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CHAPTER I

INTRODUCTION

1. Preliminary remarks

In this section we sketch the way in which the topics of this thesis shouid -
be seen in the context of elementary particle physics. In this field one
encounters for instance the following problems: .
How can one establish the existence of a particle? What properties do these A
particles have?
Is it possible to decide whether such a particle is elementary or composite?
A part of these problems is how to extract information from experimental data,
or in other words, how to translate this information into theoretical relevant
quantities.

When one knows more about the existence and properties of certain
particles and when one can decide whether those particles are elementary or
composite, one can try to develop theories that describe these particles or
predict their existence.

In this thesis two topics will be studied. The first topic is concerned
with the extraction of information from the experimental data, the second one
has to do with the construction of theories that describe massive or massless

particles with spin.

We first sketch both problems more specifically. Later in sections 2 and 3

they will be discussed in more detail.

In elementary particle physics most of the information is obtained from

scattering experiments. The quantities which one measures, such as the

differential cross section and the polarization both are functions that depend

on the energy and scattering angle. On the other hand these observables are

also related to theoretically more relevant quantities like scattering

amplitudes. These scattering amplitudes are complex valued functions which in

quadratic combinations give rise to a differential cross section and

polarization. .
There exists a procedure, called phase-shift analysis or amplitude-

analysis, which aims to determine the scattering amplitudes from the

experimental data. From the properties of the amplitude one can for instance - ﬂ:

7 -




establish the existence of a particle or deduce what the interaction between
the scattered particles has been. When an unstable particle, a so-called
1 resonance, is produced, its mass, lifetime and spin also follow from the

K phase-shift analysis. Thus a large number of unstable particles were

discovered by these analyses.
Ll One may now ask, whether the amplitudes which are obtained from the

experimental data are unique. Some ambiguity is expected, since these data

necessarily have statistical errors. But even when these data are supposed to
be exact, the mathematical question can be raised if the amplitudes are

- determined unambiguously.
- A negative answer could mean that certain resonances do not exist and

others have been overlocked. Because of this possibility it is interesting to
. study the mathematical question of the existence of so-called phase-shift
! ambiguities. In section 2 we shall discuss this problem in more detail.
—> The other topic has to do with the construction of theories with which
certain particles can be described. Once the existence of particles with a
) specific mass and spin is known, one wants to set up a theory that describes
i them. One will most often try to develop a quantum field theory. In such a
theory the various particles are represented by fields. The different
< properties of these particles are carried by the so-called Lagrangian, a
gquantity that depends on these fields and their derivatives. One part of this
Lagrangian describes the free particles and another part the interactioms
between them.
Ly The commonly used and accepted theories contain massive or massles
5 particles with spin 0, 32 or 1. However, when one wants to construct theories
for higher spins one runs into problems. Even if only free particles with
spin higher than 1 are considered,pecularities arise in the field theory. In
this thesis the origin and characteristics of these phenomena will be traced.

In section 3 this problem will be discussed in more detail.

2. The scattering emplitude, its physical meesning and possible ambigumities

: Much of the knowledge about elementary particles and their interactions
has been obtained by means of scattering experiments. In such experiments one
measures quantities like the cross section %g-and, vhen spin is involved,
observables like the polarization.

In general, when the interaction between the particles is known, one can,
within the framework of quantum theory, caleulate a complex valued quAntity,

the so-called scattering amplitude F(k,x) where x = cos 8, ® the scattering

; 8
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angle and k the centre of mass momentum. This complex valued function is
related to the differential cross section in the well known way

K2 2= px,x)]2 . (2.1)

With this relation one can, of course, calculate the differential cross
section. And thus one is able to predict and to check the results of a
scattering experiment.

On the other hand, when knowledge about the interaction between the
scattered particles is absent, one must reverse this procedure. First one
tries to find the scattering amplitude from experimental guantities like the
differential cross section. Because the differential cross section only
involves the modulus of F(k,x), one has to determine its phase. This problem
would be solved if experimental methods were available to obtazin this phase.

Goldberger et al [1] proved that it is possible to determine the phase of
F(k,x) by measuring intensity correlations of particles, scattered at
different space time points. However, such experiments, especially in
elementary particle physics are extremely difficult to perform.

Thus the phase of the scattering amplitude may be regarded as a guantity
that cannot in general be measured. Therefore one must try to find the phase
by means of additional principles such as the constraints of unitarity, which
will be discussed more explicitly in the next chapter. When the amplitude is
known one can deduce knowledge about the interaction from it and in particular
one can establish the formation of a resonance.

The construction of the scattering amplitude from the differential cross
section and The constraints of unitarity gives rise to some rather general
questions. In particular, one may ask under which conditions the solution is
unigue. This question has been answered only partially [2] . It is well known
that the solution is not always unique i.e. that there exist so-called phase-
shift ambiguities. One may then ask how many unitary amplitudes correspond to
the same differential cross section, and how these amplitudes can be
explicitly constructed.

In this thesis we shall consider several aspects of the existence and
construction of phase-shift ambiguities.

The outline of this part of the thesis is as follows. Before we start our
discussion of phase-shift ambiguities, we want to introduce the subject by
making a few remarks about scattering theory. We shall also summarize the
main results that have been obtained in connection with the questions raised

above. This will be presented in chapter II. In the same chapter we shall

discuss the mathematical restrictions by which we are able to present our
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problems more clearly.
In chapter III we consider the construction of different unitary

amplitudes, which corresrsnd to the same differential cross section.
Examples of such phase-shift ambiguities have been found only for rather
special cases. We shall show that these results can be considerably
generalized. Moreover this generalization reveals properties of phase-shift
ambignities that were absent in the previously known examples. These
properties will be discussed in detail.

So far we mentioned only scattering of spinless particles. In case spin
is involved, more experimental quantities, like for instance the polarization
play a role.

In chapter IV we discuss the possibility of constructing differsnt
amplitudes, which give the same differential cross-section and polarization.

Again we shall generalize the results that have been obtained for the case of

spin-0 spin-i scattering.

3. Field theories for particles with higher spin

As was noted in the previous section, much knowledge about the existence

and properties of particles, elementary or composite, has been obtained from

scattering experiments. On the other hand, when the existence of these

particles is known, one wants to develop theories that describe the properties
of the various particles and the interactions between them. Such theories are
called quantum field theories.

‘In a quantum field theory each particle is associated with a so-called
operator field. The fields satisfy differential equations or field equatioms
which contain the dynamies of the system of particles.

In many cases one can in first instance forget about the operator
character of the field. One then speaks about a classical field theory. The
transition from a classical field theory to a quantum field theory is called

quantization. For the various ways in which a quantization can be performed

we refer to the textbooks [3].

Perhaps one of the main problems in field theory is the construction of
field equations describing a system of interacting particles. 8o far, the
only acceptable interacting field theories exist for particles with spin O,
3 and 1.

If one does not consider the interactions between the particles one speaks
of free field theories and free field equations.

10
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In this thesis we shall restrict ourselves tc the comstruction of free
field theories within the framework of classical field theory. The
construction of a free field equation for a particle with mass m and spin s
must be done in several steps. First we must make a choice for the field
function. 1In case of a particle with integer spin s we choose a sympetric s
rank tensor field ¢u1...us(x), or shortly ¢m(x), where w represents the set
of indices M3...Mg. Half integer spin particles can be represented by a
symmetri¢ tensor-spinor wu oo (x). Then we must construct the fieid

. . - '8 .
equation which should be satisfied by the field ¢m(x).
Here we are restricted by several requirements:

i) According to the special theory of relativity physical laws should be the
same in every ineriial system. Since different inertial systems are
connected by a Lorentz transformation, the field equation should be

Lorentz covariant.

ii) It is well known that a massive particle with spin s gives rise to 2s+1
independent spin states s, s-1, ..., -s. Consequently the field ¢w
should have 2s+1 independent components. In case of massless particles
this number of components is even reduced to two, according to the two
different spin states *s for a massless particle.

As we shall see in more detail in chapter V, the field ¢m turns out to
have a number of superfluous degrees of freedom. These superflucus
components are eliminated by a set of subsidiary conditionms.

This fact can also be understood from a different viewpoint. According to .
the theory of representations, the irreducible representation of the
inhomogeneous Lorentz group can be labeled by two numbers m and s
interpreted as the mass and the spin of the particle. Such a representation
is carried by some field function ¢m. Since a symmetric rank s tensor
field does not carry in general an irreducible representation of the
inhomogeneous Lo.entz group, a set of subsidiary conditons is required to
eliminate superfluous components of this field function. Then the

remaining components carry the irreducible representation.

As is well known, massive particles with integer spin s are described by a

symmetric temnsor field ¢u u (x), which satisfies the Klein-Gordon
1-°-ks




equation
(3.1)

(u-mZ)’"l- u (X) =0,
**¥s

and the subsidiary conditions

¢AAU3---US(X) =0,
and {3.2)

al¢KU2---ux(X) =0.

For helf-integer spin particles the symmetric tensor-spinor ¢u1 - {x)
---¥s

satisfies the Dirac equations
(3.3)

(iv,a,m, () =0,

and the subsidiary condition

=0
YAwAuZ"'us ]
and (3.4)
2% uz..oug - 0
The requirements mentioned before are satisfied in both cases.
On the other hend, Fierz and Pauli [4] and Dirac [5] investigated the
possibility to comstruct a field equation, equivalent to {(3.1) and (3.2). For

instance, & spin-1 particle can be described by the Proca-equation

0é -3 3¢ =m¢ . .
¢u u iy =@ ¢u (3.5)
By contraction with au we get the subsidiary condition
] =0 .2
u¢u (3.2)
and the Proca-equation reduces to the Klein-Gordon equation
(3.1)

This shows (3.5) to be equivalent to {3.1) and (3.2).
For higher spins, however, the construction of the field equation becomes

much more difficult. In this thesis we shall use the root method with which

higher-spin field equations can be comnstructed.
Once we have a field equation it is useful to try to derive it from a more

general principle which is called the principle of least action. The main

facts concerning this principle can be found in the textbocks [3]. A central

role is played by the Legrangian L , a Lorentz covariant scalar function,

12
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depending on the field and its derivatives

L= L, (x), 34,() . (3.6)
From the action principle follow the field equations, or the Euler-Lagrange
equations

aL oL

_ au(—————) = 0. (3-7)

3¢m 3(3u¢m)

Although the principle of least action leads to the same field equation,
knowledge of the Lagrangian is very valuable for various theoretical
considerations like invariances, quantization and inclusion of interactionms.

It is difficult to introduce interactions in the system of eguations (3.1)
and (3.2), but in the Lagrangian an interaction can be introduced explicitly.

The outline of the remaining part of this thesis is organized as follows.
In chapter V we explain the main characteristics of the voot method. 1In
particular we shall show that the root method leads to the free field equations
(3.1) and the subsidiary conditions (3.2). Furthermore, we shall discuss the
relation between the field equations of massive and massless particles.

In chapter VI the root method will be applied explicitly for the case of
spin 1, 2 and 3. We shall construct a field equation and Lagrangian for
massive particles. We shall also show how a massless field eguation and
Lagrangian can be obtained from massive field equation.

In chapter VII the relation between massive and massless field equations
is investigated in more detail. In particular we shall compare the expression
for the amplitude, describing exchange of a particle between two external
sources, 'in both the massive and massless case. It will be shown that the m*0

limit leads to various problems.
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CHAPTER II

PHASE-SHIFT AMBIGUITIES, SUMMARY OF THE MAIN RESULTS

1. Some remarks about scattering theory

We first introduce some quantities with which we shall deal throughout this
part of the thesis.

In a scattering experiment a target is bombarded with a beam of particles.
One measures the number of particles, scattered in a given direction. This
direction can be specified by two angles 6 and ¢. Let Ny be the number of
incident particles per unit area and per unit time, and ¥ the number cf
scattering centres present in the target. Then one finds the following

expression for the number of scattered particles per solid angle df) and per

unit time:
N(e,¢)=N0N%ﬂ‘ldn, (1.1)

where the factor g% is called the differential cross section. The total

can be calculated by integrating over the whole solid

cross section Utot
angle
= | (2=
Tiot = J (dﬂ) ae . {1.2)

In the framework of scattering theory, the differential cross section is
closely related to the interaction between the incident particles and the
scattering centres. For instance in the case of non relativistic elastic
scattering between spinless uncharged particles, where the interacticn is
described by a spherically symmetric or central potential V(r), the
asymptotic solution of the Schrﬁdinéer equation takes the form

¥(r,0) = & + F(k,0) e::r : (1.3)

This solution contains a part describing the incident particle and another
part describing the scattered particle. The scattering amplitude F(k,8)
depends on the potential V{(r). In the centre of mass system (c.m.s.) the

incident particle has a reduced mass U, & kinetic energy E and momentum

k = V2)E,
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It was mentioned in the introduction that the dimensionless amplitude

F(k,0) is related to the differential cross section as follows:
k2 %%-(k,e) = |F(k,0)|2 . (1.4)

The question of determining the potential that describes the interaction
between the particles can be thought of as consisting of two parts. First

one has to obtain the scattering amplitude from the differentidl cross section.
Then one may try to determine the potential V(r) from the ampiitude F{k,8). In
this thesis we only discuss how F(k,8) can be obtained from the differential
cross section.

%%~ only determines the modulus of F(k,8).
However, F(k,0) must satisfy another relation. This relation results from an

Of course, as (1.h4) shows,

importunt principle in the theory of scattering, which is called conservation
of flux or conservation of probability. In case one describes scattering
within the framework of S-matrix theory rather than in terms of potential
scattering this principle is equivalent to the unitarity of the S-matrix. Imn
both cases, but only for purely elastic scattering, we get a relation for

the scattering amplitude, which may be represented in integral form
1 *
Im F(k,012) = - | a3 F(813)F (83) (1.5)

vhere the integration has to be carried out over all values of the solid
angle Q3 and where 1 and 2 denote the unit vectors in the initial and final
direction, whereas 0;, denotes the angle between those vectors.

When we evaluate (1.5) for 8;,=0, we obtain a simple relation between
the total differential cross section (1,2) and the imaginary part of the

scattering amplitude in the forward direction
2 =
k%, (k) =hn Im F(k,0), (1.6)

showing that in the forward direction the phase of the scattering amplitude
can be determined by an experiment.

The problem we shall discuss in this thesis can be formulated as follows:
is it possible to determine the phase of F(k,6) by using the unitarity
constraint (1.5), when one has perfect knowledge of the differential cross
section, or, equivalently, of the modulus of F(k,0)?

It should be stressed here that this problem is formulated for an ideal
situation, because a perfect knowledge of IF(k,G)l is supposed here. In any
actual experiment, this is not possible because every measurement of

|P(x,0)| is accompanied by experimental uncertainties.

15

1




Lt

s

N

e A T ¢ ey

~

ot 2T

For our purposes it will be convenient to reformulate slightly the
problem of determining the phase of F(k,8). Due to the spherical symmetry of
the scattering potential V(r) one also can express F(k,9) in terms of Legendre
polynomials or, equivalently, in angular momentum eigenfunctions.

Putting x = cos 6

-]
F(k,08) = § (2841)f,(k)P,(x) , (1.7)
L PAL)
2=0
where the f2 are the so-called partial waves.
It now is possible to rephrase the unitarity condition (1.5) in terms of

the partial waves fz. For all £ = 0,1,2,.-.
2 - .
£, (k)[% = m £ (k) . (1.8)

Consequently, it is possible to show that fl is determined by only one real

parameter 62 which is called the £-th phase-shift

216, (k)
-1). (1.9)

1
fz(k) =23 (e

One easily verifies that (1.8) is satisfied ts (1.9).

Thus we can restate our problem in terms of the phase~shifts 52: find all
different sets (6p, 83, ...) of phase-shifts, each 62 being defined by (1.9),
giving the same modulus |F(k,8)| of the scattering amplitude F(k,8).

A remark should be made about the case of inelastic scattering, which
will not be discussed in this thesis. When the energy exceeds the first
inelastic threshold, scattering experiments are specified by a different
number of particles in the initial and final state. In this case the unitarity
constraint for the scattering amplitude takes a different form.

In terms of the partial waves and phase-shifts, this condition reads

2is, (k)

fz(k) = é%'(nl e - 1) (1.10)

with 0 < n, < 1, for all f-values.
For purely elastic scattering n, = 1 for all 2-values. In general, however,

fl is determined by two real parameters: the inelasticity n, and the phase-

shift 61.

Finally we want to discuss the polynomial expansion (1.T7) of F(k.8). 1In
the case of elastic scattering and in the presence of a central scattering

potential one can prove quite generally that the higher partial waves behave

exponentially as
ot (1.11)
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A condition for this property is a sufficiently fast decrease of the potential
with the radial distance r, which is for instance the case for the Yukawa
potential.
The most important contribution therefore comes from the lower partial waves.
In practical phase~shift analysis, i.e. the procedure to extract partial
wave amplitudes from the experimental data, one usually assumes, that the
partiael waves are zero for values of £ greater than some L. Then the ampiitude
is a polynomial in x = cos 6 of degree L.

L
F(k,0) = § (22+1)8, (k)P (x) .
2=0

{(1.12)

This expression is clearly an approximation of the exact behaviour of the
partial waves mentioned above. Nevertheless one may expect it to be reasonahly
good in practice, particularly if a is sufficiently large (cf. equation
(1.11) ). Moreover it has the great practical advantage of reducing the
number of parameters in a phase-shift analysis from an infinite to a finite
number.

In this so-called "polynomial case" one may study the construction of
phase-shift ambiguities for small L-values. Once one has obtained more
insight in these lower L cases one may try to generalize these results to
arbitrary L. However, it should be stressed again, that the case of a
polynomial smplitude is only an approximation of the exact situation, where

one has an analytical amplitude and therefore an infinite number of partial

waves.

2. Existence and uniqueness of solutions

The problem of determining different amplitudes with the same modulus that
satisfy the unitarity condition (1.5) has one trivial solution. Once an
amplitude F(k,08) is given, it is clear that both F(k,8) and F(k,e)* have the
same modulus and obey the condition (1.5) due to unitarity. This exampie is
called the trivial ambiguity and it can be obtained by reversing the signs of
all the phase-shifts 61 >~ 62 (cf. eq. (1.9) ). This ambiguity can be
removed by using analiticity with respect to energy, which will not be dis-

cussed here.
We are only interested in non-trivial ambiguities. Therefore all our

statements will be modulo the trivial ambiguity.
Ve consider again the unitarity condition in integral form (1.5)
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Im F(x35) = 'l:—“ Idﬂg F(xlg)F*(xsz)

with x35 = cos 83, .
Let $(x32) be the argument of F(x;5). Thus (1.5) takes a different form:

-

sin lp(xlz) = dﬂg'F(xla)'F(X32)IcOS[l‘,‘(X13)—w(x32)) - (2.1)

bn|F(x;2) | J
This equation defines a non-linear mepping of a function space onto itself. In

fact it can be written as follows
' = Ay, (2.2)

where the non-linear mapping A is defined by the inverse sine of the right-
hand side of (2.1).
When the modulus of the scattering amplitude is known, one would like to

answer the following questions:

1) Under which conditions does equation (2.1) have a solution?
2) Vhen is this solution uniqué?
3) Furthermore, if there is more than one solution or a phase-shift ambiguity,

how many different solutions do exist?

It has already been noticed in the introduction that the first two questions
have only partially been answered.
By introducing the quantity

1
sin p: = sup _ J a0 |F(x;3)F(x33)| (2.3)
“1sxpp< 1 4n|P(xip)|

and by using convenient sets of functions and techniques from non-linear
analysis, 1like Schauder's theorem and the contraction mapping principle, it is
possible to prove the following results (Newton, Martin, Atkinson et all [1] ).
(i) There exists at least one solution of (2.1) , if sin u < 1 (2.4)
(ii) Equation (2.1) has & unique solution, if sin u <.0.79. (2.5)

It must be stressed that the inequality (2.4) is very restrictive, because it

implies for the phase-shifts

8, < % , for all & . (2.6)

Therefore this result may only be of interest in the case of purely elastic

scattering at very low energies.

18
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3. Phase-shift ambiguities in the polynomial case

In the last section existence and uniqueness of the solution of equation
( 2.1) were discussed. Here we want to list a number of results conceraing
the situation where the scattering amplitude is approximated by a polynomial
of degree L.

It has been shown in this case that besides the trivial ambiguity also less
trivial examples of ambiguities exist (see refs. [2] and [3]).‘ Their
existence was proved, however, only for the very special case L = 2,3.

It was also proved that for the polynomial case conditions exist under
which the phase-shifts are uniquely determined by the differential cross
section.

We summarize these results as follows:

(i) A non-trivial ambiguity was first discovered by Crichton for the
polynomial case [2] .
He considered the case L=2 and he showed that the two sets of

phase~-shifts
8, = -23%20" 8, = -u3%7" 8, = 20° (3.1)
8y = 98°50" 8! = -26°33" 83 = 20°

give exactly the same differential cross section.
Moreover two sets (8p,6;) and (6},8]) correspond to any §,-value in the
interval [12°32', 24%' ] , varying continuously with §,, that still give

different scattering amplitudes F and F' with the same modulus.

(ii) A method for constructing phase-shift ambiguities for higher I-values
was given by Berends and Ruijsenaars [3] . With this method they were
able to construct all the different phase-shift ambiguities for the
1=3 case.

Again they found two different sets of phase-shifts (8(,61,82,83) and
(66,6{,6&,65), each phase-shift §, or 5& being a continuous function of
only one parameter p, which can take velues in some interval.

When p varies in this interval (89,6;,65,83) and (8},8],83,8}) both form
curves in a h-dimensional space, which are closed {mod ). A similar

property holds for the Crichton ambiguity as well.
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(iii) Moreover it was observed (see also ref. [3]), that there were never
more than two solutions in the case L=2,3.
In the L=l case too it was shown by Cornille and Drouffe [4] that the

maximum number of solutions is again 2.

(iv) Finally it was shown by Martin [5], that the amplitude is uniquely

determineé by its modulus, if

sin p < 1 (3.2)
or if

a <-"l-1 38 (3.3)
tot kz ’ *

Y}, Spin-0 - spin-} elastic scattering. Summary of the main results

In high energy physics much attention has been given to scattering
experiments involving mesons with spin O and nucleons with spin 3. In this
case, one can measure besides the differential cross section different
experimental observables such as the recoil nucleon polarization P.

Since we consider the strong interactions between those particles, parity
is conserved. Therefore we have to specify an eigenstate by two quantum
numbers: j for total angular momentum, and

£ for angular momentum.
We denote an angular momentum eigenstate with %%, when Jj= £2i.

In terms of these Jyuantum numbers both differential cross section and
polarization can be described by two complex functions of x=cos 6 and k where
8 is the c.m.-scattering angle and k is the c.m. momentum. These two functions

are in turn given by the following expansion

(0 = {(lﬂ)fl_‘_ . Efz_}Pl(x) (h.1)
ap,(x)
P 2 3 —2— (4.2)
glx) =1 Z T (1-x2) ax
=0
The so-called partial waves f£+ satisfy
2ié
= L -1 2%
Tpe =35 (Bga=1)=57 (g, e -1 (4.3)

with 62: real and 0 < PP 1.

When one only considers elastic scattering, the unitarity condition simply
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implies that ng, = 1.

T Differential cross section and polarization are then given by

k2 S8 = [2(x)]2 + [a(x)]2 , (h.4) -

*
= 2Re f(X)L(X) . (h-S)
J£(x)]2 + |g(x)]?

The problem is to investigate how many different pairs of amplitudes f{x) and

g(x), satisfying the unitarity condition, correspond to the same differential

cross section and polarization. .
Here we shall restrict ourselves again to the case where f(x) and g(x) are (

given by finite partisl wave decompositions

L
£(x) = zzo {(2.+1)f2+ + R.fz_}Pn(x) , (4.6)
} L 3 @P,(x)
& glx) =i} (£, -, )(1-x2)F —— . (4.7)
4} 2=0

If we have a finite number of phase-shifts, one may ask the question
) whether different sets of phase-shifts (60,61,...,6L) and (66,6{,...6£) exist,
which give the same differential cross section and polarization.

There exist three well-known examples of ambiguities for arbitrary L. They

are characterized by the following transformations

(i) Reflection. Gé = -§ or

2' 3>
(4.8)
£1(x) = -£ (x); e(x)' = g (x).

(ii) Minami [6]. 8), = §(, 1y > 8} = 8(y 1), » OF
£'(x) = xr(x) + i(1-x2)%y(x) (k.9)

—i(1-x2)%f(x) - xg(x).

it

g'(x)

i

(iii) Yeng [7) . f£'(x) = £(x) g'(x) = -g(x). (4.10) (:\

Only the reflection and the Minami ambiguity satisfy the unitarity
condition |;£+| = 1. And therefore only these are of interest.
Furthermore, as one easily verifies, the experimental quantities transform

in each of these cases in the following way:

]
(%%) =3+ WP =P -
From these observations it is clear that only simulteneous application of the ;\:
Minami @mbiguity and reflection leaves both differential cross section and :f.
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polarization invariant [7]. This combination is called the modified Minami

ambiguity.

The modified Minami ambiguity is given by the following transformation:

8pe =~ S(ganyz > OF
£1(x) = —x£(x) + i(1-x2)%g (x) (5.11)
g (x) = xg (x) + i(1-x2)¥"(x) .

