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1 Introduction

1.1 Cuprate superconductors

The cuprates came into the focus of attention after the discovery in 1986 of superconduc­
tivity in these materials by Muller and Bednorz [1] . Compared to conventional supercon­
ductors, such as mercury and tin, the cuprates exhibit a vanishing electrical resistance up 
to relatively high temperatures (30 K - 125 K). The obvious practical applications of a 
material which superconducts at reasonable temperatures triggered a great amount of re­
search on the cuprates in the following years. The theories which had been successful in de­
scribing conventional superconductivity proved inadequate for the new materials. Indeed, 
conventional and cuprate superconductors have very different properties. The cuprates are 
doped Mott-insulators, while conventional superconductors are usually high electron den­
sity metals. The cuprates have a quasi two-dimensional structure, while conventional su­
perconductors are isotropic. Because of the lower dimensionality and the smaller density 
of charge-carriers, fluctuations play a much more important role in the cuprates than in 
conventional superconductors. Also, the cuprates have a tendency towards antiferromag­
netic order. This last point is somewhat unexpected, since superconductivity is related to 
attractive interactions between electrons, while antiferromagnetism arises as a result of re­
pulsive interactions. Superconductivity and antiferromagnetism were therefore expected to 
be mutually exclusive phenomena. 1

Thirteen years after their discovery, there is still no satisfactory theory describing the 
physics of the cuprate superconductors. It has in the mean time become clear that quantum 
mechanics and many-body effects play an important role in their physics.

The cuprates are a family of ceramic materials. Their common feature is the CuC>2 planes, 
shown in fig. 1-2. These planes are stacked in a lasagna-like structure. In the region be­
tween the planes sit rare-earth, oxygen and for some cuprates copper atoms. A cartoon of 
the crystallographic structure of LajCuOa is drawn in figure 1-1. The layers are evenly 
spaced for this system. In other cuprate materials, such as Y Ba2Cu3O7, there is an alter­
nating structure of closely spaced and more widely spaced layers. The coupling between 
the layers, both magnetic and electric, is small with respect to the interactions in the lay­
ers. Many of the models used to describe the physics of the cuprates therefore rely on a 
two-dimensional description , where only the planes are taken into account. This is also 
the case for most of the work presented in this thesis. The coupling between the planes and 
the interaction with the degrees of freedom in the interstitial regions is invoked in cases 
where it is important. In chapter 4, a bilayer spin-model is discussed, which was originally

1 Predating the discovery of superconductivity in the cuprates, a combination of antiferromagnetism and 
superconductivity had already been found in heavy fermion superconductors.
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proposed to describe some aspects of the spin-sector of Y BajCuaO? [2], This model takes 
into account the spin-spin coupling between the closely spaced CuO2-layers.
The CuO2 planes have a square-lattice structure, where the Cu-atoms form the sites of 
the lattice (fig. 1-2). Band-structure calculations show that the states close to the Fermi 
surface are related to the CuC>2-planes, supporting a quasi two-dimensional description. 
The undoped (no strontium) system has a half-filled Cu-band. This can be visualized in real 
space as there being one electron on every Cu-site in the plane. Since the band is found to 
be partially filled (in the band-structure approximation), there is no gap at the Fermi-surface 
and one would expect the system to be a conductor. However, correlation effects destroy 
the conductivity. The repulsive Coulomb-interaction between electrons causes a charge 
gap to open at the Fermi surface. This type of interactions-induced insulator is called a 
Mott insulator. The occurrence of this state at half-filling demonstrates the importance of 
many-body correlations in these materials.
Conductivity arises when electrons are removed from (or added to) the CuC^-layers. In 
La2CuOa, this is done by replacing a percentage of the La2+-atoms in the interstitial region 
with Sr3+. In YBa2Cu3C>7, the oxygen-concentration outside the planes is varied. In both 
cases, the chemical structure is changed in the interstitial region, not in the planes, and the 
main effect on the in-plane physics is the introduction of holes.
In fig. 1-3, a generic phase-diagram is shown for the cuprate materials as a function of 
the hole-doping x and temperature T. At zero doping, the system is an antiferromagnetic 
insulator. Hole doping leads to a rapid depression of the Neel temperature. After the an­
tiferromagnetism has disappeared, there is a region with spin-glass like behavior at low 
temperatures (the spin-dynamics slows down dramatically below a certain temperature, but 
there is no long-range magnetic order). This region is characterized by a gap, commonly 
called spin-gap or pseudo-gap, which disappears at a high, doping-dependent temperature 
7"*(x). Photo-emission experiments suggest that this gap and the one in the supercon­
ducting phase have the same origin, since they both exhibit d-wave symmetry and evolve 
continuously into each other [4]. The doping leads to a nonzero conductivity in this region,

Figure 1-1. A sketch of the structure of Laj-jSrxCuOj. No attempt al accuracy is made regarding 
the positions of the interstitial atoms.

Cu Cy plane 

Interstitial 
rare-earth and 
oxygen atoms



1.1 Cuprate superconductors 9

OO

@ @ © Q ©
oo

© @ @ @ ©
oo

(1.1.1)

(1.12)

The number operator = c^aCi„ measures the occupation of the (i, a)-state.

i

Figure 1-2. The CuOi-plane has a square-lattice structure. At zero doping, the system has a half­
filled Cu-band, giving one electron perCu-site.

where the summation ;> runs over the bonds of a square lattice. Second quantization­
notation is used. The fermion-operators create an electron with spin a at the Cu-site i. 
They satisfy the anticommutation relations

but its physics does not fit the Fermi liquid description of normal metals. Superconduc­
tivity sets in at x ~ 0.06. The critical temperature Tc(x) reaches its maximum at around 
x = 0.15 — 0.2 (optimal doping). The superconducting region to the left of the optimal 
doping is called underdoped, the region to the right overdoped. The normal state in the 
overdoped region is more like a normal metal, with Fermi liquid properties.
In doped La2CuO4, there is an anomaly at the doping x = g, where the system becomes 
an insulator under certain conditions. This is related to the formation of stripes, a form of 
collective charge and magnetic order, which is discussed in section 1.5. There are recent 
claims of a coexistence phase of antiferromagnetism and superconductivity in the regime 
x < | [7],
It has been argued [8] that the physics of the CuC>2 planes can be captured by the single­
band Hubbard model electrons in the CuC>2-planes are tightly bound to the Cu-atoms. 
Electrons can tunnel between neighboring copper sites. In addition, the model contains 
repulsive charge-charge interaction between electrons on the same site. It is given by

«-<E E(i
<«J> <t=H

{Q<7» — bij^QX »

♦ Cjx } = 0 .
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The first term in the Hubbard model describes the hopping of electrons between nearest- 
neighbor Cu-sites. The second is an on-site Coulomb repulsion between electrons. The 
chemical potential is included to fix the electron-density in the planes.

The interactions in this model are highly simplified. The use of models of this kind re­
lies on the principle of universality: microscopically very different models can yield the 
same physics at long wavelengths, or low energies. The Hubbard model is an appropriate 
description of the system, if the additional interactions which must be included to obtain 
a realistic Hamiltonian are irrelevant at the length scales of interest. Despite the apparent 
simplicity of the model, its physics is far from trivial and remains poorly understood.

The models which are considered in this thesis contain an additional simplification, which 
results from a projection to a low-energy sector of the Hilbert space. This projection re­
duces the number of degrees of freedom in the model and makes it bosonic. In the next 
section, it is discussed how the Hubbard model at half-filling (which describes an anti­
ferromagnetic Mott insulator) can be mapped onto a Heisenberg spin model through such 
a projection. In chapter 2 a similar procedure is used for the charge ordered stripe state, 
yielding a spatially anisotropic Heisenberg spin model. Using this model, the spin-sector 
in an ordered stripe state is analyzed. The results provide a connection between the behav­
ior in the magnetic sector and the charge-properties of the stripe phase. In chapter 3, a new 
type of coherent state is introduced. This state is especially suited for the semi-classical 
description of bosonic systems with a finite number of degrees of freedom per site which
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1.2 Two dimensional quantum antiferromagnets

1.2.1 The large U limit of the Hubbard model.

(1.2.1)

The exchange-constant J is given by yy. The spin operators S read

(1.2.2)

where aa is a Pauli spin-matrix.

(1.2.3)

1 
4

undergo a quantum phase transition. The coherent state is applied to the bilayer Heisenberg 
antiferromagnet in chapter 4. In chapter 5, a model for strong-coupling superconductivity 
is studied. We arrive at it through a projection to a local Hilbert space which contains only 
nearest-neighbor pairs of electrons or holes. The coherent state of chapter 3 is also ap­
plied to this model, which describes in a simple way the interplay between spin-ordering 
and superconductivity. The main goal of this analysis is to demonstrate the possibility of 
a coexistence phase of antiferromagnetism and superconductivity. The connection is made 
between this microscopic strong-coupling description and the recently proposed SO(5)- 
approach to antiferromagnetism and superconductivity.

0 -i
i 0

The low-energy sector of the Hubbard model simplifies significantly for the case of half­
filling and large y. In the absence of the kinetic term, every site is singly occupied in 
the groundstate. Switching on t, one finds that any hop involves the creation of an on-site 
singlet at an energy cost U. The half-filled system is therefore an insulator, with a gap of 
order U towards charge excitations. This type of interactions-induced insulator is called a 
Mott-Hubbard insulator. The only low-energy degrees of freedom left in the system are the 
spins of the localized electrons.
Virtual excitations across the charge gap induce an effective interaction between the spins. 
Since electrons can only hop onto sites where the spin is anti-parallel to their own, neigh­
boring electrons can lower the kinetic energy of the system by anti-aligning their spins.
Indeed, the Hubbard model at half-filling can be mapped onto the antiferromagnetic Heisen­
berg spin model by integrating out the charge-excitations. The resulting Hamiltonian acts 
on the projected Hilbert space, where double site-occupancy is forbidden.

S" = 5(Ct’Cl)CT"(c; )’

+ O(^).

1 0
0 -1

H = J
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(1.2.4)

1.2.2 Spontaneous symmetry breaking, Goldstone modes

(1.2.5)H =

(1.2.6)

As the half-filled system has every site singly occupied, the operator n, in eq. (1.2.1) can 
by replaced by one. It contributes a shift in the groundstate energy.
The above procedure can also be followed at lower fillings. Away from half-filling, it 
becomes possible for charges to move without causing double occupancy. The effective 
Hamiltonian on the projected Hilbert space therefore contains both spin-spin interactions 
and hopping-terms. A much-studied model of this type is the t — J model:

The staggered magnetic field explicitly breaks the SU (2) rotational symmetry of the Hamil­
tonian. Sending H to zero before taking the thermodynamic limit results in an infinite-N 
groundstate which is SU(2)-symmetric. This is not necessarily the case when the order of 
the limits is reversed. The system is said to exhibit spontaneous symmetry breaking if

The Heisenberg Hamiltonian has a global rotational symmetry. On the classical level, this 
means that the Hamiltonian is invariant under global rotations of the spin-vectors S,. For 
the quantum system, it implies that H commutes with the generators of global SU (2) 
transformations S“o,. If a spin-ordering transition occurs at some critical temperature, the 
rotational symmetry is spontaneously broken. Spontaneous symmetry breaking is a feature 
specific to systems with an infinite number of degrees of freedom. We give a definition of 
the process, focusing specifically on the case of the Heisenberg antiferromagnet [3].
Consider the Heisenberg Hamiltonian on a finite lattice in a staggered magnetic field:

The projection-operators in the hopping-term ensure that no doubly occupied states are 
created. A derivation of this Hamiltonian from the Hubbard model in the large U limit 
yields an additional term: a combination of a spin-spin interaction and a hopping process. 
For reasons of simplicity, this term is usually omitted. A model of the t — J type is discussed 
in chapter 5.

+j 52 $ ■ _ ■
<>;> >

ni,^a)claCj,a + (1

N N
J E Si Sj-^i-iy^Hsf.

ci,a^)cL
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(1-2.7)

Consequently, the symmetry-broken state is characterized by an order-parameter which 
becomes non-zero. In this case, it is the spontaneous staggered magnetization:

l N 1 N

Due to the rotation invariance of the model, the order-parameter can be chosen in any 
direction by changing the orientation of the symmetry-breaking field. This freedom to ro­
tate the order parameter gives rise to low-energy collective modes which involve spatial 
modulations of ($,): the Goldstone modes. These modes have a vanishing energy at the 
ordering wave-vector, where the modulation of (S,) amounts to a global rotation of the 
order-parameter. Goldstone modes appear in al! systems which exhibit spontaneous break­
ing of a global continuous symmetry .

For quantum systems, two types of symmetry-breaking need to be distinguished: exact 
and non-exact. Exact symmetry-breaking occurs if the symmetry-breaking field commutes 
with the Hamiltonian. The ordered state which results is an eigenstate of the Hamiltonian. 
The elementary excitations for these systems have a quadratic dispersion. An example of 
this type of spontaneous symmetry breaking is the ordered ferromagnet. In systems with 
non-exact symmetry breaking, the ordered state is not an eigenstate of the Hamiltonian, but 
can instead be thought of as a superposition of a number of low-energy eigenstates which 
become degenerate in the thermodynamic limit. Their Goldstone modes have a linear dis­
persion. The Heisenberg antiferromagnet exhibits symmetry breaking of this type. Another 
example is the breaking of translational symmetry in a crystal, which gives rise to acoustic 
phonons.
The Goldstone modes dominate the low-energy physics of the ordered states. Occupation 
of the Goldstone excitations results in a reduced value of the order-parameter. There is a 
theorem due to Mermin and Wagner [5], which states that, for the case of 1 and 2 dimen­
sions, the Goldstone modes completely disorder the symmetry-broken state at any finite 
temperature. Spontaneous breaking of a continuous symmetry in a model with short-range 
interactions is therefore not possible at non-zero temperatures in 1 and 2 dimensions. This 
theorem also holds for the case of classical systems. As we shall discuss in section 1.3, the 
T = 0 one-dimensional quantum Heisenberg model can be mapped onto a finite T two- 
dimensional classical Heisenberg model. It follows that spontaneous rotational symmetry 
breaking in 1 dimension is not possible even at T = 0.
The Mermin-Wagner theorem implies that the two-dimensional antiferromagnet can only 
have long-range order at T = 0. The model eq. (1.2.1) therefore cannot reproduce the 
finite-temperature Neel order that is seen in the cuprates at half-filling. To achieve this, it is 
necessary to take into account the magnetic coupling between the perovskite planes, as well 
as the spin-anisotropies caused by the interstitial rare-earth atoms [9]. These additional in­
teractions introduce 3-dimensionaIity and break the SU (2)-invariance of the Hamiltonian.

2If the interactions are ‘sufficiently’ short-ranged.
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1.2.3 The large S expansion

(1.2.8)

(1.2.9)
2

Since these contributions are very small, it is possible to include them in a mean-field man­
ner, subsequent to a more accurate treatment of the two-dimensional, S(7(2)-symmetric 
degrees of freedom. This problem is addressed in chapter 2.

The general-S formulation of the Heisenberg model provides us with a convenient compu­
tational tool: the large S expansion. For S —>• oo, the quantum antiferromagnet becomes 
equivalent to its classical counterpart -this will be demonstrated below for the T = 0 case. 
Since the classical system has perfect Neel order at zero temperature, the same must be 
true for the quantum antiferromagnet in the large S limit. The Neel state can therefore be 
used as a zeroth order approximation in a semi-classical expansion in j.

The j-expansion is conveniently derived using the Holstein-Primakov boson representa­
tion for the spin-operators [6]:

Note that the lowest order term is indeed the energy of an ordered Neel state. After a trans­
formation to momentum space, the Hamiltonian can be diagonalized by the Bogoliubov

5“ = b'j2S. 1 - —
V 2S

In this representation, the maximally polarized state mz — S plays the role of a vacuum. 
The boson-operator creates excitations on this vacuum, which represent the states with 
lower mz. Since the number of states in a multiplet is finite, it is necessary to impose a con­
straint on the number of bosonic excitations: nt, < 2S. This constraint can be implemented 
by augmenting the Hamiltonian with projection operators. However, as long as (n/,) << 2S, 
the constraint will have no effects on the results and the projection operators can be omit­
ted. In practice, the ^-expansion only works inside the ordered state, where this condition 
is indeed satisfied.
Since we are considering antiferromagnetic ordering, it is necessary to introduce two spin­
sublattices A and B. On sublattice A, the preferred spin direction is up, on sublattice B it 
is down. Performing the St/(2) transformation Sf —► — Sf, Sf -> —S/ on the B sublattice 
and expanding the Hamiltonian to second order in the boson-operators (next-leading order 
in j), one obtains

■H = -dNJS2 + jsj Y (b}bi + b]bj + + bjb^ .

Sz = S-b'b,
— I fctfe

S+ = V2S.i------- b,
V 25
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transformation for bosons. This introduces the quasi-particles

ak = cosh(uk)b[ + sinh(u*)h_j , (1.2.10)

(1.2.11)

In terms of the new quasi-particles, the Hamiltonian is given by

(1.2.12)

where ujk is the spin-wave dispersion

(1.2.13)

(1.2.14)- 1
[ ddk ( 1

which are called antiferromagnons. They are the quantized Goldstone modes of the anti- 
ferromagnet. The parameter u* is fixed by the diagonalization condition

To this order in 5 (the Gaussian level), the antiferromagnons are freely propagating par­
ticles, with velocity cs = 1\fdJS. Spin-wave interactions show up in the higher order 
terms.
The antiferromagnetic order-parameter is reduced by the Gaussian fluctuations. At T = 0 
((na) = 0), the reduction is given by

. <55 = (b[bk) = ^

For d = 1, the integral in eq. (1.2.14) diverges, signalling the instability of T = 0 Neel 
order in one dimension. For d = 2, one finds SS = 0.197. This suggests that S — |- 
antifcrromagnetism can exist in two dimensions at zero temperature.
On the face of it, it might appear unjustifiable to apply the results of an expansion in | to the 
case 5 = |. Some justification for this procedure can be found by considering the higher 
order terms in the expansion. A calculation to order has been carried out by Igarashi 
[10], This work addresses the value of the order-parameter and the spin-wave velocity, as 
well as that of the spin-stiffness ps and the perpendicular susceptibility xj_. These two 
quantities determine the long-wavelength dynamics of the quantum antiferromagnet. The 
spin-stiffness is related to the energy cost of twisting the order-parameter along one of the 
crystal axes. The susceptibility measures the induced magnetization by a uniform magnetic

1tanh(2u*) = yk = j Y^cosfe).

H = -dNJS(S+ 1) +
k>0

<pk = 2d J S'! \ - yk = 2VdJS (k + O(k2)} .
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related to the spin-wave

M = S — 0.19660 +

Cj

(1.2.15)Ps

1.3 The quantum non-linear sigma model

1.3.1 Relation to the Heisenberg antiferromagnet

O

Table 1-1. Comparison between spin-wave and Monte Carlo-results for the renormalization-factors 
of X± and (ps = Zp JS2, etc.) , for the square lattice S = | antiferromagnet [10] [11]

= 2j2Js(l +

At long wavelengths, the quantum Heisenberg antiferromagnet can be described by an 
effective continuum-theory: the quantum non-linear sigma model (QNLS). This model was

field applied perpendicular to the spin-ordering vector. They are 
velocity by ps = x±c], Igarashi obtained the following results.

spin-wave
0.724
0.514
1.179

Quantum Monte Carlo
0.713
0.524
1.167

Difference
0.012
-0.01
0.012

Zp

Zx
Zc

[ ) contribution
-0.041
0.065
0.022

Notice that the prefactors of the order J, terms are small as compared to the lowest order 
corrections, although not negligible. This suggests that the main correction to the zeroth 
order term comes from the non-interacting spin-waves. Although | is not itself a small 
parameter for S ~ 1, an expansion in this parameter apparently still provides a way to 
organize the quantum-corrections into more and less important ones. As a result, the pref­
actors of the higher order terms become rapidly smaller, providing convergence even for 
S = j. This assumption appears to be confirmed by the good agreement between the above 
spin-wave results and recent high-precision Monte Carlo simulations by Kim and Troyer 
[11] (table 1-1).
The above spin-wave results will be used as input for a finite-temperature analysis in chap­
ter 2. In chapter 3, a technique closely related to the spin-wave expansion is applied to the 
problem of two coupled two-dimensional Heisenberg antiferromagnets.

0.0035
(25)2 ’

0.1579 0.0215(±0.0002) \
2S + (2S)2 ) '

0.235 
2S '

0.551
2S +

1 (2S)2
0.041 (±0.003) \

(2S)2 ) ’

0.065(±0.001)\
(2S)2 ) '

XX 87 ('
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(1.3.1)Z

with the action3

(1.3.2)

L

= I DPi]~[S(nl - l')e-s/n,

which is subject to periodic boundary conditions in the spatial and the imaginary time 
direction. The ^-function in the measure fixes the length of n;, which does not change 
under transversal fluctuations. It is this constraint which introduces non-linearity into the 
model. The unconstrained version of eq. (1.3.2) is called the sigma model. It describes a 
collection of non-interacting spin-waves.
The two parameters that appear in the action are the bare spin-stiffness and perpendicular 
susceptibility: in other words ps and x± defined at the lattice scale. The long-wavelength,

3Wc have taken the continuum limit, lattice-spacing to zero, in the action.

introduced by Chakravarty, Halperin and Nelson (CHN) in 1988 [12], as a generalization 
of the classical non-linear sigma model (CNLS), The latter had its origin in QCD, but had 
already been applied successfully to the description of classical Heisenberg spin systems, 
and to the quantum Heisenberg antiferromagnet at zero temperature [15]. The QNLS can 
be used to describe two-dimensional quantum antiferromagnets at non-zero temperatures, 
where the system has no long-range order and spin-wave theory breaks down.
We will use the QNLS in its path-integral formulation. In this formalism, a classical statisti­
cal mechanics problem is quantized by adding one extra dimension, the imaginary time di­
rection, on which periodic boundary conditions are imposed. At non-zero temperatures, the 
extend of this dimension becomes finite, ~ . For systems in which the time and space­
dimension enter in the same way, i.e. systems with dynamical critical exponent z = 1, 
quantum mechanics at finite temperatures becomes equivalent to classical statistical me­
chanics in a constrained volume. A discussion of this formalism can be found in the book 
of Fradkin [ 13] and in ref [14],
To obtain the QNLS, it is assumed that Neel order is well established at short distances. 
An order parameter n, can then be defined locally, as a spatial average of the staggered 
magnetization over one unit cell. The deviations from the local average, which give rise 
to longitudinal fluctuations of the order-parameter, are integrated out. One is left with an 
effective action for the low-energy transversal fluctuations of n,. This action is called the 
lattice rotor model. It describes the physics of rotors with a fixed length on a lattice. The 
QNLS is obtained by taking the lattice spacing to zero. This coarse graining procedure is 
discussed in the next section. In chapter 4, it is performed for the bilayer antiferromagnet, 
and in chapter 5 for an SO(5) symmetric model.
The partition function of the QNLS is given by

/d'x[x2(£) ,1 f^'1 s = d dT



18 Introduction

p° = JS2a2~d ; (1.3.3)

1.3.2 The classical non-linear sigma model

(1.3.4)

(1.3.5)

which is indeed the partition function for a classical continuum model.

or renormalized parameters are the ones actually measured in experiments (see table 1-1). 
They can be obtained from the QNLS in a renormalization-group calculation, using the 
bare parameters as input. This calculation is carried out in the appendix to chapter 2.
Haldane derived the non-linear sigma model from the Heisenberg model in the semi- 
classical large-5 limit [15]. He obtained the following values for the bare stiffness and 
susceptibility

where the last equivalence is due to the periodic boundary conditions. Hence, the dominant 
configurations are r-independent in the high-temperature limit. Eq. (1.3.1) then becomes

In the high-temperature limit, the QNLS must become equivalent to the CNLS. For T 3> 
p®, the size of the integration domain along the time-direction, Lr = ph, becomes very 
small. Since the partition function is dominated by configurations which vary slowly, we 
can expand in Lz

n(Lr,i) = n(0, x) + Lz^-+ O(L2) 
9r

= H(0,£).

-Zcnls = yDn]~[«(n?

where a is the lattice spacing of the related Heisenberg model. These are just the lowest- 
order term in the spin-wave expansions for ps and x±, or their mean-field values.
It should be noted that there is no way to accurately derive the bare parameters for, say, 
a QNLS describing an S = | system. The form of the QNLS is dictated by the fact the 
Heisenberg antiferromagnet is a vector model which has an acoustic mode. It will therefore 
be the same for a small 5 system as for the large 5 case derived by Haldane. The bare 
parameters entering the QNLS are however more or less phenomenological. Nevertheless, 
certain dependencies which are found in the large S limit, like ps ex J and x± 7- are 
probably true also for the actual bare parameters.
Finally, notice that the QNLS indeed reproduces the acoustic spin-wave mode of the or­
dered antiferromagnet. This is easily checked by noting that the QNLS action can be in­
terpreted as describing a set of coupled harmonic oscillators, where pf plays the role of a 
spring-constant and x° that of a mass. Its saddle-point equations therefore describes prop­
agating ‘sound-waves’, with a velocity c® = ^pz/x±-

0 a
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1.3.3 Cross-over diagram

x
(1.3.6)

5 = (1.3.7)

(1.3.8)

1

h
2-80

where A or is a cut-off in momentum space. All coordinates are now dimensionless. The 
QNLS action takes the Lorentz-invariant form

The number of parameters in the action can be reduced by one. Let us rescale the space 
and the lime coordinates in the following way:

The coupling constant vanishes in the classical S 
on the case d — 2.
As a function of go and temperature, the QNLS has three distinct regimes with qualitatively 
different behavior: the renormalized classical (RC), quantum disordered (QD) and quantum 
critical (QC) regime. These regimes are shown in the cross-over diagram figure 1-4. This 
diagram can be obtained from a momentum-shell renormalization analysis of the QNLS 
[12], The details of this analysis are discussed in the appendix to chapter 2.
There is an intuitive argument for understanding the various regions in this diagram, [12] 
[16], It is based on comparing the spatial length-scales in the problem with Lx. Since it 
relies on the Lorentz-invariance of the system, it is only strictly valid close to the critical 
point.
First, let us consider the action eq.(1.3.7) at zero-temperature. The imaginary time integra­
tion extends to infinity. Since z = 1, Z is in this case just the partition function of a classi­
cal non-linear sigma model in d + 1 dimensions, at a dimensionless temperature go (com­
pare equations (1.3.5) and (1.3.7) ). For the two-dimensional case, the zero-temperature 
problem is therefore equivalent to that of a classical Heisenberg antiferromagnet in three 
dimensions. This system undergoes a phase-transition to a Neel ordered state at a critical

4For d —► oo, go diverges, but its critical value (fig. 1-4) diverges faster, so this is also a classical limit.

