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Introduction and outline
Interacting electrons are key ingredients for understanding the properties of various classes 
of materials, ranging from the energetically most favorable shape of small molecules to 
the magnetic and superconducting instabilities of lattice electron systems. The single-band 
Hubbard model is presumably the simplest model for describing the behavior of correlated 
electrons in a solid. Initially, the model was used to describe magnetism in transition met
als. More recently, it plays a role in setting up theories of high-temperature superconductiv
ity. While it seems likely that for the latter phenomenon more complex models are needed, 
t.ven this simple model is not well understood. For one dimension some rigorous results are 
known, but in higher dimensions the main results have been obtained from Monte Carlo and 
finite-lattice calculations only.

The Hubbard model is a tight-binding model. Electrons are located on lattice sites and 
hop from site to site with a rate r/ h, where t is an overlap integral between neighboring sites. 
Apart from t, the model comprises only one other energy parameter U, which is the penalty 
for having two electrons on one site. Although the model has only two energy parameters, it 
has a rich phase diagram, of which the low-temperature phase is still a mystery. A wealth of 
(approximate) calculations exists which give more or less reliable information on the possi
ble phases which may occur. The Hubbard model is capable of producing an antiferromag
netic as well as a ferromagnetic phase, and likely a host of variations on this theme. It shows 
a general tendency towards antiferromagnetic arrangements. These are most convincingly 
demonstrated in the one-dimensional Hubbard model, which has been solved exactly by 
Lieb and Wu [ 1 ]. In fact, for any finite U the ground state of the half-filled system is an an
tiferromagnetic insulator in that case. For higher-dimensional systems the possible phases 
of the Hubbard model are less well understood. It is believed to be antiferromagnetic at half 
filling. Off half filling, the model is superconducting for negative U under the same circum
stances where it is antiferromagnetic for positive U. A well known but surprising result is 
a theorem by Nagaoka [2], stating that a Hubbard model on a bipartite lattice with one hole 
and with infinite interaction strength U has a ferromagnetic ground state.

Many authors have investigated the behavior of the model at large U near half filling, 
to find whether the ferromagnetic ground state is limited to only one point in the phase dia
gram, or part of a whole region of ferromagnetic behavior. Various methods are being used 
for this purpose [3], including exact diagonalization of small systems, Monte Carlo simula
tions, mean-field, and cluster expansion methods. Over the years, many interesting results 
have been obtained that shed some light on the issue of magnetism. However, a conclusive 
answer to this question has not been given yet.
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‘See the list of publications on page 109.

As our main interest focuses on the existence of magnetic phases, we study in this the
sis, in addition to the grand potential, spin-spin correlation functions. From the grand po
tential one can calculate thermodynamic quantities as density and susceptibility. We use 
the nearest-neighbor correlation between the z-components of the spin as an indicator for 
the magnetic tendencies. We will concentrate on two methods by which information on the 
phase diagram of the Hubbard model can be obtained: cluster expansions and Monte Carlo 
simulations.

By means of a cluster expansion method, series expansions in terms of the parameter fit 
are generated. In Chapter 2 this method is described, and expressions for various quantities 
are given. These expressions show very well convergent behavior for high temperatures. 
Standard extrapolation methods fail when trying to extend these results to lower tempera
tures, and therefore we present a new method of extrapolation in Chapter 3. By this method 
an extrapolation of the series results can be obtained all the way down to zero temperature.

A different approach, using the technique of quantum Monte Carlo simulations is de
scribed in Chapter 4. By this technique one is able to investigate sizeable systems withe.it 
a priori knowledge about the physical state which is to be expected. The character of the 
fermion wave function, which must be antisymmetric, causes that straightforward appli
cation of the Monte Carlo technique (which works well in the case of bosons) leads to a 
very bad signal-to-noise ratio, such that the noise overwhelms any properties of the sys
tem. We adapt this technique to make it suitable for lattice fermions, and use it to calculate 
ground-state properties. The implementation and results of these calculations are shown in 
Chapter 5.

Finally, we draw our conclusions for the magnetic phase diagram from the different ap
proaches, and we compare our results to those available in the literature.
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1 The Hubbard model

1.1 The model

{c)„. — Sjj'baa'- (1.1.1)

We denote the Hamiltonian as follows:

(1.1.2)

The first term is the kinetic or hopping term, which reads

(1.1.3)

(1.1.4)

A description of the single-band Hubbard model, as it is used in this thesis, is given. 
The parameters in this model, as well as some symmetries and limiting cases, are 
discussed, and the notions of configuration space and antisymmetry are clarified.

f^kin — t c}acja-

where U is the interaction strength, and nia is the number operator c}acia, counting the num
ber of particles with spin a at site i. Although one can very well take U negative, we will 
restrict ourselves to the case of positive U.

For convenience, we will use two more terms in the Hamiltonian. In Chapters 2 and 3 
we will be working in the grand canonical ensemble, which makes it necessary to use a term

K = ^kin + f^im-

Here, the parameter t is the one-electron transfer integral between a nearest-neighbor pair 
of sites <£, j). By this term, an electron can hop from one lattice site to the other, as it is anni
hilated on site j and created on a neighboring site i. The other term is the on-site interaction

The Hubbard model is a most simple description of the interactions between electrons in a 
metal, using only a few basic parameters. The electrons are localized on lattice sites, repre
senting the ions in a crystalline material. They can hop from site to site, only restricted by the 
Pauli principle which states that two electrons of the same spin cannot occupy the same site, 
and by a penalty for two electrons of opposite spin that occupy the same site. This on-site 
interaction is considered to be a reasonable approximation for the Coulomb force between 
the electrons, because the range of this force is usually very short due to shielding.

The Hubbard Hamiltonian is commonly expressed in terms of the creation and annihi
lation operators cja, cja for an electron with spin a at site j. The Pauli principle is obeyed 
through anticommutation relations for these operators:
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(1.1.5)

(1.1.6)

obtains the form

(1.1.7)

(1.1.8)

1.2 Parameters, properties, and symmetries

(1.2.1)

by which the number of particles can be varied. The particle density n can be controlled by 
the chemical potential n, if a term

where the factor (—1)' accounts for a field pointing in opposite directions on the two sub
lattices of a bipartite lattice. The full Hamiltonian used in some of the calculations then is

The parameters of the full Hubbard Hamiltonian thus are t, U, fl, and h, which we will nearly 
always use in combination with the inverse temperature

is added to the Hamiltonian. The symmetry of the Hubbard model is such that fl = U/I 
yields a half-filled lattice with one electron per site (n = 1). We will calculate various ex
pressions in terms of and use thermodynamic relations to re-express them in terms of the 
density.

The other term, which is useful when studying magnetic properties, introduces a uni
form external magnetic field h in the z-direction, acting on the electron spin:

-^Cchem — M ' H-g 

i.o

M = ^kin + + 7/chem + ^4i>ag-

Similarly, one can include a staggered magnetic field hs. In that case,

P kT'

where k is Boltzmann’s constant. There are no restrictions on the values of these parame
ters, but one does not have to consider the full range of values for each parameter to study 
all possible situations. By simple transformations, one can map several parts of the param
eter space onto other parts. A few examples are particle-hole interchange (cJ(r = cja), which 
causes a change of sign of t and h and maps p. onto U — n, or spin interchange (cJa = cja), 
causing only a change of sign of h. For bipartite lattices one easily finds that the sign of t is 
irrelevant, by changing the sign of the creation and annihilation operators on one sublattice. 
One can also find a relation between positive and negative values of U, under a simultaneous 
interchange of the roles of the chemical potential and the magnetic field (see, e.g., Ref. 4). 
This reveals a relation between superconductivity for U <0 and antiferromagnetism for 
U > 0, and indicates how the study of magnetism in the Hubbard model for large positive

^mag — j ("if ni|) ■
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Z^ = tre-^, (1.2.2)

(1.2.3)

1.3 The Nagaoka state

I*fm) = 521*/). (1.3.1)

A very interesting result, which is an important part of the motivation for this work, has been 
derived by Nagaoka [2], He considered the Hubbard model on a bipartite lattice (with co
ordination number z), for infinite interaction strength U, and with one hole in an otherwise 
half-filled system. For such a system, he constructed a state with maximum total spin, and 
he showed that it has the lowest energy possible. One can understand this in the following 
way: if one has a half-filled system at infinite U, each site is occupied by one particle, and 
no particle can move. If one of the particles is removed, a hole is created, which has z pos
sibilities to be interchanged with a neighboring particle. In such a system, the energy can 
never be below —zr, as one easily finds by applying the Hamiltonian to an eigenstate, and 
considering the site in which the wave function has its largest absolute value in this state. 
An eigenstate that has precisely this eigenvalue is the state

where 14/,) is the configuration in which all sites are occupied by a particle of spin up, except 
for site i, which is unoccupied. Finally, one can prove that, in more than one dimension, there 
is no other eigenstate with the lowest eigenvalue. Thus, the state with highest total spin is 
the unique ground state of this system.

By differentiation with respect to /z or h, relevant properties such as the particle density, the 
magnetization, or the susceptibility, can be derived from the grand potential.

In the limit of very large positive U, the Hubbard model is equivalent to the /-J-model 
for small positive J, with J = 4r2/l/. In the r-J-model, double occupancy of a site is for
bidden, but two neighboring particles of opposite spin can be directly interchanged with en
ergy J. The model has a configuration space which is of the order 3N, N being the number 
of sites, which makes calculations of its properties much less involved than for the Hub
bard model in which the possible number of configurations is 4*. For negative J there is 
no equivalence between the r-J-model and the Hubbard model. Finally, at half filling, the 
large-C/ Hubbard model is equivalent to an antiferromagnetic Heisenberg spin model.

U may be of interest for understanding superconducting behavior in the case of large neg
ative U.

From the Hamiltonian, the properties of the model can be derived via standard thermo
dynamic relations, starting from the grand canonical partition function

Q = -i|nZgr. 
p

with 94 as given in (1.1.8). From this partition function, the basic quantity in the grand 
canonical ensemble can be derived: the grand potential
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1.4 Configurations and antisymmetry

(1.4.1a)

(1.4.1b)

(Ri\H\R2) =
(K1|H|«3) = («2|H|/?3) =

(A.IHIA.) =
(R2\H\R2) = (R,\H\R3) =

An important point, which the reader should understand well before studying the following 
chapters, is the fact that all calculations in this thesis are performed in configuration space, 
which is also sometimes called the superlattice. One is easily confused by the difference be
tween a hop of an electron on the lattice, and the related change of location in configuration 
space.

The easiest way to clarify this point is to give a simple example. Let us consider four 
sites connected in a loop with three particles, of which two carry spin up and one has spin 
down. The number of possibilities to place these particles on the sites is

0,
U, 
0.

(1.4.2a) 
(1.4.2b) 
(1,4.2c)
(1.4.2d)

At half filling, the Hubbard model can be mapped onto a Heisenberg antiferromagnet 
for large U. The result of Nagaoka, which in fact only holds for merely one point in the 
phase diagram, indicates the presence of ferromagnetism off half filling. A question which 
has become of interest to many authors is whether this ferromagnetic tendency will be stable 
for finite hole densities and finite interaction. This problem is far from settled yet, and we 
will come back to it several times, to finally discuss it again in the last paragraphs of this 
thesis.

One can depict the superlattice as a set of points {/?), that are connected by bonds (R, R') 
representing nonzero off-diagonal matrix elements {R\H\R') = —t. We stress again that this 
space has to be distinguished from the set of sites {<} and nearest-neighbor bonds (i, ;) in 
real space, which looks rather similar though it is of much lower dimensionality.

where the first binomial factor is the number of possibilities to choose one site for the down 
spin, the second factor is the number of possibilities to choose two sites for the up spins, 
and the factor 2 accounts for the possible number of permutations of the up spins. Thus, the 
configuration space belonging to this system consists of Nc = 48 configurations.

In Figure 1-1, three of these configurations, Rt, R2, and R3, are shown. Each R, is de
fined by the positions of all particles in the system. Note that R2 and R3 can be obtained 
from each other by permutation of the up spins, and that R\ and R2 can be obtained from 
each other by a hop of one particle from a site to one of its nearest neighbors. The matrix 
elements of the Hamiltonian between these configurations are as follows:

"• - (0(02 
= 48,
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Ri R2 R,

(1.4.4)

1 In this thesis, wc will always speak of hopping if an electron move in the system is meant, in contrast to 
stepping whenever a change of position on the superlattice takes place.

2In the appendix of Chapter 4, an explicit example is given in which a complete configuration space and 
the space of antisymmetrized combinations are depicted for an even simpler system.

Application of the kinetic term on a configuration R causes the electrons to hop 
around in the system. In configuration space, this comes down to stepping' from one point to 
the ether along the bonds, thus performing a walk on the superlattice. For instance, applying 
one of the terms e’e to the configuration Rt makes the up spin in the upper right comer of the 
system hop to the upper left comer, thus resulting in the configuration R2. Simultaneously, 
on the superlattice, one steps from the point R\ to the point R2. In this way, each electron 
hop is directly and uniquely related to a step in configuration space. This is used both in the 
series expansion method and in the Monte Carlo simulations.

Antisymmetry

For fermions, a wave function must be antisymmetric to be valid. This means that the 
wave function must change sign if two fermions of the same spin are interchanged by a 
permutation fl:

Figure 1-1 Examples of configurations for a system consisting of four sites connected in a loop, with 
three particles of which two carry spin up and one spin down. The up spins can be distinguished by 
the solid and dotted lines. Each of these configurations corresponds to one point of the superlattice.

(2?|M/} = -(n/?|'F). (1.4.3)

In our example, this implies (Rzl'F) = —(J?3|4'). When solving the Schrodinger equation 
in the configuration space, without any restrictions, one will in general find a symmetric 
ground state. In order to solve the fermion problem, one has to construct antisymmetric 
wave functions from the eigenfunctions of the Hamiltonian. One can, however, also restrict 
the equations to yield antisymmetric wave functions only, thus solving only the fermion 
problem. This is done by considering the space of antisymmetrized combinations of the con
figurations.2 We define the state | Q) as

ie) = -^^(-i)s<="(n>in/?),
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(1.4.5)(n/?|H|n«') = (r\h\r')

in configuration space are all mapped onto the same matrix element

(1.4.6){Q\H\Q’) = ±(R\H\R')

in the state space, where the sign depends on the Q and Q chosen. One can now use this 
Hamiltonian for the states to solve the Schrodinger equation for the fermion problem, as it 
automatically yields all antisymmetric solutions.

where the summation is over all possible products n of (separate) permutations of the up 
and down spins. Nn is the number of these permutations, which is the same for all R with 
fixed number of particles and spin. Note that, in this way, from each set of Nn permuta
tions of a configuration \R), two states |Q) and —12) are obtained, of which only one is 
needed. One can arbitrarily take one of the | Q), as this does not in any way affect the re
sulting expressions after rewriting them in terms of the 17?). Thus, the state space is a factor 
Nn smaller than the configuration space. The Nn matrix elements



2 High-temperature series expansions

2.1 Introduction

2.2 Perturbation theory

(2.2.2)

One of the methods that may be used to obtain information on the properties of a large sys
tem is the series expansion technique. The idea is to choose a region of the phase space 
where one of the parameters is small, and create an expansion in terms of that parameter. 
The other parameters are included exactly. By extrapolation of the results so obtained, one 
may hope to be able to derive information for regions that are outside the range of con
vergence of the series. The prescription for generating such an expansion is usually rather 
simple and straightforward: one needs a fairly simple enumeration algorithm, and one has 
to perform the calculations on relatively small systems only. The possibilities for obtaining 
accurate results are then limited by the amount of computer power available, as the time that 
is needed for calculating one more term in the expansion increases very fast with the power 
of the expansion parameter. Furthermore, as we will see, the interpretation of the results 
obtained is not at all trivial.

In Section 2.3 we will introduce the concept of cluster expansions, starting from a stan
dard perturbation technique which is described in Section 2.2. In Sections 2.4 and 2.5, we 
show how the partition function and various correlation functions can be calculated for the 
Hubbard model, using the cluster expansion scheme. Some features of the resulting expres
sions are discussed in Section 2.6. We calculate nearest-neighbor correlations for the square 
and simple cubic lattices in Section 2.7. Finally, in Section 2.8, we calculate Curie and Neel 
temperatures for these lattices, and we show why the extrapolated results of the series ex
pansions are unreliable. A way to deal with this problem will be the topic of Chapter 3.

A cluster expansion technique, by which high-temperature series expansions can 
be calculated, is described, and results are derived for the magnetic phase diagram 
of the Hubbard model. At high temperatures, indications can be found for ferromag
netic behavior. These results cannot be easily extrapolated to lower temperatures.

In order to be able to calculate the partition function (1.2.2) for the Hubbard model by means 
of a cluster expansion, we need a standard perturbation technique to express the exponential 
operator

W()3) = e-^ (2.2.1)

in terms of powers of the small parameter t. We write our standard lattice Hamiltonian 
(1.1.2) as
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(2.2.3a)

(2.2.3b)

(2.2.4)

(2.2.5)

where

£e = (2i^oie). (2.2.7)

(2.2.8)

Q = (2=2o, 2i, Gz Qn = 2'), (2.2.9)

as follows:

(2.2.10)

Using (2.2.6) and inserting n + 1 complete sets of states between the operators Tfi, we can 
express the matrix elements of W„(/3) as a summation in the state space over paths

As we are interested in the partition function, we have to calculate the trace of W(/I): 

z«r=2252«2iw'„()3)ie), 
Q n

w^py^^w^py,
n=0

Ai-I
d^„e^"<£®— i-£<r>eA-i<Ec,_!-Ee,_,)... e#i(E0-£fll>/.r<ip,...

Jo

with from (2.2.1), and integrating, we obtain

W) = e-^ - ^dpx

Note that and need not commute. Iteration of this expression leads to

<2'iw„o)ie} = (-i)"e-4£ey;<!2'|^1|(2/,_1)(en_1|5/1|Gii_2)...x 
Q

= -w(py^M°,

'Pn-\

(2.2.6) 
Each term in this summation can be obtained from the previous one by recursion.

The W„(py can be evaluated straightforwardly in the state space {12)1, where the Q are 
the antisymmetrized combinations of the configurations R as described in Section 1.4. The 
12) are eigenstates of 7/0, with eigenvalues

where we consider the local potential !HM to be the unperturbed part 7/o of the Hamiltonian, 
and the kinetic term 5/^ to be a perturbation !H\. The latter operator is thus proportional to

By writing

rfi rPi r.
Wtf) = (-1)" / <1/3,/ dft - / 

Jo Jo Jo
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(2.2.11)

(2.2.12)

(PUY’e-^, (2.2.13)

(2.2.14)

The matrix elements (Q'\9E\ | Q) equal ±r if the states | Q") and | Q) are related by one elec
tron hop to a neighboring site, or zero otherwise. The sign is determined by convention from 
a standard sign, for instance by looking at the sequence of creation operators necessary to 
create |Q) and |2') from the vacuum |0).

In the trace, the first and last states of each path are the same. A path Q. can be embedded 
in configuration space as = {/?0, /?„); the sign for the whole path is then uniquely
determined by the permutation fl necessary to restore the first configuration Ro from the 
configuration R„ = fl Ro obtained at the end. The convention for determining the sign along 
the path should obey this rule, and if it does, it gives the correct sign for the path. Thus, 
the partition function can be calculated as a power series in r, where the coefficient of t" 
is obtained by performing the summation (2.2.10) over all closed paths of length n in state 
space. The multiple integrals are completely determined by the energy differences between 
the subsequent states in each path.

Let us consider this expression for a given system of N sites. Although the state space is 
usually very large, the eigenvalues Eq of can take a relatively small number of possible 
values, as they only depend on the number of up and down electrons in state |Q). For the 
Hamiltonian (1.1.8) with a chemical potential term and a magnetic field term included, they 
can be expressed as

■n __ \ s pn.Q.Q
E.s ~ “e.s

Q

Eq = Un^Q) - (M + ^)nt(Q) - (m - ^)n;(2), 

where nt (Q) and n j (Q) are the number of electrons in state | Q) with spin up and down, re
spectively, and nd (Q) is the number of doubly occupied sites. Using the obvious restrictions 
on the values ofnt, nd, and nd, it is easy to find that Eq can take (1V + 1)(A + 2)(IV + 3)/6 
different values, which is a very small number compared to the 4W possible states.

The operator 5/, conserves the number of particles (nt + rij) as well as the total spin 
(rtf — nd)/2. Thus, we can make a division of the state space in a disjoint set of subspaces 
containing states with a fixed number of particles with spin up and with spin down, and per
form the calculation of the trace in each subspace separately. Note that this reduces the set 
of values to consider for Eq in one calculation even further. The energy difference between 
subsequent states in the paths only depends on the parameter If:

EQ-Ee. = U[nd(2)-nd(e')],
and it can only be ±U or 0. We can use this to formally evaluate the integrals in (2.2.10). 
The matrix elements can be expressed as

n

E 5=0

where the summation over E involves all possible eigenvalues Eq in the concerning sub
space. The signs have been incorporated in the coefficients R"^'0, which are rational num
bers. With
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we find for the partition function

(2.2.15)

where the coefficients are given by

(2.2.16)

2.3 Cluster expansion

(2.3.1)

(2.3.2)

Zgr = 52z„()3r)", 
n

^. = Y^R’^pur‘e-^.
E s-0

The summation over E now involves all possible eigenvalues of From this expression, 
we notice that we have in fact generated an expansion in the parameter fit. One can define 
an energy scale by taking the parameter t fixed at some value, and then it is obvious that the 
resulting power series is a high-temperature expansion.

The perturbation technique described in the previous section is generally applicable. In prin
ciple, the partition function can be calculated for lattices of any size, up to the power of t 
desired. However, as one may expect, the number of terms that have to be calculated in
creases rapidly with n. Furthermore, for large lattice size N, it becomes increasingly diffi
cult to keep track of all terms, as generating a complete set of paths of given length in the 
configuration space is far from trivial.

To enumerate all terms in the expansions for the grand potential and the correlation func
tions correctly and efficiently, up to a given power of t, we use the cluster expansion method 
in the form presented by Gelfand et al. [5]. Following their, more general, discussion, we 
consider the Hamiltonian of the Hubbard model as the sum of an unperturbed part contain
ing all local terms and a perturbation containing the hopping terms, as indicated in the pre
vious section. We can formally write an expansion in the hopping integral t for any property 
IP of our system. As we have seen, the factors t result from (repeated) multiplication by 7/,. 
We can keep track of the bonds from which all factors t arise by counting how often each 
bond (f, J) is used along the paths Q. (i.e., how many matrix elements of appear in each 
term, that make an electron hop from site i to site j or inversely):

3,=E^n^-
(»</> <G)

Here n,j denotes the number of factors t arising from the bond (i, J); by {ny) we denote the 
set of these numbers for the whole system. The summation is over all possible {ny}, i.e., 
each ny runs from zero up to infinity. The coefficients p{ny) are specific for each property.

A cluster expansion comes about by considering for each term the set of bonds ((i, j)) 
for which the ny are not equal to zero. We denote such a set, called cluster, by C. The terms 
in (2.3.1) can be rearranged to obtain a summation over clusters:

!? = E E pKlfl'”’-
c (ny#0|(/,»€C) (i.j)
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We define the weight of a cluster by

■M4(C) = (2.3.3)

such that
(2.3.4)

(2.3.5)

(2.3.6)

!P(C) = !P(A) + !P(B). (2.3.7)

(2.3.9)

This means that in the summation (2.3.2) for the cluster C, only terms in which all factors t 
originate from A or from B can be present. It then follows directly from (2.3.3) and (2.3.5) 
that

!P=52‘M4(C).
c

This summation is over all possible clusters C in our lattice system. Note that one of these 
clusters is in fact the whole system, and thus we may rewrite (2.3.4) to give the property for 
a (finite) system C:

2> = 52l(G)iM'3>(G).
G

The lattice constant L(G) denotes the number of clusters, occurring in the system, that have 
the same topological structure as G. If the property is extensive, as for instance the grand po
tential, it is convenient to consider the property per lattice site, to avoid that this expression 
becomes arbitrarily large. In that case, L(G) accordingly represents the number of clusters

2>(C) = T^(C').
C'CC

" his equation can be inverted to determine the weight of a cluster in terms of the weights 
of smaller (sub)clusters (the subcluster subtraction):

Wr(C) = !P(C) - 52
C'CC

^2
K0O|(>..fleC) u.fi

Wr(C) = 0 (2.3.8)

for the disconnected cluster C. Thus, for properties obeying (2.3.7), we do not have to take 
the disconnected clusters into account, which is also an important feature of the expansion.

When one considers properties that do not depend on the geometry of a cluster, but 
merely on its topology, many clusters will give the same contribution to S’. Therefore we 
denote a set of topologically equivalent clusters by a graph G representing the set, and 
rewrite (2.3.4):

From the definition of the weights (2.3.3) it follows that the terms in W?(C) contain at 
least as many factors t as there are bonds in C. Thus, to obtain an expansion for T up to mth 
order in t, one only has to identify and evaluate the weights of clusters containing up to m 
bonds. This is the most essential feature of the expansion.

Another important element in the expansion concerns the fact that we will consider 
physical quantities that have the cluster property. A property S’ is said to have the cluster 
property if for the union C of two disjoint clusters A and B the following holds:
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2.4 Grand potential

(2.4.1)

(2.4.2)

The grand potential Q has the cluster property, as is indicated in the appendix, such that we 
can apply the cluster expansion technique. Let us see how we can use it together with the 
perturbation technique, to calculate an expansion of the grand potential, for the Hubbard 
model on a square or simple cubic lattice. We can denote the grand potential for a finite 
system G in the following way [Cf. Eq. (1.2.3)]:

where Z^tG) obviously refers to the grand canonical partition function for this system. Sub
stituting the expression (2.2.15) that we derived for the partition function in Section 2.2. and 
expanding the right-hand side of (2.4.1) with respect to the parameter pt, we find the fol
lowing series expansion for the grand potential:

per lattice site. In the appendix, a more accurate mathematical definition of a graph and its 
weight is given, and the precise meaning of connectedness is explained for some specific 
properties.

The set of graphs to be used does not only depend on the lattice considered, but also 
on the specific property T. This will become clear in Section 2.5, where we will show how 
to calculate the nearest-neighbor correlation of the z-component of the spin. First we will 
discuss the calculation of the weights TFq(G) for the grand potential.

Thus, we have to enumerate all the appropriate graphs G for the thermodynamic system; 
calculate the Z„ for each of these graphs, up to then desired, to obtain the S2(G); use the sub
cluster subtraction to obtain the weights 'M^(G); and finally perform the summation (2.3.9). 
To accomplish this we must start with the smallest graph, and subsequently work ourselves 
through the larger graphs using (2.3.6).

