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Chapter 1

Introduction and Outline

fe/< QCD from a hole in the ground? - A. de Rujula et al. [1]

1

:'r. rally believed that the strong interaction force which acts between the con- 
.he proton and the neutron, is described by the theory of Quantum Chro­

modynamics (QCD). The two kinds of constituents, also called partons, are presented by 
the quarks and gluons which correspond to matter and force carriers respectively. There 
are indications that QCD explains the experimental observation that quarks and gluons 
only appear as confined states (hadrons) and do not occur as free particles. QCD is a 
non-abelian gauge field theory where the quarks and gluons carry a colour charge. The 
massless gauge fields, the gluons, are put in an SU(3) octet and the quarks are represented 
by a colour triplet. The latter is often indicated by the colours green, red and blue. The 
fact that hadrons are observed instead of quarks and gluons, is theoretically explained by 
the principle of colour confinement: only colourless objects occur in nature. For instance 
a green, a red and a blue quark can together form a colourless hadron. Predictions in 
QCD can in principle only be obtained by a non-perturbative treatment which turns out to 
be very hard. However under specific conditions it is possible to compute some quantities 
by means of perturbative methods. This approach is justified by asymptotic freedom, 
a property non-abelian gauge field theories are expected to possess. With this property 
and renormalization group techniques one can define a running coupling constant as(Q2) 
which becomes zero in the limit Q2 —• oo. This limit allows us to make a perturbative ex­
pansion in as(Q2') provided the partons are energetic enough to make Q large and hence 
os(<22) small. This situation is for instance realized in large hadron-hadron colliders like 
the SppS at CERN and the Tevatron at Fermilab. The perturbative approach can be even 
more accurately tested when the Large Hadron Collider and the Superconducting Super 
Collider become operational.

Theoretically a hadron-hadron collision is described by the QCD improved parton 
model. In this model the actual collision takes place between partons and not between 
the hadrons themselves. The contents of hadrons, in terms of quark and gluon densities 
is given by the parton density function. The product of two such functions predicts the 
probability of having a quark-quark, a quark-gluon, etc, collision. We are interested in
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Fig. 1.1. Comparison of the theoretical prediction with the experimental four . 
inclusive pj- spectrum. The measurement was done at the CERN SppS collider.

those parton-parton collisions after which all outgoing partons emerge from the interaction 
area with large momenta transverse to the direction of the incoming partons. Only then 
the above-mentioned perturbative expansion can be expected to be valid. Every final state 
parton is detected as a spray of newly formed hadrons, a jet, moving more or less in the 
direction of the parton. In view of colour confinement, the formation of jets is a necessity 
to get locally colourless objects. The formation of jets is described by a hadronization 
function. Both the production of the initial state partons and the hadronization of the final 
state partons are described by functions that can only be derived within the framework of 
non-perturbative QCD. Since this has not yet been achieved, both functions have to be 
extracted from other experiments. For the description of the scattering process between 
the two partons, perturbative QCD is used. It involves the calculation of the transition 
probability for finding a particular final state, given the initial state. This rather technical 
calculation is the subject of this thesis. In particular we study multiparton production, 
specifically four and five parton production, for which one has to evaluate the complicated 
scattering amplitudes describing 2 —» 4 and 2-> 5 parton reactions. In this respect we 
note that in the experimental situation the parton momentum can be reconstructed from 
the jet contents which implies that a jet and a final state parton can be identified in many 
situations. Therefore it will not be necessary for us to consider any hadronization effect. 
Since we consider processes where only quarks and gluons are involved, the study of jet 
production will shed some light on the applicability of perturbative methods in QCD.

To give an impression of the accuracy of perturbative QCD a plot of the inclusive 
transverse momentum spectrum is given in fig. 1.1. It shows a comparison of the experi­
mental measurement, of four jet production made by the UA2 group at CERN, with the
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theoretical predictions based on the scattering amplitudes calculated in this thesis. The 
agreement is very good over many orders of magnitude. The analysis of five and six jet 
production can not be carried out at this point in view of the poor experimental statistics. 
This will certainly be improved on in the near future. For more details, see chapter 8.

The outline of this thesis is as follows. In chapter 2 a general but brief introduction 
is given on theoretical aspects of collider physics. The computational tools needed to 
evaluate predictions for measurable quantities in hadron-hadron collisions are discussed. 
In particular attention is paid to methods which enable us to calculate the total cross 
section for m-jet production (2 < m < 5). The mathematics that is used to calculate 
scattering amplitudes is explained in chapter 3. In a number of examples it is shown 
that the use of Weyl-van der Waerden spinor techniques simplifies the calculations to

: i?nt. The examples also show that the techniques are applicable outside the 
of QCD calculations. In chapters 4-7 the techniques of chapter 3 are used 
.:on processes involving 0, 2, 4 and 6 quarks, respectively, accompanied
7 number of gluons. By introducing recursion in the number of gluons, 
: predefined number of quarks we are able to calculate any QCD scattering 

with at most six quarks but in principle with an arbitrary number of gluons.
’ : jf chapters 4-7 are sufficient to determine the total cross section and any

di.Terentiai cross section for up to five jet production. Chapter 8 contains three practical 
applications of the results. Firstly, a comparison between theory and experiment is made 
for the CERN SppS collider. Secondly, predictions are given for multijet production at the 
planned CERN LHC. Approximations proposed to replace the exact matrix elements are 
examined and their usefulness will be discussed. In view of the complicated exact matrix 
elements such approximations are needed to speed up the calculation. It is shown in 
chapter 8 that some of them can be used, as they give predictions close to those obtained 
from the exact calculation. And thirdly, for the four major hadron-hadron colliders the jet 
production rates are calculated. In chapter 9 various quantities, related with the subject of 
this thesis are enumerated. For example, we calculate the number of Feynman diagrams 
that correspond to scattering processes in a certain class of field theories, among which 
QCD, and the number of hard parton subprocesses that contribute to a hadron-hadron 
collision. In chapter 10 the tree level QCD matrix elements (the lowest order in the 
perturbation series) for which exact analytical results are known will be presented in the 
form most suitable for numerical applications.

To obtain numerical results the algorithms and methods of chapters 2-10 have been 
implemented in NJETS, a computer program based on Monte Carlo techniques to study 
multiparton production.



Chapter 2

QCD and collider physics

Introduction2.1

4

Several topics that are of importance if one wants to evaluate predictions fo -on- 
hadron collisions will be introduced. In particular we are interested in how to late
quantities like the total cross section and differential cross sections for multip.: pro­
duction using the QCD improved parton model. In this context computational like 
RAMBO and VEGAS are described.

Multijet events have been frequently observed at both the CERN and the FERMILAB pp 
colliders and hence the predictions of perturbative QCD can be tested. Understanding 
multijet processes is important since many processes containing new physics like top quark 
or Higgs production, have multijet final states as the dominant decay mode. A major 
problem in this respect is that jet backgrounds are dominating any interesting signal. 
Therefore multijet events should be studied to get a better quantitative understanding of 
perturbative QCD, for instance by examining scale choices and the reliability of parton 
density functions. In this chapter we introduce basic computational techniques that are 
of interest if one wants to evaluate predictions in perturbative QCD. For an introduction 
to phenomenological perturbative QCD we refer to the many review articles and books 
that have been written on this subject, a short list is given in ref. [1],

We first discuss the parton model [2] in more detail than was done in chapter 1. 
According to the QCD improved parton model the hadrons are built of constituents called 
partons. The contents of the hadron is characterized by the parton density function, 
/^(x, Q2). The parton density function is the probability density for finding a parton i, 
carrying a momentum fraction x of the hadron H. The i can either be a quark or a gluon. 
Naive parton scaling predicts that f,H(x, Q2) is independent of the QCD scale Q (Bjorken 
scaling). This result is not true in a renormalizable quantum field theory. A second mass 
scale p to remove the ultra-violet divergencies has to be introduced and dimensionless 
quantities will depend on the ratio Q/p. By assumption Q must be bigger than all other 
dimensionful parameters like the masses of the hadrons. In fig. 2.1 a schematic plot 
is given of a hadron-hadron collision. From each of the two hadrons Hi and Hi only 
one constituent collides. The m partons produced in this collision are detected as jets
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Fig. 2.1. A hadron-hadron collision according to the parton model.

In this thesis the hadronization process is not given any attention and in all

the total cross section for m-jet production in hadron-

(2.1.1)

/^(*i,Q2)/"’(*2,Q2)

MQ2) = (2.1.2)

5

dam(xlx2s) 

dtm

d^mdxidx2

jet m

i J,final J

where the partonic cross section am(s) contains among other things the spin (A) and 
colour (c) summed matrix element squared, £2c,a |A4„|2. Here we introduce the conven­
tion that the number of jets m = n — 2, where n is the total number of partons in the hard 
scattering process. The integrals in eq. (2.1.1) are performed over the parton momentum 
fractions x2 and x2 and over the accessible phase space, 4>m at a given 3. The 
and Xj,j represent the sum over all possible parton processes, conservation of charge and 
flavour is implicitly understood. One important assumption of the parton model is that 
the partons inside hadrons do not interact with each other. This assumption is implied by 
the incoherent sum The 22c,a |A4n|2 contains a factor g2m, where g is the running 
coupling constant. In first order, the QCD perturbation parameter is given by

<72(Q2) ___________12?r___________
4ir (117V — 2ny) log (Q2/A2) ’

where ny is the number of quark flavours, TV the number of colours and A determines 
the scale at which as(Q2) becomes large (strong coupling). Perturbative QCD tells us

of hadrons.
predictions final state partons and jets will be identified. In fig. 2.1, 3 is the centre-of-mass 
energy squared on the hadron level and 3 = Zii2s the centre-of-mass energy squared on 
the parton level.

The quantity of interest is crm,
hadron colliders. It is given by

final i.j J J
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• The uncertainty in the parton density functions. The energies of future colliders are 
much higher than the CERN and FERMILAB energies and very low values of the 
momentum fractions x occur, for which the density functions may be unreliable. 
At this moment it is not even clear how the low x behaviour of the gluon looks 
like, see section 2.3.1. It is conceivable that HERA will provide measurements to 
improve on this situation.

• The calculation of the complicated exact matrix element in perturbative QCD. On 
tree level all parton processes with at most five partons in the final state have now 
been calculated. In spite of this achievement there remains a practical problem 
because the numerical evaluation of multiparton processes is time consuming.

• The scale choice Q in the strong coupling constant and related to it, the higher 
order corrections in QCD. This is especially a problem in multijet physics since an 
error of 10% in as(Q2) leads to a systematic error of 50% in the prediction for five 
jet production.

• The pole structure of 52c A |A4„|2 leads to extreme peaks in some regions of the 
phase space. Therefore it is hard to obtain reliable numbers using Monte Carlo 
integration techniques.

Although our investigations mostly concerns the third point we note that the last two 
points are closely related. The numerical problems with X2c A |A4n|2 are such that one 
must choose between two Monte Carlo methods of performing the phase space integra­
tion as analytically evaluating the multidimensional phase space integrals is out of the

how as(Q2) scales but does not tell us its size. The latter is obtained from experiment 
and it is standard practice to parametrize it with A as in eq. (2.1.2). Experimentally it is 
found that A ~ 100 — 200 MeV. Clearly Q must be much larger than A in order to be 
in the perturbative domain. We will usually take nj = 5 assuming the top quark is too 
heavy to be produced, and N = 3.

Eq. (2.1.1) is evaluated with Monte Carlo integration techniques. The phase space 
integration is performed in section 2.2 and the z-integrations are handled in section 2.3. 
In these two sections all the relevant details needed to compute am are given. For a 
better understanding of the difficulties that one encounters in this process we start with 
a brief overview of these difficulties and explain the general strategy followed to evaluate 
eq. (2.1.1). We stress that although it may seem that the parton momentum fraction and 
the phase space integrations are completely independent, this is certainly no: 
All integrals are performed at once by a full Monte Carlo method. For the sa 
we will discuss them as if they are separate problems. This enables us to us 
space integration technique independently in other cases as well, for example 
hadrons.

There are many sources of uncertainties, both theoretical and experimenta: 
sequently multijet production rates are
theoretical problems the difficulties can be summarized as follows:



i, ; rnultiparton phase space

(2.2.1)

(2.2.2)M*) =

(2.2.3)

7

1 
*m(5)

(2T)4-3m

" 81

d4>m =

2.2.1 Phase space integration

The parton density functions in eq. (2.1.1) 
cross section

(dam(s)
I d*m

are multiplied by the result for the partonic

question. The first method is to parametrize the phase space in such a way that the pole 
structure of the matrix element becomes transparent, i.e. each pole is expressed in as few 
integration variables as is possible. Then one can use various techniques to improve on the 
convergence. For example by applying the adaptive stratified sampling technique which 
we will use for the z-integrations. However for multidimensional processes this method is 
not very suitable because if one succeeds in the parametrization of the phase space with 
some cuts, which is very difficult, the integration in the 3n — 4 variables is impossible to 
optimize as one needs far too many points to analyze the pole structure of x |A<„|2 
in detail. The second method is to use an event generator to perform the phase space 
integration and to use very many points, which requires a fast evaluation of $2c,a |A4n|2. 
In this respect one can use approximations to replace the exact £}c,a |Afn|2. This second 
method is the one we employ.

discuss the integration over the phase space for m partons. The Monte 
-.-.ion technique we employ is described in subsection 2.2.1. This technique

• „ •:> put constraints (cuts) on the phase space volume integrated over. These
cuts are necessary for two reasons. Firstly, without cuts the result of the integration will 
be infinite as the integrand of eq. (2.1.1) becomes infinite in some regions of phase space. 
Secondly, detector properties can be simulated by imposing cuts on the phase space points 
(events) so that only observable events are integrated over. To this end we discuss the 
detector cuts that are most commonly used in subsection 2.2.2.

sm(a)*=*.ElM.|2, 
ij,final °° c»^

which takes into account the spin (1/4) and colour average (Fc;l/N for a quark and 
1/(7V2 — 1) for a gluon) over the incoming partons, and the Bose-Einstein symmetry (F,) 
of the m outgoing partons as well as the flux factor (l/(2s)). The summation of |A4„|2 
runs over all colours (c) and helicities (A). The factor $m(s) is the total phase space 
volume for a final state of m massless particles with invariant mass squared s [3]

(rr/2)’n-1sm-2
(m — 1)1 (m — 2)!

The phase space integration element is given by

He*.) n (g£) 
Xtota/ / final \ • /
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discuss below.

and is normalized to unity, which is the reason for separating the (2rr)4 
eq. (2.2.1). This is convenient for the Monte Carlo integration, which we 
The fil4' in eq. (2.2.3) denotes momentum conservation of n partons with momenta K,. 
The total and final in eq. (2.2.3) let i run over all partons and final state partons 
respectively.

Because of the multidimensionality of our problem and the complicated character 
of the phase space cuts that have to be applied, integration of the cross section by 
Monte Carlo methods is the only feasible approach. We refer to ref. [4, 5] for a general 
introduction on Monte Carlo integration techniques and to ref. [6] for a more applied 
discussion. Our treatment is essentially the following: with the two parton momenta 
z> and xi the s is determined by s = i\XiS. Then we construct the centre-of-mass 
frame of the incoming partons, and generate the momenta of the outgoing partons. 
Since 52c,a l-Mn|2 is a complicated function of momenta and the phase space tend 
to be such that peaks in |jMn|2 are eliminated (by putting da = 0 I
the cuts are not satisfied), we have made no attempt to optimize the ge: 
the momenta. Instead we rely on the phase space routine RAMBO [7] whic 
momentum configurations with a strictly uniform phase space density. This hn: 
advantage of providing us with an estimate of the volume of phase space that 
by the cuts. The estimate for the differential partonic cross section is based o:: onl one 
RAMBO event (and equals 0 when the event does not pass the cuts). During the Monte 
Carlo integration many values of Zj and z2 result in approximately the same .s value and 
therefore we get a reliable estimate for the phase space integration in eq. (2.1.1). The 
fact that this method is not very efficient when the partonic cross section has a very 
peaky behaviour can not be avoided. Due to the techniques outlined in section 2.3.3 the 
partonic cross section will be most accurately evaluated where it is largest.

Since all cuts have to be applied to all final state partons in an event, the volume 
of the allowed phase space tends to be a small part of the total volume for m > 4. 
This observation is important for two reasons. Firstly, as has already been pointed out, 
the multijet final state will figure as an important background for the hadronic modes of 
various new-physics processes. One might try to suppress this background by imposing 
tight cuts on the jets but then the signal will also tend to be suppressed by a factor of the 
same order. Secondly, and more importantly, qualitative assumptions about the global 
behaviour of the cross section can not be argued to be valid under cuts that single out 
a small part of the phase space. This invalidates practically all assumptions that underlie 
any approximate expression for the exact matrix element and throws us back on empirical 
testing, which we shall do in chapters 4 and 8.

With respect to approximations an additional remark on the Monte Carlo integration 
technique is in order. Computing the exact cross section is so time-consuming that our 
event samples have limited statistics. Hence the Monte Carlo errors on the various results 
may not be negligible, and in fact are larger than the difference between the exact result 
and the one for the approximation. The standard solution in such cases is to use control 
variates [5]. One makes sure that the results for exact and approximate expressions are 
as much positively correlated as is possible. This we do by employing exactly the same
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on the parton level is y/i = In the
on the parton level:

Pp + Pp Pi + P2 + • ■ ■ + Pm- (2-2.4)

We take the incoming momenta aligned with the z-axis: pp = (ziy/s/2,0,0, Xiy/sj2) 
and pf = (z2v/s/2, 0,0, —z2v/^/2), i.e. the colliding beams enter the interaction point 
as coming from the positive and negative z-direction. The transverse momentum of an 
outgoing parton with momentum p = (po,Px,Pv,Pz) is given by

pr = |p] sin B = + pj. (2.2.5)

The angle 0 is the angle between the parton and the positive z-axis. Requiring a minimum 
pr for each parton

events several times: once we use them to evaluate the exact cross section, and the other 
times for the approximations. In this way the statistical fluctuations in the result for the 
total cross section are removed in the difference as much as possible. Of course it would 
even be better to perform a regression analysis, using more than one event sample for 
each set of cuts: due to limitations on computer power this is not always feasible.

As a last remark we note that the method described in this section can be very easily 
extended to allow for massive final state partons.

2.2.2 Phase space cuts

In this section we review the basic concepts of detector simulation in hadronic collisions. 
From the point of view of a theoretical physicist detector simulation is something that 
ought to be left to the experimentalist. The exact properties of a detector like dead 

:e time, etc., make it hard, if not impossible, for him to predict any definite 
llider experiment. To be able to make any predictions at all quantities are 
-imic the detector properties. What follows here is just what is needed to 

theoretically: we do not go into the details of how a detector functions 
:.d .. :.re detected.

... j ■-Ctor the partons emerging from a collision are seen as jets. The jet's 
four ..um is reconstructed by adding all the hadrons that arrive in a certain cone.
An immediate consequence of this is that two fairly collinear jets cannot be separated. 
Likewise a jet cannot be observed when it is close to the beam. A last important feature 
of detectors is that a minimum amount of transverse energy must be deposited before a 
stream of hadrons can be accepted as a jet. Note in this respect that we identify final 
state partons and jets. The actual formation of jets out of partons is described by the 
fragmentation functions but this complicated aspect will not be discussed here.

A collider simulation consists of two main parts, the production of partons from the 
colliding hadrons and the integration over the available phase space. To mimic the 
detector properties we impose constraints on the phase space points we integrate over. 
The most commonly used constraints are discussed below.

The available centre-of-mass energy 
lab-frame we have the following reaction



(2.2.7)9ij = 2(pi, P>) — ^min-

be controlled by the rapi

(2.2.8)

or equivalently for massless partons by the pseudo-rapidity:

(2.2.9)

the event is given by

(2.2.10)

ATI,, = 7(4.- - O,)2 + (7i - »7,)2 = + Ar/?- > (2.2.11)

with $ the azimuthal angle,

(2.2.12)

(2.2.13)

10

A last cut sometimes used is a minimum for the total transverse energy, E?1 produced in 
the event.

I’ll < 9max*

Pi.Pij + Py.Pyj
PT.PTj

PO +Pz
Po ~ Pz

E‘T°' = Y,ETi> E™'".

The pseudo-rapidity constraint on

= arccos

The separation of the partons and the beam can

y = V"

E?' is automatically bounded from below by mprmin and it can serve as an experimental 
event trigger. E^‘ can be used to stay away from the uncertain regions of the parton 
density functions.

The pseudo-rapidity can be regarded as the angle of the parton with the beam. It has 
the advantage over a normal angle of being additive under a Lorentz boost along the 
z-axis. The values r/mal = 1,2,3 correspond to separation angles between the parton and 
the beam direction of 40.4,15.4 and 5.7 degrees respectively. Like the py constraint the 
angles keep Ee,A |A<„|2 away from the divergent regions.
Eq. (2.2.7) is sometimes replaced by

, e
r) = — In tan -.

guarantees they are energetic enough to be distinguished from the ever present low-py 
background for which perturbative QCD can not be used. Consequently A |A4„|2 can 
be expected not to suffer numerically from soft parton divergencies in the part of the 
phase space integrated over.

To have well separated partons we define a minimum separation angle between the 
outgoing partons i and j:
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The parameters
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(2.3.1)
(2.3.2)

(2-3.4)
(2.3.5)
(2-3.6)

= 107 MeV soft gluon, 

A^$ = 250 MeV hard gluon, 
^ms ~ MeV y/x gluon.

to be ruled out by fixed-target experiments (9]. The fact that the

In this section we discuss a method to integrate out the parton momentum fractions Xi 
and x? that occur in eq. (2.1.1). These variables are integrated over using the VEGAS 
integration routine of which the basic principles are outlined in subsection 2.3.2. In order 
to get a better understanding of the integrand we first examine some properties of the 
parton density functions in subsection 2.3.1. The details of the integration over Xi and 
Xi can be found in subsection 2.3.3.

,1 density functions
As v. . in the introduction of this chapter, the contents of a hadron, in terms of
qua,: is given by the parton density function, also referred to as the structure
func". .ection we will briefly describe how these functions are parametrized. For
detaik way they are obtained from experiment and the theoretical input used
in th.t process we refer to ref. [1], in particular to lecture 3 and reviews 5 and 6.

The fi(x,Q2) are parametrized by similar functions for quarks and gluons. However 
as the quark densities can be measured more directly the constraints are more severe for 
the quark densities than they are for the gluon density.

In deep inelastic experiments the quark densities are measured over a broad range of 
x-values up to Q =15 GeV. Knowing Ajjj, these values can be evolved to higher Q-values 
using the Altarelli-Parisi equations and subsequently used in collider phenomenology. In 
numerical applications it is faster to use a parametrization instead of using the Altarelli- 
Parisi equation for each x and Q. The one most frequently used is the Duke and Owens 
parametrization [8], which reads

/(x,Q2) = Ax°(l + cx)(l - x)‘
A = Aq + A,s + A?s2 + ...

ln(Q7A2)
ln(Q?/A2)

where Qo is some reference value and a, b and c are polynomials in s.
Ao, Ai,... are fitted to an exact leading order evolution to give an accuracy of a few 
percent.

Because deep inelastic scattering does not significantly constrain the gluon densities, 
more theoretical input is needed. Most parametrizations are based on eq. (2.3.1). Some 
recent examples are [9]

/s(z,Q2) = Az-1(l-x)s
/9(x, Q2) = Ax-I(l + 9x)(l - x)4

/9(x,<?2) = Ax-,JS(1 + 9x)(l - x)4

The hard gluon seems 
soft gluon and the y/x gluon both fit the data shows that the x-values have a limited 
range (0.1 < x < 0.3) in which the /9(x,Q2) is really accurate.



(2.3.7)

(2.3.8)
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Although the number of x-integrations in the integrand of eq. (2.1.1) is only two, we 
consider the more general n-dimensional case

I = J d"xf(x),
V

with /(z) a finite function, not necessarily smooth and V a finite volume for which we 
take the unit hypercube: z,e[0,1] for i = 1,... , n. Under these condition I exists and the 
most simple Monte Carlo method one can think of to estimate I is to generate random 
values for x and evaluate the corresponding function /(z). An estimate 7 for I is then 
given by

2.3.2 Adaptive stratified sampling
In this section the adaptive stratified sampling technique to improve on eed of
convergence in a Monte Carlo integration is explained. We will pay special ion to
an integration routine VEGAS [11, 12] which is based on this technique. ( this is
not the place to discuss the theoretical aspects of Monte Carlo integration ues in
general [4], Therefore we merely outline the principles of adaptive stratified g and
discuss some of its consequences. We note the existence of other numeric; ration 
routines of a similar nature [13].

In the limit N —♦ oo this leads to 7 = I. This method has already been used in 
section 2.2.1 to determine the phase space integral. The error on 7 behaves as O(l/v^) 
irrespective of the dimensionality. We write this error as c(N)/y/N, where c(W) depends 
on f(x) and on the dimensionality. It goes to a constant for large N. \Ne will try to 
reduce c(Ar) for small W-values by a better handling of the z-integrations.

To reduce c(W) we apply stratified sampling. The integration volume is divided into 
subvolumes and in each subvolume f(x) is evaluated the same number of times. This way 
the random points are more evenly distributed over V which has the effect of reducing 
c(W) for small values of N. A second improvement is to let the integration learn from 
the results already obtained, i.e. an adaptive integration. The idea is to make the

The most recent parton density functions for the gluon use eq. (2.3.1) and are called 
the HMRS-parametrizations. For the values a = —1/2 (valence-like), a = — 1 (standard 
gluon) and a = —3/2 (singular gluon), the best values for b, c and A were determined [10] 
based on = 100 MeV. The standard gluon choice resulted in b = 4.4 and c = 0. The 
validity range of the HMRS-parametrizations is: 10~5 < z < 1 and 5 < Q2 < 1.3 106.

The three different choices of a in the HMRS-sets will result in different predictions 
once low z-values occur as will be the case for the LHC and the SSC. This situation is not 
satisfactory, see chapter 8 and hopefully HERA will put more constraints on the possible 
parametrizations of /9(z,Q2).
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(2.3.11)

(2.3.12)

(2.3.13)
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a;ght with which to add the i-th estimator Z, to the final estimate I and 
of iterations. A possible choice for p, is

the behaviour of f(x), say |/(z)| 
number of iterations and redividing

dof

ft ft (2.3.10)

the standard deviation of the i-th estimator. Later iterations will have smaller 
more important. The choice VEGAS uses is

(/.-I)2

i
Ni - 1

size of the subvolumes depend on the behaviour of /(z), say |/(z)| or |/'(z)|, in that 
part of V. By integrating in a number of iterations and redividing or combining the 
subvolumes, the distribution of the subvolumes will eventually reflect the behaviour of 
/(z). What happens is that a mapping of the z-integration variables to new variables is 
introduced (a very complicated mapping and generally impossible to parametrize) such 
that the integral becomes a ’constant’, that is the contribution of each subvolume to 
I is the same. However in practice it is not possible to have an infinitely refined grid 
of subvolumes and after a few iterations the grid will not change much anymore as it 
then optimally corresponds with the behaviour of the integrand, given the number of 
subvolumes. Therefore it is a good idea to compose the final estimate for I out of the 
results for each iteration: a weighted average over all intermediate results. In general a 
weighted average looks like

/ -i i • i

' : i' / ift >

with cr,
<7i’s and thus are

ft=7?/a?.

This choice is motivated by the observation that when /(z) has narrow peaks they will not 
be found in the first few iterations but the corresponding <z’s can still be small compared to 
later a's and thus those specific iterations become relatively too important. By including 
the result of the iteration in p; this effect is somewhat weakened. Therefore eq. (2.3.11) 
is presumably a better choice than eq. (2.3.10).

The technique of adaptive stratified sampling optimizes the integration over the par- 
ton momentum fractions. A direct consequence is that the phase space integral in the 
integrand is most accurately determined for that value of 3 where it is largest. This again 
shows that the z-integrations and the 4>m-integrations are not independent.

There exists a variety of tests to check whether the estimators Z,- are consistent with 
each other. VEGAS uses an analogue of the x2-t*st. Corresponding with eq. (2.3.10) we 
define x2/dof as follows

£ (/■ - Jy

where dof denotes the number of degrees of freedom. For eq. (2.3.11) it becomes 

0)’x2 1 
dof N,1 A?



2.3.3

(2.3.14)

(2.3.15)X1 — Z2— =
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are
in

d 
above 

mapping for Zi and to enable VEGAS to : d

I = j dxx J dx2 fi(xi) fj(x2) Mm(xix2s),
Xl- X2_

(ttl-Z?min)

with Emi„ the minimum energy required for each parton (a result of the phase space cuts). 
The parameter y/e denotes the fraction of the hadronic centre-of-mass energy minimally

Integration over the parton momentum fractions.

In this section we look at the two integrations over the parton momentum fractions, 
and x2. In a simplified notation the integral in eq. (2.1.1) can be written as

• The first remark concerns the way to subdivide the integration volume. It is very 
difficult to parametrize the multidimensional volume in such a way that corre­
sponds exactly with the behaviour of the integrand. In VEGAS the subdivis 
hypercubes, i.e. the subdivisions are obtained by making intervals in the int 
variables. A direct consequence of this is that the integration routine is 
sitive to extrema in f(x) that are not parallel, or equivalently can not be 
to lie parallel, to an integration axis. For the integrand in eq. (2.1.1) the 
means that we must introduce a 
the extremum in the partonic cross section, see section 2.3.3.

• Using VEGAS to plot the functional behaviour of the integrand in a straightforward 
way by taking the value for /(£) and using x to make the histogram, is not a correct 
procedure. Points from different iterations normally contribute to the integral with 
a different weight. Therefore, adding contributions in a simple way by putting them 
unweighted in the histogram, will lead to an incorrect distribution. Provided the 
results of the iterations are not too far apart it is better from a practical point 
of view to accept this error in the distributions than to try to include the VEGAS 
weights in the histograms.

For 1 VEGAS uses the estimate for the integral based on the previous (t — l)-iterations. 
The expectation value for x2/dof = 1 in both cases. In practice this has the following 
consequences: y2/dof 1 means that the values for /, differ much less than could be 
expected on grounds of the standard deviations and x2/dof 3> 1 means the opposite, i.e. 
the a, are very small compared to the range of /, values.

We conclude with two remarks that are of interest when VEGAS is used.

where /,(xi) and />(x2) are the parton density functions and Mm(xtx2s = s) denotes 
the phase space integration for m final state partons. Two problems of numerical nature 
arise when eq. (2.3.14) is evaluated with the aid of an adaptive integration program. The 
first problem is that a minimum for s is required to produce m jets and thus the lower 
limits Xj_ and x2_ the integral (2.3.14) are related by



(2.3.16)

(2.3.17)I

Collider and detector properties2.4

(2-4.1)number of m-jet events
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the above mapping is that both integrations run from 0 to 1 and that the 
minim. .. energy on the parton level is automatically y/es. Furthermore Mm(eX2s) is a 
function in one variable and VEGAS can easily find its extrema and optimize the integration 
accordingly. Another effect of the coordinate transformation eq. (2.3.16) is that it favours 
low values for xt and x2. This is exactly the behaviour of the integrand and therefore 
increases the efficiency.

Inserting eq. (2.3.16) into eq. (2.3.14) results in 

1 i
. .' d£i J dx2 J(x2,x2-,x2,x2) fi(xi) fj(x2) Aftn(eXJs), 

a o

3,16) is used to simplify the notation. The Jacobian in (2.3.17) is given by

■; ij, x2) = i2eXJ/og2(e) (2.3.18)

In this section we review some properties of four important hadron-hadron colliders. These 
colliders are the Super proton-antiproton Synchrotron (SppS), the Tevatron, the planned 
Large Hadron Collider (LHC) and the proposed Superconducting Super Collider (SSC). 
The facts and properties in table 2.1 are of a general nature and are meant to picture 
the physical size of the present (and future) colliders. The luminosities can be used to 
calculate the expected number of multijet events with

= <zm y
and the results for <rm as given in section 8.4.

Of the four hadron-hadron colliders, the SppS and the Tevatron are the only two in 
operation. The main difference between them is that it is still possible to find the top 
quark at Fermilab while for the SppS the top quark is already too heavy to be found 
(ml0p > 89 GeV. (14]). Many jet related quantities such as ratios of cross sections, etc., 
do not vary much between these two colliders. Likewise this is the case for the LHC in 
comparison with the SSC. For more information on collider properties we refer to ref. [15].

required on the parton level. Of course Em,n can be set to zero, and hence and x2_, 
at the cost of some efficiency during the integration. The second, more severe, problem is 
that Mm(s) is peaked around a certain value s'. In the integrand of eq. (2.3.14) the peak 
lies along the two-dimensional curve xtx2 = s'/s. As explained, VEGAS cannot optimally 
integrate functions that have peaks not parallel to a coordinate axis.
Both problems are solved by introducing a mapping of Z] and x2 to and x2:

( xi = e*'*2
[ x2 = '



Table 2.1. Collider properties.
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Table 2.2. Phase space cuts to mimic detector properties.
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Chapter 3

Computational techniques

■d'jction

(3.1.1)

for spin-| (anti)-particles and

(3.1.2)
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r.■■■.hniques needed for the calculation of QCD matrix elements are introduced. A 
ocedure from Dirac spinors and Minkowski vectors to Weyl-van der Waerden 

-•d out. In a number of examples the use of these spinors is demonstrated.

for massless spin-1 particles, n“ is arbitrary but not parallel to fc*1. In eq. (3.1.2) the free­
dom nM disappears for massive particles and must be replaced by k“. In QCD, the theory 
of our interest, one also has to perform the colour sums. After the appropriate colour and 
spin sums we arrive at the matrix element squared, colour and spin summed: £2<:,a |-Ad„|2- 
This approach has some advantages. Firstly, it is straightforward and secondly the gauge 
freedom can be used as a check on the calculation. In case the spin-1 particles are 
photons the right-hand side of eq. (3.1.2) can be replaced by — g'"'. Then the calculation 
simplifies but the check is lost. An obvious disadvantage of the above method is that a 
lot of trace algebra and in QCD also a lot of colour algebra, has to be performed before 
52c,x|Al„|2 is obtained. Furthermore the final expressions can become very large and 
although they are expressed in terms of inner products of Minkowski vectors it is hard 
to use momentum conservation to simplify them. In fact the method sketched above 
already fails for many six parton processes. This is the case in spite of the availability of

We an introduction how one arrives at the use of Weyl-van der Waerden
(WvdW) spinors to calculate matrix elements. Given an interaction Lagrangian one can 
determine the Feynman rules and use the Feynman diagram technique to write down the 
matrix element A4 for every possible scattering process. The standard way to obtain the 
transition probability is to square M using the spin sums [1]

^2u,(p)us(p) =/ + mand J2v»(p)c«(p) = / “ m

-g^d-



developed

(3.1.3)<W) =
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only refer to the onesalgebraic computation programs, see ref. [2], Here we 
for calculations in high energy physics.

We shall illustrate the disadvantages of the standard method described above with 
two examples. The first one concerns the two to three gluon scattering processes in QCD, 
where the original expressions were presented in several tables and long formulae [3], With 
the better techniques described below, the expressions are rewritten in a more compact 
and systematic form [4], see section 3.6.2. The second example concerns the two to two 
graviton scattering process [5]. Ultimately a short expression was found but on after 
using many hours of computer time. This calculation becomes trivial, see section 3.6.3, 
when the techniques described in subsequent sections are used.

New tricks have to be introduced before one can start calculating processes wit 
particles. An important improvement is the idea to evaluate helicity amplitudes ii 
of £2c,a |A4„|2. By introducing orthogonal helicity states for all particles, the eval > 
goes as follows. Instead of explicitly carrying out the spin sums using eqs. (3.1.1) 
(3.1.2), the amplitude M is evaluated for every possible combination of the helicity states. 
These amplitudes will from now on be denoted by the term helicity amplitudes. Because 
the helicity states are orthogonal, J2cA |A4„|2 is the sum over all helicity amplitudes 
squared. Although the expressions for M are more compact one has to evaluate up to 
2" helicity amplitudes for a process with n massless spin carrying particles. So at first 
sight it does not appear to be an improvement. It turns out that parity conservation, 
charge conjugation and other symmetries which we will encounter later on, substantially 
lower this number 2n. More importantly the gauge freedom n“ of eq. (3.1.2) results in a 
freedom of choosing the helicity vectors for massless spin-1 particles, which can be used 
in such a way that many Feynman diagrams immediately vanish. This method of using 
the gauge freedom is crucial in the CALKUL method [6]. The helicity vectors still have 
awkward appearances and the correlation with the vector nM in eq. (3.1.2) is not always 
obvious. The CALKUL method was slowly refined and improved on. The n'‘ became an 
explicit parameter in the helicity vectors of spin-1 particles [7] and ultimately it lead to

1 uxjk^u^n) 
x/2 u-x(n)ux(k)

for massless spin-1 particles [8]. By choosing nM equal to one of the other external 
momenta, sayp", the calculation simplifies because terms with u(p)u(p) and ?iu(p) vanish. 
For a complete description of the CALKUL method we refer to [9],

Another improvement is the use of two-dimensional complex WvdW spinors [10, 11] 
and the related spinor calculus [11]. One of the main problems of the improved CALKUL 
method is that the 7-matrix algebra still exists. Connected with this problem is the 
fact that Dirac spinors and Minkowski vectors are treated as different objects. The 
use of WvdW spinors removes the 7-algebra altogether and translates Dirac spinors and 
Minkowski vectors to the same kind of objects, WvdW spinors. As a side effect the 
helicity vectors for massless bosons get an elegant form and the gauge freedom can be 
fully exploited in calculations. Especially in numerical applications the WvdW spinor 
formalism turns out to be extremely useful. This is the present status of tree level matrix 
element calculations.



3.2 Weyl-van der Waerden spinors

(3.2.1)=

(3.2.2)= (AB-

(3.2.3)

, = 2- (3.2.4)

=> 'I''4 (3.2.5)

(3.2.6)
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The outline of this chapter is as follows. In the next section we introduce WvdW 
spinors. In sections 3.3 and 3.4 translation schemes for fermions and bosons are presented. 
Furthermore explicit representations for both massive and massless particles in terms of 
WvdW spinors will be derived. In section 3.5 the consequences for QCD are discussed and 
the Feynman rules for this theory in terms of WvdW spinors are given. In this section we 
also introduce techniques to handle the colour structures in QCD. The spinor techniques 
are applied to calculate a number of scattering processes in section 3.6. In section 3.7 we 
conclude with a discussion on the numerical implementation of WvdW spinors.

