0/5

Quantum Information: lecture 3

e quantum key distribution Preskill 4.2.2 or 4.5 (update)
e quantum algorithms Preskill 6.3

e quantum error correction Preskill 7.1

guantum key distribution

e there exists an unbreakable code: “one-time pad” — add a ran-
dom bit string (shared key) to the message

e unpractical: the shared key can only be used once, and a new
key must be exchanged securely (what if the key is intercepted
and copied during transmission?)

e quantum key distribution relies on entanglement and the no-
cloning theorem to ensure private exchange

Alice and Bob share a batch of entangled qubits | T)a| 1) —| J)al 4)s and each measures fi- o for
randomly chosen orientations differing by 45°, as in the Bell test; violation of the Bell inequality
guarantees that the entanglement has not been broken by an eavesdropper; the measurement

outcomes for identical basis choices are perfectly correlated and establish a shared random key.

guantum algorithms (1)

Deutsch (1985) presented the first problem that can be solved
more efficiently on a quantum computer:

the function f : {0, 1} — {0, 1} is expensive to evaluate, find out if
f(0) = f(1) or f(0) # f(1) in as few function calls as possible; clas-
sically, two calls are needed; a quantum computer needs only one
single call.

Incorporate the function in the unitary two-qubit operation U : [x)[y) — [x)|y & f(x));

apply U to the quantum superposition (|0) + [1))(|0) — [1)), which is transformed into
(=) 0y + (—1)*V[1)](10) — [1)) with a single call to f; then perform a Hadamard operation
on the first qubit and measure it: the outcome is 0 if f(0) = f(1) and 1if f(0) # f(1).
guantum parallelism effectively evaluates both f(0) and f(1) in a
single function call

Deutsch-Josza: generalization to N qubits, with exponential speedup

guantum algorithms (2)

Shor’s algorithm (1994) factors large numbers with exponential
speedup on a quantum computer; the key ingredient is the period-
finding subroutine (Simon'’s algorithm):

f: {0, 1N — {0, 1IN has period a: f(x) = f(y) ifand only if y = x @ a; the problem is to find q;
classically of order 2™ function calls are needed; a quantum computer finds a in order N calls.

use two registers of N qubits each, in a state represented by the binary number x ranging from
0 to 2N — 1; incorporate f in the unitary operator U : [x)|0) — [x)|f(x)); apply U to the super-
position (3 [x))[0) — 3 Ix)[f(x)); measure the second register and find f(X), resulting in the
state (|1X) + |X @ a))|f(X)); perform a Hadamard on each qubit in the first register and measure;
the outcome y satisfiesy ® a = y1a1 ® y2az--- ® ynan = 0; repeat N times and find a from

the N linear equations.

Hadamard [x) — [T;(I0) + (=1)[1)) = > (=1)**¥]y)

hence [x © a) — Zy(—ﬂ("@a)@y!y) and () +Ix @ a)) = 3> aoly)

guantum error correction

If you cannot measure qubits without destroying them,
how to correct errors? encode one qubit into three

original: «|000) + (3/111)
damaged: «|010) + 3|101)

parity check tells you which spin has flipped, without knowing «
(so without measuring the qubit)

a|0) + B|1)
0) ”I

U

0) —

encoder ’0> <) C)

:
0) B-D

® ég}’
}&
parity check

a three-qubit code can correct one oy error; a nine-qubit code can
correct one error from an arbitrary Pauli matrix.

A
A

