3).

displ. 100 000 Volt/cM) — 0,24 1

T ransition J Ts la K R" IT8 R"2

231 -► 0211 0 2 1 0 •o34 0 ■ool2 0
321 -»  201 / 0 1 2 0 .034 0 .0012 0
222 -> 012 3 2 1 0 ,o30 0 .oo09 0
321 -► 111 1 6 2 1 0 •o28 .o30 .00O8 .oo09
213 -> 003 ƒ 6 2 1 0 .o20 0 .oo04 0
312 -»■ 102 9 2 1 0 .015 0 .oo02 0
321 ->  0211 12 3 0 0 .046 0 .oo22 0
411 -> 201 / 12 2 1 0 .o06 0 .00OO 0

Par. 312 —> 012 15 3 0 0 o64 0 .oo40 0
411 -> 111 \ 18 3 0 0 •086 .o24 .oo73 .00O6
303 -»  0 0 3 / 18 3 0 0 .o79 0 .oo63 0
402 — 102 21 3 0 0 .101 .o52 .olOl .oo27
411 -»  021i 24 4 —1 0 .olO 0 .00OI 0
501 —> 201 / 24 3 0 0 .114 .101 o.l30 .olOl
402 ->  012 27 4 —1 0 0 0 0 0
501 -> 111 30 4 —1 0 0 ■0Ü4 0 .00OO
501 -► 021 36 5 —2 0 0 0 0 0

222 -> 111 | 0 1 1 1 .06I •o67 .oo37 .oo37
114 ->  003 [ 0 1 1 1 .062 0 ,oo38 0
222 -*  0031 0 2 2 —1 .023 0 .oo05 0
213 102 1 3 1 1 1 .06O 0 •oo36 0
321 —► 1 0 2 / 3 2 2 —1 .o31 0 ,oo09 0
222 -> 021 \ 6 2 0 1 .023 0 .oo05 0
312 -»  201 / 6 1 1 1 .046 0 .oo21 0
213 -*  012 \ 9 2 0 1 ,o46 0 .oo21 0
321 -*• 012 / 9 3 1 —1 .017 0 .oo03 0
312 ->  111 | 12 2 0 1 .o55 •o23 -oo31 .oo05

Perp. 204 -»  003 } 12 9 0 1 .079 0 .oo62 0
312 -»  003 J 12 3 1 —1 .017 0 .oo03 0
303 -> 102 \ 15 2 0 1 .089 .079 .008O .oo62
411 -> 102 / 15 3 1 —1 .029 0 ,oo09 0
312 -*• 021 \ 18 3 - 1 1 .013 0 .oo02 0
402 —» 201 / 18 2 0 1 ,o84 ,o84 .oo71 .oo71
303 -> 0121 21 3 —1 1 0 0 0 0
411 -> 0 1 2 / 21 4 0 —1 .014 0 .oo02 0
402 —» 111 1 24 3 — 1 1 0 .o07 0 .00OO
402 —> 003 / 24 4 0 —1 .013 0 .oo02 0
501 -»• 102 27 4 0 —1 .013 ,o05 •oo02 .00OO
402 021 30 4 —2 1 0 0 0 0
501 -»• 012 33 5 —1 —1 0 0 0 0

45*
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nents, because the theoretical intensities of the parallel components at A =  6 and the
parallel component at Ó =  0 are of the same order of magnitude. It is therefore
of interest to note that St a r k  (see loc. cit., p. 575) only has observed a single, very
weak, diffuse component, and that he from analogy with the character of the
Stark effect of Hs for small intensity of the electric force, has suspected this
component to consist of two symmetrical components.

In connection with the above considerations it may be of interest to emphasize
that a comparison of the observations on the Stark effect of the helium lines in
question with the results to be expected on the quantum theory could not have
been obtained by a direct consideration of the frequencies of the components, cal
culated by means of relation (1) from the values of the energy in the stationary
states of the atom, but that it was of essential importance for the above comparison
that we were able to obtain an estimate of the relative intensities of these compo
nents by means of a closer consideration of the motion of the electron in the atom.

§ 7. The fine structure of the hydrogen lines.
In this chapter we will give, from the point of view of Bo h r ’s theory, a dis

cussion of the intensities of the components of the fine structure of the hydrogen
lines and of the analogous helium lines, and it will be shown that it is possible to
account in a suggestive way for the observations, especially in the case of the helium
lines, the fine structure of which has been carefully investigated by P asc h en  ') .  Let us
first consider the general expression for the frequency of the radiation which may
be emitted from a hydrogen atom which is uninfluenced by external forces and in
which the motion of the particles is assumed to be governed by the laws of rela
tivistic mechanics. According to (99) the stationary states of the atom are fixed by
putting the quantities Ix and /2, defined by (23) in § 2, equal to . entire multiples of
P lan ck’s constant h (compare page 39):

l t =  itjA, I2 =  n2/i. (117)
While Hj may take one of the values 0, 1, 2 . . . ,  it must be assumed that n2

can only take one of the values 1, 2, 3 . . .  In fact,- n2 == 0 would correspond to a
motion in which the angular momentum of the electron round the nucleus would
be equal to zero, but such a motion can obviously not correspond to a stationary
state of the atom because the electron would collide with the nucleus. Introducing
(117) in (24) and writing n we get, with neglect of small quantities of the
same order of magnitude as the second and higher powers of (°/c)2, for the total
energy of the atom in the stationary states

E = 27t2 N2 é  m
h*n*

(xNe*\* (  3 , 4 \
\ he ) \ ns ~̂  nn2/

( 118)

*) F. P aschen, Ann. d. Phys. L., p. 901 (1916).
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Denoting the values of nlt n2 and n in the initial state and in the final state of a
given transition by n ',  n'2, n' and n", n", n" respectively, we get according to (1) for
the frequency of the radiation emitted during this transition

where
V =  V0 - \ - V j  +  V2 , (119)

v  I 1 1 \ V
"o -  K N  j  ’ K -------- ¥ ~

3 „  . / 1 1 \ 2?re2
V1 4 Ka N  (n"4 n'4) ’ “ — he

V *  =  £ a 8lV4 (n^  ~  n ' T r f J  ■

I  M  V )
\M -\-m ] ( 120)

( 121)

( 122)

The expression for v0 coincides with the simple formula (105) for the fre
quencies of the lines of the hydrogen spectrum (N  =  1) and of the analogous
helium lines (N  =  2), which holds when the relativity modifications are neglected.
The expression for v2 is determinative for the frequency differences of the fine
structure components of a spectral line corresponding to given values of n' and n",
while v2, which contains only n' and n", has influence only on the absolute values
of the frequencies of these components. In the following a hydrogen line which
corresponds to a transition from an initial state n — ri to a final state n — n" will
again be characterised by the symbol (n' —> n"). In the same way a transition be
tween an initial state nx =  n'„ n2 = n'2 and a final state n1 =  n\, n2 =  n" will be
denoted by (n ', n'2 -* n", n"). The ensemble of components corresponding to all imagin
able transitions between stationary states for which ri and n"  have the same values
will be obtained by letting n'2 assume each of the values 1, 2, . . .  n' and n" each
of the values 1,2, . . .  n". If all transitions between stationary states were possible,
the fine structure of a given line would therefore consist of a set of n' x  n"  compo
nents. On account of n" being smaller than n', this set may conveniently be des
cribed as consisting of n"  congruent groups each containing n' components. Thus
the line (3 -» 2) would show two congruent triplets, the line (4 -> 3) three congruent
quartets, a. s. o. It must, however, be remarked tha t these groups will in general
partly overlap each other (compare fig. 10, 11, 13 on Plate IV). Due to the small
value of the constant « appearing in (122), the frequency differences between the
components of a given line are so small that it must be expected that in general
they cannot be separated entirely by the instrum ent used for the observations. It
is easily seen, however, that this will hold to a less degree for the helium lines
(IV =  2) than for the hydrogen lines (N =  1), because, due to the factor N2 in (120)

M The factor —, which is of importance if the theory is compared with measurements of the
absolute values of the frequencies of the fine structure components, does not appear in (118), because
in the calculations of § 2 the mass of the nucleus was considered as infinite compared with that of the
electron (compare § 5, page 40).
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and the factor Nl in (122), the distances between the components will for a given
helium line be much larger than for a hydrogen line in the same part of the
spectrum. In conformity with this, it has for the lines of the Balmer series in
hydrogen been possible only to establish the existence of narrow doublets, the
members of which must be expected each to correspond to several components of
the theoretical fine structure, while for some of the helium lines, especially for the
lines (4 -»3) and (5 -> 3), Paschen has been able to detect a considerable number
of components. For these lines P aschen was able to identify in detail all compo
nents found by him with components or groups of components to be expected on
Sommerfeld’s theory and the experimental value for the constant a, which may be
found from the observed frequency differences of the components, was in good
agreement with the theoretical value (« =  =  7.30-10~3]. Moreover the absolute
values of the frequencies gave, when the calculations were based on the complete
expression (119) for v, values for the constant K which, within the limit of experi
mental errors, were the same for each of the different hydrogen lines (K  — c. 109677.7)
as well as for each of the different helium lines (K — c. 109722.1), while the ratio

1 -4"  mjMnbetween these two constants was in agreement with the theoretical value j . miUHe' '
While Sommerfeld’s theory thus afforded a convincing interpretation as regards

the frequencies of the fine structure components, it was, however, in the simple
form in which it was given unable to account for the i n t e n t i t i e s  with which
these components appeared. Especially it seemed difficult to explain the remarkable
differences shown by the spectrograms of the fine structure of one and the same line
which were made under different experimental conditions. Thus, in the case of the fine
structure of the helium line 4686 A, the intensity distribution for the different compo
nents on P aschen’s photographs showed pronounced differences if a steady voltage had
been applied to the vacuum tube containing the gas (“Gleichstrombild”) or if the
the tube had been exposed to an interrupted spark discharge (“Funkenbild”). In a
recent paper Sommerfeld 3) has made an attempt to explain the intensities of the
fine structure components by comparing the intensity of every component with the
product of the a-priori probabilities of the initial state and of the final state of the
corresponding transition, obtaining in this way what he called a “typical intensity
distribution”, and by discussing the possible modifications in this distribution which
the experimental conditions might produce. By such considerations, however, it
was not found possible to obtain a satisfactory agreement with the observations, and
Sommerfeld was led to the conclusion that the intensities cannot be explained statis
tically” but claimed an explanation which takes into account the mechanism of
the transition process and which therefore might be called “dynamical”. From the
point of view of Bohr’s theory this conclusion is evident; in the limit of large n’s,
for instance, the intensities can accordinjg to this theory directly be obtained from

') F. Paschen, loc. cit. p. 935.
s) A. Som m erfeld , Ber. Akad. München, p. 83, 1917.
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the properties of the motion of the electron in the atom, but can obviously not be
found from an examination of the a-priori probabilities of the stationary states,
although of course these quantities must be taken into account in the detailed
discussion of the intensities.

I. The relative intensities of the components of the fine structure of the lines of the
spectrum of the undisturbed hydrogen atom.

In order to discuss the interpretation of the observed intensities which can be
obtained from the considerations in § 5, let us first suppose that the hydrogen atom
is entirely uninfluenced by external forces. In that case the motion of the electron
will take place in a plane; moreover the position of this plane would remain un
altered if the electron emitted radiation according to the laws of ordinary electro
dynamics. From the formal connection with ordinary electrodynamics in the limit
of large n’s we must therefore expect that also on the quantum theory the plane
of the motion remains unaltered during a transition between two stationary states
and that the emitted radiation is polarised in this plane. On the other hand the
total radiation emitted by a large number of atoms will show no characteristic
polarisation, since the position in space of the plane of the orbit in the stationary
states is undetermined. Further we have seen in § 2 (compare the formulae (37)
and (38)) that the motion of the electron may be considered as a superposition of
a number of circular harmonic vibrations of frequencies |r 1<w1-j-a>2|> where eo1 and
w2 are the frequency of the radial motion and the mean frequency of the angular
motion respectively, while rx is an integer which may assume all positive and
negative values including zero. According to the considerations in § 5 it is there
fore necessary to assume that only such transitions between stationary states will
be possible for which n2 decreases or increases by 1, i. e. for which the angular
momentum of the electron round the nucleus decreases or increases by ft/2w, and
that the emitted radiation will be circularly polarised in a direction which is the
same as or the opposite of that of the direction of revolution of the electron in its
orbit respectively.1) It is thus seen that a large number of the ensemble of the
n' x  n" imaginable components of the fine structure of a line (n' —> n") will corres
pond to transitions which must be regarded as physically imposible, the a-priori
probability for their spontaneous occurence being equal to zero, and that we may
only expect the appearance of 2n"— 1 components, n" of which correspond to
n'3— n" =  l and n" — 1 of which to n'2 — n'2 =  — 1.