Besides this ambiguity less obvious examples have been constructed by

Berends and Ruijsensars [8]. In fact they found all possible ambignities,

giving the same cross section and polarization, for the case of S and P waves

only.
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CHAPTER ITI

PHASE-SHIFT AMBIGUITIES FOR SPINLESS ELASTIC SCATTERING

1. Introduction

As was mentioned in the previous chapter phase-shift ambiguities have
been constructed for the cases L=2,3 {1] . 1In particular for the case I=3
two sets of phase-shifts {8g,87,82,63) and (6',6;,65,65) have been found, both
giving two amplitudes F and F' with the same modulus. Moreover these phase~
shifts 6 . and 6!'2' are continuous functions on some real interval and at the
endpoints of this interval 6 g 2nd 61'?, become equal. Thus both sets {6 2} and
{s !'z'} form a curve in a l~dimensional real space. Since at the endpoints §, equals
§ 2' for all &, the corresponding pair of curves forms one closed curve {(mod =).

Of course an obvious question is, whether it is possible to construct
phase-shift ambiguities for arbitrary values of L., Before discussing this
problem, we first present a method by which, at least in principle, all
different sets of phase-shifts can be obtained.

If the amplitude F(cos 6) = F(x) is approximated by a polynomial of I~th

degree
L
F(x) = ) (22+1)f2P2(x) . (1.1)
2=0
one may also express F(x) in terms of its L complex roots 2192250+ 052"
L x-zk
F(x) = F(1) 1 (1_2 ) . (1.2)
k=1 k

It was observed by Gersten {2], that all different amplitudes with the same
modulus can be obtained by two types of transformations or by products of
them

*

(i) T. : z. + =z.
oot (1.3)

{ii}) S : Re F{1) + -Re F(1) .

Two such transformations A and B are called equivalent, if their product equsls
*
either the identity transform, or the trivial transformation F(x) + -F(x) .

This trivial transformation amounts to reversing all signs of the phase-shifts:
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61 > -62 for all 2. Therefore all non equivalent sets of phase-shifts can be
obtained for instence by considering only the transformations Ti' For
completeness we mention the unitarity condition again. According to this
condition and in the case of elastic scattering the coeffiecients fl in

equation (1.1) are of the form

-1=e -1. (1.4)
This expression differs from the one in the previous chapters by a factor 2i.
However, by a convenient redefinition this factor can be absorbed in the
amplitude F(x).

Summarizing, the problem of constructing phase-shift ambiguities can be

stated as follows:

(i) All different sets of phase-shifts (60,61,...,6L) giving different
amplitudes with the same modulus can be generated by complex conjugation

of one or more roots of F(x).

(ii) It must be checked, whether in all these cases, the partial wave

amplitudes £, have the form given by (1.4).

L
In the next section we consider the case of conjugation of only one root. A
method will there be discussed with which it is, at least in prineciple,
possible to construct all phase-shift ambiguities in case one root is
conjugated. This method also suggests generalization %o the case of
conjugation of more than one root. However, the equations that define the
ambiguities become partly by the increase of L and partly by conjugation of
more roots, much more involved. In spite of this complexity it can be shown
that rather simple examples exist for arbitrary L if only one root is
conjugated. '

Again the different sets of phase-shifts (60,61,...,5L) and (66,6;,...,6£)
will form curves in an IL+1 dimensional real space. These curves are
parametrized by only one real variable, which can take values in some closed
interval. However, these curves do not have the property of being closed
{mod ©) at the endpoints of this interval, as was noticed in ref. [1] .

It can ﬁe shown, however, that they will meet other curves which are
again defined by different phase-shift ambiguities. At least one of these
curves will appear to be closed. Therefore, in this extended sense, the

examples constructed here will still form closed curves (mod m).

2y
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2. Formalism for the construction of ambiguities

In the case of complex conjugation of one root we first want to derive
expressions for the coefficients fz or, equivalently, ) vhich explicitly
depend on the conjugated root z. Therefore we will write the amplitude F(x)

as follows:

F(x) = 32 P(x), (2.1)

P(x) being a polynomial of degree I-1.
Of course the transformed amplitude is ziven by

*
F'(x) = 2%, p(x) . (2.2)
1-2z
Obviously we have |F(x)| = |F'(x)| and the forward scattering amplitude F(1)

is unchanged.
Both F(x) and P(x) may be expanded in Legendre polynomials

L

F(x) = J (2041)f, P (x) (2.3)
2=0
L-1

P(x) = ] (20+1)(a,-1)P,(x) . (2.4)
2=0

Using the property

241 2
xRy (%) = 50aT Praq(®) + 5y Ppa () (2.5)
we find
X=-Z X-2 Lo
F(x) = 3 P(x) = == ;X (2241)(a,-1)P, (x) =
2=0
; L
= 22 {za,m + (xz+1)mﬂ+1 - (22+1)(1—z+z.a2)}Pl(x) (2.6)
0
where a, = 1 for £ > L and £ < 0 . (2.7)

According to the equations (2.6) and (2.3) we express the coefficients £,

in terms of the coefficients a, and the root z:

2
_ 1 2+1 R
o7 Rl (22+1 ®pe1 ¥ 2p1 %g-1 T Z“g) - 1. (2.8)

From (2.8) we get for the coefficients L, = f2+1:

1 (am 2 _
2 R (2z+1 %ge1 T BaaT %1 z"z) : (2.9)
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The coefficients !.( z) and the transformed omnes I l(z') both have to obey the

unitarity constraints:
lz,(2)] lc,_(z*)l (2.10)

lg,(z)] = 1 (2.11)

First we impose {2.10) and then (2.11). Equation (2.10) is satisfied, if,
for all &:

*( 2+1 | 2 _
I”"[ g (2z+1 ®pr1 ¥ Dawi “2—1)] =0.

can be parametrized in such a way that this condition is

(2.12)

The coefficients o,
automatically satisfied for all £.

As we shall see many different parametrizations are possible. These lead
to different representations for the ¢ I'e

We start with 2142 parameters: 2500507550050 ;- There are L equations
{2.12) , and if they are satisfied for 2=1,2,...,L, then {2.12) is
automatically satisfied for 2=0.

Therefore, by imposing these L conditions, the number of 2L+2 parameters
will reduce to L+2. These L+2 remaining parameters can be solved in terms of
one real parameter by using the I#1 conditions (2.11). We shall now indicate
how the representations in terms of the L+2 parameters are obtained.

We first consider (2.12) for £=L. In this case (2.12) reads

*
Imaa . =0. (2.13)
Since o = 1, we have elther ay 418 real or L 0. Obviously (2.12) for
2 =L-1 reduces to
* 4
Ima;_jo ,=0. (2.1%)

If in the former step two parameters were eliminated by choosing @ 1 = 0, then
this last equation (2.14) is satisfied for @; , complex. Hovever, if we
choose a4 to be real, this equation implies either o o 1S real or oy = 0.

Continuing in this way and by using successively the equations (2.12) one
can eliminate one parameter in each step. Suppose in this way {2.12) is
satisfied for ¢ = L,L-1,...,k+1 by choosing Op 1 O o res® g real, and
@,=0. In case £=k equation (2.12) reads

*f k+1, k
= + =0.
Im "k(2k+1 %er1 F 21 "‘k-1) 0 (2.15)

Obviously this equation is satisfied because o, = 0. Therefore there is mo
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restriction on @ q°

In case L = k-1 we have

* k k-1 _
Imo, 4 (2k-1 % ¥ 21 “k-e) =2

(2.16)

or

%
Im ak_1ak_2 =0.

This equation is satisfied if either @ ,=0ora , is complex with Q=
Aak , and A real or if e 1= 6. If we choose o 4 = 0, however, we eliminate
two parameters by using only one equation. Therefore only the possibilities
A o= 0 or LR Auk_1 with A real and o1 complex are allowed.
Consequently, it is impossible to have two subsequent a's, that both egual

zero. Moreover two or more subsequent complex a's will always have the same
argument. .

It should be noted that, when finally (2.12) is satisfied for £=1L,I-1,
..s+s1, then it is automatically satisfied for 2=0. This fact forbids us to

choose ag=0. It must be stressed too, that at least one of the coefficients

a, has to be complex. If all the coefficients a, are real, we simply get

the trivial ambiguity.

These arguments together with (2.12) give us a set of rules which enable
us at each step to decide whether some coefficient a is either complex or real
or zero. Thus many different representations of the g g? depending on Li#2
parameters, are obtained.

After imposing unitarity, Ir,zl = 1, all the partial waves will depend on
only one parameter for which we will choose Izl We first shall list the

rules.

(1) @ =@ = 1, therefore either a;_4 is real or a4 = 0.

(2) If for some £, a, is real,then either @y is real or @ 1= 0.

{3) If for some %, a2=0, then a, is complex.

(4) If for some £, a, is complex, then either a ,=0ora . is complex.

have egual arguments.

In case of a complex a both ay and a

-1 £-1

{(5) ap is complex.

It is convenient to use diagrams to distinguish between the different
representations of the oo These diagrams will be built up by means of three
differént arrows . Each arrow will be associated with one out of the

three possibilities for some coefficient ag. Explicitly for the f-th arrow
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ap real ay complex 1 a, = 0 ~rrne .
—
By using the rules (1) - (5) one can write down all the different
representations for ;0,;1,...,cL. Below we 1list all the different

possibilities up to I~5.

2
22 o= [§+ga1—z)
1 Ly = 1_z [3 “D'z“l] (2.17)
_ 1
5 o T 72 (a1 - zag)
Representation: a; = 0,ag complex
= 3
t2=15 (5-2) "‘"”l
¢
- 1
» 0o Gede
y 1
o to <77 (-2aq) -
i"' 1=3 General equations
: 1 (4,3
L3 = 1-2 [7*’7“2-2)
. 1 3,2
- Cz=T:;(§+§a1-zuz)
B 1 (2.19)
.“, C1=_1:‘E ( as + = ao—zal]
P 1
B ¢ === (a1 - 2a0)-
i a) ap = 0; a),a) complex; % ag = Aay, A real.
1
\ 3 =15 [7 z) """’l
1 3 2
2=15 (5+5a)
C =
~ L1 =75 (r-2)ey
4

;0 = -z (1-3*2)(!1 .
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; b) xo

a)

g3

L2

(5]

%o

a; = 0,ag complex
T
(% - zap)
1
(5 02 + 3 o)

(~ Z“o) .

General equations

Ty

g3

T2

%1

%o

Ty

T3

T2

(4]

%o

4

iy - -
= l]= 1= 1
[ [ N

1-2
1

1=z

=0,

L
(-g+§-a3-—z)
(E+§-a -za)
(%a3+‘§'01"zaz)
(%az'l'%ao-z“l)

(o1 - zag) .

2
ag,a;,03 complex; 5

2

3 2
2.
(3-2)
CR R
(A-z]uz v

(u-2)Za

(% A - (122“_2) zJap ¥

(%.‘._3_“2-2) —;-ml

(2.21)

{2.22)

(2.23)

29

.. o
i R

R ]

poe . BRI



B

b) ag real; a; = 0; ag,a; complex; %-ao = iy

1 Y
Ty =5 (%*303-2)

L3 = 112 [£-+ za3) s
Cz‘-‘ﬁ( "3"’_“1] l (2.24)
c1=£; (r-2z)ey l
to= 7= (1 - 3z)ay .
¢) aj,ap real, a; = 0,ap complex
@=ig (3+5ea-2)
C3=ﬁ( +"°2-Z°3) T
zp = 1—1; (E a3 - zaz) [ (2.25)
€1='11_z (%az“%“o]
Co=ﬁ (-za0) -
d) a; = a3 = 0; ay,ap complex
Cu']—:‘z“ (%'Z] ““"’*L
C3=T%; (%*-‘?‘az)
G2 = 7L (-a02) l (2.26)
&1 =T,1_; ( ap + 3 ag)
Co=1—1" (~za)

From these examples it is clear that the representations of the
coefficients ;E are determined by the following general structure for the Zy
3 . < < =
The first set of @ P oo sap w41 Br€ Teal (1 <k € I~1). Then @ = 0.

Finally we get blocks of complex coefficients a, which all have the same

FETERRL

arguments. These blocks alternate by coefficients a, which equal zero.

[3

We like to conclude this section with some remarks.
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(i) The L=2 case gives only one representation. By imposing |Zp]| = |z;] =
]ze] = 1, one will find the ambiguity, that originally was found by
Crichton [3].

(ii) 1In a similar way one can solve the case 1=3. Then one gets some of the

ambiguities constructed by Berends and Ruijsenaars [1].

(iii) Consdering the L=k case one immediately observes an increasing number of
representations. Although the equations |c1| = 1, will become more
involved for increasing L, the problem of conjugating one root cam in

principle be solved.

(iv) In spite of the complexity of the equations, the representation (2.26)
will appeer to be relatively simple. In the next section we shall show,
that it is possible to solve the unitarity relations Icll = 1 for this
representation and for all L> L and L even. If L is odd, this
representation has to be slightly modified to be able to prove, at least

locally, the existence of an ambiguity.

3. Existence of ambiguities for arbitrary L>L

The case of even L
In this part of this section we consider for L even the coefficients oo

vhich in general are given by

_1(9,+1 3

Bo T 1oz \ 20+1 %41 Y 2pe1 %1 T Z“g) . {(3.1)

The two sets {gz(z)} and {gz(z*)} both give different scattering amplitudes
with the seme modulus.

As was stressed earlier the cz(z) and Cz(z*) have to obey the unitarity
constraints. In particular for the coefficients ¢, these constraints can be
stated as follows: for all & = 0,1,...,L

|z (2)] = [z,(zD)] , (3.2)

lgg ()] =1 . (3.3)

We shall impose these conditions on the particular representation of the Z,
that was given for the case L=t by equation (2.26) in the previous section.
This representation can be generalized to arbitrary, even L by the following

three conditions on the ay:
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: (i) a = a ., =1
. (ii) a,,,, =0, for &= 0,150,301 (3.4)
7 (iii) a,, complex, for £ = 0,1,..., 3T-1.
o This representation is characterized by -
1«A.¢ the following diagram.
l( 1~ From now on we shall often refer to the
Pz ~o corresponding ambiguity as the "staircase”
1a ambiguity, as is suggested by its
0
diagrammatic representation.
The equations for the Z, read explicitly:

i

A.

32

satisfied by the staircase representation (3.5).

= (o
L. T2 \zn
L= L, Lt
L-1  1-z \2L-1  2L-1 "L-2
LY O %4 £ =
-z \ 241 %1 ¥ 2p4 “z-1) 2= 1,355,...,1-3
cl = zal
- L= 0,2,b,...,I-2 .

however, the second unitarity constraint (3.3): Iczl =1,

(3.5)

In the previous section it was shown that the unitarity constraint (3.2) is

We have still to impose,

According to the four different forms in (3.5) this unitarity condition

gives four types of equations which we will treat successsively.

remarked earlier, we choose |z| as a parameter.

The case 2=L.
Imposing |;z| =1, we get

L+1
2L#+1

~ zl = |1~z|, from which we find

Obviously from (3.6) a lower bound for |z| follows.

3L4+2
4142 °

|z] 2 x =

Moreover one can now write [1-z| as a function, that depends only on |z

L+1

1212 = 2]2- 2L

As was

(3.6)

{3.7) 2

ic!k_ ER—-

(3.8)

i
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The case 2 even.

i¢2
Defining a, = luzle s (3.9)
we get from [z | = 1:
qul = [1-z|/|z] . (3.10)

The case £ odd.
Imposing Icll = 1 for £ odd, we get

(22+1)2|2]2 = (2+1)2 + 22(2#+1 )eos(¢,, , - ¢2_1) + 32, or

cos(,,, - ¢, ,) = EIT%¥TT {(22+1)2|z|2 - (241)2 - 12} . (3.11)

One obviously has to require:

-1 < cos(cpE+1 - ¢2_1) < +1 . (3.12)

From the right-hand side of this inequality we get
f2] <1, (3.13)

whereas the left-hand side of (3.12) defines another lower bound for the

allowed |z|-region:

1
IZI ng . (3-114)

Of course the inequality (3.8) remains more restrictive than (3.14), for
any f-value.

Therefore the only allowed values [z| can take are given by

f%f% < 2zl <. (3.15)

The case £ = L-1.
1n this case we find from (3.3) an expression for the argument ¢L~2 of
*L-2

(21~1)2}1-2|2 - 12 - (L-1)21aL_212

cos ¢L-2 =

2L(L~1)fa; |

or, with (3.10)

o (2-1)2]1-2]2]2]? - 12]2]2 - (L-1)2]1-2|2

cos ¢ o 2L(L-1)[1-z[[z] . (3.16)
Again we have to require
-1 2 cos ¢, < +1 . (3.17)
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This inequality is obviously satisfied for [z| = 1. But for |z] = SE:S

cos ¢L—2 turns out to be less than -1. Therefore with respect to the
lower bound of the allowed |z|-region (3.17) turns out to be more
restrictive than (3.7) or (3.15).

The left-hand side of (3.17) defines another, L-dependent, lower bound
ag(L) for |z}.

This lower bound can be determined for arbitrary L by the equation

cos ¢L_2[|z| = ag(L)) = -1 . (3.18)

This equation is equivalent to a polynomial equation of fourth degree in

ap:

ag + 2(1-AL-1)33 + [(1'AL-1)2 - Ai~1 - A )ag -
- 201-A;_)Aap-(1-4_ )% =0, (3.19)

L+1

where AL = STl "

It can be shown that there always exists a solution of (3.19), which lies
in the interval defined by (3.15). 1In particular for L=k we found ayg(l) =
0.836. Furthermore ag(L) decreases for increasing L: if L>=, then

ag(L) + 0.7693.

Summarizing we conclude that for arbitrary but even L phase-shift
ambiguities can be constructed. Moreover we can, at least in prineciple, find
expressions for both ;2(z) and cz(z*), as functions of only one real parameter
[z]. Modulus and argument of the @, are given by {3.10), (3.11) and (3.16).

The coefficients g, are in turn given by (3.5) and the amplitudes F(x) and

F'(x) are defined by (1.1) and'(1.h) in the previous section.

The case of odd L

To complete the proof that phase-shift ambiguities exist for arbitrary
L>L, we still have to consider the case of odd L.

In order to show the existence of ambiguities for odd L, we slightly
modify the staircase representation, which was treated in the previous section.
This so~-called modified staircase representation is specified by the following

conditions on the ay:

3y

g [ caiveg

e -

& e S i
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(i) a =a =1,

(ii) a,, =0 for 2 = 1,2,...,3(1-1), ’
\ (3.20) 5
(iii) ay, ; is complex for % = 1525000 93(L=~1). -,
(iv) ap is complex. p)
The diagram by which this representation is characterized, is: 2

g, for I=5 and in general
E ah @ 1 .
,, . ey
- ! R -

b g -

Most of the coefficients resemble exactly the ones given by (3.5). Only

for £ = 0,1,2 their expressions are different:

5. 1

oA, = 3 2
a3 t2 =95 (a3 + 5o
e 4 =-11—z- (A-z)al (3-21)
1
Zo = 75 (1-3x2)a

Here, we used

v ag = 3Aa;; A real . (3.22)

Equation (3.22) guarantees ';E(z)f = l;l(z*)l for £ = 0,1.
After imposing [;EI = 1, we get the same equations for a, as in the
g previous case of even L. Only for & = 0,1,2 the condition |;E| = 1, will

give rise to some additional complications, which we will discuss in a few

steps. “jA
=~
A. The case & = 0,1. *
i Imposing |;2| =1 for ¢ = 0,1, we get -
1-2
laa] = |55 5 @0 = 3he1, A real (3.23)
(A-z| = |1-32z] . (3.24) )

From (3.24) one observes that A can be solved from an equation of second

degree in A:
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22(9]z]2 - 1) ~bxa + (1 - [2]2) =0 {3.25)

where x = Re z.
Defining t = |z|2, we find

1
2
At(t) = 5;%;-(2x * [9t2 - 10t + 1 + hxz] ) . (3.26)
In particular
A, . = 3x
+ lt—I (3.27)
A_(t)lt=1 =0.

First we study the case A = i_(t).
Then one can easily verify the following properties.

(i) The square root part of A, (t) is well defined for all t, because its

argument is positive definite for x = 3L+2/LL+2.

(ii) For the derivative with respect to t:

a oL
a AW =-5x <0 (3.28)

The case £=2.

When we require the modulus of g, = ?%; ( % ag - %-al) to equal 1, it
follows
b 12
l1-212 = 2 fag]? + 55 o] + 52 lasllay] cos ¢13
or
25]1-2|2 - 9lag|? - 4oy |?
cos ¢13 = (3.29)
12]asf | |
vhere ¢y3 = ¢3-9; .
1= 1=
When we use: |aj| = —;E s lag] = i:f we get for cos ¢;3:
25[a-z[2[z]? - 9[r-z[% - 4[z[?
cos P13 =
12{a-z]|z|
or, with t = |z|2
2 2
25t (6-2xA+A%) - 9(t-2xMA%) - bt (3.30)

cos ¢;3(t) =

12 VtZt-2xA+Azs

Now we put A{t) = A_(t;.
Of course the inequalities
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-1 < cos ¢13 < +1 (3-31)

prescribe which t-values are allowed. Therefore by means of the two
inequalities defined by (3.30) and (3.37) we have to determine the boundary
points of the allowed t-interval. Since these equations are rather
complicated it is a priori not clear, whether they are more restrictive
with respect to the allowed t-value: from equations (3.19) and (3.13).
Nevertheless it is possible to show the existence of this particular
ambiguity in a neighbourhood of t=1.

We first like to remark that in t=1

A =0

fa;| = |1-2] = 2(1-x) (3.32)

]

[apf =0 .

Thus we get from (3.32) and (3.30)
cos ¢13(t)lt=1 =1. (3.33) E%‘
{

Obviously the right-hend side of the inequality (3.31) is satisfied and
the modified staircase ambiguity exists in |z]2 = ¢t = 1.
However, we like to show its eXistence in a neighbourhood of t=1. There~ o

fore we mention another property of cos ¢;3(t):

4 = 2 .4
at oS ¢13(t)lt=1 3 (5 - bx 3t X_(t))|t=1 . (3.34)
Since one of the properties of A_(t) which we mentioned in (3.28) was :“@;
d 1 N’
a MO eer = - %
we get ;
4 =2 L
3t Cos ¢13(t)‘t=1 =5>0. (3.35) %;
R
Because cos ¢;3(t) is an increasing function of t in t=1 and since it g‘i
£
equals 1 in t=1, there exists a neighbourhocod (1-e,1} in which 13
-1 < cos ¢y13(t) < +1 holds. f:
In this neighbourhood the unitarity constraints for #£=0,1,2 are consistent ’
with the constraints for other %-values which were discussed in the §»
previous section and which also hold for the case of odd L. Thus we have -
shown this ambiguity, defined by the representation given by (3.20), to If

exist in a neighbourhood of t=1.
Finally one remark should be made about the choice A=), . For this choice

R
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too one can prove the existence of the corresponding ambiguity in a neigh-
bourhood (1-e,1] of t=1. Here the condition (3.31) is automatically
satisfied.

However, the choice A=A_ is more interesting for us with respect to
problems which we deal with in the next chapter.

4. Discussion and conclusions

In the previous sections it has been shown that for arbitrary L> 4 phase-
shift ambiguities can be constructed. Moreover some pecularities of these

ambiguities can be noticed.

(i) In the allowed parameter region from the equations (3.10) and (3.16)
Iazl and ¢, , are known. By iteration (see (3.11) ) the arguments ¢, of
a, can be calculated. Then the coefficients g, are given by (3.5) and the
two amplitudes F(x) and F'(x) are determined by (1.1) and (1.h).
At the boundary |z| = 1 of the parameter interval all the expressions

ot

ol
e

i
-f
g) simplify:
g |otzl = 2 Re (1-z) (4.1)
¢y = 9pun for all £ = 0,2,4,...,L-b . (h.2)

For the amplitude we get

F(x) = - 222 ((ag-1) + B}, (x) - P}(x)]. (4.3)

(ii) From the last equation (L4.3) we notice that the amplitude becomes
infinite for L-+». This occurs for all values of x=cos 6. In realistic

situations, however, the amplitude is an analytic function in some

ellipse. Therefore the different amplitudes constructed here do not

elucidate the reel situation, because they are divergent for L-+,

(iii) For even L and for all values of |z| the differences of the phase-shifts
Gz-s;va.re equel for ¢ = 0,2,4,...,1-2, and similarly for 2 = 1,3,5,...,
1-1, whereas GL = -GI'..'
For |z| = 1 we even have:

-

60=62=...=6

AR R

8y =83= ... =8

Similar results, but slightly different, hold for odd L.
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(iv) In contrast to the known examples in the case I~=2,3 [1] the two sets of
phase-shift do not form a closed curve (mod n) in an I+1 dimensional real
space, since not all 62 and ﬁi become equal at the boundary points of
the |z|-interval.

In the next section we shall show, +that the curves constructed here,
will intersect curves that correspond to different ambiguities. One
of these curves will nonetheless be closed.

(v) Finally at the boundary point |z| = 1 all the coefficients @, £ 5 2,
will have the same argument. Therefore in this point the staircase
ambiguity is a special case of the representation in which all the LI

2 g L-2 are complex numbers with the same argument.
Many of the properties mentioned here are illustrated for the case L=k in

figure 1.