2-Sd
80 =

dxo/

oo limit4. In the following, we focus

rfihc^A

Jo
a </—1

where go = -r-■ .The Lorentz-invariance of the model ensures that the dynamical critical 

exponent z is equal to one.
The dimensionless coupling constant go tunes the amount of quantum-fluctuations in the 
system. In the large S limit, it is given by (A is taken to be 1) [15]

ddx

Ax, 
xo = c°Ar ,
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Figure 1-4. cross-over diagram of the d=2 quantum non-linear sigma model

Antiferromagnetic long-range order gc

Coupling constant (g)

temperature. The T = 0 quantum system therefore exhibits an order-disorder transition at 
some finite go = gc-
As the temperature is increased from zero, the problem becomes that of a classical Heisen­
berg system in 2+1 dimensions, where one of the dimensions is compactified to a circle 
with circumference Lx. The system is no longer strictly three-dimensional and therefore 
cannot have true long-range order. In the region go < gc, the correlation length for Neel 
order becomes finite at non-zero temperatures. One finds an exponential scaling of the cor­
relation length with Lx: $ oc exp[2jrp°/J], Since quantum fluctuations are small for these 
values of go, it is possible to integrate out the imaginary time-dependence on the Gaussian 
level and obtain an effective 2d CNLS with a renormalized stiffness [12]. This motivates 
the designation ‘renormalized classical’ for this region of the cross over diagram.
In the disordered region go > gc, the T =0 correlation length is much shorter than Lx, so 
little will change as the temperature is increased from zero. Consequently, the correlation 
length only has a very weak dependence on temperature. This is the quantum disordered 
regime.
The cross-over from the quantum disordered to the quantum critical region occurs when 
the correlation length and Lx become of the same order. The system enters a region where 
Lx is the only relevant length-scale, since it is the shortest and acts as a cut-off. This leads 
to highly universal behavior. The correlation-length is given byf a Lr a |.
The cross-over from the renormalized classical to the quantum critical regime is found by 
comparing Lx to the characteristic length in the ordered Neel state, the Josephson correla-

Cut-off temp.

Renormalized Classical
$~exp(T7T)

Quantum Disordered
— constant

Quantum Critical

s. 1/T



1.3 The quantum non-linear sigma model 21

1.3.4 The quantum antiferromagnet at finite temperatures

(1.3.9)

(1.3.10)
1

1 +47rx±cs/A’

where gc = 4rr is the critical value of go, where both the stiffness and the susceptibility 
vanish. The spin-wave velocity undergoes no renormalization, cs = cj. Note that ps and x± 
are renormalized by the same factor. Comparing these results with those stated in table 1 -1, 
it becomes clear that the S —> oo expressions for the bare parameters are not very accurate. 
Since the renormalized values of the parameters are know with some accuracy (from spin­
wave theory and Monte Carlo simulations), it is possible to work backwards: determining 
the bare parameters from their renormalized values. CHN use the following expression

A one-loop renormalization calculation yields the following results for the zero-temperature 
renormalized stiffness and susceptibility [12]

go
4rr

which follows from eq. (1.3.9) and the definition of go- They take An = which 
ensures that the spherical Brillouin zone used for the QNLS has the same surface as the 
square Brillouin zone of the lattice antiferromagnet. With this choice of A, the spin-wave 
results for the renormalized stiffness and susceptibility yield go/4rr = 0.72. Consequently, 
the S = | antiferromagnet is still well within the ordered region.
With the bare parameters fixed, the QNLS can now be used to analyze the physics at non­
zero temperatures. The model has been successfully applied to the case of LajCuOa [12]. 
It also yields accurate fits to Quantum Monte Carlo simulations of the square lattice an­
tiferromagnet [11]. The renormalized classical regime is clearly observed. Unfortunately, 
it is found that the S = j system is still too well-ordered to exhibit quantum critical be­
havior. The lattice cut-off is reached before the cross-over to the QC regime can occur. 
This has motivated the search for microscopic systems in which the parameter go can be 
tuned through its critical value. All systems discussed in the following chapters have this 
property, and this is a main underlying theme of this thesis.

tion length fy = This is the length-scale which separates long-wavelength Goldstone 
fluctuations from short-wavelength critical fluctuations.

The quantum critical region ends at a high-temperature cut-off, where the correlation length 
is of the order of one lattice spacing and a continuum-description breaks down. This occurs 
roughly at kBT = p°.

- - <-£)•
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1.4 Spin coherent state path integral

1.4.1 Spin coherent states

|n) = S) _ (1.4.1)

(S, S|52|5, 5) - (S, 5|S|S, S')2 = 5(5 + 1) - S2 = S. (1.4.2)

|{n|n')|2 = 1 =>n = n', (1.4.3)

(n|S|n) = Sn . (1.4.4)

j 52(n i">«)=jsi e (1.4.5)

The quantum non-linear sigma model discussed in the previous section can be obtained 
in a semi-classical approach. In this section, the spin path-integral is formulated and the 
QNLS is extracted. The spin coherent state formalism provides a convenient framework in 
which to perform the semi-classical analysis.
The spin coherent state is given by [18] [13]

To obtain the coherent state, the SU(2) transformation /?(n) = e|9(cos^s)-sln4i‘> js per­
formed on the reference state. The property eq. (1.4.2) is conserved under R. The 51/(2) 
transformation is parametrized in such a way that states with a different n are physically 
distinct, i.e. they differ by more than a phase-factor. This implies

As a result, the expectation-value of a quantum spin-Hamiltonian with respect to a product 
wavefunction of these states yields the corresponding classical Hamiltonian.

5This is a proper definition of the coherent state for all values of h except at the south-pole, where the in­
dependence should disappear. Taking 15, —S) as the reference state, this problem is shifted to the north-pole. 
It is possible to use the definition eq. (1.4.1) for the northern- and the alternative definition for the southern 
hemisphere, patching the two coherent states together at the equator. In the following, small deviations of n 
from a preferred direction are considered and this problem does not play a role.

where n = (sin# cos</>, sin# sin$, cos#) 5. This state is constructed to reproduce the 
degrees of freedom of a classical spin. The reference state |S, S) is maximally classical 
in the sense that it minimizes the uncertainty in the Casimir operator:

but nof (n|n') = 0 for n 0 n‘. The coherent states are non-orthogonal.
Taking the expectation-value of the spin-operator with respect to the coherent state, we 
obtain a classical spin (a vector) of size S
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1 = (1.4.6)

(1.4.7)

1.4.2 The coherent state path-integral

The partition function of quantum statistical mechanics is given by

(1.4.8)

In a multi-spin Hilbert space, the prefactor acquires a power N (the number of spins) and 
the integration runs over all configurations {n}.
Due to the overcompleteness of the coherent state basis, the overlap between different 
coherent states is non-zero. It is given by

The spin coherent states form an overcomplete basis on the spin Hilbert space. It is possible 
to resolve the unity operator in terms of these states

Figure 1-5. The spherical triangle spanned by nlt n2, and the north pole. Its area can be defined in 
two ways, shown left and right.

Z = Tre-/,w
= Tre‘w'/* ,

25+ 1 
47T

y dn|n)(n|.

(nilnz) = (

where <t>(fi|, nj) is the area of the spherical triangle spanned by «i, hi and the north pole 
(fig. 1-5). Note that the definition of this area is ambiguous, since ‘inside’ and ‘outside’ 
cannot be properly defined on a sphere. The two definitions of the area are related by = 
4rr — <J>, giving rise to a phase-difference e'4'1'5 in the overlap between both possibilities. 
This should not have any observable consequences. This is indeed the case, since 5 is either 
integer or half-integer due to spin-quantization.

S 
e<S4>(Al.n2) _1 + zi| •

n2
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(1.4.9)Z =

The resolution of the identity eq. (1,4.6) is inserted between every two time-slices

(1.4.10)Z oc

(1.4.11)Z oc

(1.4.12)

(1.4.13)Z

with the Euclidean action

(1.4.14)

The configurations satisfy no = because of the periodic boundary conditions. Assum­
ing that the configurations are smooth as a function of imaginary time, eq. (1.4.10) can be 
expanded in ST. Using ({n,}|W|{n + j + 1)) = ({nj)|'H|{nJ}) + O(.5r), we obtain

The second term just yields the classical Heisenberg Hamiltonian eq. (1.4.5). The first term 
is the overlap between states on different time-slices, which follows from eq. (1.4.7). After 
expanding in <5r, it becomes

iS^4>(n,(r)) - JS2 £ n,(r) n;(r) .

N 
<{n;)|{n7+l)) = l + iSj2«r*(n,(r;)) + O(5,2),

lim
Nt -* cc 
»t -0

lim
Nt - oo 
*t -0

hm
Nt - oo 
«r -0

fi/l 
dr

= f Dne-^1,

/ N, \ N,

n / di">) n ■V=iJ ) f=i

where P — (kgT)~x. In the second line, we have identified ph = — it. With this identifica­
tion, the partition sum can be interpreted as an imaginary-time path-integral with periodic 
boundary conditions on the time interval of size ph.
The imaginary time interval is divided into Nr slices of thickness 5r. Subsequently, the 
limit Nt —► oo, <5r —> 0 is taken with NTSX = ph fixed. In this limit, the Trotter formula is 
applied [13]

where 6r4>(n,(Tj)) is the infinitesimal area n,(rj+i)) on the unit sphere.
Exponentiating and taking the time-continuum limit, the path-integral is obtained

p-SE[n] = / 
Jo
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m =

(1.4.15)

1.4.3 The long-wavelength effective action for quantum antiferromag- 
nets

The first term in the action is a Wess-Zumino term [13]. It is a phase-factor, which is given 
by the area traced out on the unit sphere by the circle-segment connecting n, (r) and the 
north-pole 6 In the absence of this term, eq. (1.4.13) is just the partition sum of a classical 
Heisenberg system. The Wess-Zumino term therefore drives all the quantum effects.

The assumption of local Neel order implies I <K 1. Using the identity m2 + I2 = 1, the 
unit vectors n i and n2 can be expressed in terms of the normalized Neel moment m and the

6In real time (i.c. not imaginary), the single spin path integral can be interpreted as that of a charged 
particle with vanishing mass S8x/2, which moves on the surface of a sphere. At the centre of the sphere is a 
monopole with magnetic charge S. In this interpretation, Swz is the Aharanov-Bohm phase of the particle, 
which is related to the magnetic flux through the area enclosed by the particle’s world-line. The ambiguity 
in the definition of this area, which was discussed earlier, then imposes the quantization condition on the 
magnetic charge S. The Dirac string of the monopole can be thought of as leaving the sphere at the south­
pole. This causes a divergence of the monopole vector potential at the south-pole, which, in the spin-picture, 
is related to the fact that the coherent state is ill-defined al this point.

j(«l-«2), 

7 = l(n1+n2).

On the classical level, antiferromagnets and ferromagnets in zero magnetic field are effec­
tively the same. The Hamiltonian of the classical antiferromagnet can be transformed into 
that of a ferromagnet by staggering the spins. For Heisenberg spin-operators, the commu­
tation relations are not invariant under Sa —S“ and this transformation is not possible. 
Hence, the fact that these two types of magnetism have different properties is a pure quan­
tum effect. In the path-integral formulation, this effect should have its origin in the Wess- 
Zumino term. This is indeed the case. Staggering the spins simply transforms J -> — J in 
the potential part of the action, such that it becomes the potential energy of a ferromagnet. 
In the Wess-Zumino term, however, it induces a staggering. This is different from what the 
term looks like in the action of a ferromagnet, where it has the same sign on every site.

Below, we derive a long-wavelength action for quantum anriferromagnets starting from 
the spin path-integral. For simplicity, we focus on the one-dimensional case, adding some 
remarks regarding higher dimensions. We use the method described in ref [17], which 
becomes particularly simple for the case of one dimension.

The derivation starts from the assumption that there is Neel ordering at least at distances 
of the order of a couple of lattice spacings. The spin-chain is divided into two-spin unit 
cells, labelled by the index x. In each unit cell, a N6el moment mx and an average spin Zx 
is defined.
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average spin.

(1.4.16)

(1.4.17)

)2 + 4Z?}]+JS2

(1.4.18)

inserting this in eq. (1.4.17) yields

•Seit.

(1.4.20)

Inserting this into the action and expanding to lowest relevant order in 7, we obtain, up to a 
constant

The second term in eq. (1.4.19) is the quantum non-linear sigma model eq. (1.3.2). The 
bare stiffness and susceptibility are given by

can be replaced by gradients 2a3xm(x),

■ dTmx x mx

The results for general dimensions were given in eq. (1.3.3).
As is discussed in the book of Fradkin [13], the first term in the action is related to the 
topology of the spin-configurations. In one dimension, it can be written as 2rrSQ, where 
the integer Q is a winding number . Such a winding number can be assigned to all smooth 
configurations {m(x, r)) with a finite action -which implies that m converges to a constant 
value at |(x, r)| —> oo. Since configurations with an infinite action are exponentially sup­
pressed, they need not be considered. The path-integral can therefore be written as a sum 
over the path-integrals for configurations with a particular winding-number, weighted by a 
phase-factor e,2j,^s = (—I)2®5. For integer 5, this phase-factor is always equal to 1 and 
the action reduces to the quantum non-linear sigma model. For half-integer S, however,

7 = x m - | 8xm ,

ps = J S2a ; xj_ = 77—
4Ja

f1"'. f. p- , - = J dr J dx 11 —m • dTm x

rflh r-5e = h dr)p|2iS/x
^2ZX ■ (mx+i - mx) 4- |(mx+) - m

In the continuum-limit, the differences mx+i — m. 
where a is the lattice constant.
The fields 7(_r) are integrated out, yielding an effective action for the Neel moments. Since 
eq. (1.4.17) is Gaussian in 7, this can be done simply by solving 1 from the Euler-Lagrange 
equations. We find

| (x±(8r"t)2 + Pr(8.r"')2)] • (1-4.19)
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1.5 Stripes and superconductivity

The problems which are discussed in chapters 2 and 5 are related to the existence of stripe­
order. This type of order is briefly introduced here and some of the properties of stripes are 
discussed.

the phase-factor is 1 for even and -1 for odd winding-numbers and the QNLS-description 
breaks down.

From this property of the topological term, Haldane [15] conjectured that all integer-spin 
chains have short-range correlations and a gapped spectrum, while all half-integer spin 
chains are qualitatively similar to the S = | chain and have a critical mode and quasi 
long-range spin correlations.

In dimensions higher than 1, the topological term seems not to play a role even for the case 
of half-integer spins. In a derivation of the effective action along the lines shown above for 
</ = I, this term is killed by local cancellations between different rows. This cancellation 
seems to hold also at large length scales, since the long-wavelength behavior of the two- 
dimensional S = j quantum antiferromagnet can be successfully described using a QNLS 
without the topological term [12] [19].
This statement also holds for the case of even-leg spin-ladders, where the same cancella­
tion occurs. From a QNLS perspective, it would therefore seem that even-leg spin-ladders 
and integer-spin chains are qualitatively similar, since they can both be described by a 
Id QNLS. And indeed, both systems form incompressible spin-liquids, meaning that they 
have a gapped spectrum and no apparent long-range order.
Analytical and numerical calculations, however, show that the S = 1 chain and the two- 
leg S = | ladder are in two different phases, separated by a critical point [20]. At this 
critical point, the spin-gap, which is present in both phases, closes. This phenomenon can 
be understood from the work of den Nijs and Rommelse [21], who performed an analysis 
of the spin-1 chain which did not rely on a mapping to a semi-classical continuum model. 
They showed that this system has 'hidden order’. This order is most easily visualized by 
going to a path-integral description of the spin-1 chain where the degree of freedom on 
every space-time point is the spin-component Sz, which can take the values 1, 0 or -1. The 
configuration on a single time-slice is then given by a sequence of these three numbers. 
In a system with perfect hidden order, removing all the zeroes in this sequence yields 
the antiferromagnetic configuration 1,-1,1 ,-l. It is possible to define a non-local order 
parameter for this phase. The order parameter is nonzero for the spin-1 chain, but zero for 
even-leg spin ladders, which implies that these two systems are qualitatively different, and 
should indeed be separated by a phase transition.
Nothing like hidden order appears in the continuum QNLS description, and it therefore 
does not capture all the physics of the integer-S spin chains. However, the QNLS does 
seem applicable to the even-leg spin ladders and to higher dimensional systems.
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Figure 1-6. An ordered stripe state.
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Stripes are structures which result from a collective ordering of holes and spins. They were 
first observed by Tranquada and coworkers, who performed neutron-scattering experiments 
on the spin-1 insulator La2-xSrxNiOt, a sister compound of the cuprate superconductors 
[22]. They found magnetic and charge peaks at incommensurate wave-vectors. This fits 
with a ‘stripe’ structure such as shown in fig. 1-6. The holes form lines which are anti-phase 
domain walls for the antiferromagnetic order of the spins. The spin-modulation has twice 
the period of the charge modulation, which gives the ratio 1:2 for the discommensuration 
vectors.

These structures had been predicted by Zaanen and Gunnarson in 1989 from a Hartree- 
Fock analysis of the Hubbard model [23]. Similiar calculations were performed by other 
groups [24], The hole densities obtained from the Hartree-Fock analysis are more spread 
out than has been drawn in figure 1-6, but they are indeed centered on sites, and there indeed 
is a total density of one hole per site along the stripes. The stripe state in the nickelates is 
an insulator. These various features of the nickelate stripes can be understood quite well 
from the Hartree-Fock analysis.

To get a feeling for why such structures might form, consider the case of a single hole in a 
N6el ordered antiferromagnet (fig. 1-7). If the hole moves away from its original position, it 
creates a string of ferromagnetic bonds, which costs exchange energy. The resulting string­
potential confines the hole to the neighborhood of its original position. In a stripe-structure, 
the lines of holes can move without creating ferromagnetic bonds, because of the phase­
change of the antiferromagnetic order across the stripes. This results in a lower kinetic 
energy for the stripes than for a system with uniformly distributed holes. In addition, there 
is the fact that a single hole breaks four antiferromagnetic bonds, while the holes in a stripe 
only break two each. This yields a lower potential energy for the stripe-state than for the
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Figure 1 -7. A moving hole in an antiferromagnetic background creates a string of broken bonds.

uniform configuration.
In the cuprate superconductors, neutron scattering measurements reveal dynamical stripe­
correlations in the underdoped region. The stripes are stabilized at the commensuration 
point x = |, where the spacing between stripes is precisely four lattice constants. The 
cuprate stripes are different from those in the nickelates. They have a filling of half a hole 
per site and the behavior of the magnetic sector suggests that they are centered on the 
bonds rather than on the sites [41], Recent elastic neutron scattering experiments show 
static stripe correlations at dopings close to x = | (fig. 1-8) [27], while muon-scattering 
experiments suggest that low-temperature static stripe order occurs throughout the super­
conducting region forx < | [7].
The cuprate stripes can be stabilized by inducing a buckling in the perovskite plane, which 
acts as a pinning potential. This is done by replacing La-atoms by Eu or Nd, which causes 
a transition from low-temperature orthogonal (LTO) to low-temperature tetragonal (LTT) 
order for the lattice. In the LTT phase, stripes are stable over a range of dopings. The LTT 
deformation can be varied by varying the Eu or Nd doping. Also stripes stabilized by this 
mechanism seem to coexist with superconductivity for x < | [28]. The superconductivity 
has a low Tc, but is remarkably robust with respect to large magnetic fields. This suggests 
that one is not dealing with weak-link superconductivity, where there is a phase-separation 
between stripe-ordered regions and superconducting regions, but rather with true micro- • 
scopic coexistence.
Quantum fluctuations play a more important role in the cuprates than in the nickelates and 
the cuprate stripes are not well described by the Hartree-Fock theory. Scalapino and White 
find stripes in density matrix renormalization group calculations of the t-J model which 
are closer to what is seen in the cuprates [25]. The DMRG-stripes are bond-centered and, 
near the doping x = |, half-filled. Furthermore, the holes are found to form short-range 
d-wave pairs at low densities before ordering into a stripe phase at higher densities, which 
may be related to the observation of coexisting stripe order and superconductivity.
The microscopic origin of the stripe phase is not addressed in this thesis. However, much 
insight can be gained by a Ginzburg-Landau analysis, which relies on an expansion of the
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(1.5.1)=> H -> H.

(1.5.2)

The above symmetry implies that every term in the Hamiltonian has the same number of 
creation and annihilation operators. It is therefore related to the conservation of particles. 
In the superconducting state, the phase <j> orders in a preferred global direction, and particle 
number is no longer conserved. The order-parameter

Coexistence phase (Maisushiia ei. al.)

[ d-wave
I superconductor

Coexistence phase 
( Tranquada et. al. )

t
T

free energy in terms of the charge- and the spin order parameter of the stripe phase. Such 
an expansion is valid close to the onset temperature for stripe-order, where these order 
parameters are small. Zachar, Emery and Kivelson have performed a mean field analysis of 
this type , in which gradients of the order-parameter fields are not included. Their results 
are discussed in the first section of chapter 2.

To describe the stripes in the cuprates, the order-parameter for superconductivity has to be 
included in the Ginzburg-Landau analysis. This order-parameter is related to a spontaneous 
breaking of the symmetry under global phase-transformations ((7(1))

Figure 1-8. Proposed topology of the phase diagram for Laz-x-jSr^Eu^CuOa [67], In the shaded 
areas, elastic neutron scattering experiments have revealed stripe-order in a superconducting sam­
ple. Muon scattering experiments suggest that there is coexistence at low temperatures in the entire 
superconducting region for x <0.15
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paramagnetic superconductor

paramagnetic superconductor

paramagnetic superconductor

—> superconducting stripe-paramagnet
—> superconducting stripe-antiferromagnet
-> stripe-antiferromagnet,
—>■ superconducting stripe-paramagnet
—> stripe-paramagnet
—> stripe-antiferromagnet,
—> superconducting stripe-antiferromagnet 
-> stripe-antiferromagnet.

The parameter which is varied to tune the system through these transitions need not be the 
Eu doping, which induces LTT deformation. One could for instance also think of magnetic 
fields, or Zn doping, which disorder the superconductivity.

becomes nonzero. The function g (k) is determined by the symmetry of the order-parameter. 
For the case of s-wave symmetry, the phase-angle has the same value for all k-vectors and 
g(k)=l. This is the case in the conventional superconductors. In the cuprates, the order­
parameter has a d-wave symmetry, which means that e1* changes sign as one turns from 
the x to the y direction. This sign-change is incorporated in the function g(k), which is 
in that sense similar to the staggering-factor in the definition of the order-parameter for 
antiferromagnetism.
The phase-transformation eq. (1.5.1) amounts to a rotation of the 2-component vector 
(Re(A), Im(A)). The transition to the superconducting phase therefore belongs to the uni­
versality class of the XY-model. The broken 1/(1) rotational symmetry gives rise to acous­
tic Goldstone modes, which carry current. It is these excitations with a vanishing energy at 
long wavelengths which cause the phenomena of superconductivity.
The proposed zero-temperature phase-diagram as a function of x and y, which is shown in 
figure 1-8, is based on an extension of the mean field Landau theory for stripe formation 
with a coupling to the order parameter of superconductivity [67]. The order-parameter 
expansion is in this case used to analyse zero temperature phase transitions. Since the zero­
temperature quantum system corresponds to a classical system in a higher dimension, the 
mean-field theory becomes more reliable in this case.
A direct transition from an antiferromagnet, like the stripe state, to a superconductor is al­
ways first order, although the individual disordering transitions of antiferromagnetism and 
superconductivity are both second order. Neglecting for the moment the charge-ordering 
transition, it is easily seen that, if the spin and the phase sector are somehow decoupled, one 
has two second order transitions instead of one first order one, and an intermediary phase 
occurs which is either spin- and phase-disordered or a superconducting antiferromagnet. 
Including the charge order-parameter, the following scenarios are found for the case of a 
smooth transition from the paramagnetic superconductor to the stripe-antiferromagnet
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1.6 The SO(5) approach to high Tc superconductivity

N = + A, Sx, Sy, Sz, —i(Af - A)) , (1.6.1)

The global SO(3) invariance under spin-rotations and the (/(l)-invariance under phase 
transformations play an important role in the physics of cuprate superconductors. Transver­
sal spin fluctuations are for instance a crucial ingredient in the physics of the stripe phase 
(see chapter 2) and it has been argued that phase-fluctuations are responsible for the uncon­
ventional behavior in the pseudo-gap region [26]. For the model considered in chapter 5, 
it is found that these two symmetries can be viewed as deriving from a larger, SO (5), 
symmetry. The S0(5)-symmetric point can be reached by fine-tuning the parameters en­
tering the model. The idea to describe the physics of superconductivity and antiferromag­
netism in terms of a ‘unifying’ SO (5)-symmetry was proposed by Zhang in 1997 [29]. 
Below, the nature of this symmetry is explained, as an introduction to the work presented 
in chapter 5. Some of the reasons for considering a description of the cuprates in terms of 
a long-wavelength action with a weakly broken SO (5)-symmetry, as proposed by Zhang, 
are discussed.

SO(5) is the smallest group containing a 17(1) and SO(3) subgroup which allows for 
the introduction of a 5-component order-parameter consisting of the 2-component order­
parameter of superconductivity and the 3-component order-parameter of antiferromag­
netism (fig. 1-9). This“superspin” is given by

The first and the second scenario are of the kind discussed above, where the charge­
ordering now gives rise to an additional intermediary phase. In the last scenario, the spin­
spin coupling drives the formation of an antiferromagnetic anti-phase domain structure, 
while the charge-ordering on the domain walls follows parasitically. Spin- and charge or­
dering occur simultaneously, at a second order transition. This is the scenario which is 
shown in figure 1-8.

In general, a number of scenarios involving first order transitions are also possible, but 
especially the observation of quantum critical behavior in the magnetic sector of the under­
doped superconductors [66] suggests that one has a smooth transition in the cuprates. This 
is discussed in more detail in the introduction of chapter 5.

A smooth transition gives rise to the possibility of a coexistence phase of antiferromag­
netic stripe order and superconductivity (shaded areas in fig. 1-8). The coexistence of 
charge-order and superconductivity, of which the superconducting stripe paramagnet is 
an example, has been investigated in microscopic models by a number of authors [51]. A 
microscopic picture of the coexistence of antiferromagnetism and superconductivity has 
however not been available. In chapter 5, a t-J -like model is investigated which demon­
strates the possibility of such a coexistence phase.
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Figure 1-9. The 50(5) superspin.

where

Sa (1.6.2)

(1.6.3)

The rr-operators are spin-1, charge 2 operators: they create and annihilate triplet electron­
pairs.