*a =

cAB =

A is a two dimensional complex spinor and is its complex 
■ nd by the dotted index. The complex conjugated spinor will sometimes 

he dotted spinor. In components the spinors read

In this section we introduce WvdW spinors [12, 13] and the related spinor calculus. 
Furthermore v■» relate the spinors to Minkowski vectors by giving a translation scheme.

The VV'.-’W spinor, 'J' 
conjugate, ;r 
be referred t

Eq. (3.2.2) implies that cAB = —eBA, therefore it is necessary to raise the indices in a 
well defined order. This is in contrast with raising Lorentz indices using the symmetric 
Minkowski metric p'"', for which we use the (+,—,—,—) signature. We raise spinor 
indices with the so-called south-west rule. The spinor index to be raised (lowered) must 
be placed directly south-west (north-east) of the corresponding index in the spinor metric 
cAB (cab)- For instance

= eAB=cAB

The spinorial inner product between two WvdW spinors is defined by

caB

eAB

VB = qAiAB ^A = CAB^B-

Some direct consequences of eqs. (3.2.2) and (3.2.3) are

1 0 
0 1

1 ci
\ c2

with cj and c2 ordinary complex numbers. The spinors in eq. (3.2.1) could be called 
covariant spinors. The spinor index is raised and lowered with the spinor metric eAB\



(3.2.7)

(3.2.8)

satisfies the Schouten-identity

(*1*2)*? + (*2*3>*f + («'3«'1>'1'2 = 0.

(3.2.12)+

, <?2 =<7° = , a1 = . (3.2.13)
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(3.2.9)

>nt

(3.2.15) 

are

(3.2.16)

(3.2.17)
(3.2.18)

(3.2.19)

be related

-1 0
0 1

The spin-tensor <r‘‘AB, an object with both Lorentz and spinor indices is defined as

a"AB = _ ((7°, a1, or2, <r3) = (<7°, <7), (3.2.14)

where Ab replace the spin indices of the cr-matrix. In the following the dotted index 
denotes the row and the undotted the column of the matrix. With g^ and cab to lower 
indices we find

<^B = (a0,-?*), °*B = (<^o,-5), = (<z0,5’).

A number of relations can be derived for spin-tensors. The most useful ones

= 'W
<r„AB°r*B = ^9^,

anAB^CD ~ ^AC^BDi

%ABa^ + ^,ABatC = 2^eCB-

With the spin-tensor, Minkowski four vectors K“ and spinor objects KAB can 
as follows. Given the Minkowski vectors

0 -1 
-1 0

A number of relations between WvdW spinors can be derived. From the definition of the 
inner product it follows that

(*1*2) = -(*2*1), 

and in particular that

(*4) = 0.
The spinor metric eAB

tABtCD + £XC£DB + (AD(BC = Q

Multiplying eq. (3.2.9) from the left and right with some spinors yields two very ir 
rules for spinor calculus.

x*ib*2c*3d => (*1*2)*? + (*2*3)*? + (*3*1)*? = 0. (3. )
x *ic*2D => *?*f - *?*® = (*2*i)eXB. (3 )

Of course similar relations exist for dotted spinors. With eqs. (3.2.10) and (3.2.1 ) 
complicated relations between spinors can be derived, one nice example is 

1 . 1 W 1 .
(ab}(bc}{cd) {ac){cb){bd) (ab)(bd) (ac)(c<l)’

with a, b, c and d arbitrary spinors. More complicated objects like VABC, V ABC 
will also be used. Especially the last object is relevant as we are going to relate it to 
Minkowski vectors. The translation of Minkowski vectors into WvdW spinors (and vice 
versa) uses the <7-matrices to map the vectors onto the two dimensional complex spinors. 
We choose the following representation of the Pauli-Dirac matrices

0 i 
-i 0

1 0 
0 1

MB



(3.2.21)

and equivalently

KAB = %AB^ = = (3.2.22)

ABThe K^b and K

^KAB = (3.2.23)

(3.2.24)^.AB^

(3.2.25)

9^

is

(3.2.29)
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Ko-K3 
-Kt - iK2

K22 
-Ki2

— Ki + iK2 
K0 + K3

Kq + K3 Ki 4- iK2 
Kt - iK2 Ko - K3

or in components:

— K21 \
K" J'

.AB _
k

KAB — ~nAB rx _= <7 = crp

and eq. (3.2.17) the inverse translation is found to be

* = = 2K„

(3.2.26) 

which serves as the definition of {/<, P), the inner product of two momenta in spinor 
language. Another example is the metric g^ which is translated as

K“ = (K°, Kl, K2, K3) = (K°,K) and K. = (Ko> Ku K2, K3) (3.2.20)

where K° = Ko is the energy component and K the momentum part, the momentum in 
spinor language, K*B is defined by

(3.2.27)

So far K" is a general four vector with real components and the only property of K*B 
hermiticity by virtue of eq. (3.2.16).

and thus

= Kb^ = '2^BKAB-

An example of a translated object is the Minkowski inner product 

(X • P) = I^P. = '2^BKAB^DPdD = '2^AbPab =

1<AB = WbaY- (3.2.28)

In most practical situations we deal with light-cone vectors, K2 = 0 = {K, K). This has 
important consequences for the KjB because from

^ab^Ab = ^KitK22 - Ki2K2t) = 0

it follows that K*B has det(A'?jB)=0 and therefore can be written as a dyad of the 
eigenspinor which corresponds to the non-zero eigenvalue. Based on the property of 
hermitian matrices, K*B can be written as

are related by K^B = eJtctBDK^D

C K" Ki2
Kh K22



(3.2.30)

i/<
3fcx = e" 0(31/4

(3.2.33)kA =

(3.2.35)
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o +

(K-P) = }{K,P} = '2KAbPAb = '2kBpBkAPA = |(fcpXM' = ||(MI’(32.34) 

Considering the Minkowski inner product from this point of view it appears that spinor 
inner products are more fundamental quantities. It turns out that matrix elements do 
indeed get a more compact form when expressed in terms of spinor inner products.

The above holds for light-cone vectors. Now consider an on-shell massive particle that 
has momentum with P2 = My. It is possible to find the decomposition in eigenspinors 
using eq. (3.2.30). However in practice it is better to decompose in two light-cone 
vectors Kp and Mp as follows: P^ = Kll + aMp, or in spinor language:

PAB = kab + aMAB = kA kB + amA mB

with the restriction that

a(km}(km)' = My. (3.2.36)

The momentum M„ (and thus mA) can be chosen completely arbitrary. Every particular 
choice fixes a and K^. The My —> 0 limit can be obtained with a —♦ 0. The decom­
position eq. (3.2.35) can be used to express all momenta in momentum spinors at the 
cost of introducing new momenta. As the spinors kA and mA appear in the spin-state 
solutions as well as in the decomposition above is the only worthwhile decomposition as 
the freedom in choosing m is important. The decomposition based on eigenspinors does 
not have this advantage.

PAB — 52
n

with An the eigenvalues and (/„)* the corresponding normalized eigenvectors. The eigen­
values of KAb are A1>2 = and with kA = y/2Kol2A we have

KAB — ^a ^b- (3.2.31)

A spinor kA corresponding to a light-cone momentum K^, is called a momentum spinor. 
The general convention is that capitals denote space-time momenta, possibly in spinor 
language, and lower case characters the corresponding momentum spinors. E.; KAB 
corresponds with a particle momentum and kA with the spinor as defined by eq. ('.' 2.31). 
The normalized eigenvector kA reads

K, -iKi \

(K,+iK-,\
\Ki-iK,)

with 6 arbitrary. kA is well defined for all K^, in particular for K\ = 7<2 = 0. With e 
restriction that 7<0 0 K3, kA can be rewritten in a more convenient form

Kx - iK2/y/K0 - K3
VKo~K3

With the momentum spinor, the Minkowski inner product of two light-cone vectors Ku 
and P„ can be expressed as



(7")% = (3.3.1)

« = (3.3.3)

(3.3.4)

(3.3.5)

and

Tr(7''1 .. ■7,‘"7S) <z‘a'

— c.c.<7

In particular from eq. (3.2.17) it follows that
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0 
-I

0 
c* 0

AZ
.Pn

AZ

AZ

(3.3.6)
be • •

be' ■

.pi 
BA

+ C.C.

■ Ml
Ba

.Ml
Ba

0
O-wAB

a“26ca‘

.^nZA

H\AB

rmAB

= i7°7*7273 = (J

<7* 
dA

0

Trfy' ...7“") =
= a“'ABa‘

75 = 7s

,U„ZA

Note that there is some arbitrariness in the definition of the Weyl-representation in the 
literature; one can define (7")% differently while keeping 75 the same. The representation 
of the 75 determines whether it is a Weyl-representation or not.

With eqs. (3.3.1)-(3.3.4) one can derive the following translation rules for traces of 
7-matrices, with n even

anBca'

“2eB^D-- ‘̂

3.3 Spin-i particles

Within the framework of WvdW spinors we examine spinor representations for fermionic 
spin-1 particles. The outline of this section is as follows: after defining 7-matrices and 
Dirac-spinors in the WvdW formalism, the Dirac-Lagrangian is translated into WvdW 
spinor language and the Dirac equation is solved for massless particles. This procedure 
leads to a set of helicity states for the fermions in terms of momentum spinors. At the end 
of this section an extension to massive fermions is discussed and the spin-state solutions 
that can be used in calculations are derived.

Using the spin-tensor, see eq. (3.2.14), the 7-matrices in the Weyl-representation can 
be put in the form

be ■°

. ■ ihis ion the commutation rule for 7-matrices

(7' . /c + (7v)“4(7,‘)‘e = 2<?‘“'(Zrc (3.3.2)

matrix, is seen to be satisfied when eq. (3.2.19) is used after eq. (3.3.1) 
he- --an sT- r ed. With the explicit representation of <7'"'s, see eq. (3.2.13), we arrive 
at the following representation for the 7-matrices

w. ■ (
with 2: = 1,2 or 3. In this Weyl-representation 75 reads

. a' -a1



(3.3.9)

= (3.3.11)

(3.3.12)

(3.3.13)

have explicit solutions

(3.3.14)

(3.3.15)

(3.3.16)
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^R
$4

i
+ 2

Tr(7" 7") = ^“Ab^AB + ^BA^6a = 4S'“'- (3.3.7)

Contraction of eq. (3.3.5) with n massless particle momenta plM1,... ,p„Mn results in

Tr(^i = (P1P2)(P3P?)'(P3P<) • ■ ■ (pip„)‘ + c.c. (3.3.8)
and the Levi-Civita tensor

^(P1>P2,P3,P<) s vpc PaPjP&a, 
with ions = 1, is translated as

4if(p1,p2,p3,p<) = (12)*(23)(34)"(41) - c.c. (3.3.10)

This demonstrates the enormous simplification of the trace algebra when one uses dW 
spinors. There is simply no trace algebra left.

In the Weyl-representation the Dirac-spinor reads 

/ \ 
*2 
$i • 

< j 

where Vr and ’J'l correspond with the physical right and left-handed spin states. The 
spinor index a is frequently omitted as it will be clear from the context what is meant. 
For the Dirac-spinor we take a form that expresses the 4-spinor in terms of one covariant 
spinor '1'^ and one contravariant spinor 4>A. These two WvdW spinors correspond with 
the two helicity states of massless fermions 

Wa \ 

0 J 
0 

<j>R J ’ 

indeed the helicity states once we

,<7uAb

«'r = 4-+ = |(1 + 75)4' =

= |(l-7»)* =

We will prove that the are 
for them. The adjoint spinor is given by

W = if* 7° = (®2, VK) = ($AT, - (<•’, $2, *i, ®j)>

where T denotes transposition. The Dirac-Lagrangian

£ = - MW,

where M is the mass of the fermion, translated into its WvdW analogue reads

-M((W) + (W)*)
where we have used that



(3.3.17)

(3.3.18)

(3.3.19)

\K) (3.3.21)

and for the

(*)=(u+(/<) = (3.3.22)and

, (3.3.25)

(3.3.26)and

(3.3.27)«A =
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determined by the completeness relation

0 
alKAB

a\^BA \ _ 

0 /

0 
a ■ K

SK 
0

0 
a_eiB- kA

S ■ K ua =

a+e,<+ kA 
a-eie- kA

^ux(K)ux(K) = yl‘Kl, or
A

which leads to a+ = 1 and a_ = 1. Setting both phase factors equal to one we arrive at

«+(tf) = ( o' ) and u~^ = ( kA ) ■

That u+ and u_ correspond with the 4- and — helicity states can be checked by using 
the explicit representations for kA and kA and verifying that u+ and u_ have the correct 

eigenvalues for the helicity operator S • K

i^i

<J<I> = 4- = (>l>$) + ('!»$)•

Setting AT = 0 in eq. (3.3.16) results in two uncoupled equations of motion

( dAB'MB = o
t dAB*A = 0

Transforming ^g to momentum space, eq. (3.3.19) becomes very simple, for instance

KAbVb = kAkBVB = 0, (3.3.20)

with KAb the four-momentum of the fermion, {K,K} — 0 and kA its momentum spinor. 
The ij>e denote-- the Fourier transform of ’Jg. Eq. (3.3.20) leads to the following solution 
for the spin ■-. . s in momentum space

. _ ( $a \ _

\ '*>A 7
Jicity states

o-+e‘e+ kA \ 

k 0 )
Similarly for the adjoint spinors

u+(/<) = (0,a+e-’+fcx) and u_(K) = (a_e~'e-kA ,0). (3.3.23)

The u+ and u_ are two orthogonal spin states, i.e. with Ai = ± and A2 = ± we have

U;iUAa = 2/<o«a,a2 (3-3.24)

Furthermore we have the real parameters a+ > 0,a_ > 0 and 5+,0_ arbitrary. The a's 
are determined by the completeness relation or the spin sum condition

0 Kba

KAB 0



Cv± =

(3.3.30)

B

(3.3.32)

or

(3.3.33)

(3.3.36)
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(3.3.34)

(3.3.35)

for A = ±.
The solutions of the Dirac equation u and u describe the creation and annihilation of 

fermions. The solution for anti-fermions can be constructed from u and u by means of 
the charge conjugation relation

The notation is such that in the M —♦ 0 or equivalently a —♦ 0 limit, PAb 

eq. (3.3.31) the spinor mx is arbitrary but mA kA and (km) is given by

aftm'ftbn)' = M2, ae]R+.

Now we turn to massive fermions. The equations of motion derived from eq. (3.3.16) 
in momentum space read

f  M^x

( PAb4>A = MVb

with PAb the four-momentum of the massive fermion, {P, P] — 2M2. As noted in 
section 3.2 we can decompose the momentum PAb in two light-cone momenta KAb and 
MAb with

pAB + a mAmJ (3.3.31)

KAb. In

-u±- (3.3.28)

Here the T again denotes the transposed spinor and C = — i~t2~t°. For massless spinors 
this definition of C gives the same result as the following argument. As both the mo­
mentum and the spin are reversed the helicity remains the same. In other words we 
can interchange the + and the — solutions of the particles to get the solution f the 
anti-particles. Thus

v_(K) = u+(K), v+(K) = u_(K). (.. 9)

are the helicity states for anti-fermions. The corresponds to the annihilation n 
anti-fermion.

(km) = e'e M / y/a

Using eqs. (3.3.31) and (3.3.33) the following relations can be derived

PABkB = amA(mk) = — y/ae'eMmA
PABmB = (km)kA = e'eM/y/akA

We try as solutions of (3.3.30)

f VB = kB + ^ m,B
( iA = kA — y/a mA

= KAb + aMAB = kAkB



and similarly

(3.3.37)

(3.3.38)

(P) =

(3.3.39)

(3.3.40)

(3.3.41)u*i “a2 = 2M5A1a2,

(3.3.42)“a, “a2 = -2M6a,a2-

The solutions for particles and anti-particles are also orthogonal

UA,(P) VAa(P)=VA,(P) (3.3.43)

29

£“a(P) “a(P) = 7mPm + M I = 
A

£“a(P) “a(P) = 7pPm - M I =
A

/am'

-MeBA 
pAB

Substituting and <t>>' in eq. (3.3.30) gives 6 = rr. From these solutions we construct 
two spin states for the fermion. These spin states are based on the massive case and in 
the M —♦ 0 limit the spin states transform in the corresponding massless states. The 
complete set of solutions for both fermions and anti-fermions is given by

'i's = kB — y/a mg 

4>/* = —it'* — a/5 m'*

y/amA \
kA J ’

P y/^mA) , 

kA
s/amA J '

~ > “-(P) = (yamA *u) •

P&A

ux,(P) = °-

Note that the solutions in eq. (3.3.38) do not correspond to helicity states, i.e. they 
are not eigenstates of the helicity operator. As a last point we note that the freedom of 
choosing can be used to simplify calculations with massive fermions.

“+(P) =■ \ -VamA kA} , u_(P) =
-^mA '

fie anti-particles can again be obtained by means of the charge conju- 
gai: if tioi .q. (3.3.28). Notice that we do not have v+ = u_ and v_ = u+. With
the jhiiion eqs. ■ 3.3.38) the completeness relations and the standard normalization for 
massive fermions can be checked.

™‘Ba Pba 
PAB MeAg



3.4 Bosonic particles

3.4.1)d-A = 0.

reads

f 2)□ A" = 0.

(3.4.3)

(34.4)

(3.4.10)

30

±. In spinor language the orientation and 
be chosen such that the ej are determined

(3.4.5)

(3.4.6)

(3.4.7)

(3.4.8)

(34.9)

The massless spin-1 field has two degrees of freedom, represented by the right- and left­
handed complex helicity vectors, ej with A = 
normalization of the polarization vectors can 
by the following set of relations:

{K,K} = 0
{£a,X} = 0
{«A,£a} = o

= (^f )*
{«a,«-a} = —2

with the momentum of the particle. Note that eq. (3.4.7) does not imply that 
ejB = eAeB for some spinor eA, see eq. (3.2.30), because the components of e* are 

complex. For transverse vectors there is the extra condition that

?a ■ K = 0.

The general solution can be written as a plane wave solution

4w(z) = j dAk ^(k)eikz

In general there would be four independent e"(fc)’s but the Lorentz condition (3.4.1), 
reduces this to three. Furthermore we can change A“ by a gauge transformation, which 
implies that the e" still have the gauge freedom:

e'* = e* + f K".

+ e-"(fc)e-te) .

Having considered the translation of Dirac spinors in WvdW spinors we turn to bosons. 
We give a detailed derivation of the explicit representation of helicity vectors corresponding 
to free bosonic particles. As will be clear from the many examples in section 3.6 it is not 
important whether the particle carries colour, so photons and gluons can be treated on 
equal footing. We use vectors and spinors alongside each other; the equations are put in 
the language that is most convenient.

The equation of motion for a free massless spin-1 particle in the Lorentz ga: ;e

This relation can be satisfied by a redefinition of e by means of eq. (3.4.4). With these 
relations we find that the helicity vectors can be written as



(3.4.11)

(3.4.12)

(3.4.14)

(3.4.15)kA =

Together with the definition of the momentum spinor

(3.4.16)bA =

based on B“ = (B°, B', B2, B3) with B2 = 0, it follows that

(3.4.17)£+AB —

(3.4.18)

(3.4.19)WK =
0
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b2

.8

; few- =

/1 
o 
o

\ 0

0 
cos 0

0
2 Ko

0 0
2 Ko 6, 2 Ko b2

4 =

= 4B + (KAb.

- ~ (kb}-

Ab - x/2ciakAbB
+ V (kb)

■iX>^x,

^kAcB ^kAkB(bc)
(kc) (kb)(kc}

The Tow that eAB corresponds to the right-handed helicity state is to define
the boson to propagate along the z-axis with A'1' = (K°, 0,0, K°}. Using eq. (3.2.33) 
we find that

with bA an arbitrary spinor not proportional to kA. The phase factor e'a is just an overall 
rotation of the two helicity vectors around the direction of propagation of the boson. We 
set a = 0. The gauge freedom of the helicity vectors is manifestly present in spinor 
language. That is, if c‘( is a solution then

4" = ^+ 4^, (3.4.13)
will so a solution. It corresponds with two different choices for bA. For
exa ■ 10)

0 0 \
sin 0 0

— sin 0 cos 0 0
0 0 1/

V2
W

Using e£ = f<r,‘ABe+jB and eq. (3.4.4) to remove the component parallel to K'1 gives

e!f. = /3+(0, (~B° -B3-B' + iB2),i(—B° - B3 - B' + iB2),0),

with /3+ some function of inner products with K^’s and B'-’s. With the definition that 
the helicity vectors transform under a rotation over an angle 0 as



(3.4.20)+

(3.4.21)

(3.4.22)□A"*' = 0.

(3.4.23)+ «'

Next choose an orthogonal basis for the two remaining vectors
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(£a • ca) = o.
(£A • C-a) = -1.

(3.4.24)
(3.4.25)
(3.4.26)

(3.4.27)
(3.4.28)

4" = 44. 
(£a • A") = 0, 
(ca • B) = 0.

the 
ow 

pi-1

:,'“'(jb)e-itl) .

= l/2d,h»,
the equation of motion is the Fierz-Pauli equation, which reads

the right-handedness of e!J. can easily be established. 
As a last check we compute the sum over helicities

K“B‘' + K“B11
U^B)

This set of relations satisfies eq. (3.4.21) and furthermore we have the analogue of the 
Lorentz gauge (3.4.25) and the axial gauge (3.4.26). This means that the helicity vectors 
are physical and that we do not have to consider the ghost sector. So the spin-2 helicity 
tensor is written as a dyad of two spin-1 helicity vectors and we still have the axial gauge

124(4)* = -r 
A

with B“ = 1/2 a^b^b® and B* not parallel to K“. Eq. (3.4.20) is the spin sum in 

the light-like axial gauge and confirms that our spin-1 particles are physical. That we still 
have the axial gauge freedom is important. We will set the bx equal to other momenta 
spinors present in a scattering process. This leads to enormous simplifications ill be 
shown in section 3.6.

The symmetric field has a priori 10 degrees of freedom, two of which we want to 
remain. The general solution in plane waves reads

h^x) = J d'k (e'“'(ib)e<*r

Using a general coordinate transformation one can formulate another set of gauge fixing 
conditions [14] such that two degrees of freedom remain. The resulting form for e'“'(fc) is 
not very suitable for our purposes. It is better to choose the gauge fixing relations such 
that the polarization tensor fulfils the following conditions

We consider two extensions of free massless spin-1 particles. First we inert 
spin. Massless spin-n particles have two physical degrees of freedom and we w 
that the helicity vectors can be chosen such that they are a direct generalization of 
helicity vectors. For convenience we specialize to n = 2. In the de Donder gauge



be chosen such that they satisfy

{c.x, e_A}

(3.4.37)= K

\ solution for the polarization vectors then becomes

(3.4.38)

AB (3.4.39)

(3.4.40)

(3.4.41)
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(3.4.31)
(3.4.32)
(3.4.33)
(3.4.34)

(3.4.35)
(3.4.36)

(3.4.29)
(3.4.30)

□ 4>" + = 0
d 4> = 0

\(\Q} = 2M2
Q} = 0

■ o, ca} = 0

= (edf )•
,1 = (^Br

I'o, co) = —2

KAb

In spinor language the polarization vectors can

E = ~9‘ 
a=X,0

The second extension is to give mass to the spin-1 bosons. The extra degree of 
freedom of massive bosons emerges as a longitudinal polarization vector c0- \Ne start 
with the Proca field equation and find the equivalent set of equations

freedom at our disposal to simplify expressions. It also means that the field h‘“' is traceless. 
In the example section the properties of the solution, eqs. (3.4.24)-(3.4.28) will be used.

.AB 
eO

f +

where is the momentum of the vector boson and Q2 = M2. As has been shown in 
section 3.2 we can decompose the momentum Q* into two massless momenta

Q“ = K“ + aM“ <=> QAb = KAb + aMAB = kAkB + amAmB

kAmB
(km)

,SnAkB
V (km)*

- aMAB 
Mb

The polarization states in eqs. (3.4.38) and (3.4.39) are suggestively denoted by e+ and 
e_. However they do not satisfy the transversality condition eq. (3.4.10). The polarization 
vectors are put in this form for two reasons. Firstly, the vectors e± can directly be identified 
with the massless solution in eqs. (3.4.11) and (3.4.12). Secondly, the + and — solutions 
are each others complex conjugate, a useful property in calculations. Because is 
arbitrary we can use it to simplify expressions. Replacing B“ in eq. (3.4.20) by aM“ and 
adding eo(£o)‘ to •*, results in

Q^Q1' 
Mi '



Matrix elements in QCD3.5

the

V 1)

(3.5.2)

- d„A‘ - gf^'A^A' (3.5.3)

‘abc

(3.5.4)

(3.5.5)j-aia2a3 _ __2j {'j'r(TaiTa2Ta3) — Tr(Ta3Ta3Taiy)} .

(3.5.6)= 0.

(3.5.7)

(3.5.8)Tr(TaiT“2) = 1/2 6a,a2,

(3.5.9)= N2 - 1 and = N.

We frequently work with traces of Ta’s, therefore the shorthand notations
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I

This section consists of two parts. In the first part the Feynman rules for QCD are pre­
sented, in the standard notation as well as in the WvdW spinor notation. The second part 
serves as an introduction to subsequent chapters. We discuss the colour decomposition 
techniques in QCD. This leads to colourless Feynman rules with which the calculation of 
scattering amplitudes in QCD simplifies.

D„ = - giT^A^,

3.5.1 QCD Feynman rules
We are interested in the calculation of scattering amplitudes on tree level. Tc 
gluon propagator in its simplest form we work in the’t Hooft-Feynman gauge. T CD 
Lagrangian reads

Some useful relations to perform colour sums are

(T“)y(T*)w = 1/2 ,

Here the /ole are the real structure constants of the SU(7V) colour gauge group with 
N the number of colours. The fundamental representation matrices satisfy the 
following relations

The structure constants satisfy the Jacobi-identity 

jabx jxcd | jcbxj-xda | j-dbx j"xac

Cqcd = - m«,«, - | (d^)2 ,

where m denotes the mass of the quark and i, j and a are colour labels. The Fade v- 
Popov Lagrangian is not needed here because we work at tree level. Furthermore we usad 
the definitions



p j

and ' —♦

j P i

BA

Ml,"!,*-!

M2 >“2 M3,03,

Ml ,“1 M4,“4

Table 3.1. Feynman rules foe QCD
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M2,“2,^2
X*A__M3,03,^3

Creation of a quark with momentum P and colour t.
- Standard notation: 8,(P)
- WvdW, m = 0 : + —> and------- ► pA

and----- , pB
-y/ap2B \

, P? J
P1B

V^Pi

V

1

kBbA
{kb)-'nAB

0 °ba oA | 
a“AB 0 J

- WvdW, i-side + helicity: ig(Ta)ija>‘AB
- WvdW, i-side — helicity: ig(Ta')ijaf̂ A

Gluon propagator.
- Standard notation: —ig^abl K2

- MW

Interaction between a quark, an antiquark and a gluon.
- Standard notation: ig^T^ij^

- WvdW: ig{Ta)ij

- WvdW, m / 0 : — (-x/5p£ pIi4) and — (pA >/ap2j^

Creation of an antiquark with momentum P and colour j.
- Standard notation: vj(P)

- WvdW, m = 0 : + -» p6
■ WvdW, m / 0 : '+' — I

P i

Creation of a gluon with momentum K and colour a.
- Standard notation:

lAlB
- WvdW: + - and - - ^a^g

Interaction between four gluons.
- Standard notation:

- = Ec(123)/<,,O2I/laiI“(s'‘,p:,sPI‘“ -s'
- WvdW: -i92^AB^V^HWABCDEFaH

a

Quark propagator.
- Standard notation: i(/*+ ml^dij/^P2 — m2')

-Wvdw:p^

Interaction between three gluons.
- Standard notation: — gfa'a*a* K2, K$)
- V'‘-««(A'i,A-2,^3) = Ec(123)(^i -
- ^d\N-. -gr'^^ga^a^V^^^KuK^Ki)

™Ba Pba
PAB mtAg )

- WvdW, m = 0 : i-side + helicity: iPAB6<j/P2
- WvdW, m = 0 : i-side — helicity: iPgA6ij/P2



Tr(T“‘T“’.. .T“n) = (a>a2 ... an) (3.5.10)

(3.5.11)

(3.5.12)A4n(P) = ign

-f^(a1a2a3)ij(at')ici and (.a}a2a3at')^,

(3.5.13)
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£|A1n|2 = g' 
c.A

£ F(T°,i,N) KF(P). 
perms

,2n->£| £ F(T“,W,i)J<F(P)|2.
C,A perms

3.5.2 Colour decomposition in QCD

A general method to separate the colour structure part and the dynamical part in QCD 
processes is discussed in detail. The amplitude for a scattering process can be written 
as a sum of gauge invariant functions, containing the space-time dynamics, each with a 
certain colour structure:

The matrix element depends on a phase space point P, a set of n particle momenta and 
helicities. The strong coupling constant g is separated from the dynamics. The function 
F(Ta,i,N) is built up from representation matrices (a)xv and colour indices i. However, 
the open indices of the fundamental representation matrices can only be the quark and 
antiquark colour indices. Furthermore F can be an explicit function of N. Some examples
are

outgoing. The colour libels 
omitted in the explicit representation of the free field solutions. The spinor I. I;
omitted in the standard notation. In the WvdW notation the outgoing quark h. 
labels A and A, while the outgoing antiquark has labels B and B. In the Feynni 
in the WvdW language the helicities are specified. From the list one can ded> 
Feynman rules for QED without any problem.

which are F’s for a four and a two quark process respectively (i,j, k and I are quark 
colour indices). This set of F’s is independent. Therefore the decomposition of M in 
terms of F’s with eq. (3.5.12) leads to a set of gauge invariant expressions KF(P) in a 
unique way. These KF(P) we call subamplitudes. They are a function of momenta and 
helicities only and not of the colours. The 52pcrm, runs over all permutations of identical 
particles which change F. With eq. (3.3.31) it is found that the QCD matrix elements 
squared are given by

are used to clarify the expressions.
From eq. (3.5.1) the Feynman rules can be derived. In table 3.1 they are given in the 

standard notation as well as in the WvdW notation. The following remarks clarify the 
contents of the table. The momenta of massive particles are decomposed in light-cone 
momenta with P = Pi + aP2. and all particles are outgoing. The colour li bels are

are 
nor 
les 
he

(T-T“’...T“")ij = (aia2...a„)0



9,» 9,«9,’ 1,01

2,a29, J 9, 3 <1,3

Fig. 3.1. The Feynman diagrams contributing to 0 —* qqgg.

(3.5.14)(OlO2)ij.
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1,01
2,q2

2,o2
l,a2

(al).tiH (ala2).1.R (<ll“i)iU

So the first diagram contributes to F(T°,N,i) = (a1a2),j. Treating the third diagram 
this way we find the colour structure to be the same. However the two gluons can be 
interchanged which changes the colour structure to (o2Oi)i2. This means that the third 
diagram contributes to both (aia2),j and (a2ai),j. However not with the same Kp(P)

Evaluating the square and summing over all colours c results in a Np X Np colour matrix, 
where Np is the above mentioned number of permutations. The denotes the sum 
over all possible helicity configurations A.

To obtain the decomposition (3.5.12) in a calculation one could rewrite every dia­
gram in terms of F’s using eqs. (3.5.4)-(3.5.7), ending with colour expressions like in 
eqs. (3.5.10) and (3.5.11). However, this is a tedious task and errors are likely to slip in. 
Below we discuss an alternative method.

The composition of M into subamplitudes raises two questions. Do all the possible 
j- si.c.- :;p in an actual calculation? Is it possible to predict in advance which Feynman 
diagrams contribute to a certain Fl These two questions are answered by introducing a 
new concept: Colour flow. With this concept we are able to determine to which F’s a 
Feynman diagram contributes. The contribution itself is called the dynamic part of the 
diagram. Of course this colour flow concept is nothing else than a clever way of applying 
the QCD Feynman rules.

The first step is to read F from a Feynman diagram. For this purpose the Feynman 
diagrams for the process 0 —» qqgg have been drawn in fig. 3.1. We start by defining 
a chain as an object of the form (ai ...an),j. Notice that is also a chain. A trace 
occurs when a chain is closed with i = j. In a Feynman diagram the colour flows from 
external line to external line in a predefined direction for which we take the clockwise 
direction. F can be constructed as follows. A chain is started at a random external line. 
For each external particle encountered a colour object is added to the chain. This object 
is a S„R for a quark with colour i, a 6iLj for an antiquark with colour j and a (a),t,K for 
a gluon with colour a. The ijr, and iR will be contracted with colour indices ip and it 
coming from the previous and the next colour objects. This procedure is repeated until 
the starting external line is encountered. To illustrate this way of constructing F’s from 
Feynman diagrams we apply it to the first diagram in fig. 3.1. Start at gluon 1 and go 
round in clockwise direction. The colour structure develops as



9,» 9,« 9 '
l,ai 2,a2l,ai

2,a2

9, j

Fig. 3.2. Examples of Feynman diagrams in colour decomposition notation.

The Feynman diagrams must be drawn in the normal way with two restrictions
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9, fc

as will be shown below. The claim is that no other colour structures exist for the process 
in fig. 3.1. For instance (a1a2)6,J does not exist or equivalently, has a K'f(P) which is 
zero. Before continuing with this example we look more closely at the way the Feynman 
diagrams have to be drawn so that the corresponding F can be read.

• The moment a chain is closed from the right, i.e. when an antiquark is encounte J, 
a new chain must be started from a quark line. This implies that no external gluons 
should be in between an antiquark and the next quark. The first diagram in fig. 3.2 
is therefore an illegal way of drawing a diagram.

The rules given so far do not produce explicit N dependent colour structures which are 
known to appear in processes with more than one quark pair. The N are generated by 
an additional trick: removing some internal gluon lines in processes with more than one 
quark pair. Removal of a gluon propagator which connects two quark lines divides the 
diagram in two parts. On the level of colour structures this corresponds to performing the 
colour sum over the Ta's occurring at both sides of the gluon propagator. A factor — 1/7V 
is added to the product of the colour structures of each of the two parts. These colour 
structures are again obtained with the method sketched above, applied to the separate 
parts. The propagator to be removed should not be connected to other particles than the 
two quark lines mentioned. This method of removing gluon propagators must be applied 
recursively to the separated parts.

As an example we look at the second diagram in fig. 3.2. As it is drawn the colour 
structure reads: (aia2)1|6t2. Leaving out the propagator gives: —l/Ar(ai)1J(a2)*|. The 
way of drawing the diagram has not changed and therefore the dynamical contribution to 
both F's is the same. This example shows that sometimes more F's are obtained from 
the same diagram without rearranging particles.

The method sketched above answers the first question raised in the beginning of this 
section: Not all possible F's occur. The reason for this is both simple and complicated. 
The dynamical contributions to other kinds of colour structures add up to zero. In

• Because a chain ultimately starts with a quark colour index and ends with an 
antiquark index we must take care to encounter them alternatingly. In the second 
graph in fig. 3.2 an example is given how to draw a diagram with more quark pairs



M = -ip2

(a).; V“‘2M(1,2, —1 — 2) (3.5.15)

(a)i'j = ~i {(<>102)0 — (»2<>i)o} • (3.5.16)r

(3.5.17)(1,2,3),

(3.5.18)(1,2,3) = igV‘

(3.5.19)

with
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:;'uon momenta 
follows that

- = 292 £
P(123)

>i«M3(i,2,3).

One sees that a three-gluon vertex contributes to two different sets of F's, corresponding 
with the two possible ways to draw this vertex. The factor 2 in eq. (3.5.17) must be kept 
with the colour part. In case one of the colour labels is internal this factor 2 cancels the | 
that arises from the use eq. (3.5.7). The four-gluon vertex is treated in the same manner. 
We find that

are denoted by 1 and 2. With eqs. (3.5.5) and (3.5.7), it

—i /aiaaa

chapter 4 this will be shown for purely gluonic processes. Here it suffices to note that 
from the same diagram with 1 and 2 interchanged one also gets an but with
a dynamical part that is the same except for the sign. These two contributions cancel 
because (a,a2) = (ajO]). Notice that interchanging 1 and 2 is not part of the Sperm. 'n 
eq. (3.5.12). It is just drawing the same diagram in a different way.

Having introduced a way to read the colour structure from a diagram, we need to 
adapt the Feynman rules. The new rules will be called colourless Feynman rules. We 
derive them using the example in fig. 3.1 and by rewriting the colour structures that 
appear in the QCD vertices in terms of (a)’s.

With the Feynman rules of table 3.1 the process of fig. 3.1 can be evaluated. The 
matrix element reads

Therefore the third term contributes to both (aia2),j and (ajai)^ as has been indicated 
above. The function (1,2, — 1 — 2) is independent of the colour structure. It
has the correct symmetry when gluons 1 and 2 are interchanged. From this example the 
following colourless Feynman rules can be inferred: The quark-gluon vertex remains the 
same, stripped from its colour part.

Looking in more detail at the gauge boson vertices and using eq. (3.5.5) one finds for 
the three-gluon vertex

-gfa'‘-“>W‘in^(l,2,3') = 2g Y, (aia2a3)Vl‘',‘w 
P(12)

with the colourless Feynman rule for the three-gluon vertex given by

(a1a2)iju(q)/1 t ^2/2u(p) + (<>2<ii),>»(<?)<; /H?)

t>(g)7pv(g) 
(? + ?)2



jli-

3.6 Examples of Weyl-van der Waerden spinor calculus
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A summary of the colourless Feynman rules for QCD.

• The matrix element is decomposed in colour structures F(Ta,i, N) and sut 
tudes Kp(P) as in eq. (3.5.12).

• To which F’s a diagram contributes can be determined by the method sketched in 
this section.

• The Kp(P) is obtained by applying the colourless Feynman rules to the Feynman 
diagrams drawn accordingly the rules described above, using the modified versions of 
eqs. (3.5.18) and (3.5.20) and the modified propagatorsand adding all contributions 
to the same F(Ta, i, N).

The colourless Feynman rules are the basic building blocks of the recursion relation tech­
niques in chapter 4. What the recursion relations actually do is adding up directly those 
diagrams that contribute to the same F(T°, i, N).

= j - g^g^ (3.5.20)

From eq. (3.5.19) it follows that the four-gluon vertex contributes to six different sets of 
F’s but with different contributions. They correspond to the six ways this vertex can be 
drawn.

Analyzing the colour structure in detail shows that a factor (I)1-1, with I the number 
of quark pairs, remains when the summation over all internal colour labels is carried out. 
Finally we also leave out all i's that appear in the colourless Feynamn rules and in the 
gluon-propagator the — sign too. The result for each diagram must then be multiplied 
with (»)”’, with n, the number of quark-propagators. This rule is based on the fact that 
for every gluon-vertex, which has an i, there is an corresponding gluon-propaga • which 
has a —i.