In order to discuss the intensities with which, according to Bohr’s theory,
these components may be expected to appear, it will first of all be necessary to
discuss the modifications which on account of the degenerate character of the
system in question must be introduced in the considerations of § 5 in order that
they may be applied in the present case. As a consequence of the degeneration the

’) Compare Bohr, loc. cit. Part II, p. 68.



72356

a-priori probabilities of the different stationary states are not equal to each other but
they are, in the case under consideration, proportional to the values of n2 x). Hence if we
consider the ensemble of stationary states for which the value of n =  nx -f- n2 is
the same, the numbers of atoms in the luminescent vacuum tube present in these
states may be expected to be approximately proportional to the values of n2 in
these states. From this it follows that the intensitities with which on ordinary
electrodynamics the different radiations of frequencies |T1a»1+o»a|, where |r x +  l | has
a given entire value, would be emitted from the atoms in states corresponding to
a given value of n are not simply proportional to the squares of the amplitudes
of the vibrations of these frequencies in these states, but proportional to these
squares multiplied by n2. From the formal connection between the quantum theory
and the ordinary electrodynamical theory of radiation we are therefore, in analogy
with the considerations in § 5, led to expect that, as a first approximation, an
estimate for the relative intensities of the fine structure components (n;, n'2 -> n", n")
of a given line may be obtained by comparing the intensity of each component
with the quantities n'2fl'8 and n2i?"8, where R' and R" represent, just as in § 6, the
relative amplitudes of the circular harmonic vibrations of frequency (n; — n") w1
_|_ (n' — n'2) m2 occurring in the motions in the initial and final states, i. e. the
ratios between these amplitudes and the half major axes of the orbit.

In the tables IX and X we have given schemes for the theoretical estimate of
the intensities of the fine structure components of a number of spectral lines.
Tabel IX refers to the lines (3-+2), (4->2) and (5 ->2), which correspond to
Ha(6563 A), Hp(4861 A) and Hy(4340 A) in the hydrogen spectrum; Table X refers
to the lines (4 -*■3), (5 -> 3), (6 -♦ 4) and (7 -*• 4), corresponding to 4686 A, 3203 A,
6560 A and 5411 A in the helium spectrum.

The first column contains the transitions giving rise to the different compo
nents, characterised by their symbol (nj, n'2 -»n", n2).

The second and third columns contain the values of rx =  n\— n" and r2=  n'2—n".
For each line the components corresponding to r2 =  + 1  and r2 — — 1 are separated
by a dotted line.

The fourth and fifth columns contain the values of R' and R" which may be
found from (37) by introducing (117), and which accordingly have been calculated
by means of the formula

R( r — — 2 ^ { ( l +  s ') J r_  i(rs )  —  (1 — e ) ̂ t+i (re ) /  * (123)

where
£' =------5 ? - =  —8 , e =  1/T ^F 8 , r =  rx+ 1.nx+ n 2 n

In order to apply (123) in case of transitions for which r2 is equal to — 1 we must
obviously introduce for r  the negative value r  ■== — (n'— n").

') Bo h r , loc. cit. Part I, p. 27.
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Table IX.

Transition Ta . R R ' n'aR 1 n'9'fl"s Wave length

03 — 02 0 1 1,00 1,00 3,00 2,00 6562,84 A
12 — 11 0 1 0,71 0,59 1,01 0,35 2,72 6563 A
21 — 02 2 —1 0,19 0 0,04 0 2,89 (3 — 2)

13 — 02 1 1 0,228 0 0,156 0 4851,36 A
22 — 11 1 1 0,106 0,206 0,085 0,042 1,27 4861 A
31 — 02 3 - 1 0,057 ... o'... 0,003 0 1,37 (4 — 2)

23 — 02 2 1 0,106 0 0,034 0 4340,49 A Hr .
32 — 11 2 1 0,101 0,108 0,020 0,012 0,42 4340 A
41 — 02 4 —1 0,038

°
0,001 0 0,50 (5 — 2)

Table X.

Transition T i T2 R R ' n'aR i n ’̂ R ’1 Wave length

04 — 03 0 1 1,00 1,00 4,00 3,00 4585,81
13 — 12 0 1 0,775 0,71 1,80 1,01 5,71 Helium
22 — 21 0 1 0,59 0,49 0,71 0,24 5,38 4686 A

22 — 03 2 —i 0,14 0 0,04 0 5,89 (4 - 3)
31 — 12 2 — 1 0,22 0,09 0,05 0,02 5,92

14 — 03 1 l 0,222 0 0,198 0 3203,17
23 — 12 1 l 0,221 0,227 0,146 0,103 3,12 Helium
32 — 21 1 i 0,188 0,175 0,071 0,031 2,95 3203 A
32 — 03 3 — l 0,051 0 0,005 0 3,19 (5 - 3)
41 — 12 3 — l 0,081 0,021 0,006 0,001 3,17

15 — 04 1 l 0,215 0 0,231 0 6560,19
24 — 13 1 l 0,227 0,228 0,206 0,156 60,15
33 — 22 1 i 0,206 0,206 0,127 0,084 60,06 Helium
42 — 31 1 l 0,175 0,173 0,061 0,030 59,78 6560 A
33 — 04 3 - i 0,039 0 0,005 0 60,21 (6 - 4)
42 — 13 3 — l 0,060 0,014 0,007 0,001 60,19
5 1 — 22 3 — l 0,084 0,039 0,007 0,002 60,18

25 — 04 2 l 0,105 0 0,055 0 5411,60 A
34 — 13 2 l 0,104 0,100 0,043 0,030 1,57
43 — 22 2 l 0,103 0,108 0,032 0,023 1,50 Helium
52 — 31 2 l 0,089 0,086 0,016 0,007 1,30 5411 A
43 — 04 4 — l 0,027 0 0,002 0 1,61 (7 - 4)
52 — 13 4 — l 0,035 0,005 0,002 0,000 1,59
61 — 22 4 — l 0,044 0,025 0,002 0,007 1,55

D. K. D. Vidensk. Selsk. Skr., nuturvidensk. og m athem . Afd., 8. Raekke, 111. 3 . 46
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The sixth and seventh columns contain the values of naR'2 and n"R"2, which
may be expected to afford an estimate for the intensities.

The eighth column contains the theoretical values for the wave lengths of the
components calculated by means of the formulae (119), (120), (121), (122) and are
taken from P aschen’s paper.

When discussing the estimate afforded by the preceding tables, it will first of
all be remarked that the values of n'3R'2 and ri'R”* for transitions for which n2
decreases by 1 are much larger than for transitions for which n2 increases by 1,
so that the components corresponding to the former transitions must be expected
to be much stronger than those corresponding to the latter. (In § 6 we have already
met with the analogous circumstance in the Stark effect, where components for which
one of the z s is negative are much weaker than the other components, and the
connection was pointed out with Sommerfeld’s suggestion that no transitions would
be possible for which one or more of the n’s increase. See page 58). It must therefore
be expected that in general the fine structure of a line (n' -* n") will consist of n"
strong components, corresponding to the transitions

(n' — n" — 1, n"+  1 — 0 , n" )
( n' — n" , n" -* 1 , n"—1)

( n' — 2 , 2 -■» n"— 1, 1 ),

and of n"—1 weak components, corresponding to the transitions

(n' — n" +  1, n"— 1 -  0 , n" )
(n' — n" +  2, n"—2 -► 1 , n"— 1)

( n' — 1 , 1 -» n"—2 , 2 ).

Moreover the values of n'sR'2 and n"/?"s in the tables indicate that the values ol
the intensities of the strong components, to begin with the second, will form a
series of decreasing numbers. As to the intensity of the first component we must
distinguish between two cases, viz. n'—n" — 1 and n'—n" > 1 . In the first case we
have to do with a transition between two circular orbits for which n^R'2 and n2fi"“
become equal to n'3 and n" respectively, and we should expect that the corresponding
component would be the strongest of the fine structure under consideration. In the
second case the orbit of the electron is circular only in the final state, and R"
becomes equal to zero, so that the intensity of the first component in this case
must be expected to be less than that of the second. At the same time, however,
we should anticipate, from analogy with what has been observed in the discussion
of the Stark effect in the case of transitions in which circular orbits of the electron
are implied, that such conclusions about the intensity of the first component in
question will bear a more or less exaggerated character.
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All this is in general agreement with the observations as it will be seen from
a detailed discussion of the fine structures observed. Before entering on such a
discussion, however, it will be necessary to consider in a certain detail the in
fluence which small perturbing electric forces will have on the fine structure
of the hydrogen lines and helium lines under consideration. That such an
influence must beforehand be expected to be very considerable may for instance
be seen from the circumstance that rather small electric fields will be sufficient to
disturb entirely the character of the fine structure and to give rise to a regular
Stark effect. Thus, in the case of Ha, an electric field of 1000 VoIt/cM would already
give rise to a Stark effect for which the distance of the outer parallel components
is equal to nearly two times the width of the original fine structure doublet of Ha.
From a mechanical point of view the easiness with which a fine structure is
disturbed by a small external electric force is interpreted by observing that the
deviation of the orbit of the electron from a purely periodic orbit due to the in
fluence of the relativity modifications is extremely small, so that already a com
paratively small electric force will produce alterations in the orbit which are of
the same order of magnitude. As it will appear in the following sections a dis
cussion of the effect of a weak electric field is of essential importance in order
to obtain a theoretical understanding of the typical manner in which, on many
of Paschen’s spectrograms, the intensity distribution of the different components
deviates from the simple intensity distribution to be expected from the preceding
considerations in this section.

II. Effect of a weak electric field on the fine structure of the hydrogen lines.
A general discussion of the effect which an electric field must be expected to

have on the fine structure of a hydrogen line when its intensity increases from
zero, so that the fine structure is gradually transmuted into an ordinary Stark effect
in which the relativity modifications play only a secondary part, will, as mentioned
in the beginning of § 4, be given in a later paper. Here we will only discuss the
effect of an electric field, the intensity of which is so small that its influence is still
small compared to that of the relativity modifications.

The character of the influence of a small external constant field of force on
the spectrum of an atomic system has been treated by Bohr in the first and in the
second Part of his often mentioned paper. As regards the frequencies of the spectral
lines this effect may be directly found by means of (1) as soon as it is possible to
fix the energy in the stationary states of the perturbed system. This constitutes a
problem which in general may be solved if the deviations of the mechanical motion
of the perturbed system from the motion in the undisturbed system are at any
moment very small, and for its treatment the fundamental principle of the mechani
cal transformability of the stationary states, which has been introduced in the

46*
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quantum theory by Ehrenfest1), plays an important part. From Bohr’s paper it
will, however, be seen that if the undisturbed system is degenerate, i. e. if the
number of degrees of freedom is larger than the number of the conditions which
fix the stationary states of the undisturbed system, complications present themselves
owing to the circumstance that in such a case the stationary states of the perturbed
system in general will be fixed by a larger number of conditions. In such a case
a closer examination of the motion of the perturbed system, and especially a con
sideration of the small new frequencies, impressed on the motion ot the system by
the perturbing forces, is necessary in order to obtain a fixation of the stationary
states. A general exposition of the methods, developed by Bohr, by means of
which it is possible to fix the stationary states of a perturbed system, will be given
in the later paper referred to above; in the present case, where we consider the
influence of a weak homogeneous electric field on the hydrogen atom, which will
not essentially disturb the character of the motion of the atom, we shall only
mention the points which have direct connection with this problem, without entering
more closely on a theoretical discussion.