Before we give the graphs G that are necessary for this summation, with their lattice 
constants L(G), we mention some further restrictions on the calculations to be performed. 
From the fact that we have to consider closed paths in the state space to obtain (2.2.15), it 
directly follows that for bipartite lattices the coefficients e must be identically zero for 
odd n. Also, more generally, the lowest order in fit in which a graph contributes to (2.3.9) 
is usually much higher than the number of bonds it contains, as only paths which use all 
bonds of the graph contribute to its weight. Many bonds have to be used twice to generate 
closed paths, unless they are part of a loop. Therefore, when calculating the grand potential 
up to order m, most of the larger graphs with up to m bonds, especially those that do not 
contain loops, can be omitted. We have seen before that graphs with more than m bonds do 
not have to be considered. The graphs that remain to be evaluated for obtaining expansions

S2(G) = -i In Zo(G) + i 
p r

Q(G) = -1 In Zgr(G), 
P

Z2(G)Z0(G)-iZ1(G)\a - , 
-------- --------------- (W +P Z^G)^*
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up to eighth order for the square and simple cubic lattices are presented, with their lattice 
constants,1 in Table 2-1.
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In order to obtain a similar series expansion for the two-site correlation function Qj of the 
z-component of the spin, we can use the same procedure as before, with some small adap
tations. The correlation function is usually defined as

Gj = {(4~ <4» (rf _
= (^) -

si = 2<nit - n.P
is the z-component of the spin operator, and the average is defined for any operator by 

tr (e"^^)
tr e-^ ’

1 Most of these graphs have been presented with lattice constants for various lattices in Ref. 6.

Table 2-1. Graphs needed to calculate the grand potential Q up to eighth order in fit. The numbers 
in the upper left corners have been assigned to the graphs for reference purposes. In the lower left 
and right corners we give the lattice constants (i.e. the number of topologically equivalent clusters 
per site that can be embedded on the lattice) for the square and simple cubic lattices, respectively. 
The lowest order in which a graph contributes is indicated in the upper right comer.

30
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M(G,) = = (2.5.4)

or,
(2.5.5)

where Zp(Gi) is defined as
(2.5.6)

(2.5.7)

(2.5.8)

For this we have to consider

(2.5.9)

(2.5.10)

tr (e ^sf) 
tr e~^

Z^Gij) = tr (e-^sfsj).

Again, it is straightforward to find the matrix elements

<2'k"/’*^l2) = | [n,-t(2)-nu(2)] [«;t(2) - n;l(2)] (2'1^12}

Z^G,) = tr (e-^sf).
The denominator on the right hand side of (2.5.5) is the partition function of G, which has 
already been calculated in the previous section. We only have to calculate the numerator, 
and subsequently expand this expression in powers of pt.

Ze(Gt) can be calculated in a way very similar to the calculation of Zgr(G). As sf is a 
diagonal matrix in state space, we have

(Q'\e-^sf\Q) = [n,t(2) -«4(2)] <Q'\e~^\Q)

From this expression, we see that the same equations (2.2.8) and (2.2.10) we used to cal
culate ZgrfG) can be used to calculate Zgr(Gl). We merely have to add a factor —1/2, 0, 
or +1/2 to each of the matrix elements (Q'\W(p) | Q) in the summation (2.2.8), depending 
only on the occupation of site i in state | Q). In this way we can calculate the magnetization 
M (G,) for each graph that contains the site i. Note that for a finite system G, M(G;) gen
erally depends on which site in G is site i. Therefore the site has to be added to the graph as 
a relevant index. In Table 2-2 on page 37 we list all graphs with one labeled site, necessary 
to calculate the magnetization for the square or simple cubic lattice. One can perform this 
calculation via the subcluster subtraction (2.3.6) and the weight summation (2.3.9) for the 
property using the set of graphs G,.

The next step is to calculate the average of the product of two spin operators

q'(Gy) =

This correlation function has the cluster property (see the appendix).
When calculating these correlation functions, we have to deal with a somewhat different 

lattice than in the case of the grand potential. The two sites i and j are special. This must be 
reflected in the set of graphs that is needed for the calculations. We introduce a labeled site 
in a graph, which is a site for which a spin operator appears. We denote a graph G which 
contains one labeled site i by G,-, and similarly if it contains two labeled sites i and j we 
denote it by Gy. In the appendix, this is explained in more detail.

Let us first consider a system G with one labeled site i. We can write its magnetization 
as
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2.6 Series expansions and derivatives

(2.6.1)

where

(2.6.4)

as well as the graphs Gy for which the Q are to be calculated. For the nearest-neighbor 
correlations these graphs are listed in Tables 2-3 and 2-4 (pp. 38, 39). A distinction has to 
be made between graphs consisting of one part (Table 2-3) and graphs consisting of two 
parts (Table 2-4). Graphs consisting of two parts are not disconnected in this case, if each 
part contains a labeled site. This slightly different form of the cluster property is explained 
in the appendix.

There are two possible ways to finally calculate the correlation functions C/j for the sys
tem, starting from the M(G,) and CZ(Gy) discussed above. One way is to calculate the 
property

G7 = <~-!^ (2.5.12)
to find C,j for the thermodynamic system. As both ways must obviously yield the same 
result, we have an independent check on the correctness of the lattice constants and the 
weights.

By the method described in the previous sections we have generated the weights with re
spect to the grand potential up to eighth order in pt, for all graphs in Table 2-1. Using (2.3.9), 
we have subsequently calculated the expansion for the grand potential per lattice site S2 on 
the square and simple cubic lattices. The resulting expression can be written as

n

pn = ^PD^z^y £ £ 
n E s=0

C,,(,G,j) = (2.5.11)
for each graph G with labeled sites i and j. By using the subcluster subtraction (2.3.6), the 
‘■/‘̂c(G,j) can then be calculated, and subsequently for the thermodynamic system by us- 
irg the weight summation (2.3.9) with the lattice constants given in Table 2-3. We note that 
in this case the weights of the graphs in Table 2-4 are identically zero, unlike the weights 
fo' ■ property CZ (see the appendix). Alternatively, one can calculate the magnetization 
5k" and the correlation function C/, for the thermodynamic system by generating all weights 
'J44r(G,) and Wc-(G,j) and summing those, using the respective sets of graphs and lattice 
constants. We can then use

Zp o = 1 + e^<u+*/2) + + e2^~fu. (2.6.2)
The coefficients £2"£ s are rational numbers. They are related to the coefficients RnE s, evalu
ated for all different graphs, in the expressions (2.2.15) and (2.2.16) for the partition func
tion. The summation over E again involves a limited set of values, similar to (2.2.11):

E = aU-bfj.±ch/2, (2.6.3)

were a, b and c are nonnegative integers. In fact, if we write

(Zgr.o)’ =
E
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(2.6.5)

2AJ1 these coefficients have been calculated, and they are available on request.

then the summations over E in (2.6.1) and (2.6.4) involve the same set of values, although 
some of the coefficients for these E in (2.6.1) are zero.

In a similar way, we calculate the magnetization and the correlation functions. The re
sulting expression for a correlation function Qj looks very much like the one for the grand 
potential:

E 5=0n

Again, the coefficients are rational numbers.
In Tables 2-5 and 2-6 (pp. 40,41), we present the coefficients for the grand potential S2 

and for the nearest-neighbor correlation function Q, up to sixth order for the square lattice. 
For simplicity, we have taken h equal to zero [thus we can omit c in Eq. (2.6.3)]. It would 
take several hundreds of pages to present the eighth-order and h 0 0 coefficients in a similar 
fashion.2

In methods like these, where a very large number of numbers is obtained that can im
possibly be verified by physical intuition, it is important to check the results by any means 
available. Some results for lower orders (2nd, 4th, 6th) or limiting cases (infinite £/) can 
be found in the literature [7—10]. In the case of infinite U, our coefficients have been com
pared by Putikka [11] up to 8th order to coefficients for the t-7-model, which should be the 
same for 7 = 0. The full series has been checked to agree with the results of Henderson el 
al. [12,13], who performed basically the same calculation, but did not generate the coef
ficients in integer form. It is also important to realize that a severe internal check exists in 
the cluster method: as larger graphs should not contribute in lower orders, the graphs that 
do contribute in lower orders can be checked by means of the subcluster subtraction. Any 
error in the weight of a smaller graph ruins the result for the larger graphs of which it is a 
subgraph. In this way all graphs contributing to sixth order are automatically checked by 
the eighth order calculations. To check the eighth order results we have additionally calcu
lated, up to eighth order, the weights of some larger graphs which should only contribute 
from tenth or higher order, thus checking all subgraphs they contain. Only the largest eighth
order graphs could not be checked in this way, because of computer time limitations. Finally, 
the two methods for calculating correlation functions, as described at the end of the previous 
section, must yield the same result, thus also providing a check on the expansions. Having 
applied all these checks, we are confident of the correctness of all results presented here.

Calculating the series expansions to eighth order, as described above, takes a few weeks 
of CPU on a simple workstation (Sun SPARC station 1), while the sixth order can be ob
tained in merely a few hours. When considering extending these expansions to tenth order, 
one has to expect an increase in computer time by a multiplicative factor which is still much 
larger than between sixth and eighth order. Also, one may run into storage problems, and it 
may be difficult to maintain the integer form of the coefficients, since the number of possi
ble paths also grows tremendously. As we have already invested a fair amount of time and 
inventiveness in making the programs more efficient, we expect that it is not possible to sig
nificantly speed up the calculations by smart tricks. For our purposes, it seemed not to be
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(2.6.6)

(2.6.7)

(2.6.8)

(2.6.9)

(2.6.10)

Another interesting quantity, when considering magnetic behavior, is the staggered (or an
tiferromagnetic) susceptibility

worthwhile to try to perform the calculation of the tenth-order coefficients on a workstation, 
and even on a supercomputer it would currently take too much time. Therefore, we consider 
the eighth-order expansion as the practical limit to what is possible at the moment.

I /ts=0

with hs now being a staggered magnetic field included in the Hamiltonian. This quantity 
cannot easily be expressed in terms of correlation functions. This is due to the fact that the 
z-component of the staggered total spin 22, (— 1 )'s, is not a conserved quantity because this 
operator does not commute with the Hamiltonian, whereas the total spin is. The staggered 
susceptibility can still be calculated by means of the cluster expansion, by calculating the 
partition function explicitly in terms of the staggered field, and differentiating it twice with 
respect to this field. However, in order to do this, one has to include extra terms in the path 
integrals, as the energy difference along a path in configuration space [Cf. Eq. (2.2.12)] can 
now be

1^=0
Note that the uniform susceptibility can also be obtained directly from the series for the 
correlation functions, as

tsE = nuU + 2nhhs, (2.6.11)
where nu can be 0 or ± 1, and nh can be ± 1 only. We have included this term in the Hamil
tonian, and calculated the staggered magnetization and susceptibility also to eighth order 
for the square and simple cubic lattices.

Let us examine some features of the series expansions more closely. They are given in 
terms of the variables pU, PfJ. and ph, and the perturbation parameter pt. For simplicity

Xra = S(q = O), 
where the structure factor S(q) is defined as

SW = ^e‘"’“C‘r
‘J

As we want to consider various quantities as a function of the particle density n (i.e., the 
average number of particles per site), using

d(pn) 
n ~ 8(^) ’

the density is calculated by differentiating each term in the expansion for £2 separately. In a 
similar way one can calculate other quantities, e.g. the uniform (or ferromagnetic) suscep
tibility

_ 82(/?£2)|
Zah P3(/Ms)2|,

_ a2(/i£2)
Xfm P 3(phy
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(2.6.12)

2.7 Nearest-neighbor correlations

e~^ = \-p!M + + • ■ •

one can immediately see that no negative powers of U can occur for small U. This once 
more provides a check on the coefficients in the expansions.

We are most interested in the case of large U, in view of the possible appearance of a 
ferromagnetic state. We see that PU appears in the exponentials with negative sign only. If 
PU is large enough, we can neglect all terms in the expansion which contain an exponential 
of pU, i.e., for which the parameter a in (2.6.3) is nonzero. For still larger U (i ... U goes 
to infinity) we can also neglect all of the remaining terms which contain a factor U in the 
denominator. This means that we only have to consider terms in (2.6.1) and (2.6.5) for which 
s = 0, or, on the level of the path summation (2.2.10), that only paths which do not contain 
states with doubly occupied sites, contribute. This clearly reflects the fact that this is the 
limit of strong repulsion.

In order to get a good indication of the convergence of the series expansions, we consider 
subsequent orders of approximation for various functions. As an example we plot some of 
these functions in Figures 2-1 and 2-2. In Figure 2-1, we show approximations of the density 
as a function of Pfj. to subsequent orders, at PU = 1500, h = 0 and pt = 0.8, for the square 
lattice. Clearly for this value of pt the convergence is very good, as the difference between 
subsequent approximations decreases and the difference between the sixth and the eighth 
order approximations is only about 5% or less. For pt = 0.5 (not shown here), the difference 
between the subsequent approximations is much smaller, as expected. Thus, we conclude 
that the series for the density can be used in the region where, roughly, pt < 1. We have 
checked this for various values of PU, with similar results. In Figure 2-1, we only present 
the part of the range in Pfj. where n < I. From the condition n = 1//2 at half filling, we know 
that n = 1 at Pfj. = 750. Because of particle-hole symmetry (see Section 1.2) the density is 
symmetric about fl — U/2. Thus we see that the density varies very rapidly as a function of 
the chemical potential only in the very narrow regions — 8 < /Ipi < +8 and PU — 8 < PfJ. < 
PU + 8, and that we practically have half filling in the whole range of pfi between these 
regions. Moreo et al. [14] find similar results for a finite (4 x 4) cluster using a quantum 
Monte Carlo method, although for much lower temperatures (Pt = 4 and 8) and smaller PU.

In Figure 2-2, we show in a similar way the correlation function C,, for nearest-neighbor 
sites i and j, as a function of the density, again in zero field and with PU = 1500 and pt — 
0.5. This function is obtained by calculating both Cy and n as a function of the chemical

we restrict ourselves to h = 0 and U > 0 here. From the fact that factors U appear in the 
denominator of certain terms in the expansions one could infer that they cannot be used for 
the case of small U, because of divergence problems. This is however not true; we can use 
any value for U, with approximately the same range of convergence in pt. This is due to the 
fact that all factors U in the denominator cancel against factors in the numerator, as can be 
seen by expanding the exponentials for small pU. By directly expanding the operator 
in a power series:
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Figure 2-1. Approximations up to Oth, 2nd, 4th, 
6th and Sth order of the density as a function of 
the chemical potential. Square lattice: pt = 0.8; 
PU = 1500; h = 0.

Figure 2-2. Approximations up to 4th, 6th, and 
Sth order of the nearest-neighbor correlation 
function as a function of the density. Square lat
tice: fit = 0.5; pU = 1500; h = 0.

xlO-»

0.5

potential, and plotting it as a one-parameter curve in the n-C^-plane. For pt < 0.5 the con
vergence is very good; the difference between the sixth and the eighth order approximations 
is already very small. At pt 2. 0.5 convergence becomes much slower, and it is destroyed 
completely for pt as 1. Thus convergence is limited to smaller values of pt for this case than 
for the density. We have also looked at the simple cubic lattice, where we find that already 
at pt ~ 0.4 the difference between subsequent approximations becomes significant.

At half filling and for large U, the model can be mapped onto as = 1/2 Heisenberg 
antiferromagnet (see, e.g.. Ref. 4), which is generally believed to have an antiferromagnet
ically ordered ground state (see, e.g., Ref. 15). Nagaoka [2] has shown that in the limit of 
infinitely strong coupling the ground state of a system doped with one hole is ferromagneti
cally ordered. In the region where our series expansion exhibits good convergence we have 
examined the nearest-neighbor correlation function. We expect to find a region in the phase 
diagram where these correlations are ferromagnetic, indicating the existence of a Nagaoka- 
like phase, (n order to find an indication for the onset to this behavior, we have explored the 
correlation function for high temperatures and strong interaction (pU » Pt). In Figure 2-3 
we show it as a function of the density, for various values of pU, at a fixed temperature. It 
can be seen that for densities above roughly 2/3, for the square lattice as well as for the sim
ple cubic lattice, one always finds ferromagnetic correlations when making U sufficiently 
large. At half filling, the correlations are antiferromagnetic for all values of U. This is con
sistent with the results due to the mapping on the Heisenberg model.
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Figure 2-3. Nearest-neighbor correlation function as a function of the density, at fixed pt for var
ious values of PU (Sth order approximation), (a) Square lattice: pt = 0.5; pU = 600, 700, 800, 
1000, 1500, oo; (b) Simple cubic lattice: pt = 0.4; ptl = 500, 600, 700, 800, 1000, 1500, co.

Figure 2-4. Nearest-neighbor correlation function as a function of the density, at fixed pu for various 
pt (Sth order approximation), (a) Square lattice: pu = 1500; pt = 0.1,0.2, 0.3.0.4,0.5; (b) Simple 
cubic lattice: pu = 1250; pt = 0.1,0.2, 0.3,0.4.
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Figure 2-5. Phase diagram of the Hubbard model in the high-temperature regime. The curves en
close areas of ferromagnetic nearest-neighbor correlations (i.e., Qj > 0) at different temperatures, 
(a) Square lattice: fit = 0.2, 0.3, 0.4, 0.5; (b) Simple cubic lattice: fit = 0.2, 0.3, 0.4.
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In Figure 2-4, we show the nearest-neighbor correlation at a constant interaction U, for 
some different values of the temperature. At very high temperature the correlation is anti
ferromagnetic for all values of the density, and increasing with decreasing temperature. In 
the region where n is roughly between .7 and .95, the correlations become increasingly fer
romagnetic below some temperature. The correlation between nearest-neighbor sites thus 
changes from antiferromagnetic at high temperatures to ferromagnetic at lower tempera
tures.

In Figure 2-5 the region in the phase diagram where the nearest-neighbor correlation 
is ferromagnetic is shown for some values of the temperature. On the horizontal axis we 
plot 4t/U\ in the limit of large U and near half filling this equals the parameter J/t from 
the r-J-model which is then equivalent to the Hubbard model. We see that the region of 
ferromagnetic correlation increases very rapidly with decreasing temperature, but that the 
range of densities for which it occurs remains more or less the same. The density above 
which the ferromagnetic correlations occur is « 2/3. At this density magnetic correlation 
between the nearest-neighbor sites seems to be absent. Below this density we do not expect 
a ferromagnetic phase, as the nearest-neighbor correlations would surely be ferromagnetic 
in such a phase.

The results for the simple cubic lattice are quite similar to those for the square lattice. 
All correlations are about 50% stronger in the three-dimensional case, which reflects the 
standard dimensional influence through the larger number of neighbors.
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2.8 Curie temperatures and convergence problems

xjfa, (A7c) = 0. (2.8.1)

Similarly, one defines the Neel temperature through

(2.8.2)

1

0.8

0.4

0.2

0 I , 
0.6

Another interesting quantity to consider when looking for ferromagnetic behavior is the 
Curie temperature. One expects a divergence in the uniform susceptibility at the transition 
from a paramagnetic to a ferromagnetic phase, and so the Curie temperature 7c is defined 
as the temperature at which the inverse susceptibility vanishes:

xJCn, U, Tn)s0, 

indicating a possible antiferromagnetic transition. We have constructed both susceptibili
ties from our series expansions, and we have calculated the Curie and Neel temperatures in 
the eighth order approximation. In Figure 2-6 we show them as a function of the particle 
density, for various values of t/U. This is an extension of the results presented by F an and 
Wang [10], who have performed the same calculations for fourth order, and Henderson et 
al. [12], who calculated only the Curie temperature. Qualitatively, our results are very sim
ilar to theirs. For densities above n = .76 a paramagnetic-ferromagnetic phase transition 
is expected as a nonzero Curie temperature is found. However, as the Neel temperature is 
higher than the Curie temperature in this region of the phase space, one should conclude 
that the system becomes antiferromagnetic before the ferromagnetic transition is reached, 
and thus one does not have clear evidence that the ferromagnetic phase exists.

Figure 2-6. Neel and Curie temperatures, as a function of the particle density, for the Hubbard model 
on a simple cubic lattice, at constant t/U.
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There are, however, several reasons why one cannot trust these results. For instance, 
if one considers the second- or sixth-order approximations, one does not find solutions of 
(2.8.1) at all, or one finds them in another range of the density (n < .75 for the Curie tem
perature). Also, the difference between the fourth- and eighth-order results is quite large. 
In Figure 2-7 we plot a typical example of the approximations of the inverse uniform sus
ceptibility, from which the above results have been derived. The character of the series ex
pansion, shown for infinite U as a function of pt, is such that is likely to diverge 
very quickly for pt > 1, to plus and minus infinity alternately. This means that zeros can 
be found for pt 1 in the fourth- and eighth-order approximations, but no zeros exist in 
the second and sixth orders; due to the alternating coefficients, if the zeros disappear from 
fourth and eighth order, they appear in second and sixth order. A priori, there is no reason 
to believe that the fourth- and eighth-order approximations should be more reliable than the 
others.

Due to the fact that we only have five terms in the series expansions (Oth, 2nd, 4th, 6th, 
and 8th order terms), we found it impossible to rely on standard extrapolation methods like 
analysis by means of Pade approximants. Results obtained in different extrapolations vary 
too much to be able to derive any reliable values. Therefore, we have to consider different 
methods that may help us in revealing the information that is hidden in the high-temperature 
expansions. One such method will be the topic of Chapter 3.

Figure 2-7. The inverse uniform susceptibility as a function of the parameter pt, for the Hubbard 
model on a simple cubic lattice, at infinite U and particle density n = 0.9. Approximations up to 
order 2, 4, 6, 8 in pt.
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Appendix: Graphs and weights

(i)

(2)

(8)Z(Gy) =

1

In this appendix we give a more precise mathematical definition for the graphs used to calcu
late the series expansion for the grand potential, the magnetization and the spin-correlation 
functions. Furthermore, we give useful theorems concerning the weights of these graphs. 
These theorems come without proofs, but they can easily be verified with the definitions 
given here.

(3)
(4)
(5)

(6)

(7)

we define the graph (or cluster) Hamiltonian

ieG

With a Hamiltonian of the form

i (>.;1

Graphs
A graph G consists of sites and bonds connecting pairs of sites, representing the interac
tion between the sites. As we are only interested in interactions occurring between nearest- 
neighbor sites, we do not consider bonds between any other pair of sites. If a graph contains 
a bond, it must also contain the related pair of sites. Thus, a bond is always connected to 
two sites. A site can appear individually, or it can be connected to one, two z bonds, 
where z is the coordination number of the lattice we consider. We distinguish between two 
different kinds of sites: labeled sites (o) and sites that are not labeled ( ). A bond ( — ) is 
denoted by the pair of nearest-neighbor sites (i, j) it connects.

A subgraph G’ G G is obtained by omitting one or more bonds from G. An empty graph 
contains no bonds and only sites that are not labeled.

and the following partition functions:

Z(G) = tre-^, 
Z(G,) = tre-^sj, 
Z(Gy) = tr

We use the indices with G to indicate which sites in G are labeled. For these quantities the 
following statements hold: If a graph G is the union of disjoint graphs A and B, then

Z(G) = Z(A + B) = Z(A) • Z(B), 
Z(G,) = Z(A, + B) = Z(A,) ■ Z(B), 

Z(Ay + B) = Z(Av)Z(B),or 
Z(A, + Bj) = Z(A.) • Z(Bj).

Here we have chosen the labeled sites to be in some specific subgraph of G; the other pos
sibilities are equivalent with one of these choices.
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Grand potential
The grand potential is given by the expression

(9)

From the statement (6) it follows that

Q(A + B) = Q(A) + fi(B) (10)

Wn(A + B) = Wn(A). (11)

TVn(A + B) = 0. (12)

(13)

We have a somewhat different form of the cluster property here: for disjoint A and B,

9rti(Ai + B) = fMi(Ai). (14)

■M^(A, + B) = ‘M^(A,). (15)

With B nonempty, we have again the linked cluster theorem

^(A, + B) = 0. (16)

Magnetization
In a similar way, we can deduce a linked cluster theorem for the magnetization

This leads to an important reduction of the set of graphs: all disconnected graphs, i.e., graphs 
consisting of two or more disjoint nonempty subgraphs, do not have to be considered in the 
calculation of the grand potential, as their weights are identically zero.

Here we sec why only the sites that are directly involved in the interactions have to be in
cluded in the cluster Hamiltonian. By induction it is straightforward to prove the linked clus
ter theorem for the grand potential: If A and B are disjoint graphs, both not empty, then

for disjoint graphs A and B. Thus, the grand potential has the cluster property. From this, it 
can be shown that for A and B disjoint, with B empty, A not empty:

Thus, we can simply disregard any part of the graph that is not connected to the part con
taining the labeled site i, when calculating the magnetization. For the weights, we can state 
as above: for disjoint A, and B, with B empty, we have

Q(G) = -llnZ(G).
p
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Correlation functions
For the correlation functions

(17)

and
Gj(Gy) = ("'(Gy) - (18)

we have

for disjoint A and B. Again, if B is empty, we find

'H'c.(Ay+ B) = -Mt-(Ay) (23)

and
(24)

1»VC(Ay+B)=O, (25)

T4(Ay+B) =0 (27)

and
‘J'i'ctA, + Bj) = 0 (28)

for disjoint, nonempty A and B.

■

if A and B are disjoint and not empty. When the labeled sites i and j are not both in A or 
B, we find

‘M'c-fA, + Bj) = ^(At) ■ ^(Bj). (26)

Thus we see that, for this case, the meaning of connectedness is different from what we have 
seen before. When a graph consists of two disjoint subgraphs, both containing one labeled 
site, its weight for this correlation function is the product of the weights for the magnetiza
tion of both subgraphs. Of course, when a graph consists of three or more disjoint subgraphs, 
its weight must be zero again. For C, the theorem is as before:

With the theorems presented here, the subcluster subtractions and the weight summations 
for the properties concerned can be evaluated.