Before we calculate a number of elementary particle scattering processes in WvdW spinor 
language, we look at gauge spinor choices in a more general way. In particular how the 
helicity vectors show up in Feynman diagrams and how they are contracted with other 
vectors and spinors. To this end processes with only massless particles are examined, 
mainly because they illustrate the possibilities the best. When masses come into play 
the expressions become more involved and the simplifications that arise because of clever 
spinor choices are more modest. But even in those cases the spinor techniques work very 
well, see section 3.6.4. An important remark which holds for all the examples in this 
section is that most of the time physical scattering processes are examined but in the 
calculations all the particles are taken to be outgoing.

We distinguish between processes with and without fermions. As an example of the 
first group the process e+e~ —» ~/y is calculated in section 3.6.1. Here we just have a look 
at the vertex at the positron side, which schematically reads /(fc)v(p) = eABpg when the



for the + helicity. (3.6.1)

for the — helicity. (3.6.2)

(3.6.3)(«' > I)-
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positron has negative helicity. By making use of the explicit representation of the helicity 
vectors of the photon, see eqs. (3.4.11) and (3.4.12) and setting b = p results in

,-lcY
,, -x~pb = o
<kp}

, /^PAkB „ _ , (fcP>
v 2 , . Pb ~ V-p . (fcp)- (kp)'

So with the choice 6 = p some diagrams vanish. This immediately implies that the 
helicity configurations where all photons have the + helicity are zero. Of course equivalent 
choices hold for e~7-vertex and for other helicity configurations. From this experience 
we conclude: in processes with fermions and bosons it is a good choice to set the gauge 
spinor equal to the momentum spinor of one of the fermions, see section 3.6.1

The < : .nples in sections 3.6.2 and 3.6.3 deal with processes where only bosons are 
pr ' start with a general analysis of such processes [15]. Write down the Feynman 
< • apply the relevant Feynman rules. Without the presence of 7-matrices only

terms can appear in the numerator, these are (K, • Ky),(K, • ey) and 
'r C; pin—m particles the polarization vectors can be rewritten as dyads of m

.ion vectors. The expressions are simplified by using the gauge spinors in 
that as many inner products as possible vanish. The particular choices of 

g? :ge “i r.is that accomplish this we call minimal gauge choices. This choice depends 
or. the helicity configuration but is always easy to find. Without loss of generality the n 
particles are ordered in such a way that particles 1 through I have positive helicity and 
that particles I 4- 1 through n have negative helicity.

AB = (i < 1} eAB — ?21 ^(fc.6.) - *' (M.)’

Setting all 6, = k„ for i < I and 6, = kt for i > I is a minimal gauge choice. In case 
I < 2 or I > n — 1 this choice results in all (e; • ey) = 0, as can be easily checked. Notice 
that also (K, • e,) = 0 for i > I and (Kn ■ e.) = 0 for i < I. For other values of I 
there are non zero inner products between helicity vectors. For example I — 2 results in 
(«2 ■ £3) / 0,..., (c2 • «n-i) / 0- So for n = 4 just one inner product is non-zero.

Next we look at a scattering process. The number of momenta that appear in the 
numerator is important. The amount of K's depends on the interaction theory one 
considers and on the number of propagators in the Feynman diagram. Let us suppose 
that the three point coupling in spin-m theories contains m momenta. The dimensionality 
is corrected by giving the coupling constant a dimension. Examples are: m = 1 for Yang- 
Mills and m = 2 for linearized gravitation. The terms with the fewest (e,-ey) combinations 
have the most K's. Looking for the diagrams with the most momenta in the numerator 
we find them to be diagrams with three vertices only. The numerators then contain 
m(n — 2) momenta and nm helicity vectors. So at least m (e,- ■ ey)'s are present in every 
expression. According to the minimal gauge choice this implies that the amplitude is zero 
when at most one helicity is different from all the others.



(3.6 4)0 - e+(P+) e”(P_) 7(/<i) 7(K2)

72

+ e+e+

Fig. 3.3. The Feynman diagrams for 0 —• e+e 7172.

M

P-Ae2
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3.6.1 The process 0 —+ e+e 77

The process

7171 72

serves as an illustration that simple calculations become even simpler in the WvdW spinor 
formalism. By working out process (3.6.4) many aspects of the WvdW formalism will show 
up. The 0 in (3.6.4) denotes the vacuum and implies that all momenta are outgoing. We 
start by writing down the two Feynman diagrams in fig. 3.3.

e6Dp+D+p c^Dp±L,

Replacing two three-vertices by one four-vertex changes the amount of K’s in the 
numerator to m(n - 2) — 2 resulting in at least m + 1 (e,- • ej)'s in every term. In a 
minimal gauge choice this means that these diagrams only contribute when there are at 
least 3 particles with plus and 3 particles with minus helicity are available. Therefore in 
processes with n < 6 the diagrams with four-vertices can be gauged away.

In subsequent sections we apply the results above. In more elaborate processes with 
all kind of particles, possibly massive, it is not always clear which choice for the gauge 
spinors is the best. However when it is not possible to get a lot of terms equal to zero, 
experience leads us to believe that the choice of spinors that simplifies the calculation 
the most is the choice where the normalization of the helicity vectors contains . physical 
pole.

The matrix element becomes

= ~.e* {u(P_)6 ((^~j^/.v(F+) + u(P_)/i ((/_-+ 6v(P+)| (3.6.5)

Parity conservation allows us to fix the helicities of the fermions. Taking the + helicity 
for the electron and using the explicit representation for all particles M is translated in 
WvdW spinor language with

Jb(^’-+^2)cb,CD„
J {P_,7G} £1 P+D+p->i£1 ’{PJ/K.} £j P+D/(

In table 3.2 the results for all four different helicity combinations of the photons are 
presented.



Table 3.2. The four possible helicity configurations of the two photons.

E IA<|2 = 8e4 (3.6.7)

VC3tiff(K3,K4,-I<3-I<4)

(3.6.8)
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C(1234) = +Vtl„<,(/<i,/<2,-/<i-^2)

9°0 
2(/<vK1)

(-^i > ^2) 

(+> +) 
(+,-)

(/<2 ■ p+y + (/<. ■ p+y 
(p+ • /<.) (/<2 • p+)

W' . lamiliar result for process (3.6.4).

9aP

V,3,3p(K2,K3,-K2-K3')

M 

0

—2te2_________

-2’e2<p+2rC-> 
0

3.6.2.1 C(1234)

The subamplitude C(1234) corresponds to the colour structure (aiajaaa^) and receives 
a contribution from the three diagrams in fig. 3.4. The third diagram has exactly two 
(e,- • e,)’s in every term. Therefore it vanishes in a minimal gauge choice, as was shown 
in the introduction of this section. Using colourless Feynman rules, see eqs. (3.5.18) and 
(3.5.20), the contribution of the first two diagrams to the colour structure (a^aat^) 
reads

ABeAB

vz(t,p_)-

3.6.2 Four and five gluon scattering amplitudes

With the Feynman rules from section 3.5 we can compute all the helicity amplitudes for 
four and five gluon scattering. For simplicity we restrict ourselves to the evaluation of a few 
subamplitudes only. Recall that QCD amplitudes can be decomposed with eq. (3.3.31). 
In the case of purely gluonic processes the Kf-(P) are denoted by C-functions. These C- 
functions are built up from the contribution of every diagram to a specific colour structure. 
Using the relations that exist between C-functions, see chapter 4, we need to evaluate just 
two helicity combinations for both C(1234) and C(12345) to be able to obtain J2c,a |A4n|2 
for n = 4 and n = 5.

As was shown in the introduction, the (+,+) and the (—,—) combinations vanish. 
The explicit representation for the helicity vectors is given as well. The spin summed 
matrix element squared, |A412 is trivially computed from the results in table 3.2 and
reads

+Vc,cta(K<,K1, —K3 — KJ)



+

Fig. 3.4. The Feynman diagrams contributing to the C(1234)-function

(3.6.9)C(1234) = —2(e2 • e3)

(3.6.16)

(3.6.11)

(3.6.12)C(+ + —) =

(3.6.13)C(+-+-) =

(3.6.14)
P(234)
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1A4B
(4ip

les 
ns 
8)

HlA-tal2 = £ 2ff2 Y, Tr(Ta'Ta2Ta3Tat) C(1234) . 
c,A Kelt

z?3'44b /-1A4B

of momentum conservation, for instance

2

Ab
C2

AB 
c3C2

(24)4 (V2) (13)-4
(12)(23)(34)(41) ” 2 (12)-(23)-(34)-(41)«

We will soon see that these elegant expressions for the C-functions have a simple gener­
alization for processes with more gluons. The | A4«|2 reads

2

After substituting eq. (3.5.18) in eq. (3.6.8) and using that (K, ■ et) = 0 a lot erms
remain. However because we are in a minimal gauge choice most of these term; sh. 
Utilizing the relations between the C-functions we only need to evaluate the C(-r 
and the C(-|----- 1—) helicity combinations, where the helicities correspond to the
1, 2, 3 and 4. For both cases b+ = kt and 6_ = fcj is a minimal gauge choice. Exp: 
that have a (e2 • e3) remain, all the other terms are directly zero. Expression 
simplifies enormously and becomes

(tl ■ K2)(e4 ■ K3)
(Kt ■ /G)

Translation of eq. (3.6.9) into spinor language is easy using the following representation 
of the minimal gauge choices. For C(+ -I------- ) we have

1A4b Ab ^4b Ah 
(14) <2 V (24) 3 v‘(31)*

and for C(-|------ 1—)

1 -V2(14) t2 ~V2(21)-

The use of these representations and the use 
(21)*(32) = —(14)’(43), results in 

W 
2

cab
e3

(12)*4 
(12)-(23)-(34)-(41>*

(34)< 
(12)(23)(34)(41)

22

2
2

3



(3.6.15)

/ \

2 3 2 3

4
5

\ /

rig. 3.5. The Feynman diagrams contributing to the C(12345)-function.

(3.6.16)x

K.£5i(A-<)A'5,-A'4-K5)k

(3.6.17)

x
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With eq. (3.6.14), using colour sum rules, one finds that the contribution of non-leading 
order terms in the colour polynomials cancel and that the result is

^|Af4|2 = s4W2(W2-l)x 
c.A

C(12345) = 52
0(12345)

Vp^K.+K^K^K. + K,)

E
P(234)

E E («J)'
<=ij=i+i

i
(1 ■ 2)(2 ■ 3)(3 • 4)(4 • 1)

3.62.2 C(12345)

The C(12345)-function is build up from the 10 diagrams in fig. 3.5. The sum contains

the five cyclic permutations of (12345). The diagrams with the four-vertex result in 
expressions that contain 1 momentum and 5 helicity vectors in the numerator, therefore 
at least two (e,--e2)‘s are present and these diagrams do not contribute in a minimal gauge 
choice. The C-function in terms of colourless Feynman rules is given by

9a0
■ K2)

9^
2(K4 ■ Ks)

We only have to evaluate two helicity combinations: C(+ +--------- ) and C(+ — +------ ).
All other C-functions can be obtained by parity conservation and other properties of C- 
functions. We take for a minimal gauge choice: b+ = ks and 6_ = k2 . This leads to 
(e2 ■ e3) / 0 and (e2 • e4) / 0 for C(+ -I------------ ) and equivalently the only non-zero
inner products for C(4-------F------) are (cj-ts) and (e3-e4). In this minimal gauge choice
eq. (3.6.16) immediately leads to

C(+ +------) =
-f2(ei ■/<;)

(XrK2)(K4-/<5)



X

X

; .6 18)C(+ +------ ) =

(3.6 9)C(+ - + --) =

(3.6.20)C(12...n) =

(3.6.21)
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£ £ («J)4 
i=ij=.+i

E 
P(2345)

Again only the leading order terms in the colour matrix remain. For n = 6 this is no 
longer the case, see chapter 10.

1
(1 -2)(2 -3)(3 -4)(4 -5)(5 - 1)

3.6.3 Graviton scattering amplitudes

In this example we discuss 2 —♦ 2,3,4 graviton scattering. For our purpose it is not 
relevant whether the spin-2 particle of linearized gravitation corresponds to the carrier of 
the gravitational force. What we want to demonstrate is that the use of WvdW spinor 
calculus simplifies the calculation of scattering processes with gravitions. To this end 
we start by discussing the interaction Lagrangian, L222, and subsequently calculate the 
2 —> 2 graviton process. Then we give results for 2 —» 3,4 graviton scattering when two 
particles have the + and the others have the — helicity. Finally the collinear limit of these 
amplitudes is examined. For clarity all Lorentz indices are lowered.

and similarly we obtain

M)‘ <13>-
2 (12)-(23)-(34)’(45)-(51)*’

Comparing these results with eqs. (3.6.12) and (3.6.13) one finds a generalization, proven 
in [16]. For a process with n gluons the C-function is

M)~ w>-
2 (12)-(23)*...(nl)-’

where gluons i and j have the plus helicity. With this general form it follows that 

£|A4S|’ = P6W3(WJ-1)X 
c.A

[+(ere3)(e«-fG)(es-fC<) - (e2-C3)(t<-Ks)(es-K3) + (e2e4)(e3-K2)(e5-A'4)] 
-F2(ti K2)

(K1-K2)(K3K4)
[—(«a-e3)(e4-fC3)(e5-K2) + (e2e4)(e3-K4)(c5/<2)]

+2(erK4)
(K2K3)(K4Ks)
[—(e2-c3)(c4-K3)(c5-/<4) + (e2e3)(e4-Ks)(e5/C3) — (e2e4)(e3/C2)(e5f'4)]

With the explicit representation of the helicity vectors, the analogue of eq (3.6.10), 
momentum conservation and the use of eqs. (3.2.10) and (3.2.11) one quickly strives at

MO* (i2>-
2 (12)-(23)-(34)-(4S)-<51)-’



(3.6.23)

(3.6.24)

(3.6.25)

(3.6.26)
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“I-

2 .

laa

',HP,a^’pa 4" ^pu^-na,p^up,a

'P,a ~~ q^P^^P^^P0^

4- , (3.6.22)

dimension [m]-1, AMIZ is the graviton field andwhere 
hp.y^.^

K pp,phaa

P», l/ht
-j-'ih m,hVptO

4" 2 hpphgp,p

he coupling constant with a
The graviton-propagator is given by

\ _  £ (ToTmT/3T^) _  £ 9ap90p 9q09pv ~h ffquffftp
1 ; “ 8 K2 “2 K2

Tl. solutions for /iM„ were given in section 3.4.
- i ■■>-, it is easy to derive the Feynman rule for the three-graviton vertex. However, 

before doing this we further simplify £222. When a corresponds with an internal field 
it leads to the formation of (e,- • e,)’s that are zero. For a similar reason interaction terms 
with can be dropped. From eq. (3.6.22) the following terms remain in L^i • the 
interaction Lagrangian in a minimal gauge choice.

^222 = K [^^pp^pp.p^pptO

h pphpptp hpp,o

The corresponding vertex reads

l'/cZZp(123) l~>r9pi P29^i P3^^P3 ^3i<2 9p\P29t'\P3 9i'2i'3 (-^2 ■

4"2<7«/j p29l^2P3 ^2»*J -^3|*1

where Ki,Kj and K3 are outgoing momenta and use has been made of /ipp = hui

3.6.3.2 The process: 0 —» 4 gravitons.

With eqs. (3.6.23) and (3.6.24) we evaluate the four graviton scattering process. De­
noting the amplitudes by G(1234) we only need to determine the G(-F -I------- ) helicity
combination. Other helicity combinations can either be obtained by renumbering the 
gravitons or are zero. In the minimal gauge choice of eq. (3.6.10) the three possible 
diagram with two three-graviton vertices give the following contributions 

. ..
G( 4" T )|«-cAanneI 2(Aj • K3)

3.6.3.1 Interaction Lagrangian for linearized gravitation

Since we perform the calculation in a minimal gauge choice for two helicities equal and the 
rest opposite, it is sufficient to know the interaction Lagrangian between three gravitons. 
Diagrams with four-vertices result in too many inner products between helicity vectors: 
some of them must be zero. The L222 is given in [5, 17]. A detailed derivation of the 
gravitational interaction Lagrangian can be found in [18].

Z,222 k [4-hpPlphao — ihpp'phpp'phpp 4-

■pp,phga fhppph pp,phgg 2hVVillh t

^pp,p h pphppghpt

hpp.p hpp,ph ppph gg



(3.6.27)

(3.6.28)

(3.6.29)

. ,6 30)

'g

(3.6.31)£(1,2,3,4)

(3.6.32)G(+ +---------) x

(3.6.33)
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more grav ns

3.6.3.4 Collinear gravitons.

In expressions (3.6.31) and (3.6.32) one can look at the case when two gravitons become 
collinear. The resulting expression has to be finite because collinear divergencies are not 
cancelled. The finiteness in this limit can easily be demonstrated by using eq. (3.3.10).

The soft graviton limit, E$ —♦ 0, can be inferred. From eqs. (3.6.29) and (3.6.31) 
follows that

G(+ 3-------- )|u—channel = 0.

N^= n ziy.
and N’(n) its complex conjugate. Other helicity combinations follow from renur

Using the explicit representation for the helicity vectors we find 

r(. , , • MV (12)*8 (12)*

with

'-’I • ’ lit—channel — t* ft ---------------

3.6.3.3 The processes: 0 —» 5,6 gravitons.

Application of the method of the previous subsection to processes with 
result in the following expressions for G(+ + (n — 2)—)

-) -

_ 4 MV <12)2
\2J N‘(6)

[+(12)(13)"(14)*(25)*(26)*£(2,3,4,6)
+(26)(12)*(25)*(36)*(46)*£(1,2,3,4)
+(12)(15)‘(16)‘(23)*(24)*£(1,3,4,6)
+(23) (12) *(24)*(35)*(36)*£(1,3,4,6)],

with £(1,2,3,4) as defined in eq. (3.3.10). The minimal gauge choices that have been 
used are straightforward extensions of eq. (3.6.10). Comparing the various G(+ + (n — 
2)—)’s leads to the following generalization

c(++(„_2)_)=_,(?)-^(1...
Here 4(1,...,n) is antisymmetric in all argument interchanges. However A becomes 
rapidly more complex for larger n [19],



(3.6.34)

Massive vector bosons3.6.4

W+,K+^

(3.6.36)A

(3.6.37)

<jB(+) =

^°(-) = (3.6.38)
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Expression (3.6.34) can be derived on general quantum mechanical grounds [20]. In [21] 
it was shown that soft divergency cancels against virtual corrections.

E (t-j)2 

(5 •»)(> • 5)

^e(A+,A_) = (_2e^(+){Q_(_),K+}

+2eifl(-){£>+(+),/<-} + («+ - /<_/B{£a+(+),£a_(-)}) .

= /!“<“-= H+ff"0 (Ko-■&'+)“
+ gau (K_ - Ko)"
+ g^(K+ -K_)0}, (3.6.35)

K^s = «*B + axKfB 
K*B = K*B + a2KfB

As an example how the residual freedom of polarization choice for massive vectors bosons, 
i.e. the freedom to choose M", can be used to simplify calculations we examine the non- 
abelian three boson vertex in the Standard Model. To be more specific, we look at the 
7IV+IV- vertex with the IV's on-shell. With all momenta outgoing this vertex reads

<oAB(+) =

;B
<-> -

Ab, x •- <-> -

kfkB - ak*kB
Mw

When the masses of the W's are both equal to Mw we have a1 = = a. This leads
to the following polarization states, see eqs. (3.4.38)-(3.4.40).

|G(++—)|2 = O’|G(++—)®2

(Mz) 
</B(+) = 72 k*k'~ 
- w v {kxk2y 

kfkB — a kfkB 
Mw

W~,K_,v

Co. r acti" A°'“' with the polarization vectors, £pA+(+) for the W+ and £„a_( — ) for 
the W" and translation of Aa into spinor language with A° = we find for
AAb:

Where we have used that {ca+ (+), A”+} = {ca_(—), K-) = 0 and Kq = For
the decomposition of K±b and K^B in massless vectors, see eqs. (3.2.35) and (3.4.37), 
we use the primary momentum of the other vector boson as choice for This results 
in



(3.6.39)

3.7 Numerical implementation of Weyl-van der Waerden s ors

of

(3.7.1)kA

(3.7.2)

(3.7.3)
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a complete list involves

{M+),^(-)} = o 
{<±(+W-)} = o 
{eo(+),£o(—)} = (1 + «2)/a 
{«-(+),«-(-)} = 2(fcm)/(fcm)*
{K_, £»(+)} = Mw(l — a2)/a

This results in most of the inner products being zero,

{K+,e±(-)) = 0

{K_,e±(+)}=0

{£±(-),co(+)}=0

{«+(+).«+(-)} = 2(fcm)7(fcm)
{K+, £<>(-)} = Mw(l —a2)/a

Substituting eq. (3.6.39) in eq. (3.6.36) results in short expressions for all Aab(A+, A_)'s. 
Two of them are zero: A^B(+, —) and A'*fl(—, +).

ikA > kA -> ik’A

and consequently

(pfc) -» i{pk’) , (pk)" -» i{pk'}‘ , 

we have according to eqs. (3.4.11) and (3.4.12)

<+abW - 72^ = c_Ab(K') ,

In this section we briefly discuss two problems that arise when the WvdW spi 
section 3.3 are used in a numerical application.

The first problem concerns the representation of kA, see eq. (3.2.33). There a 
unphysical pole at Ko = K3. In a Monte Carlo simulation this would not pose a problem 
because no events with exactly this property would be evaluated. However it is standard 
practice to have the beam parallel to the 3— or z—axis. Therefore this pole must be 
removed. A solution is to rotate the space by means of x —♦ y —» z —» x. This preserves 
the right- and left-handedness of the particles.

The second problem is that when scattering processes are calculated, this is done with 
all momenta outgoing. This can pose a problem when explicit result are used for helic: iy 
states and one has to cross one or more partons from outgoing to incoming.

When the parton is an outgoing gluon it is characterized by a momentum K and polar­
ization vector cA. The matrix element is a function M(K,tx(Ky) and in spinor language 
a function M(kA,kA). When the gluon is incoming with momentum K‘ and helicity 
—A the matrix element is obtained from the previous one by taking £/(/<')) =

e-x(K')). The spinors kA and kA are related to the corresponding momentum 
by eq. (3.2.33) and the complex conjugated equation. The amplitude for the process with 
an incoming gluon takes the form M(ik'A,ik'^). For the spinors arising from momenta 
this prescription is obviously correct. For the spinors arising from the polarization vectors 
this is also the case, since under the replacement



(3.7.4)

For the quarks one can use a similar replacement as in eq. (3.7.1) i.e.

(3.7.5)

V-a(Q') (3.7.6)M<?)
eq. 38) dictates

?'-t > <1a -> <1'a (3.7.7)

■M(_qA,qA) -r -iM(iqA, iqA) (3.7.8)
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Chapter 4

Zero quark processes

Introduction4.1
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Ca/cu.; r.o; methods and results are given for QCD processes without quarks. A sys­
tem. is discussed to evaluate multigluon matrix elements. Special attention
is p. properties of the subamplitudes. In view of the numerical importance of
this i detailed study is presented. In particular the exact results are compared
with of approximations.

The QCD scattering process without quarks received a lot of attention during the last 
decade [1], It is not only considered to be the most complex QCD process on tree 
level, it also dominates over other parton subprocesses. Firstly because J2c,a |A4„|2 is 
generally larger for the multigluon process and secondly the behaviour of the parton 
density function is such that the gluon initial state is favoured. A historical sketch of 
multigluon calculations through the years can be found in [2, 3]. We concentrate on 
the systematic calculation of the multigluon process and on the consequences of some 
approximations.

The plan of this chapter is as follows. In the next section a general method to calculate 
the multigluon matrix element is given. The method is based on the colour decomposition 
techniques to obtain subamplitudes, see section 3.5. The various contributions to a 
particular colour structure are added by means of a recursion relation technique. Only 
a few explicit results will be given in this chapter, more can be found in chapter 10. In 
section 4.3 the properties of the subamplitudes are discussed in detail. These properties 
play an important role in section 4.4 where a method is developed to handle the colour 
structure of the multigluon process which involves the manipulation of very large matrices. 
In section 4.5 the colour matrix is approximated by neglecting all non leading terms in N. 
This reduces the colour matrix to a diagonal matrix and therefore greatly simplifies the 
computation of a Finally in section 4.6 we present results for 4, 5 and 6 jet
production at the Tevatron collider based on the gluonic process only. Furthermore the 
exact result is compared with a number of approximations. More predictions, including 
other subprocesses can be found in chapter 8.



The zero quark process4.2

(4.2.3)

(4.2.4)

(4.2.5)JM(l...n) =

with
(4.2.6)

54

I

+ E E 
m=l jk=m+l

• m), J(m + 1... k), J(A: + 1.. ■ n)}p

the 
Jote 
and 
nts 

imputation of 's

[J(l ...m),J(m-f-l ...n)]M =
+ 2 rc(m+l, n) ■ J(1 ... m) + l... n)
— 2/c(l,m) • J(m+1.. .n) Jp(l.. .m)
+ J(1... m) • J(m-t-l ... n) [k(1, m) — zc(m+l, n)]^ ,

Using colour decomposition techniques J“(l . ,.n) can be written as

J;(l...n) = 2yn-1 E (ai...a„a) JM(l...n).
P(l...n)

where Jp(l ... n) is a colourless, but still conserved, current. Contrary to J“(l... n) the 
ordering of indices is important in Jtf(l...n). The following recursion relation can be 
derived for JM(1... n):

1 ..m), J(m+1 ...n)]M

In this section we review a systematic method to calculate the multigluon subprocess. 
The method uses the colour decomposition technique as described in section 3.5 and 
adds the various parts that contribute to a subamplitude by means of a recursion relation 
for gluon currents [4], The process with all gluons outgoing reads

0-S(K1) + ... + s(A-n). (4.2.1)

The gluons carry colour at ... an. The helicity amplitude for process (4.2.1) reads

jM(l...n) = 2i ff"-2 E («i.. an)C(l...n), (4.2.2)
P(l...n-1)

where (ai...a„) represents a trace of generators of the SU(N) gauge grou 
fundamental representation. The sum runs over all the permutations of (1... n — 
that for clarity the notation has been simplified in some ways; the colours, helici 
momenta are implicitly understood and superfluous commas between function arg. 
are omitted too. The colour matrix that arises during the coi
dealt with in section 4.4. Here we discuss the computation of the subamplitudes.

Consider a current J“(l ... n) with n on-shell gluons, where a is the colour index and 
H the Lorentz index of the current. This vector current receives contributions from all 
the Feynman diagrams of a process with n + 1 gluons where gluon n + 1 represents the 
off-shell current gluon. J“(l... n) is a conserved current, i.e.

K(l,n)*j;(l...n) = 0 with K(l,n)" = E^f-



(4.2.7)

A4(l...n) = j;(l...n-l)Ja(‘(n) tK2(l,n-l)|„(I.n)=0. (4.2.8)

(4.2.9)

(4.2.10)C(l...n) = 0.

When gluons i and j have helicity — and all other gluons helicity + it reads

(4.2.11)C(12...n) =
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The boundary or stopping condition reads, Jp(i) = e1(i: the polarization vector for gluon i. 
Eq. (4.2.5) contains a sum over all colourless QCD vertices, where the ordering of the 
gluons corresponds with the colour structure. Furthermore in eq. (4.2.6) all the gluons 
are on-shell. With the multigluon current J“(l ... n) the matrix element is obtained with

Eqs. '2.9) are sufficent to calculate the multigluon process (4.2.1) for any num­
ber o ■... |t is interesting to see this simple algorithm in the light of the time and 
effort spent on multigluon calculations. Still, in a numerical application it is better to have 
analytical expressions for the C-functions. With the aid of eq. (4.2.9) and the refinements 
described in [5] we have accomplished this for n < 7, see chapter 10. For n > 7 the 
above method must be used to compute |A4„|2.

The advantages of the above method to calculate multigluon amplitudes are twofold. 
Firstly, the gauge invariance of the gluons can be used to check the result. Varying the 
gluon polarization vectors by choosing different gauge spinors bA, see eq. (3.4.11), does 
not change C(1 ... n). Secondly the method enables us to calculate |A4n|2 for any n. 
For testing approximations this is clearly useful.

For some helicity combinations a short analytical form is known for C-functions for 
general n. When all gluons or all but one have the same helicity the subamplitude vanishes:

The n —1 gluon current is contracted with a polarization vector under the condition that 
momentun, is conserved The i*2(l,n—1) removes the unphysical propagator included in 
J°(i . ' From eqs. (4.2.2) and (4.2.8) we find that the subamplitude is given by

In a numerical situation one of course wants to exploit as many symmetries as possible. 
From eq. (4.2.9) is clear that C(1... n) = C(2... nl). The symmetry properties of the 
C-functions are discussed in the next section. In this respect we shall show that eq. (4.2.9) 
together with properties of C-functions enables us to calculate all n! JM(l...n)’s from 
the (n — 1)1 Jp(12 ... n)’s where gluon 1 is fixed.

{ J(1 ... m), J(m + 1 ... k), J(k + 1 ... n))p = 
+2 J(1 ... m) ■ J(k+1 ... n) JM(m+l ... k) 
— J(1 ... nt) • J(m + 1... k) JM(fc+l.. .n) 
— J(m + 1 ... k) • J(k+1 ... n) JM(1... m).

(v^)- (or
2 (12)(23) ... (n —ln)(nl) ’

n) = 4(1.. .n-l)J“(n) «2(1,n-l)|x(I,n)=0.



4.3 Properties of C-functions

(4.3.1)

(4.3.3)
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equivalently the nu: of different
welcome. 

7c in their

C(123...n) = C(23...nl)

and this property has in fact already been used in the construction of the . ; element 
for multigluon scattering, see eq. (4.2.2). Moreover we have the reflect/'or; property

(43.2)

and the so-called subcyclic property:

E C(lf2...i„) = 0,

where Pc(2 ... n) stands for the set of all cyclic permutations of (2 ... n). Notice that 
the subcyclic property cannot be used directly in eq. (4.2.2) because there the C-functions 
all occur with different colour factors.

With the above relations, it is possible to compute a basis of C-functions. All other 
C-functions can be obtained by expressing them in this basis using eqs. (4.3.1), (4.3.2) 

and (4.3.3).
It has been thought for some time that these identities were enough to express all 

C-functions in terms of the so-called 1,2-basis, which consists of all (n —2)! C-functions 
of the form C(12i3... tn). For n = 4,5 and 6 this is indeed the case, but for n > 6 it 
no longer holds. In the latter case we need more than the (n — 2)1 C-functions of the 
1,2-basis. The proof of this statement is given in [6]. It shows in detail why for n — 6 
the 1,2-basis suffices and why for n = 7 it does not. Therefore, using only the identities 
(4.3.1)-(4.3.3), the 1,2-basis is not large enough to specify uniquely all C-functions. In 
fact, when we enlarge the basis, which has 120 elements for n = 7, to 121 elements by also 
giving, e.g. C(1342567), all other C-functions do follow uniquely. For n = 8, it appears 
necessary to supplement the 720-element 1,2-basis with an additional 109 C-functions 
before the solution is unique. Clearly, this is an unsatisfactory situation, since the number 
of extra C-functions can only be determined empirically for a given n. Expressing all 
other C-functions in this set calls for some quite complicated combinations of identities. 
Moreover, not every choice of the extra C-functions yields a basis from which all the 
other C-functions can be derived. Since the number of additional necessary C-functions

The n! gauge invariant C-functions of multigluon scattering are not independent. There 
are many, mostly non-linear, relations between C-functions. We are interested in to what 
extent the n! C-functions are linearly independent. We follow the historical line of research 
[6] which ultimately leads to eq. (4.3.7), an important relation in many proofs of theorems 
concerning multigluon relations [2],

The real problem in computing multigluon scattering is not the number of helicity 
configurations but rather the number of diagrams, or 
C-functions. Since this grows as n! any simple relation between C-funcci 
Several such relations exist in the literature. First of all, the C-functions 
momenta

C(12...n —1 n) = ( —l)"C(n n-1...21),



= {(123), (213),(231)},

The be written as follows

(4.3.7)

(4.3.8)
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(4.3.4)
(4.3.5)

M({1;{23})
AT({12}{34}) = {(1234), (1324), (1342), (3124), (3142), (3412)}.

new identity can

C(lii ... xp2yx... y,) = (-l)’,$2C(12Af({zpxp_1 ...xi}{yiy2...y,})), (4.3.6) 
M

where the sum runs over all mergings of the two lists. Note the reversal of the order of 
the x's on the right-hand side. In those cases where the C-function was already uniquely 
given the identity (4.3.6) coincides with known ones. Setting q = 0 in eq. (4.3.6) results 
in eq. (4.3.2) and q = 1 results in eq. (4.3.3). With the notion of merging sets one is 
able to derive an equivalent formulation of (4.3.6) [7].

J2C(W({z1...zp}{y1...y,})) = 0. 
M

Eq. (4.3.7) appears to be completely different from eq. (4.3.6) although they both contain 
mergings. They are however equivalent. Before proving this statement we stress that 
eq. (4.3.6) is computationally more attractive since it expresses any C-function in the 
1,2-basis in a very direct manner. Eq. (4.3.7) turned out to be a very powerful tool for 
proving various multigluon current relations. Extending eq. (4.3.7) to merge more groups 
of gluons

52C(lAf({z1.. .zp}{yi ...y,} ...{zj ...zr})) = 0, 
M

does not contain any new relation. This can most easily be seen by merging the groups 
y through z and considering each merging to be a version of eq. (4.3.7).

We now prove that relations (4.3.6) and (4.3.7) are equivalent.
To show the equivalence we must prove that the two arrows in (4.3.6) 4> (4.3.7) hold.

The 4= side of the proof uses a special form of (4.3.7)

has been found by an experimental search, it is possible that the strict minimum is in fact 
a bit lower. This will turn out to be irrelevant.

At this point we need a new linear relation between C-functions to accomplish that the 
elements in the 1,2-basis can generate all C-functions. Besides aesthetical and practical 
arguments there are also theoretical motivations, for instance look at the qq(n — 2)g 
process. Supersymmetry relates this process with (n—2)! linearly independent ©-functions, 
see chapter 5, to the multigluon C-functions.

In studying the colour structure of the 7-gluon process we found another linear rela­
tion, which de. reduce all C-functions to the 1,2-basis, and which can be described as 
follows.
{ziz2.. . >} 
two list
of the Sv
example.

introduce the notion of merging. Consider two ordered lists of elements 
{yxy? ■ • -y,}- We define a merging M({xx.. .zp}{yi .. . y,}) of these 

y permutation of the set (xx... xpyx ... yq) which leaves the ordering 
and y, invariant; there are (p + q)!/p!q! of such permutations. Two 
this merging mechanism



(4.3.9)

(4.3.10)

(4.3.11)

...j/,2zp... *,}{})) =

(4.3.12)

(4.3.13)

...ii}{yj ...yi}{x.+i ...xp}{yy+i ■••y,})) =

. ..ii}{1>+1 ...xp}{yi...yi}{yj+i ...y,})) = 0,

(4.3.14)

58

52 C(lM({2zp...z1}{y1...;/,})) = 0.
M

to rewrite eq. (4.3.6) into

52C(12A/({xp ... . y,})) =
M

- 12c(1!'i A/({2xp • • • Xi}{y2 ■ ■ • y,} ))■ 
M

After applying eq. (4.3.9) another q — 1 times we arrive at

52C(12M({xp...zJ}{y1...y,})) = 
M

(-l)’£C(ly,A/({y, 
M

(-l)’C(ly,... yi2ii... yp) = (—l)”C(la:1... xp2yi ... y,)
which concludes the first part of the proof. In the last step we used eq. (4.3.2).

The => side of the proof is more involved and we start by observing that

12 52(-1)iAf({s'j-i'i}{w+i •■!'«}) = °- 
j=O M

Each value j = k results in a set of terms which are completely cancelled by terms coining 
from j = k — 1 and j = k + 1. Together with the fact that the terms for j = k do not 
occur for other values of j besides the two mentioned, the sum must be zero.

Without loss of generality take x, = 2 in eq. (4.3.7). Substitution of eq. (4.3.6) for 
each term in eq. (4.3.7) leads to

^C(lM({xi ...Xi-iZxf+i . ..xp}{yi ...y,})) =
M

52 12 (-l),-1+,C(12AT({x._1... xri} {y_,;.. ,yi})A<'({xi+i ... xP}{y,+i ...y,})) =

j=O M

52
j=O M

where we have used that a product of mergings is just a new merging with more lists and 
that lists inside a merging can be interchanged. For the last step eq. (4.3.12) was used.

By showing the equivalence we established the validity of eq. (4.3.6), since eq. (4.3.7) 
was proven in [7],

It is our belief that eq. (4.3.6) contains all the linear relations between C-functions. 
Of course there are non-linear relations. As an example we give [9]

52 {1,2}{4,5} C(123456)x
P(234)

[+{3,5} C(215346) + ({3,4} + {3,5}) £(215436)
-{1,3} C(231546) - ({1,3} + {2,3}) C(321546)] = 0.



4.4 Exact and approximate colour treatment

Af(l...n) = 2 i gn (4.4.1)

(4.4.2)

(4.4.3)

(4.4.4)

with

(4.4.5)
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In eq.
FT(a2 
tation:

For th<

EE
A ij

For more external particles the expression becomes lengthier but can be derived from 
ref. [10]. Eq. (4.3.14) can easily be verified for special helicity configurations. However it 
is too complicated to be of any practical relevance.

Cij = 52 {«! Pi(a2 ... an)}{at Pj(a2 ... a„)} = c(P{,Pj).
colours

Again i,j = 1,2,..., (n —1)! in eq. (4.4.4). The explicit assignment of permutations to 
the label i will be discussed below.

For n > 6 a numerical evaluation of ctJ becomes unavoidable. The natural way is to 
perform this calculation first and store the result, after which the actual multiplication 
with C, C~ can be carried out. This procedure quickly runs into a storage problem for the 
matrix c,;. The solution to this problem is to exploit the symmetries of c,j, such that a 
limited number of elements have to be stored. The others can then be obtained when 
needed in the multiplication by a simple algorithm. Although in principle all rows of cy 
can be obtained from the first row, the algorithm for this is quite complicated. We shall 
choose for the evaluation of a number of rows and then apply a simple substitution rule 
based on the symmetry of the matrix to obtain the other rows.