The properties of the mechanical motion of the electron in a hydrogen atom
which is exposed to a small electric field of force have been investigated in detail
in § 4. From the calculations in this section it is seen that the character of this
motion, with neglect of small quantities proportional to the square ot the intensity
of the perturbing force, may be considered as characterised by three quantities
II, ƒ“ and ƒ“. If the intensity of the perturbing force is zero (F = 0 ), 1\ and 7° +  Iaa
coincide with the quantities ^  and I2 respectively, which in the notation of § 2 char
acterise the motion of the electron in the undisturbed atom. The quantity ƒ“ represents
2 it times the angular momentum of the electron round an axis through the nucleus
parallel to the electric force. While the stationary states of the undisturbed atom,
which forms a degenerate system, are fixed by the two conditions (117), the statio
nary states of the perturbed system will, disregarding small quantities proportional
to F 8, be characterised by the following three conditions:

7; =  nih,  I\ =  (n2—it) h , I°a =  nh , (124)
where nx, n2 and n are positive integers of which n2 >  it. A state of the perturbed
system satisfying these conditions for given values of hlt n2, it will in the follow
ing be characterised by the symbol (nx, n2; it). Comparing with the formulae in
§ 4, it is seen from (124) that the motion in a stationary state ot the perturbed
system will, at any moment, only differ by small quantities proportional to the
intensity F  of the perturbing force from a stationary motion of the undisturbed
system, which besides satisfying the conditions (117) satisfies the additional condi
tion that the angular momentum of the electron round the axis is equal to an
entire multiple of a/2*. It will be seen that the latter condition fixes the position
of the plane in which the electron moves, which was naturally left undetermined

!) See Bohr, loc. cit. P a rt I, p. 8.
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by the conditions (117), and that the sine of the angle which this plane makes with
the axis will be equal to — . 1) The different possible stationary states of the per-

“ 2 • j  l  i  .turbed system are a-priori equally probable and are obtained by letting nx assume
the values 0, 1,2, . . . ,  n2 the values 1, 2, 3, . . .  and n the values 1, 2, . . . ,  n2. That
no stationary states exist in which n2 would be equal to zero follows, as mentioned
on page 68, from the fact that the motion in these states would not be physically
realisable since the electron would collide with the nucleus. In states for which n2
would be different from zero, but in which n would be equal to zero, the mechani
cal motion of the electron would not show singularities, but as pointed out in
Bohr’s paper it is possible to conclude, from the principle of the invariance of the
a-priori probability of the stationary states for continuous transformations, that
these states cannot represent stationary states since it would be possible to trans
form them continuously into physically unrealisable states.51)

From the calculations in § 4 it follows that, with neglect of small quantities
proportional to the square and higher powers of F, the total energy of the perturbed
system may be expressed in terms of ƒ ƒ “ by the same function as that by
which in (76) the quantity «x is expressed in terms of l v Iv I3 (compare page 31).
Introducing (124) it will therefore be seen that the total energy of the stationary
states of the perturbed system with this approximation will depend on nx and n2
only, and will be given by the same formula as that holding for the energy in s
the stationary states of the undisturbed system, which was given by (118).8)

1) In Bohr’s paper (Part I, page 35; Part II, page 55) it has been mentioned that quite generally
we must expect that one of the conditions which fix the stationary states of an atomic system which
possesses a fixed axis of symmetry will claim that the total angular momentum of the system round
this axis is equal to an entire multiple of 5/2 7r- Starting from this result it may directly be proved
that the conditions (124) are in concordance with the principle of the mechanical transformability of
the stationary states. In fact, it can be proved that during a slow increase of the intensity of the elec
tric field the mean values of the quantities I,, L, and Ia, taken over the motion of the perturbed
system, with neglect of small quantities proportional to F * * will remain the same. Since now, according
to the calculations in § 4 (see page 30), the quantities I,, I 3 and jjj appearing in the conditions (124)
just represent the mean values of 11, I3 and I3, it will therefore be seen that, if we start from a sta
tionary motion of the undisturbed atom which satisfies the additional condition of the angular momen
tum, the atom will during a slow establishment of the perturbing electric field pass mechanically into
a state which satisfies the conditions (124).

*) If, for instance, we imagine that the intensity of the electric force increases to values which
are so large that the relativity modifications may be neglected we would obtain the system considered
in § 3 and § 6, and the states in question would be continuously transformed into the corresponding
states of the latter system, the motion in which, as mentioned on page 50, involves an essential sin
gularity. Compare Bohr, loc. cit. Part II, page 56.

s) The fact that in the present case the alteration in the total energy of the system due to the
presence of the external forces, i. e. what Bohr calls the “additional energy” of the perturbed system, is
equal to zero as far as small quantities proportional to F  are concerned may be directly deduced from
a general theorem which states that if a conditionally periodic system is perturbed by a constant small
external field of force the value of the additional energy in the stationary states of the perturbed system
is, with neglect of small quantities proportional to the square of the external forces, simply equal to
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With reference to the general relation which, according to B o h r , must be ex
pected to exist between the additional energy of a degenerate system due to the
presence of small external forces and the small frequency (or frequencies) impres-

the mean value of the potential energy of the system with regard to these forces, taken over a long
time interval for the “corresponding” stationary motion of the undisturbed system, i. e. the motion in
the state which would appear if the perturbing field decreased to zero infinitely slowly and at a uni
form rate. This theorem follows directly from the principle of the mechanical transformability of the
stationary states, since it may be shown that during such a slow change of the perturbing field the
external forces will, with this approximation, not perform work on the particles of the system (com
pare Bohr, loc. cit. Part II). In order to apply the theorem in the present case we have to calculate
the mean value of the potential energy of the electron with respect to a homogeneous electric field of
force, taken over the motion which this electron performs in the stationary states of the undisturbed
hydrogen atom, but owing to the symmetry of the latter motion round the nucleus this mean value is
always equal to zero. In fact, with the notation of § 4, the perturbing potential is equal to Fez, and
from (90) it is seen that the trigonometric series representing z as a function of the time for the
undisturbed system does not contain a constant term, so that the mean value of z is equal to zero.
(Compare also J. M. Burgers, Het atoommodel van Rutherford-Bohr, Haarlem 1918, p. 128.)

In the later paper, referred to above, which deals with the transmutation of the fine structure
into the Stark effect, it will be proved that, for small values of the intensity of the electric field,
the additional energy in the stationary states may be represented by a series of terms of the form
p l a j ----(- a2 ) + . . . ] ,  if we disregard small terms the ratio of which to one of these terms is
of the order F, Ft, . . .  or o, o*, . . .  The largest term in the expression for the additional energy is

F*
thus seen to be a small quantity of the order — , and it is of interest that this term may be calcu
lated already from the formulae deduced in § 4. Thus it is seen from (94) that the mean position of the
electron taken over a large time interval, which for the undisturbed orbit coincided with the nucleus,
under the influence of the electric field is displaced in the direction of the positive z-axis by an amount

equal to ^ * — . —— e - — sf ,  if we now imagine that the electric force increases slowly and
4o e

uniformly from zero, it will be seen that the work performed by the external force on the atom during
this process will be equal to —j eFd(sF) — — %seF2. Since further the mean value of thé potential
energy of the perturbed atom with respect to the electric field is equal to sF • eF =  seF2, it is seen,
with reference to the principle of the mechanical transformability of the stationary states, that we
may conclude that the additional energy in the stationary states of the system under consideration

1 l . . .  , 2z! N, e4/nwill be given by s eF2 — -  seFt — -  seF2. Introducing J° =  nh, e =  iH/n. /i =  "/n2, o — -----
/ O  - w . J . a  1  Z  I  "

This formula allows in first approximation to calculate the displacements o f the components of the fine
structure under the influence of an external electric field. In fact, the presence o f the perturbing forces
w ill cause that the frequency of the radiation corresponding to a transition (n^, n'a ; n' —> n". it": tl ),

For the sake of orientation it  may be of interest here to note that for increasing intensity o f the elec
tric field a state o f the system , for which 7J =  n 1A, =  (na— ti)h, If — ith , w ill be continuously

/ 2 jrNe*v!
\ he )
2nNey  1

he / n8n aa
(compare formula (86)), and denoting the additional energy by AE, w e have thus

AE  =
9 / J M 8 c'F 2
4 '2 * /  N8 e10 m3n5/ij(n*— 2 n | +  tt8).

which gives rise to one of the com ponents into w hich the fine structure component
is sp lit up, w ill differ from the value o f v given by (119) by an amount

.V 'V

J V =  ["'5 -  2 n -  +  n'2) -  (n''- 2n"2 +  n"‘)].
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sed by the perturbing forces on the motion of the originally degenerate system, it
will be seen that the circumstance, that in the present case the energy in the sta
tionary states of the perturbed system to the first approximation does not depend
on the value of the integer n appearing in the third of the conditions (124), is
intimately connected with the fact that the two fundamental frequencies ws and <v2,
which together with a>1 characterise the motion of the perturbed system, do not
differ from each other as far as small quantities proportional to F are concerned
(see § 4, page 33)* 1).

With reference to (1) it will be seen from the above that the effect of the
external electric field on the spectrum of the hydrogen atom consists, as regards
the frequencie s ,  in the sp l i t t ing  up of every f ine s tructure  com ponent
in a number of  components ,  because to every stationary state (nv  na) of the
undisturbed atom there corresponds a number of stationary states (nv  n2; n) of the

transformed into one among the stationary states involved in the theory of the Stark effect, for which,
with the notation of §3, / 8 ( =  2 tt x  angular momentum of the electron round the axis of the field)
has the same value as /§, but for which I1 =  /g and I2 =  ƒ“.

l) From the formulae (90) and (41) it will, with reference to the considerations on page 15 and
16, be seen that a>s — <o2 represents the frequency with which the plane of the orbit of the electron
under the influence of the electric field rotates uniformly round the z-axis. As it will be proved in the
paper referred to above, this frequency may, just as the additional energy, be represented by a series

r F /F \% Iof the form F [ 6,  — +  b2 (—) + . . .  J; the first term of this series may again be found already from the

calculations in §4, by means of a consideration of conservation of angular momentum analogous to
that applied by Bohr  in his discussion of the Stark effect (loc. cit. Part II, p. 72). In fact, a rotation of
the plane of the orbit will imply a change of the angular momentum of the electron round the nucleus,
considered as a vector, the mean value of which, taken over a time interval large compared with

1but small -compared with will have a direction perpendicular to the z-axis and, with the

18 +  1°notation of §4, be equal to /j. —-— - X 2 i(<»j — <ua), where the first factor represents the component of

the angular momentum of the electron perpendicular to the direction of the field. This mean change
in angular momentum, however, is directly seen to originate from the fact that the mean position of
the electron, taken over a time interval of the order mentioned, will not be placed on the z-axis but

will, as seen from formula (96), be displaced from this axis by an amount 'le^*  ̂ 3 « «V  in a direction
4o

perpendicular to the direction of the mean change of the angular momentum. Equalizing the mean
value of the change of angular momentum due to the action of the external force with the amount
arising from the rotation of the plane we consequently get

which gives
—  e F x 3 eF x*I° * , ,

A 7C
w , ) ,

9 e2 * * * * *Faxi I° * «V
to s —  to o  = --------7 ----------------------- — -----------------

4 0 Jg +  /g
9  g 8 f 2  , „ 5

2 (2 T)8 *Nr,e10m31 (ƒ» +  /§)ƒ«,

which, as it was to be expected, is seen to be a small quantity of the same order as the small fre
quency differences between the components into which each fine structure component is split up under
the influence of the external field and which can be directly found from the formula for J v deduced
in the above note.
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perturbed atom, corresponding to the different possible values of it (it =  1,2, . . .  n2),
b u t th e  d isp lacem en ts  of th ese  co m p o n en ts  from  th e ir  o r ig in a l p o s i
tio n s  w ill o n ly  be sm all q u a n ti t ie s  p ro p o r t io n a l  to th e  sq u a re  o f th e
e le c t r ic  fie ld  (the displacements being represented by small terms containing
the factor F’/o. Compare note 3 on page 77).