(19)
(20)
(21)
(22)

G'(Ay+B) = q<(Ay),
G'(A, + B,) = ^(A.) ■ Mj(Bj), 
Gj(.Aij+ B) — Cjj(Aij),
Q^Ai + Bj) = 0

‘M'c(Ay+B) = 'M'c(Ay).
The linked cluster theorem is different for the two correlation functions. For C we have

,j) Z(G)
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Table 2-2. Graphs with one labeled site used to calculate the magnetization 5VT up to eighth order 
in fit. The numbers in the lower left and right corners are the lattice constants for the square and 
simple cubic lattices, respectively. They follow by multiplication with a symmetry factor (independent 
of the dimension of the lattice) from the lattice constants for the corresponding graphs in Table 2-1 
on page 23.
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Table 2-3. Graphs with two labeled sites, consisting of one part, needed to calculate the correla
tion functions Gy and Gy for nearest neighbors i and j, up to eighth order in fit. The numbers in 
the lower left and right comers are the lattice constants for the square and simple cubic lattices, re
spectively. Most lattice constants follow by multiplication with a symmetry factor (depending on the 
dimension of the lattice) from the lattice constants in Table 2-1. Only if the two labeled sites are not 
directly connected, the lattice constant can not be found by a symmetry argument. Graph no. 40 
does not contribute to the nearest-neighbor correlation function on the square lattice, as its labeled 
sites cannot be neighbors on that lattice.

_T2
29

d-
4
36

X
10 164
43

U
6 108

4 
37 

t
20 328 
44

128

328 36328 8 96

u !
4 40 4 40



Tables 39

parts parts parts

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

1
2 
3 
4
5
6
7
17 
18 
19
20 
21 
37
2 
3 
17
3 
17 
17

1 
1 
1 
1 
1 
1 
1
1 
1 
1 
1
1 
1 
2 
2 
2 
3 
3 

17

1 
2 
3 
4 
5 
6

8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24

sc io 
50 
20 

242 
200 
100 
20 

1178 
936 
484 
968 
300 
468 
400 
100
10 
16 
80 
48 
128 
64 

376 
320 
240

L(G) 
sq 
44 
24 
44 
16 
32 
12 
0 
8 
4 
24 
8 
16 
10 
30 
8 

32 
32 
18 
8 
2 

44 
4 
8 
0

sc

320 
616 
384 
512 
240 
48 
192 
96 
320 
192 
256 
164 
788 
456 
1216 
1184 
620 
96 
36 

1992
80 
160
20

sc 
25 

242 
100 
1178 
968 
468 
100
80 

376 
240 
616 
320 
788 
589 
468 
376 
100 
160
64

G 
no. 
"25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48

G 
no. 
"49' 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67

L(G) 
sq 
9 

50 
18 

142 
100 
46 
6 
12 
32 
12 
44 
24 
30 
71 
46 
32 
9 
12 
4

£(G) 
sq 
6 
18 
6 

50 
36 
18 
2 

142 
92 
50 
100 
18 
46 
36 
6 
0 
4 
12 
4 
16 
8 

32 
24 
12

G 
no. 
—1“ 

2

2
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 
23
24

Table 2-4. Two-label graphs, consisting of two parts, necessary to calculate the correlation function 
C-j for nearest-neighbor sites i and j, up to eighth order in fit, with their lattice constants L(G') for the 
square (sq) and simple cubic (sc) lattices. Each part contains one labeled site out of a pair of labeled 
nearest-neighbor sites. The parts are indicated by numbers referring to the graphs in Table 2-2. By 
0, one single labeled site is indicated. The order to which a graph contributes is the sum of the orders 
to which its parts contribute. Graphs 16, 31, and 48 can not be embedded on the square lattice. 
Some examples are Q”’* (graph no. 20) and j (graph no. 53).
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Eq. 2.6.1). E = i.................
zero, due to a coincidental symmetry.

Table 2-5. Coefficients s in the expansion of the grand potential Q for the square lattice (see 
aU - b/i; the magnetic field h has been put to zero. Note that all n"E n are identically

11
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Table 2-6. Coefficients CnE s in the expansion of the correlation function CJ; for nearest neighbors i 
and j, for the square lattice (see Eq. 2.6.5). E = aU — bp, the magnetic field h has been put to
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3 Extrapolation of the series expansions

3.1 Introduction

3.2 Hole formulation

(3.2.1)

(3.2.2)

A method is proposed to extrapolate the results of high-temperature series expan
sions to low temperatures. An extrapolation down to zero temperature is obtained, 
and information on the magnetic phase diagram of the Hubbard model is extracted.

We will consider a method that does not encounter the problems of extrapolation to low 
temperatures, as described in the previous chapter. In this method the density of holes is 
used as a small parameter. The high-temperature results are re-expressed in terms of an ef
fective density of states for holes (as has been done before by Brinkman and Rice [ 16]), and 
extended to interactions between hole levels. With this density of states, expressions for the 
free energy of the thermodynamic system can be obtained in the whole range of tempera
tures. We will define a partition function for the holes in Section 3.2 and express it in terms 
of an effective chemical potential for the holes. In Section 3.3 we derive the density of states 
for non-interacting holes, and we determine its moments, for infinite I). We present an im
provement on the non-interacting hole picture in Section 3.4, where we consider interact
ing holes by introducing a Fermi-liquid-like interaction in energy space. In Section 3.5 we 
show how to use the density of states to calculate zeros of the inverse susceptibility. Sec
tion 3.6 deals with the non-interacting hole approximation applied for finite U. Finally, in 
Section 3.7, we show results for the magnetic phase diagram of the Hubbard model.

INz„=£ 
N,=0

where ZNl is the canonical partition function for Ns = N^ + Ni particles:

We use again the Hubbard Hamiltonian (1.1.8), containing the chemical potential and a 
magnetic field. In order to investigate the thermodynamic properties we want to calculate 
the grand canonical partition function (1.2.2), which we rewrite for a system consisting of 
N sites as

Here, js the set of eigenvalues of 7fkin + 5finl for Nf up spins and down spins
on N sites (notice that the tj are functions of t and U only).

Z«,
N,- 52 e^N'~Nt'1

A/t =0 j
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e^M(W-W>> (3.2.3)

where we define the number of holes as

(3.2.4)Nh -- N - Ns.

(3.2.5)

which for infinite U can be explicitly given in terms of the magnetic field as

(3.2.6)

The grand canonical partition function for the holes then is

suggesting the definition of an effective chemical potential for the holes:

(3.2.8)Mh = ^hf - M

[Cf. Eq. (3.2.1)]. With this definition we can rewrite (3.2.7a) as

In Zg, — -fipkN + In Z^. (3.2.9)

(3.2.7a)
(3.2.7b)

zvK = Zv-M.'

Zh = Zve^fu~^N

=

In order to approach to lower temperatures in the limit of strong interactions and near 
half filling, we are going to express the partition function in terms of an effective chemical 
potential for holes. We associate the kinetic part of the Hamiltonian with the motion of the 
(dilute) holes, and its magnetic part with the background of spins. Thus, we have to divide 
out the spin degrees of freedom to obtain the canonical partition function for the holes:

— — ln(2cosh fi/i). 
P

1 , ~ ei>r= — 7777'n zw, Np

One could define the number of holes also as the number of sites where no particles are 
present, which reduces to (3.2.4) only for infinite U. Such a definition, ho-. over, would 
make the interpretation of Eq. (3.2.3) problematic for the case of finite U. : v.hich it is 
possible to create extra holes by creating pairs of electrons on the same site. : i .erefore, we 
will use (3.2.4), and the other definitions in this section, also in the case of large but finite U. 
In that case, a pair of electrons located on the same site causes a very high energy, and the 
contribution of the corresponding ‘extra’ hole to the kinetic part of the Hamiltonian is some 
orders of magnitude smaller than the contribution of a ‘real’ (non-removable) hole. As we 
will see in Section 3.6, this leads to terms to be added to the expressions for infinite U of 
order 1/U or higher. First, we will consider the case of infinite U.

In (3.2.3), we have introduced a parameter ehr which can be viewed as the free energy 
per spin in the absence of holes (i.e., at half filling; we take Zj = 1):
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3.3 Construction of a density of states

(3.3.1)

m(/i) = — (3.3.2)

(3.3.3)

(3.3.4)

(3.3.5)

(3.3.6)

We consider a system near half filling, with, for simplicity, infinitely strong coupling U (the 
case of finite U will be treated in Section 3.6). We assume that the system can be described 
in terms of the kinetic energy of non-interacting dilute holes and the magnetic energy of the 
background particles. We define the spectral distribution of the energy levels of one hole 
in an otherwise half-filled system, p(e, ph), in terms of the one-hole partition function Zf, 
through

at half filling, which we will use later on.
With p(£, m) we can write down a first approximation for the grand canonical partition 

function. A one-hole level can be occupied, with a Boltzmann weight e~p,e, or it can be 
unoccupied, in which case there is an electron in the system with Boltzmann weight 
(with the magnetic energy included in /xh)- Thus, in the case of non-interacting holes we 
have (dropping the /^-dependence of p)

\nZv = N Jdep(s)ln(,e-l,u + e-l"‘*).

or equivalently, using (3.2.9),

In Zj. = N Adepts) In (1 + .

= [d«P(«. flh)e 
where we write pte to make the integration parameter e dimensionless. One can see this as 
a Laplace transform, since Zf is a function of pt. We take p to be normalized to one.

Although we said before that we divide out the magnetic degrees of freedom in the spin 
background there is still a dependence of pon the magnetic field h. It is not easy to see how 
the hole motion depends on the field exactly, but one can easily understand why this depen
dence exist.'.: a magnetic field influences the distribution of the spin background, which in 
turn determines the behavior of the hole. The hole motion depends on the field only indi
rectly, and the mechanism that governs the hole dynamics can in fact be much better de
scribed in terms of the average magnetization of the spin background than in terms of the 
field. It is important to understand that, in this picture, one has to treat the spin background 
as if it were at half filling, with the dilute holes subjected to its magnetization. Therefore we 
change variables at this level from ph to the magnetization per spin m:

deu(Ph) 
dh

We can write p as a function p(e, m) of m by solving ph from this equation, and then

^■ = fdep(e, m)e-p“.

This change of variables could also be interpreted as a Legendre transformation

«hr("O = (ht(ph) + mh
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(3.3.7)

(3.3.8)

(3.3.10)

where
(3.3.11)Q(p,0) =

and
(3.3.12)Q(p, n)

(3.3.13)

(3.3.14)

InZg, 
N

(-l/r-n 

P

CO

vh=l

Thus, we see from Eq. (3.3.13) and the first-order term in (3.3.10) that we have 

ydep(E)e2'' = (2n)!S2(l,n)

By substituting Ms for M, using (3.2.8) and (3.2.6), and expanding in the small parameter 
we can obtain an expression for the grand potential for the holes again, now in the 

form of a series expansion:

InZ*
N

(Zgr.o)2"

oo
^2(y3Z)^Q(^h, „), 
n=0

p^-m — 1 \ 
p + m — 2n J

§=£ /-d£p(E)£»
N ^0 n! J

[—2cosh(/3h)J"
for n 0. Finally, we obtain a relation between the coefficients Q(1, n) and the moments 
of p(e) [= p(e, fih)] by expanding (3.3.1) in powers of pt:

2/1—1 m

This equation becomes exact in a one-dimensional system, as in that case the holes can
not disturb the magnetic background of the particles, thus being really non-interacting, and 
also in a ferromagnetic system (at m = ±1), for similar reasons. In other, higher-dimen
sional systems (3.3.6) is only correct to first order in e^Mh. We make an expansion of the 
right-hand side with respect to the small parameter eptL* to obtain

In Z£. = nJdep(e) + •..).

Comparing this to a similar expansion of the logarithm of Eq. (3.2.7b) we see that this is 
consistent with the definition of the density of states in the first-order term

Now, as an illustration of the calculation, let us have a look at the form that the grand po
tential [Eq. (1.2.3)] actually takes when evaluating it for this system by means of the cluster 
expansion method. We can use the expression (2.6.1) that we gave in Chapter 2, which for 
infinite U reduces to

oo In— 1 m= In Z^+ £>)*£ E 
n=l m=0 l=—m

Here, Zp,0 is again the partition function for a system consisting of only one site:

Zp.o = 1 + 2e^ cosh(ph) = 1 + e~^". (3.3.9)
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simple cubic latticesquare lattice

m = 0 m = 1m = 1m = 0 n

Table 3-1. Moments of p(s) for m = 0 and m = 1, corresponding to a paramagnetic and a ferro
magnetic system, respectively, for the square and the simple cubic lattices (odd moments vanish).

for the even moments of p, all odd moments being zero. Although we have restricted our
selves to the case of infinite U here, this expression can easily be extended for finite U, as 
we will see in Section 3.6. U then enters the equation as a parameter at the right-hand side.

For infinite U there is another, faster way to calculate these moments. They can then 
be expressed directly in the number of possible paths in state space for a system with one 
hole. This has been done first by Brinkman and Rice [16], who calculated the first 10 mo
ments of the density of states for ferromagnetic, antiferromagnetic, and paramagnetic spin 
backgrounds on a simple cubic lattice. Yang etal. [17] have presented a large number of mo
ments for the same spin backgrounds on 2- to 5-dimensional hyper-cubic lattices, including 
18 moments for the square lattice and 14 for the simple cubic lattice. In Appendix A, we 
outline a method which enables us to enumerate the paths in an efficient way, and by which 
we have extended their results to 22 and 16 moments, respectively. These moments •'re pre
sented in Table 3-1 for m = 0 and m = 1.

We now approximate p(s) by a polynomial which we fit with the moments. In this way 
we calculate an approximation to the density of states, and we obtain an impression of the 
convergence of subsequent orders of approximation. In Figures 3-1 and 3-2 we show the 
result for a paramagnetic (m = 0) and a ferromagnetic (m = 1) system.
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0.250.15
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(3.3.15)

3.4 Interacting holes

I 
-2

I 

0

The crucial question to investigate is for which domain of hole densities the assumption of 
independent holes is justified. This range can be determined from an estimate of the interac-

14
18
22

----- exact

£
Figure 3-1. The density of states for a para
magnetic system on a square lattice, using up 
to the number of moments indicated.

For m = 1, the system behaves like a system of free fermions, for which the exact density 
of states is known [18]:

£
Figure 3-2. The density of states in the ferro
magnetic regime on a square lattice. Exact re
sult, and approximations using up io the num
ber of moments indicated.

p(e)
0.1

0.2
P(^)

0.15

------ 10
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18 
------ 22

■ ■ I .

2

with K the complete elliptic integral of the first kind. It has an integrable singularity at e = 0. 
This is difficult to approximate and causes some oscillations away from e = 0. Convergence 
towards the exact result is rather good. For m = 0 convergence is very good, as from 14th 
order on the difference between subsequent approximations becomes very small.

Meshkov and Berkov [ 19] fit the density of states by postulating that the integral of ~p2 be 
minimal (‘smoothness’ criterion), using a discretized p. They claim that this method gives 
faster convergence then a polynomial fit. Comparing their results for the ferromagnetic den
sity of states with the exact result and the results presented here, however, one may question 
that claim. We feel that the polynomial fits, when using an equal number of moments, give 
similar or even better results, which are also easier to handle in further calculations.

Before calculating various quantities which can tell us something about the low-tempe
rature properties of the system, we will in the next section consider a method to improve 
the approximation of the density of states by including interactions between the holes.
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(3.4.1)

(3.4.2)

(3.4.3)

(3.4.4)

where the are the shifted energy levels

(3.4.5)

and n(e) is the Fermi occupation number

(3.4.6)n(e) =
1

1 + '

where accounts for the interaction between the levels e, and The second term in the 
exponent is a sum over all pairs of levels (I, j). In the energy space a distance between lev
els does not seem to be a measure for the strength of the interaction as in real space. There, 
interactions usually decay sufficiently fast with the distance, such that the sum over pairs 
does not increase with the square of the number of elements, but only linearly as is necessary 
for a thermodynamic system. In order to make the exponent in (3.4.2) of the correct ther
modynamic behavior the interaction should therefore decrease with the size of the system 
as

where {«, j with = 0, 1 is the occupation of the levels We have given the expression a 
super-index i to indicate that Z”1 matches Zgr up to the one-hole terms. The next approxi
mation can * of the form

tions between the holes. Very similar to the theory of the classical dilute gas [20], the inter
action can be deduced from the two-hole partition function as defined by (3.2.3) for Nh = 2. 
It is a matter of choice how to represent the hole interaction. One could think of a spatial 
representation, but one must realize that in this strongly quanta! system the interaction is 
non-local, which complicates the transparency of the spatial representation substantially. 
Having the one-hole system represented by a density of states it is natural here to choose 
an interaction between energy levels. First we formulate the interaction in terms of discrete 
levels and then we take the continuum limit as in Eq. (3.3.5). The discrete version of this 
expression can be written in terms of levels s„ distributed according to the density p(s,):

1"/)

fii =

with (pij of order unity. An additional advantage of (3.4.3) is the fact that interactions of this 
type can be handled rigorously in the thermodynamic limit by mean-field theory [21 ]. Thus 
we can write

2<2) _ e-fin^N ,

In Z<r2> = + £ ln(l + e"**') + 52<M(e/)"(®>).
i N u.r>

Et = te, - Mh + 77 52
N J*
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(3.4.7)

(3.4.8)

(3.4.9)

(3.4.10)

For N

(3.4.11)

(3.4.12)

with

(3.4.13a)

(3.4.13b)

(3.4.14)U™ = -^N jdep(e) lde'p(.e'')e-^c+c')<f>(e, e')

Now the interaction (fa, must be chosen such that Z® produces the correct two-hole partition 
function. Expanding Eq. (3.4.2) with respect to the number of holes,

= E""

= -y ydsp(c)e“^'£

[Cf. (3.3.7)]. <t>ij must then be determined from 1/“'. In a continuous version the equation 
for a') becomes

and using Eq. (3.2.7a), we find

U.J)

In our high-temperature expansion we have no direct information on Zj, but we have the 
coefficient of the second-order term in the hole expansion of In Zjr [Cf. (3.2.7b)], which is

U2 = Zj - l(Zf)2.

Note that this expression is of order N, and not of order TV2 as are both terms on its right
hand side. Using (3.4.8) and the corresponding expression for Zf we may equate

(J2 —
2 i.i

oo we may write

c/2 = |Ee"Wi’
(M) 1 i

and we see that U2 is indeed of order N by virtue of (3.4.3). Note that, even for zero interac
tion, the terms i = J in the second term of (3.4.10) are not compensated by the first term. The 
second term in (3.4.11) gives the ideal-gas term of the hole system on the two-hole level.

Since we have moments of U2 from our high-temperature expansions, and also the last 
term in (3.4.11) is known from our one-hole density of states, it is convenient to split U2 
into an interacting and an ideal part

U2 = U'2' + U2,

Pt
2



Section 3.4: Interacting holes 51

(3.4.15)

(3.4.16)

we have

QAA1)

(3.4.18)
2

Table 3-2. Values of jj for m = 0 and m = 1, for the square lattice with U = oo.

8 12106k 0 2 4

-5 
0

m = 0
m= 1

0

0

0

0

Because we are working on a bipartite lattice, all odd moments of t/j"' are identically 
zero. Hence k is even, and as also p(e) has only even moments, the combination k — 1 -t-1 
must beeven and therefore the sums in Eqs. (3.4.15) and (3.4.17) contain only odd /.The set 
of equations (3.4.17) for a finite number of the moments (C/j1*)* determines an equal number 
of coefficients <t>i- We have computed (C7jn1)* for the square lattice at U = oo, up to k = 12. 
This involves 6 terms (k = 2, 4,..., 12) and so we can determine 6 values <pi, fa,..., </>u. 
In the equations we thus need k — 1 +1 = 12 — 1 + 11 = 22 as the highest moment of p(e), 
which is just the number of moments we have determined. The values of ^(t/j"')* are given 
in Table 3-2. For the ferromagnetic system (m = 1) these coefficients are zero, as the holes 
do not interact in that case.

Finally we give the continuum form of the expressions (3.4.4) and (3.4.5) for the grand 
potential:

47 so
0

Jdep(e) jde'p(e,')(e + e'')t-'+‘<

160327813 
3832012800

0

This relation is not strong enough to yield a unique fas, s'), in the same way as the second 
virial coefficient of a classical gas is not sufficient to determine the interaction potential. 
The freedom in choice will be reflected upon the efficiency of the program to determine the 
higher-order interactions. We have chosen to have the dependence of <p(e, s') only on the 
sum variable E 4- s', and we approximate it by a polynomial:

fat, e’) = +
I

Equating moments in (3.4.14) and expanding IS™' in powers of fit,

k

}nZ™ = -0p.hN + Nydep(s)ln(l-f-e-^)

+ ^JdE lde'p(E)n(Eyp(e')n(E'-)<t>(E,E'),

2 1 / •

1713
4032

0

989681 
5806080

0
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with
(3.4.19)

3.5 Inverse susceptibility
We return to the uniform susceptibility

(3.5.1)

(3.5.2)

and to study
(3.5.3)

M=0
or,

(3.5.4)
m=0

(3.5.5)

(3.5.6)

(3.5.7)

(3.5.8)

_ dM 
Xru~~dh

e = te — /zh + t jde'p(e")<t>(e, e')n(e')

3/1 I 
3Af|

™ ns3m
where m is the magnetization per spin as defined in Section 3.3. In order to find an expres
sion for ft, to be able to calculate (3.5.4), we construct a generalized (Landau-like) free en
ergy

¥>(ns, /z, m, h~) = —-7T7 In Z„ + p.n, — hmns, 
PIN

where In Zv is given by (3.3.5). The function <p has to be minimized with respect to p. and 
m at fixed particle density ns and field h, to obtain the free energy. Note that this h is not 
the same field as we used before in Section 3.3. There we interpreted h as a field that is 
felt only by the spins in the background, whereas now we obtain the physical external field 
that would be necessary to yield the given magnetization. Of course, in the case of a finite 
number of holes (the limit of half filling), these fields are the same, as we will see in the 
resulting expressions. Note also that, due to the definition of m as the magnetization per 
spin, its conjugated variable is hns, not h.

We can rewrite (3.5.5) using (3.2.8) and (3.3.4):

P<P = 0eMns + Ptihnh - — In Z*,

where we can interpret the first term as the contribution of the background of spins, and the 
other terms as the contribution of the holes. Minimization leads to the following equations:

”h =
fih = phM- [dea^-\n(l + e-^'c~‘1^, 

J nsom

h=0
with M the total magnetization of the system. As before, we try to find indications of diver
gences of Xn,, which should be related to second-order phase transitions between a para
magnetic and a ferromagnetic state. It is usually more convenient to express this by stating 
that the inverse susceptibility must be zero:

= °-
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with

(3.5.9)

(3.5.10)
m=0

/n=0

(3.5.12)

3fihM 
nsdm

(3.5.11) 
Note that 0 is equivalent to hM = 0, and that, for reasons of symmetry, the first deriva
tive of p with respect to hM vanishes at Ahr = 0.

According to (3.5.2) we want to find values of nh and pt for which the right-hand side 
of (3.5.11) is zero, with nh fixed by Eq. (3.5.7). For infinite U we have /3/ihr(m) = arctan (m), 
so putting (3.5.11) to zero gives

/de

I ldE l/n=0 J

32p(e, fthu) 
d(pkhi)2

In (1 + .
lm=0

ln(l+e'We“Mk)) ) . 
l/ihf=O /

In (1 
Lhf=o

I ~fdE
This can be rewritten in terms of p(e), using the Legendre transform (3.3.4) [thus p(e, m) = 
p(e, phM)]:

PNX~' =P ™ n,dm
32p(e) I 
n2dm2 |

') = 1 - nh.

This equation can be solved by an iterative procedure to calculate the value of Ph for a given 
value of pt. The density of states p(e), necessary to calculate nh according to (3.5.7), is de
termined from its moments as described in Section 3.3, and its second derivative is calcu
lated in a similar way.

To include the interaction described in Section 3.4, one should use the grand potential 
as given in (3.4.18) rather than the non-interacting hole approximation of (3.3.5). The final 
equation, equivalent to (3.5.11), then involves one extra term which contains the second 
derivative with respect to phM of the interaction <p. We give a derivation of this equation in 
Appendix B.

In Figure 3-3 we show Curie temperatures for the square-lattice Hubbard model at infi
nite U, in three different approximations: (a) The non-interacting hole approximation, with 
P determined by interpolation from 8 of its moments (of which 4 moments are non-zero); (b) 
The same but with p determined from 22 (11 non-zero) moments; and (c) The interacting
hole approximation, with p determined from 22 moments and <p from 12 (5 non-zero) in
teraction coefficients.

One can see that the difference between the 8th-order and the 22nd-order non-interact
ing approximations is small. In both approximations, ferromagnetism is stable against para
magnetism for nh £0.27, at low T. The interaction does not change this picture very much. 
It slightly enhances the stability of the ferromagnetic state, up to nh £ 0.29. The differ
ence between the non-interacting and the interacting approximations becomes larger with 
increasing hole density, as expected. Numerically, the results agree very well for nh £ 0.06.

, 8ebf 
h|>f = -x—■ dm

The expression for the inverse uniform susceptibility (3.5.4) then becomes

32p(e, phM) I 
a(^hf)2 I,
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0.06

0
0

3.6 Large U

Figure 3-3. Curie temperatures (contours of zero inverse uniform susceptibility) for the square lattice 
at infinite U. (a) Non-interacting hole approximation, Sth order; (b) Non-interacting hole approxima
tion, 22nd order; (c) Interacting-hole approximation, 22nd order.

In the next section we will treat the case of finite U. We have been able to calculate 8 
moments of the density of states in that case, thus we can do an eighth-order approximation 
at the most. One can then calculate merely two coefficients </>; of the interaction, resulting 
in an approximation of the interaction which is rather crude. We have seen that the pic
ture in the non-interacting hole approximation is qualitatively the same as the one in the 
interacting-hole approximation, in eighth order already. For small nh it agrees rather well 
also numerically. Therefore, we will not include the interaction in the following calcula
tions.

0.04 
kT 
t
0.02

As we pointed out before, at finite U, excitations in the spin background become possible 
due to the creation of pairs of electrons with opposite spin at the same site. This means that 
extra empty sites are created, and thus the number of empty sites in the system is no longer 
fixed. Taking U large, however, we can consider the contributions to the partition function 
due to these excitations to be small corrections of the infinite-!/ system, and we can neglect 
the terms that would arise from permanently present electron pairs. To do this, we consider 
the grand potential of the Hubbard model on a square lattice up to the second-order term:

X\

0.3

= )n[l + 2e^Mcosh()37i) + e2A1 +

nh

— (a)
(b) \

------ (c)
I

0.2

- [I
fl
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+ -•••

(3.6.3)

(3.6.4)

(3.6.5)

N

N

The coefficient of in this expression again determines the moments of the distribution 
p(e, ph), as described in Section 3.3. Of course these are now functions of pU. In Table 3-3 
we give the moments that we have been able to derive from the series expansion data, for

By definition, this expression must be equal to In Zu, so using the definition (3.2.5) 
for ehf we get

(3.6.2) 
Here we can neglect all but the most important terms at large U, i.e., we only take the terms 
containing the highest power of efiU, to get

cosh(/l/i)] 4- (pt)2

2
(PU) [coshQSh)]2

(1 +(W2 [2-

8eW2cosh(0h) + ^(e^ - 1) 
[2 + 2eW2cosh(/3A)]2

ln[2 + 2e^2

= ~Pph -t-

and we see that this is indeed a correction of order on Eq. (3.2.6). Note that we obtain the 
same result if we first omit the e~pu terms in (3.6.1), and only then substitute U/2 for /z. 
This once more supports our statement that these terms may be neglected.

