1. (a) $\rho^{2} \neq \rho$, so the particle is in a mixed state.
(b) $\left\langle S_{z}\right\rangle=\operatorname{Tr} S_{z} \rho=1 / 4$
(c) $\rho=|0\rangle\langle 0|=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right), \rho^{2}=\rho$, so the particle is in a pure state.
2. a) A local unitary operation cannot change the degree of entanglement, so might as well take the identity for U. Then the state is $(|00\rangle+|11\rangle) / \sqrt{2}$, with concurrence 1 (maximally entangled).
b) Depending on whether $U=U_{0} \equiv I, U=U_{1} \equiv X, U=U_{2} \equiv Y, U=U_{3} \equiv Z$, the state received by Bob is $\left|\Psi_{0}\right\rangle=(|00\rangle+|11\rangle) / \sqrt{2},\left|\Psi_{1}\right\rangle=(|10\rangle+|01\rangle) / \sqrt{2}$, $\left|\Psi_{2}\right\rangle=(|10\rangle-|01\rangle) / \sqrt{2},\left|\Psi_{3}\right\rangle=(|00\rangle-|11\rangle) / \sqrt{2}$. These are orthogonal.
c) Bob inverts the circuit, by first applying a cNOT gate (with Alice's qubit as the control) and then a Hadamard gate on Alice's qubit. He then measures both qubits. The answer is 00 for $\left|\Psi_{0}\right\rangle, 01$ for $\left|\Psi_{1}\right\rangle, 11$ for $\left|\Psi_{2}\right\rangle, 10$ for $\left|\Psi_{3}\right\rangle$.
3. a) there exists no unitary operator U such that for any pure state $|\phi\rangle$

$$
U|\phi\rangle_{A}|0\rangle_{B}=e^{i \alpha(\phi)}|\phi\rangle_{A}|\phi\rangle_{B}
$$

b) Proof:

$$
\begin{aligned}
&\langle\phi \mid \psi\rangle=\left\langle\left. 0\right|_{B}\left\langle\left.\phi\right|_{A} \mid \psi\right\rangle_{A} \mid 0\right\rangle_{B}=\left\langle\left. 0\right|_{B}\left\langle\left.\phi\right|_{A} U^{\dagger} U \mid \psi\right\rangle_{A} \mid 0\right\rangle_{B} \\
&=e^{i(\alpha(\psi)-\alpha(\phi))}\left\langle\left.\phi\right|_{B}\left\langle\left.\phi\right|_{A} \mid \psi\right\rangle_{A} \mid \psi\right\rangle_{B} \\
&=e^{i(\alpha(\psi)-\alpha(\phi))}\langle\phi \mid \psi\rangle^{2} \\
& \Rightarrow|\langle\phi \mid \psi\rangle|=|\langle\phi \mid \psi\rangle|^{2} \Rightarrow|\langle\phi \mid \psi\rangle|=0 \text { or } 1 .
\end{aligned}
$$

This can not be the case for two arbitrary states.
c) An encryption key cannot be intercepted and copied without the recipient noticing.
4. a) $\rho_{t}=(1-p)|\psi\rangle\langle\psi|+p\left|\psi^{\prime}\right\rangle\left\langle\psi^{\prime}\right|$, with $\left|\psi^{\prime}\right\rangle=\sigma_{x}|\psi\rangle=\alpha|1\rangle+\beta|0\rangle$.
b) the copied state would be $(\alpha|0\rangle+\beta|1\rangle)(\alpha|0\rangle+\beta|1\rangle)(\alpha|0\rangle+\beta|1\rangle)$, it has cross-terms that do not appear in the encoded state $\alpha|000\rangle+\beta|111\rangle$.
c) the final state when no error has occurred is $(\alpha|0\rangle+\beta|1\rangle)|0\rangle|0\rangle$; if an error occurred on the first qubit it is $(\alpha|0\rangle+\beta|1\rangle)|1\rangle|1\rangle$; if an error occurred on the second qubit it is $(\alpha|0\rangle+\beta|1\rangle)|1\rangle|0\rangle$; if an error occurred on the third qubit it is $(\alpha|0\rangle+\beta|1\rangle)|0\rangle|1\rangle$; so the state of the first qubit factors out from the state of the second and third qubits, it is not entangled with them.