In an 50(5) symmetric model, a spontaneous breaking of the symmetry results in four 
Goldstone modes. If the superspin is pointing in the superconductivity-direction, these are 
one phase-mode and three rr-modes; the AF phase has two spin-modes and two rr-modes 
, while a mixed AF/SC phase yields one phase-mode, two spin modes and one rr-mode. 
The n-modes are additional Goldstone modes which arise because of the higher symmetry 
that has been assumed. If the symmetry is weakly broken, they become quasi-Goldstone 
modes, with a small gap.

c-u

The function g(k) describes a d-wave phasing of the Cooper-pairs. Q = (n, n, rr) is the 
antiferromagnetic ordering vector and a“ is a Pauli matrix.

The phase- and spin-rotations act on components 1 and 5 and 2 through 4 respectively. The 
rotations between the two superconductivity-components and the three antiferromagnetism­
components are generated by the 6 rr-operators, which are given by

k

= 22^ct+et’c*+ 
k

Ck^ \
Qj. )
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k

antiferromagnet
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---------- superconductor

1.6 The SO(5) approach to high Tc superconductivity
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There are indications that the low-energy sectors of the microscopic models commonly 
used to describe high-Tc superconductivity may indeed have an approximate 50(5) sym­
metry. Quasi Goldstone modes were found in the t — J model in the Z-matrix approxima­
tion (similar to the random phase approximation which is used in section 5.6) [30]. Cluster 
diagonalization work on the t — J and Hubbard model also showed zr-type excitations 
[31], Other motivation for considering an SO(5) description comes from the study of one­
dimensional systems. In ladder models, it has been shown that 50(5) symmetry emerges 
as a result of renormalization group flow in the weak coupling limit [36]. There is how­
ever no straightforward generalization of this result to the case of two dimensions. Finally, 
there is the fact that a coexistence phase of antiferromagnetism and superconductivity, as 
observed in the cuprates, occurs quite naturally in an SO(5) context. In this regard, the 
finding of Matsushita et al. that magnetic-order and superconductivity set in at the same 
temperature for the Lai_xSrxCuO4 sample with optimal magnetic order (fig. 1-8) is partic­
ularly striking.
The conjecture of an approximate 50(5) symmetry has been used to derive a number of 
new results. It has for instance been predicted that the cores of the non-superconducting 
vortices which occur in a type-II superconductor in a magnetic field should be antiferro­
magnetic [32], An ‘50(5) proximity effect’ is predicted at the interface of an antiferro- 
magnet and a superconductor [33]. In the ladder models, the occurrence of electron-like 
quasi-particles with non-Abelian exclusion statistics has been derived [34], And recently, 
a mechanism for superconductivity has been proposed based on the energy-gain due to the 
7t-fluctuations in the superconducting phase [35]. These various results remain to be tested.



2.1 Charge- versus spin-driven stripe order

2 Quantum magnetism in the ordered stripe 
phase

In a Landau mean field analysis of the stripe-ordering transition, Zachar, Kivelson and 
Emery find that there are two possible scenarios for the onset of stripe order [37], In one 
scenario, the holes order as a result of the charge-charge coupling in a second order tran­
sition. The spins follow at a lower temperature and their transition is also second order. 
In the other scenario, the stripe-formation is driven by the coupling between charge and 
spin, and both order simultaneously in a first order transition. The two scenarios are called 
charge-driven and spin-driven.
Zachar el al. identify the spin-driven stripes with those which are found in Hartree-Fock 
calculations [23], while the charge-driven transition is identified with the mechanism of 
frustrated phase-separation, which was proposed by Emery and Kivelson [38].
As was discussed in section 1.5, holes have a disordering influence on the antiferromagnetic 
spin-order. If the exchange interaction of the spins is large enough with respect to the 
kinetic energy of the holes, this can lead to phase-separation, where, in the extreme case, 
all holes crowd together on one side of the sample and are in that way removed from the 
spin-system. This tendency to phase-separate is counteracted by the long-range Coulomb 
repulsion between charges, which favors a uniform state. In the frustrated phase-separation 
scenario, the stripes arise as a compromise between these two tendencies.
Both in the cuprates [22] and in the nickelates [39] the holes order at a higher temperature 
than the spins and both transitions are second order, in agreement with the charge-driven 
scenario. Zachar et al. therefore conclude that the stripes which are found in these systems 
are formed by frustrated phase separation.
Fluctuations have not been included in this mean field analysis. The important question is 
then whether they can change the above conclusion. In the following, it is argued that they 
do.
To appreciate this, it is important to make a distinction between the longitudinal and the 
transversal component of the spin order parameter. In order for the spin-driven stripe tran­
sition to occur, it is enough that the longitudinal component orders, since this is. the one 
which couples to the charge in the Landau analysis. One therefore has 0
below this transition, but the average staggered magnetization y rj, {Si) can still vanish 
because of the transversal fluctuations (p,- is a staggering-factor which takes into account 
the presence of the stripes). The transversal component then orders at a lower-temperature, 
in a second order transition.
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2.2 Spin-only model for the static stripe phase

Castro-Neto and Hone (CH) proposed a simple spin-only model for the static stripe phase 
[40], It assumes that the holes have completely frozen out in a static, regular stripe struc­
ture (fig. 2-1). The situation is then very similar to that of the Hubbard model at half­
filling. The low-energy degrees of freedom of the system are the transversal fluctuations of 
the antiferromagnetic order parameter in the spin-domains. Virtual excitations across the 
stripe-deformation gap, i.e. spins hopping onto the holes and back, generate an effective

If the charge order-parameter is commensurate with the underlying lattice, or pinned by 
quenched disorder, the Goldstone mode related to the spontaneous breaking of translational 
symmetry in the charge-ordering transition acquires a gap. The charge-fluctuations are in 
that case governed by a discrete symmetry. On the other hand, the spin order-parameter re­
mains a three-component vector as long as spin-anisotropies can be neglected. Fluctuations 
will therefore affect the spins more strongly than the charges. In fact, if we assume that 
the system is completely two-dimensional (no spin-spin coupling between CuO2-layers) 
and SO(3) symmetric (no spin-anisotropies), then the spin-ordering transition should be 
suppressed all the way to zero temperature, since a continuous symmetry cannot be spon­
taneously broken at finite temperatures in two dimensions (Mermin-Wagner theorem). The 
charge-ordering breaks a discrete symmetry and can occur at finite temperatures. Clearly, 
fluctuations pull apart the two transitions in this case.
In the realistic case, the influence of weak three-dimensionality and spin-anisotropies has 
to be considered. Their influence can be estimated by comparing to the half-filled system. 
The hole-ordering transition occurs well below the temperature where antiferromagnetic 
order sets in at half-filling (~ 100 K versus 300 K). If the ordered holes have only a weak 
disordering influence, the spin-system below the charge-ordering temperature should be 
nearly equivalent to that at half-filling. Spin and charge would then still order simultane­
ously, even after the spin-fluctuations have done their work.
The zero-temperature staggered magnetization of the stripe antiferromagnet is roughly a 
factor two smaller than that for the antiferromagnet at half-filling. However, the magnetic 
ordering temperature is about a factor ten lower than at half-filling. In order for these ob­
servations to be explained in a spin-driven scenario, it is necessary for the disordering 
influence of stripes to be much more effective at finite temperatures than at T = 0.
In the following, this is investigated for the case of a specific, simple source of stripe- 
induced spin-disorder: the weakening of the antiferromagnetic spin-spin interactions across 
the stripes. It is found that the Neel temperature is indeed suppressed much stronger by 
this disorder than the zero-temperature magnetization. The reason for this is that the zero­
temperature spin-system has an effective dimensionality of 3, while the finite temperature 
spin-system in the renormalized classical region is 2 dimensional. Any disordering influ­
ence is more effective in lower dimensions, explaining the different behavior of the two 
quantities.
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2.2 Spin-only model for the static stripe phase

antiferromagnetic interaction between the spins on different sides of the stripe. This inter­
action J' causes the antiphase-domain spin structure seen in fig. 2-1, which is one of the 
distinguishing features of the stripe phase. The reduction of J' with respect to J is the only 
way in which the charges affect the spin-sector in this model.
The weakness of the exchange interaction across the stripes has a disordering influence 
on the antiferromagnetism. This is immediately clear by considering the limiting cases. 
For J' = J, the spin-system is equivalent to that at half-filling and it should exhibit T = 0 
long-range order. For J' = 0, it is effectively one-dimensional and long-range order cannot 
occur (Mermin-Wagner). The parameter a = J'IJ tunes the spin-system between these 
two limits.
The low-energy physics of the frozen stripe phase is described by a coupled Heisenberg- 
ladder Hamiltonian

7 ix^pni.iy ix—pni,iy

where i = (ix, iy) runs over a square lattice, Sx = (1,0), 3y = (0, 1). n/ measures the width
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(2.3.1)Saqnls =
2go

2.3 Scaling analysis of the spatially anisotropic quantum 
non-linear sigma model

It is assumed that the Neel order parameter fluctuations in the charge ordered stripe phase 
are governed by an anisotropic quantum non-linear sigma model (AQNLS) [40][43],

where the bare coupling constant go and the spin-wave velocity c are those of the isotropic 
system, while a parametrizes the anisotropy. In the classical limit, this describes spin waves 
with velocity cy(a) = Cy/(l + a)/2 and cx(a) = y/acy(a) in the y- and x directions, 
respectively. The slab thickness in the imaginary time direction u is given by /1/icA, where 
A is the cut-off of our spherical Brillouin zone.
This model is derived by taking the naive continuum limit of a spatially anisotropic Heisen­
berg model. It was noted earlier that such a procedure does not actually give a very reliable 
result for the bare quantities. However, one can hope that the a-dependence obtained in 
this way is correct and that the inaccuracies only affect the bare value of g, which is taken 
as a phenomenological parameter in the model.
A momentum-shell renormalization group calculation of this model is performed. The de­
tails of such an analysis can be found in the appendix, section 2.6, where the case of the 
isotropic QNLS is reviewed.
The renormalization of the AQNLS has received some attention recently [40,44). We adopt 
here a variation on the procedure as proposed by Affleck[44). The central observation is 
that this model contains two ultraviolet cut-offs. As a ramification of the anisotropy, the 
highest momentum states in the x-direction will have an energy E'”3’1 which is a factor 
y/a smaller than that of the highest momentum states in the y direction. Therefore, the 
initial renormalization flow from E™ down to E™ is governed by one dimensional 
fluctuations. At E™** the resulting model can be rescaled to become isotropic, albeit with 
‘bare’ parameters which are dressed up by the one dimensional high energy fluctuations.
Keeping the full model eq. (2.3.1), the one dimensional fluctuations are integrated out by 
neglecting the dispersions in the x direction entirely. This causes the anisotropy parameter 
a to become a running variable as well, which is always relevant. When the renormalized

go Z dT / d2x (“ + + (3r"^2)

of the ladder and p counts the ladders. The following analysis focuses for simplicity on the 
case ni = 1, which is just the spatially anisotropic Heisenberg model, with a reduced cou­
pling a J along the x-direction. The technique which we develop for the renormalization 
of this model can be straightforwardly generalized to the more realistic case of eq. (2.2.1) 
[41 ]. This generalization will be used to compare the results of a one-loop scaling analysis 
with Quantum Monte Carlo simulations on the coupled-ladder model.
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(2.3.2)

(2.3.3)

(2.3.4)

s,m =

x

(2.3.5)

where / is the one-loop contribution

2

which yields

4rr2,.2 

u'2

where &),, = lixn/u are the Matsubara frequencies (with u the integration-domain along 
the time-direction, eq.(2.3.1), whose bare value is phcA.). The momenta k are rescaled 
with A to become dimensionless. Separating the fields according to

a = 1, the model has become isotropic. The main reason for using this procedure is that it 
simplifies greatly the finite-temperature analysis of the AQNLS.

The calculations which follow are a straightforward variation on the general procedure 
outlined in the appendix. Writing h = (ir, a), where <x is the component of h in the direc­
tion of ordering, we expand to fourth order in re. Subsequently, the ir-fields are Fourier- 
transformed according to

2 4rrn2

1 + «o u2

where I is small, we integrate out the fields 7r>, using a square Brillouin zone for conve­
nience (see figure 2-2). The fields are integrated out to one-loop level, following the same 
procedure as in the appendix 1. Subsequently, we rescale

n(k,n) = i e'<l*yl<I
I 7T<(£, n) ; 0 < |^| < e 1

I = uqI R(chq, uq) , (2.3.6)

’Since we expanded to fourth order, we can only calculate the renormalization of the quadratic term in 
the action. As is pointed out in the appendix, this is sufficient, because there exists a Ward-Takahashi identity 
which limits the number of scaling parameters in the model. This identity ensures that the higher-order 
terms renormalize in the same way as the quadratic one. Since it relies on the invariance of the model under 
global rotations of the prefered direction in spin-space, it is not affected by the anisotropy of the action in 
coordinate-space and can still be applied.

—y f 2g0^J
d^d*;
(2tt)2

1 + — I 
«o

u' [ dfc^d*'
2p ■“ 7 (2tt)2

ir(i, r) = 22 [ n'>e‘k :i

ky = e ky , 
n'(k,n) = (~i7t<(k,n),
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Figure 2-2. The procedure used here for integrating out the predominantly one-dimensional high- 
energy fluctations in the square Brillouin zone. Note that the equipotential contour E = E^M 
becomes more circular after the rescaling, which demonstrates that the effective action for the low- 
energy modes has a smaller spatial anisotropy than the original action. The procedure is iterated 
until the anisotropy vanishes. We then switch to a spherical Brillouin zone to perform the renormal­
ization of the effective isotropic model.

R(ao. u0) = /

aoe27,

/I +«o _/
“°VT^e •

= ?foe-vfi + ^A
8 80 \ »0 J

Note that, contrary to the isotropic case, eq. (2.6.11), the spacing in the frequency direction

k>

(i.i) 
E=E^

y/aokx + 1

The last line in eq.(2.3.5) defines the renormalized parameters u', g' and a', which are 
given by



2.3 Scaling analysis of the AQNLS 41

(2.3.11)

Iterating these results, the following flow-equations are obtained:

,2

(2.3.14)

that cancels the linear-order term. Eq. (2.3.13) then reduces to the set of equations

(2.3.15)

(2.3.16)

- ^2 (ars>nh(V“o)/\/“o+

(2.3.17)

(2.3.18)gl/'l = (so/'o)v/“o(l +«o)/2

I

(2.3.12)

(2.3.13)

This zero-temperature result can be used as long as g\/t\ » 1- The bare dimensionless 
temperature of the effective isotropic model then follows from the equation for u (2.6.11)

a

dl
dt
di

< = e' 1 _ ^2/
L “o .

IV 
f dl 

_l_3g 
s2 31

2 _ -
1 4-ao 2rr2 ' 

ln(l + s/1 + <x0) - ln(75J(l + V2)2)}] .

Eq. (2.3.15) is solved by f(l) = (1 + a) ‘I2. Inserting this into eq. (2.3.16) we obtain for 
Si = g(ll)

= «oe2',
= --^-+g2R(a,u),

1 + a

= t + tgR(a, u),

(~ 1/u') now scales differently from the ^-momentum (eq.(2.3.4)). This is due to the 
a-dependence of the spin-wave velocity in the y-direction.
The field-rescaling factor f is obtained by the procedure described in the appendix. It reads

a
“ 1+or’
r /1 + a arsinh^/a

“ fyi~2a 2^"

where t is the dimensionless temperature, whose bare value reads tg = k&T/p®. The equa­
tion (2.3.9) for u after one renormalization step also holds for its value after a number of 
iterations. The same is the case fora (compare eq.(2.3.8) and eq.(2.3.12)). We find that or is 
a relevant variable, which implies that the anisotropy indeed scales away as the high-energy 
states are integrated out.
From eq. (2.3.12) it follows that a = 1 corresponds with 1 = /j = —10^/00. At T = 0, 
the bare coupling constant of the effective isotropic model can be obtained by integrating 
eq. (2.3.13) up to / = l\. This is most easily done by substituting g = gf and imposing

Si = so/
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gc(“o) = 4ir

(2.3.19)

5y(go. to) =

(2.3.20)

MO) (2.3.21)go 
8e(«o)

exp[(* - feW 
' 1 + orp

2

Except for these altered bare quantities, the isotropic model is analyzed in the standard way 
(12], which is reviewed in the appendix.
Putting g\ = gc = 4rr and solving go, we find the critical bare coupling for the anisotropic 
model

I 2 r 2.
^Y+a0/I ’ + rr (arslnh<s/“o)/s/“o+ 

ln(l + 71 +a0) - ln(^/5o( 1 + 72)2)}1.

This result is the same within a couple of percents as the outcome of a direct one-loop 
renormalization group analysis of the anisotropic action eq.(2.3.1) [40]. The difference 
originates in an inaccuracy in our calculation. After using a square Brillouin zone to in­
tegrate out the high-energy 1-dimensional fluctuations, we switch to a spherical Brillouin 
zone for the analysis of the effective isotropic model. In the process, some states are thrown 
away, which introduces the small inaccuracy. The reason that we use here an approximate 
mapping to an effective isotropic model instead of doing a direct analysis of the AQNLS, 
is that it allows us to straightforwardly obtain the finite-temperature cross-over lines of the 
AQNLS, which are difficult to obtain otherwise.
For oto — 1, the one-loop cross-over lines between the quantum-critical (QC) and the 
RC/QD regime are given by l = ±2rr(l - g/4rr). Taking (g,, (,) to lie on these lines 
and iterating the flow equations (2.3.13) and (2.3.14) backwards, we obtain the cross-over 
diagram for the anisotropic model, shown in fig. 2-3. Note that the anisotropy has a stronger 
effect on the /-dependence of the RC to QC line than on its g-dependence. This already 
indicates that the T = 0 properties will be less affected by the anisotropy than those at 
finite temperatures.

The one-loop mapping to an isotropic QNLS provides a simple way of calculating the 
correlation length in the anisotropic model. Noting that the correlation length in the y- 
direction scales as f = foe-' under eq. (2.3.3), it immediately follows that fy(go. to) = 
e'1 ?isoir.(g 1. t|) = a~tfisotr.(gi, >1) (while the correlation-length in the x-direction is sim­
ply fisoir.fgt, ti), so f* = y/a^). We insert the 1-loop expression for fisou. in the RC 
regime [12] and use equations (2.3.17) and (2.3.18) (the use of the T — 0 expression for 
gt, eq.(2.3.17), is a good approximation if gi/t| » 1). This yields 

0-9 gi 
s/“o2t| 

0.9^-J 
2to V

where the renormalized T = 0 stiffness is given by,
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Figure 2-3. Cross-over diagram for the anisotropic QNLS. The lines are for a = 1,0.4, 0.1 and 
0.025 from top to bottom. The end-points of the quantum-critical to quantum-disordered lines map 
onto (gi, *1) = (Srr, 2rr). Note that when r0 becomes larger than the crossover temperature from 
renormalized classical to quantum critical at go = 0, one dimensional fluctuations are dominating 
for all values of g0.

2.3 Scaling analysis of the AQNLS

Eq.’s (2.3.20,2.3.21) are our central result. They show that the correlation length in the 
renormalized classical regime has a double exponential dependence on the anisotropy, both 
dependencies originating in the high frequency one dimensional fluctuations. As already 
pointed out by CH[40], the anisotropy causes gc to decrease (e.g., fig. 2-3 ), leading to a 
reduction of f at a given temperature. However, we find an additional -Ja in the exponent 
which has been overlooked by CH, although it is included in the paper of Wang [45]. 
This is the specific way in which the greater effect of the thermal fluctuations, which we 
noted earlier, shows up in the renormalized classical regime. In fact, it shows that the basic 
invention of CHN is straightforwardly extended to the anisotropic case. The correlation 
length is given by the expression for the classical system, and quantum mechanics only 
enters in the form of a redefinition of the stiffness. However, for the classical correlation 
length expression one should use the one for the anisotropic classical model. Using the 
same procedure as for the quantum model, it is easy to demonstrate that the correlation 
length of the anisotropic classical 0(3) model in 2D behaves as f ~ exply/aop°/kgT),
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and this explains the occurrence of the additional factor.2

(2.4.1)

(2.4.2)

2.4 Zero-temperature magnetization and Neel tempera­
ture

'^)+O(T2) .

*G(D

1 - 1 
to knT

1 - go/gcW
1 - go/47T

2Following CHN , eq.’s (2.3.20,2.3.21) can also be obtained by integrating out all quantum fluctuations 
in the renormalized classical region to 1-loop order. This yields a 2d anisotropic classical non-linear sigma 
model, with effective dimensionless temperature

The finiteness of the Neel temperature is caused by small intraplanar spin-anisotropies and 
interplanar couplings. Keimer et al [9] have shown that in La2CuO4 the former dominate, 
and these can be lumped together in a single term aeff which plays the role of an effective 
staggered field. The Neel temperature can be estimated by comparing the thermal energy 

to the energy-cost of flipping all spins in a region the size of the correlation area in 
the presence of the effective staggered field. This yields the self-consistent relation

where Ms/Mq is the reduction factor of the staggered magnetization. Because it is not 
expected that stripes will influence the spin anisotropies strongly, we can use the esti­
mate for acfr as determined for the half-filled system: aefT = 6.5 x 10-4 [9]. For the 
estimate of 7\, the spin-wave results for the renormalized stiffness, susceptibility and 
spin wave velocity are used (table 1-1) [10]. or S = 1/2, they are he = 0.5897J%Ja, 
X±(0) = 0.514/i2/(8Ja2), and ps = c2/j_(0). The bare coupling constant is obtained 
from (go/4jr) = 1/(1 4- 4ttx_lc/AA) [12], which yields go = 9.107 for Aa = 2^/zF. 
We notice that the 1-loop result for the temperature-dependence of the prefactor is not cor­
rect, but this is not very important as far as the reduction of the Neel temperature by the 
anisotropy is concerned.

Since our T = 0 results coincide with those obtained by CH[40], we use their expression 
for the zero temperature staggered magnetization 3,

a2

iTVy/ao yk-oT Y

with £j(0) given by eq. (2.3.21), where gc(<*o) is now precisely the critical coupling obtained by CH. 
Momentum-shell renormalization of this 2d model again yields eq.(2.3.20).

’Because of the neglect of topological terms, this expression yields a lower bound for the staggered 
magnetization.

1 + cro
2
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and its anisotropy dependence is shown together with the results for the Neel temperature 
in the inset in fig. 2-4. To illustrate the effects of a different aeff in the stripe phase (e.g., 
the inter-planar coupling may be much reduced due to frustration) we have also plotted 
the results for aCff(a < 1) = 10acff(« = D (upper dashed line) and for aeff(a < 1) = 
0. laCff(a = 1) (lower dashed line). In Fig. 2-4 Tn is plotted versus Ms. As expected, the 
dependence of Tn on anisotropy is considerably stronger than that of Ms. A reduction of 
Ms by a factor of 2 due to a spin-wave anisotropy ~ y/a ~ 1 /4 order is accompanied by a 
suppression of Tn by roughly an order of magnitude.

In the above we relate different experimentally accessible quantities (spatial- and spin 
anisotropies, Neel temperature, T = 0 staggered order, correlation length) and further[46, 
47] experimentation is needed to unambiguously demonstrate that spatial anisotropy is the 
cause of the low spin ordering temperature. If the fluctuation behavior in the RC regime 
is indeed as general as suggested by the present analysis, other sources of stripe induced 
spin disorder could have similar consequences. For instance, local charge deficiencies in 
the stripes caused by quenched disorder would give rise to unscreened (by charge) pieces

Figure 2-4. The N6el temperature versus the zero temperature staggered magnetization, with the 
anisotropy as implicit parameter. Both quantities are normalized with respect to their value in the 
isotropic system. The upper/lower dashed line gives Tn for (N6el stabilizing field) a factor 
10 larger/smaller than in the isotropic system. Inset: Tn and Ms as a function of the anisotropy 
parameter a.
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2.5 Comparison with quantum Monte Carlo results

= “c0 (2.5.1)

cy = c0 (2.5.2)

(2.5.3)

where

gc(a) = 4?r y/co/Cy

(2.5.4)

where co is the spin wave velocity in the isotropic limit. The results of the AQNLS analysis 
can be formulated in terms of these spin-wave velocities. The renormalized spin-stiffness 
is given by

(3+g)

2(l+2a)(13+2a)
(3+a)

3(7+3o0
2(13+2a)

 ( 2
•y ( 1 H—(cyarsinh[cx/cy]/cx

+ln[cy(l + yi+cj/c2)/cx/(l + >/2)2))) ,

for ni = 2
for n/ = 3

for ni = 2
for ni = 3

Quantum Monte Carlo simulations on the coupled ladder model eq. (2.2.1) were carried out 
by Tworzydlo and Osman [41]. Their work focussed on the distinction between site- and 
bond-ordered stripes (discussed below) and was aimed at obtaining experimentally verifi­
able predictions for non-universal quantities, a task which is beyond the capability of the 
QNLS. In order to compare their results to those of the AQNLS-analysis, they generalized 
the QNLS-description to the case of coupled ladders with a general number of legs. For 
two- and three-leg ladders, they obtain the following expressions for the spin-wave velocity 
in the x and y direction

of domain walls. Such stripe defects are like the dipolar defects discussed by Aharony et 
al, [48] and their frustrating effect is also expected to be disproportionally stronger at finite 
temperature than at zero temperature.

Above all, the present analysis shows that a Landau mean-field analysis falls short as a 
description for the thermodynamic behavior of the stripe phase because of the importance 
of fluctuations. Stronger, thermodynamics does not offer an unambiguous guidance regard­
ing the microscopy (frustrated phase separation [49] versus ‘holon’ type mechanisms[23J). 
Here we have focussed on the transversal spin fluctuations, and given that there is ample 
evidence for a pronounced slowing down of the spin dynamics at the charge ordering tem­
perature, these undoubtedly play an important role. It is noted that recent results point at a 
similarly important role of fluctuations in the charge sector[50].

. , _ c'(1 -
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Figure 2-5. Crossover temperatures as a function of anisotropy a for the coupled three leg (a) and 
two leg (b) spin-ladder models. The lines and points refer to the analytical- and numerical results, re­
spectively, for the various scales. Notice that the 1 -leg ‘cut-off’ (1D-2D cross-over) follows closely 
the results for T*.

and where ps is the renormalized stiffness for the isotropic model.