Besides these remarks about the general strategy another fact should be stressed. 
From the previous section we know that the basis of linearly independent C; contains 
really (n —2)! elements instead of (n —1)!. Eventually we shall use a basis of (n —2)1 
elements and a corresponding matrix cy. Although the matrix cy as defined by eq. (4.4.5) 
is unique, there is an infinite set of matrices cy which leads to the same cy. The latter 
matrix gives the essential information like e.g. the real N dependence whereas cy only 
gives an apparent N dependence of the cross section.

The expression for the matrix element (4.2.2) can be written in different ways

52 (°i ■ ■•«») C(l...n) 
P(2...n)

= i gn-2 52 [(aiP(a2 ... an)) + (-l)"(aiPT(a2 .. .a„))]C(l.. .n) 
p

= r'g’‘-252{a1P(a2...an)}C(l...n). 
p

.se has been made of the reflective property (4.3.1) of the subamplitudes. 
P(a2 ... an) in the reversed order. The sum runs over all (n—1)! permu- 
. .n). In eq. (4.4.3) a shorthand notation has been introduced.

rix element squared we find

52m2 = s2"-4 
c.A



[14523], [14532], [14235], [14253], [14352], [14325],

[15234], [15243], [15342], [15324], [15423], [15432],

here

(4.4.9)Cij =
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1.6)

6 the cyclic

n = 6 we similarly have five 24 x 24 submatrices

We first focus on the evaluation of c,j according to the definition (4.4.5). In the 
treatment we discuss the symmetry of dj- Although c,, is an (n-l)l x (n-l)l matrix 
the actual matrix elements depend on a smaller number of polynomials in N, which show 
up in a systematic way. A suitable labelling of the permutations makes the symmetries 
visible. A convenient labelling uses cyclic permutations. Let us illustrate this for n = 5, 
from which the general case becomes clear.

The permutations Pi, Pt,..., P24 transform the set [12345] into the sets

[12345], [12354], [12453], [12435], [12534], [12543],

[13452], [13425], [13524], [13542], [13245], [13254],

B C D \
A B C

A B

The permutations P2, P3 and P7 are the cyclic permutations (45), (345), (234 : 
(tiij ... im) means ii —♦ i2, i2 —t i3,..., im —» tj. The above labelling means tha

Pi = Pr'P3mP2’
with Z = 0,1,2,3, m = 0,1,2, q = 0,1 and i = 6/ 4- 2m + q 4- 1. For n = 
permutations are (56), (456), (3456), (23456) and

Pi = P^^'P/"^’ (4 4.7)

with k = 0,1,2,3,4 and i = 24 L + 6/ + 2m + q + 1. This generalizes to arbitrary n.
The labelling gives the matrix cy a form with some special symmetry. This symmetry 

generates the whole matrix from the first |(n —2)! rows. The element cy is given by

dj = c(Pi, Pj) = c(P2, PC'P,} , (4.4.8)

where the sum over all colours has allowed us to rename [P,2, p3,..., P,n] as [2,..., n]. 
In this fashion every row can in principle be obtained from the first row by evaluating 
Pi~1Pj. In general this is involved, but comparing the first (n —2)! rows with the second 
(n —2)! rows we see that in the case of n = 5 we have to compare (P3”’P2’)-1PJ with 
(P7P3mP2’)_1Pj or in other words with (P3mP2’)-1P7-1Pj=(P3mP2’)_1P73P;. Thus 
the second (n—2)1 rows are obtained from the first (n—2)! rows by a shift. This becomes 
clear from the n = 5 case, where cy takes the form

/ A 
D 
C D

\ B C D A )
with 6x6 submatrices A, B, C, D. For
which build up the full matrix cy.

Within the first (n —2)1 rows the first |(n —2)1 determine the second set in another 
way. This is seen from the structure



(4.4.10)(ABC D) =

(4.4.11)

The

(4.4.14)

(4.4.15)
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E
COloUTO

. J2...a„}{aia,2...a,n) = E {aiaJ •• • an}{a2a.; • • • a<} 
colours

{a1a2...an}{a,<ai<+1 ...a.j J .

How from tm by a cyclic permutation s

{cl,l> Cl,2> Cl,3, Cl.6, Cl,9, Cl,10, Cl,16, Ci,24} .

Another relation follows from the reflective property of cy

E {aia3- ■a»}{oi<>,J...a,„} = E {ciCn--a2}{aiat„ ...a,-,}
colours colours

= E {ala2 - an}{«ia.U 
colours

with i'm = Tim, where T is the permutation which reverses the order of (2 ... n). For the 
n = 5 case this relation does not further reduce the set (4.4.14).

A similar relation reverses the order only in one factor giving

E {aia2 .. .a„}{aia,3 ...a„} = (-l)n E {aia3 .. .a»}{aia„ .. .a,,}.(4.4.16) 
colours colours

Using eqs. (4.4.11) and (4.4.16) gives for n = 5

Cl ,3 Ci ,3

Cj,3 Cj,3

C3,2 C3,3

(4.4.12)

with / ). The label i' is the one which takes the value 1. The relation (4.4.11)
is based on -he cyclic invariance of both factors and the possibility of renaming the colour 
labels. The relation also holds with s2, s3,..., sn-1. As an example, for n = 5 one finds 
amongst others

Cl.l Ci,j Ci,3 ... Ci,34 ' 

C3,l C3,3 C2,3 . . . C334

C3,l C3,3 C3,3 . . . C3,34

C3,6 C3,s C3,4 . . . C3,T

C2,6 C2,s C33 . . . Cjj

\ Ci,6 Ci,s Ci,4 . . . Ci,r /

The bottom half is in the reverse order and shifted.
In general, one has to evaluate l(n—2)! rows. In practice they are also obtained from 

the first row by exploiting eq. (4.4.8). However the relations are more involved than the 
patterns of eqs. (4.4.9) and (4.4.10).

Next we turn to the evaluation of the first row. Many elements of this row are the 
same, since one has several relations. The first one reads

Cl,2 = Cl,19 = Cl,4 = Cl,11 = Cl,7 . (4.4.13)

Thus sets of cy can be shown to be equal. From eq. (4.4.11) it follows that every element 
is equal to one of the set



(4.4.17)

(4.4.18)

row

ci,i

Cl ,2 —

(4.4.20)

(4.4.21)

6 case the reduced 24 x 24 matrix has the

(4.4.22)(/V2 - 1)
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52 |C(1...5)|2 + O(/V-2) ,
,P(2...S) /

cl,l = ~C1.24, Cl,2 = -Cl,6, c13 = —Cl,10, Ci,9 = -Ci,i6 , 

which leaves us in essence with four elements. A final property is

c(P1,PJ) = c(P„P1) = c(Pi,P,-*)

which gives together with (4.4.11) just one new relation for n = 5

R = 7 n'2n~i (tv2 - 1

F"3 
_1_ 
2« 
1 
2"

(4.4.19)

are calculated by performing the sum over

Cl ,9 — Cl,16.

The four different entries in the first 
colours. We find polynomials in TV.

"3(*M

Cl ,9 = 0

The last result also directly follows from eqs. (4.4.17) and (4.4.19).
A similar procedure for n = 6,7,8 and 9 leads to 10,28,127 and 686 polynomi als.

The polynomials have the form

2[5-l] a \ 

°°+ 52 jyiij >
where [a] is the entier of a and a, is an integer.

So far, we have used the linearly dependent basis C(1P(2,..., n)) containing (n — 1)! 
elements. As was shown in the previous section, it is possible to introduce a basis of 
(n —2)! elements by using eq. (4.3.6) The reduced (n — 2)! x (n — 2)! matrix cXJ still 
possesses the earlier stated symmetries. This is due to the fact that for all permutations 
II of the set (x,,..., xp, 2, ..., yq) which do not affect the label 2 we have

C(in(u ... xp2y, ... y,)) = (-1)' £C(12Af(n(Ip ... x1V1 ... y,))). 
M

The symmetries of the (n — 1)! x (n — 1)1 matrix c,y involve the cyclic permutations 
(23...n), but the (n —2)! x (n —2)1 submatrix cy, i,j = l,...,(n — 2)! possesses 
symmetries which depend on the permutations (3... n) and shorter cyclic permutations 
and do not affect label 2. The reduced matrix c,y therefore has the symmetry of the 
(n—2)! x (n—2)! submatrix cy. For the n = 
symmetries of eqs. (4.4.9) and (4.4.10).

The reduced matrix for n = 5 is given in chapter 10. The 1/N2 terms disappear, 
which means that the leading colour result is exact, i.e. the O(N~2) terms in

El^sl2=(^'3



|A4(1,n + 1)|2 = P |Af(l,...,n)|2 , (4.4.23)

'A in processes with zero quarks4.5

(4.5.1)

The LCA colour factor follows from the relations

(xax ... an)(xai ... any = |(a! ... a„a„ ... a,) - 577(a)... a„)(ai... a„)", (4.5.2)

and

(4.5.3)

(4.5.4)
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N2 - 1 
2N

(“»•■• a„)(ai ... a„)* = £(-l)J
j=o

Taking into account the factor 2 that appears in eq. (4.4.1) leads to the given LCA colour 
factor. The LCA is exact for n = 4 and n = 5. The linear dependence of the C-functions

52|A4(l...n)|2 = g 
c,A

: |C(l...n)|2.
A P(J...n)

N, the 1/7V2 term is 
n = 7. Similarly the 1/N* is collinear finite for

are absent. In other words, the diagonal 4! x 4! colour matrix with diagonal element 
(7V/2)3 (TV2 — 1) is equivalent with c,y. For n — 6,7 the 1/N2 terms survive in the 
reduced matrix, but higher powers of 1/N2 vanish, for n = 8,9 the 1/N* term remains 
but higher powers drop out. This suggests a general pattern for higher n values, which 
has an interesting consequence for collinear gluons. In the case where two gluons are 
collinear we have

(at... anxxa„ ...a^ = !^r(ai ■ ■ ■ anan ... a,),

where repeated indices imply summation. Eq. (3.5.7) has been used in both (4.5.2) and 
(4.5.3). The colour products on the diagonal of eq. (4.4.4) produce the highest order in 
N, they become

•2n-\N2 - 1) (£)"’ x £

In this ,e examine the consequences of neglecting all O(l/N2) terms in the colour
matrix :.u-called leading order in colour approximation, abbreviated by LCA, is used
in many approximations for multiparton matrix elements, see chapter 8 and section 4.6.

To establish the influence of the non-leading order terms we carried out the following 
program, see also sections 5.2 and 6.3. Determine the differential cross sections for the 
exact matrix element as well as for the LCA. In the latter A |Afn|2 is given by

with P a function related to the splitting function. Since P 
collinear finite for n = 6, but not for 
n = 8, but not for n = 9.

For n = G the reduced matrix is equivalent with a simple interference pattern in the 
original basi- For n = 7 the number of interference terms increases. Some results are 
collect ir. ;pter 10.
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Fig. 4.1. Ratio LCA/exact for the pr and distributions.

64

0.95

1.0

0.95

1.0

200 300
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can be used to diagonalize the colour matrix as we have already seen in the previous 
section. This is the motivation to have the (N2 — 1) instead of simply N2.

In the numerical calculation the distributions for both the exact and the LCA are based 
on the same Monte Carlo integration points. This positive correlation of the distributions 
reduces among others the statistical errors, the influence of scale choices, etc. when the 
ratio LCA/exact is considered. Two distributions, the transverse momentum pr and the 
dijet invariant mass are plotted in fig. 4.1. The parameters used are those for the 
LHC; pr > 50 GeV, 0 > 40° and |ry| < 2 (for the definition of these quantities we refer 
to chapter 2). The influence of the parton density function on the ratio turned out to be 
negligible.

As can be seen from fig. 4.1 the LCA is exact for n = 4 and n = 5. For n = 6 
and n = 7 this is no longer so, however the deviation from the exact result is small and 
approximately a constant for a whole range of pr and values. This is important 
because it means that the LCA only affects the normalization of the distributions which 
is not well known anyway. The increase in the error from n = 6 to n = 7 is so small that 
the LCA is expected to be relevant for n = 8. An explicit exact calculation [11] confirms 
this. A more detailed study of the LCA can be found in [5]

200 300
Pt (GeV)



Cross sections and distributions4.6

(4.6.1)

(4-6.2)s„ =

.(4.6.3)
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Note that the KS method is a part of the more general SPHEL approximation, which 
will be described in detail in chapter 8.

Number of non-zero amplitudes
Number of PT amplitudes

£ E
X P(2...n)

This sir 
iation, ■: 
C funct

cation of the colour matrix does not substantially speed up the calcu- 
by a factor two or so. Most of the effort now goes into evaluating the

c.A

2n — 2(n + 1) 
n(n-l)

(/V2 - l)7Vn-2 Sl<.<i<n{»J}4 
{1,2}{2,3} ... {n,l}

7v4n|2 = </̂ (TV2-!)^)"’2^ |C(l...n)|2.
' Z ' A P(2...n)

In the KS method the colour matrix is treated in leading order too. Together this 
leads to the following expression for Ec.A |A4„|2

as defined in the previous section. It replaces

e I he second method is the Kunszt-Stirling (KS) approximation [12]. This method 
assumes that all non-zero helicity amplitudes contribute equally to the matrix ele­
ment squared. The KS method calculates those helicity combinations for which a 
short analytical form is known. These are the so-called Parke-Taylor (PT) helicity 
combinations which have the property that all but two helicities are the same. These 
C-functions are given in eq. (4.2.11). All other non-zero amplitudes are accounted 
for by introduction of a simple combinatorial factor

The analytical formulae from section 4.2 together with the colour matrix techniques, 
explained in section 4.4, are used to determine the total cross section rates for n = 
6,7 and 8. Due to the new techniques which speed up the calculation, we are also 
able to present differential cross sections. For n = 6 and 7 the analytical results for 
the C-functions are given in chapter 10. We compare the exact results with various 
approximations proposed in the literature. A short description of the essential points of 
these approximations is included for completeness.

• The first approximation is the LCA
Eca|A4,.|2 by

• The third and last approximation we examine is the one proposed by Maxwell 
(MW) [13]. His method is based on a reduction scheme in which the pair of 
most collinear gluons is replaced by a single on-shell gluon and some collinearity 
factor. This process continues until only 5 gluons are left for which the exact result 
is used. Effectively the MW method amounts to



(4.6.4)

Table 4.1. Total cross sections in nb for n — 6,7 and 8 for the Tevatron.
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Method 
Exact 
LCA 
KS 

MW

99 -* 999999
0.059 ± 0.004
0.054 ± 0.003 
0.102 ± 0.006 
0.048 ± 0.003

99 9999
15.8 ± 0.2
15.6 ± 0.2
19.1 ± 0.3
15.0 ± 0.2

99 99999
0.91 ± 0.03 
0.87 ± 0.03 
1.33 ± 0.04 
0.81 ± 0.03

22 — Gn 22 |A^n|KS>
c,X c,A

where G„ depends on the event instead of being a constant as in eq. (4 6.2).

For comparison of these approximations with the exact matrix elements squared, we 
did the Monte Carlo integrations with the same events in each case. The results are 
thus positively correlated, enabling us to draw conlusions beyond the precision of the 
integration. However, the obtained accuracy is such that this correlation is not strictly 
necessary. The calculations are done at the Tevatron 1800 GeV centre-of-mass energy, 
using the parton density functions of Duke and Owens with A = 0.2 GeV [14] For the 
QCD scale Q we took the average py of the event and as was used in first c er with 
nj = 5. We note that the correctness of the approximations is insensitive to va; ns in 
as and the centre-of-mass energy. Furthermore we used the cuts as defined in t: 2.2.

The total cross section rates for gg —» gggg, gg —> ggggg and gg —* gggggg scatter­
ing are listed in table 4.1. The KS result is too large, indicating that the PT amplitudes 
are larger than the other amplitudes. Both LCA and MW are reliable approximations for 
the total cross section rates. It is interesting to note that for n = 7 each approximation is 
doing worse compared to the n = 6 case. Likewise for n = 8 compared with n = 7. For 
the MW reduction method the error increases from 5% for n = 6 to 12% for n = 7 and 
23% for n = 8, making it dangerous to say something about the correctness for n > 8. 
To indicate the effort necessary to obtain the plots note that 100000 accepted events 
were used for n — 6, 20000 for n = 7 and 11000 for n = 8. This n = 7 number is to be 
compared with the 1000 events used in [6].

To examine the approximations further we plotted two differential cross sections in 
figures 4.2, 4.3 and 4.4, each having four distributions a, b, c and d. The question is how 
good the shapes are, since we already know the differences in normalization. The LCA 
approximation is not included in any of the plots, because the LCA distributions resemble 
the exact distributions very much (as could be expected from the previous section). In a 
we show the for finding a jet with transverse momentum py. The n = 6 case is in 
good agreement with the plot in [15]. The MW approximate method gives qualitatively 
the right shape of this distribution. The KS method overestimates the low pr events 
relatively more than the high py events. About 20% for py = 40 GeV and 10% for
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Fig. 4.2. Distributions for the
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da 
dpr

100 
(GeV)

n = 6 process, see text for details.

■jft;
fib 

'•Gci/V

Pt = 150 GeV. Unlike the total cross section the approximations are not worse for n = 7 
n = 6. The shape of the LCA and the MW distributions are as 

6, while the KS is slightly worse. Again the low pr events are relatively 
> error varies from 45% for pr = 40 GeV to 30% for pr = 150 GeV. 
ives the right shape for the pr distribution within an error of 10% for

and n = 8 than for 
good as for n = 
overestimated, the 
The KS method gi' 
Pt < 150 GeV.

In b we give the distribution of finding a two jet pair with an invariant mass 
= y^p, ■ pj. For this distribution all the approximations give qualitatively the right 

shape. Notably the MW method is not better than the KS method. The approximations 
are slightly better for n = 6 than for n = 8.

When the total cross section rates from table 4.1 are used as a scale factor we find 
that the largest difference with the exact result for any bin in the pr distribution is 2% for 
the LCA, 8% for the KS method and 7% for the MW method. For the Mij distribution 
these numbers are even better, 2%, 3% and 5% for LCA, KS and MW respectively. So 
the approximations predict the shape of these distributions within an error of say 8%.
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d cos 0ij
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dMjj
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Fig. 4.3. Distributions for the n =

We found that the shapes of these distributions are equally well described by the various 
approximations, within 10%, the KS method not being worse than the MW method. 
A more extensive investigation is needed to show whether the approximations give the 
correct shapes for other distributions.

To illustrate that QCD really matters a comparison is made between the exact matrix 
element and the pure phase space calculation, normalized to the exact result. Note that 
a pure phase space calculation does not make much sense in many ways but can be used 
to examine whether QCD predictions differ from very naive models. In c the results for

It is interesting that the peak in the invariant mass distributions is at Af,j = 70 GeV 
for n = 6,n = 7 and n = 8. For Standard Model processes in which a W decays into jets 
that have pure QCD backgrounds this is bad. Furthermore we have investigated other 
distributions, such as

(^)

da da 
—7= > ; anddVl
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Fig. 4.4. Distributions for the n = 8 process, see text for details.
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100 
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the pt distribution are presented. The continuous line is the exact result copied from a, 
the normal lines are based on J2c,a |A4n|2 = c, some constant and the dotted lines are 
based on £c A |A<„|2 = (l/s)n-4, with s the parton centre-of-mass energy squared. This 
last matrix element preserves unitarity and has the same dimension as the exact matrix 
element. For the Af.j distribution the results are in d. We see that for the pr distributions 
there is a clear difference but that for the distribution A |A4„|2 = (l/s)n~4 gives 
fair results. This is not strange because the invariant mass distribution scales with y/J.

The important lesson is that for many distributions both the KS and the MW methods 
can very well be used as an approximation to the shape. The MW method is giving 
somewhat better results for n = 6 but not for n = 7 and n = 8. The two approximations 
take about the same computer time.

The exact matrix element squared can be used for determination of the normalization, 
which is however also sensitive to other influences like the scale choice in the coupling 
constant and the higher order corrections. Thus in practice an effective strategy would 
be to establish for a certain approximate calculation the correctness of the distributions
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Chapter 5

Two quark processes

5.1 s - • j quark process

0 -» 9.(?) + <7>(?) + s(Xi) + ■ ■ ■ + s(A"„), (5.1.1)

(5.1.2)
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Details are given of the calculation of QCD processes with two quarks, possibly massive, 
and an arbitrary ■ imber of gluons. As for the purely gluonic process the method is based 
on coloui sition and recursion relation techniques. Furthermore the leading colour
approxin: ion examined.

In this section ■...- present a method to calculate a process with two quarks and n gluons. 
In particular we focus on the numerical consequences when WvdW spinors are used and 
the quarks are massless.
To fix the notation, consider the following process

Af(q; 1 .. .n;q) = i gn £ (oj... 1 ... n; q).
P(l...n)

The decomposition of M in the Chan-Paton colour base results in n! gauge invariant 
subamplitudes, T>(q\ 1 ... n; q). Note the suggestive notation of P(q; 1 ... n; q), the or­
dering of the particles corresponds with the colour structure. Diagrammatically those 
Feynman graphs contribute to 7>(q; 1 .. . n; q) that can be drawn in such a way that the 
external lines are ordered clockwise as: ql2...nq, see section 3.5. Eq. (5.1.2) separates 
the computation of |A1n|2 in two problems. We first present a method to compute 
the Z>-functions and then indicate how the colour matrix can best be dealt with.

The 7?-functions in eq. (5.1.2) are obtained with a method similar to the way the 
C-functions were computed in chapter 4. Consider a quark-antiquark line with n on-shell 
gluons attached to it. The quark is on shell too and has colour i while the antiquark with 
colour j is kept off shell. Summing over all configurations of gluons results in a quark or 
spinor current, j<j(q; 1 . ..n) where the spinor index is omitted. An antiquark current is

where all particles are outgoing, the qq-pair has colours i and j and the gluons carry 
colours a\ ... an. The matrix element for process (5.1.1) is given by



(5.1.3)

(5.1.4)

1.5)

(5.1 6)

(5.1.7)

and

(5.1.8)J(?) = v(q).

(5.1.9)

(5.1.10)

(5.1.11)

72

J(g) = u(q),

the spin-state of a free quark. With eqs. (4.2.5)-(4.2.7), J(q; 1 .. .n)
For an antiquark current the analogues of eqs. (5.1.3)-(5.1.5) read

j0(l...n;q) = q" 52 (O1... an);j J(1 ... n; q),
P(l...n)

- 52 7(1 ...m)J(m+l ...n;q), 
■1 m=l

constructed in a similar way and is denoted by Jy(l... n; q). Decomposed in the colour 
base, J,j(q; 1... n) can be written as

jy(q;l...n) = q" 52 (<>i...a„)yJ(q; 1.. ,n) 
P(l...n)

where J(q; 1... n) no longer contains a colour structure. It is given by [1]

>,P($)I.

P(q; 1... n; q) = J(q)[jf + 7(1, n) + m,i,] J(1... n; 9)|,+jf+K(i>n)=o •

J(q;l...n) = - 52 J(q; 1. • • m)7(m+l... n) 
m=O

The vector gluon current JM(m + l . ..n) is contracted with a
in eq. (4.2.3). For m = 0 the J(q;l...m) = J(q). It is easy to picture 
various terms in eq. (5.1.4) originate from. A virtual gluon decaying into n — n> 
connected at the off-shell side of a quark current that already has m gluons atta 
The quark-propagator must be included to get the recursive formulation. The 
or stopping condition of eq. (5.1.4) reads

_______1_______
7 + 7(l,n)-m,

7" and rc(l,n) :s defined 
here the 
irons is 

to it. 
dary

can be com|. ed.

A4(q; 1... n; q) = j„(q; 1 ... n)(-i)[4 + 7(1, n) - ms]-z(?)|,+9-+<(b„)=0 >

where the factor (-i)[7 + 7(1, n) - m?] removes the unphysical propagator in the quark 
current. From eqs. (5.1.2) and (5.1.9) follows that

T>(q; 1 ... n; q) = - J(q; 1 ... n)[rf + 7(1, n) - m,] J(q)|,+f+,(ln)=0 •

And the equivalent expression for the antiquark current reads

J(l...n,q) |£(i)n) + m,

The amplitude for a process with a quark pair and n gluons is obtained from the quark 
current, J,y(q; 1 ... n) by contracting it with v(q), an on-shell antiquark and imposing 
momentum conservation



(a, .. .a„)y(ai .. .a„)T = (aj ..,a„an...aj) = (5.1.12)

(5.1.13)X

(5.1.14)

(5.1.15)

(5.1.17)

(5.1.18)

x
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All other 
the assist 
0(N~2) 
is examir

are easily obtained by repeatedly using eq. (3.5.7) which, with 
symbolic algebra program, does not pose any problem. Disgarding all 
responds with the leading order in colour approximation (LCA) which 
next section.

(? + «(!>"))

The colour matrix that appears in i |A4„|2 is a symmetric n! x n! matrix. Ordering 
the permutations as defined in section 4.4, results in the same symmetries, i.e. the 
complete matrix is obtained from the first (n — l)!/2 rows in a trivial way. The leading 
order in colour contribution appears on the diagonal of the colour matrix

(TV2 — 1)\"
2N J

T>(q, A,; 1, At ... n, An; q,-X,) = P(g, -A,; 1, —Aj... n, -A„; q, A,)’.

and of charge conjugation

2>(g, A,;l, Ax ... n, An; g, — A,) = -T>(q, A,; n,-An ... 1, — Ajj q,-A,)*. (5.1.16)

The latter however does not reduce the amount of work but serves as a numerical check.
The recursion relation can be used to obtain numerical results for scattering processes 

involving a massive quark pair and n gluons. With the spin-states as given in eq. (3.3.38) 
and the 7-matrix representation, eq. (3.3.1), the recursion relation can be expressed in 
WvdW spinor language. The spinor current J(q;l...n) written in components, see 
eq. (3.3.14), reads

J(q; 1 ... n) = (j^q; 1 ... n) JjA(q; 1... n)) ,

and eq. (5.1.4) transforms in

(Jj*(g; 1... n) J2y4(q;l...n)) =

1 3 £ (JiC(9; • rn) ^(’J1 •■•Tn))
q m=0

JgC(m + l ...n)\ / 

0 J \
(9 + «(1."))xb

I*4 m,e^

We fi action with a number of remarks that are useful in a numerical situation.
In performing sum over the helicities use should be made of parity conservation

(q + k(1,ti))2 - m, 
0

J^s(m + l... n)

Like in the zero quark case a factor (TV2 — I) is separated in order to get a uniform leading 
order in colour term for all QCD parton processes, see chapter 8. This leads to

E |A4(q; I... n; q)|2 = q2"(7V2 - l)(2N)~n N7n~2 
c,X

£ £ {|7>(g;l...n;q)|2 + O(7V-2)}. 
A P(i .n)

oducts



(5.1.19)

The LCA in processes with two quarks5.2

In
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The consequences of neglecting all O(1/7V2) terms in the colour matrix that occurs 
in |A4„|2 are determined for processes with a quark pair and up to 5 gluons, 
section 4.5 the details of the investigation were given.

In the LCA the matrix element squared is given by

1 ...n;9)|2 =52nl(W2-l) fy) £ |U(q; 1...n;q)|2.(5.2.1) 
c,A X Z 7 A P(l...n)

The ratio LCA/exact for the pr and the distributions is given in fig. 5.1. All two 
quark processes that contribute to a hadron-hadron collision are included, therefore the 
deviation from one is the error in the prediction for a collider experiment. The error is small 
and approximately a constant and thus only affects the normalization of the distributions 
a little bit. Note that the interference between ©-functions gives a negative contribution 
to Ec,a |A<„|2 while for the C-functions it was positive.

As a last point we note that the sum over all physical parton processes alw ■ runs 
over four fundamentally different processes for all n. These are

q q —» ng (5. 20)

qg —» 9 (n-l)ff (5.1.21)

g q —» q (n—\)g (5.1.22)

9 9 -» 9 9 (n-2)9 (5.1.23)

Other parton processes are obtained from the above by means of charge conjugation. 
Numerically, process (5.1.20) turns out to be of little importance. The three other pro­
cesses together contribute about the same to the total cross section as the purely gluonic 
process does, see chapter 8.

The gauge freedom in the gluon polarization vectors and the arbitrariness of M in 
eq. (3.3.31) cannot easily be used to simplify the calculation on the numerical level. 
In case m, = 0, eq. (5.1.18) simplifies enormously because the propagator-matrix only 
contains off-diagonal terms. The recursion relation then effectively becomes one dimen­
sional. For instance with the quark having the + helicity we find

^(9; 1... n) = - ^ J6(q-1... m)^(m+l ■ ■ ■ n) + .
m=O (9 + K(l,n))^

This special form shows that the numerical evaluation of the ©-functions is very easy 
for massless particles. In chapter 10 analytical results for the ©-functions are given. 
Contrary to the massive case compact analytical results in terms of WvdW spinors exist. 
By cleverly choosing the gauge freedom in the gluon polarization vectors the © functions 
can be computed for n < 5. The analytical results are preferable not only for tudying 
the pole structure but most of all in numerical applications. This explains the tr; rdous 
difference between the CPU-time needed for the n = 4 and n = 5 cases.
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Fi;?. 5.1. Ratio LCA/exact for the pr and Mij distributions.
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Chapter 6

Four quark processes

6.1 The four quark process, part I

(6.1.1)0 ?.(Qi) + + rk(Q3) + r/((?4) + + ... + ff(Kn)

(6.1.2)At(1234; 1... n) = A(1234; 1... n) - 6,r4( 1432; 1 ... n).
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arbitrary 
niques 
tudes 
ion is

The process with four quarks and n gluons is calculated in two different ways. In this 
section a method is described to determine the subamplitudes by means of recursion 
relation techniques. In the next section the subamplitudes are expressed in field strengths. 
The latter method is more suitable for numerical purposes because it enables us to obtain 
analytical expressions for the helicity amplitudes in terms of WvdW spinors. However two 
extra gluons is the limit for this method.

The recursion relations for gluon and quark currents are used to calculate amplitudes 
with four quarks and n gluons. Extending the recursive schemes of chapters 4 and 5, 
only one new ingredient is needed, a recursion relation for an object which consists of two 
off-shell gluons and a number of on-shell gluons.
With all the particles outgoing the process we consider reads

Details are given of the calculation of QCD processes with four quarks and 
number of gluons. The calculational method is based on the recursion relation 
introduced in chapters 4 and 5. For four quarks and up to two gluons the sub 
are expressed in field strengths. Furthermore the leading order in colour appro: 
discussed.

where i, j, k and / are quark colour indices. The gluons carry colour at ... a„. The quark 
flavours q and r need not be the same. The equations in this section are valid for massive 
quarks too although the quark masses appear nowhere. For ease of notation the Q's and 
K’s are often omitted. The matrix element for process (6.1.1) can be written as

The second >4(1234; 1... n) contributes when q and r have the same flavour. The Feyn­
man diagrams contributing to .4(1234; 1... n) are systematically generated and added 
with a method we now describe. Distribute the n gluons over six sets {a}, {6},. - •, {/}•



(6.1.3)

(6.1.4)

?>« |r,/

01

Cl • Cc

pm

n o

6i dj ■ dt

eibb
\r,k
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B(r

p,4
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{/} from r, 
written as

The next step is to add those terms in B(1234; {a},..., {/}) that have the same 
colour structure. This is accomplished by ordering the gluons inside the sets and using 
recursion relations or colourless Feynman rules. The colour decomposition techniques 
applied to the currents that appear in eq. (6.1.4) result in

4(1234; 1... n) = £ B(1234; {a},..., {/}).
{«}•..{/}

The sum in eq. (6.1.3) runs over all possible distributions of the n gluons over the six 
sets. Now consider the Feynman diagram for 0 —* qqrf without any gluons and assume 
that q r to simplify the discussion. The gluons in {a} are radiated off from q, the 
gluons in {6} from q, in {c} and {d} from the gluon propagator, in {e) from r and in 

see r:; 6.1. Using quark and gluon currents B(1234; {a},...,{/}) can be

Set {a} contains a gluons, d] through aa, etc. A set can be empty, the only restriction is 
that every gluon appears exactly once, i.e. a+6+c+d+e+/ = n. The gluons in a set 
are not yet ordered at this point. Note that because gluons are denoted by their colour 
label, the meaning of some symbols depends on the context. Using sets, 4(1234; 1.. .n) 
can be expressed into new functions with

■ ;{/}) = Xn(<?i; {<>}) MU Xy({6};Q2)x 
4;{c};B;{d}) Jko(Q3; {e}) ig 7v W°p

m,n,o,p labels we must sum over. The quark currents {}) are described
in detail i 5. The tensor current J)(g(4; {c};B; {d}) describes an object with
two off-shc in. + d on-shell gluons. The off-shell gluon with indices p and 4 carries 
momentur-. P, == Qi + Qj + {a} + {6}, i.e. the sum of the momenta of the particles at 
the qq side of the diagram. The other off-shell gluon has indices v and B and momentum 
Pr = Q3 + Q,+ {e}+{f}.

<l,j
Fig. 6.1. The colour structure decomposition technique applied to a process with 
four quarks and a + 6-f-c-f-d + e + f = n gluons.



(6.1.5)

(6.1.6)

and

2 (4c, ■ c.Bd, ■ -da) J^(A-, c, • cc; B; d, • -da).(6.1.7)

1.8)

(6.1.9)

J"(l..

(6.1.11)J"(l...m) =

(6.1.12)
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•£>(<?;{“}) = 9° £2 (“i- ■a«)o^(Q;ai- -“a)> 
P(aj...a«)

X>({a};Q) = 9° 22 (ai ■••<1a),JJ(ai...aa;Q),

. m) = J'“'(4; Cl... cc; B; d] ... dd)ui„,

1 
rc(l,m)J 

m—2 m—1

k=l l=k+l

(6.1.10)

with m = c + d+ 1, for i = 0,1,2,3. The unit vector represents a gluon that carries 
momentum Pr and colour B. Therefore in JM(l...m) gluon c + 1 is special in the 
sense that it is off-shell. The trick is that the contraction in eq. (6.1.10) is reversible. 
Calculation of J“(l ...m) for every unit vector gives us J'“'(A\Ci .. .cc-,B-,d^ ... da).

The gluon current Jp(l.. .m) is given by, see also chapter 4

E[J(l---fc),J(it+l...m)r
. Ar=l

J^(4;{c};B;{d}) = 29^
P(c1...cc,B,di...dtl)

The J'“'(4; cx.. . ce; B; di... dd) is a tensor current for an object with two off-shell gluons 
and c + d on-shell gluons and the gluons in sets {c} and {d} are ordered as r fig. 6.1. 
Notice that the off-shell gluon with index u is ordered in between gluons cc ar d Now 
the colour part is separated from the dynamical part, the ordering of the glue used 
to decompose B(1234; {a},...,{/}) further to make this separation more exf

B(1234; {a} {/}) = £ C(1234; d ... a.,6, ... 6b,,/z
P(.),...,/>(/)

where P(a),..., P(/) denote the permutations of gluons inside the sets. The with 
indices as in eq. (6.1.8) is diagrammatically depicted in fig. 6.1. Summed over the olour 
labels, m,n,o and p it reads

C(1234; d ... ao, 6,... 6b, 2 i ^+»+^+«+7
(d ...aaAbi . ..b^f J(Qi;ai ...aa) J(6i .. ,bb- Q2)
(4ci... ccBdi ... da) J’“'(4; ci ... cc; B; di ... da)
(ei... ecBfi ... f{)kl J(Q3; et... ee) ■ ■ ■ ff,Qd)

For J'“'(4; Cj... cc; B; di ... da) a recursion relation can be formulated. Since we already 
have a recursion relation for objects with one off-shell gluon, J^A; ct ... c„; B;dt ... da) 
is related to ./'“(I .. . m). To achieve this we introduce four unit vectors u,„ and relate 
the two currents to each other with



with

(6.1.13)

(6.1.14)

# B), < = «r,J"(B)

k(1, >r. (6.1.16)Ki and in particular k(B, B) = Pr

(6.1.17)

(6.1.18)
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= </P2, (6.1.15)

■ for the internal gluon is included. Furthermore we used that

The difference with the original gluonic recursion relation is twofold. Firstly we must use 
the full three-gluon vertex because gluon B is off-shell and secondly the polarization vector 
for the off-shell gluon is artificial and is decomposed in unit vectors. Some properties of 
the original gluon current still hold, e g.

E <7*(1... m) = 0.

However, JM(1 ... m) is no longer a conserved current. By cutting off the u,„ and labeling 
the indices back again, see eq. (6.1.10), we obtain J'“'(>4; cj... cc; B\ db ... dj). In other 
words from the four J"(l ... m) we obtain one cb.. .cc-,B-,db... dd).

At this point the only thing left to be done is to sum over the colours of the internal 
gluons. Eq. (6.1.9) becomes

C(1234;a! ... aa, b, ... bb, fj) = \g2+n J{Qi, ai ■ ■■aa) 7„ J(bb... bb;Q2)
c1...cc-,B-,d1... dd) J(Q3\ e, ... e.) 7. J(h ■■■//; <?a) x

[(ai ... aacb ... Ccfi ... fj)u (e, ... ecdb ... djb, ... bt)kj
— . aabt ... bh'jij (e2... ecdb ... ddcb ... ccfb... ff)ti
— ̂ («i ■ • • OaCi ■ ■ . ccdt ... djbi... bb)ij («!... ee/i ... //)«
+ j7i(«! • ■ • • • • Mu (ci ... cedi ... dd) (e2... ecfb ... //)*/] ,

Substitution of eq. (6.1.18) in eq. (6.1.8) and adding the contributions with the same 
colour structure leads to a set of subamplitudes. The gauge invariance can be used as a

[J(l...fc),J(l- + l...m)](‘ =
+ [2 s(i-|-l,m) + it(l,i)|-J(l,..t) J“(k+1 ... m)
- [<fc+l,m) + 2 «(l,fc)] • J(fc+l...m) J*(l...Jb)
+ J( 1 ... !•) • J(k+ 1 ... m) [rc(l, A:) — rc(jt+l, m)]* ,

{ J(1... k), J(k+1 ... f), J(/+l... m)}" =
+2 J(1...A-). J(Z+l...m) J“(k+l...l)
- J(l...k)-J(k+l...l)
- J(k + 1 ...I). J(l+1 ... m) J*(l... it).