Let us now proceed to discuss the influence of the electric field on the in te n 
s itie s  of the fine structure components. On Bohr’s theory this influence may be
discussed by considering the amplitudes of the harmonic vibrations in which the
motion of the electron in the perturbed system may be resolved. Now for the un
disturbed hydrogen atom there appear in the motion, as mentioned above, only
vibrations of frequencies where a is a positive integer, and from this the
conclusion was drawn that only such transitions were possible for which n'2 — n'8
was equal to ±  1, i. e. for which the angular momentum of the electron round the
nucleus decreased or increased by h/2x. In the motion of the perturbed system,
however, there appear vibrations of frequencies which did not appear in the origi
nal motion. Thus, identifying for the moment and w3, we see from the calcula
tions in § 4 that there will occur vibrations in the motion of the perturbed system
the amplitudes of which are small quantities proportional to F/0, and the frequen
cies of which are equal to a a>1 and 2 <w2, where a is an integer. On the other
hand the amplitudes of the vibrations of the original frequencies which appeared
already in the motion of the undisturbed atom are, as far as small quantities of
this order are concerned, not influenced by the perturbing field. From these facts
we may, with reference to the formal connection between the quantum theory and
the ordinary theory of radiation, directly conclude that u n d e r  t he  i n f l uen ce
of the  e l ec t r i c  f ield t h e re  wil l  appea r  new c omp on en t s  in the f ine
s t r u c t u r e  of  the  hyd r ogen  l ines  c o r r e s p o nd i n g  to t r a ns i t i on s  be tween
an i n i t i a l  s t a t e  « ,  n'f) and  a f i na l  s t a t e  « ,  < )  for wh i ch  n'a -  n"3 =  0
or n'a_ n" =  _ -̂2, i. e. for wh i c h  the a n g u l a r  m o m e n t u m  of  the e l ec t r on
r o u n d  the n u c l eu s  r e m a i n s  u n c h an g e d ,  or  dec r ea se s  or  i nc re as e s  by
2-ft/2* (compare Bohr, loc. cit. Part II, p. 69). The intensities with which these
new components appear will be of the same order as the square of the amplitudes
of the vibrations corresponding to the new frequencies and aot1± 2(o i , i. e.
they will be represented by small quantities proportional to (F/o)*.

We may summarise the results of the preceding discussion by saying that
th e  p r e sen c e  of a s m a l l  h o m o g e ne ou s  e l e c t r i c  f ie ld of fo rce  in f i r s t
a p p r o x i m a t i o n  wi l l  l eave t he  f r e q u e n c i e s  and r e l a t i v e  i n t ens i t i e s  of
the  o r i g i n a l  f ine s t r uc t u r e  c o m p o n e n t s  of  the  h y d r o g e n  l ines u n a l 
t e red,  bu t  wi l l  give r i s e  to the  a p p e a r a n c e  of new c om p o n en t s ,  the
f r e q u e n c i e s  of w h i c h  are  equa l  to t he  sum or to the  d i f f e r en c e  of two
of the  o r ig i na l  componen t s .  This affords a general interpretation of the fact
mentioned above that the appearance and intensity of the fine structure components
appearing on Paschen’s photographs seem to depend on the experimental conditions
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uhder which the spectrum was produced. In fact, we must naturally expect that in
the vacuum tube containing the luminous gas there will always be electric fields
acting on the atoms, but under different experimental conditions these fields will
not be equally strong, and especially in the case where an interrupted spark dis
charge is applied, the intensity of such fields may become considerable.

In order to discuss in detail the intensities with which for a given value of
F the new c omp o n en t s  may be expected to appear it will first of all be
necessary to consider in detail the different transitions between stationary states
giving rise to these components. The motion of the system in a stationary state
(nw n2; it) will be given by the formulae (83), (90), (94) and (96) in § 4, if we intro
duce for 7®, 7®, 7® and 7® in these formulae their values nv n2—tt, n and n — Hj-f/ij
respectively. A transition between an initial state (n[, na; n') and a final state (n", n"; it")
will be characterised by the symbol (n[, n'2; n' —> n", n'a; n"). If <olt o>2 and m3 have
the same signification as in § 4 it may be shown by a closer examination of
the perturbed system, as that which will be given in the later paper mentioned
above, that the general relation discussed in § 5 between the frequencies which an
atomic system will emit during a transition between two stationary states, and the
frequencies occurring in the motion of the system, will in the present case exist therein
that the frequency of the radiation emitted during a transition (n[, n\ ; n' -*• n", ri"; n")
will be equal to the mean value of the frequency (n[ — n " ) - f - ( n 2—n' — n"—it")att
+  (it'—tt")o>3 occurring in the motion in the states corresponding to 7® =  n”
^(n' — ri[), 7° -f- 7® =  n"-f-7(n'a—n"), 7® =  tt"-(- 7(n'— n"), where k takes all possible
values between 0 and I. Now the motion of the perturbed system may be resolved
in a number of linear harmonic vibrations parallel to the electric force, the fre
quencies of which are of the type | r l<o1 -)- r2<u2 |, and in a number of circular harmonic
rotations perpendicular to the electric force and of frequencies | r2ai2-|-<us |, as
it is seen from (94) and (96). We shall therefore expect that, just as in the theory of
the Stark effect, two kinds of transitions will be possible, viz. transitions for which
n' — n" =  0 and which give rise to radiations polarised parallel to the electric force,
and transitions for which it'—n" =  ±  1 and which give rise to radiations of cir
cular polarisation perpendicular to the electric force.1) Further from (83), (90) and
(94) it is seen that the motion of the electron parallel to the electric force consists
partly of vibrations of frequencies | rjöjj-j- <u21 which also occurred in the undisturbed
motion, and the amplitudes of which in first approximation are not affected by the
electric force, partly of vibrations of frequencies jt1oj1 \ and |r1a;1+2a>2| the ampli
tudes of which are proportional to F/0. From this we may conclude that two types

') This conclusion will be seen to be supported by a consideration of conservation of angular
momentum round the axis of the field during the transitions, as that mentioned in note 2 on page 45.
In this connection it may be of interest to observe that the effect of the external electric field in
producing new components has intimate relation to the possibility for these forces to change the total
angular momentum of the electron round the nucleus during a transition between two stationary states
(compare R ubinowicz, 1. c.).

D. K. D. VIdensk. Selsk. Skr., naturvidensk. og mathem. Aid., 8. Rtekke, III. 3. 47
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of transitions will be possible for which n remains unaltered, viz. transitions for
which n2- n  and therefore also n2 changes by one unit, and which give rise to
radiations corresponding to the original components of the fine structure; and
transitions for which n2- n  and therefore also n2 remains unaltered or changes
by two units, giving rise to radiations which correspond to the new components.
In the same way it is easily seen from (83), (90) and (96) that also the transitions
for which n changes by one unit may be divided into transitions for which n2
changes by one unit and which contribute to the original components, and transi
tions for which zi2 remains unchanged or changes by two units and which con
tribute to the new components. According to the considerations in § 5 we shall further
expect that it will be possible, from the numerical values of the amplitudes of the
corresponding harmonic vibrations occurring in the initial states and in the final
states, to obtain an estimate for the relative intensities with which for a given
hydrogen line (n' -» n") all these components will appear. Let us consider the
estimate which in this way may be obtained from (94) and (96) for the intensities of
the new components assuming that the direction of the perturbing electric field is
perpendicular to the direction in which the spectrum is viewed. The radiations giving
rise to a new component characterised by (n'„ n'2 n", n") will originate from different
transitions it'-  n", n'a' ; n") where n’lt n'a, n'[, n” have the same values, but where
n' and n" may assume different pairs of values. For n '— n" =  0 these transitions
give rise to radiations polarised parallel to the electric force; for n'—n" =  ± 1  they
will give rise to radiations polarised perpendicular to this direction. The new com
ponents might therefore in general be expected to show characteristic polarisation if the
direction of the electric force was the same at all points in the luminescent vacuum
tube which contribute to the formation of the spectroscopical image. In order to obtain
an estimate for the intensities of the radiations corresponding to these transitions
we shall, in analogy with the procedure followed in § 6, for each transition (n\, na; n'

n" n". n") calculate the square of the relative amplitude of the harmonic vibration
of frequency «  -  < ) Wl +  -  n’’-n " )w 2 +  (n'a-  n " ) o c c u r r i n g  in the mo
tion in the initial state and in the final state, where just as in the preceding sections
under relative amplitudes are understood the actual amplitudes divided by the
length of the half major axis of the Keplerian orbit which the electron at any
moment may be considered to describe. Now this half major axis is equal to xl° so
that from (94) and (96) the values of the relative amplitudes may directly be found.
The expressions obtained in this way are all seen to contain the factor 4jj > which
by means of (124) and (86) may be written in the form

3 cF»J°
4o

3 _ / h  \ 6 n̂ J}l
2 \2jt/  e9m2 AP.

== kF irinj
AP ’

where * is a constant the value of which may be simply calculated from the
experimental data, owing to the fact that we, with reference to formula (105), can
write k in the form
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K ~  32i* KTe ’
where Kjc is Rydberg’s constant. Taking kjc =  1,097 • 10’’ and using Millikan’s value
lor e (e =  4,77 • 10~10), we find

k  — 0,00165. (125)

The expressions for the relative amplitudes may now be written in the form

^ ; | ( 2  +  5A», e’, T) J r _ , ( T « H - (—2 + 5 / ts«'*T)/T+1(r«)J.,.

R ( + 2<«a) =  |(l+e')(tH-t'M3«'-2)-T«'(5-S«'l))JfT_J(rtH-(l-«')((l-*')(3«'+2)+re'(ö-3«,)/r+l(ï-*)}.

R(zu,1- w 2 + wa) = kF̂  g  {(3 +  5 r (1 + «>')) JT_! (t s) + (3  —  5t (1 — e>')) / T+t (re)) ,

R(r—2*»j-ha»a+ » ,) =  ̂ — ^ /̂ t ^ i / (i +£-)((i +e')(3£'-2)^re'(5-3e'a))yT_i(re)+(l-e')((l-e')(Se' + 2)-|-re'(5~3e's))JT+1(r£)))

R(^+2w^3wa+a,a) =  /— ^ -{(l e')((1 e')(3e'+2)-re'(5-3e’4))JT_ 1(Te)+(l+e')((l+e')(3e'-2)+re'(5-3e'a))JT+1(re)),

(126)
where the quantities s', s, ft' and ft are functions of the n’s which according to
(94) and (124) are expressed by means of the formulae

e ' = —a, e =  - Vna — n2, «' =  — , ^ =  — Vn\ —  n,  (n =  n1+ n 2).n ’ n 2 n2 n 2 ' 1 ^

In case of circular orbits (e' =  l ,  e =  0 , n1 =  0) the formulae (126) accord
ing to (97) assume the simple form

kFnu
« (2®.) »

AFn,; ju (l-fy )
Nr> 2

f t ( — 3 w 2 - { -  c o 3 )
k F n e ( t ( l+fS)

N b 2

(127)

The appearance of the factor n4n2 in the formulae indicates that the intensities
of the perturbed components will, for the same intensity of the electric field,
increase very fast if the quantity ti characterising the initial state increases, so that
tor instance in the Balmer series the higher members will be much more influenced
by an electric field than the first members. Further the appearance of N b in the
denominator indicates that for a hydrogen line (N =  1) the influence of an electric
field will again be much stronger than for one of the analogous helium lines (N =  2)
in the same part of the spectrum, in agreement with what might be directly
expected from the fact that for the latter lines the frequency differences of the
fine structure components are much smaller than for the former lines, while the
frequency differences for the components of the Stark effect are larger.

47*
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III. Comparison of the theory with the observations on the fine structure.
We shall now proceed to compare the estimate of the relative intensities, ob

tainable from the preceding considerations, with P aschen’s observations. As men
tioned at the end of the first section of this chapter it is necessary, in order to
account for these observations, to pay attention to the disturbances which the fine
structure undergoes as a consequence of the presence of external forces, and we
shall therefore in the following discussion from the beginning take the intensities
of the “new” components, discussed in the second section, into account. The first
problem with which we meet will therefore be to compare these intensities for a
given value of the intensity F of the external electric field with the intensities of
the original components. Now the latter intensities were already estimated in the
preceding section on the basis of the formulae (123), the numerical results being
given in tables IX and X. It is, however, not possible to compare the numbers in
these tables directly with the numbers obtained from (126) and (127) because in
the formulae (123) are given the relative values of the amplitudes of the circular
harmonic rotations which the electron in the undisturbed hydrogen atom performs
in the p l ane  of its motion. On the other hand, in order to take into account
that the electron moves in space  and that the position in space of the plane
of its motion is arbitrary, it will obviously be sufficient to multiply the numbers
n'a R'8 and n"iTa in tables IX and X by the factor a/s, the numbers thus obtained
representing an estimate of the relative intensities of that part of the original
components which may be considered as polarised parallel to the direction of
the electric force, or that part which is polarised perpendicular to this direction,
which two parts are equal on account of the original components being unpolari
sed. It must, however, be observed that we could also have obtained an estimate
for the intensities of the original components by considering the different transitions
(n'1} /I,; n' n", n"; n") between stationary states of the perturbed system which
contribute to these components, but this would complicate our tables without
necessity, and moreover we shall have the opportunity to come back to this
other method of estimating the intensities of the original components in § 8,
where the influence of a magnetic field on the fine structure of the hydrogen lines
will be discussed.