As was discussed in section 1.4.3, the cases of coupled even-leg and odd-leg ladders are 
vitally different. For even-leg ladders, the topological term in the action gives no contri­
bution and the QNLS is a good description. The a = 0 state has a gap and no spin order. 
For odd-leg ladders, the topological term induces quasi long-range spin-order at a = 0. As 
a result, this system has true long-range order for any non-zero value of a. This behavior 
is not captured by the QNLS. Nevertheless, a QNLS-description should be valid for this 
system as well if a is not to small, so close to the fully two-dimensional limit.

The QMC analysis focuses on the cross-over scales. The cross-over temperature from 
the QC to the RC regime is given by T* = 2jrps(a). That from the QC to the QD 
regime by T' = const.p, (a) 4. For the high-temperature cut-off, the expression To =

4Thc constant depends on the choice of g*, which is the value of go for which |(/o = 0. go) = a *n the 
QD regime. See section 2.6.2. Since it cannot be determined from the one-loop analysis, it is taken as a fitting

ZQD
0.2
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2.6

2.6.1 Scaling

(2.6.1)

APPENDIX: Momentum-shell renormalization of the 
quantum non-linear sigma model

parameter here.

— 7T?

We review in some detail the momentum-shell renormalization of the QNLS, as set out 
in the papers of CHN and Nelson and Pelcovits (NP) [12] [52]. Since this introduces no 
additional complications, the case of general dimension d and number of order-parameter 
components n is considered. For notational convenience, the expressions in this section are 
in units where fi = k# = 1.

Our starting point is the Lorentz-invariant form for the QNLS eq. (1.3.7). The unit vector n 
entering the action is decomposed in a component along the ordering direction, a, and n — 1 
components perpendicular to it: rr. The a-field is integrated out using the delta-function in 
the measure. The integrations over rr are extended to the range (—oo, oo). We obtain

2rrpjCx(go/(4rrco) + (1 — go/gc)/Cj.) is used, which is reasonable fora close to its critical 
value. In figure 2-5, the results of the QMC simulations and the QNLS-analysis are plotted.

For the 1 -leg case, which is just the anisotropic Heisenberg model discussed in the above, 
the QMC and QNLS results are in good agreement down to about a = 0.2. The bare 
parameters used in the fit are those of the isotropic model (go = 9.1).

With this choice of the bare parameters for the case n/ = 2, the agreement between QNLS 
and QMC results is still reasonable for a close to one. The critical value of a is however 
estimated to be about 0.08 from the QNLS analysis, which is much to small. Given the fact 
that we used a one-loop approximation, which is known to give incorrect results for the 
slope of the cross-over line near the critical point, and that effects such as the additional 
reduction of spin-order by dimerization were not taken into account, this is not very sur­
prising. In fig. 2-5, the value of go has been adjusted to give ac = 0.3 (go = 11 0), while 
at the same time pf is chosen such that the correct a = 1-limit is obtained. This procedure 
gives quite a reasonable fit. For the coupled 3-leg ladders go has been adjusted to give a 
better fit in the high-ot region (go = 10.5).

Finally, in recent QMC-simulations on the coupled-ladder model, Kim el al. [42] indeed 
find the relation for the correlation lengths in the x- and y-direction at low-
temperatures.
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with the action

21■«o
(2.6.2)S =

'o

where

(2.6.3)

(2.6.4)Pf ddx

So uo = — 
to

and where to is the dimensionless temperature The relation eq. (2.6.3) also holds for 
the renormalized quantities.

A lattice-regularization is used for the path-integral. The spatial integrations in the action 
therefore have a short-distance cut-off. This cut-off is implemented by transforming to 
momentum space and treating the system in a finite Brillouin zone. For convenience, this 
Brillouin zone is assumed to be spherical, with radius A. The radius is usually chosen in 
such a way that the volume of the Brillouin zone is the same as for the corresponding 
lattice model. This yields A a = 2^/^ for the square lattice antiferromagnet (where a is 
the sublattice-spacing). Since the coordinates have been rescaled with A (eq. (1.3.6)), the 
dimensionless ^-integrations extend over the J-dimensional unit sphere.

The bare action eq. (2.6.2) is defined at the cut-off scale A. In the renormalization proce­
dure, the modes with momenta near A are integrated out, resulting in an effective action 
with a lower momentum cut-off A'. After a rescaling of the fields and the momenta, this 
effective action takes again the form eq. (2.6.2), but with renormalized values for g and t. 
This process is repeated, resulting in a flow of the scaling variables g and t. Certain phys­
ical properties of the model can be derived from studying these flows. In this section, the 
flow-equations are derived to one-loop order, which is the lowest non-trivial order in go- 

In the following, the action is expanded in n and only the lowest order terms are considered.
There is a Ward-Takahashi identity due to Brezin and Zinn-Justin [53], which ensures that 
the higher order terms scale in the same way as the Gaussian one. This is necessary for 
the renormalized action to keep the form eq. (2.6.2) and for g and t to be the only scaling 
variables in the model.6

The square-root entering the measure in eq. (2.6.1) is a remnant of the integration over a.
It can be absorbed into the action, yielding an additional term

_________ ____
5Sincc we are applying it to the case of go close to its critical value, which is 4rr for d — 2, there might 

be some feeling of dcj<k vu : in section 1.2.2 a j -expansion was used to analyze an 5 = j-system. In fact, the 
S —► oo and the go —► 0 limit refer to the same state. The 1-loop treatment is only strictly valid for gc 1. 
which is the case if the number of space-dimensions is close to 1: d = 1 + £. However, since the flow of g is 
towards smaller values for go < gc, the flow-equations derived at the end of this section drive g towards the 
region where they become exact. Because of this property, these equations can be applied to the renormalized 
classical region in d = 2 with a greater accuracy than one would expect.

6The identity follows from the invariance of the QNLS-action on the choice of the preferred direction a.

f d“x I 2X0 J Jo
dxo (d^) + [_-2-
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(2.6.5)

(2.6.6)

(2.6.7)

S'm = (2.6.8)

(2.6.9)

2“0

2go

= Sd 
d(2n)d’

where p is the number of degrees of freedom per unit volume of the spherical Brillouin 
zone:

and where Sj is the surface of a sphere in (/-dimensions. The p-term provides a potential 
for the rr -fields, which enforces the constraint rr2 < 1.
We expand in the rr-fields and perform a Fourier transformation in both the space and the 
time variables:

< 1*1 < 1
< e-/

k -» P = e'it,
5r -> n' = <-'?,

v ( idk (k2 +4jr2"2 
(2tr/V + u2

where I <g 1. The separation is made in momentum- but not in frequency-space. This is 
related to the regularization procedure. We did not assume a short-time cut-off. As a result, 
the Matsubara-frequencies extend to ±oo and all fall within the range e_/a>max. The non 
Lorentz-invariance of the cut-off procedure has no consequences at the one-loop level.
The fast modes are integrated out. This calculation is dealt with in section 2.6.4. It results 
in an effective action for the low-momentum modes which has the following form (to 
Gaussian order)

Due to the finite range of the xq integration, the time Fourier-transformation introduces the 
discrete Matsubara frequencies a>„ =

The k) are separated into slow modes, which are 
integrated out.

['kd~'dk 
JO

ddk _ Sd 
(2n~)d ~ (2n)d

. , go .
1 H *loop 

WO

kept, and fast modes, which are

p = [
J Zone

where Zioop is the one-loop contribution to the renormalization of the second order term, 
eq. (2.6.39).

Momenta and fields are rescaled according to

00 r= 22 [ 
n=—oo •/Zone (2tr )d)

4rr2n2
un
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which restores the radius of the Brillouin zone to 1. This yields

S'® = ■dl

(2.6.10)

Comparing the first and the second line, one finds

(2.6.11)

(2.6.12)

(2.6.13)

(2.6.14)
2

The renormalization of this term is considered in section 2.6.4. It yields

(2.6.15)
g'

(hu/g)' = (huo/go [52]. One

(2.6.16)

«' =

g' ~

h_

go

uoe
“0
go MO

loop^<2e"(J+2)/ (1 +

OAoop

,f|2

Since h represents a magnetic field, it must scale trivially as 
therefore has

h'u' , j, Thun 1 , — = f2e-‘" —2+ -/>(„-
g L go 2

where A is a one-loop contribution. This form ensures that all terms in the expansion of <S 
scale in the same way at zero-loop, or tree-level. A can be obtained from a calculation of 
the one-loop contribution to (jr • 3M7r)2, which involves sixth- and eighth-order diagrams 
and is rather cumbersome.

A simpler approach is to introduce a small Neel-order stabilizing field into the action

k'h-21

(=edl 1 - ^-(n - V)Iloop 
2uq

go, 
--- 'loop 
“0

"0 v—» f ddk' 
2«0 “ J (2n)d 

/• ddk’
2g'J (2jr)d

4n2n2
+ “0 .

[ ddx f °±rocr(x) = - —
J JO go

Note that frequency and momentum scale in the same way: the spacing in the frequency­
direction is rescaled by a factor el, as are the momenta. As a result, the spin-wave velocity 
cs is not renormalized at the one-loop level.

The spin-rescaling factor £ is still undetermined. From considering the scaling of the 
higher-order terms in 5 under eq. (2.6.9), it is clear that £ must be of the form
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(2.6.17)= (i-a)g +

(2.6.18)= (2- d)l +

2.6.2 The flow diagram

For low temperatures, | 1, the flow equations take the form

(2.6.19)

(2.6.20)

(2.6.21)

(2.6.22)

(2.6.23)g(l) = goe

(2.6.24)

which indeed agrees with the result of NP for the classical non-linear sigma model in 2 + e 
dimensions [52].
Using the identity

which follows from eq. (2.6.11), the differential equation (2.6.17) can be integrated. For 
d = 2 and n = 3, one obtains

r(/) = —e'g(Z). 
go

8g 
3Z 
3r 
az

8g 
az 
ar 
az

ar
3'

1------ In
2tt

sinh(X) 
sinh (^e-')

(2-d), + ^in"2)'2-

The renormalized couplings can now be used as input-parameters for a new round of in­
tegration and rescaling. From equations (2.6.11), (2.6.12) and (2.6.16) follow differential 
equations for the flow of r and g with Z.

g(0 _ go -i 
t(l) to^

= + f’
g'
4rr ’

5(£p(,,-2)g2co'h[|h
^(n_2)grc°th[^].

The equation for g has two fixed points: g = 0 and g = gc = 4rr. The stable g = 0 fixed 
point refers to the classical S -> oo state of the Heisenberg antiferromagnet, while the 
unstable fixed point at g = gc separates the ordered from the disordered T = 0 state. The 
dimensionless temperature r only has an unstable r = 0 fixed point. In the g J. 0-limit, the 
flow-equation for r eq. (2.6.18) takes the form
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(2.6.25)

(2.6.26)

?RC

(2.6.27)

Figure 2-6. The one-loop flow-diagram for the QNLS. The dashed lines indicate the cross-over from 
the quantum critical to the renormalized classical and the quantum disordered regime.

The resulting flow-diagram is shown in figure 2-6.
From fig. 2-6, it is clear that there are three distinct low-temperature regimes. For g < gc, 
the system flows first to small g and finally to high temperatures. This is the renormalized 
classical (RC) region (section 1.3.3). For g ~ gc, the flow is straight to high-temperature, 
with little change in g (the quantum critical (QC) region). And finally for g > gc, the sys­
tems flows towards the strong coupling large g regime (quantum disordered (QD) region). 
There is a simple procedure for calculating the (g,/)-dependence of the correlation-length 
from the flow-equations [12]. Since £ has the dimension of a length, it scales trivially under 
the renormalization group transformation:

^Z) = ^oe-/.

Because of this property, the correlation length can be obtained by starting at the £(/*) = a 
line and integrating back to £(go» *o) = «e/-. For the RC and QC region, it is assumed that 
I = a at some temperature /(/*) = t*: the high-temperature cut-off of the QNLS. For the 
QD region, a cut-off g* in the g-direction is assumed.
The value of £ the RC and QC region follows directly from eq. (2.6.24)

2f° . , F • u A=---- arsinh sinh | — )
ago L \2z0/

The asymptotic behavior at low-temperatures in the RC and QC regime is now easily ob­
tained. Assuming to « 1, 1 - $ (deep RC), one obtains

to
0.9^-e'

kBT

0

* t T 
t
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(?)
(2.6.28)

1 + yj, the correlation-length is obtained by integrating back from

(2.6.29)

2.6.3

(2.6.30)

Px(go) = p,U(0]e ' ■ (2.6.31)

This is the length-scale which separates the short-wavelength critical fluctuations from the 
long-wavelength Goldstone modes. It is at this length that the system begins to find out that 
it is no longer at the critical point (which means, of course, that f j diverges at the critical 
point). The Josephson correlation length again scales as £j(i) = e_,£j(0). Since cs is not 
renormalized at the one-loop level, ps satisfies

Renormalized stiffness and susceptibility

In section 1.3.4, the renormalized values of ps and xj. in the T = 0 Neel state were used to 
make the connection between spin-wave and QNLS results. These values are derived here. 
The stiffness can be obtained by noting that ps defines a length-scale, the Josephson corre­
lation length, through

As was discussed in section 1.3.3, this type of scaling with inverse temperature is in fact 
expected to occur on general grounds, related to the Lorentz-invariance of the model.
For the QD region Sa
g = 2gc. This yields

Ps

k ag0 • uSQc = ——arsinh 
2/0

Ac 
~ 1.4----- .

kBT

where /* = 2rr has been assumed in the last line. The ambiguity in the choice of /* only 
affects the prefactor of the correlation length. This expression for the correlation length is 
just the one obtained for a classical non-linear sigma model, but with p(' replaced by its 
renormalized value eq. (2.6.32). More generally, the only way in which quantum mechanics 
enters in the RC regime is by a renormalization of the stiffness [12],
Quantum critical behavior is found in the region 1-yJ < Sa < 14-Ia. For low temperatures, 
go is close to its critical value. The asymptotic form of tlie correlation length is therefore 
obtained by setting g = gc in eq. (2.6.26) and considering /q 1

t ~____________ ago/2-____________
QD (go — gc) + 2r0 exp [—2(g0 — gc)/<ol

The very weak dependence on temperature is an indication of the presence of a spin-gap 
A ~ go — gc in the quantum disordered state.
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In the Neel phase, the large / limit takes the system to the classical g — 0, or S

Pr(go) =

(2.6.32)

Since xx = pslc1, the renormalized susceptibility is given by

(2.6.33)

anharmonic part S/. The partition function

.-So(ir>J

OC
'0>

(2.6.34)

(2.6.35)= exp

(2.6.36)

i ,     ' -> oo state.
In this limit, the stiffness ps[#(/)] can be replaced by its bare value p® = hcsN/g(l). Using 
the <o = 0-limit of eq. (2.6.23), one obtains

= hcsA lim 
/-►OO

2.6.4 Integration over fast inodes

The high-momentum modes are integrated out in a perturbative procedure. To this end, the 
action S is split into a Gaussian part So and an anharmonic part S/. The partition function 
can be written in the following form:

Z = y Dje-Sb|j'<)-5o(jr>)-5r[>r<.it>]

= y D^e-5^11 Djr>e-s'I***»,e’

f D5r<e-s«[if<1^e-'s'[’?<’’f>1j

= f D5<e-i''if<l,
where S' is an effective action for the low-momentum modes. The (.. .)o brackets indicate 
an average with respect to the Gaussian action So- A factor Zq has been omitted in the third 
line, since it only contributes a constant to the effective action.
The average is evaluated using the following identity:

(e5') = exp[(e-s')c-1]
-(S/)c + ^(S^ + ---

where (S“)c is the a-th cumulant of S/. Since So is Gaussian, all odd moments of the 
action are zero. The even moments can be expressed in terms of the variance using Wick’s 
theorem for bosons,

(irfir^tran^o = + (tr’traMirJtrjJo•

i e *
lim e '/>,[;(/)] = Ac,A lim — 

/-►oo /-►oo g(l)

gc - god - e~' o A _ 
gcgo 1 \ gc)
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(b)

(c)

(n-“ *(<«„, *)7r“'(^,it'))0 = (2.6.37)
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Figure 2-7. (a) Diagrams for the lowest-order terms in the action, (b) One-loop contribution to the 
recursion relation for the (9mtt (x))2-term. (c) Contributions to scaling of the magnetic field.

The integration over the short-wavelength modes is conveniently performed in a diagram­
matic approach. The diagrams entering the lowest orders of the action S are show in fig­
ure 2-7(a). The prefactors are those for the action in space-time, not in Fourier-space. Ex­
ternal lines indicate low-momentum fields zrj, while internal lines represent contracted 
pairs of jt“. Slashes indicate space-time derivatives. Dotted lines separate pairs of fields 
with a common index a.

Each internal line contributes a propagator eq. (2.6.37). Closed lines yield a factor n — 1. 
Slashed lines have an extra factor (a>„, k) due to the space-time derivative. All diagrams 
have conservation of total momentum. In figure 2-7(b), the diagrams for the lowest-order 
terms in the action are shown. The p-terms are a remnant of the 5-function in the measure 
of the QNLS, as discussed in section 2.6.1.
The graphs contributing to a certain term in the effective action are obtained by considering 
all possible contractions of graphs in the expansion eq. (2.6.35) which give the correct

and similarly for higher moments. The expansion eq. (2.6.35) can therefore be cast into a 
are contracted into second moments of Sq. Each pair yields a contribu-

« k1 + a>‘
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— ki 4- ky — kt)

ni

X

(2.6.38)

where

y dk kd 2 coth [y k

(2.6.39)

(2.6.40)P = + p>

(2.6.41)

" ddk 
L (2rr)2 ’

3

6dk .
'< (2rr)d

^loop

52 ) (2*)W1 
"i J

coth [?]+ °(/2) ■

S° (2?r) ‘„.ntSd(k3-k^(kl +

structure for the external lines. To one-loop order, only the graphs which have one closed 
loop are considered. Graphs with the same number of loops are of the same order in go •

The only one-loop contribution to Gaussian term (3^7?) in the effective action comes from 
the graph shown in fig. 2-7(b). It yields

7It is essential here that the graphs carry a prefactor g0 ’. The situation is therefore sorncW t̂h^. 
for the p-ierms. Their renormalization however plays no role at the one-loop leve , as is iscus

The p<jr2-term enters the effective action, while the term with prefactor p> is precisely 
cancelled by the first graph in fig. 2-7(c). The one-loop contribution to the scaling of i 
comes from the second and third graph. It yields

The contributions to the scaling of the Neel-order stabilizing field h are shown in fig. 2- 
7(c). The last of these graphs refers to the pjr2-term. Since the p-terms are of order 1, 
contractions of these diagrams do not contribute at the one-loop level. However, since the 
number of degrees of freedom per unit volume is reduced after integration and rescaling, 
their prefactor p does change. We write

|/.(n-i)/loop52/ I5'1-*!2 •

r ddk 1 l<0 $d
= ^J> (2tt)4 P+o>2 - ¥ (W Je-' 

jUQ Sd
~ ~l~2 (27T)4

(2tt/

«o kj + a;2
So f

~ uo°°vL





3.1 Product wavefunction groundstates

(3.1.1)

l(ni)) = PIrt(n,)|vac), (3.1.2)

(3.1.3)

(3.1.4)

3 Coherent states with tunable quantum 
correlations

In this chapter, a coherent state is introduced that is especially suited for the semi-classical 
description of certain systems with strong local quantum fluctuations, which have to be 
integrated out before the proper long-wavelength theory can be obtained. Such systems 
are considered in chapters 4 and 5, where the coherent state which is introduced here is 
applied.

(AjAj>) — (Aj) (Ar)=0,

for j / j'. Another way to say this: there is no quantum entanglement between different 
cells. Quantum mechanics stops at the cell boundary 1. Wavefunctions of this type provide

'For the Neel slate, there is no entanglement between different sites. A better example is perhaps the BCS 
wavefunction for superconductivity [54]

IBCS) = n («» + v*4tclo) |vac).

where the decoupling now takes place in A:-space.

As the first step in a semi-classical analysis, the lowest-order approximation to the T = 
0 groundstate is obtained. For the quantum antiferromagnet, which was discussed in the 
introduction, this is the Neel state, with a wavefunction

I Neel) = ]”[ FI 4; lvac^ ’ 
IgA IgB

where A and B denote the spin up and spin down sublattice, respectively. This state can 
be obtained from a Hartree-Fock variational analysis, or from mean-field theory. Wave­
functions of this type are constructed by specifying the state in each unit cell, and taking a 
product.

where creates the state specified by Q in cell i. For the Neel state, the unit cell 
contains two sites and the configuration {Qf} is uniform: 4,-

Product wavefunctions contain no inter-cell correlations, since
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|fi() = ^(QJ^Ivac) , (3.1.5)

where contains the symmetry-transformations of the system, with 7?(0) = 1, and 
where J-J, Y- creates the Hartree-Fock groundstate, then the path-integral formulated in the 
basis of this coherent state will have a uniform saddle-point configuration ({Q,) = 0) which 
corresponds to the zeroth order groundstate. The Goldstone modes are long-wavelength 
fluctuations around this uniform configuration, which can be analyzed using a gradient 
expansion.
Requantizing the system in terms of these long wavelength fluctuations around the classical 
saddle point yields quite often a faithful representation of the physics of the system. This 
semi-classical procedure is the way in which quantum field theory appears in condensed 
matter physics.
Below, it is discussed what transformation R should be used in the construction of a co­
herent state. As a simple example, the XY-spin model is considered. Section 3.3 deals with 
the construction of an SO(N) generalized coherent state. The generalized coherent states 
can be used for systems where the lowest order groundstate fjj Y/|vac) is ‘maximally 
classical’, for instance the antiferromagnet. The generalized spin-coherent states discussed

a mapping from a configuration in phase-space to a state in Hilbert space. An arbitrary 
state in Fock space can be written as a superposition of product wavefunctions. In the 
path-integral formalism, the additional degrees of freedom which arise because of this 
are dealt with by mapping to a phase-space description in a space with one additional 
dimension, imaginary time. The product wavefunctions correspond to configurations which 
are uniform in the imaginary time direction.
Typically, uniform product wavefunctions like the Neel state eq. (3.1.1) are good zeroth- 
order groundstates for systems with a spontaneously broken symmetry, which are char­
acterized by an order-parameter [55], Examples of such systems are the antiferromagnet 
(broken spin-rotation symmetry), crystals (broken translational symmetry) and supercon­
ductors (broken phase-rotation symmetry). The fact that the Hartree-Fock groundstate has 
the same order-parameter as the true groundstate suggests that both states are adiabatically 
connected, that is: one can tune from the true groundstate to the zeroth-order state by con­
tinuously switching of the inter-cell correlations, without encountering a phase transition. 
For the antiferromagnet, this can be achieved by sending 5 to infinity. Another way is to 
increase the dimensionality of the system. For large d, every unit-cell is surrounded by a 
large number of other cells and it effectively sees just the average state of the system. Inter­
cell correlations therefore disappear in this limit (mean-field theory becomes exact). The 
fact that a phase-transition does not occur implies that the true groundstate can in principle 
be reached in a perturbative procedure around the zeroth-order state.
Important corrections to the zeroth order state come from the low-energy Goldstone modes 
related to a broken continuous symmetry. The semi-classical approach amounts to a quan­
tization of these modes. The coherent state formalism is especially suited for this purpose. 
If the coherent state has the form
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3.2 Dynamical algebra and symmetry algebra

obtain here for

(3.2.1)

(3.2.2)[SJ, Sx] = iS” ; [5Z, = -iSx ,

(3.2.3)|^)=e-/*s'|S,Sx = S),

which gives

(3.2.4)(<p\N\(/>) = 5(cos</>, sin0),

N therefore forms a vector representation of SO(2).
One could think of using an SO(2) coherent state for the description of this system:

Hxy

In section 1.4.3, a semi-classical description of the Heisenberg antiferromagnet was de­
rived using an SO (2) coherent state. The ordered state of the antiferromagnet exhibits 
spontaneous breaking of a global SU (2) symmetry. This choice of coherent state therefore 
ensures that the parametrization of the path-integral is convenient for the description of the 
Goldstone modes in the ordered state, and hence for a semi-classical analysis. In general, 
however, a coherent state related to a larger symmetry group than the one expressing the 
invariance of the Hamiltonian should be used. The algebra which generates the transfor­
mations contained in the coherent state should be the dynamical algebra of the system, not 
the symmetry algebra [18]. This distinction is explained below for the simple case of an 
XY-spin model, where the symmetry algebra is SO(2) (rotation of a 2-component vector), 
while the dynamical algebra is SO(3) (rotation of a 3-component vector). Further on, we 
will argue that, for a system with an order-parameter symmetry SO(N), the dynamical 
algebra is typically SO(N + 1). The results derived in the next section for the case of gen­
eral N (with restrictions on the Hilbert space), are very similar to what we ---- —
N = 2 in a more straightforward way.
The XY-Hamiltonian reads

in section 1.4 are of this type. In section 3.4, this procedure is generalized to the case of 
systems which undergo a zero-temperature disordering transition. For these systems, the 
zeroth-order groundstate has a more general form, and additional degrees of freedom enter 
the coherent state.

where the Sa are Heisenberg spin-operators. This model has a global SO(2) symmetry, 
related to spin-rotations in the XY-plane. The algebra generating these rotations has just 
one element: Sz. The XY-spin N = (Sx, Sy) transforms as a 2-vector under 5Z:
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(3.2.5)

(3.2.6)

=

|<M) = e-^e^lS* = 1)
1 I= -(1 +sin0)e'*|Sz = 1) + — cos0|Sz = 0)
2 v 2

4~(1 -sin0)e-'*|Sz = -I),

‘“fy.

since the operator rotates the spin around the Z-axis. However, this state does not 
correctly describe the response to a magnetic field in the Z-direction, since {(f>\Sz\<p) = 0 
for any 0. The requirement that the expectation-value of the quantum Hamiltonian with 
respect to [J, |0f) yields the classical Hamiltonian (eq.(1.4.5)) is therefore not fulfilled.