The bound?: itions read

•/"(«)
where the



and the

6.2 The four quark process, part II

(6.2.1)and

(6.2.2)

e4 — |^ij(aaai)*i> es = |(a2).j(ai)kb e6 = |(a2a1);J-6;n.
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The method discussed in the previous section is very general and can be exte: 
cesses with more quarks. It allows the quarks to be massive and enables us 
Ec,a |-M„|2 for any number of gluons. However it is a complicated method 
a numerical application. If possible it is much better to obtain analytical res

organize the calculation that way for n 
tions [1], In a numerical application we use 
only. The colour structures that occur in four quark processes are of the type

^({a})v({i})« and i({o})>(({6})*„

where {a} and {i} represent a set of fundamental representation matrices. Additional 
colour structures occur for equally flavoured quarks (j I). The matrix element for 
process (6.1.1) can be written as

2(n+l)l

12A4(1234;l...n) = fsn+2

pro- 
ulate 
:w in 
r the 

helicity amplitudes that correspond with a base of colour structures. In this n we
< 2. This method resembles previe w cs cula- 

the results of the previous section for n = 3

check on the correctness of the method. The last term in eq. (6.1.18) is special in the 
sense that we do not expect that colour structure to be present in the final result, i.e. the 
corresponding subamplitude should be zero. Performing the sum over the permutations, 
see eqs. (6.1.3) and eq. (6.1.8), and using eq. (6.1.17) shows that this is indeed the case 
except when both {c} and {d} are empty. Then, with Tr(I) = N the fourth term cancels 
the second or the third term.

With the explicit representations for the quark and gluon spin-states, it is possible to 
compute 52c,a l-A'inl2 for any value of n, using eqs. (6.1.2), (6.1.3), (6.1.8) and (6.1.18). 
Note that the method described in this section is rather complicated and not very suited 
for numerical purposes. Nevertheless it can be used to check specific results 
validity of approximations for arbitrary n.

Note the labelling of the quarks (q <-» 1, etc). The e, are colour structures and the the 
corresponding subamplitudes which in principle do not depend on colour. However to min­
imize the number of different colour structures the explicit — 1/7V factor, see eq. (6.2.1), 
is put in The e, are defined as follows. Generate the permutations of gluons with 
the algorithm of subcydic permutations, see section 4.4. For each permutation start with 
putting all the gluons in set {6} and subsequently transfer the foremost gluon to set 
{a}. This step has to be repeated n times. This procedure leads to (n + 1) x n! colour 
structures. For n = 2 the ordering reads

ei = l^u(“ia2)*l, = |(ai)y(a2)*i, e3 = 5(0102),



(6.2.6)^oo(123i;;)

(6.2.7)

(6.2.8)+

++

(6.2.10)

+ Ji

+
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— 1 (Ji i7Pffi2J2
IT L{1,A'i}{/<2,2} {3,4}

4 (1-Fr2) 
{!,/<!}{/<>,2}

T37p V4

{3,4}

J2F1O(1234;1;) = -±Jt

7T-J17'‘‘Z2K2}J37-‘J4

£oo( 1234;;) = Ji7MZ2 ,, q, *^37p^4 
V,ZJ

if 17"
{!,/<•}

The second (n + 1)! terms have j and I interchanged.
The subamplitude Et is either denoted by Fas(1234; {a}; {b}) when the colour struc­

ture is of the first type in eq. (6.2.1) or by f„b(1234; {a}; {6}) when the colour structure 
is of the second type. The subscript indices denote the number of gluons in sets {a} 
and {6}. These gluons can be seen to be colour ordered along a quark-antiquark line. In 
Faj(1234; {a);{b}) the gluons in set {a} are colour ordered along the qq line and thus 
produce a colour structure (a, ... aQ),j and the gluons in set {6} are along the rr line pro­
ducing a (b] ... bb)ki colour chain. Likewise are the gluons in set {a} in £,>( 1234; {a}; {b}) 
ordered along the imaginary qr line.
A number of symmetries exist for £ab and Interchanging 1 «-» 3 and 2

£,6(1234; n, ... aa: bt ... bt) = £,<,(3412; b, ... bk\ at ... aa),

and likewise for F Charge conjugation combined with 1 «-» 2, 3

£>(123 0,. ao;b1...b6) = £fca(2143;b6...b1;aa...a1), (6.2.4)

. ao; b> ... bfc) = Fo4(2143; aa ... a,; bk... bj. (6.2.5)

, be calculated for all possible helicity combinations by direct meth- 
vay is to express them first in terms of field strengths. For n < 2

F20( 1234; 12;) =

- 4 1-Fi fi 
{1,Z<1){7<1,A'2}

K2-fif2-4 fi-fi-2

4 results in

(6.2.3)

4 leads to

J_7^1 , 
{2, Kt} +

, J37m-A

£io(1234;l;) = +2^^^x (6.2.9)

[F1Qg-gag{(4F1l)({l’,2} + {3,4})-(l.F1.2){4,F1}-K4.Fi.3){l,/<,}}]

{l.K.HKM}

{1,2} {F.,4}

+ Jr7 [f.+ft+fl —(2 Ki}{Ai ^} 2
4(/<1F;. 2/’17" + 4(l fi - F2)7"f2 ~ 8(lFfF2-2}~/“ 

{l,Kt}{Kt,K2}{K2,2}

{lj<i} {3,4}

Fa6(12::

The subamp!, 
ods. A more 
the results re.



(6.2.11)+ J2x

+

(6.2.12)

+

+

+ +{1,2} {3,4}

+ ^17«[{ + fl] '10 Ji +

+
{1,2} {3,4}

Ma0

(6.2.13)Mo0.

(6.2.14)

+ +
-m

+ + x

J3 J<+
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{3,4}

J  ̂+ ^ + ^-'l^+^lrJ,

{1,2} 
47m(4-F2-3) !

-2(1+2)-fl4 
(1+2+fl)’

(2 (3+4)-fl4

4 (l-fl-2)7^
{l,fl}{fl,2}

I 1JT i
{4,fl}

e"e2 Ma0 =

If.7" 
{1,*1}

4 (3-fl- 4)7m 
{3,fl} {fl,4}

fli(1234;l;2) =
J. If 17“ |F2J2 J^l^Jj 
{l,fl}{2,fl} {3,4} 
f J^il^i 
t{l,fl}(l+2+fl)* 

|f 37m 
{3,fl}

flo(1234; 12;) =

+ ^i7<,[Z + -4G]-17t[/ + ^i + fll’Vfl
J\laJj

{1,2}

+ ^17<r[Z + fl] 'laJi T37"[^+fl]-1

J^^Ji J31^4 4(3-fl-2) 
{l,fl} {3,4} {3,fl}{fl,2}

Jil.Jj {-4(l F1-2)ff^ + 2{l,X1}Fr'
L {l,fl}(l+2+fl)’

___________ 2flpo7°
{3,4}{3,J<2} {3,4}

p-

+ Jlla[l + Jfl] '~taJi

JllaJj 
{1,2}

JylgJj J31°Jj J8 (1+2)- F[- F2- (3 + 4)
(1+2 + ^)^^,F2}
J3laJ4 F?0 I

1 {3,4} {1,2}
, J1I0J2 , . vi-1 t F°P
+ W J37“[* + *21 7sJ< {M} l(3+4 + F2)’

JllgJj J310jj J 4(F2 ■ Fi)°g

(l+2+JT1)2

This expression is easily obtained by rewriting M with

-K,°ef{e„X2}+X1°Ff{e1,e2} + e?e^{F1,F2}-e?Ztf{F,,e2}
{F.,F2}

-(fl • F2)°g
{/<iX2}

fl1(1234;l;2) = -^-J1

1 , 
(1+2+K,)2 3

{2,F,} + 
If 37m 
{3,fl.} +

J3lgJA -2(fl ■ fl)”
{FnF2} 

-2(fl ■ fl)” 
{F.,F2} 

2(fl ■ fl)” 
(l + 2+K1)2{F1,K2) 

J37°J<4(fl-F2-(3+4)r 
{3,4} (l+2+F1)2{l,2)

7 -v“M-k R l-’-v I 4((1+2) -fl-fl/37 [* + &] ^J"(1+2+K1y{K1,K2}

2Tr(fl-fl)} 
{F„7<2} J

2F2 -Ff 
{F!,X2} 
2 fl -fl6 
{fl,fl) 

4(fl-F1)°g-4(fl-fl)°q 
{fl,fl} J



+

+ Jl J2 x

+
{3,4}

+ +

+ +
X

[+8(3

+f

(6.2.15)= 7'V(^ - /Ce„).Ji = i = Qi and ff1

(6.2.16)r = 2^, r = and / =

from which directly follows that
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0 0
0 -2>/2kAkg

(6.2.17)
(6.2.18)
(6.2.19)
(6.2.20)

u+(+)f- =0,

i =/T =0,
WJ = 0.

are present expresses the gauge in­
fer massless quarks. The following

87?2»g(4-/?i ■ 1) 1 
{l./GHKM}]

4 (l-Fi-4)

2y/2kA kB 0
0 0

we used the following abbreviations

{1,2} {3,4}

+ 77“

27./T
{1,2}
J3YJt [2F1^{2,K1} + 4(2-F1-%yp 

(l+2+K2y{2,Kt}
JnaJ3 J3~t0J4 \3F20a(iF2-3)

{2,K2}{K2,3}
J\'l‘‘^3J2 J3~1nJ4 Jl'I^Ji

{2,K2}{3,4} + {1,2}{3,A"2}

Ji'y‘‘J2 J^fiJt____________
{ ; f. 4}{1,K1}{2,7T2}{3,K2}{4,K1}

2)(1 • Ft • 4) ({1,2} + {3,4}) + 4(1 • F, ■ 4)(2• F2 • 3) {X,,K2} 
4)(2 F2- 3){1 ,/<!} - 2 (2 F2 Fr 1){3,A'2){4,K1}
1) (3 F2- 2){4,A'i} - 2 (2F2Fl-4){3,K2}{l,KI}
2) (4 F1-l){3,K2}-2 (3 F2 F1-4){2,A'2}{1,Ki} 

+.; (4 • V 3)(l Fr 4){2,/<2} - 2 (3F2Fr 1){2,A'2}{4,A'1}]

In chapter 10 the helicity configurations are given explicitly. The symmetries, eqs. (6.2.3)- 
(6.2.5), together with parity conservation minimize the calculational effort. For equal 
flavoured quarks there is a small complication, the £, consist in that case of an Eab and an 
Fai,. As a last remark we note that for n = 2 the analytical results enable us to compute 
Ec.a |Afn|2 over 40 times faster than the general method described in the previous section.

In eqs. (6.2.6)-(6.2.14)

The fact that no explicit gluon polarization vectors 
variant nature of the £,. The eqs. (6.2.6)-(6.2.14) are 
relations are necessary to obtain helicity amplitudes

Jy'I^Ji J3y/'2~1n^'iJt Ji~l“J2 J3yn2f'iJf 4(2-F2 3)
{1,2} {3,K2}{4,K2} {1,2} {JG,4} {2,K2}{K2,3}

[ 7"#’z _ 2t^FT _ 47<‘(lF2-2)
1 L{2,/C2} {1,2} {1,2}{2,K2}
J37m I J*

{/<i,2}
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n = 3 n = 31.2

n = 2 n = 2

n = 1 n = 1

n = 0 n = 0

1.0

100 100
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In this section we examine the consequences of neglecting all O(1/7V) terms in the colour 
matrix for processes with four quarks and up to 3 gluons. This LCA is used in the SPHEL 
approximation for multiparton matrix elements, see chapter 8.

Fig. 6.2. Ratio LCA/exact for the pr and Mij distributions.

We carry out the investigation outlined in section 4.5. The LCA matrix element is

I2 = |<72n+2(^2-l) (y)”

200 300
Mij (GeV)

200 300
PT (GeV)

£ |A4(1234; 1.. ,n)|2 = IS2»+’(JV2-1) (£) £ |^(1234; {a}; {6})|2,(6.3.1)
C.A V Z

where the sum runs over all helicities and possible distributions of the gluons over the sets 
{a} and {6}. For equal flavours the sum includes 1 <-*3. The (A/2 —1) is introduced to 
maintain uniformity with LCA for processes with fewer quarks, see eqs. (4.5.1) and (5.2.1). 
Note further that in the LCA all are neglected.

The result for the ratio of exact and LCA in eq. (6.3.1) is given in fig. 6.2. All four 
quark processes have been included so that the deviation from one is the error caused by 
the LCA in prediction for collider experiments. The error increases with n but is not too 
large. Like for the zero and two quark cases the error caused by the LCA is approximately 
a constant over the whole pr and Mij domain.



Chapter 7

Six quark processes

7.1 The , jark process

(7.1.1)0 -» <?(Qi) + gfQj) + r(Qa) + r(Qt) + s(Qs) + s(Q6).

44(123456) =

85

organize the calculation of the six quark process in such a way that 
n gluons will be straightforward extensions. The process

Details are 
with extra gb. 
with fewer qu

gi he calculation of QCD processes with six massless quarks, possibly 
numerical importance of six quark processes relative to processes 

■imined.

Each quark has a flavour /,• and a colour c, (i = 1,... ,6). The q, r and s are not nec­
essarily different flavours. For ease of notation the quarks are denoted by their momenta 
and the Q is left out, thus 1 stands for g(Qi). The odd numbers represent the quarks 
and the even numbers the antiquarks. The matrix element for process (7.1.1) is given by

(7.1.2)4(123456)- 4(123654)+ 4(163254)
-4(163452) + 4(143652) - 4(143256),

in which 4(123456) is given by the seven Feynman diagrams in fig. 7.1. 4(123456) does 
not contain any permutation of quarks. It consists of a set of 6-functions that control 
the allowed permutations of the quarks, colour structures C and their corresponding

In this section we 
processes with six quarks and 
without gluons has already been dealt with in [1] but there the emphasis lies on the 
implementation of the calculation in a computer program. The systematic method we 
use for the calculation is adopted from [2], where processes with four quarks and a 
vector boson are considered. The six quark process is the only subprocess for which we 
do not use recursion relations. However we do use colour decomposition techniques, see 
chapter 3. The contribution of the six quark process to the total cross section is discussed 
in section 7.3, see also chapter 8.
All the particles are outgoing. The process we consider reads



(7.1.3)

with

(7.1.4)

3.
1

42‘
2

6 4 2

Feynman diagrams contributing to A( 123456).

(715)

with

(7.1.6)P<(123456) =

Ps(123456) =
(3 + 4)’

x

‘abc
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I

Pi

C(12; 34; 56) = 6c,n6aCiSac.

Fig. 7.1. The seven

>;

Di I

subamplitudes B.

4(123456) = ig46hh6hhSh/,
x [ C(14;36;52)B1(123456) + C(16;32;54)B2(123456) 

+C(14; 32; 56)B3(123456) + C(16; 34; 52)B<(123456) 
+C(12; 36; 54)BS(123456) + C(12; 34; 56) _BS (123456)]

(7.1.7)

[(l+2-3-4)V‘' + (3+4-5-6)V“ + (5+6-l-2)‘'p“,‘]-

The quantities fabc are the structure constants of the SU(N) colour group, whereas the 
fundamental representation matrices are abbreviated by (a2... on)C|a = (T“‘ ... Ta")cia-

The .6,(123456) are subamplitudes that do not have any colour structure. They can be 
expressed in the diagrams of fig. 7.1. Application of the Feynman rules gives

P,(123456) = -ig\a)c,n(ab)ac<
£>,(123456) = -ig*{a)cici(ab)csce
£>3(123456) = —ig4 (a)CJCt(ab),
£><(123456) = -ig4(a)act(ab).
£>s(123456) = -ig\a)CiCe
£>e(123456) = -ig4(a)ac,yuv)aet
£>7(123456) = -g\a)ctc,(b)aci(c).

u(l)7Mv(2) u(3)7,‘(J + 2 + 3)7i/v(4) u(5)7„u(6) 
(1+2)’ (1 + 2 + 3)’ (5 + 6)’

u(l)7„u(2) u(3)7„v(4) u(5)7qv(6)
(1+2)’ (3 + 4)’ (5 + 6)’

(6)C5C4 £><(123456)
(f>)C3C4 £><(125634) 

k,„(6)ese.Px(341256) 
|C5C.(6)C1„£><(345612) 

(a5)C1C,(i)C3C4Px(561234) 
(ai)oc<(b)cin£><(563412)

\nctfabcDB(123456)

6'

,5

+
*6



(7.1.8)

(7.1.9)

(7.1.11)
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(7.1.12)
(7.1.13)
(7.1.14)
(7.1.15)
(7.1.16)

where the M,(123 ' :

Af, (12345: ;

Summing over the colours in eqs. (7.1.5) results in the following P,( 123456)

5,(123456) = -|(P2 + P3 + P6 + D7) (123456)
52(123456) = -J (D, + Dt + Ds - D7) (123456)
Ba(123456) = ^(D,+D3 + £>5 + D6) (123456)
B<(123456) = ^(D7 + D3 + D4 + Ds) (123456)
5S(123456) = ^(O, + r>2+ £>, +D6)( 123456)
56(123456) = -^(A + Pa + ^ + ^ + Ps + De) (123456)

Organizing the calculation this way it is easy to obtain |A4„|2. By adding the terms 
from the different /l’s which have the same colour structure we arrive at

A4(123456) = ig*
x [ 0(14: 52)M, (123456) + C(16; 32; 54)Af2(123456)

+C 56)M3(123456) + C(16; 34; 52)^(123456)
+C 54)MS(123456) + C(12;34;56)MS(123456)]

can be constructed from eqs. (7.1.2) and (7.1.3), for instance

23456) - 6/,/,6/3/,6/j/, 5,(123654) (7.1.10)

> «/,/.«/./,«/,/, 5,(163254) - 6/1/.6/3Z.6Ay2B3(163452)

+ <W/3/,6/s/,56( 143652) - 6/,/, 6/3/, 6/»/,5s( 143256)

Summing over the helicity states of the quarks gives

£ |A4(123456)|2 =j!£X 52 M,(123456) C„ Af'(123456) 
c,A A i=l,6j=l,6

The colour matrix Cij is obtained by squaring eq. (7.1.9) and summing over the colours, 
making use of 8CC = N. Some remarks need to be made about the helicity configuration 
sum in eq. (7.1.11). For the six quark process without gluons there are 20 different helicity 
configurations. In that many ways it is possible to distribute 3 + and 3 — helicities over 
six particles. At first sight it appears that only 8 different helicity combinations need to 
be evaluated, because the quarks are massless and the function .4(123456) = 0 when, for 
instance, quarks 1 and 2 have the same helicity. But then 4(143256) need not be zero.

The following procedure is the most efficient one to implement the method described 
above in a computer program. First determine every (123456) for the eight different 
helicity configurations and the six possible permutations of the antiquarks as in eq. (7.1.2). 
Next determine all the helicity configurations for Af,(123456) for the five possible flavour 
combinations of q, r and s

fi — fz-, fz = — fe
fi = fz = fz = A, A = A 
A = A» fz = A = A = A 
fz = A, fi = A = A — A

A = A = A = A = A = A»



The six quark process with gluons7.2

(7.2.1)0
ions

2.2)44(123456; 1...n) =

(7.2.3)
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4(123456;1 ... n) - 4(123654;1 ... n) 
+4(163254; 1... n) - 4(163452; 1... n) 
+4(143652; 1 ... n) - 4(143256; 1... n).

The formulae of the previous section are extended to include n extra gluons. At some 
places the results will be specifically for the one gluon case because that case is more 
interesting than the higher n cases. Eq. (7.1.1) transforms in

?(Qi) + ■ ■ • + s(Qe) + 91(^1) + • ■ • + <7n(ff»).

where the gluons carry colour ai ... a„. The matrix element is again expressed in 
that do not contain permutations of quarks

by means of eq. (7.1.10) and the equivalent expressions for Af2(123456) — Mg(123456). 
Finally use eq. (7.1.11) to obtain |44„|2 for the processes (7.1.12)-(7.1.16). Most 
of the computer time is needed to evaluate the B,(123456) functions, therefore we get 
the processes (7.1.12)-(7.1.15) at no extra cost when process (7.1.16) is evaluated. This 
clearly speeds up the sum over all possible physical subprocesses needed in a Monte Carlo 
simulation.

The 4(123456; 1 .. .n)-function is decomposed in the colour base with

4(123456; 1 .. .n) = ig4+n6/lh6Mt6h/t x £ 
{a.S.c}

[C(la4; 366; 5c2)Bi (123456; a; 6; c) + C(la6; 362; 5c4)B2(123456; a; 6; c) 
+<7(la4; 362; 5c6)B3( 123456; a; 6; c) + C(la6; 364; 5c2)B4(123456; a; 6; c) 
+<7(la2; 366; 5c4)B5(123456; a; 6; c) + C(la2; 364; 5c6)B6(123456; a; 6; c)].

In eq. (7.2.3) the a, 6 and c are sets which represent a number of gluons with the restriction 
that every gluon appears exactly once. Thus a, 6 and c together contain the n gluons. 
The ordering of the gluons inside a set is important. An example serves as the definition 
of the colour structures, see also eq. (7.1.4).

<7(la3ai4; 3a26; 52) = (a3a1)cic,(a2)c3c,6cici. (7.2.4)

Setting n = 0 in eq. (7.2.3) transforms it into eq. (7.1.3). The sum in eq. (7.2.3) runs 
over the distributions of the gluons over a, 6 and c. It contains 6 x (n + 2)!/2 terms. 
The corresponding subamplitudes jS;(123456; a; 6; c) are gauge invariant objects, which 
provides us with an excellent check on the correctness of the calculation. The number of 
Feynman diagrams that contribute to 4(123456; 1... n) is a rapidly growing function of 
n. For n = 1 it is 64, see chapter 9. The diagrams Dx through in fig. 7.1 can have a 
gluon attached in 9 places while diagram Dr has 10 places to add the extra gluon. The 
number of diagrams increases to 727 for n = 2.



(7.2.5)

(7-2.7)

(7.2.8)

(72.9)

(7.2.10)and
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+ 6hi, 
+ ShJ-

Summing over t

£l^„|2 g'

Slj2 ~

Although 4(123456; 1 ... n) is very complicated due to the large number of diagrams, 
the equivalent expressions of eqs. (7.1.5) and (7.1.8) are still manageable. Each of the 
64 diagrams in the n = 1 case contribute to at most four different colour structures. The 
5,(123456; a; b; c) are built up from a subset of diagrams just like in eqs. (7.1.8).

The generalization of eqs. (7.1 ,9)-(7.1.11) to the n gluon case reads

A4(123456;l...n) = ig*+n * z
{•>.«}

[ C(la4; 366; 5c2)Mi (123456; a; 6; c) + C(la6; 362; 5c4)A/2(123456; a; 6; c) 
4-C(la4; 362; 5c6)M3(123456; a; 6; c) 4- C(la6; 364; 5c2)M1( 123456; a; 6; c) 
+C(la2; 366; 5c4)Ms(123456; a; 6; c) + C(la2; 364; 5c6) Ms (123456; a; 6; c)], 

with for instance,

M (123456 a; 6. ) = (7.2.6)
, 7?i (123456; a; 6; c) — 5<(123654; a; 6; c)

Z?2( 163254; a; 6; c) — 6/1/,A/i/46/i/j53(163452; a; ft; c)
B6( 143652; a; 6; c) — 6/1/4A/3/JA/s/«5s(143256; a; 6; c).

ry states of the quarks and gluons leads to

£ M,(123456; a- 6; c)C,, A//(123456; a; 6; c) 
C’A

with C{j a 3(n 4- 2)1 x 3(n 4- 2)1 colour matrix.
An excellent check on the correctness of the calculation is taking the soft gluon limit. 

This limit relates the subamplitudes 5,(123456; a; 6; c) for different number of gluons as 
follows. Consider that the gluon with index j is soft. If the fundamental representation 
matrix (aj) is set to unity, every colour structure of the process with the gluon transforms 
into one of the colour structures of the process without that gluon. For example

C(laa1aJa264; 3c6; 5d2) —» C(laaia264; 3c6; 5d2).

The corresponding subamplitudes are then related by

5,(123456; aaiajO26; c; d) = sij25,(123456; aaia26; c; d)

with
4? (fciM . - _ /n (*1M*

for 4- and — helicity of gluon-j respectively. In eq. (7.2.10) Weyl-van der Waerden spinors 
have been introduced. For the definitions and the properties of these spinors we refer to 
chapter 3. When a process with more than one gluon is considered one can also take 
two gluons soft at the same time. Relations like eq. (7.2.9) still hold but the soft factor 
gets more complicated [3]. In the case of six quarks and one gluon we explicitly verified 
eq. (7.2.9) numerically.



7.3 Six quark processes and experiment
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We conclude with some remarks on the implementation of the calculation in a com­
puter program for n — 1. There is an exponential growth in complexity compared to the 
n = 0 case. Twice as many helicity configurations and three times as many subamplitudes 
which are also more complex by themselves. Furthermore the number of subprocesses that 
contribute to one event on the hadron level increases from 11 to 19.

It is feasible to repeat the calculation for six quarks and two gluons. For more than 
one gluon a recursive scheme can be developed to obtain numerical results. However it 
may be easier to extend the calculational method of section 7.2 to n = 2. Moreover, in 
view of its expected numerical insignificance, see section 7.3, and the amount of computer 
time needed to evaluate one event, extrapolated from the numbers given in appendix A, 
it is a waste of time to calculate the n = 2 case.

We restrict ourselves to a qualitative analysis of the six quark process. In par 
four and five jet production the importance of the six quark process relative to i 
gluonic process is examined.

For the four hadron colliders introduced in section 2.4 we determine the cross sections 
using the cuts given in table 2.2. Furthermore we take np = 5 and assume that the 
hadrons do not contain bottom quarks. The Duke and Owens set I is used for the 
structure function [4], For the scale Q we take the average pp. The results for the 
different subprocesses are given in table 7.1. In the first 11 subprocesses the (g) indicates 
the extra particle in the 5 jet case (m denotes the number of jets). Where appropriate we 
summed over the quark <=> antiquark processes as well, for instance the result given for 
the gq initial state also contains the gq initial state. To indicate the statistical errors we 
include both the gq (gluon from proton) and the qg (quark from proton) subprocesses. 
That they do not give the same result shows that the numbers in the table are indicative 
values only. The numbers for the total cross sections are given to show the relative 
importance of the six quark subprocess. For four jet production at CERN our results 
agree with [5]. However the authors counted one subprocess twice, processes 22 and 23 
in table 1 in [5] are the same.

The process with six quarks is found to be negligible in the four jet case, contributing 
about 0.5% to the total cross section. Adding an extra gluon increases its importance 
for five jet production to 1-5%. The weight of the six quark processes is such that 
approximations for multijet cross sections can neglect contributions coming from processes 
with six quarks. The importance of the six quark processes changes only little when the 
experimental methods improve to the point where the primary parton of a jet can be 
identified. For instance when one bottom quark pair is identified the a6q/at<,i goes up 
from 0.69% to 3.2% for the four jet cross section at the Tevatron collider.



Table 7.1. Cross sections in pb for processes with six quarks.
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Chapter 8

QCD and experiment

Introduction8.1

8.2 Four jets at the CERN collider

12 GeV. (8.2.1)PTi
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A comparison of QCD predictions with experiment is made for the Spp5 collider at CERN. 
A detailed study of jet production is made for the LHC, where special attention is paid to 
approximations that are proposed to replace the exact calculation. Furthermore iet cross 
sections are given for the hadron colliders introduced in section 2.4

The calculational methods of chapters 2-7 enable us to write a Monte Carlo . n to 
examine jet production at hadron colliders. In this chapter we present results obi i. ;< with 
our Monte Carlo program NJETS. The predictions of NJETS are compared wi.:h collider 
experiments at CERN, in section 8.2. Four jet production is studied in detail but for five 
jet production the statistics still is too low. A study of jet production at the LHC is made 
in section 8.3. The main point of that section is to find out towhat extent approximations 
can be used to replace the exact calculation. In section 8.4 we give the total jet cross 
sections for four hadron colliders. These are the SppS, the Tevatron, the planned LHC 
and the proposed SSC . In particular the influence of various parton density functions and 
the contribution of different parton processes with I quark pairs to the total cross section, 
is studied.

As an example of how well the QCD predictions fit the experimental data we look at 
four jet production at the CERN collider. The theoretical predictions are based on the 
exact matrix elements as described in this thesis, but the actual comparison with the 
experimental data has been carried out by Pasquale Lubrano of the UA2 group [1],

The theoretical input parameters for the CERN collider are: y/s = 630 GeV, as(Q2) 
with 5 flavours and the maximum py for Q. The parton density function used is Duke 
and Owens (set I) [2], The phase space cuts are
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<7<(data) ~ 1.30 nb.

while the Monte Carlo result based on

<r4(theory) ~ 1.28 nb.

The errors are left out but are much larger than the difference between the two <7 s. 
They originate from two sources. The first one is the measurement of the events them­
selves. There are uncertainties in the calorimeter energy scale (13%), in the underlying 
event reconstruction (21%) and in the calorimeter response (20%). The second source is
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Fig. 8.1. Comparing theory with experiment for 4-jet production at the CERN 
collider. The quantities are defined in the text.
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In an analysis these cuts only mimic the detector properties and the theoretical cross 
section based on these cuts is certainly not the measured one. Besides the parton level 
cuts there is a fragmentation model and a full simulation of the detector. We restrict 
ourselves to a global discussion of the results. For the details of the analysis see [3].

The data contains 10000 four jet events. With an integrated luminosity of 7.6 pb 1 
this corresponds to a measured cross section of
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Fig. 8.2. Comparing theory with experiment for 4-jet production at the CERN 
collider. The angles are defined in the text.

the choice for the QCD scale Q and the parametrization of the parton density function 
one uses. It is difficult to estimate the corresponding errors but 50% for each of them 
appears to be a reasonable estimate. Therefore the cross section comparison only gives 
an indication that the theory agrees with experiment. It is better to look at the distribu­
tions. Some of them are displayed in figure 8.1. The black points are data points and the 
histograms are the theoretical predictions normalized to the data. In the plots is the 
invariant mass of the four-jet system or the parton centre of mass energy. The X.E,'s 
the sum of the transverse energies. The quantity Pt = | J^PTilis the missing transverse 
momentum. Notice that the theoretical prediction for Pt is a 6-peak at Pq = 0, because 
of momentum conservation. The fact that the Pt distribution has a large contribution for 
Pt > 0 shows that the influence of the detector response is substantial. The sphericity is a 
measurement of the behaviour of the hadrons in the jets, see [4], In fig. 8.2, On, Q23, fij4 
and are the angles in the lab-frame between the jets ordered according to the pr- In 
fig. 1.1 we have already shown the inclusive pr spectrum. From the plots we infer that 
the agreement between theory and experiment is excellent for all distributions shown. In 
this respect we add that the theoretical histograms are based on 1250 events only, using 
a hit or miss Monte Carlo method. Therefore the statistical errors are still notable. Of 
course we would like to do the same analysis for five jet production but with only 300

-11 -0.5



8.3 Jets at the LHC

(8.3.1)
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events observed the statistics is too low to compare the experimental distributions with 
the theoretical predictions.

approximation

an approximation denoted by SPHEL. It is based on the fact 
onfigurations short analytical expressions exist for Kp(P) in 

• ith a simplification of the colour matrix this leads to an ap- 
used for any number of massless partons. The special helicity 

same helicity when all the 
can rewrite A „|2 as follows

In this section a detailed study of jet production at the LHC is presented. After intro­
ducing a number of approximations to replace the exact calculation in section 8.3.1, the 
exact results are compared with these approximations in section 8.3.2. Our findings are 
summarized in section 8.3.3.

8.3.1 Approximating QCD matrix elements

8.3.1.1 Special 

Most attention i 
that for certain 
eq. (3.5.12). To 
proximation that 
configurations are ii:- es where all but two partons have the 
momenta are outgoing. Using SPHEL one

52 ; • • •;?/?/; <?i ■ • • jt)|2 =
c,A

a‘k St C‘k(N) • • •; qiqr, Si'" Sk)-

In the following we explain the contents of eq. (8.3.1) and discuss its assumptions. SPHEL 
approximates the matrix elements with I quark pairs and k gluons by a sum over the 
special helicities. The event kinematics are contained in Alk which is a function of the 
momenta but not of the colours. Reduction of the colour matrix to the leading order 
contribution Ck(N) leads to factorization. The colour parts and the dynamical parts 
become independent and there is no interference between the Kr(P). The two other 
parameters in eq. (8.3.1) are Sk, a combinatorial factor to account for the uncalculated 
helicity amplitudes, and alk, which serves as an additional freedom. It enables us to give 
different weights to processes with a different number of quarks.

SPHEL contains two assumptions. The first one is that the special helicity configura­
tions are assumed to be typical for all possible configurations. Earlier investigations [5] 
showed that for the purely gluonic subprocess this assumption is valid provided one con­
siders the shape of distributions. However it fails when the total cross section is evaluated. 
SPHEL with 1 = 0 gives results for the total cross section at the Tevatron collider energy 
which are greater than those of the EXACT, a factor of 1.4 for n = 7. This can be 
corrected by setting a? = 0.7, but as will be shown in the next section the precise value 
of ak depends on both the collider energy and on the phase space cuts applied. Therefore 
it appears that we cannot expect SPHEL to give good results for the total cross section 
unless we tune the weight factors alk. This is a cumbersome procedure and probably not
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_________1________
P(2...*) (1'2)(2 - 3).. .(* -1)’

■en proposed by Kunszt and Stirling in [6]. The 
the property that the subamplitudes are zero wh^n less than

,  _.ie other gluons. Note that for 
■unting in A°, which is corrected by Sj = 1/2. For .t < 5 SPHEL

*1 = 2E [(<? • f)3(? «) + (?• i)(q -f)3]
»=1 1

V) ------------------____________
P(fS) (?•<?)(« - D(1 • 2)(2-3)...(k.q)’

th hJhe trouble- lnstead SPHEL aims to get the shape of the distributions right rather 
xnan their normalization. Note that this is not too serious because there are anyhow great 
uncertainties. Altogether they can easily account for a factor of 2. However in ratios of 
cross sections many of the uncertainties cancel. Therefore we have verified that the tune 
factors al of SPHEL do grow slowly with n.

The second assumption of SPHEL is that one can neglect the non leading order colour 
contribution. For the gluonic subprocess the error was found to be very small, for n = 6 
It is about 1% and for n = 7 about 5%, and depended only slightly on the cuts [5], 

owever or processes with more quarks the error is substantially larger, for / = 1 it can 
amount to 10 4, but the shape of the distribution does not change much. The difference 
in t e error introduced by the colour approximation is a reason to introduce different a'k 
for different /-values. We note that the error caused by the LCA is not very sensitive to 
changes in the collider energy.

The precise expression for SPHEL depends on the number of quarks present. We first 
introduce the notation and then distinguish between different values for he quark 

momenta are denoted by q,r and s. This improves the clarity. Permutation lentical 
partons are denoted by P(...). |n the following we omit the normalization om ak, 
in the experimental section it is always set to 1.

The I = 0 part of SPHEL has first bei
combinatorial factor uses 1‘ r„
two gluons have a helicity opposite to the helicity of thi 
k = 4 there is double coi o "
coincides with the EXACT result.

^ = 2 e (f -jr e
!<•<><*

2* — 2(Jb 4- 1)

C°k = 4 (W/2)*"2 (W2-l).
1^1
The / = 1 case is based on the general form of the subamplitude as given in [7], The 

colour part is cast in the same form as for I - 0 and the combinatorial factor is adjusted to 
exclude the helicity configurations which are zero. Those are the combinations where all 
the gluons have the same helicity state. Again = 1/2 corrects for the double counting 
in A}.
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Ignoring all the O(\/N) terms we take

(9 • r)2 + (9 • r)2 + {q • f)2 + (r ■ q)2 
(9'9)(r-f)

___ (q r)__________ (r-9)
(q l)---(t-f) (r.t + l).--(k-q)

can be efficiently

The first summation in eq. (
flavour. For different flavours it should be omitted. Eq. (8.3.8) is based 
amplitude where all the gluons

Z> 2
There are no nonzero special helicity configurations with more than two massless quark 

pairs. SPHEL ignores the subprocesses with Z > 2. This is justified since the dominant 
subprocess is given by the purely gluonic one (Z = 0). Moreover for increasing Z the parton 
subprocesses become less important.

In section 8.3.1.4 a method is sketched how the SPHEL equations 
evaluated.

(8.3.8) should be carried out when the quarks have the same 
' ‘ I on the helicity

have the same helicity [8], see also chapter 10.

8.3.1.2 Effective structure function approximation

In this section we discuss the so called effective structure function approximation denoted 
by ESFA. It assumes that all matrix elements give rise to the same shape for any dis­
tribution. The cross sections for any initial state are essentially similar functions which 
are proportional to the colour charges of the incoming partons. It assumes that the rela­
tive weight of the various subprocesses can be attributed to the different parton density 
functions rather than to the different numbers obtained for l-^n|2 Pl- So instead 
of evaluating all the parton subprocesses we take a limited set and adjust ) in
®q. (2.1.1) to account for the other subprocesses. ESFA aims to have both the normaliza­
tion and the shape of the distributions right. Which matrix elements one should evaluate 
is a matter of taste and of trial and error. We discuss two choices.

The first approach is based on the multigluon matrix element, also called ESFAG or 
the UA1 structure function. The sum in eq. (2.1.1) is limited to one term only, the 
: = <7, J = g term and both the structure functions are replaced by



(8.3.11)

(3 3.12)

\ ap-

98

.quark
, see

8.3.1.3 Other approximations

As mentioned above one drawback of SPHEL is that we do not obtain the correct normal­
ization of the distributions. Two other approximations which we will now discuss try to 
avoid this problem. However they both have serious disadvantages compared to SPHEL 
and ESFA. For both cases so far no detailed numerical comparison with the exact calcula­
tion has been made. The observations of the next paragraph are based on findings while 
trying out the various approximations.

SPHEL uses a special helicity configuration which turns out to be too large to represent 
the average helicity configuration. A possible improvement is to apply the Monte Carlo 
technique to the helicity configurations. Instead of the complete calculation of l-A4n|2 
we evaluate just one, random, helicity combination and multiply the result by ny, the 
total number of helicity configurations. This Monte Carlo method (MCHEL) is much 
slower than SPHEL because the latter uses a particular helicity configuration for which 
a short expression exist. However MCHEL gets the normalization right and the gain 
factor on EXACT could in principle be n«. In practice it is much lower, since parity 
conservation makes the actual number of helicity amplitudes to be evaluated smaller. 
Also not all the helicity configurations are evaluated equally fast. The disadvantages of

Q2) = <?’) + 4/9 52 [/"(x, Q2) + /"(x, Q2)] .
i

The sum runs over the quark flavours u, d, s and c. The factor 4/9 is a naive colour 
factor which is based on the replacement of a pair of gluons by a pair of quarks and 
on N = 3. The 4/9 contains a factor (N2 — l)/N from colour averaging and a factor 
1/(2N) from the different colour matrix, see also the C'k ratios in the SPHEL method. 
The only A |A1„|2 to be evaluated is the one for n-gluon scattering. Processes like 
gg <?<?(n ’ are omitted because they are numerically unimportant.

