Problem set for the Introduction to linear algebra for quantum information

based on Quantum Computation and Quantum Information, by Nielsen & Chuang, §2.1

1. Prove the Cauchy-Schwarz inequality

$$\langle v|v\rangle\langle w|w\rangle \ge |\langle v|w\rangle|^2.$$

Hint: Insert the resolution of the identity, $\langle v|v\rangle = \sum_i \langle v|i\rangle \langle i|v\rangle$, and ask yourself what would happen if you would keep only a single term in the sum.

- 2. Write the Pauli operators as an outer product of the basis vectors $|0\rangle$ and $|1\rangle$.
- 3. Consider the operator $V = |v\rangle\langle v|$ for some given nonzero vector $|v\rangle$. Prove that V has one eigenvalue equal to 1, while all other eigenvalues are equal to 0.
- 4. Is the product of two Hermitian operators Hermitian? Is the product of two unitary operators unitary?
- 5. Calculate the matrix representation of the tensor products $X \otimes I$ and $X \otimes Y$.
- 6. Calculate the matrix representation of the Hadamard operator

$$H = \frac{1}{\sqrt{2}} \left[(|0\rangle + |1\rangle) \langle 0| + (|0\rangle - |1\rangle) \langle 1| \right].$$

- 7. Calculate eigenvalues and eigenvectors for the Pauli matrices X, Y, Z. Are these operators Hermitian? Are they unitary?
- 8. Prove that the matrix $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ is not diagonalizable. What are its singular values?
- 9. An operator of the form

$$P = \sum_{i=1}^{k} |i\rangle\langle i|,$$

constructed by choosing k basis vectors out of an orthonormal set of n basis vectors is called a *projector*. If k = n then P = I, but if k < n this is not the case Prove that $P^2 = P$. What are its eigenvalues?

10. A unitary transformation of an operator A is defined by

$$A' = UAU^{\dagger},$$

with U a given unitary operator.

Prove that if λ is an eigenvalue of A, then λ is also an eigenvalue of A'.

11. An operator is called *positive* if $\langle v|A|v\rangle$ is real and ≥ 0 for any vector $|v\rangle$. For example, BB^{\dagger} is a positive operator for any B.

Prove that the set of positive operators is the set of Hermitian operators with nonnegative eigenvalues.

12. Prove that $\operatorname{Tr} AB = \operatorname{Tr} BA$. Also prove that, for any operator A and any vector v,

$$\operatorname{Tr} A|v\rangle\langle v| = \langle v|A|v\rangle.$$

13. A function f(A) of a diagonalizable operator $A = \sum_{a} a |a\rangle \langle a|$ is defined by

$$f(A) = \sum_{a} f(a) |a\rangle \langle a|.$$

Prove that

$$\exp\left(i\theta\sigma_x\right) = I\cos\theta + i\sigma_x\sin\theta.$$

Hint: Expand the exponent in a Taylor series and consider separately the even and the odd powers of θ .

More generally, if $\Sigma = n_x \sigma_x + n_y \sigma_y + n_z \sigma_z$ with \vec{n} a unit vector, then

$$\exp\left(i\theta\Sigma\right) = I\cos\theta + i\Sigma\sin\theta.$$