The rotations from the XY-plane to the Z-direction are generated by the components of N- 
The group which acts on the reference state must be extended to include these rotations. 
The resulting group is SO(3). The SO(3) coherent state is obtained by including a rotation 
about the Y-axis into eq. (3.2.4) (we take 5 = 1 to allow comparison with a result obtained 
in the next section, eq. (3.3.13))

This transformation respects the SO(3) commutation relations. A similar transformation is 
not possible for the Heisenberg antiferromagnet, since a staggering of all three components 
of S does not respect the SO(3) commutation relations. As was stated in the discussion 
of the Heisenberg path integral, this implies that antiferromagnetism and ferromagnetism 
are qualitatively different for quantum Heisenberg models. They are not for quantum XY 
models.

where 0 e [—y, y] is the angle of the classical Heisenberg spin (5) with respect to the 
XY-plane. The result in the last two lines is obtained by writing the transformations on the 
reference state as a Taylor expansion in <f> and 0, respectively. It was noted in section 1.4.3 
that coherent states with a different (0, 0) should be physically distinct, that is: differ by 
more than a phase-factor. This is the reason why the rotations generated by Sx are not 
included in eq. (3.2.5). With the above definition of the coherent state, the condition is 
fulfilled for all (0, 0) except at the north and south pole (0 = ±y).
The above coherent state could be written down just by considering the degrees of freedom 
it should contain, namely those of a classical Heisenberg spin. For the more general case 
of an SO(N) coherent state, we have less intuition about what the degrees of freedom 
should be, and it is therefore best to construct these by starting out with the most general 
transformation on the reference state and then constraining it by the condition that states 
with different parameters should differ by more than a phase factor. This is done in the next 
section, where the above result is reproduced in this way.
The spin-spin interactions in the XY Hamiltonian eq. (3.2.1) are antiferromagnetic. It can 
be transformed into a ferromagnetic XY model by staggering the vector N,
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(3.2.7)

(3.2.8)

(3.2.9)

(3.2.10)[L\Ny] = iNi,

sentation of the SO (3) algebra. N is a vector-representation of this algebra: the operators 
La generate rotations of the vector N

Because of the above transformation, the local order parameter for an XY system can be 
defined on a single site as the expectation value of the XY spin N,. A coarse-graining 
procedure such as was used for the Heisenberg antiferromagnet in section 1.4.3 is not 
necessary.
Using the SO(3) coherent state eq. (3.2.5) and going through the same procedure as in 
section 1.4.3, the kinetic term in the action is found to be

where

i = -S’-.
IWI

with the expectation values taken with respect to the coherent state. We find that the ki­
netic term arises from a coupling between the SO(2)-vector N and the SO (2) algebra 
Sz. It is therefore essential to include the additional SO(3) rotation into the coherent state 
eq. (3.2.5) to allow for a non-zero expectation value of Sz.
The semi-classical description of the SO(2) symmetric XY-model requires the use of an 
SO(3) coherent state. The relevant algebra for the construction of the coherent state is 
the dynamical algebra, which is the one containing the operators entering the Hamiltonian 
(SO(3) in this case) and not the algebra generating the symmetry transformations of the 
model (SO(2)). Another way to say this: the coherent state must contain all the symmetry 
transformations at the ‘most symmetric point’ of the model. In this simple example, this 
corresponds with the SO(3)-symmetric Heisenberg point, which can be reached by switch­
ing on a spin-spin interaction between the Z-components and switching of the magnetic 
field.
Finally, let us show that the structure as illustrated above for the XY model is also present 
in the case of the Heisenberg antiferromagnet, which was discussed in section 1.4.3. The 
first step in deriving the QNLS from the spin path-integral is to divide the lattice into 
two-spin unit cells. In each cell, the order parameter = (nit — «2i)/2 and the average 
spin I = (nh 4- n2i)/2 are defined. Modulo a factor one half, these two quantities are 
the expectation values of the following operators with respect to the spin coherent state 
eq. (1.4.1)

L = 5] 4- ?2 ,
N = s\ - S2 .

L is an 5 = 1 spin-operator (for a spin-| antiferromagnet), its components form a repre-
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0 (3.2.11)I =

(3.2.12)[lab- led] — I l^aclbd "F ^bdlac ^adlbc ^bc^ad) -

(3.2.13)

3.3 S O (N) generalized coherent states

J

ILab, Nc] = i (SacNb - SbcNa) , 

[Na,Nb] = iLab,

Note that the Hilbert-space in the two-site unit cell is spanned by 4 states, while the relevant 
group is 50(4). This is also the case for the model considered in the next chapter. In chapter 
5, a model is considered where there are 6 states per unit cell and the dynamical algebra 
is 50(6). We therefore discuss the general case of an SO (N't coherent state in an Al- 
dimensional local Hilbert space. The incorporation of local quantum fluctuations into the 
coherent state is discussed in the next section. The method which is used to construct the 
coherent states is set out in the book of Perelomov [18]. The application to this particular 
problem is, as far as I know, new.

0
Oj

and cyclic. Taken together, L and N form an 50(4) algebra. Its elements can be organized 
in a 4x4 matrix I

From the structure of the matrix I and these commutation relations, it can be seen that the 
50(3) subalgebra L can be organized in a 3x3 matrix. The minus signs of Lx and Lz 
can be removed without affecting the 50(3) commutation relations. The elements of an 
SO(N) algebra can in general be organized in an antisymmetric N x N matrix.

The following relations hold between an SO(N) algebra L and a vector-representation of 
this algebra, N.

It follows from these commutation relations that, for any TV, an 50 (TV) algebra and the vec­
tor representation of this algebra together form an SO(N + l)-algebra, as is demonstrated 
in the above for TV = 3 and N = 2.
The results of section 1.4.3 can be rederived by expressing the Hamiltonian in terms of 
the operators TV and L and using an 50(4) coherent state to obtain the path-integral. The 
kinetic term, eq. (4.4.8), is then of the same from as the one for the XY model, eq. (3.2.7). 
Again, it couples the 50(3) algebra to the time-derivative of the 5O(3)-vector.

with Iba = —lab- The indices a and b take the values 1 through 4. The operators satisfy the 
SO(N~) commutation relations

/ 0
TVi

-lx
\ Ly
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The coherent state is constructed by letting an element of SO(N) act on a reference state

= /?(n)i^0> • (3.3.1)

(3.3.2)Vabtij----- i(.SaiSbj — Haj^bi) .

(3.3.3)R =

mutually orthogonal. The

(3.3.4)

a<b
(3.3.5)

which indeed satisfy the commutation relations eq. (3.2.12).

A general orthogonal matrix R has the form

2 =
max.pol. J

det R = ■ • -kiN ,

where the N real N-component unit vectors a through X are 
determinant of this matrix is given by

where .jN is the fully antisymmetric Levi-Civita tensor. An orthogonal matrix has deter­
minant ±1. From the above expression, it is seen that the condition that R has determinant 
equal to 1 can be satisfied by correctly choosing the sign of one of the unit vectors.

For a generalized coherent state, the reference state |^o) >s chosen to be a maximally po­
larized eigenvector of one of the elements of the dynamical algebra [18] 2. The maximally 
polarized states are optimally classical in the sense that they minimize the uncertainty in 
the Casimir Xa<blab

Since the local Hilbert-space has dimension N, one can take R to be an N x N orthogona 
matrix with unit determinant. The corresponding representation of the SO(N) algebra is 
given by the N x N antisymmetric matrices

max.pol. N 1 max.pol.
a<b 

= N — 2 = minimal,

where the first step follows from the definition of the matrices lab, eq. (3.3.2), while the 
second is a consequence of the fact that the maximally polarized eigenstates of the matrices 
lab have an eigenvalue ±1. Since the expectation-value of a matrix-operator with respect 
to any state is bounded by its highest and lowest eigenvalue, Yla<b^ab)2 >s largest when 
the expectation value is taken with respect to a maximally polarized state, indeed ensuring 
that the variance of lab is minimized.

2For a normal (not generalized) bosonic coherent state, the reference state is the vacuum.
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(3.3.6)

0

(3.3.7)D =
0

\

/ <W|

ftR' = (3.3.8)“3
M2

t, OlN Pn /
where M\ and M2 are the triangular matrices

A/, =

0
(3.3.9)M2 =

^•N /\ w

simply amount to a multiplication of this reference state by a phasefactor e'1^. In order for 
coherent states with different parameters to be physically distinct, these transformations 
must be ‘divided out’. This is done by multiplying the matrix R from the right with a matrix 
of the form D, where this transformation is chosen such that R reduces to the following 
form

|± 1) = 4=(l,±i,0.......0).
v2

yt
Y2

Taking |tft) = 1+1). one finds that SO(N) transformations of the form SO(2) x SO(N — 
2),

^-1

£n

SO(N — 2)
/

••• 7., \
• • • 7-2

< cos<t> sin0
— sin <p cos <f>

The label > indicates that that matrix-element is restricted to values > 0. Since R' is 
still an SO(N) matrix, the elements a,- through A; again form an orthonormal set of N- 
vectors, and det R' = 1. The above form is obtained by letting the SO(2) transformation

( a> 0
“2 ft

f X3>V4 ’•

In eq. (3.2.5), the reference state IS" = 1) is used for the spin 1 XY-model. For the spin-j 
antiferromagnet, one can use the Neel state in the two-site unit cell: | Ti4-2> = |WZ = 
1). The variance of lab is invariant under SO(N) transformations, so the coherent state 
constructed from an optimally classical reference state is itself optimally classical.
The antisymmetric matrix l2] has the maximally polarized eigenvectors
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|SO(N)> =

(3.3.10)

(3.3.11)

(3.3.12)

(3.3.13)

1

a = (cos#, —sin#cos#, —sin#sin#),
P = (0, — sin <t>, cos #), 
y = (—sin#, cos# cos#, cos# sin#),

which is indeed the expression we obtained earlier for the spin-1 50(3) coherent state, 
eq. (3.2.5).

Transforming to the basis of Sz eigenstates, |5Z = ±1) — ±^j(0, 1, ±0 and |5Z — 0) — 
(1,0, 0), we obtain,

in D rotate the 2-vector (a,. Pt) into the positive (1,0)-direction, while the SO(N — 2) 
transformation rotates (yj,..., Xj) into the positive (1,0 0)-direction, (ya X4) 

lane spanned by (1,0 0) and (0, 1,0,...) with the second componentinto the half-pl;
positive, etc. .

Note that R' can only be of the form D if it is the unit matrix. This implies that the ‘gauge­
fixing’ procedure used here indeed removes the phase degree of freedom from the coherent 
state. This state is now given by

-!=«'( l,i,0...) 
72

= -^(af, a2„.n + <P1-n) •

where 0 g (0, 2zr] and 6 e [—j, y], ensuring that ai > 0 . The SO(3) coherent state is 
characterized by these two angles, which parametrize a point on the unit sphere. It reads

l®.#> = -^(af, 02 + ‘Pl. oil + ‘Pl)
V2

= -l=(cos#, — sin# cos# - i sin#, — sin# sin# 4- i cos#).
V2

where a2...N ■ p2...N = 0 and «j’2 + = 1 ■

For the case of N = 3, the following parametrization of R' can be used

I#,#) = 1(1 +sin#)e‘*|Sz = l)4--^=cos#|5z = 0) 

4-1(1 - sin#)e~‘*|Sz = -l).
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3.4 Local quantum fluctuations

(3.4.1)

lx) = (cos/. -i sinx. 0,...), (3.4.2)

where x 6 (0, J], one finds

(3.4.3)

R' = (3.4.4)
M2

\ aN Pn

I^Px) = /?'lx) = COS x<i - i sin xP • (3.4.5)

I4rhlx)2 
a<b

^(^oKoilV'o)2. 
a<b

= sin2 2x .

which determines the variance of lab, eq.(3.3.5). Taking for the reference state a superpo­
sition of the ± 1 maximally polarized states -4= (1, ±t, 0, ...)

where the constraint > 0 eliminates the transformation |x) —> — lx) fr°m R- 
The coherent state is given by

For / = J, this reference state is maximally polarized, for x = 0, it is minimally polarized. 
The parameter x tunes the amount of quantum fluctuations in the reference state, varying 
the uncertainty in the Casimir & between its highest and its lowest possible value. 
For x < J, the SO(N) transformations which multiply this state by a phase-factor are of 
the form (±12x2) x SO(N — 2). These matrices are given by eq. (3.3.7) with 0 = Oor 
re. The phase-factor by which |x) is multiplied is simply ±1. Since D is more restricted in 
this case, there are additional degrees of freedom in R'. We now have

In chapters 4 and 5, models are considered where local quantum fluctuations drive the 
system to a zero-temperature phase transition where the order parameter vanishes. For these 
models, the zeroth order approximation to the groundstate in the vicinity of the transition is 
not a product wavefunction of maximally polarized, ‘most classical’, states. To describe the 
long-wavelength physics of such systems, we introduce coherent states for which the local 
quantum fluctuations are incorporated into the reference state. A measure of the quantum 
fluctuations in a local state |V<o) is the quantity

71 ••• M \
Y2 • • A-2P2

“3 Pl
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(3.4.6)

(3.4.9)

(3.4.10)

(3.4.11)

I

a = (cos i/z cos <t>, sin i/r cos <f> n — sin <t> n), 

0 = (cos \[i sin <(>, sin sin <p n + cos </> n),

at < 0
at > 0

(3.4.7)

(3.4.8)

0(a,) = ° ’

where n and n are mutually orthogonal unit (TV — 1) component vectors and x/f G [0, n/2], 
$ € il-
With this parametrization, the following identities hold

{Na) = sin 2/ cos i/r n , 
(Lab) = sin 2/ sin x[t (nahb 

1 
na —------------------sin2x sin x//

1 = — [ dad3<5(a • ^) 0(«i) |a/3x)(a3xl.

where Sn is the surface of a sphere in TV-dimensions and 0 is a step-function

nann^ ,

flb » 
b

where Lab = l\+aA+b is an SO(N - l)-algebra and Na = Zi+a.i is the vector representa­
tion of this algebra.
If the system has a spontaneously broken SO(N — 1) global symmetry, (Na) is its order­
parameter. The angle x describes the reduction of this order-parameter by local quantum 
fluctuations, h and x// parametrize the response to an external field and the unit vector n 
determines the direction of the order parameter.
In order to construct the path-integral, the unit-operator has to be resolved in terms of the 
overcomplete coherent state basis. This resolution is given by

It can be checked that, for any choice of the unit vectors a and 3 with a • ® and
ai > 0, an SO(N) matrix of the form R' can be constructed. There are therefore no 
additional constraints on these two vectors.
Eq. (3.4.5) is the most general parametrization of a state in an TV-dimensional Hilbert space, 
given that this state should be normalized and that it should differ by more than a phase­
factor for different values of the parameters. This is important because we only considered 
the uncertainty in one particular Casimir as a measure of the quantum fluctuations, while 
SO(N) has more than a single Casimir for TV > 3. One could think of the uncertainty in 
the various Casimirs being tuned independently, which would require the introduction of 
additional degrees of freedom into the coherent state. Since the state obtained here is the 
most general one for this type of system, that is not necessary.
It is convenient to parametrize the vectors a and ft in the following way
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(3.4.12)

-n •

(3.4.13)

where n = sin xff n.
Constructing the coherent state path-integral in the way discussed in section 1.4.2, one 
obtains the kinetic term from the overlap given above

1 4- i sin 2/ 8<p + - sin (h • 8n — n • 8n

The second term has the same form as for the SO (3) and SO(4) generalized coherent 
states, eq.s (3.2.7) and (1.4.17). It describes the transversal dynamics of the order param- 
e^er- "The reduction of the order-parameter enters this term through a prefactor sin 2/. The 
first term describes the longitudinal dynamics of the order parameter. It couples / to the 
time-derivative of 0: the additional parameter which enters this coherent state because of 
the non-maximally polarized reference state.
The coherent state introduced here is a generalization of the generalized coherent state 
for a system with N degrees of freedom per unit cell and a dynamical algebra SO(N). 
It describes the reduction of the order-parameter by local quantum fluctuations as well 
as its rotational degrees of freedom. A coherent state of this type can have applications 
in systems which undergo quantum disordering transitions. In the next chapter, the long 
wavelength effective action for the Heisenberg bilayer model is derived with the aid of this 
coherent state. In chapter 5, it is used as part of the ansatz wavefunction in a variational 
Hartree-Fock analysis of a system with phase and spin degrees of freedom. In the same 
chapter, the coherent state with TV = 5 is applied to the construction of a path-integral for 
an SO(5) symmetric model.

Note that this resolution works for any value of /. Of course, one can add an integration 
fo and multiply the prefactor by that way including the /-fields as dynamical 
parameters in the path-integral.
The overlap between two coherent states satisfies, to lowest order in the difference between 
their parameters

<Skin. — J dr sin 2/f- + - sin 0, (n ■ dTn

/= jo dT 2Z r sin <



4 The bilayer Heisenberg model

4.1 A two-dimensional spin liquid without frustration

■

The study of non-classical collective quantum states of matter is a central theme of modem 
condensed matter physics. Despite the successes in 1 + 1 dimensions, it has proven difficult 
to address these matters in higher dimensions. Either the minus-sign problem intervenes 
(as in, e.g., the t-J model and frustrated spin models), or the tendency towards classical 
order is too strong (e.g. unfrustrated spin models). The bilayer Heisenberg model is spe­
cial in this regard. It consists of two antiferromagnetic Heisenberg spin-systems, coupled 
by an inter-layer antiferromagnetic interaction. The system undergoes a zero temperature 
spin-disordering transition as a function of the inter-layer to intra-layer spin-spin interac­
tion ratio. This model is sign-free, and convincing numerical evidence exists showing that 
its long-wavelength behavior is governed by the 0(3) quantum non-linear sigma model 
(QNLS) with tunable bare coupling constant g [56].
The attempts to formulate a spin-wave type description of the bilayer transition have not 
been very successful [57]. Spin-wave theory predicts that the average spin reaches the 
QNLS critical value Sc — .26 at an inter-layer to intra-layer coupling ratio of about 7, 
which is much larger than the 2.56 found from numerical work and series expansions 
[59] [60]. A modified spin-wave analysis [58], which includes elements of the Schwinger- 
boson mean-field theory, finds a first order transition at a ratio of 4.24, while the transition 
described by the QNLS is second order. Approaching the transition from the disordered 
side, Millis and Monien find a second order transition at a critical ratio of 4.48 from a 
Schwinger boson mean field analysis [2].
Chubukov and Morr (CM) made the key observation that, in order to obtain a good saddle­
point description, the severe local (interplanar) fluctuations have to be integrated out first 
[61]. Spin-wave theory treats these fluctuations on the same level as the higher-dimensional 
in-plane fluctuations, while the Schwinger-boson mean field theory and the modified spin­
wave method deal with the tendency to form inter-layer singlet states only approximately. 
Already at the mean field level, the theory of CM yields a critical ratio of 4, showing that 
the interplanar fluctuations were indeed underestimated by the other methods.
Using a new type of coherent state, we derive a path-integral description for the bilayer 
model in which the mean field solution of CM appears as a uniform saddle-point configure 
tion. Integrating out the fluctuations around this saddle-point, an effective long-waveleng 
action is obtained, which is a QNLS with a coupling constant that depends on the relative 
magnitude of the two spin-spin interactions. The coupling constant is found to verge a 
the mean-field transition, which implies that transversal fluctuations push the t^slt*on 
a smaller inter-layer interaction in any finite dimension. The dependence of the Q cou
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4

11

4

Figure 4-1. The bilayer system.

4.2 The singlet-triplet basis

(4.2.1)

The bilayer model consists of two coupled square-lattice Heisenberg spin systems (fig. 4- 
1). It is a generalization of the two-leg spin-ladder to the case d = 2. In the following, 
the generalization to arbitrary dimensions is considered, although the terminology of the 
bilayer system is used (they will be called ‘layers’ rather than ‘hypercubic lattices’). The 
d —*■ oo system corresponds to the classical limit at T = 0. This limit will be used to 
control the semi-classical expansion.

The bilayer Hamiltonian is given by

pling constant on the ratio of the two interactions is found to agree reasonable well with 
the results of an Ising series expansion [60].

H — J\ X? Cfo ' S\j + ■ S2j) + S2i — H ■ y2(?li + S2i) •

The summation < ij > runs over the bonds in a single layer. The S = | spins in layer 
one and two are denoted by Jj; and We focus on the case where both the inter-layer 
coupling J2 and the intra-layer interaction J\ are antiferromagnetic.

J2
S2

S1
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(4.2.2)

(4.2.3)

= 1 (half-filling). They are given by

(4.2.4)

(4.2.5)-S)

The zero-temperature, zero magnetic field phase diagram of this system is determined by 
the ratio a = where z = 2d is the coordination number. Note that we scale the ratio 
with the dimension of the ‘layers’. With this scaling, the mean field transition occurs at 
of = 1, giving the result (J2/J\)c = 4 for the case of two dimensions, discussed above. 
The behavior at the two limiting values of a is easily understood. For a ], 0, the layers 
decouple. The system has a Neel ordered state in each layer, with the order parameter on 
the two planes antiparalel (fig. 4-1). In the a —> oo limit, the different sites decouple and 
each spin-pair (Jfl, sf2) forms a singlet state. This state is a simple example of a quantum 
spin liquid. It has a gapped spectrum and exhibits no spontaneous breaking of the global 
rotational symmetry of eq. (4.2.1). At some intermediate value of a, a phase transition has 
to occur from the Neel ordered state to the spin liquid.
As Chubukov and Morr pointed out, a correct semi-classical analysis of this model starts 
by integrating out exactly the dangerous zero-dimensional fluctuations between the layers. 
The Hamiltonian is then written in terms of the four local eigenstates of the J\ = 0 system, 
the spin singlet |A) and the triplet 11 >, |0), | — 1 >. This is done by introducing the total spin 
S and the Neel operator S for every pair (sii, S2i)

Si = Sit + s,2 ; S = sfi — sf2 •

These operators can be expressed in terms of the hard-core bosons creating/annihilating 
the two-spin states

= ^(ci;c2t “ cltC2p ’

= ci|c2f ,
Bq = -^=(c{jC2j + ,

-I “ cl|c24.’

which satisfy the local constraint A*A + B^Bm

Sz = BjBi-B^B-i,

S+ = ,

Sz = -AtB0-^A,
S+ = x/2(bJa - AjB_i) .

S acts as a spin-1 operator on the triplet sector. 5 generates singlet-triplet transitions 

In terms of these operators, the Hamiltonian reads

<ij>
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4.3 Mean field analysis

(4.3.1)

(4.3.2)

(S°,SA] = iEabcsc, 
[SO,56] = ieabcSc. 
[S°,Sb] = ieabcSc.

T
+ pl z sin 2/m— 2^2 sin2 X ,

(4.2.6)
(4.2.7)
(4.2.8)

Note that the Ji-term is not decoupled, since it is already a single-site term in the singlet­
triplet basis.

The resulting Hamiltonian is diagonalized. This yields

p2 + Jizm2') + | - 2J2COS2 x]”Gi

where S? — 5, = I — 44^4, measures the singlet-density at site i.

The Neel operator transforms as a vector under S. The six operators S and S form a repre­
sentation of the SO(4) algebra

Sf~Sj -> mm (szj - Sf'j + m2 , 
St Sj -> 0.

At the J2 — H = 0 point (two decoupled layers) the system has a global 50(4) invari­
ance. It is broken for any finite J2, leaving only an invariance under the 5(7(2) subgroup 
generated by 5.

The Neel ordered phase is characterized by the order parameter m = y *&’(&)» w^erc 
r)i is the staggering-factor (—1)^=>M. In the mean-field approximation, the Hamiltonian 
is reduced to a single-site form by replacing the environment of each site by a uniform 
state with staggered magnetization in. The single-site Hamiltonian is diagonalized and in 
is solved from the self-consistency condition (5/) = where the average is taken with 
respect to the mean-field groundstate. This approximation becomes exact for d -> 00 and 
in the limit of infinite range interactions [62], since in both these limits the two spins on a 
site are truly interacting with the average of the spins in the rest of the system.

We write 5 as a sum of an order-parameter component and a fluctuating part, and neglect 
terms of the form (fluctuation)2. The same is done for 5. For the moment we focus on 
H = 0, where 5 has no non-fluctuating component. Assuming the staggered magnetization 
to be polarized along the z-direction, we arrive at the mean field decoupling
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where G and E are superpositions of the zero-magnetization hard-core bosons

(4.3.3)

and where x is fixed by the diagonalization condition

(4.3.4)Jiz»icos2/ = J2sin2x .

(4.3.5)

(4.3.6)

(4.3.7)

are

(4.3.8)

which yields for the spin-wave velocity

(4.3.9)

a

Gj = r/j Ai cos X - BOi sin x , 
Ej = t)Aj sin x + Boi cos x ,

sin 2/ (cos 2/ — a) = 0 .

The spin-liquid phase has sin 2/ = 0. Its mean-field groundstate is given by f], Aj|vac), 
which is the exact ct —> oo state discussed before. The Neel ordered state has m =

— a2. Its groundstate is a superposition of the spin singlet and the zero-magnetization 
triplet state.

G, = rji

Pr = ptl(l>|2 = Pl(l-“2).

The self-consistency requirement yields m = sin 2/. Inserting this into eq. (4.3.4), we 
obtain the condition

At a = 0, this gives a fully ordered Neel state on both layers. As a increases, the single­
layer magnetization (rj,2;) — is reduced through an increase of the singlet component 
in the groundstate, but the Neel order remains. At a = 1, a second-order transition occurs 
from the ordered state to the spin liquid.
The same analysis can be repeated in the presence of an external magnetic field perpendic­
ular to the direction of ordering. One then allows for a non-fluctuating component (S*) yt 0 
of the total spin ((S2) has to be zero since (5) _L (S)). In the small // limit, this calculation 
yields the mean field expression for the perpendicular susceptibility x±

.. (S') m2 I—a
X± = hm-----=--------S------------- =--------H|0 H J^m2 + 2J2(nA) J,z

For values of a close to the transition, the low-energy deformations of the spin-order 
slow rotations of ($,). The mean field stiffness for these fluctuations is given by [10]
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with S = Im

(H2) - (W2 = A0(7t, Ji, x) + O(rf-'). (4.3.10)

4.4 The bilayer path-integral

(4.4.1)

(S) = sin 2x cos ^rn ,
(S) = sin 2x sin x/rn x n ,

(nx) = cos2 t/f(cos2 x cos2 0 + sin2 x sin2 0),

Imposing Aq = 0 yields the mean field condition eq. (4.3.5), which therefore becomes the 
exact diagonalization condition for d —> oo.