The second choice is the application of the ESFA to processes with a quark and 
antiquark, of different flavour, in the initial state. This approximation is called ESFAQ. 
The parton subprocess is given by: qf —» qr + (n — 4)g. We should also include processes 
with more quark pairs like qf —> qfss + (n — 6)g but these can be neglected because they 
are numerically very small. The effective structure function becomes

Q2) = 9/4/"(x, q2) + 52 [/,"(*, Q2) + <22)] •
1

Note that ESFAQ will be less useful than ESFAG because the underlying qua 
subprocess requires much more computer time than the multigluon matrix . 
appendix A.

At this point we summarize the main differences between the SPHEL ar. 
proximations. The first one allows for different distributions of the various esses
or different /-values. Such differences are known to exist. The ESFA is justified from 
the experimental observation that such differences are not yet important in view of the 
experimental precision. Priority is given here to predict the absolute rates as good as is 
possible.
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8.3.1.4 SPHEL in

In this section

qua
we

cannot replace SPHEL
that the reduction method for the gluonic part in conjunction wit 
function approximation gives --------- -----------— --------
cross section.

he difference that the factor a°(k > 5) in eq. (8.3.1) depends on 
instead of being constant. It was shown that the normalization 
stance in [5], The reduction scheme is not easily applicable 
pair [11], Even more difficulties arise when more quark pairs 

do want to include the quark processes, the reduction scheme 
When one is willing to omit quark processes it is conceivable 

o r j 'i an effective structure
reasonable results for both the distributions and the total

/(£,!,..., n,fi)

where L and R are arbitrary momenta. Because An has to be evaluated many times it 
is necessary to do it efficiently. The evaluation of eq. (8.3.13) consists of the generation 
of all the permutations of the indices 1 ...n. Algorithms to generate permutations are 
known to be time consuming [5, 16] and if it is possible it is best to generate them once 
and store them. However this will limit the maximum value of n considerably due to a 
limit on the available memory, to n = 7. The evaluation of eq. (8.3.14) consists of n 4-1 
multiplications, given the inner products of the momenta. Clearly evaluation of every f 
separatedly leads to many duplicated operations. An interesting property of f is that 
the ratio of two f’s related to each other by a swap, i.e. with two neighbouring indices 

interchanged, is a simple function:

numerical application

we examine how to evaluate the SPHEL expressions, eqs. (8.3.2)-(8.3.10), 
most efficiently. The difficulty lies in the permutation sum. To simplify the problem define 

4n= £ /(L,l,...,n,/?) (8.3.13)

P(l...n)

a helicity Monte Carlo are twofold. Firstly, in processes with more than one quark pair 
it is a problem how to handle forbidden helicity combinations that arise when identical 
quarks are interchanged. Secondly, the statistical errors in a Monte Carlo integration over 
helicities are larger because not all the helicity configurations are included. The error 
on the average of N different helicity combinations is generally smaller then N times 
the error on one of them. So more events are needed to get the same accuracy. This 
disadvantage also exist for SPHEL but in this case it is more than made up by the fact 
that it is a very fast method. We found that in most cases the MCHEL method is not 
significantly more efficient than the EXACT calculation.

Another attempt to get the normalization right was made in [10] but for the gluonic 
process only. The matrix element for n—gluon scattering is approximated by a reduction 
scheme in which the pair of the most collinear gluons is replaced by a single on shell gluon 
and a collinearity . cto This procedure continues until only five gluons are left over for 
which the exact e on is used (SPHEL with I = 0 and k = 5). This method is the 

same as SPHEL bli­
the momenta of t! 
indeed gets better 
to processes with 
are involved. Sir-
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Table 8.1. Speed of two different methods to evaluate the SPHEL equations
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(ac)(bd)
(ab)(cd)

f(L,l,...,a,b,c,d,...,n,R)
.. ,a,c, b,d,...,n,R)

Method I 
0.94 
1.81 
5.37 
27.2 
207

Method II 
Too 
1.92 
5.16 
23.0 
147 
1160 
10300

n
T
4
5
6
7
8
9

The algorithm described above allows an efficient evaluation of eqs. (8.3.13) and 
(8.3.14) for all values of n. In table 8.1 we compare two different methods. Method I 
uses storage of the permutations and straightforward evaluation of f. Method II is the 
one described above. Furthermore n + 1 corresponds to the number of particles in a 
physical process and the numbers are normalized to have the n = 3 Method II result 
equal to 1 unit of time. From the table we conclude that method II is faster for large 
n-values and more importantly it works for n > 7. One can read off the approximate 
increase in computer time when an extra final state particle is included.

If the ordering of the permutations is such that two succesive permutations are related 
to each other by a swap, the evaluation of eq. (8.3.14) simplifies significantly. Based on 
these requirements we generate all n! permutations of the indices 1 through n with the 
following algorithm.

Algorithm: Start with the permutation (1,2,..., n) and introduce a swap direction for 
every index. This direction is initially with the left neighbour. Apply the following step 
recursively: Swap index i one time unless a) there are no indices in the swap direction, or 
b) the index to change places with is higher. If the swap was not succesful then reverse 
the swap direction of index i and apply the recursion step to index i — 1. If the swap was 
succesful continue the step with index n. The recursion is started with i — n and stops 
when an attempt is made to swap with i = 1.

An example, for n = 3 the algorithm produces the following list of •’•nations: 
(1,2,3), (1,3,2), (3,1,2), (3,2,1), (2,3,1) and (2,1,3). It is easy to pre. at after
n! swaps all the permutations are generated. Notice that executing the sw h index
1 restores the original permutation. If the recursion is stopped when an at: s made
to swap with i = 2, one has exactly those elements where the 2 is to the .lit of index 
1. This is a useful property when L = R.
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8.3.2 Multijets at the LHC

In this section multijet production is studied at the LHC. In particular we are interested 
whether the approximations can replace the exact calculation. Using realistic input pa­
rameters we first determine the multijet production rates. Having thus determined their 
normalization, the distributions are examined with respect to a number of quantities. We 
focus on four and five jet production.

For y/s = 16 TeV the cuts must be rather stringent in order to stay in the perturbative 
safe region. If the cuts are set too loose we integrate over those parts of phase space 
where the events have soft or collinear partons. In that case higher order corrections 
would be needed to get reliable results. Our choice for the cuts is

Pn > 60 GeV, (8.3.16)

k| < 2.0, (8.3.17)

> 40° (8.3.18)

for each pair of ou > tons i and j. Here pri is the transverse momentum of parton
i, rji the rapidity ai the angle between partons i and j. We opt to do an extensive 
study with this set ji c . ‘ only. This last restriction is a necessity since we had to spend 
the equivalent of 100 hours of CRAY time to get the results of this section. The other 
parameters are chosen as follows: the parton density function are those of Duke and 
Owens with A = 0.2 GeV [2], as(Q2) is used in first order with nj = 5 and for the QCD 
scale Q we take the maximum p-r of the event. It is open to debate whether one can 
still use the Duke and Owens set I (DO I) for the LHC. For two jet production the mean 
value of z, is about 1.0 10-2 which lies on the boundary of the validity region for most 
parton density functions. For more jets the mean value of z, goes up to 5.0 10 for 
five jets. As we will show the parametrization of DO I does not deviate much from more 
recent parametrizations for the quantities under consideration. Therefore it can serve our 
present purposes.

8.3.2.1 Cross section crm

The cross sections for the multijet final states with the cuts as defined in eqs. (8.3.16)- 
(8.3.18) are shown in table 8.2. One can see that the two and three jet rates are very 
large. For LHC, with an expected integrated luminosity of 104 — 105 pb-1 one expects 
in the order of IO10 two jet events per 107 seconds. Clearly an impossible amount to 
be measured. More important is the expected number of multijet events. With millions 
of five jet events one can foresee an excellent opportunity to test perturbative QCD. As 
far as the approximations are concerned we see that ESFAG gives the best results. The 
ESFAQ is not only lower but the ratio (TexactIaesfaq varies between 1.2 and 1.8. This 
behaviour more or less rules out ESFAQ in favour of ESFAG. SPHEL has the same problems 
as ESFAQ but with the error being 20% for five jets it is still reasonable.

We also included in table 8.2 the available fraction of phase space, Vm which remained 
after application of the phase space cuts in eqs. (8.3.16)-(8.3.18) for that value of s, the
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m = 2
m = 3
m = 4
m = 5
m = 6

550
17.9
1.35
0.10

8.5
1.58
0.10

553
18.7
1.54
0.13

9.0 
2.04 
0.14

EXACT 
7400 
250 
19.9 
1.42

SPHEL 
7500 
260 
22.6 
1.77

ESFAG 
7300 
240 
19.1 
1.40

ESFAQ 
6400 
190 
12.5 
0.80

Vm (%)
67
38
21
11

7500 
260 
22.6 
1.77

&m

7400
250
19.9
1.42

nr. of jets 
m = 2 
m = 3 
m = 4 
m = 5

SPHEL 
o'™

m < 6. Cross sections in nb.Table 8.3. Estimating <r6 from a,

EXACTnr. of jets

'm with

Table 8.2. Comparison of the cross section (in nb) for the EXACT and for the 
proposed approximations at the LHC. Parameters and cuts are defined in the text.

parton level centre of mass energy squared, where the largest contribution to crm is coming 
from. With the results of table 8.2 we can predict the cross section for cases with more 
jets. There are two different ways to predict cr6.

The first method proceeds as follows. Together with as = 0.13 taken at Q = 120 GeV, 
we predict <zm from <7m_! using

= as<rm_1ym/Vm_1. (8.3.19)

The results for are presented in table 8.3. The agreement gets better for higher 
m values. The explanation is that for higher n-values the kinematic pole structure of 
the matrix elements do not change much and the shrinking of the available phase space 
together with the extra as in eq. (8.3.19) become the most important reduction factors. 
Eq. (8.3.19) should of course only be used as a rule of thumb. For the LHC the prediction 
is cr6 = 100 pb. A clear drawback of eq. (8.3.19) is that one needs to know Vm, V6 ~ 6%.

The second method uses ratios of cross sections,

= (<r»-i)7<rm.2 (8.3.20)

The results are again in table 8.3. The rules eq. (8.3.19) and eq. (8.3.20) give the same 
results for a6. Therefore with a brief investigation of the exact multijet production rates 
we can predict a6 without extensive calculations. The predictions for SPHEL are a6 — 130 
pb and a6 = 140 pb while a6 = 120 ± 5 pb is the Monte Carlo result based on SPHEL.

The influence of the parton density function on am is revealed in table 8.4. Using 
the SPHEL approximation we have calculated <zm for the following parametrizations. DO



in nb.

section ratios at the CERN SppS energy.
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16.2
18.3

26.0
10.4
10.8

28.4
11.5
12.5

28.0
11.2
12.4

12730 | 1235
106 j- 86
14.3
13.9

28.8
11.5
12.6

30.6
10.7
11.4

27.9
11.4
12.1

st
er

g 
:r

12,40 
73 

20.3
18.9

15,30
23

19.0
18.9

15,35
19

21.1
20.4

15,40
16

24.6
23.3

20,30
2.6

27.7
25.6

20,35
2.1

30.9
35.2

20,40
1.8

38.5
42.7

&EHLQ 
8100 
290 
25.4 
2.1

<TQHR 
9100 
350 
33.5 
3.1

<?EMC 
5400 
190 
16.5 
1.32

Pt,6 
at (nb)

VDO I 
7500 
260 
22.6 
1.8

DO II
10410 
340 
31.8
2.8

HBCDMS
7000 
250 
22.3
1.8

Table 8.5. <7 a and cross

__ ____  
m = 2 
m = 3 
m = 4
m = 5

—i /rrm 

m = 3 
m = 4 
m = 5

Although the ratio of 
it is not a quantity that can

set I and set II [2], FH : [12], GHR [13] and EMC and BCDMS [14]. As expected the 
differences in am ar Jerable. The ratios (Jm-x/vm are >n good agreement with each 
other. This indicat uncertainties in the parton density function tend to cancel in 
ratios of quantities

Table 8.4. Comparison of different parton density functions. <rm

cross sections is insensitive to the parton density function used 
a quantity that can be determined without further experimental details. It is 

difficult to implement the exact detector properties. We make a comparison of <rm-\l 
with the CERN collider results as reported in [3]. They observed 10000, 300 and 10 
events with 4, 5 and 6 jets respectively. Together with an integrated luminosity of 7.6 
pb-1 this corresponds to cr4 = 1.3 nb, <74/as = 33 and 05/06 = 30. Taking \/s = 630 
GeV, we varied the constraints in eq. (8.3.16) and eq. (8.3.18) a little bit. The constraint 
eq. (8.3.17) is kept fixed at |t;,| < 2.0. The cut parameters are denoted by pr,6. For 
SPHEL the results can be found in table 8.5. We observe that the ratios are compatible 
with the measurements as soon as the cuts are tuned such that o4 is more or less right. 
Therefore one could use pn > 20 and Oij > 35° as an effective set of cuts as far as the 
total cross section is concerned. We realise that this way of simulating detector properties 

and fragmentation of partons into jets is rather dangerous.
Next we look at the individual contribution of each parton subprocess to am. For 

n = 6 and n = 7 the results are presented in the tables 8.6 and 8.7. We compare the 
EXACT with the SPHEL approximation. First a few remarks to clarify the contents of the 
tables. We list the parton subprocesses according to the number of quark pairs, the quarks
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satisfactory explanation. Note th 
q(n-3)$r,

Table 8.8. Cross section ratio of SPHEL and EXACT for different numbers of 
gluons in the initial state.

________ & SPHEL INEXACT 
two gluons 

LOO 
1.02 
1.11 
1.10

one gluon 
LOO 
1.02 
1.19 
1.39

no gluons
1.03
1.06
1.25
1.26

nr. of jets 
m = 2 
m = 3 
m = 4 
m = 5

and I > 1. The second property is the number of initial state gluons because of the 
relative importance of fg at low z-values. This property is especially important for the 
supercolliders. A third property is whether there exists a two particle pro .gator with an 
initial and final state particle. The rapidity cut is more loose than the 6, Therefore 
the process qq —> qqgg is more important than qq —♦ rfgg. Taking all the rerties into 
account the contribution of qq —» (n — 2)g is still very low compared to th processes 
with two quarks. For this we have no satisfactory explanation. Note tn is largely 
determined by just 4 processes, namely gg —♦ (n — 2~)g,gq —» q(n — 3)g, -■ q(n — 3)g
and gg —» qq(n — 4)g, making up 91% of <r4 and 87% for a5.

The comparison of EXACT with SPHEL shows that the latter is mostly higher but that 
the ratio R of the two seems to depend on just two things: on the number of gluons and 
on the spin of the incoming particles. We have no clear understanding why 7? behaves 
like this. Especially the difference in fi-values for 1 = 1 is striking. To complicate matters 
further, it is not always true that if R > 1 for m = 4 then also R > 1 for m = 5 (see 
gg —* 99TT9)- From tables 8.6 and 8.7 we can infer values for a‘k, for example taking 
ajt = 1.2 for m = 5 would improve the normalization of the distribution at the LHC. This 
is not very important.

In table 8.8 a comparison is made between EXACT and SPHEL accordingly to the 
number of gluons in the initial state. The ratio of cross sections is compatible for the 
three possible cases. However for higher m-values the fluctuations become larger.

We stress once again that considered the importance of the gg initial process it is 
important to have reliable parton density functions for the gluon for low x-values. A first 
attempt has already been made in [15].

8.3.2.2 Distributions

As mentioned before it is not important for an approximation to predict <r„ very accurately. 
A better test is to see whether the shape of distributions resemble the EXACT ones. In 
fig. 8.3 we start by showing the pr distribution for m-jet production. The normalization 
is m<zm, each jet in an event is used for the histogram. The shapes obtained for EXACT, 
SPHEL and ESFAG are identical but for ESFAQ we see that the shapes are somewhat 
flatter for 4 and 5 jet production. This indicates that quarks are harder, i.e. they have 
more chance to be produced with a high pr, than gluons.
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Fig 8.3. The pT distribution for 2,3,4 and 5 jet production.
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IO1

da
dpr

( nb ■>
'20 GeV'

100 200 300 400

PT (GeV)

100 20

PT

da 
dPT 

( nb ' 
'20 GeV'

For ESFAQ the statistical errors are much larger. Still for each m-value the same 
amount of events was used to make the plots for ESFAG and ESFAQ. In the latter the 
four quark process is harder to handle in a Monte Carlo because it contains a more 
complicated pole structure. In fig. 8.4 we subdivided the EXACT and SPHEL according to 
the number of quark pairs. One sees that the individual shapes are reproduced by SPHEL. 
One might suspect that because of the differences between I = 0 and I = 1, ESFAG can 
not be very good but looking at fig. 8.3 in greater detail, i.e. beyond the experimental 
precision, shows that this is not the case and that ESFAG is very good over the whole pr 

range.
In fig. 8.5 we plot the distribution for • pj. The normalization of this

distribution is am m(m-l)/2. In fig. 8.6 a detailed comparison is made between EXACT 
and SPHEL. The agreement is very good for m = 4. For m = 5 the statistics are poorer 

but with some imagination the ratio can be regarded as a constant.
Looking once again at the figures one notices that as far as the distributions are 

concerned both SPHEL and ESFAG can be used to replace the exact calculation. SPHEL 
is slightly preferable because a lower statistical error can be reached. As a final remark, 
distributions evaluated with a constant matrix element are quite different, examples can 

be found in chapter 4.

SPHELEXACT

ESFAQESFAG
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8.3.3 Summary, conclusions and outlook
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Fig. 8.4. A detailed comparison of the pr distributions for EXACT and SPHEL 
for 4 and 5 jets. A distinction is made according to the number of quark pairs /.

100 200 300 400 100 200 300 400
PT (GeV) pr (GeV)

da 
dpr 

( nb 
V2(

> 5 unless we 
m will come out

!0 Gev)

da
dpr

l nb '
120 GeV>

In the first place this section gave results for multijet production at the LHC using the exact 
matrix elements. Secondly we have shown that the exact calculation of eq. (2.1.1) can 
be replaced by two reasonable approximations. SPHEL is the numerically faster method 
while ESFAG predicts <zm slightly better. Both approximations do not only describe the 
distributions very well but also give sufficiently good results for the total cross section 
considering the problems mentioned in the introduction. At first sight this should lead to 
the conclusion that both approximations are usable. However we think that SPHEL is the 
approximation one should use in Monte Carlo simulations. There are three arguments for 
this: The first one is that SPHEL is much faster in a numerical application. The second one 
is that it allows for differences between multigluon and multiquark distributions. Although 
this is not relevant right now it might be in the future when some type of quark jets may 
be tagged. And a third argument is that ESFAG cannot be used for m 
replace the exact matrix element by the I = 0 part of SPHEL, but then <7, 
too large.

The results shown are for one particular collider energy and with one set of cuts. It 
is our experience that the approximations also work for other collider energies and other 
types of cuts. The normalization error of SPHEL varies, for the CERN collider we found

SPHEL 
m = 5

EXACT 
m = 5
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Fig 8.5. The A/,j distribution for 2,3,4 and 5 jet production.

8.4 Jet cross sections
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100 200 300 400 500 100 200 300 400 500

M,j (GeV) Mij (GeV)

da
dMij

(—nk_ )
V20 GeV>

da 
dMt;

(itTc 1

Jet cross sections are examined for the hadron colliders described in section 2.4, with the 
cuts as defined in table 2.2, a$(Q2) based on 5 flavours and for Q we take the average 
Pt- For four different parametrizations of the parton density function, [2, 13, 14], the 2, 
3, 4 and 5 jet cross sections are in tables 8.10-8.13. We start with a brief description 
of the entries. The a in entry a/1/P refers to the total cross section am, with m the 
number of jets, based on the exact matrix elements, or to the cross section a%p based 
on the SPHEL approximation. The I refers to the three possible initial states, gg, gq or 
qq, where the q denotes a quark or an antiquark. The P corresponds to the entry 0/2/4g 
and denotes the number of quarks present in the subprocess. The numbers for the cross 
sections are given in nb, the subdivisions are in percentages of the total cross section, 
i.e. they contain relative contributions. The many sources of uncertainty were already

an overestimation of 30%.
Detailed studies of the jet decay modes of new physics processes should settle whether 

multijet physiscs can help in finding the top quark and the Higgs particle. This depends 
heavily on the ability of jet tagging for bottom quarks and on improvements in jet energy 

measurements.

SPHELEXACT

ESFAQESFAG



(xlO)

2.0 m — 5

1.0

0.0

110

Fig. 8.6. Detailed comparison of EXACT with SPHEL for 4 and 5 jets in the 
upper plots we used the EXACT matrix elements. In the lower plots the ratio of 
the two is plotted.

6.0
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SPHEL
EXACT

100 200 300 400 500 100 200 300 400 500

Mij (GeV) Mij (GeV)

= {=?
—i=2

da
dMjj

(_ nb_ \
V20 GeV>

K=4=':?
—1 = 2

indicated in chapter 2. The statistical errors in the Monte Carlo integration alone are 
approximately 0.5, 1.0, 3.0 and 10% for 2, 3, 4 and 5 jets respectively. In this respect we 
note that some errors are larger, e.g. for the 2q and the 4q entries and some are smaller, 
e.g. for a^p. The Monte Carlo errors depend only little of the particular collider. In spite 
of the relatively small errors the numbers should be seen as indicative values in view of 
the additional uncertainties.

Studying the table contents leads to the following conclusions. The particular parton 
density function used does not alter the relative contributions much. This indicates that 
the parton density function influences the normalization of the distributions rather than 
their shape, see also section 8.3. It may eventually be possible to compare absolute 
predictions with experiment and rule out some of the parton density functions because 
there is a rather large spread in the predictions. The tables show once again that it is 
important to have a correct understanding of the low x behaviour of the parton density 
function for the gluon. The contribution of processes decreases when the amount of 
quarks is increased. The SPHEL approximation assumes this behaviour. The results for 
SPHEL are in fair agreement with the predictions based on the exact matrix elements, 
indicating that for jet production the SPHEL approximation can be used to replace the 
exact calculation. Of course a more detailed study, like the one in section 8.3 is necessary

m = 4 — {=? ----- 1= 1 
----- 1 = 2
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Table 8.9. Cross sections in nb, based on the gluon subprocess 
HMRS-parametrizations of the gluon density function.

m = 4
54
32
25
20
13
9.8
9.5
9.0
7.5
4.5
4.6
4.0

only, for the three

m = 3
450
290 
220 
220
160
120
110
120
100
52
61
55

m = 2 
“660- 
460 
360 
5600 
5500 
4700 
2200 
3100 
3100 
1100 
1700
1700

m - 5
3.8
2.2
1.6
1.0
0.65
0.50
0.73
0.60
0.48
0.35
0.32
0.27

a
-0.5
-1.0
-1.5
-0.5
-1.0
.^1i -0.5
-10

I -1-5
| -0.5
I -1.0
I -1.5
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to settle whether distributions are also correctly given by SPHEL.
In table 8.9 we examine the contribution of the gluonic subprocesses to the total 

cross section in more detail for the three HMRS parametrizations [15]. The m-jet cross 
sections, based on the gluonic subprocess only, are given for the three fundamentally 
different low-z parametrizations, see section 2.3.1. The spread in the results confirms the 

remarks above.



Table 8.10. Cross sections in nb for the SppS collider

Table 8.11. Cross sections in nb for the Tevatron collider.
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35/ /I?
24/41 6_

DO I 
1430 
1440 

39/48/13 
38/49/12 

1110 
1140 

42/46/12 
37/48/15 

150 
185 

41/46/13 
33/47/19/0.8 

12 
18 

38/46/16 
27/48/21/4.2

DOI 
14650 
14800 

52/41/6 
51/43/6 

540 
550 

42/47/11 
37/49/14 

51 
62 

38/49/12 
31/50/18/0.7 

3.5 
5.4 

35/47/18 
29/41/26/4.5

GHR 
1940 
1960 

42/46/12 
40/49/11 

1870 
1890 

44/45/11 
39/47/14 

310 
386 

44/45/12 
35/47/17/0.7 

32 
46 

42/45/14 
30/48/19/3.6

BCDMS
1350
1380

36/49/15
35/51/14

1030
1060

38/47/14
34/49/17

140
170

37/47/15
30/4 0_

BCDMS 
14000 
14100 

50/43/7 
48/45/7 

510 
530 

40/48/12 
35/50/15 

48 
59 

36/50/14 
29/51/20/0.8 

3.3 
5.5 

31/49/20 
28/40/27/4,9

GHR 
18580 
18600 

54/40/6 
52/42/6 

830 
860 

46/45/10 
41/47/12 

97 
102 

42/47/11 
34/48/16/0.6 

7.9 
12.4 

37/48/15 
33/41/23/3.8

EMC 
1210 
1220 

42/46/11 
41/49/11 

810 
820 

44/45/11 
40/47/13 

100 
116 

44/45/11 
35/47/17/0.7

7.2
10.3 

41/45/14 
29/48/19/3.6

EMC 
11510 
11700 

55/39/6 
53/41/6 

410 
420 

46/45/10 
41/47/12 

37 
44 

43/46/10 
35/48/16/0.6 

2.4 
3.6 

38/48/15 
34/41/22/3.6

<t/I/P 
cr2 

a?” 
gg/gq/qq 0/2/4q 

<*3

gg/gq/qq 0/2/4g 
*4 

<Tapp 

gg/gq/qq 
0/2/4/6q 

<7S

gg/gq/qq 
0/2/4/6q

<T/I/P

gg/gq/qq 0/2/4q 
<^3

gg/gq/qq 
0/2/4q

aPpr 
gg/gq/qq 
0/2/4/6q 

0’s 

<KP
gg/gq/qq 
0/2/4/6q



Table 8.12. Cross sections in nb for the LHC.

Table 8.13. Cross sections in nb for the SSC.
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GHR

5130
5190 

77./21/1.5 
74/24/1.4

210
220 

74/24/2.0 
66/31/3.5

19
21 

72/26/2.6 
59/35/6/0.2

1.6
2.0 

74/23/2.7 
60/33/7/0.6

EMC 
2790 
2820 

75/24/1.8 
72/27/1.8 

108 
109 

72/26/2.4 
64/32/3.9 

8.9 
9.9 

71/26/2.7 
59/35/6/0.2 

0.66 
0.85 

74/23/2.7 
59/33/7/0.6

DO I 
4140 
4160 

73/25/2.0 
70/28/2.0 

150 
152 

69/28/2.9 
61/34/4.5 

13 
14 

68/28/3.4 
56/36/7/0.2 

1.0 
1.3 

71/26/3.4 
57/34/8/0.7

DO I
7390 
7460 

70/27/2.6 
68/30/2.5

290
295 

66/30/3.6 
59/36/5.4

24
28

65/ >1/4.0 
53/38/8/0.2

2.5
9/4.6 

67/24/8/0.6

BCDMS 
7000 
7040 

70/27/2.6 
67/30/2.6 

280 
285 

65/31/3.7 
58/36/5.5 

24 
27 

65/31/4.0 
54/38/8/0.2 

1.9 
2.4 

76/19/4.7 
67/24/8/0.6

BCDMS 
3730 
3840 

73/25/2.1 
70/28/2.1 

140 
145 

69/28/2.8 
62/34/4.4 

12 
14 

68/28/3.4 
57/36/7/0.2 

0.94 
1.24 

71/25/3.4 
58/33/8/0.7

GHR
9010
9100 

74/24/1.9 
71/27/1.9

390
395 

69/28/2.9 
62/34/4.6

36
42 

67/29/3.3 
55/37/7/0.2

3.1
4.3 

79/18/3.7 
69/23/7/0.5

EMC
5320
5370 

72/27/2.2 
70/28/2.2

210
220 

69/28/2.9 
61/34/4.6

17
20 

68/28/3.2 
56/37/7/0.2

1.2
1.6 

79/18/3.7 
69/24/7/0.5

<^/l/P 
<r2

gg/gq/qq 
0/2/4q

gg/gq/qq 
0/2/4q 

<7< 
a°pp

gg/gq/qq 
0/2/4/6q 

<7s 
<7?”’

gg/gq/qq 
0/2/4/6q

<T/I/P 
<7j 

a”’”’ 

gg/gq/qq 
0/2/4q 

<73

gg/gq/qq 
0/2/4q 

<7< 
a‘pp 

gg/gq/qq 
0/2/4/6g 

<7s 
alPP 

gg/gq/qq 
0/2/4/6q
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Chapter 9

Enumeration techniques

9.1 Enumers

(9.1.1)
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m

E^ = . + i, 
k=3

9.1.1 Introduction and problem
We begin by defining the notion of an externally labelled tree. An externally labelled 
tree is a connected graph without cycles, of which the external branches are labelled. 
Here, an external branch is understood to be a line arriving in a point in which no 
other lines arrive. The lines in the graph which are not external will be called internal 
branches”. Internal and external branches are connected at given points, called vertices. 
The minimum number of branches that can come together in a vertex is three, the 
maximum number is m (> 3), an adjustable integer valued parameter. Both the internal 
branches and the vertices are unlabelled. External branches connected to the same vertex 
can be interchanged without producing a different externally labelled tree. We point out 
that for a given externally labelled tree, letting Nk denote the number of vertices where 
k branches (fc = 3, ..., m) come together, n the number of external branches, and i 

the number of internal ones, one has

The Feynman diagrams tr. contribute to a matrix element are enumerated for a number 
of interaction theoi QCD the number of parton subprocesses that contribute to

one event on the hi. el is determined.

•f externally labelled tree graphs

We enumerate a special class of trees, called labelled trees. This is done by formulating 
a recursion relation in two variables, the number of internal lines, i, and the number of 
external lines, n, for these trees, and subsequently solving it. The solution is discussed 
in detail. In particular we consider the case where n becomes large, summing over i. 
The labelled trees considered correspond to the Feynman diagrams one encounters in 
perturbation theories for fundamental forces, involving one type of particle which self­

interacts.
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(9.1.2)

impossible task
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many different externally labelled trees 
The number of internal branches i at given, 

is allowed to vary. To our knowledge, this question of enumeration has not 
m = 3 and m = 4 have 
some interesting general

9.1.2.1 Recursion relations and solution

Let denote the number of externally labelled trees, with n external branches, there 
exist when allowing 3,4,... ,m-point vertices to be present. With £)^(JV3, ..., Nm) 
denoting the number of these trees with i internal lines and exactly N3 3-point vertices, 
Nt 4-point vertices, up to and including Nm m-point vertices, we can write

^m) = £ £ £ D^\n3, .... Nm).
«=0 Nz=O Nm-0

£kNk = n + 2i.
k=3

The problem we shall address is to calculate how 
there exist for given, but general, m and n. 
fixed, m and n 
been studied before in the literature, for general m. The cases 
already received some attention from other authors [1, 2], For 
texts on graph theory see, e.g., [3. 4],

The problem of enumerating externally labelled trees is of some physical relevance 
from the point of view of high energy physics. This is because externally labelled trees 
as defined above are just the Feynman diagrams one encounters in a perturbation theory 
for fundamental forces, involving only one type of particle that self-i'iteracts. There, in 
order to calculate a scattering process of n of these particles, one ne . have all the 
diagrams with n external branches. It is thus important to know how them exist.
The parameter m introduced above, controls the degree of self-inter; nd basically 
determines which theory one is studying. For example, m — 3 corres, -o <5>3-theory, 
m — 4 to Yang-Mills theory, whereas the limit m —+ oo corresponds to ed linearized 
gravitation. In fact, these three cases are the most important ones fror; the point of view 
of high energy physics, since theories corresponding to other m-values are not known 
as yet. Therefore we shall pay special attention to them in the following. In practical 
calculations performed up till now, n has always been less than 10. The record for the 
largest number of diagrams calculated presently lies at 34300, being the case m = 4 and 
n = 8 [5],

The outline is as follows. We first formulate recursion relations, expressing the number 
of externally labelled trees with n external and i internal branches in the number of 
externally labelled trees with lesser branches. Then, these recursion relations are solved, 
leading to a formal solution of the problem stated above. The solution is subsequently 
studied in more detail. In particular, we address the question as to how the number of 
externally labelled trees grows with n, at fixed m, as n becomes large, thus indicating the 

one faces when trying to calculate all Feynman diagrams for larger n.



(9.1.4)

(9.1.5)

(9.1.6)

D^\N3, ..., 7Vm) =

(9.1.8)
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oo oo

<*’ = £ E
Ni=O Nm=0

is only one

N, >(9.1.7)

dW(N3, .... JVm) = (n + .-2)D<’2)I,i_i(^3-1>

+ E (M- + l)^n-i,.(^3> ■ • •, Nk + 1, Nk+l - 1, ..., Nm) . 
A;=3

This is so because an externally labelled tree with n external and i internal branches 
can be formed in >o different ways. Namely, by taking an externally labelled tree with
(n — 1) extern-J : d (i — 1) internal branches, then choosing a point on any one of the
already exist; or external branches and attaching the new external branch to it. This
creates a nev ex (first term in r.h.s. of (9.1.4)). Or by taking an externally labelled
tree with (n eternal and i internal branches, attaching the new external branch to
an already e: vertex (second term in r.h.s. of (9.1.4)). In the procedure described
here, every e ernally labelled tree one can think of can be constructed. Also it is easy to 
convince oneself that there is no double counting. This is because, due to the fact that 
the external branches are labelled, the procedure itself has a tree structure. One can see 
this remarking that for a given externally labelled tree one can find its predecessor by just 
removing the external branch with the highest number, so that its predecessor is unique. 
Therefore the solution of (9.1.4) is indeed what we are looking for. However, in order for 

to be uniquely determined for all n and i, the recursion relation (9.1.4) must be 
supplemented with boundary conditions. We have

^’(1, 0 0) = 1,
• • •, Nm) = 0 otherwise , 

expressing that there is only one externally labelled tree having three external branches 
and no internal ones, and, for j = 3, ..., m,

£>}”>(0, 0, Nj = l, 0, ..., 0) = 1,

expressing that a j-vert ex is unique. The solution for D^™\N3, ..., then reads

For given n, the right-hand side in (9.1.3) converges, since Ojj"' only differs from zero if 
conditions (9.1.1) and (9.1.2) are fulfilled. It is easy to write down a recursion relation 

^n,?(W3, ..., Nm), valid for n > 4 and i > 1:

as can be verified by a direct substitution in (9.1.4). It is easy to check that the boundary 
conditions (9.1.5) and (9.1.6) are indeed fulfilled. Substituting (9.1.7) in (9.1.3), the sum 
on i can be performed, yielding



(9.1.9)

(9.1.10)n —» oo,

(9.1.11)

9.1.2.3 The case m = 4

(9.1.12)n > 3,

(9.1.13)

(9.1.14)

(9.1.15)

118

9.1.2.2 The case m = 3

For

and show that it is finite for all 
itself will be discussed later.

i
’ J da/(a)[s(a)]n, 

0

S(m) = lim 
n—»oo

oo. We then

D{nm} 
n ’

an, thus introducing the

Pl4’ ~ n'

for the factorials in the summand, and note that da as n
obtain

m. The implications of the finiteness of for

m - 3, the sum in (9.1.8) in fact only consists of one nonzero t- nd we find 

£><3) = (2n - 5)!!, all n > 3,

-
in accordance with [1], From this one obtains

E(3) = 2 .

This, then, is the formal solution to the problem. However, since it still involves (m — 2) 
sums, it is not very transparent what it implies. In the following we shall therefore study 
some aspects of it more closely for some special cases. In particular, we shall study the 
growth factor E<m>, defined as

Performing the sum on N3 in (9.1.8) we arrive at

(4) = int^T1) (2n — 7V4 — 4)!

" 2"-2-2"< (n - 2N4 - 2)! 6"< N4l ’

where "int” stands for "integer part of”. Let us write N4 = 
new variable a. Then we have

p(4) _ Y'________1(2 ~ °)n ~ 4]!________
^2(>-Jo)n-J[(1_2£t)n-2]!6“„(an)!’

where a now takes the values 0,1, ..., lint(y — 1). In order to evaluate this sum 
asymptotically, we use Stirling's formula in the form

(an + b)! ~ y/2nan (an)°"+l
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(9.1.16)/(«)

and

(9.1.17)ff(a) =

(9.1.18)

(9.1.19)+
ao

(9.1.20)

(9.1.21)

oo

D^\N3, Nm) =
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o>o

4(1 -2a)l 
(2rra)i (2 — ajr

(n + t — 1)!

4
1 — 2a0

1
2 — a0

(2 - g)2-°
21-20,(1 _ 2a)1-2“6“a“e '

By considering In g(a) one easily shows that g(a) has a maximum on [0, |) for a = a0 = 
n (7 — 3\/3), the value at the maximum being <?(ao) = jfe(4 + 3>/3)- Taylor expanding 
the integrand in (9.1.15) around a0 and then introducing a new variable x according to 
O' = Qo + we find

Now,

<7/z(<*o)
ff(«o)

so that one ultimately gets

9.1.2.4 The general case

Finding an asymptotic expression for as n —> oo in this case, would amount to 
starting with (9.1.8), then performing, e.g., the sum on N3 to get rid of the Kronecker 
delta, and subsequently applying the method of steepest descent on an (m — 3)-fold 
integral. A procedure which is very similar to the one sketched above for the case m = 4. 
However, as it turns out, it is already reasonably difficult to find where the maximum 
used in the method of steepest descent is located. Therefore, we shall at first content 
ourselves with calculating E(m), since here a knowledge of the maximum itself suffices, as 
we have already seen in the case m = 4. To do so we return to (9.1.7) which we rewrite 
as

13 
= 4 + -=

ff(Qo) f /• \ ln-2

e ev3
= (0.16285 ...) [0.92265 ... n]n"2 .

The growth factor as defined in (9.1.9) is given by

E(4) = efl(a0) = ^-(4 + 3^3) = 2.5080416 ...

- ^lns(Q) = 
J ao

^4)

^(4) 2irp(a0), ,

~ 1



(9.1.23)

(9.1.24)

(9.1.25)9(n, {&}) =

(9.1.26a)

(9.1.26b)

(9.1.27)

shall want to extremize this expression.

