
Answers to the Exam Quantum Information, 15 December 2020
each item gives 2 points for a fully correct answer, grade = total �9=24� 1
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b) concurrence is 0, the qubits are not entangled.
c) the final state is a product state of j0i for the second qubit and j Ai �
c�j0i � c�j1i for the first qubit, so the reduced density matrix of the first
qubit (with Alice) is � � j Aih Aj. This is a pure state.
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because TrAB � TrBA.
(b) Define F�t� � �2�t�� ��t�, then calculate
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so F�t� � e�iHt=�F�0�eiHt=�, and since F�0� � 0 it follows that F�t� � 0.
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3. (a) Act on the qubit with a Hadamard gate and measure it. The Hadamard
transforms j 1i , j0i and j 2i , j1i, so the measurement will reveal the
state.
(b) Only orthogonal states can be distinguished with certainty. The two

states j0i and
q
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2j1i are not orthogonal, and since a unitary oper-

ation conserves the angle between states, they will remain non-orthogonal
no matter how we operate on the qubit. So Bob cannot tell with certainty
which qubit he has.
(c) A unitary operator is invertible, the inverse of the no-deleting statement
is the no-cloning theorem:

Uyj ij0i � j ij i:

So if such a U would exist, we would also be able to clone an arbitrary state
using the operator Uy, which is forbidden.
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(c) if j�i � j i the probability to measure the state j1i in the control qubit
is zero, so if you do measure j1i the states j�i and j i must have been
orthogonal.