In the tables XI, XII and XIII we have given a scheme of the estimate which
according to the preceding considerations can be obtained for the intensities of the
new and of the original components in case of the fine structure of thè helium
lines 4686 A (4 -  3) and 3203 A (5 -> 3) (AT =  2) and of the hydrogen line Ha, 6563 A,
(3-> 2) (N =  1). In the calculation of the tables we have taken F =  1 i. e. the
intensities of the new components refer to an intensity of the perturbing electric
field of 300 Volt/cM.

The first column contains the symbols (n\, n3 — n" n3) characterising the tran
sitions between two stationary states of the hydrogen atom to which the new and
the original components correspond.
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The second column contains the symbols (n\, n'a; n' - - n", n"; it") character
ising the transitions between two stationary states of the perturbed system which
contribute to the new components. For each component the transitions which give
rise to radiation polarised parallel to the direction of the electric force and
those giving rise to radiation polarised perpendicular to this direction are collected
in brackets and indicated by Par. and Perp. respectively. According to what has
been said on page 77, only such states are taken into account for which n is diffe
rent from zero.

The third and fourth columns contain the values of the squares of the relative
amplitudes of the vibrations of frequencies (n\ — n") co1 +  ( n'2 — it' — na — it") <u2
+  (n' — n")(u3 in the initial states and final states respectively, calculated by means
of (125), (126) and (127). For the original components these columns contain the
values of the squares of the quantities R’ and R" appearing in tables IX and X.

The fifth and sixth columns contain the sums of these squares corresponding
to each of the new components respectively, the quantities corresponding to radia
tion polarised parallel and to radiation polarised perpendicular to the axis being
taken together respectively. For the original components these columns contain
the values of 8/3naft'8 and i/»naR"s.

The seventh column contains the values of the wave lengths for the different
components. These values may be calculated from the expression (119) for the
frequencies of these components and are taken from P aschen’s often mentioned
paper.

We will now proceed to discuss the observations on the fine structure of the
hydrogen lines (N =  1) and of the analogous helium lines (IV =  2) in detail, and
we shall first consider the latter lines for which we may compare with the detailed
results of Paschen’s observations. Especially in case of two of these lines, viz.
4686 A (4->a) and 3203 A (5 -* 3), Paschen has been able to obtain in detail a con
firmation of Sommerfeld’s theory regarding the frequencies of the fine structure
components, and just for these lines a theoretical interpretation of the observed
intensities seems only possible if the effect of a perturbing electric field is taken
into account.

Let us first consider the helium line 4686 A (4^-3) for which the observed
fine structure exhibits the richest details and therefore ofFers the best opportunity
for a comparison with the theory. In fig. 10 on Plate IV a scheme is given of
the theoretical and of the empirical results regarding the fine structure of this
line. In the theoretical scheme the original components are indicated by drawn
lines and the new components by dotted lines. The lengths of the latter lines are
for each component taken proportional to the sum of the corresponding quan
tities s(R**) and s(R 'a) appearing in Table XI, while those of the former lines are
taken proportional to twice the sum of the quantities a/3 n'aR'2 and 8/s naR"3 appearing
in this table. The intensities of the new components, as given in the figure, would
correspond to an intensity of 600 Volt/cM. In this connection it may be noted,
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however, that owing to the fact that the relative amplitudes corresponding to the new
components are of widely different order of magnitude in the initial and in the
final state, we cannot expect that the sums of s ( K3) and s(fl"2) will give more than
an estimate of the order of magnitude of the intensities with which the new
components must be expected to appear in comparison with the original compo
nents. The schemes representing the results of the measurements are taken from
Paschen’s paper. The one corresponds to what P aschen calls the “continuous dis
charge image” (“Gleichstrombild”) of the fine structure, which appears when a

Table XL
H e l i u m ,  4686 A (4—>3).

New co m p o n en ts  (Perturbing field 300 Volt/cu)

Component Transition

Par.
( 04; 2 -► 12; 2
\  04; 1 -V 12; 1 f
( 04; 3 -► 12; 2

Perp. I 04; 2 —»■ 12; 1
I 04; 1 ^  12; 2

Par.
Perp.

13; 1
13; 2

21; 1
21; 1

Par.

Perp.

13; 3 —> 03; 3
13; 2 -7* 03; 2
13; 1 -► 03; 1
13; 3 — 03; 2
13; 2 —> 03; 1
13; 2 -> 03; 3
13; 1 03;2

Par.

Perp.

22; 2 12; 2
I 22; 1 -» 12; 1
ƒ 22; 2 -> 12; 1
( 22; 1 -» 12; 2

'1 Par. 31; 1 —> 21; 1

03 Par. 31; 1 —> 03; 1
Perp. 31; I - »  03;2

O r ig in a l co m p o n en ts

04 —► 03
13 -» 12
22 - *  21
22 -> 03
31 -> 12

R  2 « '* s(fi'2). s(lt"2) Wave length

0 0 4685,684 A
0 .ool9 0 .oo2
0 0
0 .ool4 0 .ool
0 0

.113 0 .11 0 5,331

.066 0 .06 0

j031 0
I 5,837

.110 0 .32 0
.176 0
0 0

.076 0

.019 0 .14 0

.048 0

.018 .oo09
.06 .oo4

5,764
.046 .oo35
0 .oo20 .01 ,oo2

.011 0

.005 . ,oo03 .005 .ooO 5,544

0 0 0 1 °
6,050

0 0 0 0

It'2 it"2 2/s naR '2 2/sn'2'Jt"2 ! Wave length

1,00 1,00 2,66 2,00 4685,810 A
0,60 0,50 1,20 0,68 5,710

0,35 0,24 0,46 0,16 5,384

0,02 0 0,03 0 5,890

0,05 0,01 0,03 | <*1 1 5,924
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Table XII.
H e l iu m ,  3203 A (5-*3).

N ew  c o m p o n e n ts  (Perturbing field 300 Volt/cu)
- __  —'__ ~

Component Transition K 1 •  ( « * ) j * (« " 2) Wave length

05 -?* 03 (  05; 3 -»  03; 3 .26 0 1,32 .ool6 32aS,167 A
Par. |  05; 2 -> 03; 2 .46 .ooo43

I 05; 1 ->• 03; 1 .60 •oolll
( 05; 4 ^  03; 3 .19 0

05; 3  -► 03; 2 .26 .ooo55
Perp.< 05; 2 ^  03; 1 .26 .óoo55 0,86 .ool2

05; 2 —*• 03; 3 .05 0
( 05; 1 ->  03; 2 .10 •ooo09

14 12 Par. /  !4; 2 —► i2 ; 2
V 14; 1 -► 12; 1

.47 o 1,20
.73 ooo77

.oo08 3,111 ’

1 14; 3 — 12; 2 .28 0
I’erp.] 14; 2 -»  12; 1 .35 .ooo58 0,93 .oo06

I 14; 1 ^  12; 2 .30 0

23 —» 21 Par. 23; 1 -> 21; 1 .36 0 0,36 0 2,941
Perp. 23; 2 —» 21; 1 .18 0 0,18 0

23 -> as (  23; 3 -»  03; 3 .04 0 3,177
Par. |  23; 2 -> 03; 2 .19 0 0,64 0

I 23;1 03; 1 .31 0
| 33; 3 — 03; 2 0 0

Perp. ! 23» 2 03! 1 .17 0
23; 2 '-*■ 03: 3 .04 0 0,30 0

1- 23; 1 -► 03; 2 .10 0

32 -  12 Par. /  32; 2 — 12; 3
V 32; 1 -»  12; I

.02

.07
•ooo09
.0008O 0,09 .oo09

3,131

Perp./ 32; 2'"—> 11; 1
1 32; 1 -> 12; 2

0
.01

.ooo54
0

0,01 .oo05

41 —► 21 Par. 41; 1 -*  21; 1 .005 .ooo03 0,005 .ooOO 2,992

41 03 Par. 41; 1 —> 03; 1 0 0 0 0 3,228
Perp. 41; 1 —» 03; 2 0 0 0 0.... , __  1 '  ___________

Or ig in a l  c o m p o n e n t s R * R "2 2la Jl'2'f l " 2 Wave length

14 ->  03 .049 0 .132 0 3203,171 A
23 12 .049 .052 .097 .069 3,118
32 - »  21 .036 .031 .047 .021 2,953
32 —> 03 .002 0 .003 0 3,190
41 ->  12 .006 .000 .004 .001 3,169



372 88

Table XIII.
H y d r o g e n ,  H &  6562 A (3-+2).

New compone nt s  (Perturbing field 300 Volt/CM)

Component Transitions I

Par. 03; 1
Perp. 03; 2

IT; 1
11; i

Par. I 12; 2
X 12; 1

MS;?
02; 2
02; 1
02; 1
02; 2

Par. 21; 1 - »  11;1

0
0

O ri g in a l  compo nents

03
12
21

02
11
02

0,91
3,54
0

0,82

0,27

R"1 s(R's) Wave length

0
0

6562,70 A

4,4

0,8

.oo45

s|9n-air2

0

0

.000

2,86

•Isn'j'il"6

2,75

Wave length

1,00 1,00 2,00 1,33 6562,84 A
0,50 0,35 0,67 0,23 2,72

0,04 0 0,03 0 2,89

steady voltage is applied to the vacuum tube; the other to the “spark discharge
image” (“Funkenbild”), which appears when the tube is exposed to an interrupted
spark discharge. The heights and breadths of the hatched extensions representing
the components are chosen so as to represent approximately the observed inten
sity and degree of diffusion. For the sake of the following discussion the observed
components are, as shown in the figure, characterised by the ciphers I, II, . . . ,  VII.

- When comparing the observations with the theory it will in the first place
be seen that, although the spectrogram corresponding to the continuous discharge
undoubtedly approaches more than the spectrogram obtained by the application ot
an interrupted discharge to the aspect of the theoretical fine structure of the spec
tral line of the undisturbed atom, both images given by Paschen differ essentially
from it, because the components corresponding to (31-*21) and (31-*03) are pre
sent on both of them.1)

The strongest three components I, II and III in P aschen’s continuous discharge
image correspond, in agreement with the theory, to the three transitions (04^03),

i\ Since at the time of Paschen’s experiments a spectrogram of the fine structure would rather

which the smallest number of components appeared. In order to test the pre ic on Althouch
the latter point has been examined by Dr. H. M. Hansen at the Copenhagen p ysl^a a , .
this investigation has not yet been completed, some preliminary photographs of the line 4686 A aken
by application of a low voltage to the vacuum tube, indicate that the components ( J £ « )
(31 -> 03), if present at all, were at any rate less intense compared with t e main compo ,
III than in the spectrograms published by Paschen.
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(13 -* 12), (22[.-* 21) in which the angular momentum of the electron round the
nucleus decreases by a/2tt. From table XI the first of these components would be
expected to be stronger than the second and the second again stronger than the
third. Paschen, however, characterises their intensities by the numbers 7, 7,5, 3
respectively i. e. he finds the component (04 -> 03) a little weaker than (13 -+12).
This seems to indicate again that the a-priori probability of spontaneous transition
between two circular orbits in the region of small n’s is less than it would be
expected from the numbers obtained by the method of estimating intensities by
means of the values of the amplitudes of the harmonic vibrations occurring in the
motion of the atom, these values giving, in a singular case as this, an exaggerated
picture of the intensities (compare page 60). In Paschen’s spark discharge image
the three components in question also appear, but they have become more diffuse,
and I has become stronger than II, the relative intensities being now characterised
by 7, 6, 0,5 respectively. This might obtain anexplanation if we assume that, in the
case of a spark discharge, perturbing electric fields have been acting on the atoms
of such intensity that the new components (22 -+ 12) and (13->-03) have appeared
with considerable intensity. In fact, these components lie so near to (04->03) that
they may be assumed together with the latter component to contribute to the intensity
of the component I observed by P aschen, while on the other hand the new compo
nent (04 -* 12) which lies very near to (13-*12) will, as seen from the table, only
possess a very small intensity in comparison with (22 12) and (13 -> 03), and
cannot therefore be expected to contribute essentially to the intensity of component
II. In this connection it must, however, be remarked that the amplitudes of the
harmonic vibrations of frequencies which correspond to the original components,
in general, owing to the influence of the perturbing field, will have changed by small
amounts proportional to F2/o‘, and that as a consequence of this we may be prepared *
to find that the intensities of these components themselves have varied by amounts
which are of the same order of magnitude as the intensities of the new components.