(9.1.28)

(9.1.29a)

(9.1.29b)
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following from (9.1.1) and (9.1.2) when using the scaling (9.1.23) and taking 
fixed 7 and Therefore we consider

m

TjPi = 27 +1,
;=3

n —» oo at

Obviously, what we are looking for are the values of i and N3, , Nm which maximize
(n + i — l)!/nj^_3[((fc— I)!)7** JV*!], in a space restricted by conditions (9.1.1) and (9.1.2). 
With this in mind we write

nr=3[((* - 1)!)n‘AT*!]
Here

m m

Aa.m(7> {&}) = lns(7,{/M) - ft -7] - /‘Elft - 27 - 1],
J=3 j=3

where A and /x are Lagrange multipliers, and we
Solving

d d
= = °’ for a" k'

one finds

which expresses 70 and the values at the extremum, in terms of A and /x. The values 
of A and ji themselves are obtained by substituting (9.1.29a) and (9.1.29b) back into 
(9.1.26a) and (9.1.26b), solving the resulting equations for A and fi. In particular, we 
find that

-A-f-pAr—1

(TT1)!’

(1+7)'^
en£3[(fc-l)!A)A’

while the expression for J(7, {781}) will not be given, since it is no' nportant for our 
purposes. Thus, we must maximize <7(7, {/?*}), or what is easier counts to the 
same, In <7(7, {/?*}), subject to the conditions:

m

H p> = 7,
5=3

7° = eA+2M-l _ 1

i = ~fn, Nk = pkn,

so that, using (9.1.14), we arrive at

(n + i-1)! _ /(7.{ft}) , , ,R u
n(m+l)/3 W(7, {ft})nl •



(9.1.30a)

(9.1.30b)

(9.1.31)S<m)

where the different equalities

=(S)

(9.1.32)=(«>) = 2.588...

(9.1.33)m —» oo .

(9.1.34)

(9.1.35)nn

(9.1.36)
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e“k 7°
(<-+ 1)! “ 1 +7°’

m —2

E

= e<7(7°,{O = (l+70)'

P<m) ~ Cm

=‘°°> - ~

n —► oo, all m,

E^r = i.
fc=l K-

implicitly giving the values of p and 70. The growth factor H(m) is found to be given by 

r eu(m-l)

= 2e<*-l-7-------ttj[ (m — 1)!

where the different equalities can be established using the definition (9.1.9) of and 
formulas (9 2-:: -(9.1.30b). It is directly determined by that solution of (9.1.30a) for 
which e" g For example, we find

E<3>

£(<)
— 2

- r.-(4 + 373) = 2.508...
1 1

= (2x — 1 — — ]~’ with x = (5 + 726)4 — (5 + 726) 3 — 1
= 2.578... 24

1 
2 In 2 - 1

Also, using (9.1.30a) and (9.1.31), it is not hard to show that is approached as

y-'oo (In 2)*
Z^k=m kl
(2 In 2 — I)2 ’

The existence of implies that asymptotically, i.e., for n —♦ oo,

Dim)-Zfm(n)(E^)nn!,

where Hm(n) has the property that lim^oo Hm(n + = 1. Therefore we see
that the number of externally labelled trees for fixed m and n —♦ oo grows factorially fast. 
However, we can even do better than this: we can find the n-dependence of 7fm(n) quite 
easily. The only thing one has to do is to follow the procedure outlined at the beginning 
of this section for calculating asymptotically, keeping track of powers of n. We 
stress that it is not necessary to do the whole actual calculation itself. It is not hard to 
convince oneself that one finds

^nm)

as n —> oo, for all m. Therefore we obtain

/ \ n—'2/=(”•)”) )



(9.1.37)

(9.1.39)n > 4, i: > 1,

,o>
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En(i) = (n + i- 2)En_1(i - 1) + (£ + l)En_,(i), 

with boundary conditions

’’■) for the cases 
/tions. They areare indeed higher ord-

E3(i) = 6ifi, En(0) = l, n>3. (9.1.40)

The first term in the right-hand side of (9.1.39) originates from creating a new vertex in 
an externally labelled tree with n — 1 external and i — 1 internal branches, and attaching 
the nttl external branch to it. The second term comes from adding the new external 
branch to an already existing vertex in an externally labelled tree with n — 1 external and 
i internal branches. Unfortunately, we have not been able to solve (9.1.39) with boundary 
conditions (9.1.40) directly. However, from the point of view of a numerical evaluation, it 
is much easier to obtain values for = £?S03 En(i) using (9.1.39) than using (9.1.4). 
Also, starting from (9.1.39), one may show that

Z< = 0.05227131...
Zoo = 0.05633459... (9.1.38)

Because these coefficients are so small, one might expect that the approximation to — 
one obtains when neglecting the terms represented by the dots in (9.1.37), is already 
quite good for fairly small n. We have for m = 4 and m = oo explicitly verified that this 
is indeed the case.

Finally we remark that the case m = oo can in principle be tackled more directly. 
Here, namely, one can immediately write down a recursion relation for En(i), the number 
of externally labelled trees with n external and i internal branches, since all types of 
vertices are allowed. It reads

where Cm is an m-dependent constant. It is amusing to remark here that the number of 
ways in which one can join n labelled points to form a tree (also allowing only two lines 
to arrive in a given labelled point) is given exactly by nn“2 [6]. The result (9.1.36) is 
compatible with (9.1.34). One may check that the results (9.1.10) and (9.1.20) for the 
cases m = 3 and m = 4, respectively, are indeed of the form (9.1.36). Also, there, the 
constants C3 and C4 can be read off. The corrections to (9.1.36) are of relative order 
1/n. Because of this one can actually calculate = D^/nD^ up to first order in 
1/n using (9.1.36), since the corrections to (9.1.36) only contribute to second and higher 
orders in the large-n expansion of We find

I I ■
The coefficient of the 1/n term in the expansion of E^m)/E/m) in > ewers of 1/n thus does 
not depend on m. This, however, is no longer true for the high', order terms. For the 
case m = 3 there are in fact no higher order terms, as can be s' the exact result
in (9.1.10) valid for all n > 3. But a numerical evaluation of 
m = 4 and m = oo yields that then there
equal to fcm/n2 + Zm/n3 + ..., say, and we find numerically

k4 = 0.0159860861860...,
= 0.0160955983798...,
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Table
Furthr

oo
T 

4
26 

236 
2752 

39208 
660032 

12818912 
250

n
3~
4
5
6
7
8
9
10

n(l%)

m = 4
1 
4

25 
220 

2485 
34300 

559405 
10525900 

250

+ E <2.Pn-i;/(Qi, • • •, Qi - 1, ■ • ■,Qi,N3,NJ

+ ((n - 1) + (Z - 1) + (N3 - 1) + M) , Qi, N3 - 1, NJ
+(N3 + l)P„-ii((<?i,. ■ ■, Qi, N3 + 1, Nt - 1), .

m = 3
1
3

15
105 
945 

10395 
135135 

2027025
250

In this section a variety of quantities in QCD is enumerated. Among them are the Feynman 
diagrams for any QCD tree level matrix element and the hard parton scattering processes 
that contribute to a process on the hadron level.

With the results of the previous section it is easy to count the number of Feynman 
diagrams for theories with one kind of particle and at most m-points vertices. In tabel 9.1 
the results for m = 3,4 and m —> oo are listed. The table also contains the value for the 
number of external particles n for which the growth factor r. is within 1% of the large n 
growth factor 3<m>. The 1% limit is reached for exactly the same value of n for all m. 
This confirms eq. (9.1.37).

To count the Feynman diagrams for a general QCD matrix element with I quark pairs 
we use recursion in the number of gluons starting with I quark pairs. One arrives at the 
following recursion relation:

he number of Feynman diagrams for different values of n and m. 
n(l%) denotes the lowest n-value for which > 0.99

Sl + 2<^ 
nnE.£n-i(i)

This implies that as n -» oo the growth factor =>> is directly determined by the position 
of the maximum of En(i) as a function of i. Since 0 < (t)n-i/n < 1 one immediately 
sees that E<°°> g (1,3), compatible with (9.1.32).
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(9.2.2)D„AQu---,QI,N3,N4).

124

1
1

25
220

2485

i diagrams using the recursion relation 
described in the text.

1
1
3

16 
123 

1240

1
1
5

32
301

2
2
2
1
7

64

E

Table 9.2. Counting Feynman 
The boundary conditions are <

Dn,l = 
Qi

where n denotes the number of gluons, 1 the number of quark pairs, Qi the number of 
quark-gluon vertices on the quark-line t, N3 the number of three-gluon vertices and M 
the number of four-gluon vertices. The first term in eq. (9.2.1) originates from adding the 
extra gluon to quark line i directly. The second term adds the gluon to a gluon-propagator 
or to an existing external gluon.

Dn-.3(Qx,Q2,Q3,N3,Nt) 
Po;3(2,1,1,0,0) 
PO;3(l,2,l,0,0) 
PO;3(l,l,2,0,0) 
Po;3(M, 1,1,0) 
=> Do,3 
=> Dit

Dn,dQl,N3,Nt) 
-01:1(1,0,0) 
=> 1?1;1 
=> D2;l 
=* O3;l 
=> Dt-i 
=> Dj-.i

D„,o(N3,N4) 
P3;0(1,0) 
=> D3.o 
=> D4.o 
=> Os-o 
=> l?6;0 
=> Di fi

Dn:2(Qi,Q2,N3,N4) 
P0;2(l,1,0,0) 
=> -Do;2 
=> -D1;2 
=> d2;2 
=> D3f2

Finally the third term appends the extra gluon to a three-gluon ve: le boundary
conditions for eq. (9.2.1) are not as easy to formulate as for the I = .. cas - Clearly all 
Dn.j(Qi,..., Qi, N3, N4) with Q, < 0 or N3 < 0 or N4 < 0 must be zero. 1 he non-zero 
elements can most easily be obtained by drawing all the Feynman diagrams with I quark 
pairs with different flavour and simply calculate the Qi's, N3, N4 of every diagram. In 
table 9.2 we list the results of solving eq. (9.2.1) with the boundary condition listed as 
Hn;i(Qi, • • ■, Qh ^3i A^), for that value of n for which at least 3 partons are present. The 
number of Feynman diagrams for a given scattering amplitude with I different flavoured 
quarks to is defined as

The sum runs over all possible values of the set {Qi,... ,Qi, JV3,N4}. Note that the 
results for Dn.o are in table 9.1 too.

The QCD hard parton scattering subprocesses contributing to m-parton production 
are enumerated in table 9.3. The results are listed for up to five final state partons. A 
few remarks will clarify the contents of the table. Firstly, the number of diagrams (D) 
is taken from table 9.2. In case there are m identical quark pairs this number has to 
be multiplied with ml. The number of parton scattering processes (P) is based on four 
initial and five final state flavours, i.e. the incoming hadrons do not contain any bottom 
quarks. Note that although the number of subprocesses is impressive for every m, the 
major contribution to the total cross section for the hadron scattering, is always coming 
from just one process, the purely gluonic one.
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ggg 
ggg 
ggg 
ggg 
ggg 
ggg 
rfg 
ggg 
gfg 
grg 
ggg 
rfg 
ggg 
rfg

m = 5 
“D 
25 
16 
16 
16 
16 
10 
5 

10 
5 
5 

10
5 

10
5

gggg 
gggg 
gggg 
gggg 
gggg 
gggg 
rrgg 
gggg 
gfgg 
grgg 
gggg 
rfgg 
gggg 
rfgg 
gggg 
ggrf 
gggg 
ggrf 
rfrf 
rfss 
gggg 
ggrf 
grgg 
qrss 
gfgg 
qfrf 
qfss

P 
1 
8 
8 
8 
5 
8 

32 
8 
24 
24 
8 

32 
8 
32 
5 
10 
8 

32 
32 
48 
8 

32 
24 
72 
24 
24 
72 
8 

32 
32 
48 
8 

32 
32 
48 

1~8391

D
4
3
3
3
3
2
12 I
1 I
1 :

p 
i
8
8 
8
5 
8 
32
8

24 
24

P 
1 
8 
8 
8 
5 
8 

32 
8 

24 
24 
8 

32 
8 
32

P 
1 
8 
8
8
5
8

32
8
24
24 
8
32
8
32 
5 

10 
8

32 
32 
48 
8
32
24
72
24 
24 
72

process 
gg 
gg 
gg 
gg 
gg 
gg 
gg 
gg 
gf 
gr 
gg 
gg 
gg 
gg

process 

gg 
gg 
gg 
gg 
gg 
gg 
gg 
gg 
gf 
gr 
gg 
gg 
gg 
gg 
gg 
gg 
gg 
gg 
gg 
gg 
gg 
gg 
gr 
gr 
gf 
gf 
gf

process
gg- 
gg­
gg- 
gg 
gg- 
gg­
gg- 
gg- 
gf 
gr­
gg 
gg­
gg- 
gg 
gg 
gg 
gg­
gg 
gg 
gg 
gg 
gg 
gr 
gr 
gf 
gf 
gf 
gg 
gg 
gg 
gg 
gg 
gg 
gg 
gg
total |

ggggg 
ggggg 
ggggg 
ggggg 
ggggg 
ggggg 
rfggg 
ggggg 
gfggg 
grggg 
ggggg 
rfggg 
ggggg 
rfggg 
ggggg 

■ggrfg 
ggggg 
ggrfg 
Tfrfg 
rfssg 
qqqqg 
qqrfg 
qrqqg 

■qrssg 
gfggg 
qfrfg 

■qfssg 
■ggggg 
.qqrfq 
>rfrfq 
►rfssq 
> ggggg 
>ggrfg 
►Tfrfq 
►rrssq

[ TOTAL

m = 7
D“ 

2485 
1240 
1240 
1240 
1240 
602 
301 
602 
301 
301 
602 
301 
602 
301 
602 
301 
384 
128 
128 
64 

384 
128 
128 
64 
128 
128 
128 
384 
128 
128 
128 
384 
128 
128
64

Table 9.3. The number of Feynman diagrams (D) and the number of subprocesses 
(P) based on four initial and five final state flavours. The process prototype 
includes the charge conjugated one when there are quarks in the initial state. The 

number of final state partons is denoted by m.

m — 6 
~D 
220 
123 
123 
123 
123 
64 
32 
64 
32 
32 
64 
32 
64 
32 
64 
32 
42 
14 
14 
7 
42 
14 
14 
7 

14 
14 
14

_____ m = 4 
process 
gg-^gg 
gg->gg 
qg — gg 
gg — qg 
gg-*gg 
gg->gg 
gg-^rf 
gg-*gg 
qf->qf 
gr~>gr
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Chapter 10

QCD matrix elements

10.1 action

(10.1.2)
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outgoing, i.e. are created out of nothing.

• The gluons are denoted by digits and the quarks by q,r and s.

• Helicity configurations are denoted by replacing particle indices by helicities.

• The notational conventions of WvdW spinor language are used, see chapter 3. 
However both the momentum spinors and the momenta are denoted by the same 
symbol. In those cases where this leads to confusion the momenta will be denoted 
by capitals and the spinors by lower case characters. Furthermore we use

SIM.I2 = g 
c.A

• All particles our

In the pa: > all tree level QCD matrix elements with up to seven partons have been
calculated. ddition to this the first order correction on most four parton processes
was established. In this chapter we present expressions for the tree level matrix elements 
that are analytically known. Details of the calculation can be found in chapters 4-7.

The matrix element squared, spin and colour summed reads, see eq. (3.5.12),

E|A4„(P)|j=s”‘-^| £ F(T“,i,/V)KF(P)|2 (10.1.1)
c,A c,A perms

which, with the colour sum evaluated, reads 

^eskxpm^p). 
A

The sum runs over the permutations of gluons and quarks and is the colour matrix 
resulting from F* x F*’. Notice that the type of partons in I^J2 is implicitly 
understood. A number of conventions are used to describe the subamplitudes Kf(P) 
and the permutation sums.

Analytical sions for tree level QCD matrix elements are given in the notation used 
in previou ers. Many details relevant for numerical applications are given.



{1,2} = (1+2)2 = <12><12>- and <1|2 + 3|4> = (12)‘(42) + (13)*(43).(10.1.3)

(10.1.4)

(10.1.5)

(10.1.6)

(10.1.7)
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as 
sum

(n-l)!/2

E E
A ij=l

In the case of gluonic amplitudes the C-functions are not linearly independent, see sec­
tion 4.3. This dependence can be used to reduce the colour matrix in size. Using the reflec­
tive property ofC-functions, see eq. (4.3.2), in eq. (10.1.2) results in a (n—1)1/2 x(n—l)!/2 
colour-matrix c^,

• Pn denotes all the permutations of (1... n). P* has the extra condition that index 
1 is on the first spot, i.e. the permutations of (2... n). P’ has on top of that the 
condition that the index on the second place is less than the index on place n. P^ 

denotes all permutations of (3 ... n).

• The mapping of permutations on to integers is described in section 4 4.

• For the colour structures the notation of section 3.5 is used.

El^l2 = s2"’4 
c,A A

The cjf is substantially smaller in size than and also has a unique form. However, 
we will show, it is not always preferable to use rather than Note that the 
over permutations in eq. (10.1.4) is denoted by P* and by pt in eq. (10.1.7).

This chapter subsequently deals with the four, five, six and seven parton matrix el­
ements. In the last section the so-called special helicity combinations are given for an 
arbitrary number of partons. The SPHEL approximation described in chapter 8 is based 
on these combinations.

El-^nl2 =9 
c,A

with

'$2\Mn\2=g' 
c,A A «J=1

By definition is the matrix that contains the largest number of zeros. For n = 4,5 
it turns out to be a diagonal matrix. The second way is to use the relations between 
C-functions to reduce the size of cjf. This leads to

(„-3)!

E E # c. <7-
A

< = E ((^n") + (-i)n(^',T)) x ((P„-J) + (-i)n(p;jT)) 
colours

where P”T is the reflected permutation of P**. In eq. (10.1.5) the f.. sho-Td be seen as 
a permutation of (a] ... a„).

Now there are two ways to proceed. The first one is to use the dependence of the 
C-functions to simplify and rewrite eq. (10.1.4) into 

(n-l)'/3 

'2n-E E 
A



Four parton matrix elements10.2

(10.2.2)C(1234) =

(10.2.3)

and

(10.2.4)
Ca

With

(10.2.5)

(10.2.6)

(10.2.8)with 7?,- =

(10.2.9)
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2 
1

£ |A44|2 = 288 
c.A

-1 
N2 - 1

(a/2)4 
2

The colour matrices in <

■ • x 2

10.2.1 0 -+ gggg
The four gluon process was first calculated in [1]. In our

£ = fl4 £ I £ 2 GhWr) C( 1234)|2.
c.A A p-

The non-zero C-functions are the ones with two 4- and two — helicities. With gluons i 

and j having the — helicity they read 

1 (or 
(12)(23)(34)(41)' 

eqs. (10.1.6) and (10.1.7) become 

}2(W2-1) 6'1

notation it is given by

(10.2.1)

O’
, u = (1 + 4)2 and N = 3 we find 

+ + +'" + u4) ■

1-^' 
tu

P(+;12;-) = (a/2)2

t u 4m2s 
-+t+-ts- u t tu

10.2.2 0 -+ qqgg
The matrix element for two quarks and two gluons reads

£ \M412 = g4 £ | £(aia2)yl>(9; 12; ?)|2.
c,A c,A F*2

The non-zero 72-functions, with gluon i the — and the other gluon the + helicity, read

{Q2)3W (10.2.7)
(91)(12)(2?)(m)’

of the quark m, = 0. The colour matrix in eq. (10.1.2) is given by 

w2-i -1 \ _ ( ^(9; 12i 9) 'l
-i JV2-1 J w,th kp(9;2i;9)/■

For massive quarks the result is

£ |A4a|2 = 2y(W2-l) (^+JV(1-^))

with s = (1 + 2)2,t = 2 Q • l,u = 2 Q ■ 2.

-2

3 = (1 + 2)2. t = (1 + 3)2

»‘(w

with the mass

= 1^1
4 N



10.2.3 0

(10.2.10)

expressions

(10.2.11)+ M^2-i)

10.3 Five parton matrix elements

(10.3.2)C(12345) =

(10.3.3)
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52|Af<|2 = 2/ (W2-l) 
c,A \

with s = (q + q)2, t = (q + r)2 and

t2 + u2 
s2

s2 + t2 
u2

u = (q + r)2.

2
Af ) }

with m, = mr 
simplify to

qqrr
The four quark matrix element for a quark pair q with mass mq and a quark pair r with 
mass mr reads

52 IAfal2 = g* (R\(q, q, r, f) + 5,r7J2(q, q,r, f)) 
c,A

where 8qr = 1(0) for identical (different) flavoured quarks and

nt - -t orv2 n(9'’')(9-’:) + (9-';)(9-’') + m2(r-r) + m2(q-q) + 2m2mJ
«i(q,q,r,r) = 2 (TV — 1)------------------------------------------------------------((9-9) + m2)2

2(N2 — 1)Ri(q,q, r,r) = Ri(q,r,r,q)--------—---- X
2(qr)(qr) + 2m4 + m2 ((q-q) + (r r)-(q-r) + (q r) + (q 

((9'9) + m2)((q-f) + m2)

= m for equal flavours. In the case of massless qua

10.3.1 0 -> ggggg
The five gluon process was first calculated with the standard Feynman diagram techniques 
in [3]. Compact results were obtained in [4]. In analogy with section 10.2 we find

52 l-Ms|2 = ge 52152 2 (aia2a3a<as) C( 12345) |2. (10.3.1)
c,A a p;

When only gluons i and j have the — helicity the C-functions are

(V2)5 fa)4
2 (12)(23)(34)(45)(51)’

Other helicity combinations can either be obtained by complex conjugation or are zero. 
The colour matrices of eqs. (10.1.6) and (10.1.7) are

42 =2 (y)3(W2-l)6;<

and



o \
2 (10.3.4)

12 4/

With s,} = (i-j) and N = 3 the matrix element squared reads

(10.3.5)

(10.3.6)

The non zero functions, with gluon i the — and the other gluons the + helicity, read

(10.3.7)

of the quarks is set to zero. The colour matrix in eq. (10.1.2) is given by

(10.3.8)with 7?, =

(10.3.9)x
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£ lAfsl2 = <76(-l)"’ 
c,A

(9-9) - E 
a

53 |jvts|2 = 432 g6 
c,X

E 4

El-
c,A

= <76EIE(»i^“3)o<P(9;123;9-)|2.
c,A P3

N2 - 1
N2

(9«)3(9»>
(gl)(12)(23)(3g-)(9-9)’

/ 3 E 
\.=1

(91)(9-2) 
(1-2)

■is three gluon process is given by

where the mass

/ ©(<?; 123; q) \ 
D(9;132;g) 
P(9i231;?) 
©(9; 213; q) 
T>(q; 312; 9)

\ 77(91321; 9) /

10.3.2 ' qqggg

The two q

/ 4 2
2 4
1
2
1

\ 0

(9»)3(9-«) + (9-»)(9«)3

(91)(9-2)(9-3)(9--l)(9-2)(9-3)

(9-l)(9-l)(9-2)(9-3)
(21)(l-3)

\ x Zy- 1
y y p* ^12323334345351

8 N2

^2®3(W2-1)

N4 v 
+ (9-9) p,(9-9) + N2

7?(+; 123;-) = (\/2)3

d\ d2 d3 da d3 d4
dj di d4 d^ d% d^
^3 ^4 ^2 ^3 ^2

d2 d^ dj di d4 d^
d^ d? d$ dt dj dj

\ d4 d$ da dj da d4 J

1 2 1
0 12 1

0 4 2 1
1 2 4 0 1
2 10 4 2
1 2

with di = N4 - 2N2 + 1, da = -N2 + 1, d3 = 1, d4 = N2 + 1- Analytical evaluation 
of eq. (10.3.6) leads to the following compact form for |W4s|2 [4] (n, is the number 
of quarks crossed to the initial state).



(10.3.10)

\
and e'2 = |(W2 - 1)

(10.3.11)£(9,9.r,r) = £’ x

with

*7=

10.4 Six parton matrix elements

10.4.1

132

10.3.3 0 —» qqrrg
The matrix element squared for processes with four quarks and a gluon reads

/ Zoi
^10

\

^cie2(al)c3C4

(al)c3C3

(al)ciC4^C3C3

-v/2 (qq) 
JV (ql)(lq)’

-x/2 (rr) 
TV (rl)(lf)

1 
~2

El^l2 = s6E E e'7^;> 
c,A A »\j=l

where the subamplitudes 5, and e'i correspond to the following structures,

/ N
0
1

\ 1

K <9^) 
’ 3 * (ql)(lf)’

r. K W 
^-V2(rl)(lq-)

and

>!(+,+) =(9-r)2, /!(+,-) =-(9’r)2, 4(-,+) =-(qf)2, A(-,-)=(qr)2

Evaluating eq. (10.3.10) analytically leads to compact expressions in terms of Minkowski 
inner products [4]. When the quark pair r has a mass mT, the resulting expression 
for |Af„|2 consists of 650 terms. However this result was obtained by standard 
Feynman diagram techniques and computer algebra. No attempt was made to simplify 
the expression.

0 -* 999999

The process with six gluons has been calculated four times in the past seven years. The 
first calculations [5] used the Feynman diagram technique in a straightforward way. Using 
spinor calculus [6] and the colour basis (ai... a6) compact expressions were obtained. 
The matrix element squared for the six gluon process reads

0 1 1 \
N 1 1
1 N 0 '

I \ 1 1 0 TV /

The y0],... are defined in chapter 6. The colour assignment is (q,Cj), (q, c2), (r, c3) 

and (r, c<). For equal flavours the £;(q, q, r, r; 1) must be replaced by

£.(9.9>r, r) - £,(q,r,r,q).

Although the £,'s in principle do not depend on TV, they do in 10) because
we reduced the amount of possible colour structures by a factor o putting the
explicit 1/TV dependence in £,-. The helicity amplitudes are given by

A(A„Ar) 
(99)(rr)



C(+ h---- 1----- )

C(+- + )

(10.4.1)

C(123456) = +

(10.4.3)
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£(+ + + + ++) 
C(+ + + + 4—) 
C(+ + + +--- )
C(+ + 4---- 1—)
C(+ H---- F H—)
C(+ + +------ )

M2M2 
{2,3}(2+3+4)2{3,4}{5,6}{6,l}

M*------------- (10.4.2)

Table 10.1. The non-zero M's for the C-functions. Add a factor (a/2)6/2.

no Mj / 0
no Mi 0
M4 = (56)4(12)’(23)‘(34)'(45)"(56)’(61)*
M4 = (46)<(12)’(23)‘(34)‘(45)"(56)‘(61)*
Mt = (36)4(12)‘(23)'(34)"(45)'(56)'(61)"
M2 = (56)(23)-(l|2 + 3|4)
M3 = (45)(12)‘(3|1+2|6)
M4 = M2Af3(l+2+3)2
Mt = (46)(12)‘(5|1+2|3)
M2 = (34)(15)’(2|3 + 4|6)
M3 = (34)(12)’(5|3+4|6)
M< = M1M2(l+2 + 3)2 +A/1W3(2+3+4)2 + M2M3(l+2+3)2
Mt = (64)(13)-(5|4+6|2)
M2 = (42)(51)'(3|2 + 4|6)
M3 = (26)(35)*(1|6+2|4)
Mt = MiM2(l+2+3')2 + MjM^+S+A)2 + M2M3(l+2+3)2

52 IA4el2 = 98 52 I 5? 2 (aia2a3a4asae) C( 123456) |2. 
c,A A p;

Using parity and the various relations between C-functions, see section 4.3, it suffices to 
calculate just a few out of the 128 helicity configurations. The pole structure of C(123456) 
reads

Mi Mi
{l,2)(l+2+3)2{2,3}{4,5}{5,6}

,____________ M3M3____________ ______________________________
{l,2}{3,4}(3+4 + 5)2{4,5}{6,l} + {1,2} {2,3} {3,4} {4,5} {5,6} {6,1}

The expressions for Mt through M4 are listed in table 10.1.
We rewrite eg in such a way that it contains as many zeros as possible. As the best 

solution the following expression was found (6, 7]

52 l-Mel2 = 2ga(N/2)*(N2 - 1) 52 £C(123456)x 
c.A A p;

[C(123456) + 2/N2 (C(135264) + C(142635) + C(136425))]‘.

The colour matrix, Cg contains 240 non-zero terms of which 180 are non-leading order in 
colour. By expressing all C-functions in the 1,2-basis we obtain Cg , see eq. (10.1.7), with 
the new colour matrix given in table 10.2. Only the first row of the matrix, i.e. the terms 
of the form (123456) x (12xix2z3x,) are given. The linear labeling of the permutations 
is included in the table. We note that there are more than 240 non-zero elements in eg,



Jn7
0

6N2

0 +24

Table 10.2. The first row a

(10.4.5)

(10.4.6)

(10.4.7)P(9; 1234; g) =

+

134

(1234) = 1
(1243) = 2
(1342) = 3
(1324) = 4
(1423) = 5
(1432) = 6
(2341) = 7
(2314) = 8

48/V7 
247V2 
127V2 
247V2
127V2

6N2 
127V2

247V2 
127V2 
127V2 
6N2 

12N2 
6N2

67V2
67V2

0
0

0 
0 
0 

+24 
+24

____________ M3_____________
{g,l}{2,3}(2+3 + 4)2{3,4}{<?,<7}

10.4.2 0 —> qqgggg
The process with a massless quark pair and four gluons has first been calculated in [8] by 
making use of supersymmetry and the results for the six gluon process. The expressions 
for the helicity amplitudes have been verified using the techniques described in this thesis. 
The matrix element squared for the process 0 —» qqgggg reads

52 I2 = 9a 52152(aia2a3a<)vp(9;1234; ?)l2- 
c,A c,X Pt

Ten different helicity configurations need to be evaluated. In contrast with [8] our expres­
sions for the helicity amplitudes manifestly have the charge conjugation symmetry. The 
pole structure of T>(g; 1234; q) reads

so eq. (10.4.3) appears to be the best method. However careful study of the LO and 
NLO contributions shows that the best method is a mixture. Take terms from
eq. (10.4.3) and the NLO terms from eq. (10.1.7) to arrive at the f<-’ expression.

52 |A+6|2 = g82(7V/2)4(7V2 - 1) £2 ££(123456) £(123456 (10.4.4)
c,A A p;

+g86(7V/2)2(7V2 - 1)£ ££(123456) x [+C(125634) 
a p;

+£(125643) + £(126453) + £(126534) + £( 126543)] *

_______________ Mi_______________
{l,2)(l+2+3)2{2,3}{2,3}{4,?}{g,g}

M2
+ {g,l]{l,2}{3,4}(3+4 + g)2{4,g)

M4
+ {g,l}{l,2}{2,3}{3,4}{4,g}{g,g}'

The expressions for Mi through are listed in table 10.3.
The colour matrix in eq. (10.1.2) is given in terms of Dc(a1a2a3a<)ij x(P(aia2a3a4))^

in table 10.4. The other colour products can be obtained by renumbering.

(2413) = 9
(2431) = 10
(2134) = 11
(2143) = 12
(3412) = 13
(3421) = 14
(3124) = 15
(3142) = 16

of the colour matrix c'g . Add

(3241) = 17
(3214) = 18
(4123) = 19
(4132) = 20
(4231) = 21
(4213) = 22
(4312) = 23
(4321) = 24

factor N2(N2 - 1)2-+



!>(+;+■

P(+; - + -+;-)

Z>(+; + + -;-)

135SS,

Table 10.3. The non-zero M’s for the P-functions. Add a factor (x/2)4 to Mi.

P(+;+ + ++;-) 
£(+;+ + 
*>(+; + + -+;-)

P(+; -++ + ;_) 
p(+; + +--- ;-)

no Mi 0
Mi = (49>3(4g)<9l>'(12)"(23)‘(34)'<49)'(9g)’
Mi = (39)3(39)(91)"(12)*(23)"(34)'(49)’{99)*
Mi = (29)3(2g}(gl)*(12)*(23)*(34)*(49)*(99)*
Mi = (19)3(19)(91)*(12)"(23)'(34)*(49)'(99)*
Mt = (94)(94)(12),2(9|9+4|3)2
A/3 = —(34>2(gl)"(9l>'(2|g+l|9)2
Mi = — <94)<34)(gl>*(12>* «g|9+4|3>{9|3+4|9)(2|3+4|9>

+ {1,2}<43)(9-4>-(2|3+4|9> - {3,4}<gl>(12>-(9|14-2|3» 
:-) Mt = <94>(94)(13>*2<9|9+4|2)2

M2 = —<94)(91)‘(1|9+3|4)(3|9+4|2)
M3 = -<24)2<9l>’<91>‘<3|2+4|g)2
Mi = -(1 + 2 + 3)2<24) <gl)‘ (1 |g+3|4) <3|g+4|2> (3|2+4|g) 

+(9 + 1 + 2)2(24) <13>-<1 |g+3|4) (9|g+4|2) <3|2 + 4|g) 
+ (2 + 3 + 4)2(94)(13)-(1 |9+3|4)(9|g+4|2> (3|g+4|2> 
— (24>(34)(12>*{13>*<9|9+4|2)(3|9+4|2){3|2+4|9>

M. = -(23)2(94)-(g-4)-(l|9+4|g)2
M2 = —<93)(91)“(1|9+4|3)(4|9+3|2)2
M3 = -(23)2(9l)'(9l)-(4|2 + 3|g)2
Mi = -(1 + 2 + 3)2<g~3) <23)<gl)-(gl)-<4|9+3|2> (4|2+3|g> 

+(9+ 1 + 2)2(23>2(g4)-<gl)-<l|9+4|g)<4|2+3|?) 
+(2 + 3 + 4)2(93)(23)(g4)-(9l)-(l|9+4|9)(4|9 + 3|2) 
-(23)(34)(9g)-(14)-(l|9+4|g)(4|9 + 3|2)(4|2+3|9) 

= -(13)2(94)-(94)-(2|9+4|9)2
M2 = -(93)(g2)-(2|9+4|3)(4|g + 3|l)2
A/3 = (9l)<?l)<24)'2(g|4+2|3)2
Mi = (93)(9l)(93)(12)(9g)-(94)-(92)-(24)-(2|9+4|g) 

-(9?)(?l)(g3)(13)(92)-(g4)-(g2)-(34)-(g|2+4|3) 
+ {g,l}{9,4}(13)(24)-((gl)(24)-(9|2+4|3) 
-<13>(24)-(g|l+3|9> + <13)<g4)*(2|l+3|g)) 
+ {9,9}(13)(g-3)(24)*{92)* 
([{9,1} - {2,3} + {9,4}] (4|9+3|1) + {9,3}<gl)<g4>* 
-{?,2}<gl><94)- + (91)(49)’(9|1+3|9))

M, = -(12)2(94)-(94)-(3|9+4|9)2 
M3 = (9l)(9l)(34)-2(g|3+4|2)2
Mi = —(91><12>(94)*(34>*(9|3+4|9)(9|3+4|2)(3|9 + 4|9)



+ N4+N4

(10.4.8)

\

(10.4.9)

and
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(a3a4a!a2) 
(asaiOjai) 
(a3aia2a4) 
(a3<2ia4a2) 
(aaa2a4ai) 
(asajaia^) 
(a4a!a2a3) 
(aAata3a2) 
(a4a2a3ai) 
(a^ajajOs) 
(ata3a1a2) 
(ata3a2ai)

c,A A ij=l

N* - 3N* + 37V2 - 1
-TV4 + 27V2 - 1

TV2 - 1
—N4 + 27V2 - 1

TV2 - 1
- 1 
-1

TV2 - 1
-1

- TV2 - 1
—TV4 + 27V2 - 1

TV2 - 1

■jluons was

1
~2

' ^oi^qqrr;; 12) > 
^uiqqrr-1; 2) 
Fiotqqrf -, 12;) 
^(qqrf-,-,21) 
^n(qqrf\2\ i) 
■?3o(99rf;21;) 
£02(99";; 12) 
£11(99"; 1;2) 
^w{qqrf \ 12;) 
£02(99";; 21) 
£n(99";2; 1)

\ £20(99"; 21;) ,

+7V4 - TV2 — 1
+7V4 - 27V2 - 1

TV2 — 1
-1

- TV2 - 1
- 1
-1

— TV2 — 1
+N4 - 2N2 - 1

- TV2 - 1
+7V4 - 2N2 - 1

-37V2 - 1

10.4.3 0 —» qqrrgg
The matrix element squared for processes with four massless quarks 
first calculated in [9], In our notation it reads written as

rr> Jed.

' ^102(01^2)0304 

(“1) 1C2 “2) 3C4 

(ala2)oiC2^C3C4 

^CiC2(a2al)c3O4 

(a2)ciC2(al)c3C4 

(o2ai) 1C2 ’0304 
^0104 (Oia2)c3C2 

(01) IC4 a2) 3C2 
(01 (22)0104^0302 

^0104 (0201)0303 

(O2) 1C4 al) C2
\ (a2al)c1e4^c3c2 )

For remarks about colour dependence and different flavours we refer to the four quark 
and one gluon process. The subamplitudes f?, and the colour matrix e’2 in eq. (10.4.8) 

are given by

(aia2a3a<)
(aia2o<O3)
(aia3a4a2)
(aiO3a2a4)
(aia4a2a3)
(a1a4a3a2)
(a2a3a4ai)
(a2a3a!a4)
(a2«4aia3)
(O2a4a3al)
(a2aia3a4)
(a2aia4a3)

Table 10.4. The colour matrix . A factor (TV2 — 1)7V~32~4



Table 10.6. The Af.’s of ^11, see eq. (10.4.12).

(10.4.10)
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M3 = -(?f)^gl)-(12)-(2?-)*(rr)- 
M3 = (gr)2(gl)*(12)*(2g)'(rf)* 
M3= (gf)2(?l)-(12)-(2g)-(rf)- 
M3 = —(?r)2(gl)”(12)*(2g)‘(rf)" 
M, = <g2)2<lg)"(gr>*(l|2+g|f> 
Mi = (gl)*(92)(?-f)(l9)-(r|?+l|2) 
M3 = (g2>(gl>(r|g+l|2)(l|g+2|f) 
Mi = (g2)2(l9-)-(gr)-(l|2+g|r) 
M2 = (?l)'(g2)(gr)(lg)-(f|g+l|2) 
M3 = (g2>(gl)<f|g+l|2)(l|g+2|r) 
Mt = (g2)(fg)(lg)"J(r|l+g|2) 
Mi = (gl)'(g2)2(rg)*(l|g+2|r) 
M3 = (g2)(gl)(gf)(g2)(gr)-(9l)‘ 
Mi = (g2)(rg)(lg)'2(r|l+g|2) 
Mi = (gl)'(g2)2(fg)*(l|g+2|r) 
M3 = (g2)(gl)(gr)(g2)(gr)*(gl)*

Table 10.5. The Mi's of see eq. (10.4.11).