Off half filling, we have to rewrite (3.6.1) (without the e~fu terms) in terms of the effec
tive chemical potential ph for the holes, as defined by Eq. (3.2.8), but now containing the 
corrected ehf as given by (3.6.4). For simplicity, we do this in a few steps. First, we substitute 
the chemical potential for the holes without the correction terms, as in Section 3.3. Then we 
expand the logarithm and the numerators with respect to the exponential of this chemical 
potential. Finally, we include the corrected ph by expanding the exponentials with respect 
to the correction terms. Thus, we obtain for the grand potential

, 2
-/?ehf = In [2cosh(W] + (PO2 ...... + ” •.(pU) [cosh (/3A)]

4e**(l + e^-^coshfflA) + ^e^fl - e~fu)
+ (Pt)2---------- --------------------------- ------------------- + •••• (3.6.1)

(1 + 2e^ cosh(ph) + eW-/w)

In this expression, we will neglect the terms that contain the exponential of ~PU, but we 
keep terms that are proportional to a power of 1 / U. This precisely distinguishes the terms 
that are due to permanent electron pairs, which cause an energy PU, from those due to tem
porary excitations in a system where otherwise no double occupancies are present. It is 
necessary to make this approximation, as the exponential terms cannot be treated in this 
method. However, it can be seen easily that these terms are always exponentially smaller 
than other terms in the expansion, and thus that this approximation is justified.

First we consider the case of half filling, where we have p = U/2:

= ^ + in [2cosh(W] + (W2(^)(Jh..__ +....
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(3.6.6)+

Table 3-3. Moments of the density of states (/ dep(e)e”) for the square and simple cubic lattices 
(odd moments vanish), for large U and h — 0.
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h = 0. Note that the moments for h = oo are the same as in the case of infinite U (Table 3-1), 
because U has no significance in a system where all spins point in the same direction.

We can apply the same method described in Section 3.5 to calculate Curie temperatures 
for finite U. One has to realize, though, that the inverse susceptibility at half filling then 
depends on the temperature, which was not the case for infinite U. Due to the excitations 
we get corrections of the type pt2/ U, thus we still have a series expansion in the parame
ter pt. The coefficients in this expansion are suppressed by large factors pU, however, and 
the range of convergence of the expansion is pt 30 or further, depending on the value 
of PU. Therefore, we may hope that convergence is good enough in the region where we 
expect to find solutions of (3.5.2). We give the full expression for the inverse susceptibility 
at half filling, for the square lattice and up to the (/Jr)8 terms:

- < ■ 4<W2 . 8(-2 + /W)(/it)4 , [H31 -648^(7+ 32(W]W6 , 
P Xhr + (fiU) + (j3l/)3 + 3(/3<7)s

[-9129 + 6296/3(7 - 1132(/3C/)2 + 4(/W)3] (pt')‘
(PW '

We have checked that (3.6.6) does not vanish for any value of pt and PU. Therefore we ex-

(2 /u)

- ------ 12, + J /'lpu <W)
 59 93  89 , I

48/1(7 8(017)’ 6(0U)> T 2</3t7)'

2?: 1459  377 ,
5760(7 32O(0t/)3 32(0(7)3 “r
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(3.6.7)

3.7 Magnetic phase diagram

kT, 
t

Figure 3-4. Magnetic phase diagram for the square lattice, (a) Contours of fixed Curie temperature, 
with kTc/t = 0.03, 0.04  0.19 (increment 0.01); (b) Curie temperature at fixed t/U = 0,0.005, 
.... 0.055 (increment 0.005). For a few curves, the unphysical part has been indicated by a dashed 
line.

pect no transition from a paramagnetic to a ferromagnetic state in the half-filled system. We 
only have to consider the second factor on the right-hand side of (3.5.11), which vanishes 
at

We have used the theory described above to calculate Curie temperatures for the square and 
simple cubic lattices. For both lattices, we find a surface of Curie temperatures in the nh- 
t/U-T diagram. In Figures 3-4 and 3-5 we display these results.

In Figi. 3-4(a) and 3-5(a), contours of fixed Curie temperature are plotted in the «h- 
t/U plane. In the tange of temperatures up to about kT/t = 0.20 we find a curve enclosing 
a region . ' ferromagnetism. For kT/r £ 0.07 these curves are closed and lie away from 
the t/U ■-= 0 axis. Thus, at given density nh and temperature Tc, one has to go to finite 
U to find a transition. In other words: allowing for excitations in the spin background en
hances the ferromagnetic behavior. Furthermore, curves are generally not enclosed by all 
contours al lower temperatures. This would imply that, at given nh and t/ U, one would find 
a paramagnetic-ferromagnetic transition when lowering the temperature from a region of 
high temperature, but also when letting it increase from zero. This reentering of a paramag-

&p(e, ph) 
d(ph)2

In (1+ = (1-nh)^.

We show the results for the square and the simple cubic lattices in the next section.
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0.03

t
0.02

0.01

t/U

Figure 3-5. Phase diagram for the simple cubic lattice, (a) Contours of fixed Curie temperature, with 
^7c/r = 0.03, 0.04, .... 0.14 (increment 0.01); (b) Curie temperature at fixed t/U = Q, 0.002  
0.022 (increment 0.002). The unphysical part of a few curves is indicated by a dashed line. For 
rih = 0.09, indicated by the dotted-dashed line, Curie temperatures are plotted as a function of t/ U 
in Figure 3-6.

Figure 3-6. Curie temperature for the simple cubic lattice, at = 0.09. The dashed part of the curve 
is unreliable, due to lack of convergence below the dotted line.
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0.1

0
0.040 0.02

Figure 3-7. N6el temperature for the simple cubic lattice at half filling. Approximations to different 
orders in pt, as indicated.

0.3

kTN
t
0.2

0.06 0.08 
t/u

netic phase at low temperatures does not seem to be physical. It is an artefact of this method, 
due to convergence problems at very low temperatures. One can understand this by looking 
at the expression (3.6.6). If the highest-orderterm becomes of order one, the series is clearly 
too short and does not converge properly. This means that the results become unreliable for

— in the case of the square lattice, and 5 ~ ^-on the simple cubic lattice. We have 
drawn the unphysical part of a few curves only, indicated by a dashed line. As the approx
imations are better for higher temperatures, we assume that the actual curve at 7c = 0 (for 
which we can only perform a calculation at infinite U") should enclose all curves shown.

In Figures 3-4(b) and 3-5(b), we show Curie temperatures in contours of fixed t/U. 
Again we see the non-physical behavior of curves being closed at the low-temperature side, 
for almost all values of t/U. Figure 3-6 shows Curie temperatures at fixed nj, = 0.09, for the 
simple cubic lattice, as indicated by the dotted-dashed lines in Figure 3-5. The dotted line in 
Figure 3-6 indicates the region where the series expansion becomes unreliable, according 
to the arguments presented above.

There is one other point we want to mention here. As we have stated in the introduction, 
we have also constructed the staggered susceptibility by replacing the magnetic field h by a 
staggered field h... Although it is much more complicated to calculate the high-temperature 
expansions for that case, as the number of terms involved increases significantly, it is not 
difficult to obtain expressions for the staggered susceptibility, both at half filling and in the 
one-hole approximation, for hs = 0. Thus, one may think that it is possible to obtain sim
ilar results for the transition between a paramagnetic and an antiferromagnetic state, and 
conclude which transition occurs first. When putting the inverse staggered susceptibility at 
half filling (the equivalent of (3.6.6) for the antiferromagnetic system) to zero, one finds 
solutions for all values of the parameter fiU. This means that the staggered susceptibil-

2
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Appendix A: Enumeration of paths

(A. 1)

with the moments of the density of states defined as

(A.2)

(A.3)

(A.4)

In this appendix we describe an efficient way to calculate the moments of the density of 
states for the case of infinite U, as presented in Table 3-1. We start from Eq. (3.3.3), which 
we expand in terms of the parameter fit:

We can write the one-hole partition function, according to its definition [Cf. (3.2.3)], also 
as

X i.arfm)

M„(m) = y"dep(s, m)e".

n=0

ity of the half-filled system diverges at a finite temperature. Apparently, the paramagnetic- 
antiferromagnetic transition is driven by the background itself, and may be disturbed by a 
finite hole density. In our formulation, however, it is the holes that drive the system into an 
ordered state, and the background only indirectly contributes to the transition via its inter
action with the holes.

This formulation is clearly not suitable to describe the transition to an antiferromagnetic 
state. Therefore we only briefly indicate what we expect for the paramagnetic-antiferromag
netic transition. In Figure 3-7 we plot Neel temperatures for the simple cubic lattice at half 
filling, in approximations to different orders in the parameter fit. We see that the conver
gence of the series expansion is very good for large U. A transition from a paramagnetic to 
an antiferromagnetic phase is expected for all values of U. It is at Tn = 0 for infinite U, and 
at increasing temperatures with decreasing U. For finite hole densities we expect the transi
tion to occur at lower temperatures, and at some point cross the paramagnetic- ferromagnetic 
transition.

where the summation is over all states |i, a,(m)) with a hole at site i and with a spin back
ground ot/(m) such that the magnetization per spin is indeed m. denotes the number of 
electrons with spin up, which depends on m, and the factor (nJJj) *s the total number of 
possible background configurations given the location of the hole, which accounts for the 
spin degrees of freedom. In the thermodynamic limit, this factor is exactly equal to the expo
nential factor in (A.3), as one easily checks by applying Stirling’s formula for the binomial, 
and with (3.2.6) for «hf- The summation over i gives a trivial (translational) factor N, and
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(A.5)

where
(A.6)

(A.7)

in,(w.)l
(A.8)

(A.9)Nir(/,n) = (z- D"

This greatly facilitates the calculation of (A.8).

Zf
N

I — ) !«(">))A„[a(m)] = (or(m)| 

is the number of walks of length n in the configuration space, that restore the spin back
ground a(m) to its original state. Comparing (A.l) and (A.5) we see that

Thus Af„(m) is precisely the sum over all possible closed walks w„ of length n, summing 
the fraction of spin backgrounds that is restored by w„. Such walks induce permutations 
n(iu„) of the spins, which can be written as products of disjunct cyclic permutations n,(w„) 
with length |fl;(u>„)| > 1. In order to restore the spin background a(m), the direction of the 
spin on each site must remain unchanged, when applying fl,(w„). Thus, all spins that are 
interchanged by this permutation must point in the same direction. As the number of spins 
involved is negligible compared to the total number of spins, we may approximate that the 
probability to find an individual spin pointing up or down is given by (1 + m)/2 and (1 — 
m)/2, respectively. Hence the fraction of backgrounds in which the alignment of the spins 
remains unchanged under the permutation fl,(iu„) is [(1 + + [(1 — m)/2]', where
I = |IT,(iu„)| is the number of spins involved in the permutation. We can then calculate M„ 
as

/1/ 1 — rn \+(—)
w„ / [_ \ /

For the actual evaluation of this expression we use an elegant theorem that enables us to 
significantly extend earlier calculations of the moments to n = 22. Defining a retracing se
quence as two subsequent steps of the hole in opposite directions (thus after two steps the 
hole is back in its previous position; note that the last and first steps of a closed walk are con
sidered to be subsequent as well), one can make a distinction between reducible and irre
ducible closed walks: an irreducible walk does not contain any retracing sequence, whereas 
a reducible walk does. A reducible walk can be made irreducible by removing its retracing 
sequences; the result is called the irreducible part of the walk. As a retracing sequence does 
not permute spins, the irreducible part of a walk induces the same permutation of the spins 
as the walk itself. Thus, it is sufficient to study only irreducible walks if one knows of how 
many reducible walks of a given length it is the irreducible part. Brouwer [22] has proved 
the following formula: the number of closed walks of length 14- 2n on a hyper-cubical lat
tice with coordination number z, that have a given irreducible part of length Z > 0, is

l + 2n
n

we can expand the exponential in powers of pt to obtain

(;«) 
' 1 ' a(m) n
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Appendix B: The inverse susceptibility

P‘

Pt

(B.l)

(B.2)

(B.3)

(B.4)"h

(B.5)

. (B.6)ph = phu-

dfle
n5dm

In this appendix we give the formula for the inverse susceptibility in the interacting-hole 
approximation, using the theory given in Section 3.4. We start from Eq. (3.5.5), which has 
to be differentiated with respect to m in order to get the equivalent of (3.5.8), with (3.4.18) 
for InZ^:

^-^P(£z)h(ez)0(e, £') 

90(g, £') 
nsdm

gz) 

nsdm

= A+P,[de'^ nsdm J -
+ pt jde'p(e,')n(e'')

= - [d£p(£)n(£)^- + pt 
J SPp-h

This may look awkward, but if we look at the derivatives of e [see Eq. (3.4.19)] we see that 
many of these terms cancel. Let us first look at the expression (B.2) for the hole density. As 
we are working at fixed hole density, derivatives of the Fermi factor do not play a role in 
these equations, and they vanish. We need the derivative of e with respect to Pfii,,

^- = -l+^fd£'p(£W,e')^, 
Wh J Wh

and so we see that indeed there is a cancelation of terms, leaving us with the relation

= ydep(e)n(e).

Then, we rewrite the expression for the magnetic field with

= _^+^rd^n(s'W£,e-)+^/d£w)ntom nsom J nsom J
a»(e,s')

nt9m

Using this expression it is straightforward to check that (B.l) reduces to

/■dE^lln(l + e-^) + ^ [de [de'p{e)n(e)p(e')n(e') 
J nsdm I J J

In order to derive the inverse susceptibility from this expression, we have to take the deriva
tive with respect to n,m again, and put m = 0. For reasons of symmetry it is easy to show

ph = ^M + nb^_
nsdm

[de [de'^~^-n(e)p(s")n(,e'')<t>(e, e') 
J J nsdm

[de [de'p(e)?n^p; ; ", 
J J nsdm

- ^y’d£y’d£'p(£)n(e)p(s')n(E')

where nb is given by

[de [de'p(e)n(e)p(e,')a"!'E )</>(£, e').
J J 3PP-h

nsdm

3p(e)
ntdm
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I m=0

(B.7)

ln(l +e~pi)=
m=0

(B.8)+
nsdm

dfihM 
ns dm=

+ e
ln(l +e-*) + 

m=0

3V(e, e') I
"s3m2 L=o

This can again be expressed in terms of p(e) (note that also </> is being Legendre trans
formed):

I [AL=o\ ">Lu
y yde'p(e)n(e)p(e')n(e')

which is the modification of (3.5.11) for interacting holes.

■. a2P(e) 
8(W2 
a2^(e, s') 
d&W

that the first derivatives with respect to m of all functions appearing in the integrals vanish at 
m = 0. Thus, in the terms in (B.6) we only have to consider the derivatives of the functions 
that have been differentiated once already:

L-ABH
2- yds ^de'p(e')n(e')p(e")n(e")
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4 Theory of quantum Monte Carlo methods

4.1 Introduction

4.2 Variational Monte Carlo

A few different forms are described of a technique called Monte Carlo simulation, 
which is devised to calculate properties of relatively large systems. The aim is to 
find a Monte Carlo method that is suitable for calculating properties of interacting 
fermions on a lattice.

The simplest way of performing a Monte Carlo simulation is Variational Monte Carlo 
(VMC). In this method, an explicit form for the wave function is assumed, containing a set 
of parameters that can be varied. A simple example of such a trial wavefunction is a Slater 
determinant, resulting from a self-consistent mean-field calculation. One wants to optimize 
the wave function with respect to these parameters, to obtain the lowest possible energy

Monte Carlo simulations are among the few methods known to extract unbiased informa
tion from systems that are too large to apply exact calculation methods. In a Monte Carlo 
simulation, a sum or integral in a complete phase space is replaced by a sum or integral 
over a well chosen set of configurations, such that the result of this summation equals the 
exact result within a statistical error bar. In Quantum Monte Carlo methods, one often uses a 
trial function, on the basis of which one chooses the configurations. In these configurations 
one samples the desired properties, and one obtains the final answer by weighting these lo
cal properties in the proper way. A whole variety of problems can be tackled in this way, 
ranging from ground-state to finite-temperature properties and from continuum to lattice 
systems.

We will be concerned with techniques to obtain ground-state properties for lattice sys
tems. In Sections 4.2 and 4.3, we will describe two standard Quantum Monte Carlo tech
niques for this purpose, which are commonly used. Section 4.4 treats ways of improving 
the statistical behavior of the sampling method. In Section 4.5 we explain why the standard 
technique cannot be applied to a system of fermions. Finally, Sections 4.6 and 4.7 describe 
how we adapt the standard technique to obtain a useful algorithm for dealing with fermions 
on a lattice.

In all of the following sections in this chapter we assume that we are working with a 
Hamiltonian 5/, describing particles that reside on a lattice. This Hamiltonian operates in 
a space of configurations {/?}, each of which is a complete description of the positions and 
spin states of all particles on the lattice (see Section 1.4).
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(4.2.2a)Ft =

(4.2.2b)

(4.2.2c)

(4.2.3)Er(R) =

(4.2.4)Et =

where one now interprets

(4.2.6)

(4.2.7)

pW = (4<t|F)<E|'Pt) (4-2.5)
as a probability distribution. One has to choose a set of, say N, configurations, distributed 
according to the square of the trial wave function. Summing over those configurations only, 
the expression

given this form. By means of a Monte Carlo simulation one can calculate the energy of the 
wave function as a function of the parameters, and thus find their optimized values.

Let us express the trial state |4>T) in terms of the configurations of our lattice system:

I*t) = J2l«)(EpT). (4.2.1)
R

where the coefficients (/f|'I'T) depend on a set of parameters {<?,). We want to minimize the 
energy of this state with respect to the q,, which is expressed as

(4>t|^|»t) 
<*rl*T>

^R(»T|fi,|f?)(/?|»T)
E„('FT|/?)(«['I'T)

£,,Er(J?)(4>T|/?)(/?|'l'T) 
EJt('t'T|R>(«l*T)

where the local energy in R is defined by

(»T|tf|R)
(*t|R) '

If one would want to calculate this expression exactly, one would have to calculate Et(R) 
in all possible configurations R in configuration space. For the half-filled Hubbard model 
with an equal number of up and down spins on a modestly sized system of, say, 100 sites, 
that would mean approximately 2200 IO70 configurations. In the limit of infinite U, still 
about 1035 configurations would remain. It may be clear that, even with modem computer 
power, this calculation is not feasible.

Instead, one considers the following expression:

E„ET(J?)p(7?)
ErP(R)

_E'ret(«)
£vmc"-----------

then is an estimate for E-[, and it will converge to Ey in the limit of large N.
Thus, in the VMC procedure, one chooses a limited number of configurations according 

to the trial wave function, and simply averages over all local values of the energy obtained. 
This average is subject to statistical fluctuations, as can be seen by choosing different sets 
of N configurations, and one can easily calculate the statistical error as

SE = 4=V(£7) - (E)2.
v/v
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where
(4.2.8)(E) = Evmc

and

(£2) = (4.2.9)

4.3 Green function Monte Carlo

(4.3.2)

N
as usual.

There are several ways to choose the set of configurations. The most common one is the 
Metropolis scheme [23], which can be used to generate configurations by creating paths in 
configuration space. Starting from an arbitrary configuration, one selects a nearby config
uration according to a predefined transition probability. One accepts the new configuration 
with a probability that depends on the energy difference between both configurations. 
In particular, if the new configuration has lower energy (AE < 0), it is always accepted, 
otherwise it is accepted with probability e~p^E. In this way, one generates a Markov chain 
of configurations, which can then be proved to be distributed according to the trial wave 
function.

In VMC, it is important that the configurations be distributed properly, in order to obtain 
the correct result. For the method described in the following section, where the configura
tions are only used as a starting point for generating sequences in phase space, it is less 
important to establish the correct starting distribution. There, even a random set of config
urations may suffice in some cases.

|4'(n)) = (4.3.3)
If I^t) has any overlap with the ground state of 5/, |'I'(n)) will closely resemble this ground 
state for large n, due to the fact that at every step the ground-state component of |4't) is

A more sophisticated way to calculate ground-state properties is the Green Function Monte 
Carlo (GFMC) scheme. Here, one combines the random sampling of the configuration space 
with a simple method to filter out the ground state from the trial wave function.

We consider the following operator:

7= 1 -r(# - w). (4.3.1)

If we take w to be the lowest eigenvalue of the ground state of is an eigenstate of /F 
with eigenvalue 1 (in Section 5.2 we will discuss how this is implemented in practice). We 
may assume that the spectrum of eigenvalues of M is bounded, as is always the case in the 
finite systems we consider. If we then choose

2
Emax - w

where E^ is the largest eigenvalue of 5Z, all other eigenvalues of F are between — 1 and 
1. We let F operate repeatedly on a trial state, of which we assume the wave function to be 
known in all configurations:
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£<"> = (4.3.4a)

(4.3.4b)

£<"> = (4.3.5)

(4.3.6)

(4.3.7)

n

»i

Only then, the energy £(n) will be exactly given by

£'v”(^-)
in the limit of taking infinitely many paths distributed according to p(l^.). If one chooses 
the probability function in a proper way, one can interpret these paths as random walks in 
configuration space. One starts with a set of configurations, called walkers, which may be 
chosen randomly or distributed in some specified way. Then, one lets each of these configu
rations perform a random walk, prescribed by the transition probabilities that are defined by 
p(!^.). Finally, one collects the information from the paths, i.e., the weights and the local 
energies, to calculate the energy (4.3.7). For lattice problems, this process and its mathe
matical justification have been described in more detail by Trivedi and Ceperley [24],

Here = {/?o. #i, Kt.
this expression, instead of writing ('P(")|, is the fact that we need to know the value of this 
wave function in all end configurations R„ that are present in the summation. For the trial 
wave function, we assumed this to be the case, but 'P(") we do not know at all, as it is only 
a theoretical result after applying jF, n times. Note that this way of estimating the value of 
an observable works well for all operators that commute with the Hamiltonian. If that is not 
the case, one should adapt the estimate; this will be discussed in Section 5.2.

As in the VMC scheme, it is impossible to consider all of the terms in this summa
tion. Again, we need to restrict ourselves to a very limited number of terms. We have to 
adapt (4.2.4) in the following way to obtain a suitable expression for this case:

where p(^) is now interpreted as the probability of choosing the complete path Each 
path carries a weight or multiplicity and the contribution of a path to the average 
energy is m(^.)ET(7?„). Et(R') is as defined in Eq. (4.2.3). One has to make sure that pllRJ) 
and m(^_), up to a constant factor, satisfy

multiplied by a larger number than all other components. One can in fact use any operator 
that has this property; in continuum problems, one generally uses the exponential operator 
e~'M. For our purposes the simple linear form (4.3.1) is more convenient.

We approximate the energy of the ground state by the mixed estimate

[HL,<«.|F|/?,-i)] (*ol»T) 
[nLWIf'l*/-.)] </fol*T>

7?n} is a path in the configuration space. The reason for using

^GFMC ~
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(4.3.8a)

(4.3.8b)

(4.4.1)

y

P(R)= 22 "W/W
This can be easily calculated, since p(^) and m(^_) satisfy (4.3.6):

/?,_,)] (Rol^-r)

In the following section, some possibilities to choose p(^.) and zn(^) will be treated. 
First, we will discuss how one must interpret the set of configurations that results when each 
walker has moved n steps. We take into account the multiplicity m(^_) of each path, ac
cording to which one may redistribute the configurations (by means of a procedure called 
branching, see next section). Therefore we define the probability of finding a configuration 
R after n steps as

4.4 Importance sampling
In principle, the result of the algorithm described in the previous section does not depend on 
the choice of p(^) and m(^). It can be shown, though, that not all choices lead to a good 
result in practice. One is interested in finding a correct value with a reasonable error bar, 
within a limited amount of time, i.e., by using a limited number of samples and a limited 
path length. The error bar and convergence to the correct result do in general depend on 
p(^_) and zn(^). In fact, for bad choices, the variance may increase very rapidly,1 such 
that the correct answer can never be obtained. One usually needs to perform importance 
sampling in order to be able to find the correct result with any certainty. In this section, we 
treat a few ways to define p(^) and zn(^), and we will give a general prescription for using 
a guiding function to do importance sampling.

One apparently simple way to choose p(^) and m(^), which seems straightforward, 
would be to take the probability to find a path the same for all paths, and therefore

m(^.) = (*T|SJ f](«,|F|«,_i) (/?oI*t).
_i=l

It is, however, in general not possible to do so. In GFMC, paths are never selected as a 
whole, in one stroke, but only step by step. In a practical situation,

’in any case, except when the trial wave function is exactly equal to an eigenfunction of#, the variance 
increases exponentially with the path length. In this section some indications of the causes for this behav
ior will be given, and a method to suppress the variance (branching) will be discussed. For a more detailed 
analysis, see the review by De Raedt and Von der Linden [25].

p(«) = <wTi/?> 52
= ('PT|/?)(K|7n|vI'T> (4.3.8c)
= (4.3.8d)

Thus, the resulting configurations with their attached weights can be viewed to be distribu
ted according to the product of the trial wave function and the wave function onto which it 
is being projected. Note that this result is independent of how p(^,) and m(^) are chosen, 
as long as they satisfy (4.3.6).
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be given equal prob-

(4.4.2)

and

(4.4.3)

(4.4.4)<'PT|7?o></?ol'PT>

and

(4.4.5)

n 

PslartC^.) = J”J 
_i=l

1. the starting configuration can be chosen randomly, and

2. from any configuration, all possible continuations of the path can 
ability.

These conditions can be easily satisfied, but they are not sufficient to give all paths equal 
probability of appearing in the summation (4.3.7). For that, one would also need the condi
tion that

3. the number of possible continuations is the same from each configuration.2

In an arbitrary system, where this is generally not the case, it is usually very difficult to 
choose the paths truly randomly, thus making this definition of m(rR_) useless. However, 
one can redefine the multiplicity on the basis of conditions 1 and 2 being satisfied. Writing 
C(R) for the number of possible continuations of a path in a configuration R, one easily 
finds that

1
C(/?,_,)

T—T 1

n

[JCfK.-.XK.IFIR,-,) .
i=i

2It is left as a simple exercise for the reader to check that, in general, equal probabilities for all paths cannot 
be obtained by considering the path step by step from the starting point. One can easily see this, e.g., for paths 
of two steps in a configuration space that looks like [/I, where the bonds represent possible steps. Consid
ering only hopping terms, and choosing the starting configurations randomly, one finds 20 paths which have 
probability jj, and 6 with probability of being generated.

satisfy (4.3.6). This is the simplest definition for p(l^) andm(^.), with which one can actu
ally perform GFMC. It now becomes clear that the paths can be interpreted as random walks 
of configurations in the phase space. They are prescribed by a stochastic matrix, which gives 
the transition probabilities for a walker R to go to any configuration R'. Note once more 
that the set of walkers that is obtained after n steps represents the wave function 4,<",1 as 
described in the previous section by Eq. (4.3.8d).