The weak original components (22 -> 03) and (31 -* 12) which correspond to
transitions for which the angular momentum increases by */2 ,̂ and the theoretical
distance between which would be equal to 0,034 A, are in the continuous discharge
spectrogram, as well as in the spark discharge spectrogram, recorded by Paschen
as a single line, which in figure 10 is indicated by IV.

Moreover Paschen has observed separately the new components (31^-03),
( 3 1 2 1 )  and 1̂3 —>• 21), indicated in the figure by V, VI and VII respectively. In
table XI the values of s(f?'2) and s(R" 3) corresponding to (31->03) are equal to
zero but, as pointed out in the analogous case in the Stark effect (see page 58,
compare also page 99), it is not permissible from this to draw the conclusion that the
a-priori probability for this transition is zero. Also the component (31-> 21) appears
both on Paschen’s continuous discharge image and spark discharge image and is
stronger than (31-»03), in agreement with the table. Finally, as regards (13-*21), no
corresponding component is observed in the continuous discharge image, but on the

D. K. D. Vidensk. Selsk. Skr., naturvidensk. og m athem . Afd., 8. Rsekke, III. 3. 48
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other hand a very strong component has been observed in the spark discharge image,
which lies in the middle between the theoretical positions of (13 21) and (04^-21).
On the present theory it seems necessary to assume that the component VII corre
sponds to (13 -* 21) only. In fact, the intensity of the component (04 — 21) should
be expected to be connected with the value of the amplitude of the vibration of
frequency (— 2 w1 +  3 a)2) in the motion of the electron, but under the influence of
a perturbing homogeneous electric field such frequencies do not in first approxima
tion appear in the motion of the electron in the atom. The component in question
is much stronger than the other two separate new components (31 — 21) and
(31 — 03), in agreement with the table according to which (13 —* 21) is the strongest
new component after (13-03). On the other hand it remains a remarkable fact
that the new component IV appears so much stronger than the original component
III which lies quite near to it, while it does not appear at all in the continuous
discharge spectrogram. Apart from this difficulty, which perhaps will disappear
when further experimental data become available, the observations on the fine
structure of 4686 A seem to allow of a complete theoretical interpretation if the
effect of the presence of electric fields in the vacuum tube is taken into account
in the way described in the preceding. As regards the intensities of the perturbing
electric forces in question it is seen from the table, which gives the values of the
relative amplitudes for a force of 300 Volt/cM, that forces of 500 a 1000 Volt/cM would
be sufficient to give rise to new components of considerable intensities which are
of the same order of magnitude as those of the new components in the spark
discharge image, while in case of the continuous discharge image these forces may
have been of the order 100 k 300 Volt/c \j . *)

Let us next proceed to the helium line 3203 A (5^3), where the discussion
* of the observed fine structure is quite analogous to that for 4686 A. In fig. 11 we

have given a scheme of the theoretical fine structure and of the components ob
served by Paschen in the continuous discharge spectrogram. The original compo
nents are again represented by drawn lines, the new components by dotted lines.
The lengths of the lines representing the original and the new components are
taken proportional to the sums of the quantities appearing in the 5th and 6th
columns of table XII, which is arranged in the same way as table XI. The lengths
of the new components in the figure correspond to a perturbing field of 90 Volt/cM.
Owing to the factor n*n° in formula (126), the values for the relative amplitudes in
the initial states, corresponding to the new components, are, for same values of F,
several times larger than for the new components in 4686 A. This seems to offer an
explanation of the fact, mentioned by Paschen, that in the spark discharge spectro
gram of the fine structure under consideration no sharp components could be

i) In the case of one of the photographs published by Paschen, which is taken under such condi
tions that the electric current had to pass a long sparking length, the electric forces have obviously
been very large since the two strongest components could not be observed separately but appeared
as a broad diffuse line.
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observed, but that only two broad diffuse lines were visible (with their centres of
gravity lying at 3203,140 A and 3202,964 A), because if the electric forces present
in the luminous gas are of the same order of magnitude as in the case of the spark
discharge image of 4686 A, these forces must be expected to be strong enough to
destroy the details of the fine structure to a large degree. In the continuous discharge
spectrogram the strongest three components I, II, III correspond to the original
components (14-*03), (23-* 12) and (32-* 21), and their intensities may according to
Paschen be characterised by the numbers 7, 8, 4 respectively, in general agreement
with the values of n'2R'3 and n"R"2 for these components given in table X. It must
be expected, however, that component I contains not only the light of the original
component (14-*03) but also that of the original component (41 -* 12) (and perhaps
(32 ~* 03)) and of the new components (05 ~* 03) and (23 -* 03); that II represents,
besides (23-* 12), also (14-* 12) and perhaps (32 -*• 12), and finally that III represents,
besides (32-* 21), also the new component (23-* 21). The two other weak com
ponents which Paschen observes in the continuous discharge image correspond to
the two only new components which could be expected to appear separately, viz.
(41 -* 03) and (41 — 21).

The helium lines (6 ~* 3), (7 -* 3), (8 -*• 3) and (9 -* 3) have also been examined
by P aschen. For the first three of these it was found possible to detect three com
ponents I, II, III which must be assumed to correspond to transitions to the final
states (03), (12) and (21) respectively and the positions of which coincide to a
high degree of approximation with those of the original components (n'—4, 4-» 0,3),
(n>— 3, 3 -* 1, 2) and (n'— 2, 2 -* 2, 1). In agreement with the present theory, the
intensity of I was smaller than that of II but a deal larger than that of III. The
energy differences between the different initial states were so small that separate
new components could not be observed, but the perturbing influence of electric
fields in the vacuum tube is no doubt considerable for these lines.

P aschen has further examined the helium lines (6 -* 4), (7 -* 4), . . .  (12 -* 4).
The first of these lines, 6560 A, appeared only very weak in the spectrograms and
a fine structure could not be observed. An estimate for the intensities of the original
components of this line has been given in table X. All the other lines showed two
diffuse components the strongest of which in some spectrograms again showed a
resolution in two components. Fig. 12 contains a scheme of the Iheoretical and of
the observed fine structure of the line 5411,2 A (7^*4). For simplicity only the
original components are drawn, their intensities as estimated from table X being
indicated by the lengths of the lines. The arrows indicate the centres of gravity of
the components observed by P aschen. The two small arrows on the right indicate
the positions of the centres of gravity of the two components in which, in one of
Paschen’s spectrograms, the stronger component was resolved. It will be seen that
the observations are in agreement with the theory. The existence of separate new
components, on account of the small frequency differences between the different
possible initial states, could not be observed. As it may be seen from P aschen’s

48*
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paper the theory agrees with the observations also in the case of the fine structure of
the other lines (8 -4 ) , (9 - 4 )___ of the series in question; the stronger of the
observed components may be ascribed to transitions to the final states (04), (13), (22),
the weaker to transitions to the final state (31). It need hardly be remarked that
it must be expected for all the lines in question that the details of the theoretical
fine structure are influenced and disturbed to a high degree by the presence of
electric fields in the vacuum tube. In fact, as seen from the observations on 4686 A,
the intensity of these fields seems, in case a continuous voltage was applied to the
vacuum tube, to have been of the order of magnitude of 100 h 300 Volt/cM, but fields
of this intensity will, as may be seen for instance from the formulae (126), be large
enough to change the character of the stationary states corresponding to n =  6, 7 ,8 ,...
almost completely. That it has been possible to observe a fine structure at all is,
just as in case of the fine structure of the lines (6^3), (7->3).......due to the fact
that the final states involved in the transitions (n "= 3 , n" =  4) are yet stable against
the perturbing influence of electric fields of this order of magnitude.

Before leaving the comparison with the observations on the fine structure of
the helium lines it may be of interest to emphasize that a further test of the
theory maybe obtained by an examination of a possible characteristic p o l a r i s a t i o n
of these components with respect to the direction of the electric field in the dis
charge. Thus from the tables XI, XII and XIII it will be seen that, if the phenome
non is viewed in a direction perpendicular to the external electric force, we must
expect that all the new components will contain a greater percentage of light
polarised parallel to the electric force than of light polarised perpendicular to this
direction, and especially that the component (31 -21 ) of the line 4686 A and the
component (41^21) of the line 3203 A should be completely polarised in the
direction of the electric field. The question of the polarisation of the fine structure
components seems not to have been examined by P aschen, and it also appears
doubtful whether such a polarisation would have been detectable at all with the
experimental arrangement used by this investigator, since the electric field may
have quite different directions at the different points in the luminous gas which
contribute to the formation of the spectroscopical image.

We shall now briefly consider the h y d ro g en  l i ne s  ( N =  1) the fine struc
ture of which has also been discussed in Paschen’s paper. For this element we
must expect that, owing to the circumstance that the denominator N5 appearing in
formula (126) is only equal to 1, the effect of small electric fields in the vacuum
tube is yet much larger than for the helium lines discussed in the preceding. This
is in agreement with the well known experimental fact that in the case of the Balmer
series it is very difficult to obtain spectrograms which show a distinct fine structure.
In table XIII we have, as mentioned, given an estimate for the intensities of the
original and of the new components in case of Ha (3 -2 ) , corresponding to an
intensity of the electric field of 300 Volt/cM. The values for s(R'3) in this table are
so large that, already for a field of 150 Volt/cM, the influence of the field on the
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initial state (n' =  3) can hardly any more be considered as a perturbation of the fine
structure, but may rather be described as an effect of the same order of magnitude
as the influence of the relativity modifications. On the other hand, as seen from the
value of R"3 corresponding to the transition (21; 1 -> 11; 1), the motion in the final states
is yet rather stable against perturbing forces of the order of magnitude in question.
Owing to this, as well as to the smallness of the frequency differences involved in the
theoretical fine structure, it has therefore only been possible to observe a doublet
consisting of two diffuse components. In fig. 13 the theoretical fine structure has
been schematically represented in the same way as in the figures 10 and 11. The
lengths of the new components correspond to a perturbing field of 100 Volt/CM. The
arrows indicate the position of the centres of gravity of the components observed
by P aschen . The theoretical distance between the two strong original components
(03-*02) and (12 —> 11) is 0,142 A, while the width of the observed doublet was
about 0,12 A . 1) The reason for this discrepancy must mainly be sought in the
appearance of the new component (21-*11), as well as in the splitting up of the
components (03->02) and (12 —> 11) into several components under the influence of
the perturbing forces.2) This point will be discussed more closely in the later paper
on the transmutation of the fine structure into the Stark effect, referred to above,
but it has been mentioned here in order to draw attention to the difficulties which
are involved in an exact determination of the constant K for hydrogen, appearing
in formula (120), from measurements on the wave length of the hydrogen lines. As
regards the measurements of the relative intensities of the components of the Ha
doublet, Meissner  finds that the relative intensities of the component of larger and
of that of shorter wave length may be represented by the numbers 7 and 5 respec
tively.3) This seems again to indicate that the a-priori probability for a transition
between two circular orbits (03 -* 02) is less than would be expected from the estimate
afforded by table IX, which is based on the method discussed in § 5. As regards
the other lines in the Balmer series of hydrogen, Hp, Hr, . . . ,  doublets the width of
which is of the right order of magnitude have been observed, but these lines are dis
turbed to a yet higher degree by small electric fields in the vacuum tube than Ha.
In general it will be seen that, when different investigators have found different
values for the width of the doublet of one and the same hydrogen line, this may
be due to the presence of perturbing fields of different intensities in the luminous
gas. Especially, when certain authors find that the doublets of the higher members
of the Balmer series are smaller than should be expected from Sommerfeld’s theory
of the fine structure of the spectral lines emitted by the undisturbed hydrogen

') See Paschen, loc. cit. p. 933, compare also Sommerfeld, Ann. d. Phys. LI, p. 68 (1916).
4) From the formula for A v given in note 3 on page 77 it is simply seen that in first approxima

tion all components in which (03 02) will split up under the influence of an electric field are dis
placed in the direction of shorter wave length, while those of (12 -> 11) are displaced in the direclion of
longer wave length.

s) See F. Paschen, loc. cit. p. 933.
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atom *), this does not constitute a difficulty for the theory but it just what should be
expected according to the above considerations of the effect of perturbing fields on
the fine structure.

§ 8. The effect of a magnetic field on the fine structure
of the hydrogen lines.

