0/6

Quantum Theory lecture 5: approximation methods

 variational principle 	S-5.4
 semiclassics (Bohr-Sommerfeld quantization) 	S-2.5
WKB approximation	S-2.5
 resonant tunneling 	
• Landau levels	

S = Sakurai (2nd edition)

Variational principle

the lowest eigenvalue E_0 of H (the ground state energy) is bounded from above by

$$\begin{split} \langle \psi | H | \psi \rangle &= \sum_{n,m} \langle \psi | \psi_n \rangle \langle \psi_n | H | \psi_m \rangle \langle \psi_m | \psi \rangle \\ &= \sum_n E_n |\langle \psi_n | \psi \rangle|^2 \geqslant E_0 \sum_n |\langle \psi_n | \psi \rangle|^2 = E_0. \end{split}$$
normalized state ψ ; more generally, for any ψ ,

for a

 $|\mathsf{E}_0 \leqslant rac{\langle \psi | \mathsf{H} | \psi \rangle}{\langle \psi | \psi \rangle}.$

Bohr-Sommerfeld quantization

before the arrival of the Schrödinger equation, Bohr and Sommerfeld had found a way to quantize periodic motion by demanding that the phase accumulated in one period should be an integer multiple of 2π :

$$\frac{1}{\hbar}\oint p\,dx + \gamma = 2\pi n, \quad n = 0, 1, 2, \dots$$

p = mv + qA is the canonical momentum (sum of mechanical momentum mv and electromagnetic momentum qA)
 γ is a phase shift picked up at the two turning points

• particle in a box: $2pL/\hbar - 2\pi = 2\pi n \Rightarrow p = \pi n\hbar/L$, $E = \frac{1}{2m}(\pi n\hbar/L)^2$ (exact) triangular potential well: *approximate* (see exercise 5.1) • more and more accurate in the large-n limit ("semiclassical")

WKB approximation

Wenzel-Kramers-Brillouin (Schrödinger eq.) + Jeffreys (more general diff.eq.) probability amplitude ψ that a particle from \vec{r}_i reaches \vec{r}_f is the sum of the amplitudes along all *classical* paths connecting \vec{r}_i to \vec{r}_f

$$\psi = \sum_{\text{paths}} \frac{1}{\sqrt{\nu(\vec{r}_{f})}} \exp\left(\frac{i}{\hbar} \int_{\vec{r}_{i}}^{\vec{r}_{f}} \vec{p} \cdot d\vec{l} + i\gamma\right)$$

factor 1/√v ⇒ current density j = v|ψ|² constant along path
phase shift γ (a.k.a. Maslov index) is π at a hard wall (infinite potential) where ψ = 0, so that incident and reflected waves cancel
at a smooth turning point, v changes sign
⇒ e^{iγ} = 1/√-1 = -i ⇒ γ = -π/2

• sum over paths would be *exact* if we would include also nonclassical paths (Feynman's path integral)

resonant tunneling

see exercise 5.3

Landau levels

see exercise 5.2

cyclotron orbit: radius $l_c = m\nu/eB$, frequency $\omega_c = eB/m$ $\oint \vec{p} \cdot d\vec{l} = \oint (m\vec{v} + e\vec{A}) \cdot d\vec{l} = 2\pi l_c m\nu - e\pi l_c^2 B = \pi (m\nu)^2/eB = 2\pi E/\omega_c$ BS quantization (two soft turning points): $2\pi E/\hbar\omega_c = 2\pi n - \gamma \Rightarrow E = (n + \frac{1}{2})\hbar\omega_c$ — exact flux through orbit is quantized: $\Phi = \pi l_c^2 B = 2\pi E/e\omega_c = (n + \frac{1}{2})h/e$

Edge state

to include the effect of a boundary along the y-axis, choose a gauge $A = Bx\hat{y}$; projection of motion on x-axis is periodic, apply BS rule: $\oint mv_x dx = \oint eBy(x)dx = e\Phi = h(n + \frac{3}{4})$ (one hard and one soft turning point) translational invariance along $y \Rightarrow p_y$ is conserved — corresponds to x-coordinate of center of cyclotron orbit: $p_y = mv_y + eBx = -eB(x - X) + eBx = eBX$ Hellmann-Feynman: $\langle v_y \rangle = dE(p_y)/dp_y = (eB)^{-1}dE(X)/dX$