Intuitively one assumes that the most important contributions to the calculation of a 
property come from regions where the absolute value of the wave function is large, as the lo
cal value of the property gets weighted by the square of the wave function. Thus, assuming 
that the trial wave function is a good approximation of the ground state, the first improve
ment on the completely random sampling scheme is to have the starting configurations of 
the paths distributed according to the trial wave function. We then get
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(4.4.6)

(4.4.7)

(4.4.8)p(R' <-R) =

(4.4.9)

(4.4.10)PJm(/?,_i)
1=1

This is not sufficient to adequately suppress the statistical fluctuations in all cases. In 
fact, for large n, the effect of choosing the starting configurations in some special way is 
completely lost along the path. Thus, the next step is to vary the probabilities along the 
whole path, and perform importance sampling. We give a general prescription in terms of 
a guiding function <PG. In many cases the trial wave function itself can be used for this pur
pose, but it can also be a different function. In any case, a good guiding function resembles 
the exact ground-state wave function as much as possible, and it does not restrict the paths 
to a smaller region of the phase space than is allowed by the Hamiltonian (it should, e.g.,

One can easily verify that the relation (4.3.6) holds for priding and ^guiding-
This definition for p(^) and m(^) can be straightforwardly implemented in a GFMC 

program. The starting configurations are distributed according to the trial wave function, 
e.g., by means of the Metropolis algorithm. From each configuration, the next configura
tion is determined randomly, where the probability to step to a neighboring configuration is 
given by (4.4.8). At the same time, the multiplicity is adapted by a factor given by (4.4.9). 
If the trial wave function and the guiding function are not the same, the multiplicity has to 
be corrected by factors containing their values in the starting and end configurations of the 
path, as is shown in Eq. (4.4.10).

The variance can be reduced significantly by making a good guess for the guiding func
tion. In the ideal case of the guiding function being equal to the ground-state wave function,

not be equal to zero in configurations where the exact wave function is non-zero). For the 
moment, we only require the guiding function to be positive in all configurations.

We define the probability of finding a path in the following way:
n 

Rguidingf^.) = PoW) fl

where the probability to start in a configuration R is

and the transition probability for going from R to R' is given by

(»0|/?'}(R'|F|/?)
('J'G|/?)m(R)

Note that p(R' <- R) is in fact the stochastic matrix prescribing the random walks in con
figuration space. The weight factor m(R'), serving as a normalization factor for p(R ♦— R), 
‘SdefinedaS ,C('I'C|/?')(«'|F|K) _ (W>

(^LR) (4'0|7?)

and the total weight of the path is given by
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4.5 The sign problem

(4.5.1)
X.

If we make the following assumptions:

1. 4't is of the same sign everywhere, and

2. All matrix elements of J are non-negative.

n

(FoI'Pt).
i=i

then trivially all terms in the summation (4.5.1) are non-negative. In a fermion system, it is 
clear that the first assumption does not hold. On a lattice, also the second assumption need

3Note that, on a lattice, this is not necessarily true. For instance, in case of next-ncarest-neighbor hopping, 
sign changes may occur. See, e.g., Refs. 28 or 29, and references therein.

In the previous sections, one aspect of the problem has been completely ignored: the sign of 
the wave function. In a boson system, where the wave function must be symmetric under an 
exchange of identical particles, one may usually assume that the ground-state wave function 
is of the same sign everywhere.3 In that case, if one uses a trial wave function which is also 
of the same sign everywhere, the algorithm described before may be perfectly suitable for 
calculating the properties of the ground state of the system. In a fermion system, the wave 
function must be antisymmetric, and thus can be of different sign in different configurations. 
This causes a significant problem, the sign problem, which is detrimental for the accuracy by 
which results may be obtained. In this section we will examine the source of this problem, 
and briefly indicate what may be done to circumvent this problem.

Let us take a closer look at the denominator in Eq. (4.3.4b), which denotes the mixed 
estimate for the energy:

the variance is zero. However, if this is not the case, the variance still increases exponen
tially with the number of iterations n. In order to further improve the accuracy of the cal
culation, we use the concept of branching [24,26,27], In this birlh-and-death process, the 
set of configurations is re-expressed according to the accumulated multiplicities: configura
tions with a low weight are discarded, and multiple copies are made of configurations with 
a large weight. The multiplicity of each walker is turned into an integer number, by means 
of a random process to treat the decimal part. Subsequently, a number of copies of the con
cerning configuration is created according to this integer multiplicity. The total weight of 
all walkers remains approximately the same in this procedure; in the new set, each configu
ration starts with weight 1. Note that Eq. (4.3.8d) thus gives the distribution of the walkers 
after the branching process. In this way, large fluctuations in the weights are suppressed, 
and therefore the variance is further reduced. One should take care, though, not to apply the 
branching procedure too often, as it may introduce a bias of the set of walkers. This could 
cause the energy measured to deviate from the exact energy.
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i

4In a typical example for the Hubbard model on a small system (see Section 5.3), the percentage of steps 
that change the sign is of the order of 5%, and the sign problem arises after some 15 to 20 steps.

not be true, causing a possible sign problem also in bosonic systems. Note that weight is in 
fact a misnomer for in such cases, as it can very well become negative.

For “paths” of length zero, i.e., in the VMC scheme, no sign problem exists. At each 
subsequent step, some percentage of the walkers goes to the region of opposite sign. For 
increasing path lengths, the percentage of walkers that has obtained a sign along their walks 
rapidly increases.4 For large n, about half of the terms in (4.5.1) may be negative. The sum 
of all the terms becomes exponentially smaller than the sum of the positive or the negative 
terms separately. In the statistical process, this leads to an increasingly inaccurate result, due 
to the fluctuations which may become much larger than the actual value desired. Therefore 
the calculation becomes useless.

This problem cannot be solved. It has been tried in many different ways to find a solution 
for the sign problem [30-35], but the sign is an intrinsic feature of the system, and it cannot 
be removed without causing similar problems at a different level. De Raedt and Von der 
Linden [25] even state that ‘it is likely that this minus-sign problem is detrimental for the 
GFMC method to be applicable to lattice fermion problems.’ As we will see, this is too 
pessimistic a point of view, and we will describe a method by which lattice fermions can be 
tackled.

A seemingly unsophisticated approach is to improve the trial wave function as much as 
possible, and hope that convergence to the exact result can be reached before the sign prob
lem arises. For most systems, this is very difficult, as modifying the trial wave function is 
a far from trivial thing to do, and one must take care that the prescription for the trial func
tion does not become too complicated to handle in the simulations. This approach has been 
followed by Chen and Lee [36] for the simple t-model, which is equivalent to the Hubbard 
model with infinite U. They use what they call a variational Lanczos scheme, in order to im
prove on the trial wave function. Another approach, which has been successfully applied to 
continuum systems for quite some time [24,26,27,37—40], is to discard all steps that gen
erate a sign, when a walker would cross the nodal boundary of the trial wave function. In 
that case, one makes an approximation of the true result, but one can make sure that a vari
ational principle is obeyed. In fact, having continuous coordinates, one can do this rather 
easily by decreasing the step size in the system, thus avoiding the unpredictable truncation 
error made when a step that causes a change of sign is discarded.

On a lattice, one cannot straightforwardly apply the latter idea, due to the discreteness of 
the phase space. If one would simply discard all wrong paths, one would effectively sample 
a different Hamiltonian which would not lead to a firm relation between the result found 
and the true result. It is possible, though, to adapt this approach for the lattice in such a 
way that it yields an upper bound for the energy of the true system. This^xeJ-not/e Monte 
Carlo (FNMC) method will be the topic of Section 4.6. In Section 4.7, the FNMC results 
are subsequently used as input for the straightforward approach, which we call the power 
method, in an attempt to find an estimate for the properties of the exact ground state.
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4.6 Fixed-node Monte Carlo

(4.6.1a)

(4.6.1b)

<'PtI*WIF|«)(R|'J't) <0.

the GFMC calculation of the properties of the system suffers from the sign problem. One 
can rewrite this condition in terms of the Hamiltonian:

('PT|R')(7?'|H|R)(«|M/T) >0.

The apparent solution to the sign problem is to discard all of the steps in configuration space 
that satisfy (4.6.1b). This approach is called Fixed-Node Monte Carlo (FNMC).

The fixed-node method was developed for the case in which the electron coordinates are 
continuous variables [26,41], One then has to deal with kinetic terms of negative sign only, 
and the nodal surface of a trial wave function is uniquely defined as the set of configurations 
where it vanishes. The fixed-node constraint can be implemented by imposing the boundary 
condition that * must vanish on the nodal surface of 'PT. In the limit of sufficiently small 
step sizes, one can make sure that Eq. (4.6.1b) is never violated since R and R' come closer 
together and 4<t will vanish. In this way one obtains the lowest energy under the condition 
that the wave function has the same nodal surface as the trial wave function. This energy 
yields an upper bound to the true ground-state energy; in practice, very accurate estimates 
for the ground-state energy of continuum problems can be obtained.

On a lattice, we have to deal with discrete steps, and we have to treat the steps that cause 
a change of sign in a different way. If we discard these steps, we in fact modify our Hamil
tonian by removing a number of off-diagonal elements, and we do not have sufficient in
formation on the Hamiltonian obtained in this way to be able to give a relation between 
the ground-state energies of both Hamiltonians. Indeed, the ground-state energy of the new 
Hamiltonian is generally not the same as the energy we are interested in. It may well be be
low the desired energy,5 such that it does not give a bound on the exact ground-state energy 
of the original Hamiltonian.

This problem can be solved by defining an effective Hamiltonian that fulfills the condi
tion of lacking sign-flipping steps, but that nevertheless yields an upper bound for the exact 
ground-state energy. In our implementation, we use a Hamiltonian >/crr, of which the off- 
diagonal matrix elements are given by

One possible way to deal with the sign problem is to avoid it. Let us, again, consider the de
nominator (4.5.1) in the expression for the mixed estimate of the energy. As was explained 
in the previous section, a sign problem can be introduced at any step (/?, «— /?,_,) along 
a path if the trial wave function can be of opposite sign in /?, and /?,_(, or if the matrix 
element (/JJF| /?,_i) can be negative. We can denote the sign-flip condition in the following 
way: if, for any pair of configurations R and R', 

(R'\HC„\R) = 0 if Eq. (4.6.1b) holds, (4.6.2a)
= (R’|H|f?) otherwise, (4.6.2b)

$This was found in an earlier attempt to perform FNMC on lattice fermions by An and Van Lccuwcn [42].
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(4.6.3)

(4.6.6)

(4.6.7)

(4.6.8)

(4.6.9a)
(4.6.9b)

(4.6.4)
(4.6.5)

|<F) = 22|/?)(/?|'F),
R

and we compare its energy with respect to 5/ and to Kcn'.

= ('F|(^elr- ^)l*)
= ('F|C&-#.r)W-

and the diagonal elements by

</?|Hcff|/?) = (R\H |/?> + <K| VSfl*>. (4.6.2c)

Thus, instead of only truncating the Hamiltonian by discarding all the sign-flipping terms, 
we replace those terms by non-negative diagonal terms, which can be viewed as local po
tentials that are present due to the sign-flip boundary. These potentials read:

The sum is over all R' for which (4.6.lb) holds, denoted by sf above the summation sign.
A somewhat similar procedure, called model-locality, has been used by MitaS et al. [39] 

in continuum problems with a. non-local potential that arises from replacing ionic cores with 
pseudo-potentials. As in a lattice system, they cannot solve the problem of crossing a node 
by making the step size of the walkers continuously smaller, because the non-local poten
tial connects configurations at finite distances. In their approach the unwanted off-diagonal 
terms are truncated, and replaced by diagonal contributions as in Eq. (4.6.3), but with the 
sum over all R', not just over sign-flip configurations. A drawback of the model-locality 
procedure is that one does not obtain an upper bound for the ground-state energy.

Proof for the upper bound
We now show that the prescription given above for ^fcrr does indeed lead to an upper bound 
for the ground-state energy of 5Z. In order to do so, we define a truncated Hamiltonian 9iu, 
and a sign-flip Hamiltonian #Sf, by

M 4- #$f,
5/etr = ^ir+'Hn

where the diagonal elements of Hu are

(/?|H„|/f) = U?|H|K).

and its off-diagonal elements are given by

(R\Hu\R') = (R\Hcn\R').

Vst is the sign-flip potential, for which the matrix elements are given by (4.6.3), and H,t con 
tains only the off-diagonal elements of H which are put to zero in the effective Hamiltonian. 
We now take any state  H i 59
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AE can be written explicitly in terms of the matrix elements of Vsf and

(4.6.9c)

(4.6.9d)
if

(4.6.9e)- (*|E)(E'|*) - <xp|Ze')<2?|xp> .

(4.6.10)-s(E, E')(E'|*)

or,
(4.6.11)= E')

Denoting by s(R, R') the sign of the matrix element {R\H\R'), and using the fact that for 
all terms in this summation the sign-flip condition (4.6.1b) is satisfied, we can finally write 
AE as

If

Using (4.6.3), we rewrite this expression in terms of the matrix elements of H\
«f

(*!»)
<«'!*)

(*'!%•) 
(EI^t)

<R|%)

(tf'l'l'o))

(/?!%)

(EW pwj

AE=£(*|E) (E|Vsf|E)(E|*) - 52<E|Hsf|E')(E'|*) . 
R

2

(4.6.90

| = °,

|-s(E,E')(E'|*)

Variation of the trial state
Let us consider the situation where we use the exact ground state |%) of , with energy 
Eo, as trial state. Obviously, for the method to be useful, it is desirable that in that case the 
effective Hamiltonian has the same ground-state energy Eo, and the same ground state | %), 
as that would make it possible to find the true ground state by varying the trial wave function 
in some way. In Eq. (4.6.9f) we substitute *0 for *T. In order to have A E equal to zero, each 
individual term in the summation (4.6.9f) has to vanish, thus leading to

I WJM I 
I (Wt) I

«r
AE= |(E|W|E')| (E|*)

(«.«')
Note that we do not have to worry about configurations E where (E|*t> = 0: they do not 
occur in this summation. Obviously, AE is positive for any wave function *. Thus the 
ground-state energy of is an upper bound for the ground-state energy of the original 
Hamiltonian 9{.

^4<E|*)-y(E|H|E')(E'|*)

(*|E')(E'|*)
(E-|*t)

ae = 52<*|E) 52(E|H|E') 
R

In this double summation each pair of configurations R and R' occurs twice. We combine 
these terms and rewrite (4.6.9d) as a summation over pairs:

AE= 52 WW) +
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(4.7.1)

(4.7.3a)

(4.7.3b)

E™

for all sign-flipping pairs (R, R"). This condition is trivially fulfilled for W = 4'0. Thus, the 
•rue ground-state energy can be reached by variation of the trial wave function. One can 
further extend this result to show that as 4>T —♦ % the error in the fixed-node energy will 
be second order in the difference, 4'T - %, with positive coefficient.

An example of the fixed-node procedure, applied to a small system which can be calculated 
exactly, is given in the appendix.

4.7 Beyond fixed-node: the power method
In the previous section, we have presented a method to perform GFMC on lattice fermions 
by using a modified Hamiltonian, such that the calculation does not suffer from the sign 
problem. The method yields an upper bound for the true ground-state energy. In this sec
tion we will show that it is possible to use the result of the FNMC procedure as input for a 
straightforward GFMC approach, the power method, which does suffer from the sign prob
lem, but which may yield convergent results before the fluctuations destroy the accuracy of 
the measurements. It strongly resembles the nodal relaxation method, which has been de
scribed for a continuum problem by Ceperley and Alder [38]. It is also similar to the power 
method described by Chen and Lee [36] for a lattice system.

Let us recall the expression (4.3.8d) for the distribution of the configurations in the 
GFMC procedure after n steps. For the FNMC procedure, as we sample a different Hamil
tonian, we have to slightly adapt this expression:

where I'P^) is supposed to be a good approximation of the ground state | 4/Cfr) of the effec- 
live Hamiltonian The idea is now that I 'T'efr) is sufficiently close to the ground state 
1%) of such that in the ordinary GFMC procedure convergence can be obtained within 
a relatively small number of steps. Thus, we modify (4.3.3) in the following way:

I*?’) = ri'Petr). <4-7-2)
Then, we also have to modify the expression (4.3.4b) for the mixed estimate of the energy:

(4MW^ 
(^tI^”)

^(4»T|W|/?n) [n"-i I/?-■)] (*ol'Kir>

Note that we still cannot put anything but ('PTI in this expression, as that is the only avail
able information we have in each configuration. However, in the starting configurations of 
the paths, the trial wave function has been replaced by the effective ground-state wave func
tion, of which we have information through the distribution of the walkers. We have to pay
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(4.7.4)

(4.7.5)p(R' <- R)

with the modified weight factor

(4.7.6)

Appendix: Example of fixed-node calculation

(i)

2

4 3

A valid (i.e., antisymmetric) fermion wave function must satisfy 4'([i/]) = — 4'([ji]). 
The configuration space of this system consists of 12 configurations, and can be depicted 
as follows:

further attention to the fact that sign changes can now occur, which have to be embedded in 
the transition probabilities and multiplicities. We can use the following guiding procedure, 
adapted from the end of Section 4.4. The probability to start in a configuration R is given 
by the fixed-node resulting distribution:

Po(«) = /&’(*)■

The transition probabilities are given by

(4»0|J?') |(J?'|F|f?)|
(4-G|«)m(K)

(»G|*'> |(j?'|F|/?)| 
(*G|/?)

m(R) =
R'

The absolute value has to be taken to make sure that the transition probabilities remain pos
itive, such that the procedure can still be interpreted as a stochastic walk. With these ex
pressions replacing (4.4.7), (4.4.8), and (4.4.9), the equations (4.4.6) and (4.4.10) can again 
be used for the total probability and the total “weight” of a path, respectively. Note that the 
weights can now be negative, due to the possibly different signs of the wave function in the 
starting and end configurations of the path.

In this appendix, we give an illustration of how the effective Hamiltonian is created for a 
very simple small system. All steps can be straightforwardly generalized to more compli
cated systems.

Consider the Hamiltonian for non-interacting spinless fermions

M = #kin =

on a loop of 4 sites with 2 particles. We define configurations of labeled fermions [iii'zJ, 
where particle j (1 < j < 2) sits on site i, (1 <ij< 4). We number the sites, as follows:
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12
[13][42]

43

34
[24][31] 21

(2)

(3)

This structure fully contains the antisymmetry, and the corresponding Hamiltonian gives all 
the information there is on the fermion problem. Solving this 6x6 eigenvalue problem, we

The lines (or bonds) represent valid steps in this space. The matrix elements of the Hamil
tonian for this system <[A7] I H| [mn]) are —t if there is a bond between [M] and [mn] (in that 
case k = m or I = n must hold), or 0 otherwise. The ground state of this Hamiltonian is sym
metric under exchange of the particles, and we have to restrict the wave function explicitly 
to be antisymmetric in order to find a valid fermion wave function. To obtain a Hamiltonian 
U. which describes the fermion problem only, we define antisymmetric states [kZ], which are 
antisymmetrized combinations of the configurations:

[kZ] = -^ ((«]-[/*]).

In this way each pair of configurations [*Z] and [fit] produces two states, [kZ] and [Z*], which 
only differ by their sign. One has the freedom to choose one of these states to obtain only 
one state per pair of configurations, and one can calculate the resulting Hamiltonian for the 
[W]:

([W]|H|[mn]) = |^J2sg(n1)sg(n2)(nl[H]|/Z|n2[mn])
2 n, n2

= sg(n)([«]|W|n[m„]>,

where H1 and fl2 denote permutations of the two particles, sg(H) gives the sign of a permu
tation fl, and fl[mn] is the permutation of [mn] that can be reached by one step from [ZrZ], 
such that <[*Z]|H\fl[mn]) = —t. We can again denote the Hamiltonian in a picture, repre
senting matrix elements-t by thin lines and +t by thick lines (we choose the fZrZ] with k < Z; 
other choices give different pictures but the same results):

[23][14][41][32]

11
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(4)

and
(5)

:ry simple trial

(6)

(7)

find that the ground-state is degenerate, with energy —2r, and that possible ground states are 

l*o> = | |L13] + [14] + [23] + [24]) •

I^") = 0.165IH2] + [34]) + 0.4481[j_3J + [24]) + 0.52311141 + [23])

with energy — 1.709r. Note that, e.g., the states fl2] and [241 do not have the same wave 
function in this ground state, while they do in the trial state. As one could have expected 
from symmetry considerations, the wave function is the same in states that have an equiva
lent position in the picture, i.e., that occur symmetrically in the effective Hamiltonian. Note 
that the energy of the effective ground state is above the ground-state energy of the true 
problem, as it should be according to the proof in Section 4.6.

1%) = | |U2] + Q3] - [241 - [34]).

It is easy to generalize this procedure for any system of lattice fermions.
t us now consider a trial state, and calculate the effective Hamiltonian according to 

°.Ur . "no^e prescription. The trial wave function defines the nodal regions through its 
sign in 1 states, and, because we are working with negative hopping terms, the sign-flip 
stated1111 re<^UCeS tO S’^n Ganges of the wave function only. We lake a very simple trial 

I'I't) = -4= IL12] + U3] -F L14] 4- [2X14- [24] 4- [34]' 
v o

effect^^H h°sen such that we only have to slightly adapt the previous picture to denote the

Here the thin lines are still matrix elements —t. The thick lines have been cut (we do not 
allow these steps in the effective Hamiltonian) and replaced by arrows, indicating diagonal 
matrix elements. In this simple case, they all become 4-f, because we have chosen equal 
weights for all the states in the trial wave function. The (non-degenerate) ground state of 
this effective Hamiltonian is

13

[23] [34[12] f!4



5 Application of Monte Carlo simulations

5.1 Introduction

The implementation of the Monte Carlo methods, described in the previous chapter, 
is clarified. The methods are tested on small systems that can also be diagonalized 
exactly. Application of Monte Carlo simulations to the problem of ferromagnetism 
in the Hubbard model is discussed.

Having described the theory of Monte Carlo simulations in the previous chapter, we now 
turn to the application of these methods to the Hubbard model. First, we will present some 
important features of the implementation of the Monte Carlo technique in computer pro
grams, in Section 5.2. We discuss the issues of which set of starting configurations to use, 
and how to determine the parameters w and r in the expression (4.3.1) for the projection 
operator y. We describe a standard way to calculate the trial wave function during the com
puter runs, and we comment on the calculation of observables whose operators do not com
mute with the Hamiltonian. Then, in Section 5.3, we perform these calculations for small 
systems for which exact calculations can be performed. In this way, we can test the stability 
of both the fixed-node and power formalisms. We discuss the necessity to have a good trial 
wave function in Section 5.4. Finally, in Section 5.5, we discuss possibilities to apply the 
Monte Carlo methods to the problem of ferromagnetism in the Hubbard model.

Description of the program
The fixed-node program mainly consists of two parts. In the first part (called thermaliza
tion), a number of projection steps is performed in order to obtain an ensemble of walkers 
that is distributed according to the product of the trial wave function and the ground-state 
wave function. If this process has become stable, the actual calculation of the energy and 
other quantities of interest takes place in the second part, as discussed below.

The program starts with an ensemble of walkers, each of which has weight 1. For each 
subsequent walker, a list is prepared of all possible steps in configuration space, and the

5.2 Implementation
We have written a set of computer programs by which the Monte Carlo simulations can be 
performed. Important ingredients of a simulation are the trial wave function and the set of 
walkers (the ensemble), which we calculate in separate programs. In this section, we will 
briefly describe the structure of the main program, by which the actual Monte Carlo simu
lation is carried out. Then, we will make some additional remarks on the important details.
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'This usually coincides with the last branching procedure in the measurement, in which all multiplicities 
are multiplied by the same factor in order to obtain the total weight desired.

probability for each step to be selected from the list is calculated (according to the prescrip
tions given in Section 4.4, and using the effective Hamiltonian defined in Section 4.6). At 
the same time, the local values of several quantities are calculated, which are used to deter
mine a weighted average overall configurations visited. By means of a random number, one 
of the steps is selected, and all available information (including the location of the particles, 
the multiplicity, and the value of the trial wave function) is updated to be consistent with the 
step chosen. In this way, each walker makes some fixed number of steps, corresponding to 
applying the projection operator as many times. Note that ‘stepping’ can also mean ‘staying 
in the same configuration’, which is due to the diagonal elements of the projection operator. 
In that case, the local values contribute to the weighted average once more.

After this procedure has been followed for each walker, branching (described in Sec
tion 4.4) is used to reduce the variance of the multiplicities. In this process, the sum of the 
multiplicities remains approximately the same, but each surviving walker has multiplicity 
1 after the branching. Thus, the number of walkers may increase or decrease, depending 
on the parameters chosen. One of the aims of thermalization is to find the appropriate value 
for the parameter w, such that the population of walkers remains stable. After the branching 
process is completed, the walkers start stepping again and the whole procedure is repeated.

During thermalization, measurement of the energy only serves as an indication for the 
stability of the ensemble, together with the fluctuation in the number of walkers. In the sec
ond part of the program, a number of measurements of the energy is done, which are sup
posed to be independent of each other. Each measurement is an average over a large number 
of steps, which may or may not include branching. After each measurement, the number of 
walkers is brought back to its original value before starting the next measurement,1 in order 
to make sure that the ensemble does not shrink or grow too much. The final result is the av
erage over all measurements, and the statistical error is determined from the fluctuations in 
the measurements. Here, one has to be aware of possible correlations between subsequent 
measurements, which may cause an underestimate of the error. Typically, in a fixed-node 
run one would start with a set of 1000 walkers, one would collect 100 measurements based 
on 500 steps of each walker, and branching would take place every 100 steps.