5. On the intersection of curves

In the previous section we showed that it is possible to construct a
phase-shift ambiguity for arbitrary L. This ambiguity was obtained by choosing
a particular representation for the coefficients Ty and it was calied the
staircase ambiguity. The phase-shifts 62 and Gi both appeared to depend on
only one parameter |z|. Thus both sets (89,8),-..,8;) and (66,6{,...,6i)
form two curves in a I+1-dimensional real space, when |z|varies in some
interval. All the ambiguities, which were found for the case I=2,3 [1],
have the pﬁoperty that at the endpoints of this interval for all £: 62 = Gi.
In such a case the two curves defined by the sets {62} and {GE} form one
closed curve (mod w). In contrast to the ambiguities for 1=2,3, the
examples constructed here, do not have this property. For the staircase
ambiguity we find a pair of curves that will not form one closed curve.

It is, however, possible that this pair of curves will intersect different
pairs of curves of which at least one will form a closed curve. In fact it is
suggested that this may happen, because for |z| = 1 the arguments of the
coefficients o, become equal. A different ambiguity that can be corstructed
by choosing o, complex for & < L-2 and I 0, also has the property that
the coefficients a, all have the same argument. Therefore in 1z] = 1 the
staircase ambiguity is a special case of the former kind of ambiguity and
the corresponding two pairs of curves probably intersect each other in |z] = 1.

In this section we shall answer the question whether the curves defined

4o

Raye. ~ o

ey kol




by the staircase ambiguity will intersect curves corresponding to different
ambiguities. We shall also consider the question, which of these curves are
closed (mod 7). We restrict ourselves to the case of even L and L> k.

The representations in which we are i;;ifeStEd can be obtained ?izijflacing
in the staircase diagram the subdiagram -vv*02ktw'the subdiagram 1o This

means that in the staircase representation we choose a complex instead of

2k+1
zero. Therefore %ot and Lo will have the same argument. This substitutiom
i
can be performed for all o except for a In this way 221 qifrerent

2k+1 +1°
representations, including the staircase representation, are obtained.

We shall show that in a half-open interval 1-e < |z] < 1, each of these
representations defines two sets of phase-shifts (60,61,...,6L) and
(66,6;,...,6£), both giving the same differential cross section and depending
on only one parameter |z|. Then we will demonstrate that all the curves
defined by these sets {62} and {6&} will intersect the curves belonging to the
staircase ambiguity in |[z]| = 1.

For any I~value, we also find only one representation that gives two sets
of phase-shifts which may become equal (mod w) at the endpoints of their
parameter interval. All the other ambiguities will give curves -that are not
closed.

Below we list for the cases I=k,6,8 the ambiguities that intersect each

other in |z| = 1.
1=l e~ ~
b }
o
1=6 ﬁhﬂlvvihﬁ» nnal na»van an»}
' by Vool
ol
=8 «n»lNV* nnﬁl an»lﬁh» aaﬂlaﬁ*
Y 4 [ b
} . | . }
1 i }
aa»l na»laﬁ* ﬁnﬂl aa»l
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In particular it can be proved, that the representation, given by aL_1==0 and
a, complex, for all %£<L-2, defines an ambiguity for 1-e< |z] < 1+e.
Moreover this ambiguity forms a closed curve, e.g. the two curves defined by
the sets {61} and {Gi} become equal (mod w) at the endpoints of the
corresponding |z|-interval.

In order to prove the existence of the ambiguities discussed above, in a

neighbourhood of |z| = 1, we shall apply the implicit function theorem.

Impiicit function theorem:
Let U be an open subset of R? and let F(x,y)} be continuously differentiatie
with respect to x and y on U. If for (xp.¥yp) €U F(xg,¥p) = 0, and
g%-F(xo,yo) # 0, then there exist an £>0 such that for xg-€ < x < xg+e
we have a continuously differentiable function y = f(x) with the following

properties:

(1)  yp = y(xq),

(ii) F(x,£(x)) = 0 for all x: xg-€ < x < xg+e,

~

(iii) the derivative f' of ® is given by f'(x) = —‘FE .
Y

Instead of studying all possible kinds of E%L-1 representations, it is
sufficient to apply this theorem to only one, rather general, kind of
representation. Let L be even and L2 L. Let kg and 25 be odd numbers
satisfying I~1 > kg > &g > 1. Then we shall investigate the following
modification of the staircase representation: ak0_1,ako_2,...,azo+1 are complex.
(The case, where kg = IL-1 and £¢g+1 = 0, will be discussed in more detail at
the end of this section.)

Consequently, as was noticed before, all these coefficients will have the

same arguments, e.g.

Pro=1 T Pgm2 T 7 T Ggpur - (5.1

We noticed that the staircase representation also has this property in [z]| = 1.
Therefore, for |z| = 1, the staircase ambiguity is a special case of some of
these modified staircase ambiguities. We shall show this in more detail below.

The representation under consideration can be characterized with the

following diagram:

L2
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It is convenient to introduce the numbers

_ A1 _ _ 2
Py Tt v % T 1% = o (5.2)
Imposing unitarity, e.g. IC!,I = Ic!'LI = 1, we distinguish between the cases
s A 2 2 kot .
o
- L2 2o-1,
s B fot1 2 2 2 ko-1,

C &= Kgs2g -

Case A: The unitarity constraints in this case will be called the staircase
equations, since this part of the representations equals exactly the staircase

representation. Because these equations have beeh studied before we only list the

results -z igg
e, = 7 , & even , (5.3)
2
. _ |z| -1
. cos(¢2’+1 - ¢2’_1) =1 - 5o ° £ odd , (5.%)
. 272
Re(1-2) = 1-x = 5cL s (5.5)
2
1 , 2 ( 2 2 2 1-z )
cos ¢, , = [1-2]2-v2 . - ¢ == }. (5.6
-2~ 2b_.c; ;| |1-z L-1 L-1 | z
Case B: In this case we have for the coefficients g o°
= i
&y % iz (bzl“znl *eglay 4l - 2|a,‘|) e (5.7)

where ¢ is the argument of ako_1, aku_e, esey alo” .
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Ohviously we have: Icl(x)l = ICl(z*)l-

«+2 Jefine:

a
= X
Y% T 1=z - (5.8)
Then we get from (5.7) and (5.8)
- li-z] i¢
L e U I I L A (5-9)
The coefficients must also obey: Icll = 1.
From this constraint it follows that
3
= _ 2 _ 2y,,2 2
bty ¥ by o = xuy - e [(x? - [z[2d 1], (5.10)
where €y = +1,
The choice e, = -1, (di.e. egy = 1) (5.11)
guarantees, as we shall see, that this representation equals the staircase
representation in |z| = 1.
Introducing the parameter t = |z]2, the coefficients u, are given by
= 1) T (w2t Y2 2
bokg,y ¥ ey o= xwg - (1) [t + 1], (5.12)

for £ = Lg+1, Lg+2,...,kg-1,
and with

=0 (5.13)

Case C:
In this case we get from the unitarity constraints relations for

cos(¢k0+1 - ¢k0-1) and cos(¢zo;1 - ¢20_1).

- -— ’-Z -
When we use from (5.5) ]ako+1| = ]a20_1] = |57, ve get:
2 _ 32 a2 42 2
t bko ckouk0_1t
cos( - ) = = ¢, (t (5.14)
kg kg kg~-1
2 _ 42 2 _ o2
B - by Mt T O
cos( - ) = = ¢, (%) . (5.15)
o+t = Pop o o m .t 2
lo 20 lo+1

Of course in accceptable cases the functions ¢;(t) and c,(t) must obey

‘cl(t)‘ 1,

A

(5.16)

IA

lCZ(t)I 1.
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Next we study the equations (5.12) and (5.13) in more detail. If all the
square root parts in (5.12) are well defined, it is possible to express
successively, starting with & = R¢+1, every Mg L = 24%2,...,kg in terms of

= 2
2g+1 and t = |2|2.
Moreover the ug(u,t) are then differentiable functions with respect to

only two variables u = p

both p and t. Furthermore we must have uko(u,t) = 0 according to the choice
of the representation. From this equation one can, at least in principle,
obtain p as a function of t. In general this cannot be done explicitly. A4s
will be shown below, one can solve p as a function of t from (5.13) only in
a neighbourhood of t=1, by applying the implicit function theorem.

However, due to the choice (5.11), and by using an induction argument,

it can easily be proved that, if u=t=1,

O
-
©

[

= 2042, Lo+h ..., kp=2, ko
u ={ (5.17)
L2ot1, Lo+3,..., kg-3

-
M
o
n

More explicitly, in order to prove that all the coefficients Wes
including u, are continuously differentiable functions of t on some neighbour-
hood of t=1, we study equation (5.12) successsively for £ = fp+1, 2p+2,...,

ko-1. From the first equation, & = 23+, we solve u as a continuously

20+2
differentiable function of p and t. From the second one, £ = Lp+2, we find

as a continuously differentiable function of u p and t. Since

u10+3

Yoo+ Hoo+3
continuously differentiable with respect to these variables.

10+2,

depends only on u and t, also does, and, moreover it 1is

By studying all the equations (5.12) up to £ = k¢-1, we finally can
solve uko as a function of p and t alone.
Since in the representation under consideration we choose o, = 0 we still

ko

have to put u, = 0 (5.13). PFrom this equation it is, at least in principle,

ko
possible to obtain p as a function of t. In fact, however, this problem
X =0, foru=t=1, we shall
0

instead apply the implicit function theorem. By using this theorem we shall

turns out to be too complicated. Because, M

demonstrate that an €>0 exist, such that for 1-€ < t < 148 w = u(t) is a
continuously differentiable function of t and that also uko = uko (u(t),t)
for these t-values.

According to this theorem we have to show that the partial derivative
g% uko(u,t) does not vanish for u=t=1. In order to prove this we study
again the eguation (5.12). Obviously this equation gives in a natural way a
relation between the partial derivatives g% uz(u,t).

If u=+t=1, the partial derivatives . 'L satisfy for &= £q+2,..., ko:
au
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e
i
i
1.

-
L.
F2
bt
i

ou
1 2 £ even

du
du u
£2+1 -1 _
b, o te, 5 © . (5.18)
auz
X £ odd
Ju

For £ = 2442, 2p+3,...kp, we define the real numbers LPE

Buz
X5 (u,t)lu___t=1 2 odd

(5.19)
auz
Y (u’t)|u=t=1 2 even; 020+1 = 1

From this definition, and from equation (3.18) the following inequalities for

the o, can easily be proved:

L

Uko > 6k0-1 > t.. > o£0+2 > 020_1 =1. (5.20)

Proof
This statement can be proved by induction.

(i) & = gg+1.

From equation (5.18}

My p+2 1 Bug 41 . Mg+
b =X =x — .
o+
Lo*2 au o o

According to the definition (5.19):

-1

b20+1010+2 =1 = 020+2 = b20+1 > 1.
(ii) & = fp+2.
From (5. 18) we get: b
3y 143 Mg+ g o2 E
b, —_— e =x .
+ + -
bote o AN o .

According to the definition (5.19):

%90+3 Tgo+
b .——+c .———.—:1.
+
L0t2 020+2 o2 6£0+2

L6

'
i
4
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s
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Since b 1 s

g2 T Cegre T
and
oﬂo+1

<1,
92042

OR, +3

we find >1 .

Lo+2

(iii) By repeating this argument for 2p+3 < £ < kg we get

02+1 g

-1
b +¢c, —=1, {5.21)
2 o, 2 o,
g Ie+1
Suppose we proved P > 1 , then consequently > 1 and the
S4”
inequality (5.20) is proved. L
In particular for £ = kg we have:
auko B
= > - .
o (u,t) u=t=1 X Gko 0 (5.22)

Then from the implicit function theorem it follows immediately: there exist a
real €>0, such that u = p(t) is a continuously differentiable function of t,
if

1-€ <t < 1+e , (5.23)

and, moreover: My (u(t),t] =0.
0

This last statement (5.23) shows, that a solution of (5.12) exists not only
in t=1, but also in some open neighbourhood of t=1.

In order to show the existence of an ambiguity, defined by the
representation under consideration we still have to verify, whether the
constraints (5.16) from case C are satisfied. Due to the constraints from
case A it only makes sense to consider t-values in the half open interval
(1-e,1]. It was mentioned that for t=1 both ¢;(t) and c5{t) equal 1. There-
fore we have to determine whether these functions are less than 1 and grester
than -1 for t-values in {1-g,1].

We shall prove this by showing that the c¢;(t) and c,(t) are increasing
functions of t for t=1. Because the derivatives of these functions with
respect to t are determined by the derivatives gﬁf {(t), we shall first study

du

the derivatives Tﬁé (t) in t=1.

Again equation (5.12) gives in a natural way relations between the partial
K7
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1 o Sl -, L

e,

du
derivatives 7ﬁ§— (u,t) for & = 8¢+2,...,kg and u=t=1 :

u
b £ £ even
g4y g4 3t L
e T3e Y T T > (5.24)
—1/%¥%
—
X (at 1) £ odd
whereas
Mg+l ap
T
For ¢ = gp+1, L0+2,...,kq we define the real numbers Pyt
au2
X a—t- (u,t)lu=t=1 2 odd ,
p, =
L 3112
e (u,t)]u=t=1 £ even , . (5.25)
Pro+t 0.
Then from (5.2L4) and (5.25) we obtain the following set of inequalities:
Pk > Pk -1 > el 2 Py 42 > 13 Pgot =0. (5.26)
Proof
(1) & = go+1.
From (5.2k%)
My 42 1 My i+
—_— = — .
byt ot x ( 3t 1)

According to the definition {5.25):

=1

PoottPrg+2 © V= Pgr2 T Pager T Ve
(ii) &.= Lot2.
From (5.2k)
au9,0+3 a"9,0+1 a"£0+2

boote "ot T Cege T 86 * T ot

and by using definition (5.25) we find
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e

Lt

plo+3

b 1.

201’2 pzo+2 -

Since b20+2 < 1, we have pzo+3/pzo+2 > 1.

(iii) In general we can prove: for £p+3 < & < kg

Y p
2+1 2-1 1 2
b +c =1+5— (1+ (-1 . (5.27)
Lopy  hopy 2y
Consequently

Po+1 Po-1
L * ) P
3 [

o
Suppose it has been proved that % > 1. Since b2 + e, = 1 and

p
. P - . . .
we find —fil > 1, 2-1  and the inequality (5.26) is

02_1/02 <1,

proved. L
duz
Now we shall study the total derivatives-az- for 2 = 2o+1, Lp+2,...5kp -
Of course we have
e Y e W (5.28)
dt au JAdt at

According to the definitions (5.19) and (5.25) for p=t=1 these total

derivatives can be expressed in terms of the numbers o, and Pyt

- ot
du X (02 H (t)lt=1 + 92]’ £ odd ,

L =
T By = (5.29)

o1y ?
(02 u (t)lt=1 *o, )] » % even.

In particular for 2=k we must impose uk0==0 for all t, because in our

representation we have @ = 0 . This in turn implies
0

du
ko
'?ﬁ?‘(t) =0, for 1-g <t < 1+g . (5.30)
Therefore equations (5.29) for 2=k, and (5.30) imply:

Proposition 1.
For & = 2p+1,2p+42,...,kg, the coefficients M, are continuously differentiable

functions of t for 1-e¢ < t < 1+¢, Their derivatives with respect to t at t=1

are given by

kg




.
/
N
P

pkO
[ —-;—— <0, for £ = 2p+1,
kg
) -1 Pxo
E?&”F1=4x Gl-qg%),z>%namom, (5.31)
Pko
‘ (pz - -6-— 02) N £ > Rpt1 and even.

kg
A1l these derivatives can be proved to be less than zero. In order to show
this, we use the following lemma:
Lemma: The coefficients oy and % satisfy the following inequality:
o}

Pe 3
5 > p s L= 29+3, 2o+ly. .. 4kg. (5.32)
2-1 2=1

Proof: by induction.

It was shown that the p, and 9 for 2¢9+3 £ % < k are given by

L
P P
2+1 =1 1 . 2
b +ec =1+5— (v+(-1)7), (5.27)
L Py L oy 292
o o
L+1 £~1
b + c =1. (5.21)
2 02 2 02

Therefore we find:

(% a ] o
2+1 2+ 2-1 2--1
==l _ o R Sl X 0.

Py L

(1) £ = fqpt2.

Poot3 %2043 Pagr1 Ceget
b20+2( - ) * clo+2( - )

Pro+2  Zrg+2 Progre Tggt2

v
(]
.

Since p20+1 = 0, o£0+1 = 13 010+2 > 1, we find

plo+1- 020+1
- <0 .
Paote  Togp+2

Prot3  Tgo#3

>0.

And consequently pn
20+2 20+2

(ii) For some fixed n, £¢+3 < u < kg we have
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o5

Pot1  Za+i Pn-1 %n-i
"Wo. "o /Yt "o )27
P\ P n n n

Suppose the lemms is proved for £5+3 < £ < n:

P o P _ o _1
n-O“>o thenn1———2 <0,
pn—1 n-1 n n
p
+ +
and consequently o+l _ ~§—l >0 .
n n

Thus the lemma is proved.

The following proposition is an obvious consequence of the last lemma and

proposition 1.

Proposition 2.
du2
For all & = 2g+1, £¢+2,...,kp , the total derivatives Ty (t) satisfy in t=1

d"l
T (1) <o0. (5.33)

Proof: From (5.31) one can see that it is sufficient to show that

pkO
pl - ol ;—— <0, for £ = Lp+1, Lp+2,...,kp-1 .
kg

For & < kg, we have, according to the lemma

o 0
2_1 > A1 » therefore:
3 Py
o p
%% _ %  %n Kool o Pp Pas ko=1 Py
g T+ Taa2 ko Po+1 Pre2 ko kg
%,

From this we get oy - pko - < 0 . a

kg

Finally, we must consider the constraints (5.16) from case C.
ley(t)] < 1 and Jep ()] < 1.

It was noticed, that for t=1
ej(t) = cp(t) = 1.
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From the expressions (5.1k) and (5.15) for cj(t)} and cao{t), it easily can
be proved that:
dp

ko-1

d = _ 1
at cl(t)|t=1 T o at (1)|t=1 :

ko ko

(5.3h)

a =1 _ 1 ,du
dt c2(")|1;=1 Tb, "¢ at (t),t=1 :

Lo Lo

Because, according to the last proposition, both ui0_1 and p' are less than

gero if t=1, we get from (5.34):

4

at CZ(t) £=1 > 0. (5.35)

d
it cl(t)|t=1 > 0 and
Since cl(t)lt___1 = cz(t)lt=1 =1,
we obviously have:

there exist a 6 >0 such that, if 1-8§ <t < 1: (5.36)

le1(t)] < 1 and |ea(t)] < 1.

Summarizing we conclude:

{i) An €>0 exists, for which the representation under consideration gives
an ambiguity, if 1-e <t < 1.
Moreover the two curves associated with this ambiguity, intersect the

pair of curves defined by the staircase ambiguity at t=1.

(ii) 1In fact this can also be proved for different modifications of the

staircase representation by using similar arguments. In this way

1
2§L'-1 ambiguities, including the staircase ambiguity, are obtained.

(iii) The representation, defined by o 4= 0, and o, complex for £ < L-2,
needs special attention.

Modulus invariance:
le ] = lgg]

and unitarity

[z, =1

imply in this case

a, = |1-z,u£ ei¢, (see (5.8) )

b c | = xu, - (-n)* [(xz-t)ui + 1]% , (see (5.12) )

+
2Ma41 Me-1

and
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(iv)

[1-2]2 = b2 . - ¢c2 _|a. |2
cos ¢ = PTG P Ry A (5.37)
2o, _jeq_qlay ol
One easily shows that, if |z]2 =t =1
[cos ¢ < 1. (5.38)

Since cos ¢ is a continuous function of t, this inequality will also be
satisfied in a neighbourhood of t=1,
There exist an €>0, such that

(5.39)

Jecos ¢] < 1, for 1-g <t < 14¢ .

Because the square rcot parts in (5.12) are well defined in a neighbour-
hood of t=1, this representation gives an ambiguity for a l1-g < t < l+e.
In this case t=1 is not an endpoint of the ambiguity. Such an endpoint

is determined in this case by the following types of conditions.

(a) cos ¢ = x1, or (5.40)
t = x2 = (Re z)2. (5.41)
(b) (xz-t)ui +1=0, and

4 (.2 2
3t (x —t)uE # 0.

In the first case either the oy all become real (if cos ¢ = *1), or z
becomes real, (if [z[ = Re z). Then all the phase-shifts 62 and Gi are
equal (mod m) and both sets (62} and {6&} will form one closed curve.

In all other representations, with a, =0 for at least two %-values,
this situation does not occur. Therefore the sets {62} and {éi} do not
form one closed curve.

However, if only a4 = 0, it is not a priori clear, whether we get a
closed curve. Since we have alsc the second type of condition (5.42),
it is also possible that this constraint determines both end points of
the ambiguity. A closed curve will only occur, if the inequality (5.40)

or (5.41) is more restrictive than (5.%2).

In a straightforward way one can generalize these results for L odd.
Instead of the staircase representation we must modify then the

representation, discussed in section 3 (B).
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CHAPTER IV

PHASE~SHIFT AMBIGUITIES FOR SPIN-O - SPIN-2 ELASTIC SCATTERING

1. Introduction

In this chapter we discuss the scattering of spinless particles and spin-3
particles at energies below the first inelastic threshold.

As was mentioned before, more experimental observables besides the
differential cross section -g—g— can be measured, when spin is involved. Such
a quantity is for instance the recoil polarization P of the spin-2 particle.

As is well known, these experimental quanties can be specified by two

complex valued functions £(8) and g(8), O<e<m

2 92 (9) = [r(0)[2+ (g(0)(2 =1([£(6) + g(6)[2 + [2(8) - g(6}[2)  (1.1)

2Re £(0)'g(0) _ I£(6)+g(e)]2 - [£(6) - g(0)]2 (1.2)

P(6) =
[£(8)]2+ |g(0)]2 [£(8)+g(8)|2 + |£(0)-g(6)]2

In principle we have the following partial wave decomposition for £(6) and
gle):

£(e) = § ((s+1)f,, + 2f, )P (cos 6)
=0 (1.3)
® d.PE(cos 0)
g(e) =i J (f2+ - fz_)sin e Fdoos o
=1

where the f!, 4, are the partial wave amplitudes corresponding with orbital
angular momentum £ and total angular momentum & # 3 .

In practical phase-shift analysis, however, one approximates the functions
£(e) and g(6) by

L
£(e) = ¥ ((e+)g, - zfz_)Pz(cos 8) (1.1)
k=0
L d.Pz(cos 0)
g(e) =1 21 (f!“_—fl_)sin 0 4 oos & ° (1.5)
2= :

In this case of purely elastic scattering the partial wave amplitudes f! .
are given by
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_ Lt
ge =27 (Bge1) 5 Ly =e . (1.6)

where,according to the unitarity constraints, the parameters 6'_i are real.
Using the implications of unitarity our problem can be stated as follows:
Is it possible to construct for arbitrary L different sets of phase-shifts
(60,6 i""’ ) and (60, g2 £+) giving the same, differential cross
section and polarlzatlon?
It should be mentioned that, due to the optical theorem, Im f£(0) is

connected with the total cross section, according to:

. (r.7)

k2
Inm £(0) = hn %ot

From (1.1) and (1.2) it follows that cross section and polarization do not
change when 8, are changed into &, if and only if |f(e) + g(6)]| ana
|£(0) - g(e)l do not transform.

Moreover £(0) + g(6) and £(8) - g(6) are simply connected by

£(9) - g(o) = £(-8) + g(-0) (1.8)
Therefore, as was first observed by Gersten [1], knowledge of‘ga-and P is
equivalent to knowledge of |£(8) + g(8)]

We follow Gersten by introducing the new variable

t=tan 36. (1.9)
Therefore:

sin 6 = ~2% and cos 6 = 1-t2 {(1.10)

142 ¢ +t2 -
In terms of this new variable t, the expression
G(t) = £(t) + g(t) (1.11)

turns out to be a rational function of t:

£(0) oL (t-zk) .

L I z
(1+t2)" k=t k

(1.12)

G, (t) =

From this expression we can easily find all the transformations that leave
G(t) invariant. By means of these transformations we can in principle
construct all different ambiguities for any L. We can indicate the three
different classes of transformations:

(i) S:Re £(0) +-Re £(0) . (1.13)
Recall that Im £(0) is determined by an experiment, since it is related
to oy, (see (1.7) ).
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(ii) Ty P % > Zy 3 (1.14)

e ——

(iii) A special case of (ii) occurs, when G(t) has pairs of roots +i, and -i.
In this case the value of L changes. If one of these roots (either +i

or -i) is conjugated

R, :ti> F , (1.15) -

GL(t) changes into GL,(t), L' =1L+1, according to ;;
_ *is ‘

GL,(t) = e GL(t) . (1.16) :

In terms of the partial waves this transformation is given by the

“y -

following relations.

vy

In case R= R+,

1

1 = e——— +
Toe = g0 (Zlf(2-1)+ f(2+1)—} ? -
(]_]7) E -
1 3
| B .
= S ( Loty ¥ 2(2+1)f(z+1)_) . s,
As one can easily verify, this change of the partial waves correspond
to successsive application of the Yang and the Minami transformations, "
both mentioned in section 4 of chapter II. ?
i
In case R=R_ , i
1
\J = —— -
f2+ 2243 (2(z+2)f(2+1)+ f(2+1)-) ?
(1.18) .
1 v
) = e—— + - . s
L T (f(2-1)+ 2(2 1)f(m_n_) B
It can be shown that this case is equivalent to successsive application é
=

of the Minami and the Yang transformation.