The spin-coherent state path integral eq. (1.4.13) is not a good starting point for the deriva­
tion of a QNLS from the bilayer model. In the basis used to derive this path-integral, 
the spin singlet state corresponds to a complicated space-time configuration of counter­
precessing classical spins. As a result, the mean field groundstate in the Neel ordered phase, 
which interpolates between the S = | Neel state and the spin singlet, does not correspond 
to a uniform, time-independent configuration. This makes it hard to identify and integrate 
out the fluctuations around the ordered state.
This problem is avoided when the coherent state constructed in chapter 3 is used. The 
parameter x introduced there to tune the quantum correlations in the coherent state is 
the same as the x appearing here in the mean-field groundstate. The bilayer model has 
a dynamical algebra SO(4) and 4 states per unit cell. The appropriate coherent state is 
therefore given by eq. (3.4.5) with N = 4.
From eq. (3.4.9), we find that the coherent state indeed reproduces the mean-field degrees 
of freedom of the bilayer model

Note that it is not correct to interpret the bilayer system as a single-layer antiferromagnet 
with S = < 5 and derive the transition in the presence of transversal spin-fluctuations
from the critical spin-value Sc ~ | [57]. If this interpretation would hold, the mean-field 
perpendicular susceptibility should be independent of a, since it is independent of S for 
the single-layer system. Instead, one should compare the QNLS coupling constant g = 
(PrXJ.)-1 to its critical value in order to find the transition. In section 1.4.3 we show this 
explicitly by mapping the bilayer model onto the QNLS.
To conclude, we note that the above mean-field groundstate becomes an exact eigenstates 
in the limit d —> oo. To see this, we write J, = 7iz and take the limit d —> oo while 
keeping J\ constant (this ensures a finite energy per site). The variation of the energy in 
the mean field groundstate is then given by

where h and n are mutually orthogonal 3-component vectors. The parameter x determines 
the reduction of the magnitude of (st,-) and (?2i) by inter-layer quantum fluctuations. The
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(4.4.2)

G>(a‘)S(ai ■ fit) e~s^ . (4.4.3)

with the Euclidian action

(4.4.4)

(4.4.5)

where

(4.4.6)

(4.4.7)

(4.4.8)

I

+j 72 X? cos2 V' (cos2 X cos2 <t> + sin2 x sin2 <t>), 
i

For x = tt/4, this transformation amounts to a multiplication of |0o) by a phase-factor 
and we have to set 0 = 0. In the path-integral, the angle 0 drives the dynamics of x and 
vice-versa.
The bilayer path-integral
lion 1.4.2). It is given by

‘Sbi layer

angle 0 e [0, y] fixes their relative orientation, which determines the ratio |<S>|/|<S)|. It 
was noted in chapter 3 that the special choice for the reference state introduced an extra 
degree of freedom into the SO(4) matrix R'. This degree of freedom is related to the 
transformation:

dx, d4a, d4A
7T4

can be written down by following the same procedure as in sec-

o - . 1 (5) = n x n, 
sin2x

and where

I 714-2) ->ei0|
14-172) - e-'*| 4.172).

n = sin y/>n ; n = cos y/rn .

The kinetic term <4> follows from the overlap between coherent states on neighboring time­
slices. It is given by eq. (3.4.13) with N = 4, which yields

= — y* sin 2xi + <5< ■ 9rn x n) .

4.4 The bilayer path-integral

rPi>
= / dr(t<I> + y) . 

Jo
The potential term V follows from the expectation-value of the bilayer Hamiltonian with 
respect to the coherent stale, which can be obtained by using the results in eq. (4.4.1) on 
the Hamiltonian eq. (4.2.5)

V = y sin2x.- sin2xy (di ■ Oj +»i •»))
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4.5 Collective modes

(4.5.1)

+ 272 cos2 XoOy,

(4.5.2)

To investigate the collective modes of the bilayer model, the action eq. (4.4.4) is expanded 
around the mean-field groundstate and the Euler-Lagrange equations are solved. For the 
case of the ordered state, we set

It is interesting to compare this expression to the one for the antiferromagnetic spin-chain, 
after expansion to lowest order in the average spin 1 eq. (1.4.17). Modulo factors 2, the 
Neel moment m is equivalent to n here and the average spin to O. The first feature we 
note is the absence of a coupling between the average spin and the gradient of the order­
parameter in eq. (4.4.5). It is this coupling which gives rise to the topological term in the 
long-wavelength action for the antiferromagnetic spin-chain. Here, it is cancelled between 
the two layers. As was discussed in section 1.4.3, this is a well-known effect for two-leg 
ladders, which are described by the above action with d = 1. The existing analyses were in 
principle restricted to the case of weak inter-leg coupling. Here, the inter-leg quantum fluc­
tuations are included exactly. We find that the cancellation still occurs at large Ji, because 
(?li) and (su) are necessarily reduced by the same amount due to the inter-layer singlet 
formation.

The kinetic term in eq. (1.4.17) has the same form as eq. (4.4.8), except that here we have 
sin 2/ instead of 5 and there is an additional term sin2/3r(/>, which drives the dynamics 
of x. The kinetic term therefore describes an antiferromagnet with a dynamic spin-size S.

where e <K 1 is the expansion parameter and where r), is a staggering factor. The conditions 
O ■ n = 0 and O2 + „2 = 1 are satisfied to lowest order in e. Furthermore, we set 
X = Xo(“) + ex and <t> — E4>- The action is expanded to second order in e. The linear 
terms drop out, since the mean field state corresponds to a saddle point configuration of the 
action.
We find two sets of equations describing transversal and one describing longitudinal fluc­
tuations. The transversal fluctuations satisfy (we have switched to real time)

k s

sin 2xo7/8r”Z = ^tsin22xo

sin 2xoW 3< Of = - - -A sin2 2xo ( znf + E "?+« ) ’ 
z \ s /

di = e(Ofy,eOf'),

fii = Tliy/i - O2(efif\ 7’ - e2*?2).

cos2 = 1 — O2 ,
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(4.5.3)

+ J2cos2xoX< •

(4.5.4)

(4.5.5)

(4.5.6)

(4.5.7)

1

= y JiZ\I<A - ?2M)[(1 + ^2Yt) + 2a + a2(l - S2Yt)].

= S'l-JlZy/l - S2U2Yt-

The collective modes are 
coordinates. Using cos 2/o

runs over all neighboring sites. The second set follows from n —> ny, Oy —►

obtained by a Fourier-transformation in the time and the space 
= a (ordered phase), we obtain

cos 2/0a( Xi = COS 2/0 Ji4>.

cos2xo9(0i = Ji I z sin22xoXi - cos22xo E Xi+i 
\ «

"lranS
4ong 

where

s

and where f = ± 1.
The spectrum in the disordered phase is obtained in a similar way by evaluating the equa­
tions of motion of the longitudinal sector with xo = 0- For the transversal sector, the 
expansion around the saddle-point configuration becomes different as compared to the or­
dered state, since there is no preferred direction for n in the spin-liquid phase. However, the 
resulting spectrum is the same as for the longitudinal sector, since the disordered ground­
state is SO (3) symmetric,

whqu,d _ 5[jlZ^a^a _

The mode-spectrum is shown in fig. 4-2.
In the ordered phase, the bilayer model has acoustic modes at k = (0, 0) and k = (J, 7) 
(d = 2). These are the Goldstone modes of the system. Their dispersion daiijdk is given by 
the mean-field expression for the spin-wave velocity eq. (4.3.9). A mode-softening occurs 
for a 4, 0, where the Goldstone modes become two-fold degenerate due to the decoupling 
of the layers.
The longitudinal mode is dispersionless at the SO(4) symmetric point a = 0. It has a large 
gap A = J\z, which is the energy cost of flipping one S in the ordered groundstate. As a 
increases, the mode acquires a dispersion. At the transition to the disordered state, its gap 
closes and the longitudinal and transversal modes become degenerate.
In the spin-liquid phase, the system has a gap A oc Jot — 1 and one, three-fold degenerate 
mode is found, corresponding to propagating triplet excitations.

:;U = lEcos(fc.S),
S>0

where
-Ox.

The longitudinal modes follow from
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a = 0.5

0

0 = 1.1Z5

a*

(0.0)

4.6 Long-wavelength effective action

r
a = 0.025

__ L_
(".o)

0 
(0,0)

_____ I
(n.n) 

k

In the vicinity of the order-disorder transition, the low-energy fluctuations of the ordered 
state are transversal fluctuations of the order-parameter (S). The / -fluctuations are gapped 
and do not couple to the transversal modes, we therefore omit them from the low-energy 
description. The ^--fluctuations ((5) <-> ($)) are at finite wavenumbers away from (0,0) 
and (7T, tt). An effective low-energy action can be obtained by integrating out these fluctu­
ations.

The procedure is very much the same as for the single-layer antiferromagnet (section 1.4.3). 
We assume that Neel order is established locally, which means that |nf | ~ 1, and |0/|« 1- 
This assumption does not hold for a 1 , where the layers decouple. In that region, it is 
not correct to identify (S) as the local order-parameter. Rather, the long-wavelength physics

Figure 4-2. The mode-spectrum of the bilayer model. Dashed lines are longitudinal modes.
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ph
'nt (4.6.1)5

di (4.6.2)

(4.6.3)

where the bare stiffness and susceptibility are given by

(4.6.4)

(4.6.5)8o =
1

where aS,= A; - fi, and Eo is the saddle-point energy. The 6, are integrated out by 
solving them from Euler-Lagrange equation

which are the values of ps and x± obtained from the 
(4.3.8). The QNLS coupling constant is given by

which is the central result of this chapter.
We find that the order-disorder transition of the bilayer model is in the universality-class 
of the 0(3) QNLS, in agreement with the Monte Carlo results of Sandvick and Scalapino.

rPh ________
= j iV 1 — a2 Y7 Oi ■ dthi x

+J1(1 -a2) £

2ad~}Jd
(1 -a)Vl + “’

are replaced by their saddle-point values, since their fluctuations 
are staggered: zi, —> . The action is expanded to second order
Oj)2, which acquires a prefactor a2 in the continuum limit, is

mean field analysis, eq.s (4.3.7) and

f ddx and omitting constant terms, we obtain the

1 rfih _ _

S=2j0 + J '

Taking the continuum-limit —> a
QNLS action

should be described by two weakly coupled S = | non-linear sigma models, where the 
order-parameters are defined in the planes. The present description is the correct one in the 
neighborhood of the order-disorder transition.
The parameters / and <p 
are gapped. The fields n, 
in Oi and a term (5, — 
neglected. This yields

,-J 1 ~ «

J\z
:2-‘/Ll(l —a2),P° = a

xl = a

dThi x hi
J\Z
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I

Figure 4-3. The reduction-factor 1 — & versus a (this is the factor by which the bare stiffness and 
susceptibility get renormalized at the l-loop level, eq. (1.3.9) ). The crosses are results obtained 
from an Ising-expansion for the case two dimensions. The line is the mean-field estimate, fitted to 
agree with the Ising-expansion at J2 = 1.5 J, => a = 0.375.

The coupling constant diverges at a = 1. This implies that the transition to the disordered 
phase occurs at an otc < 1 in any finite dimension, since the mean field transition only 
coincides with the go = gc-point in the limit d —► oo, where go^-Qj —► oo.
As was pointed out in section 1.3.4, the bare coupling constant obtained in the semi- 
classical approach is quite inaccurate for the case of small S and low dimensionality. One 
can however hope that the a-dependence of go obtained in this way is still reasonable. To 
check this, the one-loop relation eq. (1.3.10) is used to calculate go(a) from the renor­
malized spin-wave velocity and perpendicular susceptibility. We use the Ising-expansion 
results of Zheng-Weihong [60] for these quantities.
As discussed above, the QNLS-action obtained here describes the bilayer at relatively large 
inter-layers couplings, where the low-energy physics is dominated by transversal fluctua­
tions of n. The expression for go is therefore not expected to be correct for small a. To 
compare the a-dependence found here to the results of the Ising-expansion, we multiply go

0.6

0.5

0.3

0 I------------ 1------------ 1_______ I_______ I_______ I_______ I 1 \__ I
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7

a
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by a constant prefactor and fit it such that the resulting value of go agrees with the expansion 
result at J2 = 1.5J], where the influence of the plane-decoupling at low-a seems to have 
disappeared. The result is shown in fig. 4-3. The error bars are those of the Ising-expansion 
results. The fit is not unreasonable, also considering the inaccuracies in the one-loop ex­
pression used to obtain go- The curvature of 1 —go/4it (which is the 1-loop renormalization 
factor of the spin stiffness and the perpendicular susceptibility, see eq. (1.3.9)) is underes­
timated, resulting in a critical coupling ac — 0.66, instead of ac — 0.63 obtained from the 
Ising-expansion.
In summary, we have presented a mapping from the bilayer model to the QNLS with a 
tunable coupling constant. This clarifies the origin of the order-disorder transition in this 
system. It shows that the mean field treatment of Chubukov and Morr, which deals exactly 
with the interlayer fluctuations, is the correct starting point for a semi-classical analysis of 
the transition. We expect the order-parameter structure of the bilayer to be quite common 
in the general context of quantum magnetism [63]. Our main result is the discovery of a 
new type of coherent state which allows for the requantization of such order-parameter 
structures.

I





5.1 The stripe/superconductor coexistence phase

L

5 Strong-coupling model for 
antiferromagnetism and superconductivity

As was discussed in the introduction, section 1.5, the possibility of a coexistence phase of 
stripes and superconductivity has been suggested by a number of authors. In measurements 
on Nd-doped La2-xSrxCuO4. Tranquada and coworkers find static stripe correlations in a 
superconducting sample [28], The question of whether this is true coexistence or if the 
superconductivity is somehow spatially separated from the stripe-regions is still a matter 
of debate. More recently, static incommensurate magnetic order was found for Nd-free 
La2_xSrxCuO4 in the superconducting region around the doping x = | [27].
Other indications for the presence of a coexistence phase come from the quantum-critical 
behavior which is reported for the spin-sector in the underdoped cuprate superconduc­
tors [64] [65] [66]. Aeppli et al. argue that this behavior is a result of the proximity (in 
parameter-space) to the ordered stripe-antiferromagnet. This state can either be reached 
by going to x = | (Aeppli’s suggestion) or by tuning an additional parameter which pro­
motes stripe-order or suppresses superconductivity, like LTT-deformation or a magnetic 
field. This last possibility is attractive since quantum critical behavior is found throughout 
the underdoped region [67]. In order for quantum-criticality to arise as a result of the nearby 
spin-ordered state, the zero-temperature transition from the spin disordered superconduc­
tor to this state has to be smooth (one or more second order transitions). On the basis of an 
extension of the Landau theory for stripe formation of Zachar et. al 1 [37] which includes 
superconductivity , it has been argued that a direct transition is always first order, but a 
smooth transition can occur with the coexistence phase as an intermediary stage [67].
As was discussed at the end of section 1.6, the measurements on Nd-free La2-xSrxCuO4 
are consistent with an SO(5) interpretation of the coexistence phase. In this interpretation, 
one assumes that, for some reason, the system has an (approximate) 50(5) symmetry at 
long wavelengths. This symmetry unifies the global <7(1) symmetry with respect to phase­
transformations and the SU (2)-symmetry with respect to spin-rotations. There then exists a 
5-component order-parameter related to the spontaneous breaking of this symmetry, which 
consists of the two-component order-parameter of superconductivity and the 3-component 
order-parameter of antiferromagnetism. If the coexistence phase indeed arises from a spon­
taneous breaking of such an 50(5) symmetry, where the resulting order-parameter has 
components both in the antiferromagnetism and the superconductivity subspace, then the

'The Landau mean field theory is in this case applied to the effectively 3-dimensional T — 0 problem, 
where fluctuations play a less important role than at finite T (d=2). This considerably changes the discussion 
about the influence of fluctuations in section 2.1.
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5.2 The strong pairing limit

A special version of the Hubbard model (section 1.1) can be used to study the basic features 
of superconductivity in a simple setting. If the on-site energy U is taken to be negative, this 
term in the Hamiltonian describes an electron pairing interaction instead of a short-range 
Coulomb repulsion. The electron-pairing leads to superconductivity at low temperatures. 
There exists an exact mapping from this negative-!/ Hubbard model at arbitrary filling in

magnetic ordering and the superconductivity should be expected to set in at the same tem­
perature. Near the optimum doping for the magnetic order (x = 0.125), this is indeed 
found within the accuracy of the measurement. This is of course only information from 
one particular quantity, the onset temperature, and relating the coexistence phase on the 
basis of this to SO(5) ideas is very speculative. A more direct indication for the presence 
of an approximate SO (5) symmetry near the doping x = 0.125 would be the observation 
of the pseudo-Goldstone modes related to the approximate higher symmetry of the system: 
the rr-modes (see section 1.6). This has not been looked at yet. It should be noted that 
an application of 50(5) ideas to this particular problem deviates in some sense from the 
‘standard’ 50(5) theory [29], where it is assumed that there is a symmetry relating the 
superconducting phase and the half-filling antiferromagnet.
To investigate the possibility of a coexistence phase, a simple strong-coupling model is 
proposed which describes the interplay between spin- and phase-order. The parameters 
entering this model are phenomenological. The phase-diagram is investigated in some de­
tail for most of the parameter-values. A d-wave superconductor, an antiferromagnet, an 
insulating spin-liquid phase and a coexistence phase are found. It is seen that a smooth 
transition from the antiferromagnet to the superconductor is indeed only possible with this 
coexistence phase as an intermediary stage. Transversal spin-fluctuations are included to 
obtain the most important quantum-corrections to the phase-diagram. At finite tempera­
tures, quantum-critical behavior occurs in the parameter region where these fluctuations 
destroy the magnetic order in the coexistence phase.
For specific values of the parameters, an 50(5) symmetric point is found at the intersection 
of the superconductor, the antiferromagnet and the coexistence phase. An 50(5) general­
ization of the bilayer QNLS is derived which describes the long-wavelength physics at this 
point.
The role of the large U limit (section 1.2.1), which explicitly breaks the 50(5) symmetry, 
is studied. It is found that in this limit the rr-modes are still present in the RPA mode­
spectrum of the superconducting phase, but no longer in that of the antiferromagnet or the 
coexistence phase. As is the case for the 50(5) symmetric ladder model [71], the 7r-mode 
in the superconducting phase continuously evolves from the triplet magnon mode of the 
spin liquid insulator. The rr-mode in the antiferromagnetic phase becomes the longitudinal 
spin-mode seen in the bilayer model when U is tuned away from its value at the 50(5)- 
symmetric point.
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(/ » l,n = 1
U « -1
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o

zero magnetic field, to the positive-!/ model at half-filling in a non-zero magnetic field 2. 
This mapping demonstrates a number of analogies between superconductivity and antifer­
romagnetism [68],

In the large U limit, the half-filled Hubbard model becomes a pure spin system and can be 
described by a Heisenberg Hamiltonian. Similarly, the negative U model can be described 
by a pseudo-spin Hamiltonian in this limit. The correspondence is set out in table 5-1. It 
is based on the fact that for U « — 1, all electrons are paired into on-site spin-singlet 
states. A site can therefore either be unoccupied (pseudo-spin down) or doubly occupied 
(pseudo-spin up). Following this mapping, it is seen that the strong-coupling supercon­
ducting state corresponds to an S = | antiferromagnet in an external magnetic field. The 
XY Neel order in the plane perpendicular to the field corresponds to the phase-order in the 
superconducting state, the induced component along the field to the Cooper-pair density.
The magnitude of the antiferromagnetic moment in the positive U Hubbard model at half­
filling depends on the ratio U/t. The moment in the half-filled cuprates is quite large, 
about one third, which suggests that the antiferromagnetism in these systems is close to 
the strong-coupling limit. The superconductivity in these materials seems to be in the in­
termediate coupling regime, with a coherence length of the order of 10 lattice spacings. 
However, it has been shown that the strong-coupling and the weak-coupling limits of su­
perconductivity are adiabatically connected [69]: the system can be tuned from weak pair­
ing to strong pairing withoubencountering a phase-transition. This implies that weak- and 
strong-coupling superconductivity are qualitatively similar.
Exploiting the adiabatic connectedness, we consider a simplified strong-coupling descrip­
tion of the coexistence phase. Our goal is to demonstrate the possibility of such a phase in 
a simple setting and to study its qualitative features.
The negative-!/ Hubbard model is not a good starting point, since on-site Cooper pairs are 
necessarily in a singlet state, which kills the spin degrees of freedom. Also, the supercon­
ductivity in this model is of s-wave type, while the phase-order found in the cuprates seems 
to be d-wave.
In the following, a model is therefore considered in which the building-blocks are nearest- 
neighbor Cooper pairs, or dimers. It can be viewed as the strong-coupling limit of a model 
describing Cooper-pair formation. We assume that the single-electron states have been in­
tegrated out, resulting in an effective Hamiltonian containing terms describing the charge­
dynamics of the dimers and spin-spin interactions. In most of this work, we also assume

2ln fact, the mapping is also possible with a non-zero magnetic field in the negative U Hubbard model, 
where the resulting positive-!/ Hamiltonian is away from half-filling.

sz
ntnI -1 cteI

Table 5-1. Mapping from the spins in the large U Hubbard model at half-filling to the pseudo-spins 
in the strong-coupling negative-^/ Hubbard model.
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that the doubly-occupied states are integrated out, which means that different dimers can­
not overlap. The resulting model then has the form of a t-J model, where the particles are 
dimers instead of lower-Hubbard band electrons.
The proposed coexistence-phase in Laj_xSrtCuO4 occurs at the interface of a paramag­
netic superconducting phase and a charge-ordered antiferromagnetic phase, where the lat­
ter is either the LTT-stabilized stripe-phase, or the commensurate stripe-state at x = j. 
From the perspective of a strong-coupling description, the transition to the insulating phase 
would amount to an ordering transition of the Cooper pairs. It should be possible to include 
the appropriate interactions into the model and describe such a charge-transition. Indeed, 
White and Scalapino find that the stripes seen in density matrix renormalization group cal­
culations on the t-J model can be viewed as an ordered state of short-range hole pairs 
[25].
However, instead of trying to describe stripe-formation as well as spin- and phase-ordering 
by this model, we will simplify the analysis by taking the half-filled antiferromagnet as the 
insulating state which borders the coexistence phase. This introduces complications if the 
model is formulated on a square lattice. At half-filling, there are many ways in which the 
square lattice can be completely covered by the dimers. Since all of these coverings should 
represent the same physical state, this introduces a large degeneracy into the description. 
This problem may not be present in the stripe phase. We therefore feel free to go to a 
different lattice, shown in figure 5-1, where the problem is avoided.
This type of lattice is known as the sparse, or ^-depleted lattice [11], We arrive at it by 
expanding each site of a square lattice to form a tilted square. The dimers are only allowed 
to sit on the bonds of the original square lattice. The dimer-Hamiltonian can now be thought 
of as describing the low-energy sector of a model defined on this lattice with a strong 
attractive nearest-neighbor interaction on the horizontal and vertical bonds. The half-filled 
state is well-defined in terms of the dimers.
An antiferromagnetic spin-spin interaction J is assumed along the horizontal and vertical 
bonds and & ferromagnetic interaction Jp along the diagonal bonds. This choice allows for 
an extension of the model to higher dimensions without introducing frustration into the spin 
system, making it possible to reach the d —> oo limit and check the mean field results there. 
For Jp » J, the half-filled system becomes equivalent to an S = 2 antiferromagnet on a 
square lattice. This property will be used to obtain an estimate of the quantum-corrections 
to the saddle-point results obtained in the next section.
Two hopping processes are introduced, with amplitudes z, and ti. Both processes move a 
dimer from a horizontal (vertical) bond to a nearest-neighbor vertical (horizontal) bond. 
The Zj process respects the spin-ordering, keeping the electrons which form the dimer on 
their original sublattice. The Z2 process moves the electrons from one sublattice to another, 
thereby frustrating Neel order.
Including a chemical potential fx, we arrive at the Hamiltonian

* =
/ L<71<T2
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Figure 5-1. The sparse lattice. The dotted lines connect nearest-neighbor horizontal and vertical 
bonds.
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The dimers are created by the operators Laj'^2^ — w^ere P projects out
doubly occupied states. The electrons in the dimer are numbered from left to right and from 
bottom to top.
The Hilbert space on one horizontal/vertical bond is spanned by five states: unoccupied 
(V), spin-singlet (A) and spin-triplet (1,0, —1). The operators acting on this space are 
5x5 matrices. Introducing the notation
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Figure 5-2. Hopping processes and spin-spin interactions included in the model.

(5.2.3)

(5.2.4)

which are given by

Sz = Gh-G-i-,.

I

= Gi v, 

G-iv.

(Gov - Gav) .

= (Gov + Gav) ■

the dimer creation operators can be written as:

Ltt

=

These operators are the equivalent of the pseudo-spins which appear in the strong-coupling 
negative U Hubbard model. The operators GaV, GVa and |(na -nv) form an 5 = | spin­
algebra (a = 1,0, — 1, A). Pseudo-spins with a different spin-index a do not commute. 
When studying the SO(5) symmetric point in section 5.5, the Hilbert space is expanded to 
include doubly occupied states. The operators (5.2.3) then become 5 = 1 pseudo-spins and 
operators with a different index a do commute in this case.
The spin degrees of freedom are the same as for the bilayer model in chapter 4. Again, it is 
convenient to introduce the total spin and the N6el moment on a dimer

Si.S = + S2i,S ; SitS = S\i'S - S2i,g ,
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(5.2.5)

(5.2.6)

H

5.3 Mean field analysis

(5.3.1)

(5.3.2)

and which satisfy 50(4) commutation relations. In terms of these operators, the Hamilto­
nian takes the form

* = E E <
i *i - ±«x 

42 - ±Jy L

E ('l+f2) E (GaVGVa + hc) 
<l,m>

(Il + 5/) • (Sm + Sm)]

(1-4)]. (5.2.7)

Jf 
4

+E E
i 8=8x,Sy L

Absorbing a factor r/ = (—l)'x+,’sign(3) into the singlet-state |A,.j), which induces a 
staggering of S and Gav with r?f, the Hamitonian can be rewritten on the square lattice 
formed by the bonds (dotted lines in fig. 5-1). This yields

«=l.o,-l
+(tt-/2) (GivG^+h.c.)-^

+ E [p 0 - n'v - 4n'J -

A variational Hartree-Fock procedure is used for the mean-field analysis. In the Ansatz- 
wavefunction, the Neel-vector is fixed in the z- and the total spin in the x-direction ((S) • 
(S) = 0). The pseudo-spin degrees of freedom of the charge/phase sector are described by 
an 5 = | spin coherent state (eq. (1.4.1))

|0, tfr, S2) = sin0e-'v|V)+cos0|Q).

The state |Q) contains the spin degrees of freedom of the dimer

|Q) = e-'*^’ (cos x |A) - sinxIO)).

5+ = 5/2(610 + Go-i), 
= —Gao — Gqa <

5+ = >/2(G\a — Ga-i) ,

('l+'i) E (G«V 
a=l,O,-l

+G1 - t2)sign(8i')sign(S2) (g'^G'/x + he)

(s,.4| + sign(3i)Si,4|) • (s,;j2 +s<gn(32)Si.«2)

- - 4^)(’-</) •

G^+h.c.)
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(5.3.4)E.

where

KZ)>=n V'/. 6,).
i

(5.3.5)

(5.3.6)

phase cos2xn

Table 5-2. Mean-field results for the various phases.