The program for doing the power calculations is quite similar. Instead of the effective 
Hamiltonian, the original Hamiltonian is used, and the prescription for the transition prob
abilities has to be adapted according to Section 4.7. An important difference is in the av
eraging of the physical quantities: the values are not averaged along the paths in this case, 
but only over the set of walkers. Thus, an average is obtained after one step, after two steps, 
etc., such that one can see whether the values stabilize as a function of the number of steps 
taken. In order to obtain sufficient accuracy, one would use of the order of a million walk
ers, to compensate for the fact that one cannot average along the paths. Depending on the 
values of the parameters used, a walker can only perform some 50 steps at the most before 
the sign problem arises. Branching cannot be applied in the power scheme.
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Choice of parameters
One of the important issues that has to be considered is the choice of the parameters w and 
r. The other parameters (the number of walkers, the number of steps each walker takes in 
one measurement, the number of measurements, etc.) are mainly related to the accuracy by 
which one wants to obtain the results, and should be fixed accordingly. For w and r some 
clear guidelines can be given, which should be followed in order to obtain a stable Monte 
Carlo run.

The parameter r can be used to speed up the projection process. In the implementation, 
this can be seen from the fact that the probability for a single walker to stay in the same 
configuration in a specific step becomes smaller with increasing r. In Eq. (4.3.2) we defined 
limits for r such that the GFMC method would formally yield the ground state. However, 
in FNMC, there is an additional problem due to the sign-flip potential. As one can see from 
Eq. (4.6.3), there is no bound on the value that the sign-flip potential can take. Incidentally, 
this potential becomes so large, that the probability to stay as prescribed by Eq. (4.4.8) [with 
R' = /?] becomes negative. If this does not happen too often, one can safely truncate these 
negative values to be zero, but one must beware of introducing a systematic error in this way. 
One can avoid this by checking that the results do not depend on r in some reasonable range 
of this parameter. The influence of the potential can be reduced by choosing a smaller value 
for r. Apart from this problem, one usually wants to choose r as large as possible, within 
the limits dictated by the energy spectrum.

The influence of the parameter w can be easily understood by looking at the form of 
the operator y, given by Eq. (4.3.1). Assuming that we are dealing with the ground state, 
we see that at each projection step the ground-state wave function is multiplied by 1 if w is 
exactly equal to the ground-state energy. If w is below the ground-state energy, this multi
plicative factor is smaller than 1, otherwise it is larger than 1. In the implementation, this 
is directly related to the total weight carried by the walkers. If u> equals the ground-state 
energy, the sum of the multiplicities tends to remain unchanged (apart from fluctuations), 
and therefore the number of walkers remains approximately stable in the branching pro
cess. If w is below this energy, the number of walkers decreases, whereas it increases if w 
is above the ground-state energy. In the fixed-node program, one can let w obtain a proper 
value in the thermalization process. Starting with a trial value, one can adapt its value by 
taking some average of the energy measured and the old value. After some time, one will 
find that the value of w remains almost constant, as well as the number of walkers. In this 
way, one in fact obtains a first approximation of the ground-state energy, which is then cal
culated more accurately in the second part of the program. In the power procedure, one can 
safely use a value for w that is slightly below the fixed-node result. As the number of steps 
in a power run is rather limited, this method is not very sensitive to the exact value of w 
chosen, because the excursions of the walkers are too short to build up a large variance in 
the multiplicities.
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Calculation of observables

(5.2.1a)

(5.2.2)

is a much better approximation for this expectation value.

The trial wave function

In Section 4.3 we explained the use of a mixed estimate for calculating the energy and other 
observables. As we pointed out, this is a good way of estimating the value of an observable 
only if the operator O concerned commutes with the Hamiltonian. In that case we have, for 
n large enough,

as making J" work to the right yields the same factor in the numerator and the denominator. 
However, this obviously does not hold in the case that O does not commute with the Hamil
tonian. In that case, one should use a different approximation for the expectation value of 
O. The extrapolated estimate [25,43]

<^o|0|^o>
<*ol'I'o>

(4>T|yO|%)

2('I>t|O|%)

The single-most important ingredient of the Monte Carlo methods described here is the trial 
wave function. In the fixed-node scheme, the energy that one is able to find is determined 
implicitly through the nodal structure of the trial function. In the power method, the sign 
problem is prohibitive when the trial wave function does not resemble the true ground-state 
wave function close enough, since the ground state has to be reached within a limited num
ber of steps. Therefore, it is worthwhile to invest a fair amount of time in finding the best 
trial state possible.

There are two requirements that the trial wave function must fulfill in any case. The first 
is that it must contain the proper symmetry for the particles concerned. In case of the Hub
bard model, one has to make sure that the trial wave function is antisymmetric under ex
change of two electrons of the same spin, in order to obtain results that hold for the fermion 
problem. As the Hamiltonian does not change this symmetry, it will be conserved in the 
projection process, and thus properties are obtained for a state of the correct symmetry. The 
second requirement is of more practical nature: the trial function must be easily calcula
ble in any given configuration. Most of the effort in the Monte Carlo program is put in the 
calculation of the trial wave function in every configuration that is visited, and in all of its 
neighbors. Any extra work that has to be done here causes a serious slow down of the pro
gram.

In our implementation we make use of Slater determinants to define the trial wave func
tion. They automatically fulfill the antisymmetry condition for the electrons, and, as we will 
see, they enable an efficient way for calculating the wave function in neighboring configura
tions and for updating the information. There are several ways to define the basis functions 
for such determinants. We use a self-consistent Hartree-Fock (or mean-field) approach that

(4'TlOyiM'o) _ <«I>t|O|%)
(♦tIT'-’I'I'o) (*t|*o> ’
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(5.2.3)

= ^kin + U (ni|). (5.2.4a)

and
+ 1/ y n4(n,t). (5.2.4b)

(5.2.5)

(5.2.6)

Denoting the position of the kth electron of spin a by i°t, we can write

(5.2.7)I £>„(/?) | =

^.(<D ••• <W

This can be done by iteratively diagonalizing the one-particle Hamiltonians for the up and 
the down spins separately:

^(<7)
^(<?) ••• tf(‘x-.)
¥?(?) ^(>5v.)

The fields (nio) must fulfill the condition

£>.} = Na,

provides an approximation of the ground state. As we work with a fixed number of parti
cles and fixed total spin in the z-direction S!, it is straightforward to use the average oc
cupation numbers (n,„) as the parameters that have to be solved self-consistently from the 
Schrodinger equation, with the Hartree-Fock Hamiltonian

+ t/y («>t<n4> +"4<"tt) ~ (”>t)(»<*>) •

where N„ is the number of electrons with spin a. Starting with some well chosen field for, 
e.g., the down spins, one can diagonalize in order to obtain the one-particle levels for 
the up spins. As one is interested in the state with lowest energy, one has to fill the Nf low
est levels, and one can then calculate the resulting field for the up spins. Using this as in
put in one finds in a similar way a new field for the down spins. Iteratively repeating 
this procedure, one finally finds a set of self-consistent one-particle wave functions 
with j = 1,2 N„. The Hartree-Fock wave function is then constructed from these one- 
particle functions as a product of two Slater determinants:

(/?|*hf) = |Dt(/J)||D4(/?)|.

^.('7)
One can always use such a numerical approach, but in many cases it is also possible to solve 
the Hartree-Fock problem analytically. An example is the case of half filling, where the so
lution can be found easily by making a transformation to reciprocal space.

The Hartree-Fock function itself is quite suitable as a starting point for a fixed-node 
Monte Carlo calculation, but one can also build in correlations that one expects to be present, 
like a Gutzwiller factor (by which double occupancy can be reduced) or a Jastrow factor (by 
which, e.g., spatial correlations between the electrons spins can be enhanced). Both of these

^HF = -^kin
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(5.2.8)

[Wil = (5.2.9a)

(5.2.9b)

2They will be treated in more detail in Section 5.4.
3That is. local in configuration space.
4These formulas can also be found in a report by Von der Linden [45].

for all Z, and

[D(/f')-|]I=[D(A)-|]I-[D(/f')-']7152VmO)[D(/?)-,]L 
m

examples2 are local3 modifications of the wave function, which means that they can be eas
ily calculated. They provide extra parameters whose values can be optimized, to lead to the 
best result in the Monte Carlo method. Note that, in general, the best variational wave func
tion (i.e., the wave function with lowest energy that can be obtained by varying all avail
able parameters) does not necessarily lead to the best fixed-node result. Much more than 
the exact energy, the sign-flip structure of the trial wave function determines how good the 
fixed-node solution is. As has been pointed out by Ceperley [26], ‘the knowledge of the 
nodes of the many-fermion wave function would enable exact calculation of the properties 
of fermion systems by Monte Carlo methods.’ This specifically holds for the fixed-node 
method.

An important advantage of the Slater determinants is the efficient way in which the wave 
function can be calculated. In our methods, for a walker that is sitting in some configuration 
R, one needs to calculate the wave function in all neighboring configurations R', as that is 
needed to perform importance sampling as well as to calculate the energy and other observ
ables. If one would have to calculate the determinants for each of these neighbors separately, 
each of which takes of the order O(N3) operations, the program would be rather slow. How
ever, as we only need to scan neighboring configurations, we can make use of the fact that 
one of the determinants representing the wave function in a neighbor R' is the same as the 
corresponding determinant in R, and the other one is different in one column only. Ceperley 
et al. [44] have derived formulas which enable updating the determinant in going from R 
to R', without the need to invert a matrix in R'.4 Let us consider the determinants for R and 
its neighbor R', that differs from R by one electron, with number k and with spin up, sitting 
on site j in R'. As the spin-down electrons remain at the same positions, the determinant 
|D|(/?')| equals |(R)|. We only have to consider the determinants for the spin-up elec
trons. We can express the ratio q between these determinants for R and R‘ in the following 
way (dropping the spin index):

This means that we only have to calculate the dot product between the j-th column of the 
matrix D at R' and the k-th column of the transposed inverse matrix D~‘ at R, to derive the 
value of the wave function in R' from that in R. This reduces the number of operations to 
obtain the value of the determinant in a neighboring configuration to O(N„). Furthermore, 
one can construct the new transposed inverse matrix from the old one when one has decided 
to which neighbor the walker must step, in the following way:

[D(/?)-']T
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for all I and i k. Note that in the second formula, the result of the first one has been used. 
Calculating the new matrix D~' in this way takes O(Nj) operations.

Full calculation of the transposed inverse of a matrix involves a number of operations 
which is of the same order [O()] as calculation of a determinant. Clearly, as it has to 
be calculated only for the configuration from which the walker starts hopping, the number 
of operations required for this procedure is very small compared to the full calculation of 
all determinants for the configurations that have to be considered. Once the transposed in
verse matrix has been calculated for the first configuration of the path, it can be used for 
calculating the wave function in all neighbors and updating the inverse for subsequent con
figurations with relatively little effort.

Distribution of the starting configurations
Our last remark concerns the ensemble of walkers that one can use to start the Monte Carlo 
program. One of the advantages of the fixed-node scheme is that it does not rely very much 
on the starting configurations. In principle, one can use a more or less random ensemble, 
since during the thermalization process it should automatically become distributed accord
ing to Eq. (4.3.8d). This is caused by the fact that the vector defined by this distribution is 
a stable fixed point5 of the stochastic matrix p(R' «- R), such that any vector represent
ing a physical distribution converges to it when repeatedly applying p(R‘ «— R). On large 
systems, however, it is wise to use some knowledge on what the ensemble should be. Oth
erwise, due to large fluctuations in the multiplicities and the trial value of w, one may find 
that the number of walkers increases or decreases very rapidly, and that it is impossible to 
obtain a stable set.

Again, several ways exist to produce a set of walkers that is suitable as a starting en
semble. One possibility, that we mentioned in Section 4.2, is making use of the Metropo
lis scheme. In this scheme one generates sequences of configurations by creating paths in 
configuration space, in such a way that the configurations are distributed according to the 
trial wave function. However, as the number of walkers to be generated for the ensemble 
is usually rather restricted, the sequences may be too short to make the configurations be 
properly distributed. In that case, one can use a similar but more straightforward method 
that may yield better results with less effort. Generating a random configuration, one can 
compare its wave function to a random number scaled to some threshold, and accept it if 
the wave function is larger than the random number. This means that the configuration is al
ways accepted if its wave function is larger than the threshold, and that below the threshold 
the probability that it is accepted decreases with decreasing wave function. Usually, this is 
sufficient to obtain a set of walkers by which a stable Monte Carlo run can be performed. 
In order to save a lot of time, when doing several runs for the same system, one can store 
the ensemble that is obtained after the thermalization in the first run, and use it as input for 
the other runs.

For the power method, it is crucial that the starting walkers be distributed according to 
the product of the trial wave function and the ground-state wave function of the effective

5 See, e.g., the paper by Hetherington (46] on the statistical iteration of matrices.
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5.3 Testing the method

The 2x2x2 cube
We choose the 2x2x2 cube for testing purposes. This system has its largest diagonaliza
tion problem at half filling with zero total Sz (i.e., with 4 electrons carrying spin up, and 4 
with spin down), in a space containing 4900 states. Using the symmetries of the cube,6 this 
problem can be reduced to diagonalizing 10 smaller matrices, of which the largest has di
mension 960. Such a matrix can be diagonalized on a simple workstation in a few minutes. 
In case one considers an antiferromagnetic arrangement of spins on the cube, one can use 
only half of the symmetry operations, leading to a largest matrix of dimension 1896. This 
can still be tackled within a reasonable amount of time. Thus this system is small enough to 
be able to do exact calculations, and yet it is complicated enough to expect that it provides 
a good test case for checking whether the Monte Carlo algorithms work properly.

In Table 5-1 we give an impression of how good the fixed-node theory works for this 
small system, by exact calculations of the energies. We consider the case of half filling with 

= 0, and of 4 electrons with spin up and 1 with spin down.7 We use different types of self- 
consistent mean-field solutions as trial wave functions in the fixed-node calculation, and we 
compare the mean-field energy (MF), the ground-state energy of the effective Hamiltonian 
(FN), and the true ground-state energy of the problem, for different values of the parameter

6In order to do so, one has to make use of group theory in order to find the irreducible representations of 
the symmetry group of the cube, create new basis vectors in state space related to these representations, and 
re-express the Hamiltonian in this basis. As vectors in different representations do not communicate with each 
other in the Hamiltonian, it is reduced in the new basis to separate blocks related to the representations. For 
a detailed description of this procedure see, e.g., Ref. 47. The symmetry group of the cube can be found in, 
e.g., Ref. 48.

7There is a practical reason for choosing these fillings. In order to be able to use the group theoretical 
approach also for calculating the ground-state energy of the fixed-node effective Hamiltonian, the trial wave 
function must fulfill the requirements of the symmetry group of the cube. In most cases, mean field breaks 
the symmetry, due to a degeneration of the one-particle levels. With 4 or 1 particles of the same spin, the 
mean-field solution turns out to be non-degenerate and of the correct symmetry.

As with any method, it is important to check whether the Monte Carlo procedures we de
scribed for fermions are capable of producing correct results in cases where exact results are 
available. On the other hand, it is useful to have a small and simple model system that can 
serve as a playground for testing new ideas concerning efficiency or improvements of the 
wave function. Doing this, one should of course take into account the fact that finite-size ef
fects possibly dominate the physics of the system, but such small systems usually still give 
a fairly good impression of what tendencies exist.

Hamiltonian, as required by Eq. (4.7.4). The paths in this procedure are too short for the 
ensemble to converge to the correct distribution. Therefore, one has to use an ensemble re
sulting from the fixed-node program. It can be taken from a fixed-node run, at any stage 
after the thermalization process has been completed.



Section 5.3: Testing the method 89

Table 5-1. Comparison of the true ground-state energy with the energy of different types of self- 
consistent mean-field (MF) solutions, and with the ground-state energy of the fixed-node (FN) ef
fective Hamiltonian, for the 2 x 2 x 2 cube with different fillings and at various finite U, by exact 
calculations only. For a clarification of the type of mean-field wave function used, see text.

4-f
4J.

4f
14-

MF 
type

H
AF

H
H

H
H

AF
H

AF

U/t 
0 
1 
6 
6 
10 
10 
10 
0 
1 

2.5 
2.5 
10 
10

MF
“9 

-8.5
-6 
-6.0701
-4
-4.2551
-5.3271

-12
-10

-7.0061
8 

-2.3113

FN
“^9

-8.5419
-7.2508
-7.2424
-6.8400
-6.7476
-6.7637 

-12 
-10.1148
-7.7257
-7.6942
-2.6597
-2.6382

U. The mean-field wave functions are obtained as described in the previous section, but 
with different restrictions on the average number of electrons with spin up and down per 
site. Writing (n,„) = {n„) + (—1 )"<?,„ for the average number of spin-cr particles on site 
i, we denote q,„ = 0 by H (homogeneous), and q,„ = (—!)'?„, with q„ a constant, by AF 
(antiferromagnetic, or Neel order favored). In the case of 4 up and 1 down spins (i.e„ off 
half filling), the self-consistent mean-field solution with lowest energy turns out to have a 
spatial symmetry different from both H and AF for larger values of U. As the ground states 
of both the original and the effective Hamiltonians are not degenerate in these cases, their 
symmetry cannot be broken. Note that, for U = 0, the mean-field approximation yields the 
true ground state. We find that also the fixed-node result equals the true ground-state energy 
in that case, as predicted.

One can see that the fixed-node approach (i.e., the use of an effective Hamiltonian) on 
this small system yields a significant improvement on the upper bound for the ground-state 
energy, compared to the mean-field approximations. As we pointed out before, the mean
field wave function with lowest energy does in general not give the best fixed-node result. 
In all cases, the trial wave function marked H yields the highest variational energy and the 
lowest fixed-node energy. This is most striking in the case of half filling with U /t — 10. We 
want to stress again that, clearly, the sign-flip structure of the trial wave function determines 
how good the fixed-node approximation is.

The next step is to check that the computer program is indeed capable of producing the 
results that are expected from the exact calculations. In Table 5-2 we show the results of 
actual Monte Carlo simulations for four of the cases given in Table 5-1. We have calculated

energies (in units of r) 
true

-9
-8.5420
-7.2533
-7.2533
-6.8442 
-6.8442 
-6.8442 

-12
-10.1188
-7.7510
-7.7510 
-2.8652 
-2.8652
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Efn/t

Table 5-2. Comparison of FNMC simulations with exact calculations of the fixed-node energy £fn 
and structure factor S(rr, n, rr), for the 2x2x2 cube, using four different trial wave functions. The 
statistical error in the last digit is indicated between brackets.

Table 5-3. Comparison of the true ground-state energy with the energy of Gutzwiller-projected 
mean-field (GMF) solutions, and with the ground-state energy of the fixed-node (FN) effective Hamil
tonian using the GMF wave function as trial function. Exact calculations performed for the 2 x 2 x 
2 cube at infinite U, with 1 to 3 holes in all possible spin backgrounds (for reasons of symmetry, only 
the cases where the number of up spins is larger than the number of down spins need to be given). 
Energies are given in units of r.

4S(rr, xr, rr) 
(FN mixed estimate)

the energy and, in addition, the structure factor (2.6.9) for q = (rr, rr, rr) for these cases, us
ing the absolute value of the trial wave function as guiding function to perform importance 
sampling. As can be seen, the results agree fairly well with the exact values. The Monte 
Carlo runs were done with 2000 walkers, each doing 250 x 500 steps, except for run no. 
2. (using a mean-field trial wave function with a broken symmetry, but not AF), in which 
4000 walkers were used. This run caused most problems in finding the best parameters to 
lead to a stable population of walkers, and fluctuations remained relatively large although 
more walkers were used than in the other runs. Also in run no. 4., the error bars remain 
somewhat larger than in the runs where a symmetric H wave function was used. Appar
ently a wave function with less symmetry not only causes the final energy to be higher, but 
also leads to a larger variance. We assume that this is due to the fact that measurements in 
different but symmetric regions of the configuration space yield different results for such a 
wave function, whereas in the case of a wave function of high symmetry they would be the 
same. This causes larger fluctuations in the measurements.

In order to give an impression of the Monte Carlo runs, we show the thermalization for 
one of the above simulations in Figure 5-1. After some 200 steps, the energy measured starts 
fluctuating around the expected value. After averaging over several thousands of steps (not 
shown in this figure), one obtains the value indicated by the square at the right.
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Figure 5-2. Power method for the 2 x 2 x 2 
cube at half filling, with zero total Sz, using the H 
and AF mean-field trial wave functions. An error 
bar indicates the estimated value of the ground
state energy after each power step.

For the same system (the cube at half filling, with zero total Sz) we have also performed 
a test of the power method. In Figure 5-2 we show two power Monte Carlo calculations, us
ing the AF and H mean-field wave functions, respectively. For each calculation, the proper 
starting ensemble of walkers, resulting from a FNMC calculation, is used. As can be seen, 
the average energy in the AF calculation does not converge to the true ground-state value 
before the sign problem arises, after some 20 steps. In the calculation using the H wave 
function, the energy starts at a lower value than the FN result, due to fluctuations in the en
semble. It does converge to the correct value, however, giving a fairly accurate estimate of 
the ground-state energy. From these examples it is clear that, indeed, the power method can
not be used to find a reliable estimate of the true ground-state properties, if the fixed-node 
method does not yield a good approximation. Therefore, we will concentrate on preparing 
applications of FNMC, and show only few examples of application of the power method.

In view of our interest in the large-£7 Hubbard model, it is also useful to test the fixed- 
node method on the cube at infinite U. In Table 5-3 we compare true ground-state energies 
for this system with up to three holes to values obtained by diagonalizing the fixed-node ef
fective Hamiltonian. As trial wave functions we use restricted (H) mean-field solutions for

i- » .Wl
*^k***.^ **

...........A* 
100........200

steps 
Figure 5-1. Thermalization in a FNMC simu
lation, for the 2 x 2 x 2 cube at half filling, 
with zero total Sz, using a homogeneous mean
field trial wave function. Each star indicates the 
average of the energy sampled in 10 Monte 
Carlo steps. The drawn line indicates the exact 
ground-state energy of the fixed-node effective 
Hamiltonian. The square at the right indicates 
the resulting energy, obtained after averaging 
over several thousands of steps, with a statisti
cal error which is smaller than the symbol size.
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GMF 
-1.212 
-1.007

MF
-1.109
-0.719

Table 5-4. Comparison of the exact ground-state energy to the energy of mean-field and Gutzwiller 
wave functions, and to the energy obtained by MC simulations, for the 4 x 4 square (PBC), with 
5 spins up and 5 down, for U = 4 and U = 8. A mean-field (MF) restricted (H) wave function has 
been used. The Gutzwiller wave function (GMF) was used with g = 0.6; its energy was calculated 
by variational Monte Carlo. For the fixed-node simulations (FN), a trial wave function has been used 
as indicated. Energies are given per site and in units of r. Constrained Path Monte Carlo (CPMC) 
results were taken from [35], exact results from [49],

[Z
EE 
EE

some optimized value of 17, with doubly occupied sites projected out.8 Due to the averaging 
of the particle interactions, mean field produces a rather poor wave function in the case of 
large U. The finite-L7 wave function with double occupation projected out yields consider
ably better results, but still gives rather bad approximations of the ground-state energy. In 
case of all spins up, both mean field and fixed node produce the exact ground state correctly, 
but with increasing number of spin flips the approximation becomes poorer.

The 4 x 4 square
Another interesting test system is the 4 x 4 square lattice. Various authors [35,47,49-51] 
have performed calculations for the Hubbard model on this system, and a number of ex
act and approximate results has been obtained. For comparison, we have also performed 
some Monte Carlo calculations for the 4 x 4 square, in order to check whether our method 
still gives good results on a somewhat larger system. In Table 5-4 we show two series of 
calculations for this system, applying periodic boundary conditions (PBC), with 5 parti
cles carrying spin up and 5 spin down, for two values of the interaction U. As can be seen, 
FNMC produces rather good approximations, and in the case of U = 4 we succeeded in ap
proaching to the exact ground-state energy by means of the power method. For U = 8 we 
performed only one FNMC simulation, and the FN result is not good enough to be able to 
use the power method.

We also show a few calculations for the 4 x 4 square at infinite U, in Table 5-5. As trial 
wave functions we use simple mean-field solutions for (7 = 0, with Gutzwiller factor g -> 0 
to project out the configurations with doubly occupied sites. As in the case of the cube at 
infinite U, we see that the FNMC results are a substantial improvement of the Gutzwiller 
mean-field approximation, but still rather far from the exact value. They become poorer with 
increasing number of spin flips.

FN/MF | FN/GMF | power MC | CPMC | exact | 
-1.2186(4) | -1,2201(4) | -1.2234(6) | -1.2238(6) | -1.2238 |

| -1.0858(2) | | -1.0925(7) | -1.0944 ]

8This is equivalent to using a Gutzwiller wave function with g = 0; see Eq. (5.4.1) for the definition of the 
Gutzwiller factor g.
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-4 -8-6

Table 5-6. Various mean-field and quantum Monte Carlo calculations (QMC) of the exact ground
state energy of a 10 x 10 square (PBC), at half filling and with zero total Sz, for (7 = 4. Slave Boson 
MF result has been taken from [52], QMC results from [53] and [54],

Table 5-5. Comparison of the exact ground-state energy to the energy of Gutzwiller-projected mean
field (GMF) solutions, and to the energy resulting from FNMC simulations using the GMF wave func
tion as trial wave function. Calculations performed for the 4 x 4 square (PBC) at infinite (7, with 1 to 
3 holes in some spin backgrounds. The total energy of the system is given, in units of t. The statisti
cal error is of the order of the digit after the last one indicated. The GMF energy has been calculated 
by VMC, exact results have been taken from [50J.

method
Mean Field (AF) 
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-0.852(2)
-0.860(5)

3 holes
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-8.04
-8.59
-8.76
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FN 

exact

Larger systems
Many resultsexist in literature also for the 8 x 8, 10 x 10, and larger systems. Although we 
have not performed many calculations for these systems, in order to demonstrate that our 
methods can be used for larger systems we give one last example of calculations that we 
have done for the 10 x 10 system. In Table 5-6 we compare several mean-field and quan
tum Monte Carlo calculations of the ground-state energy of this system at half filling, with 
zero z-component of the total spin and with periodic boundary conditions. Our results are in 
very good agreement with previous QMC calculations by Hirsch [53] and White etal. [54]. 
Therefore we conclude this section by stating that the application of FNMC and the power 
method looks very promising, but that an investigation of possible trial wave functions is 
necessary before these larger systems can be handled well. This especially holds for the 
study of systems at large or infinite U, where mean-field theory fails to give a reasonable 
description.