It should also be noted that repeated application of either R+ or R_, in

vm—n}‘

case more pairs of roots #i of G(t) occur, will increase the number of

cme
7

partial waves of the transformed amplitudes f£'(t) and g'(t).

3
E

Of course also combinations of the three different types of transformation

are allowed.
Since differential cross section and polarization in terms of G(t) are

given by
K2 89 = 3(Jo()]2 + |a(~t)]2) (1.19)
and

5T
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K2+ 82p = 3(le(6)|2 - [a(-6)|2) , (1.20)

it is obvious that both observables remsin unchanged, when one of the

transformations (i), (ii), (iii) or a combination of them is performed.
2L

Such a combination is for instance S I Tk .
=1

the amplitudes f(6) and g(6) change according to

Under this transformation

£1(8) = -£(6)* and g'(0) = -g(8)* , (1.21)

If we combine this transformation with a class (iii) type transformation

6., (6) = &% (£) (see (1.16) ),

we get the modified Minami-ambiguity (section 4, chapter II). This ambiguity
is defined by the following transformation property of the amplitudes:

£(8) = —cos 6-2(8)* + i sin 6 -g(8)* ,

g'(6) = ~cos 0+g(6)" + i sin 8- £(8)* . (1.22)

In terms of the partial waves this gives

*x
' =
fox f(lt1)¥ ° (1.23)

In the remaining part of this chapter we exclude the special case of
pairs of roots i of G(t). Therefore we shall only consider the

transformations of class (i) and (ii).
In principle all different sets of partial waves s and §E+ can be

constructed. First one has to establish the connection between the quantities

Lgy » the Toots z, and the forward amplitude £(0).
A different set of partial waves C£+ can then be found by performing one

of the transformations of class (i) and (ii) or by & combination of them.

Both sets will give the same differential cross section and polarization.
Due to elastic unitarity, the quantities ;2+ and c£+ mst also obey:
(1.24)

Ic£t| = lgii‘ =1

In the next section we shall show that ambiguities can be constructed

according to this program. In pargﬁfular we shall construct ambiguities that

arise from the transformation T = II1Tk .
k=
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2. Existence and construction of ambiguities

In the previous section we have seen how in principle different amplitudes
() and g(6) can be constructed, toth giving the same differential cross
section and polarization. It was also stressed there that we shall restrict
ourselves to transformations that do not change the number of partial waves.

In this section we discuss one particular transformation

2L
T= 0T T . (2.1)

This transformation changes F{6) and g(0) into £'(6) and g'(8) such that
[£(0) + g(a3] = |£'(8) + g'(e)] - (2.2)

We want also to express the partial wave amplitudes flt in terms of quantities,
related to the roots z;,%;,...s%,; Of f(e) + g(8), in order to be able to
write down the transformed amplitudes explicitly.

It is easy to see that the set of amplitudes (f(e),g(e)) transforms
under T into a different set (f'(e),g'(e)) according to

(o) = 2O p6)* | gr(e) = L ()" | (2.3)
(o) (0o

Defining new coefficients

A= £(0) ,
(2.h)

8.2=

=i
by =%

((e+1)g,, + 28, ) for 2 2

|
v
o
~»

v
-—
»

(fz+ -t for 2 2

we get much simpler expressions for the amplitudes:

L
f(e) =a ¥ a P, (cos 8) ,

2=0 {2.5)

L dPZ(cos 8)
Aszsine——-——-—.
2=1 d cos 6

n

g(9)

From (2.3) we see that the coefficients a, and b, transform under T according

to

* *
ai =8, bi =b, . (2.6)

From the definitions (1.6) and (2.4) we can express the coefficients Loy in

terms of al and bz:
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_ 24
St =1 3

(iaz + 2b2) s 0<8&<L,

and (2.7)

_ 2A .
Lo = 1+ e (132 ~ (2+1)b2) , 1 <8 <L.

as can be seen from (2.5) by putting 6=0 the coefficients a satisfy
L
Y oa, =1. (2.8)

Our problem can now be stated as follows:
The coefficients Ly, 8re given by (2.7). The substitution (2.6) transform

into § (a;,b;). Both sets give still the same differential cross

v =
ot 2z - Sex
section and polarization. Then we have to find coefficients a, and bz such
that for all &:
* _*

|z, (a0 = |z, (a7,00)],
and (2.9)

[eg.(agsp)) = 1.

Using the expressions (2.7) for the coefficients ;2+, one easily derives from
the unitarity constraints (2.9) a set of conditions in terms of the quantities

A, a, and bl' Defining

A=X4+ iy, (2.10)

we get for each &:

XIm 8, =0, (2.11)
b, (|4|2 Re &, - 3(22+1)Y) - |A]2 Ima Re b, =0, (2.12)
[a]2]v |2 - (22+1)XReb, = 0 , (2.13)
|a]2(la 12 + 2(2+1)[v,]2) - (2e+1)YRea, = 0 . (2.14)

The possible ambiguities can be classified as follows:

A. X=0
From (2.12), (2.13) and (2.1%) we get for each % :
b, =0,

a, = |a |e1w£ , with (2.15)

L
Y
€05 ¥y = a1 -

Of course lcoswzlg 1 implies
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Y
YT ]all <1. (2.16)
Since b =0 for each £, we get, according to (2.7):
Low = &g > (2.17)

which in turn implies that the polarization P vanishes. Moreover changing

. * . s cs e e
a, into a, corresponds in this caseto the trivial ambiguity, where 6£=-6£.

2 A
Therefore this possibility is not of any interest for us and it will be

omitted in the rest of this section.
remaining possible classes of ambiguities are then

X#0, ay real

This condition gives four different classes of ambiguities, which result
from the remaining set of equations (2.12}), (2.13) and (2.14). 1In all

these cases a, and bE will be parametrized in terms of X and s=Y/X.

Case 1: b, complex

2
Defining
i¢
£
bz = lbzle H
we get
(22+1)s
Ibgl - —_— ’
2V 2{e+1)X(1+s2)
s
cos ¢, = ———= , (2.18)
2V (8+1)

s
= 3(oe+ .
8, = 2(2%1) 3795573
Obviously the condition |cos ¢2| < 1 implies

Is| < 2va(a+1) . (2.19)

Case 2: b, real

2
In this case we find:

b = 281
g~ xX(1+s?)

(2.20)

®
[}

. %(22+1)-X-(1T‘c’52—)(11[1-h"—(§1—1}%) .

Here ay will be well defined, if:
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[s] > 2ve(r+1) . (2.21)
This case consists of two subclasses according to the * sign in a,.
Finally we have two subclasses according to the choice bz=0.

Case 3! b, =0

L . (2.22)
5, = (221 3(wve7y
Case 4: b,=a,=0 . (2.23)

We see that only in the first two cases we have restrictions on the
possible values s can take. Moreover we observe that for any f-values the
two cases 1 and 2 become equivalent, if s = 27V 2(%+1). At this value of s

all the parameters a,, b, and ¢£ are the same, /in particular ¢2=0'

»
An ambiguity canzbe gbtained by choosing one of the four possibilities,
successively for each 2=0,1,...,L. We shall specify any ambiguity by a row
of I#+1 pumbers (no,nl,...,nL). For each £ n, = either 1, 2, 3 or &,
according to the choice of the possibility one has made in the 2-th step.
Here we denote the two subclasses of case 2 by the #* sign.
Not every row, however, will give an ambiguity. Several restrictions

determine all the possible allowed rows. We list these restrictions below.

(1) In order to ensure that the transformation T is not the identity, at

least one of the coefficients a, or bl has to be complex. Therfore:

n, = 1 for at least one g-value . (2.2%)

(ii) Because for 2=0 we have by=0, we have
ng equals either 3 or k. (2.25)
(iii) For different % and k we have the possibility n, = 13 nk==t2. In both

cases s has to satisfy different constraints (see (2.19) and (2.21) ),

which have to be compatible with each other. Therefore:

If for some 2,k (£#k) n,=1 and n =2, then k<& . (2.26)

Keeping these restrictions in mind all the different ambiguities, due to
conjugation T of all the roots, can be obtained. Thus we can list the

possible forms which §z+ can take.
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1 s2 . S 2%
: = — + * -
Case 1: T, =< (1 (o)t A (be(e+1) - s2) s
(2.27)
1 s2 Lo 3
=Tl -3 i ( L{2+1) - s2}2 ) .
* . . :
Here the change bl > bl 1s expressed by the * sign; the upper sign
corresponds to P whereas the lower sign corresponds to ;i+ .
1 . hn(z+1)
. = M = -
Case 2: T, =1} =7 <2£+1 + is{1 ]
(2.28)
1 . ho(g+1) 43
= M = - —_—
T PR A S ( (2er1) + is(t - =575)" )
Here the * sign corresponds to the two subclasses n, = 2,

Again it should be ncticed here, that for any % case 1 and 2 are equivalent if
= 2/2(%8+1). 1In particular we observe that in case 1 we have also Tos = Ci+

for this s-value.

_ 1+is
TS PR P (2.29)

Case 3:

Lgp = Cge = 1. (2.30)

Notice that all these expressions depend on one single paremeter s only.
The remaining equation (2.8) is automatically satisfied, as one can easily
show., By using this equation one is able to determine X as a function of s.
In the following s is assumed to be positive. Exactly the same results can
be obtained for negative s-values. Obviously Y is positive, since it
determines the total cross section. Therefore positivity of s implies
positivity of X.

Thus all possible ambiguities due to transformation T have been
constructed for arbitrary L. It is clear that the number of different
ambiguities becomes larger with increasing L. In case I=1, we find two
different representations, according to the rules (2.24), (2.25) and (2.26).
For 2=0, ng equals either 3 or 4 and for R=1, the only possibility is n;=1.
Therefore the two possible representations for the I=1 case can be
represented by the rows (3,1) and (4,1). These examples were already
constructed by Berends and Ruijsenaars [2].

As was observed before this coefficients Cox and the transformed ones
‘i: are analytical expressions in terms of only one parameter s. Consequently

the two sets of phase~shifts (60,61+,..., L+) and (6' ;+,..., Lt) form both
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a curve in a 2l+1-dimensional real space. However, in contrast to the

examples discussed in [ 2], these pairs of curves do not necessarily form

one closed curve (mod ).

In the next section the endpoints of the different representations will be
determined. There we shall show that some of these curves are not closed
Moreover it will be shown that all the

In fact each
Such a

(mod 7 ) in these endpoints.
ambiguities, constructed here, are connected with each other.
ambiguity appears to belong to some chain of connected ambiguities.

chain of ambiguities again forms a curve which is closed ( mod ).

3. Chains of ambiguities

In the previous section it was shown that all the ambiguities, due to the
transformation T, conjugation of all the roots of G(t), can be constructed.
For all £ the different phase~shifts 621 and déi are functions of only one
real-parameter s. We noticed also in the last section that the two sets of
phase~shifts did not necessarily become equal (mod 7) at the endpoints of the
corresponding parameter interval.

In this section we shall study this pecularity in more detail. Some
rules are given, in order to determine the endpoints of the various
parameter intervals, for which the different ambiguities are defined. These
points will be called "endpoints of an ambiguity". It will be discussed too,
whether the different sets of phase-shifts {611} and {déi} will become equal
in these endpoints. As we shall see, the following pattern will be observed.
There exists an ambiguity of which the different sets of phase-~shifts are
equal at its first endpoint s=0. If at its second endpoint sj this is not the
case, a second ambiguity can be found that is continuously connected to the
first. The different sets of phase-shifts of this second smbiguity may differ
in its second endpoint s». In this case a third ambiguity appears to be
connected to the second one, and so on.

Continuing in this way one finally will obtain an ambiguity where the sets

{611} and {Gii} become equal at its final endpoint Sy» @s is illustrated by

fig. 2.
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L. 1
0 Sy Sy ------------ Sy

FPig. 2. The general pattern of a chain of ambiguities in terms
of 61 (solid 1line) and 6& (dashed line).

Thus a so-called chain of ambiguities is obtained. All these ambiguities are
successively connected in their endpoints in a continuous way. To this chain
correspond two different sets {621} and {6&1} of phase-shifts which become
equal at the first endpoint s=0 of the first ambiguity and at the second end-
point s=sy of the last ambiguity.

We Tirst list the different rules, by which the endpoints of the various
ambiguities can be determined. As was noticed before an ambiguity can be

specified by some n-tuple (no,n .,nL).. It was also shown that only a

L
choice n,=1 or *2 gives rise to constraints on the allowed parameter values.

A
(a1) If for some & n,=1, we have according to (2.19) an upper bound
s <s = 2Ve(R+1) .
max

If an ambiguity is characterized by n2=1 for more than one f-value, this
ambiguity has an upper endpoint
s = 2/,(1+1) , (3.1)

vwhere %) is the lowest f&-value, for which n2=1 holds.

(a2) 1If for some f-value nz=12, we get according to (3.1) & lower bound for
the allowed t-values e.g. s 2 5, = 2vVe(2+1). If an ambiguity is

specified by a choice n,=t2 for different £-values, then this ambiguity

2
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ambiguity has a lower endpoint
s = 2V2,(2,+1) , (3.2)

vhere £, is the highest f2-value, for which we have n2=12.

(a3) If no n2=12 case occurs in an ambiguity it has a lower endpoint

s=0. (3.3)

For instance the possible ambiguities, starting with n0=3, are in the
case L=2:

(3,1,1), which is defined for 0 < s < 2V2 ,

(3, 2,1), which is defined for 2¥2 < s < 2/6 ,

(3,3,1), which is defined for 0 < s < 26 .

As a next step we investigate whether different sets of phase-shifts

become equal in the endpoints discussed above.

(b1) Suppose for some £ n£=‘l. As we noticed before we have Tog = ;;Z.t’ only

if the parameter value s = 2V2(2+1).

Therefore, if an ambiguity has n,=1 for only one %2-value, both sets of

L
partial waves (;0’;11’ ceeslry ) and (;6,;;1,. .es I'_.t) become equal at
the upper endpoint s=2/2 (L+1) of the parameter interval.

An ambiguity which has n2=2 for different %-values will not have this

property anymore.

(b2) If an ambiguity contains no n2=2 type partial waves then both sets

(;0,;12,...,;,&) and (;t')’;ii""’;llli) are equal only at the lower end-

point s=0.

We illustrate these two rules for the I=2 case.

When we consider, for instance the representation (3,1,1), we have at the
lower endpoint of this ambiguity s=0 ¢ 0= ;!'I. . for all 2. At the upper
endpoint s=2v¥2, however, we have ;2+# 29

The representation (3,%2,1) has two endpoints s = 2/2 and s = 2/6. Here
= ;£+, only if s=2/6. In its lower endpoint s=2/2 s and ;i+
are different.

The representation (3,3,1) shows the property Los = c£+ in both its end-

points s=0 and s = 2v6.

As we showed, the endpoints of all different ambiguities can be determined

in this way. Moreover, we can decide whether or not the two sets {; . +} and

{;i +} become equal in these endpoints.

We shall discuss now the way in which the various ambiguities can be
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connected with each other. Consider for some L a representation in which £; -,

is the smallest f#-value for which n2=1 occurs. Then the upper endpoint of

the corresponding ambiguity is s=2v2;(8;+1) , according to rule {al). At

Vg

this s-value we have also 6111 = Gili' It was noted before, that for
s==2/§T?EI:TT the partial waves corresponding with n11=1 and n11=i2 are
equal. Consequently two ambiguities which only differ in the choice of nll -
one ambiguity with n11=1 and the other with n21=i2 - will be equal in
s==2/IITET:TT . Thus two ambiguities are continuously connected with each
other in such an endpoint.
In this way a chain of ambiguities can be obtained. We shall illustrate -
this idea with an example. I
Consider for instance the representation given by the L#1 row (3,1,1,...,1).
To this representation corresponds an ambiguity which is defined for
0 < s < 2/2. According to the rules (a3) and (b2) we have §p, =80, (mod w)
at s=0. In s=2/2 we have 60=66 N 61’::6{1 s, Whereas for all other f%values
611#651'
In the same point, s=2/2, this ambiguity is connected with two other

ne ke,

ambignities, given by the L+1-tuple (3,#2,1,...,1). Both ambiguities are
defined for 2vV2 < s < 2/6 . TFor all s-values these ambiguities have the
property 60=6['J , 61+= Gi+ . In its upper endpoint s = 2V we have also

6Zt= Géi’ but all the other phase-shifts 62i and th are different, for 2>3.

Let us consider one of these two ambiguities, say the one with n, =+2. Then
the first ambiguity given by (3,1,1,...,1) is at s =2/2 continuously connected

with a second ambiguity (3,+2,1,...,1)}. Of course all partial waves but the
. . . . +

first for 2=0,1, maintain the same representation, whereas 61+ - 61+ and
+ . . - B

6i+ - 61+ By using the same arguments, 1t can be shown that at s=2/8 the

second representation (3,+2,1,1,...,1) is connected with a third one:

(3,+2,-2,1,...,1) or (3,+2,+2,1,...,1). It should be stressed here that these
transitions from one ambiguity to another are continuous, but not necessarily én
differentiable. Only transitions Glt > Szi and Gét -+ th are differentiable.
Continuing in this way the starting representation (3,1,1,...,1) gives ~
rise to ZL_1 chains, each chain consisting of I, different ambiguities which -
are continuously connected. Such a chain is for instance:
{3,1,1500051)3 (3,42,1,...,1)3 (3,42,-2,15...51)3 oo
(3,+2,-2,-2,...,+2,1).
Fig. 2 shows the general structure of the way in which L different ambiguities

form a chain.
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Fig. 34 and B.

68

The phase-shift 60+= 66+ {dashed-dotted line), 61 N (solid line),
Git {when # 613 dashed line), 8y, {solid 1ine), 6;1 (dashed line)
of a chain consisting of two ambiguities. The 61 , are marked by a

+sign according to the choice n) = 2.
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s 0 ov2 2/6 2/12 2/L(1-1) 2/L(1+1)
g 3ork 3ork Jord |- -~-- 3orkd
m 1 +2 2 +2
n, 1 1 +2 )
ns 1 1 1 +2

1 i 1 1 1

1 | 1 I 1

§ ' 1 ' 1

t ] (] ] 1

n 1 1 1 2
nL 1 1 1 1

Table i. The different possible choices for n, are listed for the

allowed range of s-values.

Starting at s=0 the coefficients bl’bZ"°”bL_1 and bL successively will
become zero for increasing s. Each time when a by equals zero (at s =2V (g+1))
we have to choose between either u1=+2 or n1=-2. Therefore the starting
representation (3,1,1,...,1) is the first ambiguity of 211 chains.

If n,=1, b, is complex and we have two phase-shifts 61 and 65 which are

represen:ed byla solid line (61) and a dashed line (5;). At the boundary
points s=2/¢(2+1) bl is zero, and consequently 61=6i. In this point we
notice a continuous transition from the case n£=2 into either nz=+2 or nz=—2.
The other representations do not change at this point. It should be
stressed that we always have 8,=8y (according to the choices ng=3,k),
whereas for the highest phase-shift we get 61¢6i.

In table 1 the different possible choices for n, are listed for all
possible chains.

Figs. 3A and 3B show two chains of two ambiguities (3,1,1) and (3, 2,1).
These ambiguities are represented by the phase-shifts 8,=8g (dashed dotted)},
LI (solid) and 81, (dashed if 6{1#611). The solid lines 6,4 are marked with

a * sign, according to the choice n;=#2.
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4. Discussion and conclusions

In this chapter we discussed techniques by which it is possible to
construct, at least in principle, all different sets of phase-shift ambiguities
in the case of elastic spin-0- spin-} scattering.

As was pointed out by Gersten, knowledge of the differential cross seciton
and polarization is equivalent with knowledge of some rational function G(t).
It was also shown that a special class of ambiguities could be obtained by
conjugating one or more roots of G(t).

Here we restricted ourselves to the particular class of ambiguities due to
the conjugation of all the roots of G(t). This transformation changed the
partial wave amplitudes fz: into new amplitudes fit . These coefficients have
also to obey the constraints due to unitarity. By imposing these constraints
the amplitudes were solved in terms of one single parameter s.

Thus all the ambiguities due to complex conjugation of all the roots of
G(t) have been constructed. In a similar way one can, in principle, find
other ambiguities, corresponding to conjugation of an arbitrary number of roots
of G(t).

The class of ambiguities constructed here has some remarkable properties.
First and in contrast to the examples found by Berends and Ruijsenaars, we

noticed that the phase-shifts 62 and 6£+ are not equal (mod ) at the end-

+

points of the corresponding ambiguity. However, we showed that it is possible
to indicate a number of L ambiguities, which are continuously connected with
each other at their endpoints. In this way this set of ambiguities together
do form a chain. The most interesting point is probably that at the
remaining endpoints of the first and the last ambiguity the phase-shifts 621
and Gii are equal (mod 7).

0f course, when one only considers S- and P-waves (IL=1) one will find
chains consisting of one ambiguity : in this case the concepts of ambiguity
and chain are clearly equivalent.

Secondly, we noticed that the number of different ambiguities and the
number of chains increases for higher I-values, even if one considers only
conjugation of all the I+1 roots of G(t). Obviously the number of trans-
formations, leaving the modulus of G(t) invariant, will also increase for
higher L-values. Therefore the examples that occur in an actual phase-shift
analysis become probably more numerous.

Finally we mention an important difference between ambiguities in the spin-
less case and in spin-0- spin-} scattering. In case of spinless elastic

scattering it was found that the phase-shifts 62 are uniquely determined, if
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R for all &, Gz < %-. In spin-0- spin-} elastic scattering we don't have such

\

f a region of uniqueness. There we solved the partial wave amplitudes f!i in
terms of one real parameter s and for same L-value ambiguities were
Y constructed for s2 < UL(1+1). ;
However, for s-»0 all phase-shifts Gzt become zero and consequently
differential cross-section and polarization vanish. Therefore we still can
Hé have phase-shift ambiguities for arbitrary small values of all Gzi. This fact ~
o

could be of interest for realistic scattering, since phase-shifts always grow -

from zero if the energy increases.
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CHAPTER V

FIELD THEORIES FOR PARTICLES WITH ARBITRARY SPIN

1. Introduction

As was noticed in the last chapters, extraction of information from
experimental data and translation of this information into theoretically
relevant quantities lead to various kinds of problems. Some of these problems
have been discussed.

On the other hand one can be concerned with the construction of theories,
which describe particles with a certain mass and spin and from which
experimental quantities can be predicted.

In the following chapters we shall discuss some problems which are connected
with the construction of those theories.

The various elementary particles and their properties are described within
the framework of guantum field theory. In this theory the physical particles
are associated with so-called operator fields. To each kind of particle there
corresponds such a field.

These fields satisfy differential equations, or field equations, which
describe the dynamics of such a system of particles. These field equations may
contain non-linear terms which give rise to self interactions of the same
particles or to interactions between different particles. In absence of these
non-linear terms, there are no interactions. In this case we have a free field
theory, describing free particles.

In many cases one considers field functions instead of operator fields. One
then spesks of classical fields, satisfying classical field equations. The
transition from a classical theory to a quantum field theory is called
quantization. Various quantization procedures are known, and can be found in
the textbooks [1] .

The simplest example of a free classical field is given by ¢(x)=¢(¥,t),

and it satisfies the Klein Gordon eguation

(0-m?)¢(x) = 0, (.1
-, 32 !
where O = V2- m . :

The general solution of this equation is given by 1

T2
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Aﬁ ! ak >y 1kex x>y =—ikex

. b(x) = —— j (a(k> AKX L xR e ) (1.2) ,

(2m)3/2 ) Joky i
§

'; where

kex = —k0t+-l;~; and k% = k2 +m2.

This solution is clearly a superposition of infinitely many plane waves.
After quantization the classical field ¢(x) is replaced by an cperator
field $(x) which describes spinless particles with mass m.

. . > *, .
The coefficients a(k) and a (k) in eq. (1.2) are then also operators,

st

acting on a Hilbert space. They satisfy the following commutation

relations
[a(k), a(k")] = [8%(X), a*(k")] =0 ,
‘ [a(%), a%(k")] = s(k-k') . (1.3)

The element ]0) of the Hilbert space represents the vacuum state. By repeated

application of the operator a*(i), the following set of basis vectors can be

Y obtained

. 4 * "

: lkl) = a*(lzl)lO) ? lil’l,i{’z) = 3§ (i{’l)a*(-lzz),()) geves
]Kl,...,itn>=a*(i<’1)...**('in)}o> , ete. (1.4)

. . . > >
where IKI"“’ﬁﬁ) represents a state with n particles with momenta kl,...,kn.

Since these states cannot be normalized,they are strictly speaking not

e

Hilbert space vectors. It is, however, not necessary here to use the proper
"smeared-out" version.
From (1.4) it can be seen, that the number of particles increases by
- repeated application of 8%(k). From the commutation rules (1.3) it follows
? that application of E(i) decreases the number of particles represented by a
f» state. For this reason the operators &% (k) and a(k) are called creation and |
annihilation operators.
5 In this way one may understand how the operator field ¢(x) is associated
with a system of particles.
_ Although we shall only discuss classical fields, it is important to keep >
i' in mind that the coefficients a*(¥) and a(k) of the plane wave expansion ;-
%{ (1.2) create or annihilate the many particle states in the quantum theory.

In this example no spin was present. The creation and annihilation

operators only depend on the momentum variable i.

