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Quantum Information: lecture 3

• quantum key distribution Preskill 4.2.2 or 4.5 (update)

• quantum algorithms Preskill 6.3

• quantum error correction Preskill 7.1
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quantum key distribution
• there exists an unbreakable code: “one-time pad” — add a ran-

dom bit string (shared key) to the message

• unpractical: the shared key can only be used once, and a new
key must be exchanged securely (what if the key is intercepted
and copied during transmission?)

• quantum key distribution relies on entanglement and the no-
cloning theorem to ensure private exchange

Alice and Bob share a batch of entangled qubits | ↑〉A| ↑〉B− | ↓〉A| ↓〉B and each measures n̂ ·σ for

randomly chosen orientations differing by 45◦, as in the Bell test; violation of the Bell inequality

guarantees that the entanglement has not been broken by an eavesdropper; the measurement

outcomes for identical basis choices are perfectly correlated and establish a shared random key.
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quantum algorithms (1)
Deutsch (1985) presented the first problem that can be solved
more efficiently on a quantum computer:
the function f : {0, 1} 7→ {0, 1} is expensive to evaluate, find out if
f(0) = f(1) or f(0) 6= f(1) in as few function calls as possible; clas-
sically, two calls are needed; a quantum computer needs only one
single call.

Incorporate the function in the unitary two-qubit operationU : |x〉|y〉 7→ |x〉|y⊕ f(x)〉;

apply U to the quantum superposition (|0〉 + |1〉)(|0〉 − |1〉), which is transformed into[
(−1)f(0)|0〉 + (−1)f(1)|1〉

]
(|0〉 − |1〉) with a single call to f; then perform a Hadamard operation

on the first qubit and measure it: the outcome is 0 if f(0) = f(1) and 1 if f(0) 6= f(1).

quantum parallelism effectively evaluates both f(0) and f(1) in a
single function call
Deutsch-Josza: generalization toN qubits, with exponential speedup
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quantum algorithms (2)
Shor’s algorithm (1994) factors large numbers with exponential
speedup on a quantum computer; the key ingredient is the period-
finding subroutine (Simon’s algorithm):

f : {0, 1}N → {0, 1}N has period a: f(x) = f(y) if and only if y = x ⊕ a; the problem is to find a;

classically of order 2N function calls are needed; a quantum computer finds a in orderN calls.

use two registers ofN qubits each, in a state represented by the binary number x ranging from

0 to 2N − 1; incorporate f in the unitary operator U : |x〉|0〉 7→ |x〉|f(x)〉; apply U to the super-

position
(∑

x |x〉
)
|0〉 7→

∑
x |x〉|f(x)〉; measure the second register and find f(X), resulting in the

state (|X〉+ |X⊕ a〉)|f(X)〉; perform a Hadamard on each qubit in the first register and measure;

the outcome y satisfies y � a ≡ y1a1 ⊕ y2a2 · · · ⊕ yNaN = 0; repeat N times and find a from

theN linear equations.

Hadamard |x〉 7→
∏
i

(
|0〉+ (−1)xi |1〉

)
=

∑
y(−1)

x�y|y〉

hence |x⊕ a〉 →
∑
y(−1)

(x⊕a)�y|y〉 and
(
|x〉+ |x⊕ a〉

)
7→

∑
y�a=0 |y〉
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quantum error correction
If you cannot measure qubits without destroying them,
how to correct errors? encode one qubit into three

original: α|000〉+ β|111〉
damaged: α|010〉+ β|101〉

parity check tells you which spin has flipped, without knowing α
(so without measuring the qubit)

a three-qubit code can correct one σx error; a nine-qubit code can
correct one error from an arbitrary Pauli matrix.


