1. a) Ω is a CNOT operation with the first qubit as the control and the second qubit as the target. If Ω acts on $(\alpha|0\rangle+\beta|1\rangle)|0\rangle$ the resulting state is $\alpha|0\rangle|0\rangle+\beta|1\rangle|1\rangle$, which is different from the copied state $(\alpha|0\rangle+\beta|1\rangle)|0\rangle)(\alpha|0\rangle+$ $\beta|1\rangle)|0\rangle$) (the cross terms are missing).
b) U is a Hadamard operation on the first and the second qubit. When U acts on $|1\rangle|1\rangle$ the outcome is $\frac{1}{2}|0\rangle|0\rangle-\frac{1}{2}|0\rangle|1\rangle-\frac{1}{2}|1\rangle|0\rangle+\frac{1}{2}|1\rangle|1\rangle$.
c) The concurrence is the twice the absolute value of the determinant of the coefficient matrix $\frac{1}{2}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$, which is zero. If the first qubit is measured the second qubit remains in the state $2^{-1 / 2}(|0\rangle+|1\rangle)$ - irrespective of the result of the measurement outcome.
2. a) a density matrix should be Hermitian, it should have trace 1 , and all its eigenvalues should be ≥ 0.
b) ρ_{1} is Hermitian, has trace 1 , and eigenvalues $0,1 / 2,1 / 2$, so it is a valid density matrix; ρ_{2} has a negative eigenvalue $-1 / 2$ and the trace of ρ_{3} is 2 , so neither is a valid density matrix.
c) a pure state has $\hat{\rho}^{2}=\hat{\rho}$, only $\hat{\rho}_{5}$ satisfies: it is the density matrix $|\psi\rangle\langle\psi|$ of the pure state $|\psi\rangle=2^{-1 / 2}(|0\rangle+|1\rangle)$.
3. a) The σ_{x} operation rotates a point on the Bloch sphere by π around the x axis. The rotated state is not orthogonal to the original state (an orthogonal state would be located at the inverted point $\vec{r} \mapsto-\vec{r})$.

b) $\sigma_{x}=e^{-i \pi / 2} e^{i(\pi / 2) \sigma_{x}} \Rightarrow \sqrt{\sigma_{x}}=e^{-i \pi / 4} e^{i(\pi / 4) \sigma_{x}}=\frac{1}{2}\left(\begin{array}{ll}1-i & 1+i \\ 1+i & 1-i\end{array}\right)$
c)

4. a) $|0\rangle_{A}|0\rangle_{B_{1}}|0\rangle_{B_{2}}|0\rangle_{C} \mapsto \frac{1}{2}\left(|0\rangle_{A}|0\rangle_{B_{1}}+|1\rangle_{A}|1\rangle_{B_{1}}\right)\left(|0\rangle_{C}|0\rangle_{B_{2}}+|1\rangle_{C}|1\rangle_{B_{2}}\right)$; the qubit A is entangled with qubit B_{1}, the qubit C is entangled with qubit B_{2}.
b) before the measurement, the four-qubit state (ignoring the normalization constant) is $|0\rangle_{A}|0\rangle_{C}\left(|0\rangle_{B_{1}}+|1\rangle_{B_{1}}\right)|0\rangle_{B_{2}}+|1\rangle_{A}|0\rangle_{C}\left(|0\rangle_{B_{1}}-|1\rangle_{B_{1}}\right)|1\rangle_{B_{2}}+$ $|0\rangle_{A}|1\rangle_{C}\left(|0\rangle_{B_{1}}+|1\rangle_{B_{1}}\right)|1\rangle_{B_{2}}+|1\rangle_{A}|1\rangle_{C}\left(|0\rangle_{B_{1}}-|1\rangle_{B_{1}}\right)|0\rangle_{B_{2}}$. After the measurement, dependent on the measurement outcome p_{1} of qubit B_{1} and p_{2} of qubit B_{2} the state of qubits A and C is:

$$
\left|\psi_{00}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|0\rangle_{C}+|1\rangle_{A}|1\rangle_{C}\right) \text { if }\left(p_{1}, p_{2}\right)=(0,0)
$$

$$
\begin{aligned}
&\left|\psi_{01}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|1\rangle_{C}+|1\rangle_{A}|0\rangle_{C}\right) \text { if }\left(p_{1}, p_{2}\right)=(0,1) \\
&\left|\psi_{10}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|0\rangle_{C}-|1\rangle_{A}|1\rangle_{C}\right) \text { if }\left(p_{1}, p_{2}\right)=(1,0) \\
&\left|\psi_{11}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|1\rangle_{C}-|1\rangle_{A}|0\rangle_{C}\right) \text { if }\left(p_{1}, p_{2}\right)=(1,1)
\end{aligned}
$$

all for states are entangled
c) The density matrix of the qubits A and C without knowledge of p_{1}, p_{2} is the sum of the density matrices of these four entangled states, each with weight $1 / 4$:

$$
\rho=\frac{1}{4}\left|\psi_{00}\right\rangle\left\langle\psi_{00}\right|+\frac{1}{4}\left|\psi_{01}\right\rangle\left\langle\psi_{01}\right|+\frac{1}{4}\left|\psi_{10}\right\rangle\left\langle\psi_{10}\right|+\frac{1}{4}\left|\psi_{11}\right\rangle\left\langle\psi_{11}\right| .
$$

The cross terms cancel, what remains is

$$
\rho=\frac{1}{4}(|00\rangle\langle 00|+|01\rangle\langle 01|+|10\rangle\langle 10|+|11\rangle\langle 11|),
$$

which is the 4×4 unit matrix.