If we consider particles with spin, the coefficients of the plane waves

i
I
J
£,
it
i
W
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must also contain information about the spin. In the corresponding quantum

field theory we then have creation and annihilation operators for particles

O A,

with momentum k and a specific spin component along some prescribed direction.
The spin component along the direction of the momentum kX is called helicity. '
For instance, in the case of massive particles with spin 1, the coefficients
of the plane wave solution consist for each k value of three independent
coefficients. After quantization they can be combined to creation and
annihilation operators for particles with momentum k and spin components +1,
0 and -1. If the particles are massless, however, the plane wave solution
should have only two coefficients corresponding to the two helicity states 1.
In the general case of massive particles with spin s for each kX we should
have 2s+1 independent coefficients of the plane waves associated with the spin
components S, s-1, s-~2, ..., =S. In case of massless particles there are
always two helicity states *s, and therefore we should only have two independent
coefficients.
The construction of a theory for interacting particles with arbitrary
spin s can be done by the following four steps:
1. Choose a field which describes the particular spin s under consideration.
2. Construct the free field equation.
3. Construct additional terms in the field equation which are responsible for
interactions between different particles and/or particles of the same kind.

4, Use a quantization procedure to obtain a quantum field theory.

In the following we shall discuss only the steps 1 and 2. Moreover we

shall investigate the relation between theories in the massive and massless

case.
In taking the first two steps one is restriected by the following facts:

1. The field equation has to be Lorentz covariant. According to the special

theory of relativity physical laws are the same in every inertial system.
Since inertial frames are connected by a Lorentz transformation, the
field equation should take the same form after application of such a trans- R
formation.

2., BSince we consider free fields only the field equation is required to be
linear in the field and its derivatives,
Moreover we restrict ourselves to field equations which are at most second
order differential equations. This 1s a reasonable restriction since
second order wave equations for spin 0 and spin 1 are known to give
satisfactory physical theories. We want to treat higher spin field

theories on the same footing.

T
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3. 1In case of arbitrary spin the field has to describe more degrees of freedom
then the spinless field ¢(x) (1.2). Therefore we have to deal with fields
which have more components. If the number of components turns out to be
greater than the number of degrees of freedom, the field has to satisfy,
besides the field equation, a set of subsidiary conditions. These
subsidiary conditions eliminate the superfluous degrees of freedom of the

field.

In order to satisfy the first requirement we choose for the description of

massive particles with spin s a symmetric tensor field of rank s, ¢Hl n (x)-
«--lg

By using the operator au and O we can get a Lorentz covariant field equation.

If it is assumed that ¢ satisfies the Klein Gordon equation

M1---lg

(o-n)e, ., (x) =0, (1.5)
S

the requirements 1 and 2 are satisfied and, moreover, the general solution

->
1 dk . .
¢ =____J___ (a ->) elk X, a* (_}E) e—lk x) (1.6)
Ml---Ms (24)3/2 ) /oy \ M1ecc¥g Hy-- Mg
is again a superposition of plane waves and the relativistic energy momentum

relation
K2 = K2+m? (1.7)

holds.

(k) are complex functions

Note, that the plane wave coefficients au
1--- s

of k.

However, for the simplest case of spin 1, the corresponding vector field
¢u(x) has more components, 4, than required for the three helicity states. In
case of higher spin this problem becomes even more serious. It can be shown
that a symmetric tensor field of rank s in U-dimensional space has (5;3]
components, whereas the spin s case only gives rise to 2s+1 helicities.
Therefore we need a set of subsidiary conditions in order to eliminate these

superfluous degrees of freedom. These subsidiary conditions turn out to be

n
O

6u1u2¢u1 . -'“s(X)
and (1.8)

]
u1¢u1u2---us(X)

[}
(=

The meaning of these conditions can be understood in terms of the

representations of the Poincaré group. We shall show that a field, satisfying
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(1.5) and (1.8) transforms according to an irreducible representation of the
Poincaré group [2]. All different irreducible representations can be obtained
with the general theory of induced representations [2,3) and they are
characterized by the two quantities m and s.

Evidently ¢u1---us(x) and therefore aul I carries a representation
of the Poincaré group. We shall show that this representation is irreducible,
if the plane wave coefficients a satisfy the following set of Lorentz

ul"‘us
covariant subsidiery conditions

Smge..ng K =0

and (1.9)

By ang®) = 0

which, of course, follows directly from eqs. (1.6) and (1.8). If we restrict
ourselves to the proper Lorentz group £o, the transformation of the

coefficients a (k) is given by
ul...us

-1
A (A k) , (1.10)

(k) = A ..eA
H] s

a a
Mpe U A HgAg Ajese

where A is an element of L.

For each fixed four-momentum Eu the elements of £o, leaving Eu invariant
form & subgroup called the little group, associated with Eu.

According to the theory of induced representations, the irreducible
unitary representations of the Poincaré group are uniquely determined by the
irreducible unitary representation of its little group [3]. If we chbose
Bu = (0,0,0,im) the corresponding little group is SO(3), the group of
rotations in 3-dimensional space. Thus the question is whether or not
(k), satisfying conditions (1.9), carries an irreducible

a
“1"'“5
representation of S0(3). From

EA“Auz...us(E) =0

it follows for Eu = (0,0,0,im)

a 0] <11
huz..-us(E) = (1 )
which corresponds to (s;2) equations. As a consequence of (1.11) the original
L-dimensional tensor a is reduced to the 3-dimensional a. . with
S+2y . Hij«--Hg Jdissedsg
( 2 ) independent components.
Such a tensor still carries a reducible represeatation D of SO0(3). Since
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it contains spin s, s-2, s-lI, etc. it transforms according to

D(s)eD(s-2)® ... ®8D(0) s even,
D= { (1.12)
D{s)@#D(s-2)®...8D(1) s odd,
where D(k) denotes the irreducible representation of dimension 2k+1 of SO0(3).

However, the second condition (1.9)

aAAua...us(k) =0,

takes, as a consequence of (1.11), the following form:

a.. k)=0. 1.13

sita . ) (1.13)

The last equation (1.13) corresponds with (Z) equations. Obviously the number
+ .

of (522) components 1n a

(1.13).

Moreover it is a well-known fact that a traceless 3-dimensional symmetric

is reduced to 2s+1 by the last [S] equations
2y...-84 2

rank s tensor is associated with an (2s+1)-dimensional irreducible
representation of S0(3).

All the facts mentioned above can be summarized as follows: The original
representation (1.10) of the Poincaré groups is irreducible, since, as a
consequence of the subsidiary conditions (1.9) it corresponds to an irreducible
representation of its little group S0(3). 1In configuration space the field
¢u1...us(x) satisfying (1.5) and (1.8) transforms also according to an
irreducible representation of the Poincaré group.

For completeness we give the field equations plus subsidiary conditions for
massive particles with half integer spin s+3 (s=0,1,2,...). Such particles can
be represented by a symmetric tensor-spinor wul...us(x) satisfying the Dirac

equation

(Yhah+m)wu1---us(X) =0, (1.14)

and the subsidiary conditions

Y, ¥ (x)=0,
H1 M1---lg (1.15)

(x) =0.

9
“lwul"'“s

The main issue now is, whether it is possible to construct a field equation
for a field ¢u1.'_us which is equivalent to (1.5) and (1.9). 1In order to do
this we shall use the so-called root method which we shall discuss in the next
section.

Ornce we have such a field equation we require it to follow from a primciple
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of least action. In classical field theory this is a special kind of

variational principle, which is postulated for a Lagrangian (density) £. The

Lagrangian is a Lorentz invariant expression depending on both the fields ¢m(x)

and their partial derivatives Bp¢m(x).
From the principle of least action the following relativistically

invariant field equations - usually called the Euler-Lagrange equations - are

obtained
3L 2L
__ap( ) =0 . (1.16)
8¢m 88u¢m

A more detailed treatment of the least action principle can be found in [1].

For instance the Lagrangian for the spin-0 field reads
L=3((s9)2 + m?42) (1.17)

In this case it can easily be verified that the Euler-lagrange equations (1.16)

give the usual Klein-Gordon equation
(0-m?)¢(x) = 0 .

Although we get the same field equation as before (1.1), knowledge of the
Lagrangian is valuable for various theoretical considerations like invariances,
quantization and construction of theories with interaction. Therefore it is
useful to construct a field equation which is equivalent to (1.5) and (1.9)
and which is derivable from a Lagrangian.

In the following we shall also check a condition on the propagator. When

a free field equation for arbitrary spin is obtained
0 =0, (1.18)

we can introduce an interaction with an external source t. Then the field

equation becomes an inhomogeneous second order differential equetion
0=t . (1.19)

Here O denotes a second order differential operator.

The propagator isa Green function of eq. (1.19) and can - for our
purposes - be defined in a heuristic way as an inverse of 0. The propagator
plays a very important role in quantum field theory; it enables us to
calculate the probability amplitudes of the various processes.

In particular when the field is coupled to an external source we shall
consider the amplitude for the exchange of a particle between two sources

tmt, where w 1is the propagator. This quantity is required to have only a
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single pole at the mass and the corresponding residue should be positive

definite. This last condition follows from the unitarity of the S-matrix or - ﬁ

o4

equivalently - from conservation of probability.

In the last chapter we shall study again the amplitude tat both in the
massive and i1n the massless case. There we shall discuss whether or not the
massless amplitude can be obtained from the massive amplitude by taking the
m>0 1limit.
< The problem of constructing field equations for higher spins was first
considered by Dirac [4] in trying to generalize his well-known spin-3 equation.

A field theoretical appoach of this problem was undertaken by Fierz and Pauli

[5]. They tried to get a field equation from a Lagrangian in order to ~
introduce interactions in a more consistent way. They also noted that in order
to get equations (1.5), {1.8), (1.11) and (1.12) from a Lagrangian one needs,

: besides the original tensor field, a set of auxiliary fields. A procedure for
B introducing auxiliary fields was developed by Chang [6]. However, he only

constructed Lagrangians for the cases s5=2,3 and k.

AN

Finally Hagen and Singh [T] constructed massive field equations for
i arbitrary s, which were derivable from a Lagrangian. Their field equations
were, however, not homogeneous in second order derivatives, 1if integer spin
was considered. Their work formed the starting point for Fronsdal [8], who
constructed Lagrangians for massless particles with arbitrary spin. Here the
interesting point was that auxiliary fields no longer were necessary in order
to describe massless particles with spin s.

In the following section we shall describe a different method to construct
higher spin field theories. We shall use there the root method, developed by
Ogievetski and Sokatchev [9] . This approach has already been used for the

5

construction of a spin—a free field theory [10].

2. The root method

In this section we shall first discuss the main characteristics of the

root method. It will be shown that with this method a field equation can be

e 4L

obtained, which describes free massive particles with arbitrary spin. -l)

|
<
1
A
«

Moreover we shall show that, if a field satisfies this equation, it also »ﬁf

satisfies the Klein-Gordon equation plus the set of subsidiary conditions

which were mentioned in the previous section.
. Then we shall consider the problems which arise when one wants to construet

a Lagrangian from which this field equation can be derived.
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It should be stressed again that we restrict ourselves to the case of
integer spin and uncharged particles.

For the presentation of the root method it is useful to introduce a set of
spin projection and spin transition operators ng which act on the field and

satisfy

J L _ J,L. I
PPy = 6765, P, (2.1)

The superscripts J and L denote the spin subspace in which these operators act
and the subscripts i,j and k, refer to the number of independent spins in one
subspace. The operator ng is a projection operator if i=] and will be called
a transition operator if i#j.

In cases where only one projection operator exists, we sometimes omit the
subscripts like in the spin-1 case.

This case can be described by a vector field ¢u(x). As is well known the
spin content of this field is both spin~1 and spin-0 once. Consequently we

have only two projection operators P' and Po, which are defined as follows

Vo2 g = 1
Puy =0, =8, -5 8,8,
{2.2)
0 _, =31
Pov 9,538 -

One can easily verify that these operators satisfy relation (2.1).
By going to the rest frame in the k-representation as in equation (1.11)
one sees that (2.2) projects out ¢j and ¢u from ¢u. For higher spins the

projection and transition operator are combinations of products of the

quantities euv and Wy
An advantage of the use of projection and transition operators is, that
many algebraic manipulations simplify, since (2.1) is satisfied. If we, for
instance, multiply the operators
A=T ] aipFy; e 3=T T bR,
J 1] L k&
we get

: JJy J
AB=7] ] (a"p"),.F.. . (2.3)
J i3 11

Consequently the new coefficients are simply the matrix products of the
.. . J J
original matrices aij and bkz'
The projection and transition operators form a complete set in which any
Lorentz invariant differential operator, acting on the field, can be expanded.

More specifically, a differential operator of even order can be written as
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Aw,w' B ?T: 1):] ai,j(Pij)m,m' ?

where w stands for a set of indices depending on the kind of tensor field on
which Am,m' acts.

The coefficients can generally be expressed as a power series in the
d' Alembertion O. But since we are only interested in an operator of second
degree we take these coefficients as constant multiples of O.

In order to comstruct a theory for massive particles with integer spin s
we first choose a symmetric tensor field of rank s ¢H1H2---us’ or simply ‘m'

When the spin content of this field is determined, one can construct the
complete set of projection and transition operators ng. According to the
spin content of ¢m we always have one spin-s and one spin-{s-1) projec}ion
operator.

Since the lower spin sectors (s-2, s-3, etc.) are higher dimensional there
exist more projection and transition operators in those cases. Then the most

*)

general homogencous, second order field equation can be written as

(a;,m' - mzdm,m')¢m' =0,

where
0=+ 4+ J a‘iI.P‘.T.)n : (2.4)
J<s-2 1,) J 4
and where the agj are real pumbers.

However, because the projection and transition operators contain terms
proportional to o °, o (s=1) etc., eq. (2.4) contains singular expressions
D—(s—1)’ n-(s—2), ete.

Since the field equation (2.4) is required to be regular, we have to
eliminate these terms which of course imposes a set of conditions on the
parameters agj.

The wave equation (2.4) has to describe massive particles with spin s.
According to the root method developed by Ogievetsky and Sokatchev [9], a

certain power of the wave operator should be proportional to the highest

projection operator. If
s N
M - pSd (2.5)

then the corresponding field equation describes spin s alone. Note, that if

(2.5) holds for some integer N, it is automatically satisfied for larger N

values.

*) Repeated indices denote summation over these indices.
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Equation (1.5) implies that the Klein Gordon equation plus subsidiary
conditions must be a consequence of condition (2.5). To show this, we note

that from (2.4) and (2.5) follows

(GN)w’wv¢wv = m2N¢ = Ps,munl"wv . (2.6)

w w

From the last identity in (2.6) we get:

mznP:,m'¢m' = P:,m'nN¢m' = m2N4m ?
which implies

Bt = 4 - (2.7)
From (2.7) it follows

® 4 ,=0, ford<s. (2.8)

w,w' "w'
When one substitutes (2.7) and (2.8) in the general field equation (2.%), one
gets theKlein Gordon equation

(o-m?)¢ =0, (2.9)
whereas (2.8) is equivalent to ihe subsidiary conditions

$ = =
Alul...us_z "1"'"5’2 =0

and (2.10)

) = (9-¢) =0 .
A¢Au1...us_1 (a-4 ByeeeHsed

Thus it is shown, that condition (2.5) from the root method guarantees

description of spin s alone.
However, if one applies this method for spin s>2, some difficulties
arise. When we first consider condition (2.5), realizing that ?° contains

-5 . . .

terms proportional to O , then the regularity of O implies that at least
Nz2s , (2.11)

in order to make the right-hand side of (2.5) regular as well. If {(2.5) is

satisfied for some N, N>s, then

(@7 <0 for a11 7 (d<s) , (2.122)
but

(aJ)N’i # 0 for at least one J value , (2.12B)
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since otherwise (2.5) would hold for a smaller N-value. Therefore a matrix,
aJ, which satisfies the condition (2.12) should be at least a NxN-matrix.

On the other hand if we determine directly the dimension of dJ in 0,
a% turns out to be the largest mat:.x since the spins-0 sector has the highest

dimension. More specifically, a0 is a

(3s+1) x (3s+1) -matrix, if s is even, and a
(2.13)

3(s+1) x }(s+1) -matrix, if s is odd.

Clearly the dimension of a® and therefore of all aJ is too smell (i.e. smaller

than a NxN-matrix, with N>s) and condition (2.12) cannot be satisfied.

3 One possibility to solve this problem is to allow higher order derivatives
in the field equation. However, as was mentioned before, we only consider

: ! differential operators of second degree. Instead we can solve this problem by
.i' enlarging the dimension of the lower spin matrices aJ- This can be done by

. introducing additional field quantities, which we call auxiliary fields.

: In order to satisfy the root method conditon (2.25) for a certain smallest
‘ N~value (N2s) we have to enlarge the dimension of the matrices aq until there

o exists at least one matrix aJ for which (2.12) holds:

J\N-1

@) =0, but (a # 0.

a
Then the difficulty which arose from (2.13) is solved.

It should be noted here that in general there is a certain arbitrariness
in choosing the auxiliary fields, since there are different ways to enlarge
the matrices a’ in order to satisfy (2.12).

In case we started with a symmetric tensor field of rank s the only
possible auxiliary fields are tensor fields of rank s-2, s-b4, s-6, etc.,
since the projection and transition operators are always combinations of
products of euv and © (see (2.2) ).

The new wave operator O acts on the field configurations
. (s) (s-2) s=b

. = cee) 2.14
. ¢m (¢u1...us’ “1"'”5—2’ ¢ul...us_h’ ) ( )
Of course the introduction of auxiliary fields leads to an additional set of

projection and transition operators. The field equation can still be written

: as
- 2 =
£ (Qn,w' e Gw,w')¢w' 0
‘. with (2.15)
0=(°+ ¥ al.??. )o .
J<s2 i,; WU
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Here we used the fact thuat, according to (2.5), we get aS~1=0.

Concerning the terminology we define here auxiliary fields as the
additional fields besides the originally choosen symmetric temsor field. This
implies that for a different original choice (for instance fields with
spinorial instead of tensorial indices) different auxiliary fields will bve
required. The auxiliary fields introduce more spin degrees of freedom, just
like the original tensor fiéld also contains more spin degrees of freedom than
the components of the highest spin. However, the wave equation will eliminate
all those superfluous degrees of freedom as is demonstrated by eq. (2.8).

Thus & field equation (2.15) can be obtained, not containing negative
powers of d'Alembertian O, and which describes massive particles with spin s
only. This field equation, however, is in general not symmetric in the tensor
indices v and w', in contradistinction to field equations derived from
Lagrangian.

So one tries to symmetrize the field equation with a non-singular
symmetric transformation V, which does not contain derivatives and terms
proportional to n_k. With this transformation the field and auxiliary fields

are redefined as follows

= ' - .
¢ Vm,w,tb " (2.16)
Since V acts in the spin-s and spin-(s-1) sector as unity the relations (2.7)
and {2.8) still hold with respect to ¢; . Therefore the physical content of
¢w and ¢; is still the same. After redefining the fields, the field equation
reads

- m? 't =
(OV - m V)m’m,zbm, 0. (2.17)
Expanding V in terms of projection and transition operators

v=p+p5 4+ ¥ I v, (2.18)
J<s-2 i} J 1

equation (2.17) becomes:

-m2§ ¥ vlpl) Gr¥le = 0. (2.19)

e 1L AN

J < s-1 J J ij

The matrix vJ being symmetric we only have to require aJ = anJ to be symmetric

for all J. Obviously the mass term has become more complicated now.
The symmetrized field equation (2.19) can be derived from a Lagrange

function
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£ = ¢S (OV-m2V)e . (2.20)

Summarizing, a field equation has been constructed which takes the
general form given by equation (2.19).

This equation satisfies three requirements
1. the wave operator is regular, i.e. it does not contain terms proportional

to D-k;
2. the root method condition (2.5) for 0 is satisfied;
3. the wave operator is symmetric in w and o'.
These requirements lead to a set of equations for the coefficients agj and vin.
For each case one has to look for a solution of this set of equations. If
such a solution exists, then the field equation according to the root method
is equivalent to the Klein Gordon equation (2.9) plus the subsidiary conditions
(2.10). Thus a theory has been constructed describing massive particles with
spin s only.

As was mentioned in the previous section we still have to discuss a
condition on the propagator. When the propagator is evaluated in the k-
representation it should only have a first order pole in k2+m?. Moreover, due
to the unitarity of the S-matrix the residue of this pole should be positive
definite.

For our purposes the propagator is defined as an inverse of the operator

(0-m24). When we first consider the case of a non-symmetric field equation

(2.4)

- m2 =
( Ob,m' m Gw,m')¢m' 0

the propagator is given by

5.5
n(m) = {(—2——0—1:—— - —1—) ( 05 um2 os‘2+...+m2(s‘”1)}. (2.21)
o s(ns_mzs) mES

One easily verifies that

m(m){(0-m®1 ) =1 (2.22)

holds.
In case of the symmetrized field equation (2.17)

(( OV)y ot = m2vm,m,]¢‘:), =0

the symmetrie propagator n(m) is related to the former in the following way
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#(m) = vV'a(m) . (2.23)

In this case we obviously have

Flm)( OV-m2v) =1 (2.24)

If we sandwich the propagator {2.23) between two external sources, Twﬁwm.ﬁm)Tm,,
we can determine the poles and the corresponding residues of this expression.

We first decompose the non-symmetric wave operator O :

0= P(s)n + 0 (2.25)

where 0 is the part of the field operator, affecting only the lower spin

sectors.
Then the propagator #(m) can be written as follows:
s

P 1 -
#(m) = {v-l( - = (55-1 +m2052 4 . +m2(s—1)(1_P(s))])}.
(2.26)

o-m? n

From (2.26) one immediately observes that the expression T#(m)T has a first
order pole in {B-m?) or in k2+m?. Furthermore presence of P% in this pole
part guarantees that propagation of only the highest spin part has this pole.
Finally we show that the residue TV—IPST =T = (PST)2 is a positive
definite expression.

It is shown by Chang ([6] that in general the highestasgin projection p°
consists of a product of s times euv, where euv = 6uv -~ ﬁnv . This
expression has the property that aueuv = 0., Therefore, if we introduce the

gquantity
J = (pS) . (2.27)
M Hyeeslg Uplges g
the following property is obvious:
3 J = (3+J) =0. (2.28)
TPRR TP TP T Holgeeelg
When we evaluate (2.28) in the momentum representation, we get
k J + Kk J =0
2 TP TS i h“z"'“s :
or
k,J =kJ . (2.29)

2 zuz...us 0 Olyeeslg

Here repeated latin indices denote a summation over the space components alone,
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whereas repeated greek indices always denote a summation of all space and

time components. The residue TP°T can be expressed as follows

s 2 S zi my
TP T=32=J n (5 -——)J . {2.30)
2122...9.5 i=1 Zimi kg mm,...mng
s kzikm.
Since each factor in I (62 m "];FJ;) represents a positive definite
i=1 i1 (o}

matrix, TPT is also a positive definite expression. This can easily_ been
understood, by going to a fraue in which K is given by k) =k2=k3=%/3-1:2 .

In this case (2.30) turns into

. s X2
TPT = J! n s (1 - —)J' . {2.31)
21...25 i=1 zimi 3k§ ml...mS

which is clearly positive definite, since k§=>§2.

3. Field equations for massless particles

In the previous section we discussed the construction of field eguations and
Lagrangians for massive particles with integer spin s. These field equations
were obtained by using the root method and a set of projection operators.
Since in the massless case the operators are not projection operators, it is
not possible to construct a theory for massless particles by the method
discussed before. Instead, as a starting point, we shall use the massive
field equation (2.19):

s Jd JJ J J
PS4+ Xa.v.P..—mZZZv..P..) 6., =0.
( J<s-2 15 1k kj ij J i 1j71j/w,w'"w

Here the coefficients agj and vgj are subjected to a number of conditions, the

origin of which has been discussed in the previous section.

In the m*0 limit equation (2.19) should lead to the two highest helicity
states ts only. The degrees of freedom which are associated with other
helicities must vanish. The transition to the m=0 theory becomes more
convenient, if a solution of the coefficients agj and vgj exists such that the
conditions mentioned before are satisfied and such that the coupling between
the original field and the auxiliary fields takes place only through the mass

term. If in this case the m»0 limit is taken the equations for the original
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field and the auxiliary fields will decouple directly. By taking the

auxiliary fields zero, one gets an equation in terms of the original field

¢u " (x}. The wave operator, thus obtained, is determined by the remaining
1.'. S
matrices

& = aJvJ, {(3.1)

vhich are only related to the projection and transition operators of the
original field ¢u1 y (x). The field equation reads, in presence of an
ceolig

external source T

Z aJJ

(P° + P
J<s=~2

,¢(x)m, =T . (3.2)

i) ij)mm ©

In the next chapter we shall show for the case s=1, 2 and 3, that the
field equation (3.2) in the presence of an external source takes the following

form. (see alse [11]) :

W -3)y8 W =T R (3.3)
ul...us 2 uluz us--.us ul...us

where
W =n ~ )2 3 (9-¢) +} 3 2 ¢ (3.4)
Ul---us ¢u1"'us z], ul ¢ uz“'us Z2 ul l-l2¢l-l3---l-ls i

and where ¢u1 n is a symmetric tensor field of rank s.
T
The summations are made over all independent permutations of the indices
* . . . .
ul...us. ) For some contractions a short-hand notation is used, 1i.e.