1 
0
1

1 
1

Singlet dSC
Triplet dSC
AF

Spin-liquid
Neel dSC

1 
J+80O1-I)

1
0
J
1

This is just the bilayer coherent state, eq. (3.4.5) with N = 4, which yields the expectation 
values listed in eq. (4.4.1), where the spin-orientation has been fixed and where the angle 
<t> is set to zero.
We list the expectation-value of a number of quantities with respect to the variational state 

n = 1 — (nv) = cos2©, 
(GaV) = yn(l -n)e-'*(Q|a), 
(S) = exn sin 2/ sin <j>y ,

(S) = ezn sin 2% cos 0’’,
(«4) — n cos2 x cos2 0y , (5.3.3)

where a = 1.0, — 1, A. The relative magnitude of (S) and (S) is determined by 0y, their 
total magnitude by x • 0 represents the phase that orders in the superconducting state. 6 
fixes the dimer-density.
The variational energy is given by

■var.({0/. 0/. «/)) = <{Z)|W1{/)) ,

1 
-J-4n-16li-SJl2+64^

4/z.+ 16(f| —/2)+3J

4-32(0+/2)
1

COS0y

Taking Q/ and 0/ to be uniform, and assuming that 0/ = 0H (0V) for horizontal (vertical) 
bonds, we arrive at the following mean field energy

Emf = N (sin2 20(t} + t2 — 2t2 cos2 x cos2 0y) x

x cos(0H — 0V) — cos4© sin2 2x

— - J cos2 0(1 — 4cos2 x cos2 0y) — /zcos2©) ,
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Figure 5-3. Mean field phase diagram of J versus /z and n, for Z| > t* (Zj = 0.4Jf, tz = —0.1 Jp). 
The dotted line indicates the quantum corrections if transversal spin-fluctuations are taken into 
account.

anti— 
ferro— 
magnet

n = 1

IJ
I Jr

i- 
f

0

m/ Jp

where N denotes the number of bonds. Minimizing eq. (5.3.6), a variety of mean-field 
groundstates is obtained as a function of the various parameters. The results are summa­
rized in figures 5-3-5-5 and in table 5-2. We focus here on the case Zi > 0, for which the 
superconducting state is of the d-wave type (i/rH — i/rv = zr). The same phase-diagrams 
result for Zi -> —Zi and t2 —► — Z2, but with s-wave instead of d-wave phase-order. Below, 
we discuss briefly the role that the various parameters play. For simplicity, J, t\, t2 and M 
are expressed in units of Jp from here on.

The antiferromagnetic spin-spin interaction J tunes the singlet density in the groundstate 
at half-filling. For J 1, the system has full Neel order with (ha) = I(S)I = 1- The 
singlet density increases linearly with J up to (ha) = 1 at J = 2, where the staggered 
magnetization vanishes in a second order transition to a dimerized spin state (fig. 5-3). 
This is just the bilayer order-disorder transition discussed in the previous chapter.

The value of the hopping amplitude Zj determines the nature of the transition from the 
antiferromagnet to the singlet superconductor. For small Z], the transition is first order as a

\spin liquid

■

singlet dSC \________ J 
Tf

2

0

//1
Neel dSC

co
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function of /z, giving rise to a region of antiferromagnet/ superconductor phase separation 
in the t\ — n phase-diagram (fig. 5-4). At r, = r* = | the first order line splits into 
two second order lines and a coexistence region opens up. This is the Neel superconductor 
(NSC) phase, which has both Neel spin order and superconductivity. Since all electrons are 
paired in this model, superconductivity sets in as soon as the density n is decreased from 
its half-filling value of 1.

There are three processes which suppress the spin order-parameter in the NSC phase. One 
is simply the dilution of the spin system by doping it with hole-pairs. Another is the fact 
that the inter-dimer spin-spin interaction Jg scales with the dimer-density squared, while 
the intra dimer spin-spin interaction J scales linearly with n. As a result, the ferromagnetic 
interaction is suppressed by a factor n relative to J, which pushes the ratio J/Jf closer 
to its critical value. Finally, the hopping process tz frustrates the Neel order, provided that 
jrgn(r2) = — signify) (the other case is discussed below). The increase of the singlet density 
per dimer due to the last two processes results in a transition to the singlet superconductor 
at n =nc =

Figure 5-4. Mean field phase diagram of versus /z and n, for J < 2JF and t2 < t\ (J = Jf, 
t2 = — 0.1 JF). The dotted line indicates the quantum corrections if transversal spin-fluctuations are 
taken into account. Bold lines represent first-order phase transitions.
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Since the t2 process amounts to a Zj-type hop with an additional interchange of the two 
electrons forming the dimer, it picks up a minus-sign when acting on a dimer in the anti­
symmetric spin-singlet state. Suppose that Zi and t2 have the same sign. A singlet-dimer, 
through the Z2-process, then frustrates the phase-ordering as favored by the Zi-hop. To re­
duce this frustration, the singlet content of the dimers is suppressed as t2 is increased, 
enhancing the spin-ordering in the NSC phase. Eventually, a first order transition occurs 
to a ferromagnetically ordered triplet superconductor phase, where the singlet-density is 
reduced to zero (fig.5-5).

If Zj and t2 have opposite sign, the triplet component is suppressed through the same pro­
cess, and the Z2-hop reduces the spin-order in the NSC phase. Note that t2 causes a positive 
shift of the critical value z* regardless of its sign. One always has Zi > IZ2I in the NSC 
phase, where the equal sign occurs only for Z2 = —5.

As was done for the bilayer model, it should be verified that the saddle-point solution 
becomes exact in the limit d 00. To reach this limit, the model has to be formulated in

^2

JF
^2

Jp

I ■ I

-1 0

/z/Jp

Figure 5-5. Mean field phase diagram of t2 versus p and n, for J < 2Jp and Zi > (4+ J2)/32 (Zj = 
0.4J/7, J = JF). The dotted line indicates the quantum corrections if transversal spin-fluctuations 
are taken into account. Bold lines represent first-order phase transitions.

singlet dSC

triplet dSC /" 
Neel dSC7^“

dSC
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5.4 Transversal spin fluctuations

(5.4.1)

(5.4.2)(1 — cos2x)n
U - 16r2(l -n)

H ^~^(5X) = NH cos2 9 sin 2/ sin .
I

The dimer model has a U (1) x SU (2) global symmetry, since it is invariant under rotations 
of the total phase and spin. In the NSC phase, both these symmetries are spontaneously 
broken. As a result, the NSC phase has three Goldstone modes, one related to the broken 
t/(l) symmetry and two to the broken SU(2) symmetry. The long-wavelength physics of 
the system is determined by these modes. The phase and spin degrees of freedom therefore 
decouple at long wavelenghts and may be treated separately.
The physics of the phase sector is equivalent to that of an XY-spin model in an external 
magnetic field, which has a dynamical critical exponent z = 2. The T = 0 system is 
therefore effectively at its upper critical dimension d = 2 + z = 4. Because of the high 
effective dimensionality, phase-fluctuations only give small correction to the mean field 
results for the insulator-superconductor transition [70],
The long-wavelength behavior of the spin-sector in the NSC phase can be described by 
a z = 1 QNLS action. The spin-sector therefore has an effective dimension 3 and the 
corrections to the mean field results from transversal spin fluctuations can be quite large. 
Based on what was found for the bilayer model, the bare coupling constant of the QNLS 
is expected to diverge both at the transition from the half-filling antiferromagnet to the 
spin liquid phase and at the transition from the NSC to the singlet superconductor. These 
transitions will therefore shift significantly if the fluctuations are included.
It was found for the bilayer model that the mean-field expressions for the stiffness and 
the susceptibility can be used as an estimate for the bare stiffness and susceptibility in the 
effective QNLS. These two quantities are derived for the present model.
The susceptibility is easily obtained by adding a magnetic field term to the mean field 
energy eq. (5.3.6).

arbitrary dimension. The d-wave phase order then posses a problem, since it is not readily 
generalized to dimensions higher than 2. The Hamiltonian of the 2d system is however 
invariant under a simultaneous sign-change of t|, r2 and G'ayS'. This implies that d- and 
s-wave order are equivalent for the 2d model. We therefore flip the sign of t| and /2 and 
study the d —> oo limit for the s-wave ordered state. In order to keep the energy finite, Jp, 
ti and r2 are scaled with j while taking the limit. The variation of the energy is then found 
to be of order j for the saddle-point solution, confirming that the above analysis becomes 
exact for large d.

Minimizing the energy, we obtain

1(SX) 
Xj_ = lim ---------=A H->0 H
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Figure 5-6. A spin-configuration with a twist along the x + y-direction.

= e"i*sye-'J“i^,'(cosX|A) -sinX|0)) . (5.4.3)

5.4 Transversal spin fluctuations

This susceptibility vanishes at the transitions to the spin liquid and the singlet supercon­
ductor phase (/ —> 0). It has a divergence at n = 1 — which is related to the transition 
to the triplet superconductor (fig. 5-5). For n = 1 and Jp 3> J, eq. (5.4.2) becomes inde­
pendent of Jp. It reduces to the susceptibility of a square lattice S = 2 antiferromagnet in 
this limit, apart for a numerical constant, which is due to the fact that was defined in 
terms of the S = j spins on the sparse lattice.
To determine the spin stiffness, the configuration shown in fig. 5-6 is considered. It has a 
slow twist in the spin order parameter along the x + y-direction. The stiffness is given by 
the lowest-order correction to the groundstate energy due to this twist [10].

At each antiferromagnetic bond along the direction of the twist, the spins have been rotated 
over an angle a in the XZ-plane, at each ferromagnetic bond over an angle (1 — a) S</>. 
This configuration is described by the variational state eq. (5.3.1), where the spin-part is 
given by
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- -(G!4v)(G'+1)-lsin220

(5.4.4)

Taking these contributions together, the energy-increase is found to be

(5.4.5)N P, •

(5.4.6)

The distribution of the total twist over the two types of bonds is determined by minimizing 
this energy with respect to a, which yields

n(l — cos2/)
n(1 — cos2/) 4- J — 4t2( 1 — n)

1 - <Q|Sy2|Q> I ,

sin2/ /

sin2 20 cos2 x cos2 ^a26d>2^

— - sin2 29 cos2 x

E (GLvXGLv1) = “ E t sin220(Q|e_,/4^5,|a)(a|e' 
a=1,0,-1 a=l,O,—1

= -^sin220(Q| (1 - |A)(A|)ei4*s,|O)

The index I labels the bonds along the twist.
The antiferromagnetic interaction-energy is reduced by a factor cos a 5<p per bond, the fer­
romagnetic energy by a factor cos( 1 — a) S<p per twisted bond. The phase-ordering energy 
also contributes to the spin stiffness. Along the twist, we have (d-wave order)

For Jp much larger than J and t2 (or just J for n — 1), the twist is entirely localized on 
the antiferromagnetic bonds. At the transition to the spin disordered phases, it is localized 
on the ferromagnetic bonds.
Inserting this expression fora into eq. (5.4.5) yields the spin-stiffness. Like the susceptibil­
ity, it vanishes at the transition to a spin-disordered phase and reduces to the S = 2-form for 
/ » at half-filling (upto a numerical constant which depends on the precise definition 
of the stiffness).
The bare coupling constant of the QNLS is given by go = _jpsIL ■ indeed diverges at 
the transitions to the singlet superconductor and the spin liquid phase, where both the

A£ = - A 6<p2 ^2 sin2 20 [(/| + rj) sin2 x — t2“2 cos2 x j 

-I- sin2 2x cos4 0(1 — a)2 + 2 Ja2 cos2 0 cos2 x)

(H*
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(5.4.7)~ 3.85 .

For the half-filling antiferromagnet, we obtain

(5.4.8)80 = So

while we find for the NSC phase,

(5.4.9)x

5.5 SO(5) symmetric point

Np = (5.5.1)

(5.5.2)

The order-disorder transition at go = 4tt is indicated by a dotted line in the mean field 
phase diagrams fig.s 5-3-5-5. At finite temperatures, a region with quantum-critical be­
havior opens up around these lines. This agrees with the observations of Aeppli et al. of 
quantum-criticality in the spin sector of underdoped La2-xSrxCuO4. It was argued in [67] 
that the explanation of this behavior in terms of the nearby charge- and spin-ordered stripe 
phase requires the existence of a coexistence phase. From this analysis, we find that such a 
coexistence phase can in principle exist, and that it indeed gives rise to a superconducting 
state with quantum-critical behavior in the spin-sector.

The NSC phase has 
[29] for this model.

The label ‘P’ indicates that Np is defined in the projected Hilbertspace, where double site­
occupancy is forbidden. The mean-field expectation value of Np satisfies

W2 
dn = 0.

<2=-i

an interesting property. Let us consider the SO(5) superspin-vector

susceptibility and the stiffness vanish. In order to obtain a more precise estimate of go, 
its value is shifted by a constant factor such that it agrees with the result for the S = 2 
antiferromagnet at n = 1, Jp » J. The bare coupling for the S = 2 antiferromagnet is 
obtained from spin-wave results by the procedure discussed in section 1.3.4. It reads

.5=2 2

J 2- J '

8o“2

80 = 8q~2 2V(2n + J)(J - 8r2(l ~n)) 
n(2 — 8r2) — J 4- 8r2 

1 x -------------------------------------------
Jj(2n + 7) 4- (1 - n)[4J(ri - 2r2) 4- 8ti« - 64ti<2n 4- 32rj(l - 3n)]

(^-(.Gav 4- Gva), -S, —(Gm ~ Gva^ '
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(5.5.3)H = H0 + Ht,

where

(5.5.4)

(5.5.5)Hi

and where a d-wave staggering has been absorbed into the | V/)-state.
The second term, Hi, is manifestly not invariant under rotations of Np. Since (S) = 0 in 
the NSC phase, this symmetry-breaking does not show up at the mean field level. As a first 
step towards an 5O(5)-symmetric Hamiltonian, H\ is subtracted from H. This introduces 
second- and third-neighbor spin-spin interactions into the model. The somewhat peculiar 
interactions are shown in fig. 5-7.
The second term in Ho is an SO(5)-invariant (this is discussed below). The first term is 
invariant under rotations of Np , but this does not imply that it is SO(5) symmetric. There 
is no representation of the SO(5) algebra on the projected Hilbertspace under which Np 
transforms as a vector. The rotation-symmetry is therefore broken at the quantum level.
To obtain true SO(5) symmetry, the constraint which forbids double site-occupancy has to 
be relaxed, as it is in the SO(5)-ladder systems. The basis of the single-bond Hilbert-space 
is extended to include the doubly occupied state |D). It then consists of one SO(5) singlet 
(A) and one SO(5) quintet (spin-triplet, D and V). The details of this representation of the 
SO(5) algebra are discussed in section 5.7. We introduce an on-site repulsion U np/j. 
The Hamiltonian on the unprojected Hilbert space is given by

«o = - E n^-jE^
<l,m> I

= ~ £•$/ ■ Sm 4- Si ■ Sm 4- Si • ,
<l,m>

H = — E [4(r 1 + (Rem/ • Rerrm + Invr/ • Imrnm) 
<lm>

Hence, at the mean-field level and for this particular choice of rj, the NSC phase can 
be interpreted as a gradual rotation of the SO(5) superspin from the antiferromagnet to 
the singlet superconductor. As one approaches the tricritical point, the NSC states with 
different n become degenerate (fig.5-3) and the mean field state becomes invariant under 
rotations of Np. For rj = — j the tricritical-critical point is located at r, = t* = j, M = 

= {■
It should perhaps come as no surprise that we find a ‘mean field SO(5) symmetry’ for this 
model. The special lattice used here has two orbitals per unit cell. This seems to be one of 
the requirements for constructing an SO(5) symmetric model with short-range interactions 
[35], In the following, an exact SO(5) symmetric point is derived for the present model. 
The procedure used is similar to that for the SO(5) symmetric ladder [71].
At the mean-field SO(5)-point, the Hamiltonian is given by
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Figure 5-7. Inter-dimer spin-spin interactions in the SO(5) symmetric model.

(5.5.6)

(5.5.7)'WsO(S) =

H =

(5.5.8)

i-

1 E N,.Nm-jXn,A •
<l,m> I

one now has to take fj =

Jp

4v■< Jp

where A = (ReA, ImA) (see section 5.7). The value of U has to be fine-tuned in order to 
obtain SO(5) symmetry on a single bond. The resulting constraint is (as before), 
0 = y. Note that this is more restrictive than the local constraint for the ladder model [71], 
which leaves two free parameters. Since we only consider states of paired electrons, this 
model has fewer local SO(5) invariants than the ladder.
To establish SO(5) symmetry of the inter-dimer interactions,
-tl = After subtraction of i, this yields the Hamiltonian

Jp

5.5 SO(5) symmetric point

Jp

+ 01 — ■ Am

+ E[7<!-4"a) +

where N is given by eq. (5.7.1). The local SO(5) invariant is related to the length of the 
superspin through N2 = 1 + 4nA.
The mean field SO(5) symmetry at U —> oo evolves from the true SO(5) symmetric point 
at fine-tuned U in the following way. Let us assume we have tj = — ti = t and U = y + U.

- E RrA/■ A„, + • L j
<l,m> '

+ E -7"*) •/
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5.6 Remnant SO(5) behavior in the large U limit

(5.6.1)O,G^ = [G^.H],

3Although in this particular model we can think of J as arising from the projection onto the paired- 
electron states, this is however not the case for the ladder model [71], where the same problem occurs

The superspin has no preferred global direction for 17 = 0, t = Since the AF ground­
state does not have a |D) component, while the SC does, a small positive U will flop the 
superspin to the AF direction. The energy-difference between the AF and the SC state can 
be compensated by an increase in r. For U —> oo, this procedure shifts the superspin-flop 
point from t = | to t = |, with the SC groundstate now having (np) = 0. The shift in t 
is accounted for by the different relative normalization of A and 5 in the definitions of Np 
and N.

One of the criticisms that has been raised against the SO(5) approach, is that it does not 
take properly into account the effects of projecting onto the lower Hubbard band [73], 
While it aims to be a description of the low-energy physics of the t-J model, the expres­
sions for the yr-operators in the 50(5) algebra and the superconductivity order-parameter 
in the superspin are in terms of electrons, not of the hard-core fermions which appear in 
the t-J model. After projecting onto the lower Hubbard band, the n- spin- and charge­
operators no longer form an 5O(5)-algebra, which was the problem encountered in the 
previous section. To obtain 50(5) symmetry, U has to be fine-tuned to a value ~ 7. This 
is a strange procedure, because the antiferromagnetic interaction in the t-J model arose in 
the first place as a result of the projection onto the lower Hubbard band 3. Moreover, the 
value of J ~ y is assumed to be much smaller than (7, so the fine-tuning condition seems 
to take you outside the range of validity of the t-J model.

It is therefore interesting to see what remains of the 50(5) symmetry if we apply the 
projection in earnest. This is not a weak breaking of the symmetry, such as has been studied 
using a QNLS description [75] , since U is tuned very far away from its value at the 
symmetric point.

It was already seen that the symmetry survives at the mean field level. The collective modes 
around the mean field states are studied to examine what is the fate of the it -modes. We 
focus on the singlet superconductor and the spin liquid phase and some remarks are made 
about the antiferromagnet and the Neel superconductor. The modes are analysed using the 
random phase approximation [74], This approach is similar to the expansion of the action 
around the mean field state, which was used in section 4.5. For the normal antiferromagnet, 
the approximation is equivalent to the lowest order of the j-expansion.

We are interested in the equations of motion of the operators Gap, which are given by
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(5.6.2)

G'

(5.6.3)

(5.6.4)

with A and B the 2x2 matrices

A

(5.6.5)B

A
B

- J + Ar A + 1st Yk(A - jl) -|(Ar - nSr)V16-/z2

— |(4Ar — y*)yi6 — ji.2 — J + |n(4 + A)
0 ° \

-|nv/16 - m2 -|y*(4 + A) /

ruG^(i.w) = a'0' (k, co),
a'0'

(G^G'^, + G'^G^,).

The additional zero-operator term which appears in the mean field decoupling eq. (4.3.1) 
is not important for the equations of motion. The expectation value is taken with respect 
to the fully ordered state. We have absorbed a staggering-factor for the Neel order into 
the singlet-operator A* and for the d-wave phase order into the hole pair-operator V*. The 
expectation values are therefore independent of position.
Using this decoupling, a set of first-order differential equations is obtained for the operators 
Glaff. Transforming to momentum- and frequency-space, we obtain

(

which has the form of an eigenvalue equation. The dispersion-relations of the collective 
modes follow from the eigenvalues of the dynamical matrix M. Its eigenvectors give the 
operators which generate the modes.
Since we want to focus here on the symmetry-breaking effect of the large U limit, the 
Hamiltonian Ho with the symmetrized spin-spin interactions is used.
Only operators which refer to the mean field groundstate appear in the equations of motion, 
so at least one of the indices of Gap has to be either A or V (just A for the spin liquid phase). 
These operators separate into four sets. Three sets describe the longitudinal spin-modes of 
the bilayer model (singlet-triplet fluctuations) and the tt-modes of SG(5)-theory (hole-pair 
triplet fluctuations). They are given by {Gov, Goa, Gvo, Gao), {Giv, Gja, Gy-i, Ga-i} 
and the hermitian conjugate of the last set. The dynamical matrix of the first set is given by 
(for the singlet SC phase)

The right-hand side contains products of operators on nearest-neighbor bonds. A mean 
field decoupling is used to bring it into a single-operator form.

where Sr = ti + t2, kt = ti — tz, jl = (p. + | J) /Ar and yi = j (cos+ cosfcx-0. 
The second set has the same matrix with B —> — B, while the third set has A —*■ —A.

5.6 Remnant 50(5) behavior in the large U limit



104 Strong-coupling model for antiferromagnetism and superconductivity

/ 0

Mq = . (5.6.6)

0 -At AO - Yk) /

For the spin liquid phase at half-filling, these matrices take the simpler form

\
Afl = (5.6.7)

\

and

0
Mg = (5.6.8)

t»k = ±JJ2 - 2Jyk . (5.6.9)

ajk = - 4y*) (5.6.10)

(5.6.11)

which has a linear dispersion for k —> 0. The corresponding eigenvector in this limit is 
rtA — ny, which indeed generates phase rotation of the singlet SC groundstate.

The pairing-gap closes at the transition to the singlet SC, at ji = 4.

At n < 1, the pairing mode of the insulating phase becomes the phase-mode of the super­
conductor. It is given by

0
0

J — 4Ar
0

-|Aryi6-A2 jAr^/lb-A2 \

ArA(l-yc) 0

0
Yk - J 

0
~Yk

0
Yk
0

J - Yk J

-AZ(1 - yk)^/l6-(i2

\ A/(l -yOv/16-A2

/ 4Az - J
0 
0
0

0
0

-Ar (A - 4n)

<->k = ±7(1 - y*)[Ar2(16 - A2) - A20 - n)J,

The fourth set describes the phase and number fluctuations in the singlet superconductor 
phase. It contains the operators (n^ — ny, Gay, Gva}- Its dynamical matrix reads

The mode-spectrum in the singlet SC and spin liquid phase and at the different transitions 
is sketched in fig. 5-8

In the spin liquid phase, there are two dispersive modes. One is related to triplet excitations 
over the singlet groundstate. Its dispersion is given by

0
o Ar(A-4yt)
0 0

This mode softens at the transition to the spin-ordered n = 1 state, as it did for the bilayer 
model. In addition, there is a gapped pairing mode with eigenvector Gav (Gva), which is 
given by
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AF ssc

(5.6.12)

SL.2
1
J

Y (Gov — G vo) + Gqa — G ao •
'2 — J 2
2+ J4n -

----- chemical potential

Figure 5-8. Sketch of the mode-spectrum in the spin liquid and singlet superconductor phase, 
dashed line refers to the triplet modes.

and the same form for the other triplet modes.
For Zi far from its critical value, the triplet-mode is a pure singlet-triplet fluctuation -the 
same mode which softens at the transition from the spin liquid to the antiferromagnet. As 
/| is tuned towards the mean field SO(5) point, hole-pair to triplet excitations are mixed 
in until, at f| = it has become a pure ir-mode. Even though the SO(5) symmetry 
is explicitly broken, tt-modes are still found to linear approximation around the ordered 
state.
The same behavior is found if the symmetric point is approached from the singlet SC by 
varying the chemical potential. As m is tuned towards its critical value, the triplet-gap in

4

The triplet modes are gapped in the singlet SC phase. They soften at the transition to the 
spin-ordered Neel superconductor. The system then has four acoustic modes: one phase­
mode and three triplet-modes.
We consider the case where /z is at the transition to the Neel SC phase, = and *1 *s 
tuned towards the mean-field SO(5) point at t\ = The k -> 0 eigenvectors correspond­
ing to the acoustic m = 0 triplet mode is then given by
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(5.6.13)

5.7 The SO(5) algebra.

S, Imij ,N (5.7.1)

In this and the next section, the focus is on the 50(5) symmetric point. Here, the repre­
sentation of the 5O(5)-algebra for this model is discussed. In the next section, an 50(5) 
QNLS-action is derived which described the long-wavelength physics at the symmetric 
point.
In the unprojected Hilbertspace, a representation of the 50(5) algebra 
which transforms the superspin N as a vector. The superspin is given by

while the phase-mode has a velocity — J2/4 at the symmetric point The symmetry­
breaking shows up in the RPA-spectrum by a different velocity for the two kinds of modes. 
The velocities become identical at J — 6/5 (n = 4/5), but this point does not seem to have 
any special significance.
The mixing of rr-modes into the ‘bilayer’ longitudinal mode is due to the hopping process 
<2- For t2 = 0, the transition from Neel to singlet SC is entirely due to the suppression 
of the inter-dimer interaction by a lower density, and therefore essentially the same as the 
transition from the half-filling antiferromagnet to the spin liquid. The softening triplet­
mode is in that case just Goa — Gao-
The continuous evolution of the triplet magnon of the spin-liquid state into the rr-mode of 
the superconductor at the symmetric point, which is depicted in fig. 5-8, was also found for 
the ladder model with unbroken 50(5) symmetry. We conclude that tuning U away from 
its 50(5) symmetric point only weakly affects the modespectrum in the spin-disordered 
phases , at least at the RPA level.
The situation is different for the spin-ordered phases. In the AF phase, the tr-mode of the 
5O(5)-symmetric model becomes a bilayer-type longitudinal spin-mode after projection, 
which is gapped at the tricritical-critical point. The RPA modespectrum in the Neel SC 
phase interpolates between the gapped mode in the AF phase and the acoustic mode in the 
singlet SC.

