Answers to the Exam Quantum Information, 17 December 2021 each item gives 2 points for a fully correct answer, grade $=$ total $\times 9 / 24+1$

1. a) The coefficient matrix of the state $|\Psi\rangle$ is $c=\left(\begin{array}{cc}2^{-1 / 2} & 1 / 2 \\ 0 & 1 / 2\end{array}\right)$, with determinant $2^{-3 / 2}$, so the concurrence is $2^{-1 / 2} \neq 0$, the state is entangled.
b) $\left|\psi_{0}\right\rangle_{B}=(3 / 4)^{-1 / 2}\left(2^{-1 / 2}|0\rangle_{B}+2^{-1}|1\rangle_{B}\right),\left|\psi_{1}\right\rangle_{B}=|1\rangle_{B}$ (including the normalization constant)
c) the state $\left|\psi_{0}\right\rangle_{B}$ is found with probability $p_{0}=3 / 4$, the state $\left|\psi_{1}\right\rangle_{B}$ with probability $p_{1}=1 / 4$, the reduced density matrix is $\rho_{B}=p_{0}\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|+$ $p_{1}\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|$. This is the same as before the measurement, $\tilde{\rho}_{B}=\rho_{B}$.
2. a) $\mathrm{H}=2^{-1 / 2}\left(\begin{array}{ll}1 & 1 \\ 1 & -1\end{array}\right), \mathrm{H}=\mathrm{H}^{\dagger}, \mathrm{H}=\mathrm{H}^{-1}$, so this operation is both Hermitian and unitary.
b) $\mathrm{X}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \mathrm{HXH}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)=\mathrm{Z}$, so $\alpha|0\rangle+\beta|1\rangle \mapsto \alpha|0\rangle-\beta|1\rangle$.
c) the CNOT operation is a controlled-X operation, so to obtain the controlledZ we can use the Hadamard operation on the target qubit to transform the X-operation in a Z-operation:

3. a) The circuit contains a CNOT operation (with the qubit shared with Charlie as the control and the qubit shared with Bob as the target), followed by a Hadamard operation (on the qubit shared with Charlie). See the diagram, where $|B\rangle$ indicates the qubit shared with Bob and $|C\rangle$ the qubit shared with Charlie.

b) Alice's qubit has been teleported to Bob, so the final state is $|0\rangle_{A}|0\rangle_{A}\left(\alpha|0\rangle_{B}|0\rangle_{C}+\beta|1\rangle_{B}|1\rangle_{C}\right)$.
c) Yes, the qubits of Bob and Charlie are entangled, if $\alpha \beta \neq 0$.
4. (a) use a combination of CNOT and Hadamard operations

(b) $S_{1}\left|\psi_{1}\right\rangle=\left|\psi_{1}\right\rangle, S_{2}\left|\psi_{2}\right\rangle=(-1)^{2}\left|\psi_{2}\right\rangle=\left|\psi_{2}\right\rangle$, because $\sigma_{x}(|0\rangle+|1\rangle)=$
$|0\rangle+|1\rangle$ and $\sigma_{x}(|0\rangle-|1\rangle)=-(|0\rangle+|1\rangle)$. Hence $\alpha\left|\psi_{0}\right\rangle+\beta\left|\psi_{1}\right\rangle$ is an eigenstate of both S_{1} and S_{2} with eigenvalue 1.
(c) For a σ_{z} error on the first qubit a measurement of S_{1} gives outcome -1 and a measurement of S_{2} gives outcome +1 ; for an error on the second qubit the outcomes are $-1,-1$ and for an error on the third qubit the outcomes are $+1,-1$. The erroneous states remain eigenstates of S_{1} and S_{2}, so the measurement does not perturb them.