(a-tb)uz”_us = %, (3.5)

] = ¢ .
Yg..-Hg Akua...us
The fields in (3.3) and (3.}4) are chosen such that their double.trace vanishes,
i.e.
o -0, (3.6)
Mgee oty
Obviously this condition is only important in case s>i. The equations (3.3),
(3.4) and (3.6) were originally found by Fronsdal [8]. He showed that they
give a correct description of massless particles with integer spin. These
equations were also discussed by de Wit and Freedman [11].
It should be noted that the matrices EJ in equation (3.2) have zero eigen-

*) In particular Zl denotes a sum of s, and 22 denotes a sum of 3s(s-1)

independent permutations of the indices w;...ug.

88

!

e

howAs

-

TR TET

Eh

A



g

o

a

values. The singularity of the matrices & follows from the nilpotency of the

matrices aJ, which in turn is a consequence of the root method.
Such a singular matrix EJ gives use to a certain number of left and right
null vectors, which are automatically null vectors of the wave operator 0.
In the presence of a source T, the field equation (3.2) can be written as
wtbr =T, - (3.1)

w

Suppose we transform ¢ according to

%*%*”"zmmm‘* , (3.8)

w'

where xJ (x xJ ) is a right null vector of aJ. It can easily be

s
verified thatlthe field equation (3.7) remains unchanged under the trans-
formation of (3.8). Thus every right null vector gives rise to a gauge
invariance of the massless field equation (3.7).

In the next chapter we shall show that for the case s=1,2 and 3 the

various gauge transformations (3.8) can be combined in the following one

86 = Zl 3 , (3.9)

£
Ule« Hg U] U2...Hg

where euz u is a symmetric traceless tensor of rank s-1.
colg
In the same way it can be understood that each left mull vector yJ of a s’
causes a source constraint
Z (yz m2 wyw' Tm =0. (3.10)
Again for the cases s=1,2,3 it will be shown that the various source
constraints (3.10) can be put in the form
au (T T L )=o0. (3.11)
Hp-esHg  2(s=1) “uaug ujMy...Ug
Sources obeying these constraints are called physical sources. Also the gauge
invariance (3.9) and the source constraint (3.11) were found for the general
case by Fronsdal [8].
If physical sources are absent, the free field equation turns out to be

o -} 3 (3- + ' =0, .12
¢u1--.us Z1 ul( ¢)u2---us Z2 1 U2¢u3 solg (3 )

with ¢ symmetric,

¢u5...us =0. (3.6)
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and with gauge invariance under

= . ¢ = . -
8¢ Zlauleuz'..us 5 Chyiong = O (3.9)

HpeooHg
We shall show for this general case that the system of equations (3.12), (3.6)
and (3.9) describes massless particles with only two helicity states #s. By
using gauge transformations the field ¢ can be transformed such that it
satisfies the following Lorentz covariant condition:

3 ¢! . (3.13)

=4
(3¢) =3l upPiy e

Uye oo ls
Note :unat for fields, satisfying (3.13) the gauge invariance (3.9) still
exists, but with an € such that ve=0. For fields satisfying this condition

the field equation turns into the massless Klein Gordon equation

o x) =0 (3.14)
by g ®) =0
the general solution of which can then be written as
dk
ik e * -1k
¢ (x) = I (a (k) ¥ % 4+ o (x) e 2K°%) | (3.15)
T T S - MyreeHg B ---Ms
0
Here the a " (k) are complex functions of ku which accoding to (3.1L)
ceelg
satisfy 1
k2= -k +%¥2 =0 . (3.16)
Of course the double trace of au " vanishes, i.e.
1 Mg
a" =0. (3.17)
115---115

Clearly the functions a have too many components; we need only two components
for the description of two helicity states. As we shall see gauge invariance
can again be used to eliminate these superfluous components as well.

From the gauge invariance (3.9) it follows that the functions a.u u can
1...5

be redefined

+a + )k (k
aul...us Uy Hg Xl ulxuz...us ) s
with (3.18)
x! (k) =0 .
Hyeeolg
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Obviously a " also satisfies the gauge condition (3.13)
1***¥Fs
k.a ==}k =a' . (3.19)
A Auz...us 2 zl By Hgeeolg
The set of functions e, " {x), satisfying (3.17), forms an infinite
1°°¥s ) )
dimensional space A . We consider the following lorentz invariant subspaces
of A4:
¥y consisting of all elements of 4, which have the form zlku X, " (kx), with
1 H2e-¥s
[} =0 :
Xu“...us ?

¥, consisting of all elements of A, which satisfy (3.19).

Clearly ¥ is a linear subspace of ¥}, since each a€¥H, satisfies (3.19).

We consider the following hermitian form on ¥:

ak , .
b) = | —\a b - 1 s(s-1 b .(3.20
(2,b) J 2k, ( Hysoelg Hyeerlig L ( )ahhus...us vvu3...us) (3 )

The following properties can easily be proved.

(1) for all a€¥; we have

(a,a)20 , (3.21)
(ii) but (a,a)=0
if and only if a€¥, (3.22)

(iii) for all a,b€X; and c€X, we have
(a,btc) = (a,b) . (3.23)

So it follows from (3.21) that the hermitian form (3.20) is positive but,
according to (3.22), it is not positive definite. However, as a consequence
of property (3.23), it is possible to define the hermitian form (3.20) on the
quotient space H;/H; . On this quotient space the expression (3.20) is
positive definite and consequently it gives a well defined inner product on
¥, /Hy. With this inner product ¥;/Hy is an infinitely dimensional Hilbert
space., This space can be considered to consist of infinitely many spaces Vk
of finite dimension., Here the label k represents a point on the light-cone.
A simple counting argument shows V., to be two-dimensional for any k on

k

the light-cone. Or stated in other words: any function au u (x),
NN T

representing an element of ¥; /¥y , has only two independent components for any
k with k2=0, Indeed any symmetric s rank tensor, the double trace of which
vanishes, has 2s2+2 components. If we restrict ourselves to ¥, a has to

ul"'us
satisfy (3.19), which corresponds to s2 conditions. So s2+2 components are
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left. The aulc'.us can be redefined - still representing the same element of
¥,/; - by using a gauge transformation (3.18). By redefining 8"1---"5 again .
s2 components can be eliminated and therefore two independent components are F
left. This shows that the many different components of 8"1---"s(k) are reduced :
to two by using the gauge invariance of the theory for any k on the light cone. i

In order to understand that these two components describe the two helicity
states ts, it must be shown that the quotient space ¥;/¥H; carries an
irreducible lightlike representation of the Poincaré group associated with the
two spin components % s.

From the way the field function ¢ transforms under an element a, of
the Poincaré group, it follows that the functions aul...us(k) transform
according to:

a (x) = A . ...A (1" ') (3.24)

Upeoeoby M usxsaxl"'xs
where A is an element of the proper Lorentz group and & is a translation
parameter. According to the theory of induced representations [2,3] the
irreducible unitary representations of the Poincaré group correspond uniguely
to the irreducible representations of its little groups. For some fixed k the
little group Lk associated with k is defined as the subgroup of elements
of the Lorentz group leaving k invariant. Equivalent little groups give rise
to equivalent representations if they are related to k-values on the same

mass shell (1light cone).
Written in a short-hand notation equation {3.24) reads

a(k) = D{a,N)alk) . (3.25)

Since #H; and ¥y are Iorentz invariant subspaces of A4, the representation
{3.25) gives a representation of the Poincaré group on ¥;/H; as follows.
Let P represent the natural surjection from ¥; onto ¥H;/Hy . let a be a H

representative of an equivalence class [a]€ (¥;/H,), so P(a) = [a], then
U(A)[a] = PD(A) a (3.26)

defines a representation of the Poincaré group on ¥;/¥#, . This representation
U{A) is unitary with respect to the inner product on ¥ /¥, .

According to the theory of induced representations, the representation
(3.26) is irreducible if and only if its corresponding representation ~f the
little group Lk for some fixed k is irreducible.

We choose-l_:u = (0,0,1,i). The restriction of all elements a(k) of ¥, /¥,
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to the k-value k forms a space Vk which can be proved to consist of elements

=‘|,2 —

e

a; . (x), il’iz""’i

1---is s

A

LR

a . . .
1113...1

+a__ . . = 0. (3.27)
s 22 1geeed

oy -
\\‘ K

Consequently Vk is spanned by the two independent elements a., 1(l_() and

X

854 1(1_{). This agrees with the fact that the dimension of V, and therefore

4
k iy

of Vk is two. We consider the two independent combinations %
- =

1 = . P

) = — H

el,t) = -2 (ag, g ey o) - (3.28) -

Then it can be shown that the 5(5,1) transform under elements A of the little L
group Lk’ according to 34
U(h)e(k,) = e 5% (k,2) . (3.29) ‘-

Here ¢ represents the angle of rotation around the kz-axis. Clearly the

representation of the little group (3.29) is reducible. However, in case one

TR

includes space reflections, the representation is not reducible, since space

reflections transform different elements e(k,+) and e(k,-) into each other.

Y

Note that the elements e(k,) are eigen vectors under infinitesimal elements
of the little group at eigenvalues *s, Therefore only two helicity states

+s are described.

R ST e o

It has been shown that the original free field equation (3.12) with gauge

invariance (3.9) describes massless particles with only helicities #s.

In the next chapter we shall show, at least for the case s=1,2,3, that
field equations of the form (3.2) and (3.12) can be obtained by taking the m»0
1limit in the massive theory.

We shall also study the propagator for zero mass. However, the definition
of the propagator is more complicated than it was in the massive case, since
inversion of the wave operator O is no longer possible. It has been shown in
ref. [10], that a suitable propagator can be obtained. There it was proved
that the propagator, corresponding to (2.32) sandwiched between two physical
sources, equals the inverse of a regular subtmatrix of O, sandwiched between
two physical sources. Construction of such a propagator shall be done
explicitly in the next chapter for the case s=1,2,3,

When we evaluate the propagator (still sandwiched between two physical
sources) in the k-representation it should have a single pole in kZ. Due to
the unitarity of the s-matrix, the corresponding residue should be positive

definite.
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Finally from the form of this residue it can also be seen whether or not

only helicity states * s propagate.
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CHAPTER VI i

FIELD THEORIES FOR PARTICLES WITH SPIN 1, 2 AND 3

. 1. Introduction

- In this chapter we shall discuss the construction of free field theories
for the case of spin s=1, 2 and 3. First field equations representing the o
massive particles will be obtained using the root method, explained in the
previous chapter. We shall also discuss the problem how to construct a
Lagrangian from which this field equation can be derived. Then we study the
properties of the propagator. When the propagator is given in the k- -
representation it should have a first order pole in k2+m?. Moreover, the
corresponding residue should be positive definite.

o Attention will be paid to the transition to the massless theory. We shall

7 discuss the various gauge invariances and source constraints, whick will

H srise. We have already shown that the gauge invariances must be used to

verify that only highest helicities are present in the massless theory.

2. Spin-1 free field theory
In order to comstruct a field equation for massive particles with spin 1,

we first introduce the spin projection operators v
L =1
Pﬁv = wuv =g aua“ »
1
P =08 =8 - . (2.1)
v v uv uv
H They satisfy .
el = ¢l | (2.2) 7};\3
For the description of spin 1 we choose a vector field ¢u(x). =
The wave oparator should be a homogeneous second order differential ;
operator. Such an operator cesn be expressed in terms of the projection ~
operators PJ. Therefore the most general wave cperator O can be written as .
follows
0o = (aPl + P’ )a . {2.3)
v Bv v

Clearly O does not contain negative powers of the d'Alembertian D. According
to the root method we have to find the smallest N-value, for which
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o = pla¥ _ (2.4)

holds. Since P! contains a term proportional to u", whereas O does not,

(2.4) might be satisfied by putting N=1. Clearly (2.}4) holds for N=1, if we
put a=1, b=0. Here we also used property (2.2). Thus the massive field
equation for‘spin 1 particles reads
1 e m2s = .
Py, ~ ¢, =0, (2.5A)
or using (2.1)

2 =
{o-m' )¢“ - auav¢v =0, (2.5B)

which is the well-known Proca equation.
The Lagrangian from which this equation can be obtained is given by

£=3((a )34 ) - (34,)° - n?) . (2.6)

The propagator of a massive particle with spin 1 can be found by inverting
{2.54)
1 1 1 1
#(m) = n-—ﬁ- P! - ;; PO = :—-T;(G."" - -m— 3,3,) - (2.7)
When the propagator is studied in the k-representation it has only a single
pole at k24m2. Moreover, when the propagator is sandwiched between two

external sources T the corresponding residue of the expression Tu'(n)uvTv is

positive definite as was shown for the general case in the previous chapter.
This fact can directly be proved for the case of spin 1. According to (2.7)

the residue of TuwuvTv is given by
(plT)2 = 33, » with J=plp |

Since P97 =0, we have in k-representation
k“J . = —k!'J e

In particular by choosing kj=kpy=0; k3=-l: s Wwe get

%2
(PlT)2 = 32432 = Jz(iz - )3 0.
3y 3 -kvzﬂlz

96

IR

T

ERl

e

1 oams

0

LA /L S
Kb

.oy

at

. L

Lo NS aga

At



LT IR VP

T P
B e

-

TR

4

T ALY

The massless theory can be obtained by taking the m*0 limit in the
massive field equation. In presence of an external source T the field

equation then becomes

1 =

Puvu’v Tu s (2.84)
or

0§ -32¢ =T . (2.88)

u Hv'v u

The resulting wave operator, 0= Pltl, has & left and a right null vector,
both proportional to PU. Consequently the field equation remains unchanged if
one changes the vector field ¢u by adding a right null vector:

+P0 p
¢u++u Pu\’ :V

for some arbitrary vector field g, - Thus a gauge invariance of the massless
theory is caused by the right null vectors of the wave operator.

The gauge transformation (2.9) can be written in the following form:
> + 3 ol
T A (2.10)

where x is an arbitrary scalar field.
In a similar way left null vectors give rise to a source constraint. By

multiplying eq. (2.8A) on both sides with a left null vector we get

0 = -
PuvnTv o, (2.11)

from which follows

=0. .
8uTu (2.12)

Thus in the massless spin-1 theory physical sources must be divergenceless.
Clearly the field equation (2.8B) with gauge invariance (2.10) is a

special case of the gemeral massless spin-s field equation discussed in the

previous chapter (section 3). By using the gauge transformation (2.10) a class

of field functions can be obtained, satisfying
9 =0 .
u¢u(X) (2.13)
and the field equation {2.8B) turns into themassless Klein-Gordon equation
=T . -
DQH(X) u(x) (2.1%)

As was shown generally in the previous chapter the solution of {2.1%)
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describes only two helicity states #s.

In this section we shall also study the propagator. In order to define a
propagator the wave operator should be invertible. However, since it has a
null vector it cannot be inverted. The gauge condition (2.13), which in terms
of projection operators reads

ngm\, =0, (2.15)

can be used to make the wave operator regular.
In fact we shall add equation (2.15) to the original field equation. In~
stead of equations (2.8) we shall study

1, p0 =
(Pl+p )uvmv = ‘I’u (2.16)

together with condition (2.15).
Indeed, f£rom (2.15) we obviously get (2.14)..
Since we can invert the wave operator in (2.16) the massless propagator
ﬂuv can be obtained
Suv

=l (plypdy = ——
"wv T @ (Pi+P )uv o (2.17)

When this propagator is sandwiched between two physical sources it is

possible to show that only helicity * 1 modes propagate. According to eq.
{2.17) we get

1
T T ==T . i 2.18
uwuv v P uTu ( )

We shall evaluate this expression in k-representation. In momentum

representation the source constraint reads
kT =0. 2.1
T (2.19)

The most general decomposition of the source T on-shell (i.e. k®=0) can be
written in terms of the polarization vectors ag (i=1,2) and the vectors
k, = (k,k,).= ('i,iko) and iu = (K,-ik,) (see App. C)

i -
= + k + - -
T T uA kuB {2.20)

i

I e

¥ oi=7,2 ¥
Due to the source constraint (2.19) we get, after contracting (2.19) with

ku, the restriction B=0, or
i mi
= L3 + A . -
T, Liep T 4k (2.21)
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Since € terms give rise to helicities %1, where
(2) =3 1, ;2
= 4 — + i€ 2.22
eu JE (eu “) ? ( )

the #1 helicity source combinations are

= -1-_ (71! 4+ iT2) . (2.23)
72

With (2.21) and (2.23) the expression (2.18) becomes

= = +)2 -2 2
T S o I = (17712 + |T7}2) + |aj2 . (2.2%)

Note the single pole in k%2 . Further the residue of this pole is positive
definite and its form guarantees propagation of only the higher helicity modes

*1.

3. Spin-2 free field theory

In this section we shall first construct a field equation for massive
particles with spin 2. Then we shall discuss the massless case. For the
description of particles with spin 2 we choose a symmetric tensor field of
second rank ¢uv(x). The field equation for massive particles can be
constructed by using the root method. The projection and transition operators-

which we need are listed in appendix B. They satisfy the relation

pl.pl = &70s, pY
ij

ke jk'is - {3.1)

We start with the most general homogeneous second order differential operator

Ouv oo’ When we expand this operator in projection and transition operators,
3
it takes the following form

< 2 1 0 0 0
0= (ap? + vP! + cPY, +ap,, + &3P, + £/3PY, ) . (3.2)

Terms proportional to u-1 in (2.2) are eliminated if the following condition is

satisfied
2 1
-3-a-2b+§c+d-(e+f)=o. {3.3)

The root method which guarantees description of spin 2 alone implies that

o = PP (3.%)
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holds for some integer N. Since P2 contains terms propertional to 0'2 and u",

whereas O does not, the lowest N-value for which (3.h4) is satisfied must be
R=2. For higher N-values it is then automatically satisfied.
The consequences of equation (3.%) can easily be understood if we use the
matrix representation of 0 which follows from (3.2):
a
b

0= c 3] . (3.5)
ev’§d

Since,according to (3.4), O squared must be proportional to P2, we
find:

a=1, b=0,

c+td=0,

cd-3ef = 0.

{3.6)

The last two conditions correspond to the nilpotency of the spin-0 submatrix

of 0.
Thus a massive spin-2 field equation has been constructed

2 -
ODV,DU%U - m ‘uu =0, (3.7)

where 0 is given by (3.2).
The coefficients in (3.2) have to satisfy the conditioms (3.3) and (3.6). As

was explained before (3.7) is equivalent to the Klein-Gordon equation

2 =
{o-m )"W o, {3.8)
and the subsidiary condition
2 = .
Pw,pc‘tpY ¢"v s {3.9)
which is equivalent to
(3.10)

3 = 0.
M

However, the solution of (3.3) and (3.6) does not lead to a symmetric wave

operator in (3.7). Therefore equation (3.7) cannot directly be obtained from

a Lagrangian.
In order to symmetrize the wave operator we redefine the field by using

a symmetric non singular transformation V:

=V ° &' = &' L .
L Vw,wetp0 ¢uv + pﬁuvﬁpa¢oc (3.11)
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In terms of the projection and transition operator V reads:

v=(e2+pl+ F vOP)). (3.12)
i,j=1,2 M

In general a redefinition like (3.11) does not change the physical context of

the theory. In particular it follows from (3.12) that the new field ¢' still

satisfies the subsidiary condition (3.9).

O - m2 ' =
(0-m v,uv,pod'po 0, (3.13)
where
0=ov (3.14)
is required to be symmetric in (uv) and (po). The coefficient matrix v? in
(3.12) is given by
143p p/3
vl = . (3.15)
p3  1+p

Note that for v0 to be non singular we should have 1+ip# 0.
Then the requirement that O is symmetric leads to the following condition

ple-d) + (e-f) + ple-3f) =0 . {3.16)

From the conditioms (3,3), (3.6) and (3.16) all the coefficients can be
calculated. Some of them depend on the variable p alone.

a=1, b=0 ,
e=-d=4{1+3(1+2p)s) , (3.7)
e=1{1- (1+6p)s) ,
r=4(1- (1-2p)s) ,
with
s? = -1/3(1+hp) .

Then the spin-0 sector of the symmetrized wave operator 0 reads

((1+6p) = 3(1+bp)s} ((1+2p) ¥ (1+kp)s)y3
a0=} _ . {3.18)
((1+2p) ¥ (1+4p)s)¥3 ((2p-1) ¥ 3(1+kp)s)

+

+1

By choosing the upper sign in (3.18) and by putting p=-1 a special soclution is

obtained

+13
-]
"

-2 0
. {3.19)
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The general solution can be obtained by redefining the field in the Lagrangian,
with general transformation V. The wave operator which corresponds to {3.19)
reads

= 2 =0 pd
0= (P2 + i);j aijPij)l:l . (3.20)

and it leads to the following field equation

0o, = Sutan? = (3,238, * 3.90,9,, ) + 9,3 6,5

2 =
+ ‘sw'f)lakcp,‘k -m (¢W - auv’u) =0 . (3.21)

This field equation can be obtained from the following Lagrangian

= -3 (a2 - - -
E(¢uv,l a’uu,u’ul,l * 2¢uv,v¢11,u ’Ax,u’uu,u)

- m?(42 - 9% ) . (3.22)
up
The propagetor of the massive theory can be found by inverting the field

equation (3.20). Using the representation of &% , given by (3.19), we get
p2 2] D-m? 3

={—-— 0 4+ — (p0_+p0
mim) (u_mz mz+23m¢. P22+3m2 (P12+P21)) . (3.23)

One immediately observes the first order pole in (o-m?). The P? projection
operator in the pole part guarantees propagation of the highest spin modes
only. As was already shown for the general case in the previous chapter, if
the propagator is sandwiched between two sources, the corresponding residue
Tuv"uv,po(m)Tpo is positive definite.

Thus a massive spin-2 field theory satisfying the earlier mentioned
conditions is obtained.

In the rest of this section we shall investigate whether the field
equation (3.21) for vanishing mass will give a correct field equation
describing massless spin 2-particles. By putting m=0, equation (3.21), in

presence of a source Tu“, reads

0 =T 2k
uv,00¢00 uv 3 )
where
= 2 - -
Ouv,00 ["’(Guosvo * Sucduo esuvspo) * 0dos T Yooy
1
- E(wupsvo + muoa“p + mVpsua + mvosup)]n . (3.25)
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Explicitly the field equation {3.24) reads

%y = au(a-¢)v - av(a-«»)'l +3,2.9), - Suv(“’aa"3‘3‘¢) =T, - (3.26) |
The operator O can also be expressed in terms of spin projection operators:

0= (P2 - 2P?1)D (3.271)

and consequently it takes the following matrix form with respeét to these
spin projection operators:
1
_ 0
0= A (3.28) .
0 O .
From (3.28) it is easily seen that O possesses two left and two right null 5

vectors:

in the spin-1 sector x! = a, and
(0,8), a and B real. {3.29)

in the spin-0 sector x2

The right null vectors expressed in terms of projection operators of O defines

the following gauge transformation

J_J
Sy * by t (szgPEm)uvpc 0% s (3-30)
with J=0, and Xpo arbitrary. Clearly the field equation (3.24) is invariant

under transformation (3.30).
The various gauge transformetions for different J and m can be combined

in order to eliminate singular terms, proportional to n“. Thus the

transformations (3.30) turn into

by T by T AL, YL (3.31)
where ;v denotes an arbitrary vector field. oy

On the other hand constraints on the source Tuv are defined by the left
null vectors of O.
For J=0,1

JJ _
(sz Pty 00T = © ¢ (3.32)

Again a convenient combination of these source constraints leads to a form of

the source constraint that does not contain negative powers of G
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3vTLv =0. {3.33)

We shall consider now the field equation, given by (3.24%) and {3.27) or
by (3.26) in absence of external sources.
After contraction of the indices p and v we have

2 _ opl
(® P’uupopo 0

or {3.34)
a4, - 2944 = 0 .

Therefore the field equation {3.26) becomes

- . - . + = .3
o,y 3, (3-¢), - 3,(d ¢)u 9,3,4), =0 (3.35)
Like the spin-1 case the wave operator in (3.35) is not invertible since it
has null vectors. In order to construct a propagator we shall use a gauge
condition. We choose a gauge condition such that the field equation turns into

the massless Klein-Gordon eguation
o4, (x) = 0. (3.36)

In the last chapter we noticed that gauge transformations (3.31) can be used,
in order to obtain a class of field functions ¢uv(X)’ which satisfy such a
gauge condition.

Here we choose the gauge condition to be

(Pl 2 Po 2 sz 2 JFKPIZ 21))uv po¢po =0
or equivalently (3.37)

- “Ded - =
3,(3:4), +2,(3:¢), = 33,05, - §,,(3:3-¢ -5084,,) =0

Clearly from (3.37) one obtains a simpler form of the covariant gsuge condition
(usually called the harmonic gauge)

1 =
b " 2 Bubar =0 - (3.38)

Inserting (3.38) in the free field equation (3.35) leads indeed t0 the Maxwell
equation (3.36).