Mi = -(gr)2(?l)-(lg)-(r2)-(2f)*
Mi = (gr)2(gl)‘(lg)‘(r2)*(2r)"
Mi = (gr)2(gl)"(lg)"(r2)*(2f)*
Mi = —(gr)2(gl)‘(lg)'(r2)*(2f)’
Mi = (gl)"(lg)*(r2)’(2r)’(r|g+l|g)(r|2+r|g)
Mi = — (gl>"<lg)‘(r2)”(2f)*(f|g + l|g>(r|2 + r|g>
Mi = - (gl)'(lg)"(r2)*(2r)*(rjg+l|g)(r|2+r|g)
Mi = (gl)‘(lg)*(r2)‘(2f)*(f|g+l|g)(r|2+r|g)

e6 \

e, 
es e3 ei e3 ei ei /

e3 ei ei

/ ei c2 e3 e4 e2 e3 e5 e6 c5 e6 c5
62 6i 62 62 63 62 Gq 65 65 85 65 65

63 62 e4 65 65 65 e6 66 66
e2 c3 Cl e2 e3 c6 C5 e6 e5 e6 e5

c2 e3 e2 e2 el e2 c5 C5 65 Cq 65 65
e3 e2 e4 e3 e2 el c6 e6 e6 e5 e5 e5
e5 e6 C5 C6 65 66 6i 62 63 64 62 63
C6 C5 C5 e5 e6 ®2 Ci 62 62 63 62
65 65 65 66 66 66 63 63 Ci 63 62 64
c6 C5 66 65 6e 65 64 62 63 6i 62 63
e5 e5 e6 e6 c5 c5 e2 c3 e2 e2 el

k e6 e6 66 65 65



Table 10.7. The M.’s of £20,

(10.4.11)^72o(??’“r; 12;) = — 2 * N'

+
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see eq. (10.4.13).

where ei = (TV2 — 1), e2 = 0, e3 = 1, e4 = —1, e$ = TV-1, eg = —TV-1. Using parity 
conservation and other symmetries, see chapter 6, the following expressions enable us to 
evaluate all £{ for all possible helicity configurations.

[+______Ml______
[ ' {9,2}(9+2+l)2{2,l}{r,r}

M2 M3
+ {2,l}(2+l+9)2{l,9}{9,g} + {9,2}{2,l}{l,9}{r,r}

For eight helicity configurations the expressions for are in table 10.5

M4 = —(9r)(9l)*(12)'(2f)“(9f)2(g9)"(rf)"
M4 = —(9r)(9l)*(12)'(2r)‘(9r)2(99)*(rr)'
M< = —(9f)(9l)‘(12)‘(2r)*(9r)2(99)"(rr)'
M4 = -<9r)(91)'(12)'(2f)-(9r)2(99)-(fr)-
Mi = (29)(9r)(9l)‘2(r|9+l|2)
M2 = (f2)2(r9)‘(lf)”(l|r+2|9)
M3 = (r2)2(9l),2(r|9+l|9)(r|r+2|9)
M4 = +(f2)2(29)(gl)"(21)"(r9)‘(r|r + 2|9) 

+(r2)(12)(9f)(9l)*2(lf)"(r|9+l|g) 
-(9 + 9 + l)2(r2)(29)(9r)(9l)"(r9)"(lr)‘

Mi = (r9)(g2)(gl)‘2(f|g + l|2)
M2 = (9r)(r2)(lf)-2(g|f+l|2)
M3 = (2r)(2r)(9l)-2(f|9+l|9)(r|r+2|9)
M4 = +(2r)(2f)(2g)(21)*(gl)-(f9)-(f|r , ’

+ (2r)(9r)(21)(9l)-2(lr)-(r|9+ 1|<
+(? + ?+ l)2(29)(2r)(9r)(gl)'(.’\

M, = (29)2(lg)"(9r)"(l|g+2|f)
M2 = (r2)2(9r)*(rl)*(l|f+2|9)
Ma = (f2)2(l9)-(lg)'(f|r+2|9)(r|9+l|?)
M4 = +(29)(f2)2(12)-(r9)-(l9)-(f|r + 2h;;

+(9f)(r9)(12)(lg)-(lr)-(l9)'(r|g+li9)
+(? + <? + I)2(f2)(9f)(29)(lg)*(lf)-(r9}'

Mi = (2g)2(r9)*(9l)‘(l|9+2|r)
M2 = (9r)(f2)(fl)-2(9|r + l|2)
M3 = (r2)(r2)(gl)-(gl)*(r|r+2|g)(r|9+l|g)
M4 = +(f2)(r2)(92)(12)'(f9)-(9l)-(r|r + 2|g) 

+ (r2)(r9)(12)(gl)-(gl)-(fl)-(T|9 + l|g) 
+(? + <? + I)2(92)(r9)(f2)(9l)-(fl)*(r9)-



Table 10.8. The Mi's of £u, see eq. (10.4.13).

(10.4.12)

+

Siotqqrr; 12;) = 2

+

£n(ggrr; 1; 2) = 2 (10.4.13)

+
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10.4.4 0 —» qqrrss
This process has been dealt with in chapter 7 and in ref. [10].

M3 = —(l9)*(9F)(rl)”(2r)"(rg)(g2)'(gf)2(9g)*(rf)* 
M3 = -(l9)-(gr)(fl)-(2r)-(r ?-)(9-2)-(9-r)2(??-)'(fr)- 
M3 = —(l9)*(9F)(Fl)‘(2r)"(r9)(92)"(9r)2(9g)"(rf)‘ 
M3 = -(l?)-(9r)(fl)-(2r)-(rg)(?2)'(9r)2(g?)-(fr)- 
Mi = (r2)(r2)(l9)*2(r|9+l|9)(r|9+ 1|9) 
M2 = (92)2(lr),(lr)'(9|9+2|r)(9|9+2|f)
M3 = (lg)'(9f)(rl)‘(2r)(rg)’(g2)(r|9+l|9)(9|r+l|f)
Mi = (2r)2(?1)'2(rl9+1k>(':l?+i|g)
M2 = (92)2(lr)*2(9|9+2|r)(9|9+2|r)
M3 = (lg)"(gr)(rl)‘(2r)(rg)"(g2)(g|r + l|r)(r|9+l|g)
Mi = (T2)(2r)(l9)’(9l),(r|9+l|g)2
M2 = (2g)(29)(lr)‘(lr)‘(9|g+2|f)2
M3 = (l?)"(9r)(’;l)’(2r)(r9)"(92)(r|g+1|g)(g|r+l|r) 
Mi = (r2)2<19)’<19)”(rl9+i|9)(’;|g+i|9)
M2 = (29)(29)(lr)‘2(9|g+2|r>(9|9+2|r)
M3 = {^Y{qf}{f^Y^)(rqY(^2){r\r+2\q)(q\q+2\r)

^ii(99rr; 1; 2) = —2 * IV *x 
F _______ Mi___________ _______ M2_______ 1
[ {9.1}{1>?}(?+9+l)2{r,2}{2,r} + {g,l}{l,g}{r,2}{2,f}J

For eight helicity configurations the expressions for T^i are in table 10.6

Mi M2
{g,l}(g+l+2)2{l,2}{f,r} + {g,g}{l,2}(l+2+f)2{2,f} 

___________ M3  M^_________ 1 
{?>9}(9+? +1)2{?,1} {2t} {r,r} {g,g}{g,l}{l,2}{2,r}{f,r}]

For eight helicity configurations the expressions for £20 are in table 10.8

____________ Mi____________  
{9,9}(9+9+l)2{9.1}{f:,r}{r,2}

___________M2____________ M3____________  
+ {9,9}{l>F}(l + r+r)2{f,r}{2,g} + {g,g}{g,l}{l,f}{f,r}{r,2}{2,g}

For eight helicity configurations the expressions for £n are in table 10.8



Seven parton matrix elements10.5

(10.5.1)

(10.5.2)£(+ + + + + 4~ +) — 0.

(10.5.3)£(~F + + + + ~i—) — 0.

10.5.4)£(1234567) =

(10.5.5)£(1234567) =
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52|A47|2 = g 
c,X

..on plicated.
define our cho. . of > he pole

10.5.1 0 -+ ggggggg
The matrix element squared for the seven gluon process reads [11]

With gluons i and j the — helicity and the other gluons the + helicity.

(x/2)7__________(u)4__________
2 (12)(23)(34)(45)(56)(67)(71)

For three + and four — helicities the pole structure of £(1234567) is ve 
Basidy there are four different configurations. First we 
structure. It reads

’’° Z I Z 2 (a1a2a3a4asa6a7)£(1234567)|2, 
a p;

For the seven fundamentally different helicity configurations the £(1234567) are as follows.
When all or all but one, helicities are the same we have

Afi
+ {l,2}(l+2+3)2{2,3}{4,5}(4+5+6)2{5,6}{6,7] 

Af2
+ {l,2}(l+2+3)2{2,3}{4,5}{5,6}(5 + 6 + 7)2{6,7] 

M3
+ {2,3}(2+3+4)2{3,4}{5,6}(5+6 + 7)2{6,7}

+_________________ ____________________
{2,3}(2 + 3+4)2{3,4}{5,6}{6,7}(6 + 7+l)2{7,l}

+_____________ ________________
{2,3}(2+3+4)2{3,4}{5,6}{6,7}{7,l}
________________ Me_________________  

’ {1,2}{3,4}(34-4-f-5)2{4,5}{6,7}(6-t-7-f-1 )2{7,1} 
+_________________ *1__________________

{3,4}(3+4+5)2{4,5}{5,6}{7,l}(7 + l+2)2{l,2} 
______________ Me_______________  

+ {l,2}{3,4}(3+4+5)2{4,5}{5,6}{6,7}{7,!}
________________ Me_________________  

+ {l,2}{2,3}{3,4}{4,5}(4+5 + 6)2(5,6}{6,7}{7,l}



14M

M10
M12

Ms
M9

££• +-------)
= - <56)<67>(71><1|64-7|5)A2

+ <12>’(23>-<45>2<67>2(<34)-(l |6-F7|4) + <35>*(1|6+7|5»{1,2)
-= — (34)(45)(56X3|4+5|6)B:

Ms
Ml2
M14

,2

----- — (12)‘(45)2(56)(67)B((56)*(3|1+2|6) + (57)*(3|1+2|7))
= -(23),(45X56)(67)M((64)-(1|2+3|4) + <65>’(1|2+3|5»
= +(45)(56)(67)4B(1 +2+3)2

with A = (23)-(l|2 + 3|4) and B = (12)"(3| 1 + 2|7>.

£(+ + - +------ )
Mx = — (45)(56)(67)(4|5 + 6|7)42
M, = — (56}(67)(71)(1|6 + 7|5)B2
Ms = — (12>-(24)-(35)2<67>2((43>’(l|6+-7|3)+-<45)-(l|6+-7|5)){l,2}
M7 = + (34)(35)(56)(4|3+5|6)(72

= +(12)*(35)2(56)(67)C((56)*(4|1+2|6) + (57)*(4|1+2|7))
= +(12)*2(34)(56)2(67) [+(24)’(67)'(23)(4|1+2|7X4|5+6|7)

+(16}'(34)"(17>(4|1+2|3)2 + (14)-(34)’(67)*(17)(37)(4|1 +2|3)]
= - (34)(56)2(4|5+6|3)C2
= —(24)*2(56)(67)2{1,2} [+(16)*(35)(1|2+4|3){4,5}

+(46)*(45)(1|2+4|3X1|6+7|3) - (12)*(56)*(23)(35X1|6 + 7|5)]
= +(56)(67) [-(35)4C(2+3+4)2

-(12)*B(45)(4|1 + 2|7X4|1+2|3) - (12)‘B(35)(4|5+6|7){1,2}]

with A = (12)'(4|1 +2|3), B = (24)*(1|2+4|3), C = (12>’(4|1+2|7>.

C(+ +-- + --)
Mi = +(45)(46X67)(5|4 + 6|7)A2

_________________ Mw_________________
{3,4}{4,5}(4+5+6)2{5,6}{7,l}(7+l+2)’{l,2}
_____________ Mu_______________
{1,2} {2,3}{3,4}{4,5}{5,6}(5 + 6 + 7)2{6,7}
_________________ Mn_________________
{l,2}{2,3}{3,4}{4,5}{5,6}{6,7}(6+7+l)2{7,l}
_______________ M13_______________
{3,4}{4,5}{5,6}{6,7}{7,1}(7 + 1+2)2{1,2}
____________ Ml4_____________
1,2}{2,3}{3,4}{4,5}{5,6}{6,7}{7,1}



n{5,6}
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Af10

Mi
M3
Af4
M5

M9

M, 
Ms

= - (45X67)2(5|6+7|4)42
= — (12)’(15)-2(34)2(67)2(2|3+4|1)
= —(15)*(25)*(34)2(67)2((23)*(1|6+7|3) + (24>*(1|6 + 7|4)){5,6} 
= — (15)”2(34)2(67)((12)'(17)(2|3+4|6) - (25)*(56)(2|3 + 4|7)) 

M6 = — (12)*(25)‘2(34)2(67)2(1|6 + 7|2)
= - (34)2(56)(5|3+4|6)B2
= +(12)-2(34)2(56)(67) [+(57)'<5| 1 +2|7)2

+ (56)-(5|l+2|7X5|l +2|6) - (15)-(25)-(56)*(12)(67)]
= — (12)*(46)2(17)(67)4((17)‘(56)*(37) + (16)’(5|4 + 6|3)){3,4}

— (12)-(23)(34)(46)2B((23)’(45)-(37) + (24)*(5|4+6|7)){6,7} 
= + (34)(46)(56)(5|4 + 6|3)B2
= -(12)*2(34)(45)(67)2 [-(35)*(5|1+2|3)2

- (45)*<5|1+2|3X5|1+2|4) + (15)-(25)-(45)-(12)(34 
= + (25)*2(34)(67)2((12)‘(23)(1|6+7|4) — (15)”(45)(l|6 + 7 +

M14 = — (12)‘(34)(67) x
[+(15)*(25)*(34)(67){1,2}({4,5} + {5,6}) 
+ (15)*(25)-(45)(56)(5|1 + 2|3)(5|1+2|7) 
+{12)'(15)*(17)(46){3,4}(5|1+2|3) 
+ (12)-(56)-(17X46X1|2+5|3)(5|1+2|6) 
+ (12)-(25)*(57)-(23X47)(56X5|l+2|7) 
-(12)-(15)-(57)-(17X34)(56X5|l+2|7) 
+ (12)-(57)-(17X46)(l|2+5|3X5|l+2|7) 
+ (12)*(25)*(23)(46X5|1+2|7)({5,6} + {6,7}) 
-(12)-(15)-(16)(34X5|1+2|7)({4,5} + {5,6})]

with A = (12)-(511+213), B = (12)-(5| 1+2|7)

C(~l----- 1----- 1------ )
Mt = +(13)-2(45)(46)(67)(5|4+6|7X5|1+3|2)2
M2 = —(13)-2(45)(67)2(5|6 + 7|4)<5|1 + 3|2)2
M3 = -(13)*(15)*2(24)2(67)2(3|2 + 4|1)
Ma = —(15)"(35)*(24)2(67)2 ((34)"(1|6+7|4) + (32)*(1|6 + 7|2)) {5,6}
Ms = -(15)-2(24)2(67)((13)-(17)(3|4+2|6)-(35)-(56)(3|2+4|7))
M6 = - (35)"2(12)(67)2(1|6 + 7|2)(1|3+5|4)2
Mi = -(35)-2(67X12)(27)(l|2+7|6)(l|3 + 5|4)2
M9 = -(13)-2(67)(46)2 [+(35)-(67)-(27)(23)(5|4+6|7)

— (15)*(67)’(17)(27)(5|1+3|2) + (61)*(17)(5| 1 + 3|2)2]



(10.5.6)
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This is the most compact for the NLO term we were able to find. Finally we remark that 
the NLO term in c7 , see eq. (10.1.7), has 59 non-zero terms per row.

Mu

M12

Ml3

= — (13)*(35)*(46)2(27)2 ((54)*(1|2 + 7|4) + (56)*(1|2 + 7|6)) {5,6}
= — (13)*(45)(67)2 [-(13)-(15)’(45)-(12)<24X5|1 +3|4)

— (15)*2(23)*(45)*(12)(24)2 + (13)*(35)*(34)(5|1 +3|2X5|6 + 7|2)j 

= -(35)*2(67)2{5,6) x
[+(13)'(12)(23)(1|3+5|4X1|6 + 7|4)
+ (15)-(24)(45X1|6 + 7|2){1,2}]

= + (35)*2(27)2(67) [-(17)-(46X1|3+5|4){5,6}
— (57)-(56)(l|3+5|4Xl|2 + 7|4) + (13)*(67)*(34)(46)(1|2 + 7|6)] 

= -(67) x
[+(13)*2(35)*2(23)(34)(46)(27){6, 7}

-!-<13)-(35)*<17)-<15)*<17>(67>(45>(24>(5|H-3|2)
— (13) ■( 15) *2(35) •( 17)(45)(26)(24) {1,2}
4- < 13) -< 12) •( 15) -(35) -2< 17)(23)(45)(26)(24) 
-(I3)-(35)-2(15)-(17)(23X46)<24)(l|3 + 4|5) 
-(13)*2(15)*(35)*(17)(23)(46)(12)(1|3+5|4) 
+ (13)*2(35)*2(17)(23)(46)(34)(1|6 + 7|2)
— (13)*(15)*2(34)*(17)(46)(24)(12)(1|3 + 5|4) 
+ (15) •2(35)-2(24)(27)(45)(56) (1 + 2 +3)2
— (35)*2(13)*(15)*(34)(45)(27)(56)(5|1+3[2) 
+ <35) *2< 13) -2<23>(27)<34)(56)<516 + 7|4>]

£|A47|2 = 2gl0(N/2')s(N2 - 1) £ £0(1234567) 0(1234567)* 
e.A A p;

-S1O(7V/2)3(7V2-1)£ £0(1234567) x
A P7- 

[+30(1235746) + 30(1236475) + 30(1246357) + 30(1253647) 
+30(1345726) + 30(1356724) + 0(1357246) + 30(1352467) 
+0(1357246) + 30(1352467) + 30(1372456) - 30(1372654) 
-30(1376524) - 0(1473625) + 30(1425367) + 30(1572346) 
-30(1574326) - 30(1543726)]*.

For the colour matrix it turns out to be best to use eq. (10.1.6). Two orders in N 
are present. The following expression for the NLO term was found by trial and error and 
using the uniqueness of c? .



10.5.2

10.6 Special helicity configurations

have

(10.6.1)C(12...n) =

air with

(10.6.2)

(10.6.3)

(10.6.4)

The 4(A„Ar)
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Other seven parton processes.

For the other seven parton processes no analytic expressions have been derived. The 
process 0 —♦ qqggggg is described in chapter 5, the process 0 —» qqrfggg is chapter 6 
and the process 0 —» qqrrssg in chapter 7.

In this section we give analytical expressions for the subamplitudes of eq. (10.1.2) for a 
special helicity configuration. The expressions are valid for an arbitrary number of gluons 
and up to two massless quark pairs. They form the basis for the SPHEL approximation in 
chapter 8. The special helicity configuration is the one where two helicities are different 
from all the others. We specify this to be two partons with — helicity and n — 2 partons 
with + helicity.

For the purely gluonic C-function, with gluons i and j the — helicitv

(\/2)n (0)4
2 (12)(23) ... (n —ln)(nl) ’

corresponding with the colour structure 2 (fliOj ... a„). The ©-function 
colours c, d and gluon > and the q the — helicity reads

_________ <?*>3<?*>_________
(91)(12)(23)...(n — 29)(99)’

and it corresponds with the colour structure ... an_2)ea. The f-function for a qqrf+ 
ng process and all gluons the + helicity, with the colour assignment, (9,Ci), (9, c2), (r, ca) 
and (f,c4) reads

S(qqrr\ 1... Z; Z+l... n —4) =
, K \ ^(A„Ar) (9r) (r9)
k ’ {QQ}{rr} (91) ... (Zr) (rZ+1) ... (n-49)

corresponding with the colour-structure |(a] ... a/)clC4(a;+i ... a^)C3CJ and

£(99rr; 1 ... Z; Z+l... n —4) =
—(yz2)n~l+(A,, Ar) (qq)__________ (rf)

N {qq)(rr) (?1) • • • W) (r Z+l) ... (n-4r)

corresponding with the colour-structure |(a! ... a()eiC3(a(+i ... an_4)C3<:i. 
are given by

A(+,+) = («r)2, A(+,-) = -(9r)2, 4(-,+) = -(9r)2, A(--) = (9r)2.

This result was also obtained in (12]. Note that on grounds of N = 1 supersymmetry 
the expressions for the special helicities, eq. (10.6.1)-(10.6.4) can be derived from each 
other [8, 13].

©(+; 12... n—2; —) =
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Appendix A: Matrix elements and computers

SPHEL

MCHEL

mg 0
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10.5
107

I

4 quarks [ 6

For the parton matrix elements the usual distinction has been made between the 
matrix elements according to the number of quarks. Table A.l contains the CPU-time 
needed for one call to a matrix element, for the exact matrix element as well as for the 
SPHEL and MCHEL approximations. Because of the simple form of the special helicities 
and the fact that the colour matrix is diagonal SPHEL is by far the fastest method. The 
SPHEL entry is lacking in the six quark case because then there is no special helicity as 
we defined it. As an extra entry we included the timing for some massive quark cases. In 
that case the most general recursion relations have to be used, even for some five parton 
matrix elements.

The next step is to examine how many times the basic matrix elements have to be

Method
EXACT 0.222 

3.16 
67.2 
6100
0.9 
1.1 
1.4 
2.1 

0.222 
3.32 
42.1 
1520 
18.0
86.2 
1120 
18000

0 quarks 
0.117 
0.34 
78.8 
6300 
0.36 
0.72 
2.20 
11.0

0.117 
0.34
8.3 
132

nr. jets
2
3
4
5
2
3
4
5
2
3
4
5
2
3
4
5

In this appendix CPU-time tables are presented for the multiparton matrix elements. Such 
tables are relevant when one wants to examine whether a certain statistical precision can 
be obtained in a Monte Carlo simulation with the computer resources one has at hand. 
The timing was done on a VAX 3500 with the matrix elements from the n-jet Monte Carlo 
program NJETS. In a Monte Carlo integration one event on the hadron level represents the 
sum over all possible subprocesses on the parton level. First we look at the CPU-times for 
parton scattering amplitudes and count how many times they need to be evaluated in a 
physical process. Finally we compute the time needed for one collider event in table A.3.

2 quarks 
0.088 
2.61 
103.0 
7400 
0.32 
0.58 
1.30 
4.50 
0.088 
2.61 
27.9 
510 
10.2 
63.2 
703.0 
11750

Table A.l. CPU-timing of multiparton matrix elements in msecs on a VAX 3500



6 quarks

Table A.2. Number of calls to the basic matrix elements per hadronic event.

6 quarks

SPIIEL

MCHEL

Table A.3. CPU-time per event in milliseconds on a VAX 3500.
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120
2500

28
330

3 
5

respectively qq. complication is that the matrix elements with four and six 
two respectively five different flavour combinations. These combinations are 

.'d at the same time.

od
EX -CT

0 quarks
0.34
0.56
80

6300
0.61
1.0
3.0
12.0
0.34
0.56
9.8
230

2 quarks
4
4
4
4

2 quarks 
L2 
11 

410 
30000 

2.1 
3.2 
5.8 

18.7 
1.2 
11 

110 
2150

4 quarks 
L8 
19 

410 
36500 

5.8 
6.8 
9.1 
13 
1.8 
19 

260 
9300

time/event
33
31 

1000 
75000

8.5 
11.0 
17.9
44
3.3
31 

410 
12000

0 quarks
1
1
1
1

4 quarks
3
5
6
6

nr. jets
2
3
4
5

nr jets
2
3
4
5
2
3
4
5
2
3
4
5

From tables A.l and A.2 we establish table A.3 by means of multiplication. For the four 
and five jet cases the CPU-time needed for the exact matrix elements is really considerable. 
Note that for the five jet case only the purely gluonic subprocess is analytically known.

From table A.3 we see that SPHEL is very fast compared to the exact expressions. 
For five jets it is more than 5000 times faster. As a concluding remark we note that it is 
hard to predict how many events are needed to get reliable results for quantities like the 
total cross section. The amount of events depends very much on the collider energy and 
the detector cuts imposed. In general a few thousand events which pass the phase space 
cuts, are the minimum.

used during the evaluation of one hadronic event. The number of times is equivalent with 
the number of different kinematical situations that can arise in the process. Of course 
use is made of all kind of symmetries such as flavour changes. The results are listed 
in tab A.2. For example in the case of two quarks and n gluons we always have four 
differ .ematical situations. Looking at the different initial states we find them to be: 
99, <J 
quart 
all c;.
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van materie in ter­
van de krachten die 

In dit proefschrift zijn we gei'nteresseerd in 
en gluonen, de bouwstenen van hadronen.

De fysica probeert de natuur zo fundamenteel mogelijk te beschrijven. De elementaire 
deeltjesfysica in het bijzonder houdt zich bezig met de samenstelling 
men van de kleinst mogelijke componenten en met de beschrijving 
tussen deze elementaire deeltjes bestaan.
de sterke kracht die bestaat tussen quarks
Deze bouwstenen worden aangeduid met de term partonen. De theorie van de Quantum 
Chromo Dynamica (QCD) wordt vanwege haar vele successen gezien als ■■ beste theo- 
retische modellering van de sterke kracht. Vooral de sterke aanwijzinger D kan
verklaren waarom quarks en gluonen niet vrij kunnen voorkomen maakt ekke-
lijk. Een groot nadeel van QCD is echter dat het buitengewoon moeilijk over-
gangswaarschijnlijkheden of matrix elementen van botsingsprocessen me nen.
In bepaalde omstandigheden, gerealiseerd in grote deeltjesversnellers zo >pS in
CERN en het Tevatron in Fermilab, mogen we een storingstheoretische ; ■ g van
QCD gebruiken. Met behulp van het partonmodel kunnen we in deze gevailen vocrspellin- 
gen doen voor hadron-hadron verstrooiingsexperimenten. In dit model zien we de botsing 
tussen de hadronen als een botsing tussen twee partonen. Voor de beschrijving van 
dit parton-parton botsingsproces gebruiken we storingstheoretische QCD. Dit is gerecht- 
vaardigd omdat door het hoog-energetische karakter van de botsing de storingsparameter 
as klein is. In veel gevallen kan zelfs volstaan worden met de laagste orde in as, de zo- 
geheten Born-benadering. Het feit dat experimenteel een bij de botsing ontstaan parton 
wordt waargenomen als een straal hadronen, aangeduid met de term jet, is een gevolg van 
het opgesloten zijn van quarks en gluonen binnen hadronen. Bij het doen van voorspellin- 
gen laten we dit fragmentatieproces echter achterwege aangezien daarvoor kennis nodig 
is van de precieze eigenschappen van de detector. De berekening van bovengenoemde 
laagste orde matrixelementen vormt het hoofdbestanddeel van dit proefschrift.

In hoofdstuk 2 besteden we eerst aandacht aan de bepaling van voorspellingen voor 
fysische observabelen bij hadron-hadron botsingsprocessen. Aan de hand van een gede- 
tailleerde beschrijving van het partonmodel komen we tot een numerieke bepaling van 
de totale werkzame doorsnede voor multi-partonproduktie. Met behulp van Monte Carlo 
integratietechnieken worden de daarbij voorkomende integraties over de parton impuls- 
frakties en over de veel-deeltjes faseruimte uitgevoerd.

De voor de berekening benodigde rekentechnieken worden afgeleid in hoofdstuk 3. 
De Weyl-van der Waerden-spinoren die we daar introduceren vervangen niet alleen de 
traditionele Dirac-spinoren maar zijn ook zeer geschikt om de polarisatievectoren van 
bosonen te representeren. Dit op gelijke voet behandelen van fermionen en bosonen



het aantal boomdiagrammen
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proce:,sen te beschouwen met alle deeltjes uitgaand zijn
parton ><rt .ssen met behulp 
het o-
8ePrc
voor

C
kelijk
ven w
blijkt dal SPHEL, een benadering die gebaseerd is op de berekening 
ciale heliciteitsamplitudes,

maakt het mogelijk de aanwezige ijkvrijheid in de polarisatievectoren van bijvoorbeeld 
gluonen optimaal te gebruiken. Tevens verlost het ons van het uitwerken van sporen 
van 7-matrices, een vervelende complicatie van de standaard Feynman-diagramtechniek. 
In een aantal voorbeelden demonstreren we de kracht van het Weyl-van der Waerden 
spmorformalisme en laten we zien dat ook buiten QCD het formalisme bruikbaar is.

In de hoofdstukken 4 tot en met 7 voIgt de berekening van partonprocessen waarin ten 
hoogste 6 quarks, maar een willekeurig aantal gluonen aanwezig zijn. Door de kleurstruc- 
turen in de QCD Feynman-regels te herschrijven in termen van Chan-Paton kleurbasis 
structuren vereenvoudigt de berekening van de matrixelementen op twee punten. Ten 
eerste behoort bij elke structuur in de kleurbasis een ijkinvariante subamplitude waar 
slechts een klein deel van de Feynman-diagrammen toe bijdraagt. En ten tweede is het 
mogelijk voor deze subamplitudes recursierelaties in het aantal gluonen te formuleren, 
uitgaande van een bepaalde quarkconfiguratie zonder externe gluonen. Door de parton- 

we in staat verschillende fysische 
van hetzelfde algoritme uit te rekenen. Dit is belangrijk met 

het snel groeiende aantal partonprocessen als er meer partonen bij de botsing 
rd worden. De resultaten van hoofdstukken 4 tot en met 7 zijn voldoende om 
en te kunnen doen voor m-parton produktie (2<m<5).
fe benodigde computer rekentijd voor de m=4 en m=5 gevallen is het noodza- 
ieringen te hebben voor deze multi-partonprocessen. In hoofdstuk 8 beschrij- 
een aantal en vergelijken we ze in detail met de exacte berekeningen. Het 

van een aantal spe- 
voor praktische doeleinden de exacte matrixelementen goed 

kan vervangen. Dit geldt zeker zolang de experimented fouten niet onder de 20% komen.
In hoofdstuk 9 bepalen we het aantal Feynman-diagrammen voor theorieen waarin 

slechts een soort deeltjes voorkomt. De zelfinteractie vindt plaats tussen ten hoogste m 
van deze deeltjes. Het blijkt dat, als het aantal externe deeltjes n groot is, het aantal 
Feynman-diagrammen zonder lussen groeit als (c™ n)"”2 (c„ < 1). Een interessant 
resultaat gezien het analytisch bekende groeigedrag van 
met n knooppunten: n"-2.

In hoofdstuk 10 geven we de analytisch bekende resultaten voor alle laagste orde 
processen in QCD met ten hoogste 7 externe deeltjes. De nadruk ligt op het numeriek 
gebruik ervan en in die contekst worden veel details vermeld.

De experimented analyse van multi-jetproduktie gaat gepaard met grote moeilijkhe- 
den en er is nog maar weinig aan gewerkt. In de hoofdstukken 1 en 8 doen we verslag 
van een vergelijking van voorspellingen voor vier-partonproduktie met de experimented 
resultaten van de UA2 groep op CERN. De overeenstemming is zeer goed wat de vorm 
van distributies betreft. Gezien de nog aanwezige moeilijkheden op zowel theoretisch als 
experimented gebied zal een kwantitatieve analyse nog wel even op zich laten wachten. 
Hierbij denken we met name aan de nog te bouwen Large Hadron Collider in Zwitserland 
en de Superconducting Super Collider in Amerika. Waarschijnlijk kan dan ook een be­
gin gemaakt worden met de analyse van vijf en zes partonproduktie waarvoor thans de 
experimented statistiek onvoldoende is.



Curriculum vitae

150

Na het behalen van het V.W.O diploma aan het Chr. Lyceum te Alphen a/d Rijn in 1980, 
begon ik aan de studie natuurkunde aan de rijksuniversiteit te Leiden. Het kandidaats 
examen natuurkunde met bijvakken wiskunde en sterrenkunde werd afgelegd in oktober 
1983. In december 1986 volgde het doctoraal examen in de theoretische natuurkunde met 
bijvak wiskunde. Tijdens de doctoraal-fase heb ik een experimentele stage gelopen in de 
groep Quantumvloeistoffen o.l.v. prof. dr. R. de Bruyn Ouboter. Het afstndeeronderzoek 
met als onderwerp " Processen in Quantum Gravitatie”, stond o.Lv. prof, dr A. Berends. 

verstrooiingsn ■ binnen
rgroep 
ng en 

L. van

Sinds januari 1986 heb ik met name onderzoek gedaan aan 
het kader van de Quantum Chromo Dynamica. Tijdens deze periode he’, 
theoretische natuurkunde vertegenwoordigd in de computercommissie v; 
gaf ik werkcolleges bij het college Veldentheorie en Padintegralen van 
Neerven.



List of publications

151

10. Four and six quarks in multiparton processes.
F. Berends, H. Kuijf and B. Tausk, Submitted to Nucl. Phys. B.

11. Enumeration of externally labelled trees.
M. Brummelhuis and H. Kuijf, to be published in Journal of Physics, A.

12. On the production of a W and jets at hadron colliders.
F. Berends, W. Giele, H. Kuijf and B. Tausk, to be published in Nucl. Phys. B.

1. Electroweak radiative corrections to e+e_ —» IV+W~,
M Bohm, A. Denner, T. Sack, W. Beenakker, F. Berends and H. Kuijf, 
Nucl. Phys. B304 (1988) 463.

cross sections and five jet production at hadron colliders, 
leiss and H. Kuijf, Nucl. Phys. B312 (1989) 616.

3 corrections to heavy-quark production in pp collisions. 
Beenakker, H. Kuijf, W. van Neerven and J. Smith, 

Ph ,s. Rev. D40 (1989) 54.

4. On relations between multigluon and multigraviton scattering.
F. Berends, W. Giele and H. Kuijf, Phys. Lett. 211B (1988) 91.

5. Exact expressions for processes involving a vectorboson and up to 5 partons. 
F. Berends, W. Giele and H. Kuijf, Nucl. Phys. B321 f 19891 39.

6. Exact and approximate expressions for multigluon scattering.
F. Berends, W. Giele and H. Kuijf, Nucl. Phys. B333 (1990) 120.

7. Jet production in W and Z events at pp colliders.
F. Berends, W. Giele, R. Kleiss, H. Kuijf and J. Stirling, 
Phys. Lett. 224B (1989) 237.

8. On six jet production at hadron-hadron colliders.
F. Berends, W. Giele and H. Kuijf, Phys. Lett. 232B (1989) 266.

9. Jets at the LHC.
F. Berends and H. Kuijf, to be published in Nucl. Phys. B.

2 igluon
R



STELLINGEN

5. Voor de berekening

M2

M4

Me

As

Mio

M12

M14

= 3

= 2.831177207208337..
= 2.775591142350911..
= 2.744458210180004..
= 2.724799017563782..
= 2.711252338667630..
= 2.701374267979759..

2. De bewering dat 
betere keuze kan maken 
nog onjuist.

1. Met behulp van Weyl-van der Waerden spinoren is het eenvoudig om heliciteitsvec- 
toren voor massieve spin-1 deeltjes te construeren.

Hoofdstuk 3 van dit proefschrift.

Gezien de schatting = p = 2.63815... voor een SAW op het vierkante rooster 
is het praktisch onmogelijk op deze manier p nauwkeurig te bepalen.

6. Voor de effectieve connectiviteits constante pm, behorend bij een wandeling op het 
vierkante rooster, waarbij M het aantal stappen aangeeft waarna de wandeling weer 
over een reeds gepasseerd punt mag gaan, vindt men de volgende waarden:

van tweede orde begintoestand QED correcties in de 'leading 
log’ benadering op de totale werkzame doorsnede voor Bhabha-verstrooiing onder 
kleine hoeken, kan men niet volstaan met het slechts bepalen van die correcties die 
verkregen kunnen worden met behulp van een zgn. fluxfunctie aanpak.

men door de berekening van hogere orde QCD-correcties een 
voor de renormalisatieschaal p, is behalve misleidend ook

4. Verstrooiingsprocessen waarbij een leptonisch vervallend W''-boson in combinatie 
met vier jets geproduceerd wordt, zijn ondanks de geringe experimentele nauw- 
keurigheid van groot belang voor het vinden van het top quark in hadron-hadron 
botsingsexperimenten.

3. Om door middel van metingen aan het proces e+e~ —> W+W~ bij LEP 200 de 
betrouwbaarheid van het Standaard Model te kunnen toetsen, is het noodzakelijk 
de waarden voor de massa en de breedte van de vectorbosonen zeer nauwkeurig te 
kennen. Dit geldt in het bijzonder als men de vorm van de niet-abelse interacties 
wil controleren aan de hand van dit proces.

Bohm et al., Nucl. Phys. B304 (1988) 463.



7.

8.

1,... ,n met K(Gegeven n impulsen K-^i 0. De stroom9.

is behouden, dat wil zeggen

1/(1,..., n)/cM(l, n) = 0.

Hierbij is de volgende definitie gebruikt:

10.

Martin, CERN-TH 5523/89

11.

Kasparov is de laatste echte schaakwereldkampioen.12.

J.G.M. Kuijf, Leiden, 20 februari 1991.

m n \ m n—1’

ek-- e *7 n«2(»>") n ^(m) 
k«=l t'=m+l / i—2 t‘=m+l

«"(i, j) = E K^. 
m=i

1/(1,...,n) = E 
m=l

Bauer, Glover en

De eerste orde correctie van meer dan 100% in het verstrooiingsprocess gg —r QQ 
(zware quarkproductie d.m.v. gluon-fusie), betekent niet dat de storingstheoreti- 
sche benadering faalt voor de berekening van dit proces.

Beenakker et al., Phys Rev. D39 (1989) 54.

Voor de berekening van speciale heliciteitsamplitudes in graviton-graviton verstrooi- 
ingsprocessen is het mogelijk recursierelaties in het aantal gravitonen op te stellen 
en op te lessen. Het is echter niet mogelijk voor het algemene geval recursierelaties 
te formuleren.

Door het sterk gepiekte gedrag van de multi-parton matrixelementen is de "hit or 
miss" Monte Carlo techniek om de veel-deeltjes faseruimte integralen uit te voeren 
in de praktijk onbruikbaar.

De bewering dat het meenemen van de interferenties tussen Drell-Yan en QCD 
processen het verschil tussen de voorspelling gebaseerd op Drell-Yan alleen en het 
experimentele resultaat voor het twee-jet invariante massa spectrum verklaart, is 
onjuist.