In this chapter we shall briefly consider certain points which present them
selves in connection with the application of the quantum theory to the problem of
the ef fect  of  a magnet i c  f i e l d  on the  f ine s t r u c t ur e  of  the  h y d r o g e n
l i ne s ,  and from which it is possible to draw conclusions which are of interest in
connection with the problems discussed in the preceding chapters.

The problem of the influence of a homogeneous magnetic field on the hydrogen
atom may be treated in a similar way as the influence of an electric field on the
simplified hydrogen atom, since the equations of motion of the electron also in the
presence of the magnetic field may be written in the canonical form and since, if
we look apart from small quantities proportional to the square of the intensity of
the magnetic force, a solution of these equations may be obtained by separation of
variables in the H a m il t o n - J a c o b i partial differential equation if polar coordinates
are introduced.* 2) The motion in the stationary states will then be fixed by three
conditions of the type (99). The results obtained in this way may be very simply
interpreted. In fact, as mentioned in § 2, the mechanical motion of the electron
in the hydrogen atom in the presence of a homogeneous magnetic field differs from
a mechanical motion in the absence of this field only by a slow and uniform super
posed rotation round an axis through the nucleus parallel to the magnetic force, the
frequency Oh of which is given by (40), and it is simply shown that the stationary
states of the system in the presence of the field are obtained by superposing a
rotation of this kind on a stationary motion of the atom without field which, be
sides satisfying the conditions (117) characterising the stationary states of the un
disturbed atom, satisfies the further condition that the value of the angular momen
tum of the electron round the axis is equal to an entire multiple of hfa3). Denoting
this value by nft/2 ,̂ the stationary states may, in analogy with the notation used in
the preceding chapter, be characterised by the symbol (nv n2; n). Further the different
possible stationary states corresponding to different combinations of nv n2, n (n2 ^  n)
will again be 'a-priori equally probable, but just as in the case of the perturbed
system treated in the preceding chapter, we must assume that neither n2 nor tt can
assume the value zero.

>) See T. R. Merton  and J. W. Nicholson , Trans. Roy. Soc. A 555 (1918).
2) Compare A. Somm erfeld , Phys. Zeitschr. XVII, p. 491 (1916), and  especially P. Debye, ibid. p. 507.
3) Compare Bohr , loc. cit. Part. II, p. 82.
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Proceeding to discuss the effect of the magnetic field on the spectrum we see
in the first place that the energy in a given stationary state will differ from the
energy in the corresponding stationary state of the undisturbed atom, which was
given by (118), only by a small term proportional to the intensity H  of the magnetic
field, which represents the effect of the superposed rotation on the kinetic energy of the
system. This term is simply shown to be equal to A -nhoB = - \ - n h  eH , where the

. 4 n m c 1
upper or the lower sign holds according to whether the direction of the superposed
rotation is the same as or the opposite of that of the revolution of the electron
round the axis respectively. Considering a transition (n'lt n'2; n'->n", n"; n") between
the initial state (n'i; n2; n') and the final state (n", n'2'; tt") we see therefore that the
frequency of the emitted radiation will be given by

V =  V0 +  V1 +  2̂ +  V3 > * (128)
where v0, vt and v2 have the same signification as in (120), (121) and (122), while
v3 is given by

*3 =  ± 4 7 m C(U' - n")- (129)

As shown by Sommerfeld and Debye the formulae (128) and (129) offer an
interpretation, as regards the frequencies, of the effect of a magnetic field on the
hydrogen lines, since, putting it' — n" =  0 and n' — n" =  ^  1, and disregarding the
terms i/, and i/2, which refer to the fine structure, we obtain the frequencies of
the three components in which the hydrogen lines are split up, these lines showing
a normal Zeeman effect. Further Bohr showed that it is possible, on the basis of
the formal connection between the quantum theory of line spectra and the ordinary
theory of radiation, to obtain a natural interpretation of the characteristic polarisa
tion of the observed three components, as well as of the fact that no further com
ponents appear; the theory of the Zeeman effect thereby obtaining a remarkable
formal analogy with the theory originally devised by Lorentz on the basis of the
classical theory of electrodynamics.

From the considerations in § 2 it is seen that in the presence of a homo
geneous magnetic field the motion of the electron in the hydrogen atom may
be resolved in a number of linear harmonic vibrations of frequencies \z1to1-{-a)2\
parallel to the direction of the field, and in a number of circular harmonic rota
tions of frequencies | z1w1 +  <w2 ^  oB j perpendicular to this direction. Now it is easily
shown that the frequency emitted during a transition (n2,it',; n' -> n" n"; n") will be
equal to the mean value of the frequency (n[ — n")w1 -f  (n'a — n")<o2 ±  («'— n") 0H,
taken over the multitude of mechanically possible states, lying between the initial
state and the final state, which are characterized by nk =  n'k -j- X (nk—nk), (k = 1 , 2)
and n =  n"-H(n'—It"), >1 assuming all values between 0 and 1. With reference to
the formal connection between the quantum theory and the ordinary theory of
radiation we may therefore conclude that only such transitions will be possible
for which it remains unchanged, the emitted radiation being polarised parallel to
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the axis, and transitions for which n decreases or increases by one unit, the emitted
radiation being circularly polarised perpendicular to the axis, and that for both
types of transitions n2 must either decrease or increase by one unit. From this
it follows directly with reference to (128) and (129) that, as mentioned in Bohr’s
paper, the effect of the magnetic field on the fine structure of the hydrogen lines
will consist in the splitting up of every fine structure component into one undis
placed component polarised parallel to the direction of the field and two symme
trical components at a distance from the undisplaced component, which
appear as circularly polarised in opposite directions when viewed in the direction
of the field and as linearly polarised perpendicular to the field when viewed in a
direction perpendicular to the field.

As regards *he i n t e ns i t i e s  of these components we may in the first place
obviously conclude that the latter two components are of equal intensity, since, if
the effect is viewed in the direction of the field, they must not show characteristic
polarisation when taken together. Further when viewed in a direction perpendicular
to the field the intensity of each of the perpendicular components must be equal
to half the intensity of the parallel undisplaced component, since we must equally ^
assume that, when viewed in this direction, the ensemble of components into
which the unpolarised fine structure component is split up does not exhibit char
acteristic polarisation. The theoretical effect of a magnetic field on the fine struc
ture of the hydrogen lines may therefore be described as the splitting up of every
fine structure component into a L orentz triplet.

We have thus met with an illustrative application of the considerations on
page 49 at the end of § 5, and it is seen that the problem of the Zeeman effect of
the fine structure of the hydrogen lines does not involve a new intensity problem it
the intensity distribution in the undisturbed fine structure is known. It will there
fore be of special interest in this case to compare the relative intensities of the
Zeeman effect components with the amplitudes of the harmonic vibrations occurring
in the states of the perturbed motion, since, owing to the circumstance that we have
beforehand some information about these intensities, such a comparison will give us
valuable information about the way in which the estimate of the relative intensities
of spectral components, based on the values of these amplitudes, may be expected
to fail if the numbers characterising the stationary states are small. For this pur
pose we have in the case of two special lines, viz. the helium line 4686 A (4 3)
and the hydrogen line Ha (6562 A), (3 -> 2), calculated the squares of the relative
amplitudes of the corresponding harmonic vibrations which occur in the initial
states and in the final states involved in the different transitions giving rise to the
different components of the Zeeman effect of the fine structure. The result ot
these calculations will be found in tables XIV and XV.

The first column contains the symbols (ri;, nt v* n", n$ characterising the
transitions corresponding to the fine structure components of the undisturbed
hydrogen atom.
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The second column contains the symbols (nj, n'3; it' -* n", n"; tt") characterising
the transitions which may take place between two stationary states of the atom
perturbed by the magnetic field. The transitions corresponding to the same fine
structure component which give rise to radiation of similar polarisation are collected
in brackets, the character of the polarisation being indicated by Par. or Perp.

The third and fourth columns contain the squares of the relative amplitudes,
given by (42), of the vibrations of frequency (n[— n") aq +  (n2 — n'f)wt i  (n' — n") Oh

— (n[—n") a»i -j- (/I,— it'— n"—n") 2 +  (it' — tt")a»3 occurring in the initial state and
in the final state of the transition under consideration respectively. These relative
amplitudes are calculated by means of the expressions

f t ( r - l Wl +  «>*) =  {(1 +  e') JT_ t (« ) -  (1 -  s') JT+1 (re)},

fl(r— i a>i +  « ,) =  +

R( ' +  1 ®i — 2 w i  +  a>3) =  - ^  {(1 — s')JT_i(re) — (1 +  e ) J T+ i («)}•

(130)

where e ' = ^ ,  e =  V l — e’a, n =  ni +  n2, //' =  — , ^  =  V l —fi'*.

The fifth and sixth columns contain the sums s(R'*) and s(R"a) of the squares
of the relative amplitudes belonging to the transitions corresponding to a same fine
structure component which give rise to radiations of similar polarisation.

The seventh and eighth columns contain the values of n’3R'a and n'’R'a, appear
ing in tables IX and X, multiplied by the factor */s. These numbers, as mentioned
on page 84, afford an estimate for the relative intensities of the fine structure com
ponents which is directly comparable with the estimate afforded by the numbers
in the fifth and sixth columns.

When considering these tables it will in the first place be observed that for a
given fine structure component the quantities s(fl2) Par. and s(R2) Perp., which
correspond to the intensity of the undisplaced parallel component and to twice the
intensity of one of the outer components of the L orentz triplet respectively, are not
equal to each other, although, as mentioned in the above, these two intensities are the
same. Moreover the quantities s(Ra) Par. and s(Ra) Perp. differ both from the value
of the quantity 3/sn2f?3 appearing in the seventh and eighth columns, which corres-
sponds to the same intensity. From the connection with ordinary electrodynamics
in the region of large n’s we know that for a fine structure component (n̂  n‘2 -+ n" n'2)
for which the n’s are large numbers these three quantities would tend to coincide,
but in the case of the lines considered in the tables they show considerable differences.
If we especially would consider the hydrogen line (2 —*■ 1), which corresponds to the
smallest possible values for n' and n", these differences become still more marked.
This line will not show a fine structure because in the undisturbed atom only the

D. K. D. Vidensk. Selsk. Skr., naturvidensk. og m athem . Afd., 8. Rrekke, III. 3*
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Table XIV.
H e l i u m ,  4686 A (4—>3).

98

TransitionComponent

04; 3 —> 03; 2

1 13; 2

0,27

Perp. 22; 2

ƒ 22; 2

0,051 0,008Perp. 31; 1

Table XV.
H y d r o g e n ,  6562 A, Ha (3—>2).

Component Transition

Par.

Perp.

( 03; 2 -»  02; 2
\  03; 1 — 02; 1
f 03; 3 ^  02; 2
{ 03; 2 — 02; 1
I 03; 1 -»  02; 2

Par.
Perp.

12; 1
12; 2

11; l
11; l

Par. 21; 1
Perp. 21; 1

02; 1
02; 2

0,56
0.90
1,00
0,69
0,11

0,38
0,50

0
0,038

If'* ! (fl-2) 1 s ( I f 8) I C - h n ^ R " 1)

0
0,75
1,00
0,56

0

(«I» n i 'B " 8)

0
0,35

0
0

1,46 0,75

2,00 1,33

1,80 1,56

0,38
0,50

0
0,35

0,67 0,23

0
0,038

0
0

o /m
1

0



transition (02 -*•01) will be possible. In the presence of a magnetic field it will split
up into a normal L orentz triplet, where the undisplaced parallel component corres
ponds to the transition (02; 1 ->01; 1) and each of the outer components to the tran
sition (02; 2 -*■ 01; 1). The values of ft'2 and ft"2 corresponding to the former transition
are easily seen to be equal to s/t and 0 respectively, while those corresponding to
the latter transition are both equal to 1.

In this connection it may be of interest to notice that, for all the fine structure
components considered, the value of s(ft2) Perp. is larger than that of s(ft2) Par.,
and that in the case of the components (04->03), (03->02) and especially (02 -> 01)
this seems to be due mainly to the large values of ft'2 and ft"2 (ft'2 =  ft"2 =  1) cor
responding to transitions between two stationary states in both of which the orbit of
the electron is circular. This is in agreement with the analogous facts mentioned in
the discussion of the theory of the Stark effect and of the fine structure, which
seemed to indicate the general result that th e  e s t i m a te  of the  i n t ens i t i e s  of
spec t ra l  l ines  by means  of the  va lues  of the  a mp l i t u d e s  of the  c o r r e s 
p on d i n g  h a r m o n i c  v i b r a t i o n s  in the  s t a t es  impl ied  in the  t r a ns i t i on s
assumes ,  in the  region o f ' s m a l l  n ’s, an exaggera te  c h a r a c t e r  as soon
as, owing to the s i n g u l a r  c h a r a c t e r  of the  mo t i on  in t hese  sta 'tes, th e
va lues  of these ampl i t udes  become e i t he r  espec ia l l y  l a rge  (e. g. transition
from circular orbit to circular orbit) or e spec i a l l y  s ma l l  (e. g. transition from
non-circular orbit to circular orbit).