Obviously the free field equation (3.35) together with the gauge
invariance (3.31) and the gauge condition (3.38) forms a special case of the
set of equations that was discussed in general in section 3 of the previous
chapter. From this discussion it follows that the solution of {3.35) describes
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only the highest helicity modes *2.
The fact that this theory describes only the highest helicity modes can

also be seen by studying the propagator. The propagator cannct be obtained by
inverting the wave operator in (3.27) since the latter has null vectors.
However, by using the gauge conditiocn the wave operator can be brought into

the form

= [p2 11 1 1 0
= (P2 + P - 3P0+ 3P0 -3 J"(P12+Pgl))n . (3.39)

The inverse of this expression defines a propagator -

(P2 + Pl - 2P0 + 2P0 — 1 /3(p0, 420 ) (3.40)

1
"o 2 T22 12721

which can be written as

=11l -1
=zl Z(Gupsuo * 6upsua) 2 6uvspa] . (3.81)

More generally a propagator is obtained by choosing a gauge condition.
With this gauge condition the wave operator 0 can be made invertible [1]. TIts

inverse gives a propagator, which consists of two parts

T =T + M (3.42)

7] corresponds to the inverse of the regular part of 0. For the case of

spin-2

(2 - 180 . (3.43)

1
7I'l =E

The second part, depending on the choice of the gauge condition, 1is

proportional to the null vectors of O:

mo=a (I J"JJ] (3.44)

It should be noted that, due to the source constraint, the expression Tsz
always vanishes. Consequently the expression TaT = TﬁlT is only determined

by the regular part of 0.
In case the gauge condition (3.38) is chosen n, turns out to be

k) =% (et + % P2 - ',_(Plz P30 s (3.45)

and we find the massless propagator as given by (3.41).
We shall study the expression TnT, where T is a physical source. In order
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to evaluate this expression in momentum space we shall give a decomposition of
the source in terms of the polarization vectors s: {i=1,2) and the vectors
k, = (K,k,) = (k,iky) ana k, = {k,-ik,). (See also App. C). On-shell these
voctors satisfy the following relations

k2=k?=0,

kel = Eel = o0,

nu H N

i3
€ = %5 0 (3.146)
.. x k +k k
el o 5 L uvuy

By w (k,k)

The most general decomposition of T, in terms of these vectors:

1 )B +

I+ (e'k + ek )At + (K + e
pov vy uv

- il ig
euevT vy

P
uv
+kkA+ (kukv + kuk“)B +kkc. (3.47)

Since physical sources satisfy source constraints, which in momentum

representation are given by

kT =20, (3.48)

Thus the source Tuv can be written as

- ig-ij i + i i + N
To = 66T + (eukv svku)A kkA - (3.49)
We can evaluate the expression TxT now.

1

TaT = ; (TWTW -3 TuuT\N) . {3.50)

(2)_(2)

Using the fact that terms with eu €, correspond to helicity modes * 2, where

1
51(1—) =% = (s:I + eﬁ) s (3.51)

we find as * 2 helicity parts in the source decomposition
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7 :gé (T11-722) + 712 | (3.52)

Then one easily shows that the residue of the pole ;%- in {3.50) is given by

ss =

Fipdd o |7tz + jT7)2 . (3.53)

Thus the following has been shown:

i) The expression TaT has a single pole in k2 .
ii) The corresponding residue is positive definite.
iii) The form of the residue shows propagation of only the helicities *2.

A massive field theory for spin-2 particles has been constructed by using
the root method. The corresponding massless theory followed from the massive
theory by putting m=0. It was verified that this theory describes only two
helicity states +2.

The massive and massless free field theories constructed here were
earlier obtained by van Nieuwenhuizen [2]. He also proved the uniqueness of
both the massive and massless Lagrangian for the case of spin 2. In particular
the massless spin-2 theory is equivaleat to the linearized version of
Einstein's theory of gravity. This so-called linearized theory of gravitation
forms a starting point for the construction of a quantum theory of gravitation.
The particles associated with the field #uv are, after quantization, called

gravitons.

4. Spin-3 free field theory

In this section we shall first discuss the construction of a field theory
for massive spin-3 particles. Then we shall pay attention to the transition
to the massless case.

For the description of massive particles with spin 3 we use a symmetric
tensor field of rank 3: ¢luv(x)' Again we shall make use of spin projection
operators and transition operators Pij' For the spin-3 case these operators
are listed in appendix B. The operators given there form a complete set and

moreover they satisfy

Py Pl = "0, 7 . (k.7)
The field equation can be written as
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0, urter(x) = n?$, (.2}
where w is a shorthand notation for the three Y-indices Auv, and where 0 is
a second order differential operator. The most general second order
differential operator can be expanded in the operators ng as follows:

0= [33P3 + a?p2+ Z E af.Pq.) a. {k.3)
J=0,1 1i,j=1,

The coefficients agj have to be chosen in such a way that O does not contain
negative pcwers of O.

Clearly the matrices aJ of the spin~-J sector have dimension 1, if J=2,3,
and dimension 2 if J=0,1. According the root method the differential operator

0 has to satisfy

of = p%d® (b.4)

for some integer N.

Since 0 does not comtain negative powers of B, whereas P3 contains terms
proportional to u-3, the smallest N-value, for which (4.h) can be satisfied,
is N=3. Then it automatically holds for greater N-values.

Because the matrices a% and al both are 2x2 matrices, eq. {U4.}4) is
satisfied for N=2, which is smaller than the minimal value N=3, mentioned
above. Consequently, the dimension of at least one of the matrices a? or al
should be enlarged. This can be done by introducing an auxiliary field. In
this case the only possibility is addition of an auxiliary vector field
Au(x) (see the previous chapter, section 2). Accordingly, the set of spin
projection and transition operators is extended with the set of projection
and transition operators associated with the vector field Ah(X)' These
operators can also be found in appendix B. Therefore, eg. {4.3) should be

modified as follows

0 = (aapa +a2p2 + J _ ) al by, )u . (.5}

In contrast to (4.3) the i,j~summation now runs over 1,2 and 3, because of
the enlargement of the spin-0 and spin-1 sectors.
Our field configuration can be represented symbolically as
‘Auv
(k.6)

@ A
"]
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Now che necessity of an auxiliary field has been demonstrated, we can give a L
wave operator in which negative powers of O do not appear. With respect to

the originel tensor field ‘Auv six,in this sense regular,second order '
differential operators can be found, and we directly expand them in spin T

projection and transition operators P'in :

% agy usau(ssvsn * 587\57\») = (PP+P2+ P}I * P%Z + Pgl + sz) e .
{j’ % ugv Agv muu(ssvsﬂ + GBAGW)D = (22+ 2Pi2 * sz * 3P¥1 )a, :"!

% agy MXI . Sap®ya b = (583, + /5(P} +71,) + P}, + 3(),+P],4PD,4P),)) &, ;

% ugy AEV susmnauvu = (Pgl * sz+ Ptl)z * Pgl) o o a
3 ugy Aév ygy38,,8 = (3P0, + 71 + 380, + SPL)a
S % agy MZN 8agSya® = (3P]) + P} +3P5, + /5P Ja . i;*.

Associated with the auxiliary vector field Ap we have eight other

regular second order differential operators, not containing negative powers .

of O. \
_ 9l o . I .
(Gpo mpa)n P03 "'pon P30, -
1 T 0 0
= § w o= (P0 +P0 Jo ,
3 By af yo 13 "23 '
. 1 = (p0 0 *
= 3 MZN Coadue? = (Pgy +F3,)0 £
3 % 3
Y w6 b= (/3P +3P% )0 (4.8)
13 13/ 7 >
afy o Yo L
7 8 w o= (/3P +3P0 )o, >
» ALV pAx uv 31 31 f
= 1 0
L I (8 gw g8 a= (F15p;, +3P))a ,
aBy
- = 1 0 »
I 808,00, = (/BE, e e

O

Therefore, the most generasl wave operator, homogeneous in second order

ey
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wave operator, homogeneous in second order partial derivatives and not
containing negative powers of 9, will become a linear combination of the
differential operators, listed in (L.7). With respect to the set of spin
projection operators O takes the following form

= 3 1 1 0 0
o [A(P +P2+1:'11*'}’22"1’11“1’22) *

24 opl_ 4+ p0 0 1 4pl 1 4+pl
+ B(P2+2P], + P, +3P])) + C(5P}, + P}, +/5(P], +F},) +

0 4p0 4+p0 4p0
+3(P), + Py, + Py, +Plz)]

+ D(P, + P9, +PY, + P}, ) + E(P}, + /5P], +3P], +3P},) +
1 1 0 0
+ (P}, +/5P; +3P), +3P,) +
1 1 0 1 0 1 0
+ GP33+H(/3_P13+3P13) + 1(/3P}, +3r9)) + P(/15P},+3P),) +

1 0 0 0 0 0 0
+ Q(v’ﬁraz +3P32) + L(P13+P23) + M(P31+P32) + 1@33]:: . (4.9)

Thus, O has become a 14 parameter dependent differential operator.

Note that in eq. (4.9) the part with coefficients A-F is related to the
original tensor field ¢lu“’ the other part being related to the auxilia;y
fields. Equivalently O can be represented by its coefficient matrices a.ij
from (4.5). From the last eq. (4.9) it follows that these matrices are given

by

ad=A
aZ=2+B
[ A+2B+CHE+F (c+E)/5 B3 )
al = | (C+F)5 A+5C P15
| 13 Q15 G
(4.10)
( A+ 3(B+C+E+F)+D D+ 3(C+E) L+3H |
al = | D+ 3(c+F) A+B+3C+D  IA3P
| M+3T M+3Q K |

3
According to the root method the condition (aJ) =0 has to be satisfied for
all J, but for at least one J value

(a”)2 # 0 . %.11)
This leads tc & number of restrictions on the coefficients a‘ir_..
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A=1, B=-1. {k.12)

And for J = 0,1 :

or(al) = 0, )
aJ aJ aJ aJ aJ aJ
2], Pafusf | T2y
- ]
I3 JJ I f (%.13)
21722 831833 32233
Det(aJ) =0 ’ J

where the matrix elements agj are given by (L.11).

In general the field eguation
- m2¢ =
0m,m’¢m' m ¢w o, (h.14)

obtained by using the root method, does not follow directly from a Lagrangian,
since the wave operator ¢ is not symmetric in « and w'. It is possible,
however, to redefine the field ¢m, by means of a local transformation V with
non vanishing determinent

$ =V 9

[} w0’ @’

> (%.15)
or explicitly

P
¢, =¢! +o ) F & & & ¢' +q ) & & A
Auv Auv 9 afy Auv Au va By aBy Auv AL YO O
(4.16)

A =(14s)s A'+r J & .8 ¢! .
P po o Auv PA UV Apv
If V is expressed in terms of projection and trensition operators, V turns
out to act as an identity in the spin-3 and spin-2 sector. Therefore,
condition (b.4) is still satisfied.
In the lower spin sectors the matrix representation of V with respect to

the projection and transition operators is given by

m

o

I

.
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(1+%p %p@' a3 )
vl = %p@ 1+§p a/15
o5 /75 s |
(4.17)
(14p P 3q
v = P 1+p 3q
3r 3r 1+s J
In order V to be invertible we must have
18qr -~ (1+s)(142p) # 0 . {4.18)
By (4.15) or (4.16) the original field equation (k.1k) turns into
(ov) - mZV)m’m,.fl:,, = 0. (4.19)
The operator OV-m2V is symmetric if
i) V is symmetric; this implies )
g=r , (k.20)
ii) 0 = OV is symmetric, or
om’m, = om,’m . (4.21)

As a consequence of (4.21) the submatrices 8l = aJvJ (J=0,1) of O have to

be symmetric, i.e.

%
By’ T %utw ? (k.22)

Further, by imposing the additional requirements

% B
813 58;=0,

for J=0,1 , (1.23)
a convenient transition to the massless theory becomes possible.

The conditions (4.12), (h.13), (4.20), (4.22) and (4.23) lead to a number
of equations for the original parameters A, B, etc. These equations are

solvable, as can be shown by giving one particular solution:

A=1, B=-1 (4.2h)
p=-3, s=-(18r2+1), r¥0 .
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i} The matrices a; and EJ are then given by:
o
N r _ 1 . !
S 3 S 13 0 :
% 3
g 1 -1 1
0 -2 - . 20 - _ L1
a y |9 3 r ; & 2|3 9 0 l
J
]
1 [ O 0 0 ) 0 0 0 J
/ij s 0 0 0 1 0 0 0 ] .z
= 1 1
K al =2 |55 1 Zr 5] ; al=-k]o0 1 0
-zr/3 - p/15 -1 0 0 —grzj
{ J 5
.( . . . e 113 142 . . B
- It is easily verified that (al)3 = 0, whereas (a')* # 0, which was required
\'\
i in (4.11). Furthermore, the matrices aJ are symmetric. o

The solution given above corresponds to the following field equation

—m2 - ' - . s
(5-m?)(s, ., MZN 8y,00) * MZN[aAau% 8 (09} 1+ :
1 '
Az 5lu[a-a-¢“ -39, (0¢ )) - m?r § 8, A, =0 (k.26)
Hv Apv

l2_ 2 - . — m2(- ' =
5 T [uAp 3, A)}) - m?¥( 18a) +3r¢)) =0 .

Here again 3*A and ¢L denote contractions.

The Lagrangian, from which this field equation follows is given by

L

=1 2 43 (3. . 3 2 4+ 3 (3.47)2
L= (80,07 +5 (:0),,(3%0) |, + 5 (300 )% + 3 (3-¢)2 -

. 6 2 2 oAY2 )
-3(3,¢)(3 ¢)w -5 T [(BuA\’) - (3-a)2] - \7
[

-z m2 [y, - 3(e)% + 6reta - 18r2(a )7 ] {(4.27)

As indicated by the parameter r, we have obtained a family of Lagrangians.
In fact this family of Lagrangians is larger, since it is possible to redefine

5

113

3
1%;



=
&
.-

T g

ST esy iy ﬂx}'s‘!ﬂ:{,}:ﬁ?—:\ﬂ ;qxiw"«hf 0 RE,

the field in the Lagrangian by using a symmetric transformation V:
¢ =V ', -

w w,u' w'
The original Lagrangian

= 4T 2
L= 9, (0m?), ity {L.28)
then turns into
= AV _ u2m2
L=¢ V0V - V2m?) ¢, - (4.29)

Clearly VOV is again symmetric for arbitrary p', r' and s' (p', r' and s’
being the parameters which determine V). Moreover, for arbitrary p' and s'
but r'=0, the new field operator VOV still satisfies condition (k.23).

The propagator of the massive theory is given by
p3pd 1

n(m) = (——— - — ) (02 + m20 +m"*) . (4.30)
m6 (03-m") mb

As we proved for the general case it has the following properties:

i) w(m)(0-m?) =14

ii) w(m) has a first order pole at o-m? .
F rther its residue is positive definite, if #(m) is sandwiched between

two sources.

A massless field equation can be obtained by taking m=0 in the massive
field equation (4.26). Due to the special choice of the coefficients &gj {see
(4.23)) we obtain two equations: one for the original field ¢Auv and one for
the auxiliary field Ap. The fields decouple, such that we can take the
auxiliary field to be zero.

We shall show that the field equation for the original field describes
massless spin-3 particles. For this field equation we use the short-hand

notation

0 ¢ 0. (4.32)

Auv ,aBY aBy =

Here the wave operator O is still expressed in terms of projection and

transition operators
0 0
0= (p® -upy, - % Py - g Py - % (Pla+P21)) ® . (4.33)

The wave equation takes the explicit form:
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o6y, + 1(3,9,45 - 9,(3-0) ) + 16, ((3-3-9), - o9} - 32 (2-¢")) = (()h, .,
.3

where the sum is taken over all independent permutations of the indices A, u

and v.
The spin~-1 and spin-0 sector of the wave operator O can be represented by

coefficient matrices 0! and 0 , as was done before (see eq. (4.25) )

ol=(g _,?) ; 00 -%(; S) , (4.35)

Obviously O possesses a set of right and left null vectors

2

i) in the spin-2 sector x* =a ,
ii) in the spin-1 sector x! = g(1,0) , {k.36)
iii) in the spin-0 sector x2 = y(3,-1) ,

with a, B and y real.

One can redefine the field by the following gauge transformation for J=0,1 and
2

0" 0+ ] (B )y B s (4.37)
with %, 8 arb}trary rank 3 tensor.

Here the x represent the right null vectors of 0 and consequently the
field equation remains invariant under (4.37). Thus a gauge invariance of the
theory is caused by the right null vector of the corresponding wave operator 0.
Again it is possible to combine the gauge transformations (4.37) such that

terms with n—z, o”! cancel and the gauge transformation takes the form:

¢+, o+ F de . (4.38)
Auv Auv v ATy
where EAH is an arbitrary traceless rank 2 tensor, i.e.
€ =0 - (4.39)

In case the field ¢Auv is coupled to an external source TAuv the field

equation takes the form:

okuv,uBY¢uBY =T ° (4.4%0)

Multiplying both sides with a combination of left null vectors of O and

projection operators gives
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JoJ _
L% (Bhg)y 1Oy = O (4.41)

for J=0,1,2.
Clearly left null vectors of 0 cause source constraints. Again the
various source constraints (U4.41) can be combined such that terms proportional

to D-2, o~! cancel. The source constraint can then be written as

L) _.1 - =
AZ 3, ((aem) 16, (1)) =0, (4.42)
pv
which is equivalent to
3.7, -~ 48 3 T 0. {4.43)

AT Auv v ATApp =

Like the spin-1 and spin-2 case it should be noticed that the field
equation (4.34) and the gauge transformation (4.38) are a special case of the
set of equations discussed in the previous chapter, section 3. From the
general consideration given there it follows that this system of equations
(4.34) and (4.38) describes massless particles with only two helicity modes
+3. There it was also shown that the field equation could be brought into

the simpler form of the massless Klein-Cordon equation

26y p(X) =0 (4.34)
by using the gauge condition
. = 3 '
(3:0) =2 [ 300 . (4.45)

Au

Instead of the free field equation, we can consider the field equation in
presence of a physical source (4.%0). In this case we shall study the
propsgator 7 and in particular we shall show that the pole part of TaT (the
propagator sandwiched between two physical sources) gives rise to propagation
of only helicity modes * 3. However, due to its null vector, it is no longer
possible to define the massless propagator as the inverse of the wave operator
0.

By using a gauge condition, like for instance (%.45), it is possible to
make the operator O regular. The propagator is defined by the inverse of the

wave operstor:

(4.06)

T=m Ty .

Here m; is the inverse of the regular part of 0. In particular inverting the

116

L )

it e MR S L

" *:?(ﬁ:

s




e, T

O :‘l‘.

.

—
o S

DR

Y RTS8

regular submatrices 0! and 0% of O gives
=1 (p3 _ 1pl _ opd
m =g (P Py, 2P11)u . (4.47)

The second term in (%.46) depends on the choice of the gauge condition. But
in any case it turns out to be proportional tc a number of left null vectors
of O:

2 1 1 1 0 _p0 _p0
T2 (ap? + BP11*'Y/§1P21 + Pp,) +8 (6P, -P,-P))) +

al-=

0 0 0
+ (3p9 +3p0_+ 2P0 )). (4.48)

Therefore this last term, sandwiched between two physical sources, always

vanishes due to the source constraints (4.41) and we get
TrT = TmyT . (4.49)

Thus the expression TnT appears to be uniquely determined by the regular part

of the wave operator 0.

If we put a=1, 8=-S~ R y=-% . =-g- and e=»% in eq. (4.48), the
massless propagator (4.46) can be written as follows:
n=1(2 1 s A8+ 8,8 ) - =1 1 ASaudy) (4.50)
Ay GABRY yu Apv oy 0N BWY

It can thus be shown that this form of the propagator corresponds to the
choice of the gauge condition given by (%.45).
We shall evaluate now the expression TaT. in order to show that only

helicity modes # 3 propagate between the sources T From (%.50) we find

Apv

- _ —- ;— \
TaT = (TXHVTXUV =% Bl (4.51)

1
o
Like we did in the spin-1 and spin-2 case we shall decompose the source in
terms of the polarization vectors ei , 1=1,2, and the vectors ku = (E,iko)
and Eu = (ﬁ,-ikn) (see also app. C).

The decomposition of T is done in momentum space. Furthermore we use the
on-shell relations which are satisfied by ei, kp and Ep.

The most general decomposition of the source
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(A(kkA + (kK +kkv)B +kk “ci])-a-
Auv

+ ko kA + AEV (kakuk“Bi- kxk c) +kkkD (L.52)

will be restricted by the source constraint.

In momentum space the source constraint reads (see (4.43) )

] -
k, (TAW -5 5WTMu] =0. (4.53)

It is rather easy to show that due to this source constraint the following

identities hold

B =0, Vi # ],
st=cl=p=p=o0, (1.54)
(k,E)C = % 'Y, B! = B2? = ¢o(k,E) .
TA turns into
v
T, = ekTle + ) [eleJk A s ek x at)
uv X l
Hv
+C 15\; (k €€ (k,k) + k)‘kukv} +kkkA . (4.55)

Now we find as * 3 helicity source combinations

1
s — (7 Ti11 & 37122 4 (37112 - 7222) ) | (4.56)
2/2
Here we used the fact that aii)eit)eii) terms give rise to helicity *3, where
1
() _ = 1 . 2
€ =+ /5'(61 + lek) . (4.57)

We already found that T«T is given by (see (4.51) ):

= _ 1 m 35
T =3 CTlukauv In luuTkvv}

Using the source decomposition (4.55) and the properties of the polarization
vectors e; and ku’ iu (see app. C) the pole part of TaT takes the

following form
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;12_ (pIkpidk _ % prikpddky _ T;Tl'f ((e111 - 3p122)? 4 (37312 _ g222)%) o
= o ()% + [T . (4.58)

From eq. (4.58) follows immediately that

{a) the residue of the i%-pole is positive definite and
{b) only +3 helicity modes do propagate, since the residue equals the sum of
+ -
the moduli of the # 3 helicity combinations T and T .

In this section we have constructed field equations and Lagrangians for
massive and massless particles with spin-3. In both cases the field equations
are homogeneous second order differential equations. The corresponding
propagators turned out to have the required properties.

Lagrangians for massive spin-3 particles have also been constructed by
Hagen and Singh [3]. However, their field equations are not homogeneous,
since they contain also first order partial derivatives.

By using the root method for the case of spin-1, 2 and 3, we were able to
eliminate all superfluous spin components in a systematic way in order to
obtain the correct massive field equation. The massless field eguation could
be obtained by putting m=0 in the corresponding massive equation. 1In the cases
considered here they agreed with the equations found by Fronsdal [4]. The mass~
less theories exhibit gauge invariances, leading to source constraints. An
advantage of the root method is that the origin of this phenomencn can be
clearly understood, at least after performing the m*0 limit. However, it
seems rather difficult to generalize the root method to the case of arbitrary
spin. This is due in particular to the fact that a systematic way to choose
the field and auxiliary fields has not yet been found.

However, this approach has general features which are useful in the next

chapter. There we shall study the problem of the zero mass limit in more detail.
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CHAPTER VII

OF THE ZERO MASS LIMIT OF HIGHER SPIN THEORIES

1. Introduction

In this chapter the higher spin field equations, constructed according to
the root method will be considered from a different point of view. We shall
first repeat the main features of the way in which these equations have been
derived. Then it is possible to sketch the problems which we shall discuss

here in more detail.
A massive spin-s particle can be described by a symmetric rank s tensor

field ¢u1 " (x), or ¢(s), and a number of auxiliary fields ¢(s-2), ¢(S-h),
cellg
etc. The complete field configuration is denoted by ¢m . In the following we

assume that a massive field equation can be derived by using the root method,

{.e.

- m2¢ =
0,01ty = P28, =0, (1.1)
where the wave operator O satisfies

o = PsDn, for some n>s . {1.2}

In general (1.1) does not immediately follow from a Lagrangian. Therefore it
is also assumed that the field ¢m can be redefined by a symmetric, nonsingular

transformation V

by = Vo ortor o (1.3)

such, that the new wave operator

0 =0V (1.4)

satisfies certain symmetry conditions, necessary for a derivation from a

Lagrangian. Then the massive field equation turns into

p 2 ] -
(ow,w, -m Vm,m')%' =0 . (1.5)

As was discussed before, the massless theory can be obtained from {(1.5) by
putting m=0. In particular, if one makes & suitable choice for V, one obtains
a convenient transition to the m=0 theory: then the auxiliary fields decouple
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directly and can be set equal to zero. .
In both the massive and the massless case the fields ‘m are now suppesed

to be coupled to a similar external source Tm. The simplest sources are
considered, i.e. it is assumed that they do not depend on the mass of the

particle.

'

where ©{m) is the propagator obtained from (1.5).

¥

We shall study the exchange of a spin~s particle between twe sources. Im i
lowest order, the amplitude A(m) for the exchange of a massive particle is %*
given by %
A(m) = Ta(m)T, {(1.6) g[

?

&

:f

N

A similar expression can be given for the exchange of a massless particle

between the same sources

]

B = TmgT , (1.7)

where 7 represents the massless propagator.

b e O ol o RIRS

L

The aim of this chapter is to compare A(m) with B for arbitrary small mass.

In other words, we shall study the existence of 1im A{m), and we shall
m>0

investigate whether or not this limit equals B.

This problem has already been studied by van Dam and Veltman for the case :
of spin 1 and 2. Whereas for the spin-1 case the m-»0 limit does not pose a ¥
problem for the particle exchange, they showed that for spin 2 the zero mass ?
1limit (1.6) is different from {1.7). We shall show that for spin 3 one cannot ;
even take the m*0 limit of A(m). N

In the next section we shall make some general statements concerning the

amplitude A(m). In the third section the special cases of spin 1, 2 and 3

YR

will be considered. Throughout both sections we shall again make use of

te

projection and transition operators. In the final section the results of

i 7 A

14

section 3 will be briefly discussed.

ket

2. The amplitude A(m)

In this section we shall consider the amplitude A{m) from & rather general -
point of view. The question whether lim A{m) exists and whether it equals the
massless amplitude B can then be answered in a systematic way.