94 Chapter S: Application of Monte Carlo simulations

5.4 Improving the trial wave function

Slater determinants

(«|'I<G} = g"a('!)(R|'P). (5.4.1)

Note that this factor is of no use in the case of infinite U, where doubly occupied sites are 
excluded. Another example is the Jastrow factor, which can be used to enhance certain cor
relations in the trial wave function. Taking C(7?) to be some correlation calculated locally 
in R, we can write

Usually we exploit wave functions that are based on Slater determinants, obtained from 
mean-field calculations. The advantage of these functions is that they are explicitly antisym
metric, as required, and that they provide a reasonable approximation of the ground-state 
wave function. In some situations, especially if U is large, they are not capable of produc
ing the proper sign structure. Another disadvantage, which becomes less significant with 
increasing system size, is that the Slater determinants tend to vanish in a number of con
figurations, while the exact ground-state wave function need not be zero in these config
urations. In the fixed-node method, a configuration with vanishing trial function remains 
a zero in the fixed-node wave function. Even if the signs in the other configurations were 
completely correct, FNMC would not be able to produce the exact ground-state properties, 
as the contributions of these zero configurations are omitted. Therefore, one should as much 
as possible try to avoid having a large number of zeroes in the trial function.

As we have seen in the previous section, mean-field wave functions sometimes lead to rather 
good fixed-node results, but in other cases they seem to lack the proper structure. As we 
pointed out in Section 5.2, a good trial wave function is vital for the fixed-node method (and 
even more for the power method) to produce useful information. In this section we will list 
a few simple options for constructing wave functions, which we have investigated. None 
of them seems to provide a significant improvement on mean-field functions, however, and 
further studies will be necessary.

(RWi) = ecw{Rm. (5.4.2)
Usually, these extra factors can easily be calculated locally, such that they do not involve a 
significant increase of the effort to obtain the wave function. In general, one would try to ob
tain the best variational wave function of such kind, minimizing the energy by varying the 
parameters) involved. However, as we have stated before, it is not true that the wave func
tion so obtained leads to the best fixed-node result. It would therefore be necessary to use 
different values for these parameters also in the fixed-node runs, which makes this approach

Variational parameters
A simple means of varying a given trial wave function is the introduction of variational 
parameters. A well known example is the Gutzwillerfactor g, by a power of which the wave 
function is multiplied, depending on the number of doubly occupied sites ria(2?) in each 
configuration R:
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(5.4.3)

Hole wave functions
We have examined several possibilities for defining 4' in such a way that it can be calculated 
very easily. One idea, which would be especially suited for infinite U and few holes, would 
be to express the wave function in terms of Slater determinants for the holes. If the number 
of holes is very small, this drastically reduces the effort for calculating the determinants. The

rather laborious. Another disadvantage is that these factors usually do not change the sign 
of the wave function. As we suspect that the sign structure of the wave function is far more 
important than its actual value, this is an important restriction which causes the variational 
parameters to be less useful for the fixed-node program. An example of the application of 
the Gutzwiller factor, in which it provides a significant improvement on the ground-state 
energy of the trial wave function but only slightly changes the fixed-node results, was pre
sented in Table 5-4.

where the value of the parameter X is to be calculated. Instead of calculating the exact value 
of this parameter according to the Lanczos method, one can also determine it variationally, 
such that 4'|! li is in fact a variational wave function. As we have seen, for a walker located in 
a configuration R, one needs to know the value of the wave function in all neighboring con
figurations. In the (one-step) variational Lanczos scheme, calculation of the wave function 
in one of these neighbors R' involves the evaluation of 4' in R1 and in all of its neighbors R", 
due to the application of the Hamiltonian. Thus, in order to obtain the wave function 4'l* in 
the neighbors of R, one needs to calculate the wave function 4> in all configurations that can 
be reached from R within two steps. This implies an increase of the number of operations 
needed to calculate the trial wave function, by a multiplicative factor which is of the order 
of the average number of neighbors. Using Slater determinants for 4», this may well be fea
sible in a system with low connectivity, such as in case of infinite U and low hole doping. In 
case of finite U, however, the average number of neighbors is of the order of the dimension 
times the number of particles in the system, and calculation of all these values of the wave 
function would take too much time. One needs a much simpler prescription for 4> then, such 
that the extra effort due to the need to calculate 4< in more configurations is compensated by 
a much faster evaluation of 4> in each configuration. If one could find a sufficiently simple 
4', one could even think of applying more Lanczos steps on the trial wave function. In the 
examples we considered, however, the nodes are moved only rather slowly, such that one 
obtains relatively small improvements with each further Lanczos step.

Variational Lanczos approach
Another variational method which does not suffer from this restriction, but is rather labo
rious, is the so-called variational Lanczos approach as proposed by Chen and Lee [36], In 
the Lanczos diagonalization scheme, by applying one projection step one adapts the wave 
function 4' = 4'[0) in the following way:

4'[l) = 4'<0, + XJ/4>’0).
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Understanding of the nodal structure
So far, little information is available on how to tackle these problems. In his study on fer
mion nodes, which basically treats continuum problems but which is also very well appli
cable to lattice systems, Ceperley [55] states that he has made little progress in stating 
exact conditions that nodes must obey.’ Most studies of wave functions aim at improving 
the energy of the wave function itself, while for our purposes it would be necessary to ex
plore its sign-flip structure, in order to improve the energy that results in a fixed-node Monte 
Carlo simulation. We do not have a clear understanding yet of the requirements that a wave 
function must fulfill to make a good fixed-node trial function. Before doing the calculations 
described in the next section, that may lead to a more conclusive answer with respect to the 
problem of magnetism in the large-t/ Hubbard model, it is necessary to obtain better insight 
in the features of trial wave functions that define whether they are suited for the fixed-node 
method or not.

Simple sign rules
Having in mind our impression that the value of the wave function does not matter so much 
as its sign, one could also think of taking the absolute value of the (zeroth-order) wave func
tion to be constant, and giving a prescription for its sign only. Of course, the wave function 
still has to be antisymmetric. The simplest way to establish this is to define a standard order 
of the numbered particles on the lattice, by numbering the sites in some arbiii ary way and or
dering the particles according to the site numbers. One can then define the sign by taking the 
permuted configuration in which the particles have been rearranged with increasing particle 
number to have positive sign. The sign for neighboring configurations can easily be deter
mined from the (local) permutations of the standard order of the particles. V/e have tried this 
for small systems, where the results are not very encouraging. Even with a relatively large 
number of Lanczos steps, it is hard to improve on the mean-field wave function. The sign 
convention itself yields a very bad wave function, and the Lanczos projection makes it only 
slowly converge to the ground-state wave function. We fear that this can only get worse for 
larger systems, while mean-field solutions tend to become better. An extra complication is 
in the fact that, depending a little bit on the actual sign convention used, the wave function 
hardly depends on the particle spins. This means that, again, a (ferromagnetic) hole wave 
function is produced.

a r<th em IS r Owever’ ^at h°le wave functions are destined to produce a ferromagnetic state, 
e spin ackground in which the holes move around is completely ignored. Neither the 

czos projection nor the fixed-node procedure can change this, such that it is not possible 
systwn UC” 3 WaVe ftlnCti°n for checkin8 whether the ferromagnet is the ground state of the
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5.5 How to find ferromagnetism?

(5.5.1)

FPFM

WFM

^'•^P/AF

0N/2

In the last section of this chapter, we will outline how the QMC methods may be used to 
treat the problem of ferromagnetism in the Hubbard model. Several authors [50,56,57] have 
followed this line of research, and obtained some interesting results on rather small systems 
already.

In order to study the stability of the ferromagnetic ground state, it is sufficient to inves
tigate whether it is possible to find a non-ferromagnetic state that has lower energy than the 
ferromagnet. A ferromagnetic state is easy to find, by considering a system (at any level of 
hole doping) with all particles carrying spin up (i.e., a fully polarized ferromagnet, FPFM). 
Mean-field theory yields the exact ground state in that case, as the particles have no inter
action other than the exclusion principle. The question is now whether one can find states 
with a lower energy by introducing spin flips in the fully polarized system. Let us consider 
a system with ■ fixed number of particles and with total spin in the z-direction Sz > 0, 
and an eigenstate I'T) of this system. As the spin lowering operator

Sz
Figure 5-3. Possible behavior of the minimum energy as a function of the total spin in the z-direction, 
in a system with N particles. If the lowest minimum energy is found to be the same for all Sz, the 
ground state is a fully polarized ferromagnet (FPFM, all spins aligned). If the lowest energy is found 
for Sz < Sz, the ground state is weakly ferromagnetic (WFM). If the minimum is at Sz = 0, no ferro
magnetic tendencies are present, and the ground state can be paramagnetic (P) or antiferromag
netic (AF), or it can contain more complex symmetries.

commutes with our Hamiltonian, the state S-!^) is an eigenstate of the system with Sz — 1, 
with the same energy as |^P). In particular, this means that the fully polarized ferromagnet 
is an eigenstate of the system with any number of spin flips. In Figure 5-3 we visualize the 
main possibilities that one can find for the behavior of the minimum energy as a function

^FPFM

S*

E .min
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’Note that it cannot increase as long as Sx > 0.
,0In case of an even number of spins, otherwise Sz = ±1/2.

of the number of spin flips. If one finds the energy of the ferromagnet to be the lowest en
ergy possible, for all possible spin backgrounds, the fully polarized ferromagnet is indeed 
the ground state of the system. If the lowest possible energy decreases as a function of the 
number of spin flips,9 having a minimum only at Sz = O,10 one should conclude that the 
ground state is certainly not ferromagnetic, and one should investigate the possibilities that 
it is paramagnetic, antiferromagnetic, or contains still a different kind of correlation. The 
last possibility is that the lowest energy reaches its minimum at Sz = Sc 0 (and then the 
same lowest energy is found for 0 < Sz < Sc). In that case, the ground state exhibits weakly 
ferromagnetic tendencies, but the spins are not fully aligned.

One can now consider systems with various numbers of holes (as illustrated in Tables 
5-3 and 5-5), to check how the ground-state properties behave as a function of the system 
size. Furthermore, considering systems of increasing size and extrapolating the tendencies 
found, it should be possible to derive useful information on the ground-state behavior of the 
system in the thermodynamic limit. For instance, one can look at the total spin per electron 
(or magnetization), which should obtain a finite value in the case of ferromagnetism. Other 
properties of interest are, e.g., the staggered magnetization and the (nearest-neighbor) spin
correlation functions. This program has been carried out by Riera and Young [50] by means 
of exact diagonalization, for systems up to 4 x 4 sites. In order to find consistent results, 
however, they have to average over various boundary conditions, as otherwise finite-size 
effects make the results erratic. It would be very interesting, and it certainly appears to be 
feasible, to use FNMC to obtain similar comparisons for larger systems.
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By using a simple perturbation theory and a cluster expansion technique, we have calculated 
high-temperature series expansions for the Hubbard model. These were the topics of the 
first part of this thesis. We have obtained expansions up to eighth order in the parameter pt, 
for the grand potential and several of its derivatives and for the spin-correlation functions, 
on the square and simple cubic lattices. Our most interesting observation, following directly 
from these expansions, is that for sufficiently large interaction U the nearest-neighbor corre
lations are ferromagnetic in a range of densities. The stronger the interaction, the higher the 
temperature below which the correlations are ferromagnetic. We see this as an indication 
for the existence of a ferromagnetic phase at low temperatures. Apparently the predicted 
Nagaoka phase at zero temperature leaves its imprints at the relatively high temperatures 
that we analyze.

This work is most closely related to the work of Hone er al. [7], Kubo and Tada [8,9], 
Pan and Wang [10], and Henderson et al. [12]. Hone et al. and Kubo have been the first to 
present the full set of coefficients up to fourth order for the grand potential and the uniform 
and staggered magnetic susceptibility of the simple cubic lattice, for arbitrary value of U. 
Pan and Wang have provided a correction on their work and extended it to sixth order. Our 
work, in turn, is an extension of these results, by including the eighth order and considering 
also correlation functions. Henderson et al. have addressed the same problem, extending 
the expansions to eighth order also for non-bipartite lattices, and their overall conclusions 
are consistent with ours, although we disagree on the relevance of their estimates for the 
transition temperature (see Section 2.8).

Standard extrapolation methods fail when trying to extract information for lower tem
peratures from the high-temperature expansions. We do not have a sufficient number of 
terms in the expansions to embark meaningfully on Pade analysis. By the cluster method 
one may be able to extend the calculations to tenth order in pt with use of a supercom
puter, but we feel that it would not lead to a significant improvement of the results for lower 
temperatures, and even considerably more computer power will not extend the method any 
further. We have developed a new method of extrapolation, based on a density of states for 
holes, that is suitable for large positive U and particle densities near half filling. By this 
method, we obtain extrapolated values down to T = 0 for infinite U, and to very low tem
peratures for finite U. Comparing previous results for the simple cubic lattice (depicted in 
Figure 2-6) to our current results (Figure 3-5), we see that we now find Curie temperatures 
that are an order of magnitude smaller than before. Also, subsequent approximations in this 
method give consistent results, unlike in the old situation where alternately Curie temper
atures were found or not. These convergence problems in the primitive series expansions 
are likely due to the Fermi degeneracy of the electron gas. At pt 1, the wavelength of 
the electrons becomes of the order of the lattice distance. Above this temperature, the elec
trons behave classically, but below it degeneracies appear which hardly show up in a high-
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temperature expansion, and there appear to be divergences in the series expansions which 
are not present in the physical quantities. This problem exists already when trying to de
scribe a non-interacting gas by means of a series expansion, and it masks the physics of the 
correlated system. When applying a straightforward extrapolation techniaue, one does not 
sufficiently account for the degeneracy, leading to results that are erroneous for ~ 1. In 
our new approximation, using a density of states for holes, we take the Fermi degeneracy 
into account, and therefore we are able to proceed to lower temperatures.

We are confident that our present results do not suffer from the above-mentioned con
vergence problems. As we have shown (Figure 3-3), the difference between approximations 
to different orders in the parameter fit is rather small, and adding the interaction also does 
not change the result considerably. Thus we believe the eighth-order non-interacting hole 
approximation to be sufficient to describe the qualitative behavior, and to obtain a good indi
cation for numerical values. We may add that, as a check, we have compared the free energy 
from calculations by this method to results following directly from the series expansions, 
at fit 0.5, where the expansions are almost exact, and that these result Agree very well. 
It is clear, however, that also this new method is not valid for very low temperatures. From 
Figures 3-4 to 3-6 one can see that it is unreliable for p ~ ^7, and it is not evident at which 
temperature exactly the approximation breaks down. We believe, however, that our method 
gives an accurate description of the tendencies in the half-filled system at infinite U, and of 
the qualitative behavior up to nh « 0.2.

We observe strong indications for a region of ferromagnetic behavior in the magnetic 
phase diagram, near half filling. From these observations, based on the work on series ex
pansions, we cannot definitely conclude of which type possibly existing magnetic phases 
may be. In a way similar to the theorem of Mermin and Wagner for the Heisenberg model, 
Walker and Ruijgrok [58] and Ghosh [59] have proved that the Hubbard model in one and 
two dimensions can not have long-range magnetic ordering, and Uhrig [60] has extended 
this result to also exclude planar magnetic ordering in the 3-dimensional case. These argu
ments do not rule out other kinds (like the Kosterlitz-Thouless type) of phase transitions 
at finite temperature, nor the possibility of long-range magnetic order at T = 0. A compli
cation is in the fact that our method relies heavily on the short-range information from the 
high-temperature expansion (which is obtained via calculations on small systems). It gives 
similar results for the square and the simple cubic lattices, although one may expect differ
ent kinds of phases to occur. Furthermore, due to the thermodynamic approach in which all 
possible states are taken into account, our method cannot distinguish special states that may 
start to dominate the system at low temperatures. Such states, if any, are not recognized by 
the high-temperature expansion.

Our method currently fails to describe the case of a paramagnetic-antiferromagnetic 
transition, due to the fact that the spin background, which gives rise to divergences, is not 
treated correctly off half filling. We can therefore calculate only possible second-order phase 
transitions between a paramagnetic and a ferromagnetic phase, for the case of finite hole 
density. At half filling, we do find a finite Neel temperature for any finite value of the param
eter fiU (see Figure 3-7). This implies that, near or at half filling, there is a transition from 
a paramagnetic to an antiferromagnetic state at a higher temperature than the calculated



Summary, discussion, and conclusions 101

paramagnetic-ferromagnetic transition. Thus, at such low density, the paramagnetic-ferro
magnetic transition is preempted by the paramagnetic-antiferromagnetic transition, and one 
must study the antiferromagnetic-ferromagnetic transition to determine the ground-state be
havior.

In the second part of this thesis we describe a way to apply Green function Monte Carlo 
to the problem of fermions on a lattice. In principle, by quantum Monte Carlo methods, 
exact information on the ground state can be obtained directly. Due to the fermionic char
acter of the particles the sign problem arises, making it difficult to control the statistical 
fluctuations in these methods. We have developed a method to avoid this problem. In first 
instance, it leads to an upper bound for the ground-state energy by means of fixed-node 
Monte Carlo. After that, it gives a possibility to obtain exact values by nodal relaxation 
(the power method) if the fixed-node approximation is good enough. As we have demon
strated by a number of examples in Section 5.3, the fixed-node Monte Carlo method works 
well in some cases, but in other cases better understanding of the representation of physical 
properties in the structure of the trial wave function is needed. We have not yet been able 
to obtain information on the magnetic behavior of the Hubbard model by means of these 
Monte Carlo simulations, so we will have to rely on exact and numerical calculations and 
their implications as described by other authors.

Recently, Zhang et al. [35] presented a method that is very similar to FNMC. They com
bine diffusion in a space of Slater determinants, as discussed by Fahy and Hamann [61], with 
the fixed-node idea to keep a positive overlap with the trial wave function. They claim that 
this constrained-path Monte Carlo method (CPMC) has important advantages over FNMC, 
amongst which a much better way to calculate the expectation value of non-commuting op
erators. However, as Ceperley [62] pointed out, their method is restricted to Slater deter
minants as trial functions, whereas FNMC can handle many different kinds of trial wave 
functions. Therefore, CPMC is likely to work well only if the ground state is close to a 
Hartree-Fock solution.

Let us return to the question of magnetism in the Hubbard model. One issue of interest in 
the literature is for what range of hole densities ferromagnetism may exist. If a ferromag
netic phase exists, it is very likely to occur at hole densities below nh « 1/3. Many au
thors find indications that support this statement. Yedidia [63] and Yang and Thompson [64] 
have pointed out that the particles in the strongly correlated Hubbard model behave like 
free fermions at about this density. Shastry et al. [65] have shown that the Nagaoka state 
becomes unstable above a certain hole concentration. Von der Linden and Edwards [66] 
use a variational approach to find a ferromagnetic region in the T = 0 phase diagram of 
the square-lattice Hubbard model. They rigorously conclude that the state of complete spin 
alignment is unstable when «h > 0.29, for all U, and when U/t < 42, for all nh. The latter 
value is significantly higher than the value U/t ~ 15 above which we find ferromagnetism, 
but we assume that that is due to the fact that they consider only strong ferromagnetism 
(full alignment of the spins), whereas our method may also include weak ferromagnetism. 
Putikka et al. [67] have performed a high-temperature expansion like ours, for the related



102 Summary, discussion, and conclusions

t—J-model. For small positive J and near half filling, this model becomes equivalent to the 
Hubbard model for large U. As in the case of the infinite-U Hubbard model, its configuration 
space is of dimension 3N instead of 4N, since doubly occupied sites are excluded. They have 
succeeded in pushing the series to higher orders for this model (up to 10 in case of finite J 
and up to 14 for J = 0). They find a region of weak ferromagnetism (or ferrimagnetism, 
i.e., the spins are not fully aligned) for small positive J, at hole density nh < 0.28 ± 0.05. 
From our own extrapolations, we find similar results (nh ~ 0.28, see Figure 3-3). Using 
an approximation of an entirely different nature, the slave-boson mean-field approach (at 
T = 0), Denteneer and Blaauboer [52] find a critical hole density nh = 1/3 for ferromag
netism to occur at U = oo. It is encouraging to note that some of our other results are in 
reasonable quantitative agreement with theirs: they find that the value of U/t above which 
ferromagnetism can occur, is U/t = 20 (at nh = 0.17), whereas one may extrapolate the 
results of Figure 3-4(a) to T = Oto find U/t = 15 (atnh = 0.15). Another comparison that 
can be made is for the relation between the Neel temperature and U/t in the half-filled sys
tem. From Figure 3-7 one can calculate that the paramagnetic-antiferromagnetic transition 
occurs for kTn ra 3.85r/ U. The large-U Hubbard model at half filling is known to be equiv
alent to an antiferromagnetic Heisenberg spin model, for which estimates of the values of 
the critical temperature are given in [68]. According to the results mentioned there, the re
lation would be kJ~n rs 3.80t/U, which is in very good agreement.

Another question concerns the type of ferromagnetism that may occur. In the Nagaoka 
state, all spins are aligned to point in the same direction, but this is not necessarily true for 
ferromagnetic behavior. In fact, many authors point out that the fully polarized ferromagnet 
cannot be the ground-state of the system at any finite hole concentration. Wan [69] claims 
that he has proved this for the U = oo problem, by using a transformation to map this prob
lem onto a bosonic representation, and showing that the ground state in this representation 
is below the lowest ferromagnetic solution. Although the ferromagnetic state appears to be 
stable against a single spin reversal, as claimed by Von der Linden and Edwards [66], Wan’s 
findings are supported by Fang etal. [56], Dou^ot and Wen [57], Angles d’Auriac et al. [70], 
and Siito [71]. They all show by exact calculations for finite systems with two or more holes 
that the fully polarized state is not stable against multiple spin flips in this case. On the other 
hand, several indications have been found that ferromagnetic behavior does survive the ther
modynamic limit. Riera and Young [50] consider small systems of increasing size to find the 
total spin for which the lowest energy is obtained (as described in Section 5.5), again in the 
case of infinite U. They note that the spin per electron in the ground-state, when averaging 
over different boundary conditions, increases with increasing system size. This is believed 
to be an indication that the spin per electron retains a finite value in the thermodynamic 
system, implying weak ferromagnetic behavior. This statement is supported by Barbieri et 
al. [72] and by Chiappe et al. [51], who claim to find indications for a stable magnetic phase 
in finite systems. It is not clear, however, in what respect finite-size effects are of influence 
in these calculations. We think that further investigations on larger systems will be needed 
to settle the answer to this question, and that fixed-node Monte Carlo simulations will be an 
important tool for this purpose.
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For finite temperature the indications are less convincing. From series expansion results, 
tendencies towards ferromagnetic behavior have been found, but an actual phase transition 
is hard to predict. Also, little is known about the antiferromagnetic tendencies, that dominate 
the system at half filling and are likely to persist at small hole densities for finite temperature. 
A noteworthy point is that with increasing temperature ferromagnetic nearest-neighbor cor
relations reverse into antiferromagnetic correlations (see Section 2.7). This behavior is hard 
to predict from an effective-spin Hamiltonian with temperature-independent coupling. It 
means that the notion of an effective-spin Hamiltonian is less useful for the Hubbard model. 
This approach has in fact been followed by Takahashi [73] and MacDonald et al. [74], who 
have derived an effective-spin Hamiltonian for the case of half filling, where we find that 
the correlations are antiferromagnetic for all temperatures. It may however not be possi
ble to meaningfully extend this off half filling. As was pointed out before, no long-range 
magnetic order can exist in the two-dimensional model, and no planar long-range order in 
three dimensions. Thompson et al. [64,75] suggest from their results in an infinite number 
of spatial dimensions that the strongly correlated Hubbard model does not undergo a mag
netic transition at a finite temperature, in any dimension and for any density. However, they 
do not exclude transitions of the Kosterlitz-Thouless type, where the magnetic susceptibil
ity is finite at non-zero temperature, but where correlations have a power-law decay below 
a certain critical temperature.

Finally, we mention the possibility of inhomogeneous phases appearing. In particular, 
antiferromagnetically structured domain wall phases have been reported to be stable against 
the incommensurate antiferromagnetic state at relatively small values of U, by Hartree- 
Fock [76], variational [77], and Monte Carlo [42,78] methods. Other interesting peculiar
ities include the magnetic textures and vortex-like states reported by Verges et al. [79] for 
intermediate values of U and high hole-doping, which Yonemitsu and Bishop [80] claim 
to be unstable against transverse spin fluctuations. These statements are all based on unre
stricted inhomogeneous Hartree-Fock approximations. The Monte Carlo methods presented 
in this thesis provide suitable tools to investigate these and other kinds of inhomogeneous 
structures.
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Nederlandse samenvatting

Over het magnetisch fasediagram van het Hubbard-model

Inzicht in het gedrag van wissel werkende elektronen is van het grootste belang om de eigen- 
schappen van zeer verschillende klassen van materialen te begrijpen, zoals de energetisch 
gunstigste vorm van kleine moleculen of magnetische en supergeleidende instabiliteiten in 
roostersystemen. Het eenvoudigste model waarmee gecorreleerde elektronen in een vaste 
stof kunnen worden beschreven is het Hubbard-model. Oorspronkelijk werd dit model toe- 
gepast om magnetisme in overgangsmetalen te beschrijven. Recentere voorbeelden waarbij 
het model een rol speelt zijn pogingen om theorieen op te stellen met betrekking tot su- 
pergeleiding bij hoge temperaturen. Waarschijnlijk zijn voor de beschrijving van dat feno- 
meen eigenlijk ingewikkelder modellen nodig, maar zelfs dit simpele model is nog niet goed 
begrepen. Voor een-dimensionale systemen zijn exacte resultaten bekend, maar verder zijn 
exacte berekeningen alleen gedaan voor kleine systemen, of zijn Monte Carlo-simulaties 
gebruikt.

In het Hubbard-model worden elektronen voorgesteld als deeltjes die gekarakteriseerd 
worden door een positie en door een spin toestand. De deeltjes kunnen zich alleen op roos- 
terplaatsen bevinden (die de ionen in een metaal voorstellen), en ze kunnen van de ene plaats 
naar een andere, naastgelegen plaats springen. Dit springen gebeurt met een frequence t/h, 
waarbij t de overlap aangeeft tussen twee toestanden die van elkaar verschillen doordat 
een elektron naar een naastgelegen positie is gesprongen, en waarbij h de constante van 
Planck is. De spin van een elektron heeft slechts twee mogelijke waarden, meestal aange- 
duid met ‘op’ (+1/2 of f) en ‘neer’ (—1/2 of j.). Op grond van de halftallige spin moeten 
de elektronen voldoen aan het Pauli- (ook wel uitsluitings-'jpnncipe voor fermionen. Dit 
betekent dat de elektronen beperkt zijn in hun bewegingsvrijheid: twee elektronen met ge- 
lijke spin kunnen zich niet op dezelfde positie bevinden. Elektronen met tegengestelde spin 
kunnen dit wel, maar dit gaat gepaard met een toename van de energie met een bedrag 
U, wat een versimpelde vorm is van de Coulomb-afstoting tussen gelijknamige ladingen. 
Door de wederzijdse beinvloeding van de spins van de elektronen bij het springen over het 
rooster, vanwege het Pauli-principe en de prijs voor het bij elkaar zetten van twee elektro
nen met tegengestelde spin, kunnen de elektronen magnetisch gedrag vertonen (itinerant 
magnetisme).

