EXAM QUANTUM INFORMATION, 11 NOVEMBER 2019, 14.15-17.15 HOURS.

- 1. The NOT gate Ω transforms a qubit in the state $|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$ into the orthogonal state $\Omega |\Psi\rangle = \beta^* |0\rangle \alpha^* |1\rangle$.
- *a)* Show in a drawing the relative positions of the two states $|\Psi\rangle$ and $\Omega|\Psi\rangle$ on the Bloch sphere.
- *b)* What is Ω if α and β are both real numbers?
- *c)* Explain why there is no such thing as a "universal" NOT gate, which would work for arbitrary complex α , β .
- 2. The density matrix ρ has the general expression

$$\rho = \sum_{n} p_{n} |\Psi_{n}\rangle \langle \Psi_{n}|.$$

The coefficients p_n are real positive and $\sum_n p_n = 1$. Each state $|\Psi_n\rangle$ is normalized to unity, but pairs of states $|\Psi_n\rangle$ and $|\Psi_m\rangle$ need not be orthogonal.

- *a)* Derive that $\langle \psi | \hat{\rho} | \psi \rangle \ge 0$ for any arbitrary state $| \psi \rangle$.
- *b)* Show, using the Schrödinger equation with Hamiltonian H for $\Psi_n(t)$, that the density matrix evolves in time according to

$$i\hbar \frac{d}{dt}\rho(t) = H\rho(t) - \rho(t)H.$$

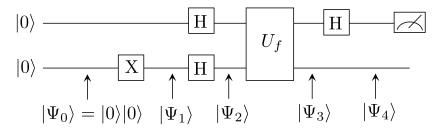
- *c*) The density matrix of a pure state satisfies $\rho^2 = \rho$. Show that a state is pure at time t > 0 if and only if it is pure at time t = 0.
- 3. Two qubits *A* and *B* are in the state

$$|\Psi\rangle = \tfrac{1}{2}|0\rangle_A|0\rangle_B + \tfrac{1}{2}|1\rangle_A|1\rangle_B + \tfrac{1}{2}|1\rangle_A|0\rangle_B + \tfrac{1}{2}|0\rangle_A|1\rangle_B.$$

- *a)* Are the qubits entangled? Explain your answer.
- *b)* Calculate the reduced density matrix ρ_A of qubit A. Does this density matrix represent a pure state or a mixed state?
- *c*) You are given two qubits *C* and *D* in the state $|\Phi\rangle = |0\rangle_C |0\rangle_D$. Construct a circuit using a CNOT gate and any desired single-qubit gate that entangles the qubits *C* and *D*.

continued on second page

- 4. The Deutsch algorithm can tell whether a function f from $\{0,1\}$ to $\{0,1\}$ satisfies f(0) = f(1) or $f(0) \neq f(1)$. It does so with a *single* evaluation of f in a two-qubit gate U_f that maps $|x\rangle|y\rangle \mapsto |x\rangle|y\oplus f(x)\rangle$.
- *a)* Why is it in general not possible to represent f by a single-qubit gate? The diagram below shows the circuit, containing in addition to the gate U_f three single-qubit Hadamard gates H and a Pauli gate $X = \sigma_x$.



- *b)* Give the expressions for the two-qubit states $|\Psi_n\rangle$ at each stage n=1,2,3,4 of the quantum computation.
- *c)* After the final Hadamard gate that qubit is measured. Explain how the measurement outcome decides whether f(0) = f(1) or $f(0) \neq f(1)$.