We should stress again here, that in both amplitudes the same sources are
used. Consequently the sources in the massive and in the massless case both
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satisfy the constraints which follow from the gauge invariances of the massless
theory. It is also assumed that these sources are independent of the mass of

the particle.
Our starting point is the massive free field equation (1.1). For the non-

symmetric wave operator 0, which occurs in (1.1), we give the following

decomposition

0 =P ,u+b . s (2.1)

P°0=0. (2.2)
As a consequence of condition (1.2), O satisfies
5=0, but 0> £o0. (2.3)

For at least one spin sector (2.3) must be satisfied.
In order to evaluate the amplitude A{m) we give the general expression for

the propagator in terms of

.

1 1
vV 4 w252 v L+ 2D E5) L (2o

-
m

a{m) =
o-m

This propagator is obtained from the symmetric field ejuation (1.5). Then the
amplitude A(m) is given by
T _ s
Alm) = —— TP°T - A.c s
o-m
with
1

A=W (552 e Ll o251 (4 %)) . (2.5)

c
m

Clearly, 1im A(m) exists if A, vanishes for any value of the mass m.
m>0

In the following we shall only consider the particular spin-J sector for
which (2.3) is satisfied. The corresponding part of 0 in this sector is given

by
N
% J
Om,w' N .’§=1 aijpij;m,w' : (2.6)

N denotes the dimension of the matrix a (N>s).
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According to (2.3) we must have

s -1

a® = 0 and a° # 0. (2.7)

The spin~-J part of the sources can be represented as follows
N
T = ) t.e. . (2.8)
L= J Jsw
Here {e‘_.|=e'j m} represents an orthonormal set of vectors defined by
2

Piiej = 0, if 1#J - (2-9)
By using (2.6) and (2.8) we get for A, in momentum representation

1
- ~1
A = ) Tk(V )kl a

y 5 5-1(_q2)s—1 + + m2(5—1)
m k,f,n

on cee 8on It . (2.10)
From (2.10) it is clear that A.c vanishes, only if the numbers Ty which
determine the source Tm, satisfy the following n conditions
1, (V1) (aP)
k k&

'y = 0» Tor P=0,1,...55=1. (2.11)

Or, in other words, iig A(m) exists, if the numbers T satisfy (2.11).

On the other hand, as already was stressed, we used the same sources in
the massive and massless theory. Therefore the massive source must obey the
constraints of the massless theory. Such source constraints are caused by
left null vectors xp of a, as was demonstrated in the previous chapter.

By using the representation (2.8) for the massive source, it is easy to
see that source constraints must have the following form

N

T, =0 . (2.12)
kZ1 *L,k'k

In case of higher spin auxiliary fields have to be introduced. In the mass-
less limit these asuxiliary fields decouple. Therefore the source components,
associated with these auxiliary fields, vanish. Suppose that in the spin~J
sector k components correspond to the original field i.e. Tyssesa o then the
remaining N-k components are zero in the massless theory

T =1 = eee E

K+1 w=0- (2.13)

We summarize this discussion as follows.
In both the massive and the massless case we used the same, mass

independent, sources in order to evaluate the amplitudes A(m) and B. Therefore
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requirements (2.11).

in both cases the sources must satisfy (2.12) and (2.13).

On the other hand, the existence of 1lim A(m) leads to an additional set of
Thus is can be understood that lim A{(m) - evaluated with

sources from the massless theory - exists, if the conditions (2.11) follow

from (2.12) and (2.13).

In the next section we shall investigate whether massless sources give rise

to existence of this limit ip case of spin 1, 2 and 3.

3. 'The messless limit in case of spin 1, 2 and 3

A. Spin-1
The spin-1 case is the simplest case. Condition (2.7) is satisfied in the

spin-0 sector which has dimension N=1. With the results of chapter 6, section

2 we find for the massive and massless amplitude A(m) and B

| 1 _
A(m) = — TplT - — TPOT (3.1)
g-m?2 m?
B = = T(PL+20)r . (3.2)
In both cases the source satisfies the massless source constraint
(3.3)

P07 =0 .

Since there are no auxiliary fields in the spin-1 case we do not have conditions

Clearly lim A{m) exists, and moreover we get

of the type (2.13).
0

lim A(m) = B = = TplT (3.4)

m>0

B. Spin-2
For the main features of spin-2 field theory we refer to chapter 6, section

There it can be checked that condition (2.7) is satisfies in the spin-0

sector, which has dimension N=2.
Firstly we evaluate the source in the spin-0 sector, which in this case is

determined by two real numbers 1; and 1; {see (2.8) ). The spin-0 part of the

wave operator is given by
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Its left null vector x = (0, 1) leads to the following source constraint (see

(2.12) ): ;ﬁ
P, T =0, or 1,=0. (3.6) N
e This is the only condition on the massless source since there are no auxiliary i_
;;A fields in case of spin-2. By
Secondly we investigate whether lim A(m) exists. If this limit exists, the P
requirements (2.11) must be satisfied. Since 13 = 0 we get from (2.11): .
11(V )11‘[‘1 =0, e
and (3.7) »
2 =
[ = (V_I)lzautl =0. .
o g=1 ! [
T iﬁ
Here a represents the spin-0 component of the massive wave operator Tae
5 5 0 73 e
“d a= § H (3-8) ;
- 0 o N
and V7! is given by A
- 0 -3 e
-1 _ 1
- vio=3 . (3.9)
-3 2
The expression for V-1 can be obtained directly by inverting V, which has been :
determined in the previous chapter. With (3.8) and (3.9) it can easily be :
;. verified that (3.7) is satisfied. Consequently lim A(m) exists. oy,
e} m0 ’
3 Finally we check whether iig A(m) equals B. y
H oy
;g By using the massive and massless propagator we find for the amplitudes i}
Y A(m) and B h
7 -
o S 1 £
Am) = —— - — TPle - — T (£ o0 - 2(p0_+p? . e
; (m) i =T (5 (a®m?)P), - 3 V3 n?(P0,+P) )} T, (3.10) 3
B=+T(p2-1 p0 )r, (3.11) :
, o 2 711 *

Note that one can add combinations of Pl, sz

propagator, without modifying B. This fact is a consequence of the source

and sz to the massless

{ constraint (3.6). Of course another consequence of (3.6) is that A{m) reduces
;, to
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1
A({m) = —— TP27 | (3.12)
O-m

from which one can understand that lim A(m) never equals B.
m»0

C. 8pin-3
In this part we investigate the zero mass limit for the spin-3 case. Here

we shall use some of the results which were found in chapter 6, section 4. One
of these results for instance is the fact that condition (2.7) is satisfied in

the spin-1 sector which has dimension K=3.
Consequently the spin-1 component of the source, given by (2.8), is

determined by 3 real numbers 13, T and Tj3.
First we evaluate this source in the massless case. The spin-1 part of

the wave operator is given by
: 0 0
a1 = ( ) ) (3.13)
0 -4
The left null vector X = (A,0) leads to the following source constraint (see
(2.12) ):

PlT=0, ort; =0. (3.14)
In the massive spin~3 case we introduced a spin-1 suxiliary field. As a
consequence of the decoupling of this field in the massless case, the
corresponding source component must be set equel to zero, 1i.e.
{3.15)

13 =0.

Thus the spin-1 part of the source T is determined by the vector (t1y,13,T3) =

(0,1,0).
Then we can answer the question whether this source leads to a vanishing

A . As was explained in the previous chapter this leads to new conditions

(2.11).
Since we use the same source (0,7;,0) in the massive case, the conditions

(2.11) reduce to the following set

-1
(V') .1, =0,
2 222 (3.16)

-1 P 0 : o=
TZ(V )22(8 )2212 =03 p=1,2.

Here a represents the spin-1 part of the wave operator which, according to the
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. previous chapter, is given by :t
0 0 0 i
a=g| 55 1 3 Vi (3.17) ¥
/i3 -E5 -1 P
5 5 H
Then ;j
i 0o 0 o0 :
. a2=% %5 o of. (3.18) ¥
_r/3_ 0 0 ',;’;
From (3.17) and (3.18) one immediately sees that the second requirement of é;
(3.16) is satisfied. According to chapter 6,V is given by fﬁ
o -5 3
V= [~5 -4 /15 | . (3-19) -
& r/3 /15 -18r2 L
] :';’
;' 5
) Then (,,
-19 55 == /3
A! 31‘ S
L _1 _1 1 .
- = — == 1 .2
: v o |57 1 3= 715 (3.20) .
: . LI = I -
_' 3r /§ 3r 15 31‘2 .
Since (V-1)22 # 0, the first condition of (3.16) is not satisfied and lim A{m)
B om0
does not exist.
The only possibility for lim A(m) to exist is to take 1; = 15 = 13 = 0,
which implies that the spin-1 components of T are zero. Clearly a source .
satisfying only the constraints of the massless theory does a priori not lead ‘<§

to a well defined limit of A(m) for vanishing mass. A source which only has a
contribution in the highest spin sector mskes the zero mass limit possible. R
For this 1limit, however, one is again faced with the inequality lim A{m) # B,

which arises in the same way as in the spin-2 case. mC

4. Conclusions and summary

In the previous two chapters we showed the construction of field theories D
for massive particles with arbitrary spin by using the root method and the Y
formalism of projection operators. This has been done explicitly for the case

of spin 1, 2 and 3.
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If one compares the massive and massless field theory for a particle with
spin s, some discontinuities between both theories can be observed.

First if the spin value is greater than two, there is a discontinuity on
the level of the Lagrangian. In this case a massive particle is associated
with an s rank symmetric tensor field ¢(s)
¢(5-2) {s-k)

s ¢ etc. These fields have been transformed in such a way that the
coupling between this field and the auxiliary fields takes place only in the

and a set of auxiliary fields

mass term. By putting m=0 in this Lagrangian, the massless lagrangian is
obtained, which consists of two terms, one Lagrangian for the field ¢(s) and
one for the auxiliary fields.

By taking the auxiliary fiel?s)to be zero a suitable massless Lagrangian
s

been explicitly demonstrated for the case of spin 3.

in terms of the original field ¢ has been obtained. This phenomenon has

Another type of discontinuity between the massive and the massless theory
arises if one compares the amplitudes describing exchange of a spin-s particle
between two external sources. In both the massive and the massless case the
same sources, obeying only the constraints from the massless theory, are used.
It was first noticed by van Dam and Veltman [1] that the m=0 limit of the
amplitude in the massive case does not lead to a corresponding amplitude for a
massless particle. They have demonstrated this discontinuity for the case of
spin 2. The same discontinuity, however, arises also in the case of spin g
[2]. As was shown in the previcus section, the origin of these dis-
continuities can be easily understood by using the formalism of projection
operators.

For higher spin one can in general not even take the zero mass limit of
the amplitude in the massive theory. 1In the previous section we showed that
for the case of spin 3 the massive amplitude becomes infinite for vanishing
mass, if a general source of the massless theory is taken. However, if this
source satisfies more restrictions than only the massless source constraint,
the zero mass limit becomes possible. This can easily be verified for sources
containing only the highest spin.

Throughout this chapter it was assumed that the external sources were
independent of the mass of the particle. However, others [3] have studied the

same problem, meking use of sources which do depend on the particle's mass.
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Appendix A. Conventions and metric

Units
Throughout this thesis we use units in which h=c=1.
Metric

A four-vector & is given by
(3,24) = (3,iag) (a.1)

a

In particular: x = (x,x,) = {X,it) ,
k = (K,k,) = (K,iE).

We use a metric which is given by

‘Suv = diag (+1,+1,+1,+1) . {A.2)

Also the Einstein summation convention is used, i.e. instead of

4
)} ab we write a
Hu

b .
pe1 gt

Thus the scalar product of two four-vectors a and b is given by

> >
a*bh = aubu = (a,b) - aobo . | {A.3)

It should be stressed that the factor i in the fourth component is only useful
for ease of notation and it should not be reversed when one takes the complex

conjugate of a four vector i.e.

if a = (g;iao) ’

then a* = (2%,ia?) = (3%,-a}) (A.4)

Appendix B. Projection and transition operators

In this appendix we list the projection and transition operators for
spin 1, 2 and 3. In all these cases the operators are combinations of the

following basie quantities

=1
muv =3 8u8v s
and {(B.1}
8 = - .

) w
uv Hv v
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Spin-1

The spin-1 projection operators are given by

1 - . 0 = . .
P euv 5 Puv muv (B.2)
Spin-2
The spin-2 projection and transition operators are given by
2 =1 -1
Puv,po 2 eupevo 3 euvepo
Hv
1 =1
Puv,o0 T2 Il %00 *
w pe (B.3)
0 =1 0 =
Pll,uv pc 3 euvepo P22 Uv,po wuvao ?
PO = po0 /"'e @ .
12 HV,p0 21 po,uv uv po

Here the summations denote summations over all independent permutations of

HsVsp and o. For instance Pivpo reads explicitly
1 =.1. + + + . L
Puvpo 2 (eupwvc evauo euova evcwup (B.4)

Spin-3
Here we give the projection and transition operators for a field configuration
¢ consisting of the original field ¢Auv and an auxiliary field Aa'

From the number of indices one can see whether the operator works on the
¢Auv or the AU part of ¢.

Again the summations below are performed over all independent permutations

of the indices, which in this case are cyclic permmtations.

)] -p! .

22 afy,Auv

3 1 + 0
PaBY,luv 6 agY [eak(eﬁuevv Bvevu

p2 =z I I w,leg08 +e,08 ) -PJ ,
aBy,Auv, an Apv al’ B yv Bv yu 22 aByY,Apv

1 =4
P11 afy,Auv 3 z z maeeyxmuv >

afy Auv

1
Pl ——Z X ) 3
22 aBY,Auv 15 afy Abv af YA uv

1 = L
P21 afy,Auv 15 /gagy XE\’ 6

af yA uv
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11 aBy,Auv = wanyAmuv ?

]

1
; p? == ) ¥ w,0_8 ,
1 22 aBy,Apv 9 afy Auv al By wv
f 0 1
ER P2y aBy,Auv 3 agy eaﬂwykwuv : ~
A .
. 1 -
L P33 pyo = %0
i .
g 1] =
S P33 p,0 wpc >
< 1
x 1 = - -
- P31 os,Auv 3 3 AZ eukwuv ® “7
v M
: 1
p! ==v15 ) 6.0 ,
32 g,Auv 15 Auv oA uv -
0 - J
& P31 o,Auv YAy ° 7o
«'; i 1 {
Ea 12! == w0 . (B.5) )
30 32 0,dwv 3 Auv oAy -
P
;;; As an example sz is also given explicitly
0 =1
P3, 3 [makeuv + mouekv + moveku) . {B.6)
The remaining transition operators follow from
J J >
ij wow' © Pji o', ’ - (B.7) -
where w and ' denote the 3- or 1-index set in eq. (B.S5).
In all these cases it can be shown that the set of projection and transition
operators have the following properties:
L''L _ ,L'L L
Piij!. =$ sjkPi!. , {B.8) ¥
and s o
L _ {B.9) o
L 1P5=
I=0 j .
2 where S is the highest spin present. .f
3
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Appendix C. Polarization vectors

In this appendix we summarize the definition and the main properties of
polarizaiton vectors e:(f) in the massless case. To a four-momentum vector
k= (E,iko) are asgigned four polarization vectors e:, A= 1,2,3,h .
(31 (¥),0)

(32(%),0)

(33(%),0)

@, 1) .

The three~vectors 3& {i=1,2,3) form an orthonormal set with e3 = ﬁ]ko.

e;(k)

2(x)
“u {c.1)

3
Eu(k)

e:(k)

The polarization veciors eﬁ satisfy the following relations

s:(k)e:'(k) =8, {c.2)

lf eM)erx) = 6 (c.3)
A=1 L v g
+
Instead of eﬁ and eﬁ one may use 5571) corresponding to states with helicity

eigenvalues *1

(2) -1

e/ = % — (el £ ie2) . (c.¥)
H '/é‘ M M

Products of s times e£t1) i.e.
Jx8) @) (1) (21)
l-ll---l-ls lll l-lz g

correspond to states with helicity eigenvalue #s .
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In de elementaire deeltjes fysica houdt men zich onder meer bezig met de

volgende twee problemen.

1} het langs experimentele weg verkrijgen van inzicht in het bestaan van di-
verse deeltjes en hun eigenschappen,

2) het construeren van theorieén - bekend onder de naam quantumveldentheo-
rie€n - waarmee bekende deeltjes kunnen worden beschreven en waarmee moge-

lijkerwijs ook het bestaan van nieuwe deeltjes kan worden voorspeld.

In dit proefschrift worden enige aspecten, die op beide problemen betrek-

king hebben, behandeld.

Veel informatie in de elementaire deeltjes fysica wordt verkregen uit expe-
rimenten, waarbij men bundels deeltjes op elkaar laat botsen. Bij dergelijke
verstrooiingsexperimenten meet men hoe grootheden als differenti€le werkzame
doorsnede en polarisatie afhangen van de energie en de verstrooiingshoek van
deze deeltjes. Anderzijds staan deze grootheden in betrekking tot theoretisch
belangrijke grootheden zoals de botsingsamplitude. De botsingsamplitude is
een complexe functie en de differentiéle werkzame doorsnede en de polarisatie
zijn te schrijven als kwadratische combinaties ervan. Daar kennis van de ampli~
tude informatie levert omtrent het bestaan van deeltjes en hun onderlinge wis-—
selwerking, tracht men deze amplitude te bepalen uit de experimenteel be-
paalde grootheden.

Een belangrijke vraag bij deze procedure is, in hoeverre de amplitude een-
duidig is bepaald door differentié&le werkzame doorsnede, polarisatie en
unitariteitseisen. Zelfs als men hierbij uitgaat van de ideale situatie, dat
experimentele fouten kunnen worden verwaarloosd, blijkt dat de amplitude
niet altijd uniek is bepaald. In een dergelijk geval spreekt men van een
faseverschuivingsmeerduidigheid.

Nadat in hoofdstuk II de voornaamste resultaten met betrekking tot deze
problematiek zijn samengevat, worden in de daaropvolgende twee hoofdstukken
dergelijke faseverschuivingsmeerduidigheden geconstrueerd. In hoofdstuk III
vordt dit gedaan voor elastische verstrooiing ven deeltjes met spin O en in
hoofdstuk IV wordt het geval behandeld van elastische verstrooiing van deeltjes
met spin O aan deeltjes met spin 3. Het uitgangspunt in beide hoofdstukken is
dat de amplitude afhangt van een willekeurig, maar eindig aantal partiéle gol-

ven.

Het tweede hierboven genoemde probleem is, om voor de nu bekende deeltjes
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theorieén te construeren, die de eigenschappen van deze deeltjes en hun onder-
linge wisselwerkingen bevredigend beschrijven. In dergelijke, zo geheten
quantumveldentheorieén, wordt een deeltje beschreven door een veld, dat wvoldoet
aan een zekere differentiaslvergelijking of veldvergelijking.

In het geval dat men deeltjes zonder wisselwerking beschouwt spreekt men
van een vrije veldentheorie en van vrije veldvergelijkingen. In dit proef-
schrift wordt de constructie van dergelijke vrije veldvergelijkingen besproken
voor deeltjes met hogere spin en met massa ongelijk aan nul. Het is bekend
dat deze deeltjes worden beschreven door een tensorveld, dat voldoet aan de
Klein-Gordon vergelijking.

Aangezien dit tensorveld meer vrijheidsgraden bevat dan nodig zijn voor de
beschrijving van een deeltje met spin s, voldoet het veld aan een aantal aan-
vullende vergelijkingen, waardoor de overtollige vrijheidsgraden kunnen worden
ge€limineerd.

Op theoretische gronden is het gewenst de genoemde vergelijkingen af te
leiden uitgaande van het actie principe. Een centrale rol wordt hierbij ge-
speeld door de Lagrangiaan, een Lorentz covariante functie, die afhankelijk i=
van het veld en zijn eerste orde parti&le afgeleiden. De Lagrangiaan moet 20
geconstrueerd zijn, dat de vergelijkingen die daar volgens het actie principe
ult volgen, gelijkwaardig zijn met de eerder genoemde Klein-Gordon vergelij-
king en de =aanvullende eisen.

Hoewel dezelfde vergelijkingen worden verkregen, kan kemmis van de La-
grangiaan waardevol zijn om diverse redenen, zoals het uitvoeren van quantisa-

-

tieprocedures en het invoeren van interactie.
Na een inleiding in deze problematiek in hoofdstuk 5 worden in hoofdstuk 6
vrije veldvergelijkingen en de bijbehorende Lagrangiaan geconstrueerd voor
deeltjes met spin 1, 2 en 3. Bovendien wordt aangetoond hoe uit de verkregen
veldvergelijking voor massieve deeltjes de veldvergelijking voor massaloze
deeltjes volgt. In hoofdstuk 7 worden de theorieén voor massieve en massaloze
deeltjes in meer detail bekeken. In het bijzonder wordt de uitdrukking verge-
leken voor de amplitude die uitwisseling van een deeltje tussen twee uitwen-
dige bromnen beschrijft. Aangetoond wordt dat het nemen van de m=0 limiet in
de uitdrukking zoals die verkregen is in de massieve theorie, aanleiding geeft
tot problemen: in bepaalde gevallen kunnen discontinulteiten optreden en in

andere gevallen blijkt de limiet niet te bestaan.
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. et een methode, die verschilt van de in 4it proefschrift behandelde
'root method', Kan een acceptabele Lagrangisan wordsn geconsiruzerd voor

een deeltje met spin 4 en massa ongelijrx nul.

- Het uitgangspunt dat veldvergelijkingen voor massizve deeltjes met spin s

in de limiet m*0 overgaan in de door Fronsdal gevorder veidvergelijkingen
voor overeenkomstige massaioze deeltjes, suggereert de mogelijkheid om voor
massieve deeltjes met heeltallige spin cen Lagrangiaante construeren in ter-
men van symmetrische tensorvelden, waarvan het 2-voudige spoor nul is. Een
dergelijke Lagrangiaan zal echter niet het resultaat kunnen zijn van de

in dit proefsechrift behandelde 'root method'.

C. Fronsdal, Phys.Rev. D18 (1978).

Voor een ferromaegnetisch Ising model, gedefini&erd op een planaire graaf,

geldt voor een randrij (v,vs,v3,v,) de volgende correlstiefunctie-
ongelijkheid:

(avlcvz)(cvacvu) > (lecva)(ovzcvu) .
In de hieronder vermelde referentie is voor een Ising model op een pla-
naire graaf een correlatiefunctie-identiteit afgeleid voor een randrij
(vl,...,vn) met n even.
Deze identiteit is als volgt uit te breiden voor een willekeurige deel-

verzameling A van de vertexverzameling van de graaf:

n X n
(-1)(c._o0_0,)(c_a I o _0,)=0.
k£1 Vi Vg ATV VR 5o Vi A

J. Groeneveld, R.J. Boel and P.W. Kasteleyn, Physica 93A (1978).

Bij systemen, bestaande uit alleen bosonen of alleen fermionen, bestaat
een natuurlijk verband tussen de representaties van een Lie algebra in de
l=deeltjes ruimte en in de Fock-ruimte. Bi) gemengde systemen komt daar-

voor in de plaats een dergelijk natuurlijk verband van 'graded' represen-—
taties van 'graded' Lie algebras.

Stel a€EN en bEZ, dan is bekend, dat voor ieder polynoom P(x) met gehele

coéfficisnten geldt, dat P(b+a) - P{b) deelbasr is door a.

.1 @dast n n
Voor het Legendre polynoom Pn(x =7 -d—x-j x (1=x)", n€WN , geldt zelfs

dat Pn(b+a) - Pn(b) deelbaar is door 2a.
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9.

10.

11.

... . - . * -
Met de nuidige kennis van de werkzame doorsnede voor het nrcces e € -~
hadrounen, 1is het niet mogelijk om massa's van quarks met acceptabele

rauwgeurigheid te bepalen.

Met benulp van het door Dirac ontwikkelde formalisme voor mechanische
systemen met restricties, kan een expiiciete reductie worden verkregen
van het O(N) niet-lineaire o-model, wasrbij het aantal vrijheildsgrader

met | is teruggebracht.

Het menipuleren met Grassmann~variabeien in =zen theorie met supersymmetriz
krijgt een duidelijke wiskundige betekenis, wanneer mern de fysische
Hilbert-ruimte uitbreidt tot een moduul over een Grassmann algebra. Dit

kan worden geillustreerd aan de hand van een door van Hove behandeld een-

voudig supersymmetrisch model.
L. van Hove, Nucl. Phys. B207 {1982).

Het door N.A. Dyson gepubliceerde boek over toepassing van kernfysica in
de geneeskunde, dient over de diagnostische methoden met radio-actieve
nucliden informatie te verschaffen overeenkomstig de meest recente inzich-

ten en technische verworvenheden op dit terrein.

N.A. Dyson, Nuclear Physics with applications of radioisotopes in
Medicine and Biology (Ellis Horwood Ltd. Chichester 19B81).

In het onderwijs is het plen ontwikkeld om in de toekomst leerlingen
langer in heterogeen klasseverband bijeen te houden. Een maatregel, waar-
door het aantal leerlingen per klas wordt vergroot heeft echter een nega-

tief effect op de gewenste succesvolle uitwerking van dit plan.
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