Answers to the Exam Quantum Information, 16 November 2020 each item gives 2 points for a fully correct answer, grade = total $\times 9/24 + 1$

- 1. *a*) Ω is a CNOT operation with the first qubit as the control and the second qubit as the target. If Ω acts on $(\alpha|0\rangle + \beta|1\rangle)|0\rangle$ the resulting state is $\alpha|0\rangle|0\rangle + \beta|1\rangle|1\rangle$, which is different from the copied state $(\alpha|0\rangle + \beta|1\rangle)|0\rangle)(\alpha|0\rangle + \beta|1\rangle)|0\rangle)$ (the cross terms are missing). *b*) *U* is a Hadamard operation on the first and the second qubit. When *U* acts on $|1\rangle|1\rangle$ the outcome is $\frac{1}{2}|0\rangle|0\rangle - \frac{1}{2}|0\rangle|1\rangle - \frac{1}{2}|1\rangle|0\rangle + \frac{1}{2}|1\rangle|1\rangle$. *c*) The concurrence is the twice the absolute value of the determinant of the coefficient matrix $\frac{1}{2}\begin{pmatrix}1&1\\1&1\end{pmatrix}$, which is zero. If the first qubit is measured the second qubit remains in the state $2^{-1/2}(|0\rangle + |1\rangle)$ — irrespective of the result of the measurement outcome.
- 2. *a*) a density matrix should be Hermitian, it should have trace 1, and all its eigenvalues should be ≥ 0 . *b*) ρ_1 is Hermitian, has trace 1, and eigenvalues 0,1/2,1/2, so it is a valid density matrix; ρ_2 has a negative eigenvalue -1/2 and the trace of ρ_3 is 2, so neither is a valid density matrix. *c*) a pure state has $\hat{\rho}^2 = \hat{\rho}$, only $\hat{\rho}_5$ satisfies: it is the density matrix $|\psi\rangle\langle\psi|$ of the pure state $|\psi\rangle = 2^{-1/2}(|0\rangle + |1\rangle)$.
- 3. *a*) The σ_x operation rotates a point on the Bloch sphere by π around the *x*-axis. The rotated state is not orthogonal to the original state (an orthogonal state would be located at the inverted point $\vec{r} \mapsto -\vec{r}$).

4. *a*) $|0\rangle_A |0\rangle_{B_1} |0\rangle_{B_2} |0\rangle_C \rightarrow \frac{1}{2} (|0\rangle_A |0\rangle_{B_1} + |1\rangle_A |1\rangle_{B_1}) (|0\rangle_C |0\rangle_{B_2} + |1\rangle_C |1\rangle_{B_2})$; the qubit *A* is entangled with qubit *B*₁, the qubit *C* is entangled with qubit *B*₂. *b*) before the measurement, the four-qubit state (ignoring the normalization constant) is $|0\rangle_A |0\rangle_C (|0\rangle_{B_1} + |1\rangle_{B_1}) |0\rangle_{B_2} + |1\rangle_A |0\rangle_C (|0\rangle_{B_1} - |1\rangle_{B_1}) |1\rangle_{B_2} + |0\rangle_A |1\rangle_C (|0\rangle_{B_1} + |1\rangle_{B_1}) |1\rangle_{B_2} + |1\rangle_A |1\rangle_C (|0\rangle_{B_1} - |1\rangle_{B_1}) |0\rangle_{B_2}$. After the measurement, dependent on the measurement outcome p_1 of qubit B_1 and p_2 of qubit B_2 the state of qubits *A* and *C* is:

$$|\psi_{00}\rangle = \frac{1}{\sqrt{2}}(|0\rangle_A|0\rangle_C + |1\rangle_A|1\rangle_C)$$
 if $(p_1, p_2) = (0, 0)$

$$\begin{aligned} |\psi_{01}\rangle &= \frac{1}{\sqrt{2}}(|0\rangle_{A}|1\rangle_{C} + |1\rangle_{A}|0\rangle_{C}) \text{ if } (p_{1}, p_{2}) = (0, 1) \\ |\psi_{10}\rangle &= \frac{1}{\sqrt{2}}(|0\rangle_{A}|0\rangle_{C} - |1\rangle_{A}|1\rangle_{C}) \text{ if } (p_{1}, p_{2}) = (1, 0) \\ |\psi_{11}\rangle &= \frac{1}{\sqrt{2}}(|0\rangle_{A}|1\rangle_{C} - |1\rangle_{A}|0\rangle_{C}) \text{ if } (p_{1}, p_{2}) = (1, 1) \end{aligned}$$

all for states are entangled

c) The density matrix of the qubits *A* and *C* without knowledge of p_1, p_2 is the sum of the density matrices of these four entangled states, each with weight 1/4:

$$\rho = \frac{1}{4} |\psi_{00}\rangle \langle \psi_{00}| + \frac{1}{4} |\psi_{01}\rangle \langle \psi_{01}| + \frac{1}{4} |\psi_{10}\rangle \langle \psi_{10}| + \frac{1}{4} |\psi_{11}\rangle \langle \psi_{11}|.$$

The cross terms cancel, what remains is

$$\rho = \frac{1}{4} (|00\rangle\langle 00| + |01\rangle\langle 01| + |10\rangle\langle 10| + |11\rangle\langle 11|),$$

which is the 4×4 unit matrix.