An interesting remark may further be made in connection with the Zeeman
effect of the component (21 -*• 02) in Ha. This component will, under the influence
of the magnetic field, be split up into an undisplaced parallel component correspond
ing to (21; 1 -> 02; 1) and two perpendicular components corresponding to (21; 1 -*02; 2)
the intensity of each of which is equal to half the intensity of the undisplaced
component. The values of ft'2 and ft"2 corresponding to (21; l->02; 1) are, however,
both equal to zero, so that we are able to conclude by purely theoretical argument
that th e  a -p r i o r i  p r o b a b i l i t y  for a t r a n s i t i o n ,  for wh i ch  the  a m p l i 
tudes  of  the h a r m o n i c  v i b r a t i o n s  of c o r r e s p o n d i n g  f r eque ncy  o c c u r 
ring in the  mot ion in the i n i t i a l  s tate  and  in the  f i na l  s ta t e  a r e  both
equal  to zero,  wil l  not  n e ce s sa r i l y  be equal  to zero.  In the discussion of
the Stark effect and of the influence on the fine structure due tov a small electric
field we have already met with analogous transitions, and just as in those cases,
we have in the present case that the amplitude of the corresponding harmonic
vibration is different from zero in the mechanically possible states lying between
the initial state and final state, and which here are characterised by (2/1, 2 — H; 1),
where 0 <  Ü. <  1.

Especially when considering transitions of the type just discussed the question
arises whether the estimate of the intensities of the components in which a spectral
line is split up would not be essentially improved by comparing these intensities
with some kind of mean value of the square of the corresponding amplitude taken
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over the states lying between the initial state and the final state. Although, as
mentioned in § 5 (compare page 63), such a calculation may perhaps permit of
accounting in more detail for the observed intensities, a consideration of the Zeeman
effect of the hydrogen lines can, however, be used to show that no s i m p l e  type
of  mean va lue  w i l l  be able  to g ive  an exact  measure  for the  re l a t i ve
intens i t i e s .  Let us thus especially consider the hydrogen line (2->l),  which in a
magnetic field will show the components (02; 1 01; 1) and (02; 2 -* 01; 1). In the
states characterised by (0,1 +  A; 1) the square of the relative amplitude of the harmonic
vibration of frequency a>.2 is, as seen from (130), given by 1 — (1 +  iji* whlle in the
states characterised by (0, 1 +  A ;  1 +  A )  the square of the relative amplitude of the
harmonic vibration of frequency o>3is equal to 1. Now it is beforehand clear that any
simple type of mean value of 1 - — ^ ,  taken over all values of A between 0
and 1, never can be equal to 1, which number obviously represents any such mean
value corresponding to the second transition. Since nevertheless the corresponding
intensities are the same, we are therefore directly led to the above conclusion. If, for
instance, we would use the logarithmic mean value defined by (109) which, as men
tioned on page 46, for several reasons offers itself naturally for an estimate of the
intensities, we would for the first transition, as it may be shown by a simple cal
culation, get the value — , while for the second transition we would get 1. Even
if we may be justified in expecting that in general it will be possible by means of
the mean value in question to obtain a closer estimate of the relative intensities of
spectral lines, we see from this example that, in case the n’s are small, the errors
involved in such an estimate may become considerable in especially chosen un
favourable cases.

In concluding this paper it may be useful once more to emphasize the in
complete and preliminary character of the underlying considerations. Nevertheless
the results obtained as regards the applications to the Stark effect and to the fine
structure of the hydrogen lines must be considered as affording a general suppor
of Bohr’s fundamental hypothesis of the connection between the intensity of spec
tral lines and the amplitudes of the harmonic vibrations into which the motion ot
the electron in the atom may be resolved, the more so because it seemed possible
to obtain a natural understanding of certain marked deviations of the observe
intensities from the preliminary theoretical estimate of the intensity distribution
obtained on the basis of this hypothesis. It seems therefore justifiable to conclude
that Bohr’s considerations offer a sound basis for a further development ot the
theory of intensities of spectral lines.
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DESCRIPTION OF PLATES

Plate I and Plate II. S ta rk  e ffect  of h y d rog en  lines.  Fig. 1, 2, 3 and 4. Comparison for
Ha, Hp, Hy and Hg of theoretical estimate of relative intensities of components with Stark’s obser
vations (see page 55).

Fig. 5. Reproduction of Stark’s photographs of effect of electric field on U p , Uy and Mg (see
page 54).

Fig. 6. Theoretical estimate of effect of electric field on hydrogen line He (see page 63).
Plate III. S ta rk  e f fec t  of he l i um  lines.  Fig. 7, 8, 9. Theoretical aspect of electric resolution

of 4686 A, 3203 A, 2733 A, compared with the rough analysis of this resolution observed by Nyquist

and by Stark, the observed components being indicated by arrows (see page 64).
In all figures of theoretical estimate of intensities of Stark effect components, components repre

sented by dots mean that the theoretical estimate for the intensity of these components is too small
to be conveniently represented on the same scale as other components.

Plate IV. F ine  s t r u c t u r e  of  hyd ro g en  and h e l i u m  lines. Fig. 10, 11, 13. Theoretical fine
structure of helium lines 4686 A and 3203 A, and of hydrogen line Ua, compared with P aschen’s
observations. Lengths of drawn components proportional to estimate of intensities of components of
fine structure fat undisturbed atom. For the sake of convenience, however, component (04 -* 03) in
fig. 10 and component (03 -> 02) in fig. 13 are represented by lines 2,5 times shorter than that corres
ponding to scale of other components. Dotted lines represent estimates of intensities of new components
corresponding to electric field of 600 Volt/cM in fig. 10, of 90 Volt/cM in fig. 11 and of 100 Volt/cM in
fig. 13 (see pages 85, 90 and 93).

Fig. 12. Theoretical estimate of intensities of original components of fine structure of helium line
5411 A, compared with P aschen’s observations (see page 91).

Components represented by small squares in the case of original components and by one dot in
the case of new components have generally theoretical intensities which are far too small to be con
veniently represented on the scale used.
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S T E L L I N G E N .

i .

De moeilijkheden die zich in de quantentheorie voordoen wanneer
men te maken heeft met een zoogenaamd „ontaard” systeem kan men
niet ontgaan met behulp van Epstein’s hypothese dat werkelijk ontaarde
systemen niet voorkomen in de natuur; een juist begrip van dezelve
moet gezocht worden in een natuurlijke begrenzing van de toepassing
der mechanica op het gebied der quantentheorie.

II.

De veronderstellingen op welke P lanck’s zoogenaamde tweede stralings
theorie berust leiden bij een consequente doorvoering tot resultaten die
onvereenigbaar schijnen te zijn met de fundamenteele principes van de
warmtetheorie.

III.

Een poging om quantenvoorwaarden in te voeren voor de hyperbolische
banen welke het electron in bet waterstofatoom kan beschrijven rondom
den kern schijnt met het wezen der stationnaire toestanden in strijd te zijn.

IV.

Wanneer men de vastlegging der stationnaire toestanden beschouwt
vanuit het gezichtspunt van samenhang tusschen energie en frequentie
laat zich het vraagstuk van de,quanten voorwaarden voor de vrije beweging
van een willekeurig vast lichaam om zijn zwaartepunt op eenvoudige
wijze overzien.
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Om het optreden van een karakteristieke Röntgenstraling, die harder
is dan de K-straling, te verklaren is het niet noodig de fundamenteele
veronderstelling te verlaten dat voor een electron dat zich in een cirkel
vormige baan beweegt het hoekmoment rondom het middelpunt gelijk is
aan een geheel veelvoud van A/2tt.

V.

VI.

Het schijnt dat voor een mechanisch systeem, bestaande uit een
massapunt dat zich in een konstant krachtveld beweegt, separatie van
variabelen in de partieele differentiaal-vergelijking van H amilton-Jacobi

alleen bereikt kan worden voor elliptische coördinaten.

VII.

Voor een verdere ontwikkeling van de quanten theorie zou het ten
zeerste gewenscht zijn nauwkeurige metingen te kunnen uitvoeren van
de relatieve intensiteit van spektraallijnen, ook als deze zich bevinden op
plaatsen in ’t spektrum die ver van elkaar liggen.

VIII.

Teneinde trigonometrische reeksen te vinden, die formeel voldoen
aan de bewegings-vergelijkingen vooj twee planeten die zich in eenzelfde
vlak rondom de zon bewegen, is het niet noodig te veronderstellen dat
de coëfficiënten in deze reeksen naar machten van de excentriciteiten
ontwikkeld zijn, doch is het voldoende aan te nemen dat deze coëfficiënten
voorgesteld kunnen worden door reeksen die voortschrijden naar op
klimmende machten van de verhouding tusschen de massa der planeten
en de massa van de zon.

IX.

Wanneer men rekening houdt met de elektrische krachten die de
ionen van een elektrolyt op elkaar uitoefenen is het mogelijk de eigen
schappen der sterke elektrolyten te verklaren, uitgaande van de eenvoudige
veronderstelling dat zoodanige elektrolyten in niet al te groote concentraties
totaal gedissocieerd zijn. (Vgl. N. Bjerkum, Zeitschr. f. Elektrochem.
24, pag. 321 (1918)
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X.

Hjelmslev’s onderzoekingen over „werkelijkheidsmeetkunde”, in welke
-o. a. aangetoond wordt hoe een meetkunde opgebouwd kan worden zonder
dat men eischt dat twee rechte lijnen slechts een punt gemeen hebben,
leveren een essentieele bijdrage tot de behandeling van bet probleem van
■de toepassing van de resultaten der abstrakte geometrie op de natuur.

XI.

De merkwaardige wetmatigheden die Christiansen gevonden heeft
bij zijn ballo-electrische onderzoekingen openen de mogelijkheid voor een
dieper inzicht in de samenhang tusschen de constitutie der materie en
de schijnbaar zoo willekeurige verschijnselen der wrijvings-electriciteit.

XII.

Het nauwkeurige onderzoek over de invloed van de botsingen der
molekulen op de magnetische eigenschappen van een gas wijst er op dat
een verklaring van de para- en diamagnetische eigenschappen der lichamen
niet kan worden gegeven zonder een ingrijpende verandering in de ge
woonlijk aangenomen wetten der mechanica en elektrodynamica.

XIII.

Beschouw een gravitatieveld volgens Einstein’s theorie met het
lijnelement ds2 =  2  dx^ dxv, waar xi , x2 en x3 ruimtekoordinaten en
x4 tijdkoordinaat zijn, en waar de gravitatiepotentialen g„v niet van x4
afhangen. De meest algemeene transformatie der koordinaten voor welke
de getransformeerde gravitatiepotentialen wederom onafhankelijk van den
tijd zijn, en waarbij een punt dat in rust was in rust blijft, is gegeven door

3 'k == $  jfc (*i i -2*2 J ®3)> ==' 1» 2, 3)
x4=  a x4 ip (x4, x2, x3) ,

waar cpf. en \p willekeurige functies zijn, terwijl o een konstante is. Met
betrekking tot deze groep van transformaties bezitten de grootheden

en

VV  T —  (g-^) — —  (SM)9v tU x k \ g J  ï x A g J

9ki9n
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het karakter van een tensor; de U’s bepalen een antisymmetrische tensor,,
de G’s een symmetrische. Deze tensoren kunnen beschouwd worden als
uitdrukking te geven aan de „rotatorische” eigenschappen van het be
schouwde stationnaire zwaarteveld, samenhangende met de Corioliskracht
die in elk punt op een in beweging zijnde massa werkt. De absolute
waarde van de hoeksnelheid die op elk pynt aan de rotatie beantwoordt
is gegeven door de scalaire grootheid £1, die bepaald is door

2 'n 2 =  £ (k, l, a, b —  1, 2, 3) Gka Glb Ru Rab,
waar de grootheden Gkl op de gewone wijze gedefinieerd zijn als dn
algebraische komplementen van de grootheden Gia ■
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