Hoewel er slechts twee energieparameters zijn (U en r), bezit het model een rijk gescha- 
keerd fasediagram, waarvan de lage-temperatuur fase nog steeds vele geheimen herbergt. 
Uit een groot aantal al dan niet exacte berekeningen is reeds min of meer betrouwbare infor
matie verkregen over de mogelijke fasen. Er kunnen zowel antiferromagnetische als ferro- 
magnetische tendensen worden aangetoond, en naar het zich laat aanzien een hele reeks van 
variaties hierop. Er is een algemene tendens naar antiferromagnetische ordeningen, welke 
overtuigend zijn aangetoond in het een-dimensionale geval. In dat geval is voor iedere eindi-
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1 Dit is een systeem waarin prccies evenveel elektronen aanwezig zijn als er roosterplaatsen zijn.
2Dit zijn roosters die men kan beschouwen als opgebouwd uit twee equivalente subroosters, waarbij alle 

buren van een willekeurig roosterpunt op het andere subrooster liggen.
3Indien op een roosterplaats gecn elektronen aanwezig zijn spreekt men over een gat. Op een rooster met 

ten gat is derhalve 66n elektron minder aanwezig dan er roosterplaaten zijn.

ge waarde van U de grondtoestand van het halfgevulde systeem1 een antiferromagnetische 
isolator. Voor hoger-dimensionale systemen zijn de mogelijk voorkomende fasen minder 
goed begrepen. Men neemt aan dat ook hier het halfgevulde systeem antiferromagnetisch 
is. Verder kan men laten zien dat het model supergeleidend is bij negatieve U, onder om- 
standigheden die te relateren zijn aan die waar het antiferromagnetisch is bij positieve U. 
Een verrassend resultaat is bekend voor bipartiete roosters2 met een gat,3 die een ferromag- 
netische grondtoestand blijken te hebben als de afstoting tussen de elektronen oneindig sterk 
is.

Vele onderzoekers hebben het gedrag van het model bij grote waarde van de interac- 
tie U en lage gatendichtheid bestudeerd, om te bepalen of de ferromagnetische grondtoe
stand beperkt is tot een punt in het fase-diagram, of deel uitmaakt van een groter gebied met 
ferromagnetisch gedrag. Diverse methoden zijn en worden daarvoor ingezet, waaronder 
exacte berekeningen aan kleine systemen, gemiddelde-veld benaderingen, Monte Carlo- 
simulaties en reeksontwikkelingsmethoden. Vele interessante resultaten geven enig inzicht 
in de kwestie van het magnetisme. Een eenduidig antwoord op deze vraag is echter nog niet 
gegeven.

In dit proefschrift pak ik dit probleem op twee zeer verschillende manieren aan. Na 
een beknopte beschrijving van het Hubbard-model (in hoofdstuk 1) geef ik in het eerste 
deel een beschrijving van het genereren van hoge-temperatuur reeksontwikkelingen voor 
het Hubbard-model en het interpreteren van de resultaten daarvan (hoofdstukken 2 en 3). 
De reeksen worden verkregen door de kinetische term (~ f) te beschouwen als een storing 
op de lokale (interactie) term (~ (/). Door een handige herschikking van de te berekenen 
termen kan de reeksontwikkeling herschreven worden als een sommatie over kleine sys
temen (de cluster expansie), waarvan de maximale grootte bepaald wordt door de orde in 
t die verkregen moet worden. De berekeningen kunnen dan eerst voor de kleinste clusters 
gedaan worden, en daama voor steeds grotere systemen, tot de beschikbare computercapa- 
citeit niet meer toereikend is om nog grotere clusters te behandelen. Op deze wijze bereken 
ik reeksontwikkelingen tot op achtste orde in t voor de groot-kanonieke potentiaal en di
verse grootheden die daarvan met behulp van thermodynamische vergelijkingen kunnen 
worden afgeleid, en verder voor correlatiefuncties tussen spins. Hieruit kunnen bij relatief 
hoge temperaturen enige aanwijzingen voor ferromagnetisch gedrag worden gevonden, met 
name in de vorm van ferromagnetische naaste-buur correlaties. Het is echter niet eenvoudig 
om de resultaten voor hoge temperaturen naar lagere temperaturen te extrapoleren. Omdat 
op de bipartiete roosters waarmee ik werk oneven ordes in t niet voorkomen, staan er fei- 
telijk maar 5 termen ter beschikking. Dit blijkt niet voldoende te zijn om met standaardme- 
thoden betrouwbare informatie over het lage-temperaturen gedrag af te leiden.

In hoofdstuk 3 behandel ik daarom een nieuwe methode om een extrapolatie van de 
resultaten van de reeksontwikkelingen te maken. Deze methode is toegespitst op het ge-
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bied van het fasediagram waarin ferromagnetisme wordt verwacht: lage gatendichtheid en 
grote interactiesterkte. De thermodynamische grootheden worden uitgedrukt in termen van 
een toestandsdichtheid voor de gaten. Het magnetisch karakter van de spins wordt hier- 
bij opgenomen in een beschrijving van het halfgevulde systeem, waarop vervolgens cor- 
recties worden aangebracht door al dan niet wisselwerkende gaten te beschouwen. De toe
standsdichtheid kan worden uitgerekend door momenten te bepalen op grond van de hoge- 
temperatuur reeksontwikkelingen. Bij oneindige U kan hiermee voor de uniforme suscep- 
tibiliteit een extrapolatie tot temperatuur nul verkregen worden. Voor eindige U meet de 
spinachtergrond nog steeds door een reeksontwikkeling beschreven worden, maar kan wel 
tot zeer lage temperatuur geextrapoleerd worden. Uit analyse van de uniforme suscepti- 
biliteit vind ik aanwijzingen voor het bestaan van een gebied in het fasediagram waar het 
systeem ferromagnetisch geordend kan zijn. Om echter met zekerheid te kunnen conclude- 
ren dat dat ook werkelijk de toestand van het systeem is, zou ook met antiferromagnetische 
of nog andere ordeningen vergeleken moeten worden. Daarvoor blijkt deze methode echter 
niet geschikt te zijn.

In het tweede deel van het proefschrift (hoofdstukken 4 en 5) beschrijf ik een methode 
waarmee het probleem vanuit een heel andere invalshoek bekeken kan worden. Met Green- 
Functie Monte Carlo-simulaties (GFMC) kan direct informatie over de grondtoestand van 
het systeem verkregen worden. Het idee van Monte Carlo-simulaties is dat een sommatie 
(of integraal) in een grote ruimte die vanwege de grote dimensie van die ruimte niet voiledig 
kan worden uitgevoerd, toch zeer nauwkeurig kan worden uitgerekend door middel van 
stochastische wandelingen door die ruimte. De sommand wordt daarbij steeds lokaal be- 
rekend en gewogen, en na een voldoende aantal wandelingen van voldoende lengte wordt 
de exacte uitkomst verkregen met een maximaal gewenste statistische foutenmarge. Het is 
hierbij van belang dat de sommand geschreven kan worden als het produkt van een waar- 
schijnlijkheiden een gewicht, zodanig dat de wandelingen gegenereerd kunnen worden vol
gens die waarschijnlijkheid en gewogen met dat gewicht. In GFMC wordt hiervan gebruik 
gemaakt door de wandelingen te genereren met behulp van een ‘projectie’ operator die uit
gedrukt wordt in termen van de Hamiltoniaan, waarmee (formeel4) de grondtoestand uit een 
zo goed mogelijk gekozen begintoestand wordt gefilterd.

Een belangrijk probleem in het geval van fermionen, zoals in het Hubbard-model, komt 
voort uit het feit dat de golffunctie voor een dergelijk systeem antisymmetrisch5 moet zijn 
op grond van het Pauli-principe. Het gevolg hiervan is dat, bij toepassing van GFMC zon- 
der meer, de gewichten die aan de wandelingen moeten worden toegekend negatief kun
nen worden. Dit tekenprobleem kan zich op verschillende manieren manifesteren, maar het 
uiteindelijke resultaat is vrijwel altijd dat de onnauwkeurigheid in de berekening veel te 
groot wordt. Er zijn verschillende methoden bedacht om hier een mouw aan te passen. Ik 
beschrijf een methode (Fixed-Node Monte Carlo, FNMC), waarmee het probleem kan wor
den omzeild. Men kan de mogelijke stappen tijdens een wandeling onderscheiden in stap-

4In een praktische situatie kan men geen informatie krijgen over de waarde van de golffunctie in de grond
toestand, maar allcen over de cigenschappen van de grondtoestand.

sDil betekent dat de golffunctie een tegengestelde waarde moet aannemcn als twee deeltjes met gelijke 
spin worden verwisseld.
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pen die wel en stappen die niet tot het tekenprobleem leiden. Indien men nu de stappen 
die tot het tekenprobleem aanleiding geven eenvoudigweg verwijdert, wordt het probleem 
vermeden. De prijs die daarbij betaaid moet worden is dat feitelijk de eigenschappen van 
een andere Hamiltoniaan worden berekend, die niet dezelfde zijn als die van de Hamil
toniaan waarin men eigenlijk gei'nteresseerd is. Voor systemen waarbij de wandelingen in 
een continue ruimte worden uitgevoerd, wordt FNMC al enige tientallen jaren met succes 
toegepast. Men kan laten zien dat in dat geval de waarde van de energie die zo verkregen 
wordt altijd boven de ware waarde ligt, en in de praktijk meestal vrij dicht erbij. In het 
geval van het Hubbard-model hebben we echter te maken met een discrete configuratie- 
ruimte. Zonder meer weglaten van de ongewenste stappen leidt hier tot een resultaat voor 
de energie waarvoor geen enkel verband meer kan worden gegeven met de ware energie. In 
hoofdstuk 4 bewijs ik dat met een aantal extra aanpassingen van de Hamiltoniaan op basis 
van de begintoestand toch een bovengrens voor de energie gevonden kan worden, zodanig 
dat FNMC ook toepasbaar is op fermionen op een rooster.

Het laatste obstakel om deze methode met succes te kunnen toepassen is het vinden van 
een geschikte begintoestand. In hoofdstuk 5 laat ik zien dat in specifieke voorbeelden op 
relatief kleine systemen redelijke tot goede resultaten gevonden kunnen worden, maar ook 
dat de benadering staat of valt met de kwaliteit van de tekenstructuur van de begintoestand. 
Er zijn nog nauwelijks criteria bekend om te kunnen bepalen wat een goede tekenstructuur 
is, zodat er geen systematische manier bestaat om een goede begintoestand te construeren. 
Voordat met FNMC zinnige en betrouwbare informatie over het probleem van ferromag- 
netisme in het Hubbard-model verkregen kan worden, is nader inzicht hieromtrent nodig.

In de afsluitende paragraaf bespreek ik de resultaten die in dit proefschrift zijn afgeleid, 
in vergelijking met diverse bronnen uit de literatuur. De conclusie hiervan luidt dat er zeker 
aanwijzingen zijn voor het bestaan van een ferromagnetische fase in het twee- en drie-di- 
mensionale Hubbard-model, maar dat die nog uitgebreid vergeleken dienen te worden met 
andere mogelijke ordeningen, voor een definitief antwoord op de gestelde vragen gegeven 
kan worden.



Resumo en Esperanto

Pri la magneta fazodiagramo de la Hubbard-modelo

1 Duonokupita sistcmo cnhavas tiom da clektronqj kiom da latislokoj.

Pli profunda scio pri la konduto de interagantaj elektronoj tre gravas por kompreni la ecojn 
de tre malsamaj klasoj da materialoj, kiel la energie plej konvenan formon de etaj moleku- 
loj, au magnetajn kaj superkonduktivajn malstabilecojn en latiso-sistemoj. La plej simpla 
modelo, per kiu oni povas priskribi korelativigitajn elektronojn en solido, estas la Hubbard- 
modelo. Origine tiu ci modelo estis uzatapor priskribi magnetismon en transiraj metaloj. Pli 
fresdataj ekzemploj, en kiuj la modelo ludas rolon, koncemas klopodojn starigi teoriojn pri 
superkonduktiveco ce altaj temperaturoj. Por priskribi tiun lastan fenomenon oni supoze- 
ble bezonas pli komplikajn modelojn, sed ec tiu ci simpla modelo ne jam estas bone kom- 
prenata. Por unudimensiaj sistemoj ekzaktaj rezultoj estas konataj, sed krome efektivigis 
ekzaktaj kalkuloj nur por malgrandaj sistemoj, au uzigis Montekarlo-simuladoj.

En la Hubbard-modelo elektronoj prezentigas kiel partikloj karakterizitaj de pozicio kaj 
de spinmomanto. La partikloj povas trovigi nuren la latislokoj (kiuj reprezentas lajonojnen 
metalo), kaj ili povas salti de unu loko al alia, najbara loko. Tiu saltado okazas kun frekven- 
co t/h, kie t estas la interkovrigo de du statoj, kiuj diferencas unu disde la alia per tio ke unu 
elektrono saltis al najbara pozicio, kaj kie h estas la konstanto de Planck. La elektronspino 
havas unu el du eblaj valoroj, indikitaj per 'supren' (+1/2 au f) kaj ‘malsupren’ (—1/2 au 
j,). Pro la duonvalora spinmomanto de la elektronoj validas la (ekskZudo-)principon de Pauli 
por fermionoj. Tio limigas la movigivon de la elektronoj: du elektronoj kun samaj spinoj ne 
povas trovigi en la sama loko. Elektronoj kun malsamaj spinoj ja povas trovigi en la sama 
loko, sed tion akompanas kresko de la energio per kvanto U. Tio estas simpligita formo de 
la forpusa kulombforto inter samspecaj sargoj. Pro lareciproka influado de laspinoj dumla 
elektronsaltoj sur la latiso, rezulte de la principo de Pauli kaj de la kosto (t.e. la energikresko) 
por kunmeti du elektronojn kun kontrauaj spinoj, la elektronoj povas elmontri magnetan 
konduton (itineranta magnetismo).

Kvankam gi havas nur du energiparametrojn t kaj U, la modelo posedas rice nuanci- 
tan fazodiagramon, kies malaltatemperatura fazo daure tenas multajn sekretojn. El multaj 
foje jes, foje ne ekzaktaj kalkuloj jam akirigis pli au malpli fidindaj informoj pri la eblaj 
fazoj. Pruveblas kaj antiferomagnetaj kaj feromagnetaj tendencoj, kaj atendindas multegaj 
variajoj inter tiuj du. La modelo generale emas al antiferomagnetaj ordigoj, kiujn oni kon- 
vinke pruvis por la unudimensia sistemo. Tiukaze je cu finia valoro de U la fundostato de 
la duonokupita sistemo1 estas antiferomagneta izolajo. La eblajn fazojn de sistemoj en pli 
altaj dimensioj oni malpli bone komprenas. Oni supozas ke ankau tie la duonokupita sis
temo estas antiferomagneta. Krome oni povas montri ke la modelo estas superkonduktiva 
je negativa U sub cirkonstancoj kiuj rekte rilatas al tiuj sub kiuj gi estas antiferomagneta
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2Dupartia latiso estas latiso kiun oni povas konsideri kicl kunmelon de du ckvivalentaj sublatisoj, del kc 
fiiuj najbaroj de ajna latisloko trovigas en la alia subladso.

3Se en ladsloko ne cstas elektrono, oni parolas pri two. Sekve, ladso kun unu two enhavas unu clektronon 
malpli ol ladslokojn.

je pozitiva U. Surpriza rezulto estas konata por dupartiaj latisoj2 kun unu truo,3 en kiuj oni 
trovas feromagnetan fundostaton, se la forpusa forto inter la elektronoj estas infinita.

Multaj esploristoj pristudis la konduton de la modelo en la kazo de granda interagado U 
kaj malgranda truodenseco, por precizigi cu la feromagneta fundostato estas limita al unu 
punkto en la fazodiagramo, au cu gi estas parto de pli granda regiono de feromagneta kon- 
duto. Portiooniuzasdiversajn metodojn, inter kiuj ekzaktaj kalkuladoj de malgrandaj siste- 
moj, mezkampaj aproksimadoj, Montekarlo-simuladoj kaj serioekspansioj. Multaj interesaj 
rezultoj iom prilumas la demandon pri magnetismo. Tamen, klara respondo al tiu demando 
ankorau ne ekzistas.

En tiu £i disertajo mi traktas tiun problemon lau du tre malsamaj manieroj. En la unua 
parto, koncize priskribinte la Hubbard-modelon en la unua capitro, mi klarigas la starigon 
de altatemperaturaj serioekspansioj por la Hubbard-modelo, kaj la manieron interpreti ties 
rezultojn (capitroj 2 kaj 3). Mi akiras la seriojn, konsiderante la kinetan termon (~ r) per- 
turbo de la loka (interaga) termo (~ U). Per lerta reordigo de la kalkulotaj termoj la ekspan- 
sioj povas esti reesprimataj kiel sumo de kontribuoj el etaj sistemoj (faskoekspansio), kies 
maksimuman grandecon difinas la ordo en r, kiun oni volas kalkuli. La kalkuladoj estas 
farataj, unue por la plej malgrandaj faskoj, poste por pli kaj pli grandaj, gis la disponebla 
komputila kapacito ne plu suficas por trakti pli grandajn sistemojn. Tiel mi kalkulas seri
ojn gis la oka ordo en t por la grandkanona potencialo kaj diversaj grandoj kiuj derivigas 
de gi pere de la termodinamikaj ekvacioj, kaj ankau por korelaciofunkcioj inter la spinoj. 
Ce relative altaj temperaturoj trovebias indikoj el tio por feromagneta konduto, en formo de 
feromagnetaj korelacioj inter najbaraj lokoj. Ne estas facile, tamen, eksterpoli la rezultojn 
de altaj al malaltaj temperaturoj. Car en dupartiaj latisoj, kiujn mi traktas, ne aperas mal- 
paraj ordoj en t, fakte nur 5 termoj disponeblas. Tio montrigas nesufica por derivi, pere de 
normaj metodoj, fidindajn informojn pri la konduto ce malaltaj temperaturoj.

Pro tio mi traktas en capitro 3 novan metodon por eksterpoli la rezultojn de la serioeks
pansioj. Gi taugas precipe por la parto de la fazodiagramo kie oni atendas feromagnetismon, 
t.e. je malgranda truodenseco kaj granda interagado. La termodinamikaj grandoj esprimigas 
en termoj de statodenso de la truoj. La magneta karaktero de la spinoj estas enplektita en 
priskribode laduonokupitasistemo, al kiu priskribo konsideroj pri truoj sen au kun interago 
alportas korektojn. La statodenson oni povas kalkuli, fiksante giajn momantojn surbaze de 
la serioekspansioj. Per tio oni je infinita U povas eksterpoli la unuforman susceptiblon gis 
temperaturo nula. Je finia U la spinfonon tamen priskribas serioekspansio, sed eblas gin 
eksterpoli gis tre malaltaj temperaturoj. Analizante la unuforman susceptiblon, mi trovas 
indikojn, ke ekzistas regiono en la fazodiagramo kie la sistemo povas ordigi feromagneta. 
Por konkludi kun certeco, ke tio estas la efektiva stato de la sistemo, necesas komparo kun 
antiferomagneta au aliaj ordigoj. Tiu ci metodo por tio tamen ne taugas.

En la dua parto de la disertajo (capitroj 4 kaj 5) mi okupigas pri metodo traktanta la 
problemon de tute alia elirpunkto. Per Green-Funkcio Montekarlo-simuladoj (Green Func-



Resumo en Esperanto 117

4Praktikc ne akireblas informoj pri la valoro de la fundostata ondofunkcio, nur pri la ecoj de la fundostalo. 
sTio signifas kc la ondofunkcio devas preni konlrauan valoron se du samspinaj partikloj interSangigas.

tion Monte Carlo, GFMC) akireblas informoj rekte pri la fundostato de la sistemo. En Mon- 
tekarlo-simulado, sumigo (au integralo) en granda spaco, kiun oni pro la granda dimensio 
de la spaco ne povas fari, tamen povas esti kalkulata tre precize per stokastaj promenoj en 
tiu spaco. La sumigato dum la promenoj ciam loke kalkuligas kaj pesigas, kaj post sufice 
multe da promenoj kun sufica longeco, oni akiras precizan respondon kun dezirita maksi- 
muma deviomargeno. Gravas en tio ke la sumigato povas esti interpretata kiel la produkto 
de probablo kaj pezo, tiel ka la promenoj povas esti elektataj lau tiu probablo, kaj pesataj 
lau tiu pezo. En GFMC oni tion eluzas, kreante la promenojn per ‘projekeia’ operatoro es- 
primita en termoj de la Hamiltoniano, per kiu operatoro oni (formale4) filtras la fundostaton 
el kiel eble plej bone elektita komenca stato.

Grava problemo en la kazo de fermionoj, do ankau en la Hubbard-modelo, devenas de 
la fakto ke la ondofunkcio por tia sistemo devas esti antisimetria5 pro la principo de Pauli. 
Sekve, se oni aplikas GFMC senkonsidere, la pezoj atribuendaj al la promenoj povas igi 
negativaj. Tiu ci signoproblemo povas manifestigi en diversaj manieroj, sed preskau ciam 
la malprecizo igas multe tro granda. Ekzistas pluraj metodoj por eltumigi el tiu problemo. 
Mi priskribas metodon, Fiks-Nodan Montekarlon (Fixed-Node Monte Carlo, FNMC), per 
kiu oni cirkauiras gin. Oni povas distingi la eblajn pasojn dum promenado kiuj kauzas la 
signoproblemon, disde tiuj kiuj ne kauzas gin. Se oni simple ellasas la pasojn kiuj kauzas la 
problemon, oni evitas gin. La malavantago kiu tion akompanas estas ke oni fakte kalkulas la 
ecojn de alia Hamiltoniano, malsamajn al tiuj de la Hamiltoniano pri kiu oni interesigas. Jam 
dum kelkaj jardekoj oni uzas FNMC en sistemoj ce kiuj la promenoj okazas en kontinuaj 
spacoj. Tie oni povas tiel arangi la aferon, ke la valoro de la energio trovita ciam superas 
la veran valoron, kaj en kutima situacio sufice bone proksimas gin. En la Hubbard-modelo 
ni havas alian situacion, car tie temas pri diskreta spaco. Ellasi la nedeziritajn pasojn sen 
pliaj adaptoj tiukaze rezultigas valoron de la energio sen klara rilato kun la vera energio. 
En capitro 4 mi pruvas ke oni povas adapti la Hamiltonianon surbaze de la komenca stato, 
tiel ke oni tamen akiras supran limon por la energio, kio igas FNMC aplikebla al fermionoj 
sur latiso.

La lasta obstaklo por sukcesa uzado de tiu ci metodo estas la neceso trovi taiigan komen- 
can staton. En capitro 5 mi montras per kelkaj specifaj ekzemploj por malgrandaj sistemoj 
ke akireblas sufice bonaj rezultoj, sed ankau ke la aproksimo tre dependas de la kvalitode la 
signostrukturo de la komenca stato. Apenau konatas kriterioj por scii kio estas bona signo- 
strukturo, tiel ke ne ekzistas sistema maniero por konstrui bonan komencan staton. Necesas 
pli adekvata kompreno pri tio, antau ol oni povas pere de FNMCekhavi utilajn kaj fidindajn 
informojn pri la problemo de feromagnetismo en la Hubbard-modelo.

En la fina paragrafo mi diskutas la rezultojn de la laboro priskribita en la prezentita dis- 
ertajo, komparante ilin kun diversaj fontoj en la fakjumalaro. Konklude, certe trovebias in- 
dikoj pri la ekzisto de feromagneta fazo en la du- kaj tridimensia Hubbard-modelo, sed nece
sas ampleksa komparo kun aliaj eblaj ordigoj antau ol oni povas doni definitivan respondon 
al la demandoj starigitaj.
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STELLINGEN

k mod m = 0 Fk mod Fm = 0.

10. Niet de taal is seksistisch, maar degene die haar gebruikt.

Danny ten Haaf
6 September 1995

9 C1 — e2 + £3 — £4 1 + e(-i)>c,

4n
waarbij de ej (j = 1,2,3,4) gesommeerd worden over de set {e} en de lj (j = 1,2,3,4) 
over de gehele getallen van -00 tot 00.

D.F.B. ten Haaf, afstudeerscriptie, Rijksuniversiteit te Leiden (1991).

7. Een gesprek tussen twee personen met verschillende moedertalen, dat in 66n van beide 
talen wordt gevoerd, is zelden diepgaand.

8. Het is verwonderlijk dat de meeste Nederlanders, ondernemers uitgezonderd, directe 
belastingen als meer belastend ervaren dan indirecte belastingen.

9. Om onderzoekers in opleiding te stimuleren snel bun proefschrift af te ronden, zou het 
effectiever zijn de korting op hun salaris gedurende de contractperiode niet af maar 
toe te laten nemen.

1. De nauwkeurigheid die veel kristallografen aan Rietveld-analyse toekennen berust op 
een grove overschatting van de toepasbaarheid van de methode der kleinste kwadraten.

H.M. Rietveld, J. Appl. Cryst. 2, 65 (1969).

2. Zij gegeven de Fibonacci-getallen Fk:

Fi = 1 ; F2 = 1 ; Fk = Fk~i + Fk-2 voor gehele k > 3, 

dan geldt voor gehele en positieve k en m:

5. Voor een volledige analyse van de diep-inelastische verstrooiingsexperimenten om de 
structuurfunctie F2 te bepalen bij kleine schalingsvariabele x, is het nodig om de 3e 
orde QCD correcties op de anomale dimensie uit te rekenen.

E.B. Zijlstra, proefschrift, Rijksuniversiteit te Leiden (1993).

4. Het indiceren van poederdiagrammen kan zeer veel efficienter dan tot op heden gedaan 
worden door gebruik te maken van recente ontwikkelingen op getaltheoretisch gebied.

A.K. Lenstra, H.W. Lenstra Jr. en L. Lovisz, Math. Ann. 261, 515 (1982).

3. Het is niet zinvol te proberen een golffunctie door middel van Jastrow-achtige factoren 
geschikter te maken als startfunctie in een Fixed-Node Monte Carlo-simulatie, tenzij 
de golffunctie in (bijna) de gehele faseruimte het juiste teken heeft.

Dit proefschrift, hoofdstuk 5.

6. Voor een willekeurige set eigenwaarden {e} geldt
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