= ^ReA,

can be defined

2+7.= -y-k ,

the superconducting phase is reduced and the rr-content of the triplet mode increased, until 
it becomes an acoustic nr-mode at the critical point.
This result is similar to the quasi-Goldstone modes which were found in the t-J model 
using a similar approximation [30], In this case, however, it is possible to explicitly relate 
the modes to a ‘nearby’ 50(5) symmetric point.
The dispersion of the tr-mode is given by
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where

(5.7.2)Af = V2(GDa-Gav)

(5.7.3)ILabt Lcd] — I (&acLbd d" ^bdLgc ^adLbc ^bcLad] »

(5.7.4)Lab —

(5.7.5)

The charge-operator is given by

(5.7.6)Q = nD - ny •

It can be checked that N indeed transforms as a vector under this SO(5)-algebra:

(5.7.7)[Lab, Nc] = i (Sa'Nb - SbcNa) ,

and furthermore that

(5.7.8)[Na, Nb] = iLab .

and ReA = | (A1 + A), ImA = (Af - A). The generators of the SO(5)-algebra sat­
isfy the commutation relation

0 
-S' 
sy 

2Irrvr

are anti-symmetric under an inter-

=

0J

/ 0
2Re7rx
2Re7Ty
2Re;rz

\ Q

o
-Sx 0

2Invry 2Invrz

where the indices take the values 1 through 5. The Lab 
change of a and b. They are given by [29]

where the rr-operators read = — jcJ<7acryc|, with a the Pauli matrices [71]. Projecting 
onto the paired-electron states, we obtain

’’’x = T7 (Got — G:d-i + G| v — G-t v) . 
2i

tty = - (Go, + Gb-i — Giv — G-iv) ,

—p (Gdo + Gov) ■ 
V2
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5.8 Coherent state path integral

(5.8.1)e

with the imaginary time action

(5.8.2)

(5.8.3)

"234

i ^2 sin 2Xt (3r<t> + «/ ■ 8r«/)
i

i sin 2Xi sin 2xj^ 1 - n]^l - h2 hi hj

— J — n2)(cos2 x cos2 0 + sin2 X sin2 <t>')

where zt234 = (”2. ”3. ”4).
The first term describes the phase dynamics. It has the same form as the kinetic term for an 
XY spin model, where (Q) plays the role of the z-component of the spin. The second term 
was also obtained for the bilayer model. It describes the spin-dynamics. The last two terms 
describe the rr-fluctuations.

Z<xf f]d»d<i;dft«(a;-A)©(«t)

where, as before, h = sin ^rh (t/r is now not the phase but one of the angles entering the 
coherent state eq. (3.4.6) ). In terms of the 50(5) operators Lab, the second part of the 
kinetic term reads

We derive the coherent-state path-integral for the symmetric model . It follows from equa­
tions (5.7.3), (5.7.7) and (5.7.8) that an SO(6)-algebra /„*, can be constructed by taking 
/a+l | = Na and la+\ i,+\ = Lab- Since the coherent state has to parametrize the rotations 
of the superspin-vector, generated by Lab, as well as the fluctuations of N2, generated by 
Na, it makes sense to start from an SO(6) description, which incorporates both. The coher­
ent state appropriate to the description of this system was derived in chapter 3, eq.s (3.4.5) 
and (3.4.6).
The coherent state path integral is constructed in the usual way [13] [3], The kinetic term 
in the action derives from the overlap eq. (3.4.12), the potential energy comes from the 
expectation value of the Hamiltonian with respect to the coherent state. We obtain

sin2xn-3rn =
a<b

= (G)(«53rni - «13r«5) + (S) • 3r«234 X
+ (2Rem) • (ni8r”234 - «2348r”l)
+ (2Imtr) ■ (n58r«234 - ”2348145).

S = /^dr 
Jo
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(5.8.4)

Its stiffness and susceptibility have the saddle-point values

X± a

(5.8.5)Ps a'

5.9 Summary and outlook

The need to go to a finite, fine-tuned U in order to obtain 50(5) symmetry can be under­
stood from the phase-dynamics term. Due to the fine-tuning of U, the SO(5)-symmetric 
system remains at half-filling, where (Q) = 0, as the superspin is rotated from the AF to 
the SC direction. {Q) is therefore a purely fluctuating quantity. It can be integrated out to 
yield a time-gradient squared term in the effective action, which consequently gives z = 1 
for the phase-sector, the same as for the spin-sector.
Away from the fine-tuned value of U, rr-rotations of the superspin will move the system 
away from half-filling, since the V and the D component of the SC state no longer have the 
same amplitude. As a result, (2) acquires a non-fluctuating part Qg. The long-wavelength 
action will therefore contain the single-derivative phase-dynamics term of eq. (5.8.3) with 
(G) = Go. in addition to the time-derivative squared term mentioned before. This single­
derivative term gives rise to a critical exponent z = 2 for the phase-sector, leading to very 
different behavior for the spin and phase degrees of freedom at low temperatures.
At the symmetric point, n is a fluctuating quantity. Expanding the action to second order in 
n and integrating it out, we obtain an 50(5) generalization of the bilayer QNLS eq. (4.6.3)

We have introduced a model which can describe in a simple way the interplay between 
spin-ordering and superconductivity. It demonstrates the point that a smooth transition from 
an insulating antiferromagnet to a spin-disordered superconductor is only possible through 
an intermediary phase, which can be a spin-disordered insulator or a superconducting anti­
ferromagnet. The latter appears here as the more natural scenario, since the system can be 
tuned through it by varying the density of charge-carriers (the former requires first varying 
a spin-exchange constant and then varying the charge density). At finite temperatures, a

.-4 2~J
(2 +J)(1 + |J') ’ 

S('^)
This action describes the transition from the small J phase, where the 50(5) symmetry is 
spontaneously broken and the system has long-range spin- and/or phase-order, to an 50(5) 
symmetric phase at J > Jc. The symmetric phase continuously evolves into the mean-field 
n = 1 spin liquid state at large J. That the same transition occurs in this model as in the 
bilayer model is related to the fact that |A) is an 50(5) singlet as well as a spin-singlet.

I [xa (arn(i. r)) + A1 r/>* 
•Seit = - / dr

JO
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superconducting system which is close to the coexistence region is found to show quantum 
critical behavior in the spin sector. This behavior has been observed in various experiments 
for the high Tc superconductors [66] [65],
The model is formulated on a |-depleted lattice. Since the goal of this work has been to 
demonstrate the possibility of a coexistence phase and to investigate its long-wavelength 
properties, we had some liberty regarding the microscopic input. The occurrence of the 
coexistence phase is not expected to be an artefact of our specific choice for the lattice. It 
can for instance easily be seen that a system with paired holes near half-filling (low density 
limit) on a square lattice should have very similar behavior to what is found here.
The most likely place in the high-T^’s phase-diagram for coexisting antiferromagnetism 
and superconductivity is not near half-filling, but in the underdoped superconducting re­
gion. The antiferromagnetism is in this case of the stripe-variety. The charge-ordering 
which is also present in a stripe-state was not addressed in the present analysis. The possi­
bility of coexisting charge-order and superconductivity has however already been demon­
strated in various models [51].
The model is found to have an 50(5) symmetric line in its phase-diagram. This is a prop­
erty which is specific to its microscopy. The SO (5)-symmetric models in dimensions larger 
than 1 formulated up to now all involve long-range interactions. Because of the special 
choice for the lattice and the pairing-interaction, 5O(5)-symmetry can be obtained here 
with only local interactions. This model can therefore be useful as a ‘fixed point Hamilto­
nian’ to study the physics of higher dimensional systems with a (near) 5O(5)-symmetry. 
Here, we have focussed on the strong-pairing limit, which yields only the bosonic 50(5)- 
sector. It is however possible to go to the regime of weaker pairing while keeping the 
5O(5)-symmetry. One can then study for instance the quasi-particle properties.
The extension of the model to general pairing-strength is a future project. There will also 
be a more thorough analysis of the remaining 5O(5)-properties after projecting onto the 
lower-Hubbard band, especially with regard to the finite temperature behavior.
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Summary

The subject of this thesis is magnetic ordering as it appears in the cuprate superconductors. 
These materials have a quasi 2-dimensional structure: they are layered, and the interactions 
between the degrees of freedom in the different layers are very weak. When undoped, 
they are spin-| antiferromagnetic insulators. By doping holes into the layers, it is however 
possible to induce some conductance, and, above a critical doping, superconductivity. The 
antiferromagnetic order is rapidly suppressed with doping, but it reappears in a different 
form at higher hole-concentrations. The problems studied in chapters 2 and 5 are related to 
this different form of antiferromagnetism: the stripe-ordered state.
The undoped cuprate superconductors are, as said, quasi 2-dimensional antiferromagnets. 
In sections 1.2 through 1.4, a review is given of the semi-classical theory of the two- 
dimensional quantum Heisenberg antiferromagnet. At zero-temperature, this system has 
long-range antiferromagnetic order. It is then possible to analyse its properties by expand­
ing in small perturbations around the perfectly ordered state. The expansion parameter is 
one over the spin size 5. This expansion gives reasonable results even for S = | antiferro­
magnets, since the prefactors of the higher order terms fall off rapidly.
At finite temperatures, the long-range order in two-dimensional antiferromagnets is de­
stroyed by thermal fluctuations. An expansion around the globally ordered state is then no 
longer possible. One can, however, still use a mapping of the low-energy sector of the sys­
tem onto an effective field-theory: the non-linear sigma model. This mapping relies on the 
assumption that, for low enough temperatures, there still is well-developed antiferromag­
netic order at short distances. One can then define a local order-parameter vector, whose 
length is associated with the strength of the antiferromagnetic order, and whose direction 
is related to the average local orientation of the spins. The low-energy fluctuations of the 
system are slow variations in the orientation of the order-parameter. It is these transversal 
fluctuations which are described by the non-linear sigma model. This model can be ana­
lyzed by a renormalization-group procedure, which is reviewed in the appendix to chapter 
2.
The non-linear sigma model contains two parameters: temperature, and a parameter g 
which determines the strength of the quantum fluctuations. This parameter is inversely pro­
portional to the spin-size S. For large S, quantum-fluctuations are therefore weak and the 
tendency to order at zero-temperature is strong. The quantum-fluctuations grow stronger 
as S is decreased, until the spin-order disappears at a critical value of S — j. This spin-size 
is unphysically small, and two-dimensional antiferromagnets are therefore always ordered 
at zero-temperature.
The models which are discussed in chapter 2, 4 and 5 all have the property that they do 
undergo a zero-temperature order-disorder transition. At non-zero temperature, and for g 
close to this phase-transition, the renormalization-group analysis predicts the existence of
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a region where the system becomes insensitive to all energy-scales except temperature: 
the quantum-critical regime. There are a number of experiments which indicate that this 
type of behavior occurs in the spin-sector of the cuprate superconductors. This implies that 
these materials are ‘close’ to an antiferromagnetically ordered state. In view of the dopings 
at which the quantum-critical behavior is found, it seems reasonable to identify this nearby 
antiferromagnetic state with the aforementioned stripe-phase.
Stripe-ordering can emerge when a two-dimensional antiferromagnet is doped with a suf­
ficient quantity of holes. In the stripe-ordered phase, the holes form lines, while the spins 
in the hole-free regions between the lines order antiferromagnetically. The lines are local­
ized on anti-phase domain-walls in the spin-system. At the dopings where quantum-critical 
behavior is observed, neutron-scattering experiments show dynamical stripe-correlations. 
Recently, static stripe-order coexisting with superconductivity has been found around a 
specific doping, where the stripes are particularly stable due to a commensuration effect.
In chapter 2, the disordering influence of static stripe-order on an antiferromagnetic spin 
system is investigated. The antiferromagnetic interaction between two spins separated by a 
hole is weaker than between two neighboring spins. In the limit where the first interaction 
vanishes, the spin-system in the static stripe phase becomes effectively one-dimensional. 
Since quantum-fluctuations destroy antiferromagnetic order in one dimension even at zero­
temperature, it is clear that the presence of stripes drives the spin-system closer to its order­
disorder transition. This effect is investigated using a renormalization-group analysis of a 
generalized non-linear sigma model. It is found that the weakening of the spin-spin inter­
action across the stripes indeed reduces the zero-temperature spin-ordering, but that the 
effect on the finite-temperature properties of the system is even more dramatic. The onset­
temperature of antiferromagnetic order is for instance much more strongly reduced by the 
presence of static stripes than the zero-temperature antiferromagnetic order-parameter 5. 
This effect is of significance if one tries to understand the mechanism underlying stripe­
ordering, as is discussed in section 2.1.
Chapter 3 is more technical in nature. In order to construct a semi-classical description 
of a system, so-called coherent states are often used. These states are locally ‘optimally 
classical’ and form a basis on the Hilbert space of the system that one wants to study. If 
the theory is constructed using this basis, it becomes easy to identify the dangerous long- 
wavelength fluctuations around the classical state. There are however systems for which the 
local state is not maximally classical. Two examples of such systems are treated in chapters 
4 and 5. In order to arrive at a semi-classical description of these kinds of systems, a new 
type of coherent state is constructed, in which local quantum-fluctuations are incorporated. 
This state is applied to the problems discussed in the next two chapters.
Another spin-system which undergoes a zero-temperature order-disorder transition is stud­
ied in chapter 4: the Heisenberg bilayer antiferromagnet. As was the case in the static 
stripe-phase, this system is driven towards the disordering transition by effectively reduc­
ing the dimensionality. In the bilayer Heisenberg model, each spin in layer 1 is antifer-

5In quasi two-dimensional spin-systems, like the cuprates, the spin-ordering temperature is small but 
non-zero.
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romagnetically coupled to a spin in layer 2. If this coupling is much stronger than the 
coupling between spins in the same layer, the system is effectively zero-dimensional. Each 
spin then pairs into a singlet-state with its neighbor on the opposite layer. This is one exam­
ple of a local state which which is strongly quantum-correlated. Using the coherent state 
constructed in the previous chapter, the long-wavelength sector of this system is mapped 
onto a non-linear sigma model, where the parameter g is now a function of the ratio of the 
inter-layer and the intra-layer spin-spin interaction. This parameter diverges at the value of 
the ratio where, according to mean-field theory, the system undergoes a transition to a state 
consisting of local singlet pairs. Since g has a finite critical value, transversal fluctuations 
will destroy the antiferromagnetic order before this mean-field transition can occur.
As was noted earlier, there are indications that antiferromagnetic stripe-order can coexist 
with superconductivity. The goals of chapter 5 is to investigate in a simple setting the inter­
play between antiferromagnetism and superconductivity. The model which is investigated 
describes a strong-coupling limit where attractive interactions have caused all electrons to 
form nearest-neighbor pairs. These pairs carry spin degrees of freedom and can hop on 
an unusual type of two-dimensional lattice (this particular lattice is used to allow for a 
strong-coupling limit in which electron-pairing occurs, instead of phase-separation). This 
system has a rich phase-diagram, in which various types of spin-order and superconduc­
tivity appear. Specifically, it exhibits a phase where the system is superconducting while 
at the same time having antiferromagnetic order. It is discussed how this work relates to 
the SO(5) theory of high-temperature superconductivity. In this theory, it is attempted to 
arrive at a unified description of antiferromagnetism and superconductivity in the cuprates, 
by assuming that these two types of order are approximately related through a higher sym­
metry than is manifestly present in these materials. We find that this higher symmetry can 
be obtained in this model for specific, not very realistic, values of the system parameters. 
Some of the properties which are related to this symmetry survive at the mean-field level 
and to linear approximation around it, even if the symmetry is explicitly broken by impos­
ing the physical constraint that the Coulomb repulsion between two electrons on the same 
site has to be very strong.





Samenvatting

Dit proefschrift heeft als onderwerp de magnetische ordening zoals die optreedt in hoge 
temperatuur supergeleiders. Deze materialen zijn quasi twee-dimensionaal: ze hebben een 
gelaagde structuur, met zwakke interacties tussen de vrijheidsgraden in de verschillende 
lagen. In hun pure toestand zijn ze isolerende spin-j antiferromagneten, maar door doping 
van gaten in de lagen kan een gebrekkig soort geleiding, en uiteindelijk, boven een bepaalde 
doping, supergeleiding worden geinduceerd. De antiferromagnetische ordening verdwijnt 
snel wanneer het materiaal gedoopt wordt, maar duikt bij hogere gatenconcentraties in 
een andere vorm weer op. Deze andere vorm van antiferromagnetisme, de stripe-toestand, 
vormt de aanleiding voor het werk in de hoofdstukken 2 en 5.
De ongedoopte supergeleiders zijn, zoals gezegd, quasi twee-dimensionale antiferromag­
neten. In secties 1.2 tot en met 1.4 wordt een overzicht gegeven van de semi-klassieke the- 
orie van de quantum Heisenberg antiferromagneet in twee dimensies. Bij nul-temperatuur 
heeft dit systeem lange-drachts antiferromagnetische orde. Het is dan mogelijk de eigen- 
schappen te berekenen door te expanderen in kleine afwijkingen rond de perfect geordende 
toestand. De expansie parameter is een gedeeld door de spin-lengte S. Zelfs voor 5 = | 
antiferromagneten geeft deze expansie nog redelijke resultaten, daar de voorfactoren van 
de hogere orde termen snel afvallen.
Bij eindige temperaturen wordt de lange-drachts orde in twee-dimensionale antiferromag­
neten vemietigd door spin-fluctuaties. Het is dan niet meer mogelijk om een expansie rond 
een globale geordende toestand te gebruiken om het systeem te analyseren. Het is echter 
nog wel mogelijk om de lage-energie sektor van het systeem af te beelden op een effectieve 
veldentheorie: het niet-lineaire sigma model. Deze afbeelding gaat uit van de aanname dat 
er, als de temperatuur laag genoeg is, op korte afstanden nog wel goed ontwikkelde an­
tiferromagnetische orde is. Het is dan mogelijk om een lokale orde-parameter vektor te 
definieren, waarvan de lengte de mate van ordening aangeeft, en de richting de gemiddelde 
orientatie van de spins. De lage-energie fluctuaties van het systeem zijn geleidelijke ver- 
anderingen van de richting van de orde-parameter. Het zijn deze transversale fluctuaties 
die worden beschreven door het niet-lineaire sigma model. In de appendix van hoofdstuk 2 
wordt de renormalisatie-groep procedure besproken waarmee dit model geanalyseerd kan 
worden.
Het niet-lineaire sigma model bevat twee parameters: de temperatuur en een parameter 
genaamd g, die de sterkte van de quantum-fluctuaties bepaald. Deze laatste parameter is 
omgekeerd evenredig aan de spin-lengte S. Voor grote S zijn de quantum-fluctuaties dus 
zwak en is de neiging tot orde bij nul-temperatuur sterk. De quantum-fluctuaties nemen toe 
met afnemende S, totdat, bij een kritische waarde van ongeveer |, de spin-orde verdwijnt. 
Deze spin-lengte is onfysisch klein, en een twee-dimensionale antiferromagneet is dan ook 
altijd geordend bij nul-temperatuur.
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De modeller) die in de hoofdstukken 2, 4 en 5 worden beschouwd hebben als eigenschap 
dat ze wel de nul-temperatuur fase-overgang naar een wanordelijke spin-toestand kunnen 
ondcrgaan. Bij eindige temperaturen en voor g in de buurt van deze fase-overgang voor- 
spelt de renormalisatiegroep-analyse een gebied waar het spin-systeem ongevoelig wordt 
voor elke energieschaal behalve de temperatuur: het quantum-kritische regime. Er zijn ver- 
schillende experimenten die erop wijzen dat de spin-sektor van de hoge-temperatuur super­
geleiders dit soort gedrag vertoont. Dit betekent dat deze materialen dicht bij een antifer- 
romagnetisch geordende toestand zijn . Gezien de dopings waarbij het quantum-kritische 
gedrag wordt waargenomen, ligt het voor de hand om de ‘nabije' spin-geordende toestand 
te identificeren met de eerder genoemde stripe-fase.

Stripe-ordening kan ontstaan wanneer een twee-dimensionale antiferromagneet met vol- 
doende gaten wordt gedoopt. In de stripe-geordende fase vormen de gaten lijnen, terwijl 
de spins in de gebieden tussen de lijnen antiferromagnetisch ordenen. De lijnen bevinden 
zich op domein-wanden in de spin-orde: de antiferromagnetische orde-parameter veran- 
dert 180 graden van richting wanneer men een lijn passeert. In het dopingsgebied waar het 
quantum-kritische gedrag optreedt worden met neutronen-verstrooiing dynamische stripe- 
correlaties waargenomen. Rond een specifieke doping, waar stripe-orde extra stabiel is door 
een commensuratie-effect, zijn recentelijk statische stripes waargenomen, coexisterend met 
supergeleiding.

In hoofdstuk 2 wordt de verstorende invloed van een statische stripe-configuratie op de 
spin-sektor bestudeerd. De antiferromagnetisch spin-spin wisselwerking tussen twee spins 
aan weerszijden van een gat is zwakker dan tussen twee naburige spins. In de limiet waar 
deze eerste wisselwerking nul is, is het spin-systeem in de statisch stripe-fase effectief 
een-dimensionaal. Aangezien in een dimensie quantum-fluctuaties de spin-orde zelfs bij 
nul-temperatuur vemietigen, is het duidelijk dat de aanwezigheid van de stripes het spin- 
systeem dichter naar zijn orde-wanorde overgang drijft. Dit effect wordt bestudeerd meteen 
renormalisatie-groep analyse van een gegeneraliseerd niet-lineair sigma model. Het blijkt 
dat de zwakkere spin-spin koppeling over de stripes inderdaad de antiferromagnetische 
orde bij nul-temperatuur verzwakt, maar dat het nog dramatischer effecten heeft op de 
eigenschappen van het systeem bij eindige temperaturen. Zo wordt de temperatuur waar 
het spin-systeem ordent 6 veel sterker gereduceerd door de aanwezigheid van de stripes 
dan de nul-temperatuur antiferromagnetische orde-parameter. Dit effect is van belang om 
zicht te krijgen op het mechanisme achter de formering van de stripes, zoals besproken in 
sectie 2.1.

Hoofdstuk 3 is meer technisch van aard. Om tot een semi-klassieke beschrijving van een 
systeem te komen, worden vaak zogenaamde coherente toestanden gebruikt. Deze toe- 
standen zijn lokaal ‘maximaal klassiek’ en vormen een basis op de Hilbertruimte van het te 
bestuderen systeem. Wanneer de theorie in zo’n basis geformuleerd wordt, is het eenvoudig 
om de gevaarlijke lange-golflengte fluctuaties rond de klassieke toestand te identificeren. 
Er zijn echter systemen waarin de lokale toestand niet maximaal klassiek is. Voorbeelden

6Deze temperatuur is niet precies nul in aanwezigheid van kleine spin-anisotropien en een koppeling 
tussen verschillende twee-dimensionale lagcn, zoals het geval is voor de hoge-temperatuur supcrgeleidcrs.
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hiervan worden behandeld in de hoofdstukken 4 en 5. Om tot een semi-klassieke beschrij- 
ving van dit soort systemen te komen, wordt in hoofdstuk 3 een coherente toestand gecon- 
strueerd waarin quantum-correlaties op korte afstanden zijn verwerkt. Deze toestand wordt 
toegepast op de problemen in de volgende hoofdstukken.
Een ander spin-systeem waarin een nul-temperatuur orde-wanorde overgang kan plaats- 
vinden wordt bestudeerd in hoofdstuk 4: de dubbellaags Heisenberg antiferromagneet. 
Evenals in de statische stripe-fase, wordt het systeem hier naar de overgang gedreven 
door effectief de dimensie te verlagen. In het dubbellaags Heisenberg model is eike spin 
in laag 1 antiferromagnetisch gekoppeld aan een spin in laag 2. Als deze koppeling veel 
sterker wordt dan de koppeling tussen spins in dezelfde laag, wordt het systeem feitelijk 
nul-dimensionaal. Elke spin vormt in dat geval een singlet toestand met de buur in de 
andere laag. Dit is een voorbeeld van een lokale toestand die sterk quantum-mechanisch 
is. Gebruik makend van de coherente toestand uit het vorige hoofdstuk, wordt een lange- 
golflengte theorie voor dit model afgeleid: een niet-lineair sigma model, waarin de para­
meter g nu een functie is van de verhouding tussen de spin-spin koppeling in de laag en 
die tussen de lagen. Deze parameter divergeert bij de waarde van de inter-laag spin-spin 
interactie waar, volgens de gemiddeld-veld theorie, het systeem overgaat naar een toestand 
van lokale singlets. Aangezien g een eindige kritische waarde heeft, betekent dit dat trans­
versale spin-fluctuaties de antiferromagnetische orde in het systeem vemietigen voordat de 
gemiddeld-veld overgang plaats kan vinden.
Zoals eerder opgemerkt zijn er aanwijzingen dat het stripe-antiferromagnetisme in de hoge 
temperatuur supergeleiders coexisteert met supergeleiding. Het doel van hoofdstuk 5 is om 
de wisselwerking tussen spin-ordening en supergeleiding te bestuderen in een eenvoudig 
microscopisch model. Dit model beschrijft een sterke-koppelings limiet, waarin de elek- 
tronen door een sterke attractieve wisselwerking naaste-buur paren gevormd hebben, Deze 
paren hebben spin-vrijheidsgraden en kunnen bewegen over een wat ongewoon soort 2- 
dimensionaal rooster (dit rooster wordt gebruikt zodat in de sterke koppelingslimiet naaste- 
buur paring optreedt, in plaats van fasescheiding). Dit systeem heeft een rijk fasediagram, 
waarin verschillende vormen van spin-orde en supergeleiding voorkomen. Het vertoont 
met name een fase waarin het systeem tegelijkertijd supergeleidend is en antiferromagne­
tische orde heeft. Er wordt bediscusieerd hoe de resultaten van dit model zich verhouden 
met de SO (5)-theorie van hoge temperatuur supergeleiding. In deze theorie wordt getracht 
tot een geunificeerde beschrijving van supergeleiding en antiferromagnetisme in de hoge 
temperatuur supergeleiders te komen. door te veronderstellen dat de twee soorten orde bij 
benadering gerelateerd zijn door een hogere symmetric dan manifest in deze materialen 
aanwezig is. We vinden dat deze symmetric in dit model gerealiseerd kan worden voor 
specifieke, niet erg realistische, waarden van de model-parameters. Sommige eigenschap- 
pen die horen bij de hogere symmetric overleven op gemiddeld veld-niveau en tot lineaire 
orde daaromheen, ook wanneer de symmetric expliciet gebroken wordt door de fysische eis 
te stellen dat de Coulomb-repulsie tussen twee elektronen op dezelfde roosterplaats zeer 
sterk is.
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