Answers to the Exam Quantum Information, 11 November 2019 each item gives 2 points for a fully correct answer, grade = total $\times 9/24 + 1$

- 1. (a) Orthogonal states are vectors \hat{n} and $-\hat{n}$ on the Bloch sphere. (b) $\Omega = i\sigma_{\nu}$.
 - (c) the universal NOT gate would have to perform a complex conjugation, which is not a unitary operation, so it is not a valid quantum gate.
- 2. $a) \langle \psi | \rho \psi \rangle = \sum_{n} p_{n} |\langle \psi | \psi_{n} \rangle|^{2} \geq 0$. $b) d\rho / dt = \sum_{n} p_{n} (|d\Psi_{n}/dt\rangle \langle \Psi_{n}| + |\Psi_{n}\rangle \langle d\Psi_{n}/dt|) = (-i/\hbar) \sum_{n} p_{n} (H|\Psi_{n}\rangle \langle \Psi_{n}| |\Psi_{n}\rangle \langle \Psi_{n}|H) = (-i/\hbar)[H, \rho]$. $c) \rho(t) = e^{-iHt/\hbar} \rho(0) e^{iHt/\hbar}$ so $\rho^{2}(t) \rho(t) = e^{-iHt/\hbar} [\rho^{2}(0) \rho(0)] e^{iHt/\hbar}$ and $\rho^{2}(0) \rho(0) = e^{iHt/\hbar} [\rho^{2}(t) \rho(t)] e^{-iHt/\hbar}$; hence $\rho^{2}(t) = \rho(t) \Leftrightarrow \rho^{2}(0) = \rho(0)$.
- 3. *a)* $|\Psi\rangle = \frac{1}{2} (|0\rangle_A + |1\rangle_A) (|0\rangle_B + |1\rangle_B)$ which factorizes into the product of a state of qubit A and a state of qubit B, so they are not entangled. *b)* $\rho_A = \frac{1}{2} (|0\rangle + |1\rangle) (\langle 0| + \langle 1|) = \frac{1}{2} {1 \choose 1}, \rho_A^2 = \rho_A$, so this is a pure state. *c)* first act on qubit C with a Hadamard gate then perform a CNOT operation with qubit C as the control and qubit D as the target: $|\Phi\rangle \mapsto 2^{-1/2} (|0\rangle_C + |1\rangle_C) |0\rangle_D \mapsto 2^{-1/2} (|0\rangle_C |0\rangle_D + |1\rangle_C |1\rangle_D)$.
- 4. *a*) If f(0) = f(1) the function f(x) is not invertible, so the single-qubit gate $|x\rangle \mapsto |f(x)\rangle$ would not be a unitary operation. *b*) $|\Psi_1\rangle = |0\rangle |1\rangle$, $|\Psi_2\rangle = (|0\rangle + |1\rangle)(|0\rangle - |1\rangle)$, $|\Psi_3\rangle = |0\rangle(|f(0)\rangle - |1\oplus f(0)\rangle) + |1\rangle(|f(1)\rangle - |1\oplus f(1)\rangle)$, $|\Psi_4\rangle = (|0\rangle + |1\rangle)(|f(0)\rangle - |1\oplus f(0)\rangle) + (|0\rangle - |1\rangle)(|f(1)\rangle - |1\oplus f(1)\rangle)$. *c*) if f(0) = f(1) the state $|\Psi_4\rangle \propto |0\rangle(|f(0)\rangle - |1\oplus f(0)\rangle)$ so a measurement of the first qubit will always give the value 0; while if $f(0) \neq f(1)$ the state $|\Psi_4\rangle \propto |1\rangle(|f(0)\rangle - |1\oplus f(0)\rangle)$, so a measurement of the first qubit will always give the value 1.